JP2005064110A - Member for electronic component and electronic component using the same - Google Patents

Member for electronic component and electronic component using the same Download PDF

Info

Publication number
JP2005064110A
JP2005064110A JP2003290030A JP2003290030A JP2005064110A JP 2005064110 A JP2005064110 A JP 2005064110A JP 2003290030 A JP2003290030 A JP 2003290030A JP 2003290030 A JP2003290030 A JP 2003290030A JP 2005064110 A JP2005064110 A JP 2005064110A
Authority
JP
Japan
Prior art keywords
copper foil
electronic component
heat
plating film
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003290030A
Other languages
Japanese (ja)
Inventor
Minoru Takatani
稔 高谷
Kenichi Kawabata
賢一 川畑
Takaaki Morita
高章 森田
Fumiaki Akase
文彰 赤瀬
Katsuyuki Tsuchida
克之 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd, TDK Corp filed Critical Nikko Materials Co Ltd
Priority to JP2003290030A priority Critical patent/JP2005064110A/en
Publication of JP2005064110A publication Critical patent/JP2005064110A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain the high adhesion between copper foil and an organic material regarding a member for the electronic component comprised of a conductor and an organic dielectric, and the electronic component using the same. <P>SOLUTION: A heat-resistant plated coating with a thickness of 0.005-0.8 μm made of a zinc-nickel system or the like is formed on the surface of the low profile copper foil, which is roughened so as to make the surface roughness of the copper foil to be in the range of 0.3-3.5 μm by plating or the like. An olefinic silane coupling agent is applied on the surface of the heat-resistant plated coating. A thermosetting material made of vinylbenzyl (or its derivative) or vinylnaphtalene (or its derivative) is adhered on the that by high-temperature press or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、導体と有機誘電体とから構成された電子部品用部材並びにこれを用いた電子部品に関する。   The present invention relates to an electronic component member composed of a conductor and an organic dielectric, and an electronic component using the same.

近年、集積度の高い電子回路を形成するために、多層プリント基板やビルドアップ基板が広く利用されている。
多層プリント基板は、誘電体からなるプリプレグの片面または両面に銅箔を張ることにより銅張り板を作成し、この銅張り板上の銅箔をパターニングすることにより回路を形成して、得られた複数の銅張り板を互いに積層することにより生成される。プリプレグは、例えば、ガラスクロスやアラミド等からなる基材に、樹脂等の有機材料を含浸させることにより形成される。銅箔をプリプレグの表面に張る手法としては、例えば銅箔を加熱してプリプレグの表面に加圧(高温プレス)する手法がある。
In recent years, multilayer printed boards and build-up boards have been widely used to form highly integrated electronic circuits.
A multilayer printed circuit board was obtained by forming a copper-clad plate by stretching a copper foil on one or both sides of a dielectric prepreg, and forming a circuit by patterning the copper foil on the copper-clad plate. It is generated by laminating a plurality of copper-clad plates. The prepreg is formed, for example, by impregnating a base material made of glass cloth or aramid with an organic material such as a resin. As a method of stretching the copper foil on the surface of the prepreg, for example, there is a method of heating the copper foil and pressurizing (high temperature pressing) the surface of the prepreg.

一方、ビルドアップ基板は、あらかじめ回路を構成する形状に銅箔をパターニングし、この銅箔に樹脂等の有機材料を塗工して樹脂付銅箔を形成し、形成した樹脂付銅箔を積層することにより作成される。   On the other hand, the build-up board is pre-patterned into a shape that constitutes a circuit, and an organic material such as resin is applied to the copper foil to form a resin-coated copper foil, and the formed resin-coated copper foil is laminated. It is created by doing.

多層プリント基板やビルドアップ基板の作成に用いられる銅箔には、各種の特性が要求される。例えば、銅箔とプリプレグとが容易に剥離しないために、銅箔は、プリプレグを構成する有機材料との間で高い接着性を保つ必要がある。また、半田付けやリフロー等を原因とする温度変化により剥離が起きないよう、高い耐熱性を有している必要もある。また、プリプレグを構成する有機材料と反応して剥離を起こすことのないよう、高い耐薬品性を有する必要もある。   Various characteristics are required for the copper foil used for the production of multilayer printed boards and build-up boards. For example, since copper foil and a prepreg do not peel easily, copper foil needs to maintain high adhesiveness with the organic material which comprises a prepreg. It is also necessary to have high heat resistance so that peeling does not occur due to temperature changes caused by soldering or reflow. It is also necessary to have high chemical resistance so that it does not react with the organic material constituting the prepreg and cause peeling.

一方、銅箔に要求される電気的特性としては、伝送損失が低いこと、信号の伝搬速度が大きいこと、特性インピーダンスが所望の値にコントロールされていること、などがある。近年、多層プリント基板やビルドアップ基板は、1[GHz]を超える高周波を扱う高周波回路を含んだ装置(例えば、携帯端末等)に用いられることも多いため、これらの電気的特性は特に重視されている。   On the other hand, electrical characteristics required for the copper foil include a low transmission loss, a high signal propagation speed, and a characteristic impedance being controlled to a desired value. In recent years, multilayer printed circuit boards and build-up boards are often used in devices (for example, portable terminals) including high-frequency circuits that handle high frequencies exceeding 1 [GHz], and thus their electrical characteristics are particularly emphasized. ing.

そこで、銅箔がこのような各種特性を満たすようにするため、従来より、種々の構成が考えられている。例えば、プリプレグとの接着性を向上させるため、銅箔は通常、プリプレグとの接着面が粗化される(粗化された面は「M面」あるいは「粗化面」と呼ばれている)。また、銅箔の耐熱性及び耐薬品性を向上させるために銅箔のM面に黄銅の層を形成する、という手法もある(例えば、特許文献1参照)。
特公昭51−35711号公報
Therefore, various configurations have been conventionally considered in order for the copper foil to satisfy such various characteristics. For example, in order to improve the adhesion to the prepreg, the copper foil usually has a roughened adhesive surface with the prepreg (the roughened surface is referred to as the “M surface” or “roughened surface”). . There is also a method of forming a brass layer on the M surface of the copper foil in order to improve the heat resistance and chemical resistance of the copper foil (see, for example, Patent Document 1).
Japanese Patent Publication No. 51-35711

また、数式1に示すように、プリント基板が形成する伝送路の伝送損失の大きさは、プリント基板を構成する誘電体の誘電率の平方根、及びこの誘電体の誘電正接に比例することが知られている。また、数式2に示すように、プリント基板上を伝搬する信号の伝搬速度は、プリント基板を構成する誘電体の誘電率の平方根に反比例することが知られている。   Further, as shown in Equation 1, it is known that the magnitude of the transmission loss of the transmission line formed by the printed circuit board is proportional to the square root of the dielectric constant of the dielectric material constituting the printed circuit board and the dielectric loss tangent of the dielectric material. It has been. Further, as shown in Formula 2, it is known that the propagation speed of the signal propagating on the printed board is inversely proportional to the square root of the dielectric constant of the dielectric constituting the printed board.

(数1)
A=k・f・(ε1/2・tanδ
(ただし、Aは伝送損失、kは係数、fは信号の周波数、εは誘電体の比誘電率、tanδは誘電体の誘電正接)
(Equation 1)
A = k · f · (ε r ) 1/2 · tan δ
(Where A is the transmission loss, k is the coefficient, f is the frequency of the signal, ε r is the dielectric constant of the dielectric, and tan δ is the dielectric loss tangent of the dielectric)

(数2)
V=K・c/(ε1/2
(ただし、Vは信号の伝搬速度、Kは係数、cは光速)
(Equation 2)
V = K · c / (ε r ) 1/2
(Where V is the signal propagation speed, K is the coefficient, and c is the speed of light)

従って、銅箔の伝送損失を低減させ、伝搬速度を向上させるためには、誘電体としてのプリプレグの誘電率や誘電正接を小さくすればよい。この観点から、誘電率や誘電正接が小さい有機材料であるビスマレイミドトリアジン樹脂、シアネートエステル樹脂、ポリフェニレンオキサイド樹脂などを用いてプリプレグを形成する手法も考えられている。また、同様の観点から、誘電率や誘電正接が小さいポリビニルベンジルエーテル樹脂を基板材料として用いる手法も考えられている(例えば、特許文献2及び特許文献3参照)。
特開2001−181460号公報 特開2001−247733号公報
Therefore, in order to reduce the transmission loss of the copper foil and improve the propagation speed, the dielectric constant and dielectric loss tangent of the prepreg as a dielectric may be reduced. From this viewpoint, a method of forming a prepreg using a bismaleimide triazine resin, a cyanate ester resin, a polyphenylene oxide resin, or the like, which is an organic material having a low dielectric constant or dielectric loss tangent, has been considered. From the same viewpoint, a method using a polyvinyl benzyl ether resin having a small dielectric constant or dielectric loss tangent as a substrate material is also considered (see, for example, Patent Document 2 and Patent Document 3).
JP 2001-181460 A JP 2001-247733 A

また、数式3に示すように、プリント基板が形成する伝送路の特性インピーダンスは、プリント基板を構成する誘電体の誘電率、グラウンド層間の厚み、銅箔のライン幅、及び銅箔の厚みにより決まることが知られている。   Further, as shown in Equation 3, the characteristic impedance of the transmission line formed by the printed circuit board is determined by the dielectric constant of the dielectric constituting the printed circuit board, the thickness between the ground layers, the line width of the copper foil, and the thickness of the copper foil. It is known.

(数3)
Z={60/(ε1/2}・ln{(4・wGND)/(0.567・w)+(0.6・t)}
(ただし、Zは伝送路の特性インピーダンス、wGNDはグラウンド層間の厚み、wは銅箔のライン幅、tは銅箔の厚み)
(Equation 3)
Z = {60 / (ε r ) 1/2 } · ln {(4 · w GND ) / (0.567 · w L ) + (0.6 · t)}
(Where Z is the characteristic impedance of the transmission line, w GND is the thickness between the ground layers, w L is the line width of the copper foil, and t is the thickness of the copper foil)

従って、プリント基板が形成する伝送路の特性インピーダンスを安定させるためには、プリプレグの誘電率や、塗工された有機材料の厚みが一定に保たれる必要がある。この観点から、誘電率が小さく、塗膜の厚みのムラが生じにくい有機材料を用いてプリプレグを形成する手法も考えられている。   Therefore, in order to stabilize the characteristic impedance of the transmission line formed by the printed circuit board, it is necessary to keep the dielectric constant of the prepreg and the thickness of the coated organic material constant. From this point of view, a method of forming a prepreg using an organic material having a small dielectric constant and hardly causing unevenness in the thickness of the coating film has been considered.

しかしながら、上述の手法を用いた場合、ひとつの特性を向上させるために他の特性が大きく犠牲にされる、という問題が生じていた。
例えば、伝送損失の低減に有効な、誘電率や誘電正接が小さい上述の有機材料は、一般に、極性基が極力少なくなるような分子構造をとるように構成されている。このため、これらの有機材料は、一般のプリント基板用有機材料(例えば、FR−4等)に比べ、銅箔との間のピール強度が確保しにくく、接着性に劣る傾向がある。
However, when the above-described method is used, there is a problem that other characteristics are greatly sacrificed in order to improve one characteristic.
For example, the above-mentioned organic material having a small dielectric constant and dielectric loss tangent that is effective in reducing transmission loss is generally configured to have a molecular structure in which polar groups are minimized. For this reason, these organic materials tend to have poor peel strength with respect to the copper foil and have poor adhesion compared to general organic materials for printed circuit boards (for example, FR-4).

また、プリプレグとの接着性を向上させるために銅箔を粗化すると、表皮効果のために高周波領域での伝送損失が増大する、という問題がある。表皮効果とは、導体を通過する電流の周波数が高くなるほど、電流が導体の表面付近に偏って流れるようになり、導体の見かけの導電率が低下する、という現象をいう。銅の場合でいえば、電流の周波数がf[GHz]であるとき、表面からの深さが数式4に示す表皮深さの値D[μm]より深い部分には、表皮効果のため実質的に電流が流れないことが知られている。   Further, when the copper foil is roughened to improve the adhesion to the prepreg, there is a problem that transmission loss in the high frequency region increases due to the skin effect. The skin effect is a phenomenon in which the higher the frequency of the current passing through the conductor, the more the current flows in the vicinity of the surface of the conductor, and the apparent conductivity of the conductor decreases. In the case of copper, when the frequency of the current is f [GHz], a portion where the depth from the surface is deeper than the skin depth value D [μm] shown in Formula 4 is substantially due to the skin effect. It is known that no current flows in

(数4)
D=2.09/{(f・σ)1/2
(ただし、σは銅の比導電率)
(Equation 4)
D = 2.09 / {(f · σ) 1/2 }
(Where σ is the specific conductivity of copper)

電解銅箔のM面の表面の粗さは、通常4〜8[μm]程度である。一方、数式4によれば、電流の周波数が5[GHz]のとき表皮深さDは0.93[μm]となる。また、電流の周波数が1[GHz]であっても、表皮深さDはなお2.09[μm]である。従って、信号の周波数が1[GHz]以上である場合、電解銅箔のM面の粗さは表皮深さの値Dを上回っており、これが伝送損失の増大につながる。   The roughness of the surface of the M surface of the electrolytic copper foil is usually about 4 to 8 [μm]. On the other hand, according to Equation 4, when the current frequency is 5 [GHz], the skin depth D is 0.93 [μm]. Further, even if the current frequency is 1 [GHz], the skin depth D is still 2.09 [μm]. Therefore, when the signal frequency is 1 [GHz] or higher, the roughness of the M surface of the electrolytic copper foil exceeds the skin depth value D, which leads to an increase in transmission loss.

銅箔の粗化による高周波領域での伝送損失の増大を抑える手法としては、M面の粗さを抑えた低プロファイル銅箔を用いることが考えられる。低プロファイル銅箔は、エッチング(パターニング)の精度を確保しやすいため、特性インピーダンスの安定化を図る上でも有利であり、また微細加工を施すことにより回路の小型化や高集積化の要求に応えることもできる。   As a technique for suppressing an increase in transmission loss in the high frequency region due to the roughening of the copper foil, it is conceivable to use a low profile copper foil in which the roughness of the M plane is suppressed. The low profile copper foil is easy to ensure the accuracy of etching (patterning), so it is advantageous for stabilizing the characteristic impedance, and responds to the demand for miniaturization and high integration of the circuit by applying fine processing. You can also.

しかし、低プロファイル銅箔は誘電体としてのプリプレグを構成する有機材料との接着性が劣り、特に、誘電率や誘電正接が小さい上述の有機材料との間では、十分なピール強度を確保しにくい。低プロファイル銅箔の接着力を向上させる手法として、M面にシランカップリング処理を施す手法も提案されているものの(例えば、特許文献4〜特許文献6参照)、いずれも効果は不十分である。
特公平2−19994号公報 特開昭63−183178号公報 特開平2−26097号公報
However, the low profile copper foil is inferior in adhesiveness with the organic material constituting the prepreg as a dielectric, and it is difficult to ensure a sufficient peel strength especially with the above-mentioned organic material having a small dielectric constant and dielectric loss tangent. . As a technique for improving the adhesive strength of the low profile copper foil, although a technique for applying a silane coupling treatment to the M surface has been proposed (see, for example, Patent Documents 4 to 6), all of the effects are insufficient. .
Japanese Patent Publication No. 2-19994 JP 63-183178 A JP-A-2-26097

この発明は、上記実状に鑑みてなされたものであり、銅箔と有機誘電体との間で高い接着力を保つことを目的とする。   This invention is made | formed in view of the said actual condition, and aims at keeping high adhesive force between copper foil and an organic dielectric.

上記目的を達成するため、この発明の第1の観点にかかる電子部品用部材は、
銅箔と、
前記銅箔の表面に形成された厚み0.005〜0.8μmの耐熱メッキ皮膜と、
前記耐熱メッキ皮膜の表面に形成され、ビニルベンジル化合物、又は、ビニルナフタレン化合物を有する有機誘電体と、
を備えることを特徴とする。
In order to achieve the above object, an electronic component member according to the first aspect of the present invention is provided.
Copper foil,
A heat-resistant plating film having a thickness of 0.005 to 0.8 μm formed on the surface of the copper foil;
An organic dielectric formed on the surface of the heat-resistant plating film and having a vinylbenzyl compound or a vinylnaphthalene compound;
It is characterized by providing.

このような構成の電子部品用部材は、銅箔の表面に厚み0.005〜0.8μmの耐熱メッキ皮膜が形成され、耐熱メッキ皮膜の表面にビニルベンジル化合物、又は、ビニルナフタレン化合物を有する有機誘電体が形成されているので、銅箔が低プロファイル銅箔であったとしても、銅箔が有機誘電体との間で高い接着性を保つことができる。   An electronic component member having such a structure is an organic material having a heat-resistant plating film having a thickness of 0.005 to 0.8 μm formed on the surface of the copper foil, and a vinylbenzyl compound or a vinylnaphthalene compound on the surface of the heat-resistant plating film. Since the dielectric is formed, even if the copper foil is a low profile copper foil, the copper foil can maintain high adhesion with the organic dielectric.

前記耐熱メッキ皮膜は、亜鉛、亜鉛−錫系、亜鉛−ニッケル系、亜鉛−コバルト系、銅−亜鉛系、銅−ニッケル−コバルト系、及びニッケル−コバルト系のうちいずれか1種以上の材質より構成されていることが好ましい。   The heat-resistant plating film is made of at least one material selected from zinc, zinc-tin, zinc-nickel, zinc-cobalt, copper-zinc, copper-nickel-cobalt, and nickel-cobalt. It is preferable to be configured.

前記耐熱メッキ皮膜の前記有機誘電体との接合面は、カップリング剤により表面処理されていることが好ましい。前記カップリング剤は、少なくとも1種のオレフィン系シランカップリング剤より構成されていることが好ましい。   The bonding surface of the heat-resistant plating film with the organic dielectric is preferably surface-treated with a coupling agent. The coupling agent is preferably composed of at least one olefin-based silane coupling agent.

前記銅箔は、0.3〜3.5μmの範囲の粗化面を有することが好ましい。この場合、銅箔の剥離が起きにくい一方で、高周波領域での伝送損失の増大が抑えられる。また、特性インピーダンスを容易に安定化させることができ、また、銅箔の構造を微細なものとして、この電子部品用部材を小型化あるいは高集積化することも容易である。   The copper foil preferably has a roughened surface in the range of 0.3 to 3.5 μm. In this case, the copper foil is hardly peeled off, but an increase in transmission loss in the high frequency region can be suppressed. In addition, the characteristic impedance can be easily stabilized, and the structure of the copper foil can be made minute, and the electronic component member can be easily downsized or highly integrated.

この発明の第2の観点にかかる電子部品は、第1の観点にかかる銅箔と耐熱メッキ皮膜と有機誘電体とからなる層が積層されていることを特徴とする。この発明の電子部品は、高周波信号処理回路用の電子部品であってもよい。   An electronic component according to a second aspect of the present invention is characterized in that a layer comprising a copper foil, a heat-resistant plating film, and an organic dielectric according to the first aspect is laminated. The electronic component of the present invention may be an electronic component for a high-frequency signal processing circuit.

この発明によれば、銅箔と有機誘電体との間で高い接着力を保つことができる。   According to this invention, high adhesive force can be maintained between the copper foil and the organic dielectric.

以下、この発明の実施の形態を、図面を参照して説明する。
図1は、この発明の実施の形態に係る電子部品用部材の断面図である。図示するように、この電子部品用部材は、銅箔1、耐熱メッキ皮膜2、及び絶縁層(接着層)3より構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of an electronic component member according to an embodiment of the present invention. As shown in the figure, this electronic component member is composed of a copper foil 1, a heat-resistant plating film 2, and an insulating layer (adhesive layer) 3.

銅箔1は、電解銅箔、又は圧延銅箔より構成されている。銅箔1の厚みは任意であり、一般的には3〜70μm程度であればよく、必要とされる要求特性(例えば、電流容量等)に応じてこの範囲で使い分ければよい。例えば、サブトラクティブ法などによるエッチングを行って微細なパターンを作成したければ、銅箔1の厚みを3μm〜12μm程度とすれば良好な結果が得られる。また、大電流を流したり、ラインの直流抵抗値を極力下げたい場合には、銅箔1の厚みを18〜70μm程度とすればよい。   The copper foil 1 is comprised from the electrolytic copper foil or the rolled copper foil. The thickness of the copper foil 1 is arbitrary and may generally be about 3 to 70 μm, and may be properly used within this range according to required characteristics (for example, current capacity). For example, if it is desired to create a fine pattern by etching using a subtractive method or the like, good results can be obtained if the thickness of the copper foil 1 is about 3 μm to 12 μm. Moreover, what is necessary is just to let the thickness of the copper foil 1 be about 18-70 micrometers when flowing a large current or reducing the direct current | flow resistance value of a line as much as possible.

また、銅箔1は、M面の粗さを抑えた低プロファイル銅箔であることが好ましい。低プロファイル銅箔は、そのM面の粗さ(粗化量)が0.3〜3.5μmとなるように形成されていることが好ましい。0.3μm未満の粗化量のM面を銅箔に形成することは著しく困難であり、3.5μmを超えると耐熱メッキ皮膜の厚みによる効果がでにくくなってしまうためである。ただし、0.3μm未満の粗化量のM面を銅箔に形成することが可能であれば、銅箔のM面の粗化量を0.3μm未満にしても差し支えない。なお、電解銅箔の標準品の表面粗さは、一般に4.5〜8μm程度の範囲である。   Moreover, it is preferable that the copper foil 1 is a low profile copper foil which suppressed the roughness of the M surface. The low profile copper foil is preferably formed such that the roughness (roughening amount) of the M surface is 0.3 to 3.5 μm. This is because it is extremely difficult to form a M surface with a roughening amount of less than 0.3 μm on the copper foil, and when it exceeds 3.5 μm, the effect of the thickness of the heat-resistant plating film is difficult to be achieved. However, the roughening amount of the M surface of the copper foil may be less than 0.3 μm as long as the M surface with a roughening amount of less than 0.3 μm can be formed on the copper foil. In addition, generally the surface roughness of the standard product of electrolytic copper foil is the range of about 4.5-8 micrometers.

耐熱メッキ皮膜2は、亜鉛、亜鉛−錫系、亜鉛−ニッケル系、亜鉛−コバルト系、銅−亜鉛系、銅−ニッケル−コバルト系、又はニッケル−コバルト系からなり、銅箔1のM面上に形成される。なお、耐熱メッキ皮膜2を構成し得るこれらの材質のうち、もっとも接着性が良好なものは、亜鉛−ニッケル系であり、亜鉛−ニッケル系の耐熱メッキ皮膜2を用いることが好ましい。   The heat-resistant plating film 2 is made of zinc, zinc-tin, zinc-nickel, zinc-cobalt, copper-zinc, copper-nickel-cobalt, or nickel-cobalt. Formed. Of these materials that can constitute the heat-resistant plating film 2, the one having the best adhesiveness is a zinc-nickel system, and it is preferable to use the zinc-nickel-based heat-resistant plating film 2.

耐熱メッキ皮膜2の厚みは、0.005〜0.8μmの範囲で形成されている。かかる範囲内で形成することにより、銅箔1と絶縁層3との間で高い接着力を保つことができる。0.005μm未満では、銅箔1と絶縁層3との間の(耐熱メッキ皮膜2を介しての)接着性が良好に得られず、耐熱メッキ皮膜2の厚みが0.8μmより大きいと、耐薬品性(特に、耐酸性)が低下するためである。   The thickness of the heat resistant plating film 2 is formed in the range of 0.005 to 0.8 μm. By forming within this range, high adhesive force can be maintained between the copper foil 1 and the insulating layer 3. If the thickness is less than 0.005 μm, good adhesion between the copper foil 1 and the insulating layer 3 (through the heat-resistant plating film 2) cannot be obtained, and if the thickness of the heat-resistant plating film 2 is greater than 0.8 μm, This is because chemical resistance (particularly acid resistance) is lowered.

ここで、耐熱メッキ皮膜2の露出面をカップリング剤に浸漬したり、あるいは耐熱メッキ皮膜2の露出面にカップリング剤を吹き付ける等して表面処理を施すことが好ましい。カップリング剤による表面処理により銅箔1と絶縁層3との接着力をさらに向上することができるためである。好適なカップリング剤としては、例えば、ビニル系シラン、アクリル系シランあるいはメタクリル系シラン等のオレフィン系シランカップリング剤がある。   Here, it is preferable to perform a surface treatment by immersing the exposed surface of the heat-resistant plating film 2 in a coupling agent or spraying the coupling agent on the exposed surface of the heat-resistant plating film 2. This is because the adhesion between the copper foil 1 and the insulating layer 3 can be further improved by surface treatment with a coupling agent. Suitable coupling agents include, for example, olefin silane coupling agents such as vinyl silane, acrylic silane, and methacrylic silane.

ビニル系シランとしては、例えば、ピニルトリクロロシラン、ビニルトリアルコキシシラン、ビニルジアルコキシアルキルシラン等があり、より具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルジメトキシメチルシラン、ビニルジエトキシメチルシラン等がある。   Examples of vinyl-based silanes include pinyltrichlorosilane, vinyltrialkoxysilane, vinyl dialkoxyalkylsilane, and more specifically, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy), and the like. There are silane, vinyldimethoxymethylsilane, vinyldiethoxymethylsilane and the like.

アクリル系シランとしては、例えば、γ−アクリロキシプロピルトリメトキシシランが挙げられる。   Examples of the acrylic silane include γ-acryloxypropyltrimethoxysilane.

メタクリル系シランとしては、例えば、γーメタクリロキシプロピルトリメトキシシラン、γーメタクリロキシプロピルメチルジメトキシシラン、γーメタクリロキシプロピルメチルジエトキシシラン、γーメタクリロキシプロピルトリエトキシシラン等が挙げられる。   Examples of the methacrylic silane include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, and γ-methacryloxypropyltriethoxysilane.

以上挙げたオレフィン系シランカップリング剤のうち、特に好適なものはビニル系シランであり、中でもとりわけビニルトリメトキシシラン及びビニルトリエトキシシランが好適である。   Of the olefin-based silane coupling agents listed above, a vinyl-based silane is particularly preferable, and among these, vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.

絶縁層3は、有機材料、例えば、熱硬化性材料より構成された有機誘電体であり、耐熱メッキ皮膜2を介して銅箔1に密着している。この有機材料(熱硬化性材料)は、ビニルベンジル化合物、又は、ビニルナフタレン化合物を有する。ビニルベンジル化合物とはビニルベンジル若しくはその誘導体をいい、ビニルナフタレン化合物とはビニルナフタレン若しくはその誘導体をいう。例えば、絶縁層3は、ビニルベンジル(若しくはその誘導体)、又はビニルナフタレン(若しくはその誘導体)より構成されている。なお、絶縁層3を構成する熱硬化性材料をなすビニルベンジル(又はその誘導体)は、アルカリ存在下の極性溶剤中、若しくは相間移動触媒の存在下の水/有機溶剤混合溶液中で、ビニルベンジルハライドと、フェノール性水酸基をもつポリマー若しくはモノマーとを反応させることにより、合成することができる。   The insulating layer 3 is an organic dielectric made of an organic material, for example, a thermosetting material, and is in close contact with the copper foil 1 through the heat resistant plating film 2. This organic material (thermosetting material) has a vinylbenzyl compound or a vinylnaphthalene compound. The vinylbenzyl compound refers to vinylbenzyl or a derivative thereof, and the vinylnaphthalene compound refers to vinylnaphthalene or a derivative thereof. For example, the insulating layer 3 is made of vinyl benzyl (or a derivative thereof) or vinyl naphthalene (or a derivative thereof). Note that vinylbenzyl (or a derivative thereof) constituting the thermosetting material constituting the insulating layer 3 is vinylbenzyl in a polar solvent in the presence of an alkali or in a water / organic solvent mixed solution in the presence of a phase transfer catalyst. It can be synthesized by reacting a halide with a polymer or monomer having a phenolic hydroxyl group.

絶縁層3は、例えば、以下(a)あるいは(b)として示す手法により形成される。
(a) 上述の熱硬化性材料を、耐熱メッキ皮膜2が形成された銅箔1の耐熱メッキ皮膜2の露出面に塗布して乾燥させる。
(b) ガラス、アラミド、フッ素樹脂、石英、及び/又はポリエチレン等の材質からなるクロスないし不織布に、上述の熱硬化性材料を含浸若しくは塗工して乾燥することによりプリプレグを作成し、このプリプレグの片面又は両面に、耐熱メッキ皮膜2が形成された銅箔1を、耐熱メッキ皮膜2がこのプリプレグに接するように重ねて、高温プレスする。
The insulating layer 3 is formed by, for example, a method shown as (a) or (b) below.
(A) The above-mentioned thermosetting material is applied to the exposed surface of the heat-resistant plating film 2 of the copper foil 1 on which the heat-resistant plating film 2 is formed and dried.
(B) A prepreg is prepared by impregnating or applying the above-mentioned thermosetting material onto a cloth or non-woven fabric made of glass, aramid, fluororesin, quartz, and / or polyethylene, and drying. The copper foil 1 having the heat-resistant plating film 2 formed on one side or both sides of the sheet is stacked so that the heat-resistant plating film 2 is in contact with the prepreg, and is hot-pressed.

以上説明した構成を有する電子部品用部材においては、低プロファイル化された銅箔1と絶縁層3との間で高い接着性を保つ。従って、銅箔1の剥離が起きにくい一方で、1[GHz]を超える高周波領域での伝送損失の増大が抑えられる。また、この電子部品用部材は特性インピーダンスを容易に安定化させることができ、また、銅箔1の構造を微細なものとして、この電子部品用部材を小型化あるいは高集積化することも容易である。   In the electronic component member having the above-described configuration, high adhesiveness is maintained between the low profile copper foil 1 and the insulating layer 3. Therefore, peeling of the copper foil 1 hardly occurs, but an increase in transmission loss in a high frequency region exceeding 1 [GHz] can be suppressed. In addition, the electronic component member can easily stabilize the characteristic impedance, and the structure of the copper foil 1 can be made minute so that the electronic component member can be easily downsized or highly integrated. is there.

なお、この発明は上述のものに限られない。
例えば、上述の構成を有する複数の電子部品用部材を重ね合わせて高温プレスすることにより互いに張り合わせ、結線すべき複数の銅箔1間をビアを介して結線する等することにより、電子部品用部材を多層に形成するようにしてもよい。張り合わされる個々の積層板は、絶縁層が上述の(a)又は(b)いずれの手法により形成されたものであってもよく、両手法を用いて形成されたものが混在していても差し支えない。
また、複数の電子部品用部材を互いに張り合わせる場合は、上述の材質からなるクロスないし不織布を挟んで重ね合わせ、高温プレスするようにしてもよい。
The present invention is not limited to the above.
For example, a plurality of electronic component members having the above-described configuration are stacked and bonded to each other by high-temperature pressing, and a plurality of copper foils 1 to be connected are connected via vias. May be formed in multiple layers. The individual laminated plates to be bonded may be ones in which the insulating layer is formed by any of the methods (a) or (b) described above, or may be a mixture of those formed using both methods. There is no problem.
When a plurality of electronic component members are attached to each other, they may be overlapped with a cloth or non-woven fabric made of the above-mentioned materials and hot pressed.

また、絶縁層3が露出した面がこの電子部品用部材にあれば、この面に銅箔1を更に重ね、高温プレスする等して多層の電子部品を形成してもよい。   Further, if the surface on which the insulating layer 3 is exposed is present on the electronic component member, a multilayer electronic component may be formed by further stacking the copper foil 1 on this surface and performing high-temperature pressing.

また、カップリング剤は、上述したオレフィン系シランカップリング剤のうち2種類以上を含んでいてもよい。
また、耐熱メッキ皮膜2と絶縁層3との間の接着性を十分確保できる場合、この電子部品用部材は、必ずしもカップリング剤による表面処理を施さなくてもよい。
Moreover, the coupling agent may contain 2 or more types among the olefin type silane coupling agents mentioned above.
Further, when sufficient adhesion between the heat-resistant plating film 2 and the insulating layer 3 can be secured, the electronic component member does not necessarily have to be subjected to a surface treatment with a coupling agent.

以下では、本発明の実施例を説明する。
<銅箔の作成>
銅箔1を構成する約35[μm]厚の圧延銅箔の表面に、銅めっきにより、ふしこぶ状の電着を行なうことによりこの表面に粗化処理を施した。この粗化処理は、銅を10〜25[グラム/リットル]、硫酸を20〜100[グラム/リットル]を含むめっき液中で、温度20〜40[℃]の環境下、電流密度30〜70[アンペア/平方デシメートル]の電流を1〜5[秒]流すことにより行った。
Below, the Example of this invention is described.
<Creation of copper foil>
The surface of the rolled copper foil having a thickness of about 35 [μm] constituting the copper foil 1 was subjected to roughening treatment by performing fist-like electrodeposition by copper plating. This roughening treatment is performed in a plating solution containing 10 to 25 [gram / liter] of copper and 20 to 100 [gram / liter] of sulfuric acid in an environment at a temperature of 20 to 40 [° C.] and a current density of 30 to 70. This was carried out by passing a current of [ampere / square decimeter] for 1 to 5 [seconds].

次に、この粗化処理によって銅箔1に形成された粗化面上に、亜鉛−ニッケル系からなる耐熱メッキ皮膜2を、膜厚が0.001〜0.013[μm]の範囲内となるようにして形成した。亜鉛−ニッケル系を粗化面にめっきする処理は、亜鉛を10〜30[グラム/リットル]、ニッケルを1〜10[グラム/リットル]を含む、pH3〜4のめっき液中で、温度40〜50[℃]の環境下、電流密度0.5〜5[アンペア/平方デシメートル]の電流を1〜3[秒]流すことにより行った。   Next, on the roughened surface formed on the copper foil 1 by this roughening treatment, a heat-resistant plating film 2 made of a zinc-nickel system is set to a thickness in the range of 0.001 to 0.013 [μm]. It formed so that it might become. The treatment for plating the roughened surface with zinc-nickel system is performed at a temperature of 40 to 40 in a plating solution having a pH of 3 to 4 and containing 10 to 30 [gram / liter] of zinc and 1 to 10 [gram / liter] of nickel. This was carried out by flowing a current having a current density of 0.5 to 5 [ampere / square decimeter] in an environment of 50 [° C.] for 1 to 3 [seconds].

次に、耐熱メッキ皮膜2が形成された粗化面にオレフィン系シランカップリング剤を塗布し、表面処理を施した。塗布は、アクリロキシプロピルトリメトキシシラン0.4%溶液、γ−メタクリロキシプロピルトリメトキシシラン0.1%溶液、又はビニルトリエトキシシラン0.6%溶液を、スプレーを用いて吹き付けることにより行なった。   Next, an olefinic silane coupling agent was applied to the roughened surface on which the heat-resistant plating film 2 was formed, and surface treatment was performed. Application was performed by spraying a 0.4% solution of acryloxypropyltrimethoxysilane, a 0.1% solution of γ-methacryloxypropyltrimethoxysilane, or a 0.6% solution of vinyltriethoxysilane using a spray. .

<絶縁層の作成>
次に、耐熱メッキ皮膜2が形成されカップリング剤が塗布された粗化面に、熱硬化性材料を含むスラリーを塗布して乾燥させることにより、絶縁層3を作成した。
<Creation of insulating layer>
Next, the insulating layer 3 was created by applying and drying a slurry containing a thermosetting material on the roughened surface on which the heat-resistant plating film 2 was formed and the coupling agent was applied.

なお、このスラリーを生成するため、まず、容積約500ミリリットルのポリエチレン製の瓶に、ポリビニルベンジルエーテル化合物として、商品名「ショウノールARS−068」(昭和高分子株式会社製)100グラム、及び商品名「タフテックH−1043」(旭化成株式会社製)15グラムを投入し、溶媒としてトルエン35グラムを投入し、この瓶をポット架台に8時間かけた。この結果、完全に均一な溶液を得た。   In order to produce this slurry, first, 100 grams of a trade name “Shonol ARS-068” (manufactured by Showa Polymer Co., Ltd.) as a polyvinyl benzyl ether compound in a polyethylene bottle having a volume of about 500 ml, and a product The name “Tuftec H-1043” (manufactured by Asahi Kasei Co., Ltd.) (15 g) was added, toluene (35 g) was added as a solvent, and the bottle was placed on a pot stand for 8 hours. As a result, a completely uniform solution was obtained.

このスラリーの塗布は、厚みが約50μmとなるようにギャップを用いて行った。次いで、110℃で6分間の乾燥処理を行い、結果として、銅箔1、耐熱メッキ皮膜2及び絶縁層3の厚みの合計が約85μmである樹脂付銅箔を得た。   The slurry was applied using a gap so that the thickness was about 50 μm. Subsequently, the drying process for 6 minutes was performed at 110 degreeC, and the copper foil with a resin whose sum total of the thickness of the copper foil 1, the heat-resistant plating film 2, and the insulating layer 3 was about 85 micrometers was obtained as a result.

<評価用両面銅張板の作成>
次に、この樹脂付銅箔を2枚、絶縁層3同士が互いに接するように重ねた上、高温真空プレス装置(北川精機株式会社製、「KVHC」型)を用いて、160℃の環境下で30分、更に200℃の環境下で1時間、圧力3MPa、雰囲気の気圧4000Pa(30torr)以下の条件で加熱真空プレスを行なった。この結果得られた両面銅張板の厚みは、約160μmであった。
<Creation of double-sided copper-clad plate for evaluation>
Next, the two copper foils with resin were stacked so that the insulating layers 3 were in contact with each other, and then used in a 160 ° C. environment using a high-temperature vacuum press (“KVHC” type, manufactured by Kitagawa Seiki Co., Ltd.). For 30 minutes, and further under an environment of 200 ° C. for 1 hour, under a pressure of 3 MPa and an atmospheric pressure of 4000 Pa (30 torr) or less, a heating vacuum press was performed. The resulting double-sided copper clad plate had a thickness of about 160 μm.

<評価>
次に、以上述べた手順で作成された各種の両面銅張板について、以下(1)〜(3)に示す手法により評価を行った。評価の結果を図2に示す。
(1) ピール強度の評価
JIS C 6481に規定される手順によりピール強度試験を行なった。なお、破壊モードについては、ピール強度試験後の銅箔側及び絶縁層側の各剥離面を電子顕微鏡にて観察し、判定した。
(2) リフロー後のピール強度の評価
温度のピーク260℃(持続時間5秒)、温度230℃以上の持続時間40秒のリフロープロファイルにて3回試験を行い、次いで、上述した(1)のピール強度試験を行なった。
(3) 半田DIP試験
JIS C 6481に準拠した手順で、260℃の半田に30秒浸漬する条件にて試験を行い、次いで、外観の膨れ、ハガレを目視にて観察した。
<Evaluation>
Next, the various double-sided copper-clad plates prepared by the procedure described above were evaluated by the methods shown in (1) to (3) below. The evaluation results are shown in FIG.
(1) Evaluation of peel strength A peel strength test was performed according to the procedure defined in JIS C 6481. In addition, about the fracture mode, each peeling surface of the copper foil side after a peel strength test and the insulating layer side was observed and determined with the electron microscope.
(2) Evaluation of peel strength after reflow The test was conducted three times with a reflow profile having a temperature peak of 260 ° C. (duration: 5 seconds) and a temperature of 230 ° C. or higher for a duration of 40 seconds. A peel strength test was performed.
(3) Solder DIP test In accordance with JIS C 6481, the test was conducted under the condition of immersing in a solder at 260 ° C. for 30 seconds, and then the appearance swelling and peeling were visually observed.

図2に示すように、耐熱メッキ皮膜2の厚みが0.007μm以上ある条件(条件4〜9)では、耐熱メッキ皮膜2の厚みが0.001μm程度である条件(条件1〜3)に比べ、リフローの前後を問わずピール強度が大きい。一方、条件1〜3では、銅箔1が剥離した際の破壊モードがもっぱら界面剥離となっており、耐熱メッキ皮膜2と絶縁層3との界面が、条件4〜9における界面に比べて機械的に弱いものであることを示している。   As shown in FIG. 2, the conditions (conditions 4 to 9) where the thickness of the heat-resistant plating film 2 is 0.007 μm or more are compared with the conditions (conditions 1 to 3) where the thickness of the heat-resistant plating film 2 is about 0.001 μm. The peel strength is great regardless of before and after reflow. On the other hand, in conditions 1 to 3, the failure mode when the copper foil 1 is peeled is exclusively interface peeling, and the interface between the heat-resistant plating film 2 and the insulating layer 3 is mechanical compared to the interface in conditions 4 to 9. It is weak.

この発明の実施の形態に係る電子部品用部材の断面図である。It is sectional drawing of the member for electronic components which concerns on embodiment of this invention. この発明の実施例に係る両面銅張板の評価の結果を示す図である。It is a figure which shows the result of evaluation of the double-sided copper clad board which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 銅箔
2 耐熱メッキ皮膜
3 絶縁層
1 Copper foil 2 Heat-resistant plating film 3 Insulating layer

Claims (7)

銅箔と、
前記銅箔の表面に形成された厚み0.005〜0.8μmの耐熱メッキ皮膜と、
前記耐熱メッキ皮膜の表面に形成され、ビニルベンジル化合物、又は、ビニルナフタレン化合物を有する有機誘電体と、
を備えることを特徴とする電子部品用部材。
Copper foil,
A heat-resistant plating film having a thickness of 0.005 to 0.8 μm formed on the surface of the copper foil;
An organic dielectric formed on the surface of the heat-resistant plating film and having a vinylbenzyl compound or a vinylnaphthalene compound;
An electronic component member comprising:
前記耐熱メッキ皮膜は、亜鉛、亜鉛−錫系、亜鉛−ニッケル系、亜鉛−コバルト系、銅−亜鉛系、銅−ニッケル−コバルト系、及びニッケル−コバルト系のうちいずれか1種以上の材質より構成されている、
ことを特徴とする請求項1に記載の電子部品用部材。
The heat-resistant plating film is made of one or more materials selected from zinc, zinc-tin, zinc-nickel, zinc-cobalt, copper-zinc, copper-nickel-cobalt, and nickel-cobalt. It is configured,
The member for electronic components according to claim 1, wherein
前記耐熱メッキ皮膜の前記有機誘電体との接合面は、カップリング剤により表面処理されている、
ことを特徴とする請求項1又は2に記載の電子部品用部材。
The bonding surface of the heat-resistant plating film with the organic dielectric is surface-treated with a coupling agent,
The member for electronic parts according to claim 1 or 2 characterized by things.
前記カップリング剤は、少なくとも1種のオレフィン系シランカップリング剤より構成されている、
ことを特徴とする請求項3に記載の電子部品用部材。
The coupling agent is composed of at least one olefin-based silane coupling agent,
The electronic component member according to claim 3.
前記銅箔は、0.3〜3.5μmの範囲の粗化面を有する、
ことを特徴とする請求項1乃至4のいずれか1項に記載の電子部品用部材。
The copper foil has a roughened surface in the range of 0.3 to 3.5 μm.
The member for electronic components according to claim 1, wherein the electronic component member is a member.
請求項1乃至5のいずれか1項に記載の銅箔と耐熱メッキ皮膜と有機誘電体とからなる層が積層されている、
ことを特徴とする電子部品。
A layer comprising the copper foil according to any one of claims 1 to 5, a heat-resistant plating film, and an organic dielectric is laminated.
An electronic component characterized by that.
高周波信号処理回路に用いる、
ことを特徴とする請求項6に記載の電子部品。
Used for high frequency signal processing circuit,
The electronic component according to claim 6.
JP2003290030A 2003-08-08 2003-08-08 Member for electronic component and electronic component using the same Pending JP2005064110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290030A JP2005064110A (en) 2003-08-08 2003-08-08 Member for electronic component and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290030A JP2005064110A (en) 2003-08-08 2003-08-08 Member for electronic component and electronic component using the same

Publications (1)

Publication Number Publication Date
JP2005064110A true JP2005064110A (en) 2005-03-10

Family

ID=34368180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290030A Pending JP2005064110A (en) 2003-08-08 2003-08-08 Member for electronic component and electronic component using the same

Country Status (1)

Country Link
JP (1) JP2005064110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111169A (en) * 2006-10-31 2008-05-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, surface-treated copper foil with extremely thin primer resin layer, and method of manufacturing the surface-treated copper foil and method of manufacturing the surface-treated copper foil with extremely thin primer resin layer
JP2009149977A (en) * 2007-11-26 2009-07-09 Furukawa Electric Co Ltd:The Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
WO2016035876A1 (en) * 2014-09-05 2016-03-10 古河電気工業株式会社 Copper foil, copper clad laminated plate, and substrate
JP2017179573A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JP2019199650A (en) * 2019-07-10 2019-11-21 Jx金属株式会社 Titanium copper foil having plating layer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111169A (en) * 2006-10-31 2008-05-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, surface-treated copper foil with extremely thin primer resin layer, and method of manufacturing the surface-treated copper foil and method of manufacturing the surface-treated copper foil with extremely thin primer resin layer
JP2009149977A (en) * 2007-11-26 2009-07-09 Furukawa Electric Co Ltd:The Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
WO2016035876A1 (en) * 2014-09-05 2016-03-10 古河電気工業株式会社 Copper foil, copper clad laminated plate, and substrate
JP5972486B1 (en) * 2014-09-05 2016-08-17 古河電気工業株式会社 Copper foil, copper clad laminate, and substrate
KR20170039084A (en) * 2014-09-05 2017-04-10 후루카와 덴키 고교 가부시키가이샤 Copper foil, copper clad laminated plate, and substrate
CN106574389A (en) * 2014-09-05 2017-04-19 古河电气工业株式会社 Copper foil, copper clad laminated plate, and substrate
TWI601835B (en) * 2014-09-05 2017-10-11 Furukawa Electric Co Ltd Copper foil, copper clad laminate, and substrate
KR101912765B1 (en) 2014-09-05 2018-10-29 후루카와 덴키 고교 가부시키가이샤 Copper foil, copper clad laminated plate, and substrate
JP2017179573A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JP2019199650A (en) * 2019-07-10 2019-11-21 Jx金属株式会社 Titanium copper foil having plating layer

Similar Documents

Publication Publication Date Title
JP5833236B2 (en) Method of manufacturing rigid flexible printed circuit board and rigid flexible printed circuit board
JP6276371B2 (en) Manufacturing method of multilayer printed wiring board
JP6013475B2 (en) Metal foil with carrier
JP6013474B2 (en) Metal foil with carrier
JP2017043105A (en) Metallic foil with carrier
JP2022008960A (en) Method of manufacturing circuit board
JP2004140268A (en) Manufacturing method of multilayer printed circuit board for high frequency
JP4192946B2 (en) MATERIAL FOR MULTILAYER WIRING BOARD CONTAINING CAPACITOR, MULTILAYER WIRING BOARD SUBSTRATE, MULTILAYER WIRING BOARD AND METHOD FOR PRODUCING THE SAME
JP2005064110A (en) Member for electronic component and electronic component using the same
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP2009148995A (en) Metal-clad polyethylene naphthalate substrate and method for manufacturing it
JP4752357B2 (en) LAMINATED MANUFACTURING METHOD AND PRINTED WIRING BOARD MANUFACTURING METHOD
KR102502018B1 (en) Surface treatment copper foil and copper clad laminate
JP2004273744A (en) Thermoplastic resin material and manufacturing method of printed circuit board
JP2003273509A (en) Wiring board and its manufacturing method
JP2005190945A (en) Member for electronic component, and electronic component using the same
US7955485B2 (en) Planar laminate substrate and method for fabricating organic laminate substrate PCBS, semiconductors, semiconductor wafers and semiconductor devices having miniaturized electrical pathways
JPH1154919A (en) Multilayered printed wiring board and its manufacture
JP2016012634A (en) Multilayer printed wiring board and manufacturing method thereof
JPH1051098A (en) Circuit board with built-in resistor
TW200423836A (en) Manufacturing method of circuit board
JP2019049017A (en) Surface treated copper foil and copper clad laminate
JP2004307888A (en) Copper foil or copper alloy foil subjected to resin dust deposition prevention, and method for preventing resin dust deposition
JP2002353582A (en) Resin-attached metal foil, multilayer printed wiring board, and manufacturing method therefor
JP2010103153A (en) Circuit board and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407