WO2019188089A1 - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物 Download PDF

Info

Publication number
WO2019188089A1
WO2019188089A1 PCT/JP2019/009098 JP2019009098W WO2019188089A1 WO 2019188089 A1 WO2019188089 A1 WO 2019188089A1 JP 2019009098 W JP2019009098 W JP 2019009098W WO 2019188089 A1 WO2019188089 A1 WO 2019188089A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
tert
thermosetting resin
weight
present
Prior art date
Application number
PCT/JP2019/009098
Other languages
English (en)
French (fr)
Inventor
陽介 長井
井上 聡
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to JP2020509784A priority Critical patent/JPWO2019188089A1/ja
Priority to CN201980019080.6A priority patent/CN111868123A/zh
Priority to US16/962,473 priority patent/US20210070909A1/en
Priority to EP19777360.9A priority patent/EP3778680A4/en
Publication of WO2019188089A1 publication Critical patent/WO2019188089A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/36Per-compounds with more than one peroxy radical

Definitions

  • the present invention relates to a thermosetting resin composition.
  • sealing resins have been used in electronic parts such as capacitors, coils, resistors, etc. for the purpose of improving reliability and productivity.
  • the performance required for the sealing resin varies depending on the shape and size of the electronic component, but examples of physical performance include moisture resistance, low stress, high thermal conductivity, and impact resistance.
  • Thermosetting resins such as diallyl phthalate resins and unsaturated polyester resins are used as resins that satisfy this performance.
  • an insulating resin composition containing an unsaturated polyester resin and a diallyl phthalate monomer is cured at a relatively low temperature (80 to 130 ° C.) by using a specific peroxycarbonate as an initiator. It is described to obtain.
  • diallyl phthalate monomer is derived from phthalate, its use may be avoided depending on the application. Therefore, development of a resin composition having wider versatility and excellent curability (particularly curability at low temperature) comparable to that when diallyl phthalate monomer is used is required.
  • An object of the present invention is to provide a thermosetting resin composition that is free from environmental problems such as VOC and has excellent curability (particularly, curability at low temperature) similar to that when a diallyl phthalate monomer is used as a crosslinking agent. It is.
  • thermosetting comprising one initiator selected from the group consisting of peroxyketals having a molecular weight of 100 to 400, peroxyesters, dialkyl peroxides, and peroxycarbonates
  • the present inventors have found that a resin composition excellent in curability (particularly, curability at low temperature) can be obtained by using a functional resin composition.
  • Item 1 An unsaturated polyester resin; An alicyclic polyfunctional allyl ester represented by the formula (1);
  • thermosetting comprising one initiator selected from the group consisting of peroxyketals having a molecular weight of 100 to 400, peroxyesters, dialkyl peroxides, and peroxycarbonates Resin composition.
  • Item 2. A cured product obtained by thermosetting the thermosetting resin composition according to Item 1.
  • Item 3. Item 10. A molded article obtained by molding the thermosetting resin composition according to Item 1.
  • thermosetting resin composition of the present invention contains an alicyclic polyfunctional allyl ester represented by the formula (1) as a crosslinking agent and has a half-life temperature of 100 to 250 ° C. for 1 minute as an initiator. And containing one kind selected from the group consisting of peroxyketals having a molecular weight of 100 to 400, peroxyesters, dialkyl peroxides, and peroxycarbonates. The highest ultimate temperature and curing time comparable to those used are obtained, and the curability (particularly the curability at low temperature) is excellent. Furthermore, a cured product obtained by thermosetting the thermosetting resin composition of the present invention, and a molded product formed by molding the thermosetting resin composition of the present invention have impact resistance (impact strength, bending strength). Excellent mechanical strength such as load deflection temperature) and volume resistivity.
  • thermosetting resin composition will be described in detail.
  • thermosetting fat composition of the present invention comprises an unsaturated polyester resin, An alicyclic polyfunctional allyl ester represented by the formula (1);
  • 1 minute half-life temperature is in the range of 100-250 ° C, It contains one initiator selected from the group consisting of peroxyketals having a molecular weight of 100 to 400, peroxyesters, dialkyl peroxides, and peroxycarbonates.
  • Unsaturated polyester resin The unsaturated polyester resin used by this invention is not specifically limited, A well-known thing can be used in the said technical field.
  • An unsaturated polyester resin is generally a compound obtained by polycondensation (esterification) of a polyhydric alcohol with a polybasic acid (unsaturated polybasic acid or saturated polybasic acid), and depending on the desired characteristics Can be appropriately selected and used.
  • the weight average molecular weight (Mw) of the unsaturated polyester resin in the present invention is not particularly limited, but is, for example, 3,000 to 50,000.
  • “weight average molecular weight” is measured at normal temperature (25 ° C.) using gel permeation chromatography (Shodex GPC-101, Showa Denko KK), and obtained using a standard polystyrene calibration curve. Means the value.
  • the polyhydric alcohol used for the synthesis of the unsaturated polyester resin of the present invention is not particularly limited, and known ones can be used.
  • polyhydric alcohols include ethylene glycol, propylene glycol, neopentyl glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, hydrogenated bisphenol A, bisphenol A, glycerin and the like. be able to.
  • These polyhydric alcohols can be used alone or in combination.
  • propylene glycol, neopentyl glycol, bisphenol A, and hydrogenated bisphenol A are preferable from the viewpoints of heat resistance, mechanical strength, and moldability.
  • the unsaturated polybasic acid used for the synthesis of the unsaturated polyester resin of the present invention is not particularly limited, and known ones can be used.
  • Examples of the unsaturated polybasic acid include maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like. These can be used alone or in combination.
  • the saturated polybasic acid used for the synthesis of the unsaturated polyester resin is not particularly limited, and known ones can be used.
  • saturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, het acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, endomethylenetetrahydrophthalic anhydride, etc. It can be illustrated. These can be used alone or in combination.
  • polybasic acids unsaturated polybasic acids are preferable, and maleic anhydride and fumaric acid are more preferable from the viewpoints of heat resistance, mechanical strength, moldability, and the like.
  • saturated polybasic acid is preferable, and phthalic anhydride, isophthalic acid, terephthalic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, endomethylenetetrahydrophthalic anhydride.
  • An acid is more preferable, phthalic anhydride, isophthalic acid, and terephthalic acid are more preferable, and isophthalic acid is particularly preferable.
  • the unsaturated polyester resin is not particularly limited, and may be used alone or in combination of two or more. However, because the effect of the present invention can be obtained more suitably, the polybasic used for the synthesis of the unsaturated polyester resin.
  • Saturated polybasic unsaturated polyester resin in which saturated polybasic acid is used as the acid is preferable, and isophthalic acid unsaturated polyester resin in which isophthalic acid is used as the polybasic acid used in the synthesis of the unsaturated polyester resin Is more preferable.
  • the unsaturated polyester resin of the present invention can be synthesized by a known method using the above raw materials. Various conditions in this synthesis need to be set as appropriate according to the raw materials to be used and the amount thereof. In general, in an inert gas stream such as nitrogen, the pressure is reduced or increased at a temperature of 140 to 230 ° C. Can be esterified. In this esterification reaction, an esterification catalyst can be used as needed. Examples of the catalyst include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. These can be used alone or in combination.
  • the content of the unsaturated polyester resin of the present invention is not particularly limited, but is preferably in the range of 10 to 98% by weight, more preferably in the range of 15 to 95% by weight, based on the total amount of the thermosetting resin composition.
  • the range of ⁇ 90% by weight is more preferred, the range of 30 ⁇ 80% by weight is particularly preferred, and the range of 40 ⁇ 70% by weight is most preferred. If it is in the said range, the effect of this invention can fully be acquired.
  • thermosetting resin composition of the present invention contains an alicyclic polyfunctional allyl ester represented by the formula (1).
  • n represents an integer of 2 to 4
  • Z represents an n-valent alicyclic hydrocarbon group.
  • the n-valent alicyclic hydrocarbon group preferably has 3 to 18 carbon atoms, more preferably 4 to 12 carbon atoms, and still more preferably 4 to 10 carbon atoms. Especially, it is preferable that all the carbon atoms which comprise an alicyclic hydrocarbon group form the ring structure. That is, the n-valent alicyclic hydrocarbon group is preferably a 3- to 18-membered ring, more preferably a 4- to 12-membered ring, and even more preferably a 4- to 10-membered ring.
  • the n-valent alicyclic hydrocarbon group may be a saturated n-valent alicyclic hydrocarbon group, and may partially have an unsaturated bond.
  • a saturated n-valent alicyclic hydrocarbon group is preferable.
  • the alicyclic means having a cyclic structure having no aromaticity
  • the alicyclic hydrocarbon group means a hydrocarbon group having a cyclic structure having no aromaticity.
  • Examples of the alicyclic polyfunctional allyl ester represented by the formula (1) include diallyl cyclobutanedicarboxylate, diallyl cyclobutene dicarboxylate, diallyl cyclohexanedicarboxylate (diallyl hexahydrophthalate), diallyl tetrahydrophthalate, etc. And alicyclic polyfunctional allyl esters such as compounds represented by (9). Among them, diallyl cyclohexanedicarboxylate (diallyl hexahydrophthalate) and diallyl tetrahydrophthalate are preferable. More preferred is diallyl acid.
  • n in the formulas (2) to (9) has the same meaning as n in the formula (1).
  • substitution positions of the COOCH 2 —CH ⁇ CH 2 groups on the rings of formulas (2) to (9) may be any combination, or a mixture thereof.
  • the two COOCH 2 —CH ⁇ CH 2 groups may be in any of ortho, meta, and para orientations. An orientation or a para orientation is preferred.
  • diallyl 1,2-cyclohexanedicarboxylate diallyl 4-cyclohexene-1,2-dicarboxylate, and diallyl 1,4-cyclohexanedicarboxylate are preferred, and diallyl 1,2-cyclohexanedicarboxylate is more preferred.
  • the alicyclic polyfunctional allyl ester represented by the formula (1) of the present invention is a carboxylic acid compound represented by the formula (10) or an acid anhydride thereof and an allyl halide or allyl alcohol. It can be produced by reacting in the presence of a basic substance, a catalyst and a solvent.
  • the carboxylic acid compound represented by the formula (10) is available as a reagent or industrial chemical.
  • Z- (COOH) n (10) [Wherein n and Z have the same meanings as n and Z in formula (1). ]
  • Examples of the carboxylic acid compound represented by the formula (10) include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, 2 -Cyclohexene-1,2-dicarboxylic acid and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • allyl halide examples include allyl chloride, allyl bromide, allyl iodide and the like. These may be used individually by 1 type, and may use 2 or more types together. Although the amount of allyl halide used is not particularly limited, it is usually preferably in the range of 2 to 20 molar equivalents relative to the carboxylic acid compound represented by the formula (10), from the viewpoint of reaction rate and volume efficiency. Is more preferably in the range of 2.3 to 10 molar equivalents. These allyl halides are available as reagents and industrial chemicals.
  • Allyl alcohol is available as a reagent or industrial chemical.
  • the amount of allyl alcohol used is not particularly limited, but it is usually preferably in the range of 2 to 10 molar equivalents, preferably in the range of 2 to 5 molar equivalents, relative to the carboxylic acid compound represented by the formula (10). Is more preferable.
  • acidic substances examples include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, sulfuric acid and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the acidic substance used is preferably in the range of 0.001 to 0.1 molar equivalent, and in the range of 0.005 to 0.05 molar equivalent, relative to the carboxylic acid compound represented by the formula (10). Is more preferable.
  • Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal hydrides such as sodium hydride and potassium hydride, carbonates such as sodium carbonate and potassium carbonate, hydrogen carbonate Bicarbonates such as sodium and potassium bicarbonate, alcoholates and the like are generally used, but quaternary ammonium compounds, organic bases such as aliphatic amines and aromatic amines can also be used. These may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the basic substance used is preferably in the range of 0.5 to 30 molar equivalents, more preferably in the range of 2 to 15 molar equivalents, relative to the carboxylic acid compound represented by the formula (10).
  • transition metals and transition metal salts such as copper, iron, cobalt, nickel, chromium and vanadium are used.
  • copper compounds are preferably used.
  • the copper compound is not particularly limited, and most copper compounds are used, but cuprous chloride, cuprous bromide, cuprous oxide, cuprous iodide, cuprous cyanide, cuprous sulfate , Cupric sulfate, cupric chloride, cupric hydroxide, cupric bromide, cupric phosphate, cuprous nitrate, cupric nitrate, copper carbonate, cuprous acetate, cupric acetate Copper or the like is preferable.
  • cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, cuprous sulfate, cupric sulfate, cupric acetate are readily available. This is preferable because it is possible and inexpensive. These may be used individually by 1 type, and may use 2 or more types together.
  • the reaction can be carried out in the presence or absence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene; saturated aliphatic hydrocarbons such as hexane, heptane, octane, cyclohexane and methylcyclohexane; diethyl ether , Ethers such as diethylene glycol dimethyl ether, 1,4-dioxane and tetrahydrofuran; esters such as ethyl acetate and butyl acetate; halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; dimethylformamide, N-methylpyrrolidone and sulfolane Can be mentioned.
  • the amount used is not particularly limited, but it is usually preferably in the range of 0.01 to 20 times the weight with respect to the carboxylic acid compound represented by the formula (10). It is more preferably in the range of 10 times weight.
  • an alicyclic polyfunctional allyl ester can be efficiently produced without using any solvent.
  • phase transfer catalyst when a basic substance is used in the reaction as an aqueous solution, it is preferable to use a phase transfer catalyst in order to accelerate the reaction.
  • phase transfer catalyst There are no particular limitations on the phase transfer catalyst, but for example, quaternary ammonium salts such as trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide; phosphonium salts such as tetrabutylphosphonium chloride; 15-crown-5, 18 -Crown ethers such as crown-6. These may be used individually by 1 type, and may use 2 or more types together.
  • the amount used is preferably in the range of 0.001 to 1 molar equivalent to the carboxylic acid compound represented by the formula (10). A range of 4 molar equivalents is more preferred.
  • the reaction temperature is preferably in the range of ⁇ 30 to 150 ° C., preferably in the range of ⁇ 10 to 120 ° C. in terms of obtaining a sufficient reaction rate and effectively suppressing side reactions and obtaining a high yield. More preferably.
  • the reaction time is preferably in the range of 10 minutes to 15 hours, and from the viewpoint of suppressing side reactions, it is preferably in the range of 10 minutes to 10 hours.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. Further, the reaction can be carried out under atmospheric pressure or under pressure, but it is preferably carried out under atmospheric pressure from the viewpoint of production equipment.
  • the reaction can be carried out, for example, by charging the raw materials in a stirring reactor at once or in divided portions and reacting them at the reaction temperature described above for a predetermined time.
  • the resulting reaction mixture is neutralized, washed with water, saturated saline, etc. as necessary, concentrated, and further used for purification of organic compounds such as distillation and column chromatography.
  • a highly pure alicyclic polyfunctional allyl ester can be obtained.
  • thermosetting resin composition of the present invention 5 parts by weight or more of the alicyclic polyfunctional allyl ester is preferably contained with respect to 100 parts by weight of the unsaturated polyester resin, and more preferably 10 parts by weight or more. , More preferably 15 parts by weight or more, particularly preferably 30 parts by weight or more, most preferably 60 parts by weight or more, most preferably 80 parts by weight or more, and most preferably 200 parts by weight or less. It is preferably contained, more preferably 180 parts by weight or less, still more preferably 150 parts by weight or less, still more preferably 120 parts by weight or less.
  • thermosetting resin composition of the present invention contains one type of initiator selected from the group consisting of peroxyketals, peroxyesters, dialkyl peroxides, and peroxycarbonates. These initiators may be used individually by 1 type, and may use 2 or more types together.
  • the initiator that can be used in the present invention has a one-minute half-life temperature of 100 ° C or higher, preferably 125 ° C or higher, and more preferably 140 ° C or higher. Moreover, 1 minute half life temperature is 250 degrees C or less, 200 degrees C or less is preferable, and 180 degrees C or less is more preferable. Furthermore, the molecular weight should just be 100 or more, and 150 or more is preferable. Moreover, the molecular weight should just be 400 or less, and 350 or less is preferable. In the present specification, “one-minute half-life temperature” refers to a temperature at which the peroxide concentration decreases to half of the initial value in one minute. Specifically, the 1-minute half-life temperature can be determined as follows.
  • the initial concentration of the peroxide is a, and the decomposition amount of the peroxide is x, and the time (t) and lna / (a ⁇ The relationship of x) is plotted, and the slope constant k of the obtained straight line is obtained.
  • the hydrogen abstraction ability of the initiator is not particularly limited, but is preferably 3% or more, more preferably 5% or more, further preferably 7% or more, preferably 70% or less, more preferably 50% or less, and 20% or less. Further preferred.
  • hydrogen abstraction ability is a value determined from the amount of cyclohexane-MSD addition product produced when cyclohexane and ⁇ -methylstyrene dimer are reacted in the presence of an initiator.
  • Polymer Journal 29, No. 4 means values measured in accordance with the measuring method described on pages 366 to 369.
  • the temperature in parentheses represents a 1 minute half-life temperature.
  • dialkyl peroxides include, for example, dicumyl peroxide (175.2 ° C.), 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane (179 ° C.), tert-butyl cumi Examples include ruperoxide (173.3 ° C.), di-tert-butyl peroxide (193 ° C.), 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexyne 3 (193 ° C.), and the like.
  • peroxyketals include, for example, 1,1-bis (tert-hexylperoxy) -3,3,5-trimethylcyclohexane (147 ° C.), 1,1-bis (tert-butylperoxy) -2-methylcyclohexane (142.1 ° C.), 1,1-bis (tert-butylperoxy) cyclohexane (153.8 ° C.), 2,2-bis (tert-butylperoxy) butane (159.9 ° C.) ), 1,1-di (tert-hexylperoxy) cyclohexane (149.2 ° C.), n-butyl-4,4-bis (tert-butylperoxy) valerate (172.5 ° C.).
  • peroxyesters include, for example, tert-butyl peroxyneodecanoate (103.5 ° C.), tert-hexyl peroxyneodecanoate (100.9 ° C.), tert-butyl peroxyneo Heptanoate (104.6 ° C), tert-hexyl peroxypivalate (109.1 ° C), tert-butyl peroxypivalate (110.3 ° C), 1,1,3,3-tetramethylbutylper Oxy-2-ethylhexanoate (124.3 ° C.), tert-amyl peroxy-2-ethyl hexanoate (121 ° C.), tert-butyl peroxy-2-ethyl hexanoate (134 ° C.), tert -Butylperoxyisobutyrate (136.1 ° C), tert-butylperoxy-3,5,5-trime Oxford
  • peroxycarbonates include, for example, tert-amyl peroxyisopropyl carbonate (114 ° C.), tert-butyl peroxyisopropyl carbonate (156 ° C.), tert-butyl peroxy-2-ethylhexyl carbonate (156 ° C.) Tert-butylperoxy-2-ethylhexyl-monocarbonate (161.4 ° C.).
  • peroxyketals and peroxyesters are preferable, and peroxyketals are more preferable in terms of excellent curability (particularly curability at low temperature).
  • Specific examples of the compound include dicumyl peroxide, tert-butylcumyl peroxide, 1,1-di (tert-hexylperoxy) cyclohexane, n- Butyl-4,4-bis (tert-butylperoxy) valerate, tert-butylperoxybenzoate, tert-hexylperoxybenzoate, tert-butylperoxy-2-ethylhexyl-monocarbonate are preferred, Di (tert-hexylperoxy) cyclohexane and n-butyl-4,4-bis (tert-butylperoxy) valerate are more preferred, and 1,1-di (tert-hexylperoxy) cyclohexane is more preferred.
  • the total amount of the unsaturated polyester resin and the alicyclic polyfunctional allyl ester is preferably 100 parts by weight, and preferably contains 0.01 part by weight or more of the specific initiator. .05 parts by weight or more is more preferable, 0.1 parts by weight or more is more preferable, 0.5 parts by weight or more is further preferable, 10 parts by weight or less is preferable, 8% by weight More preferably, it is more preferably 5 parts by weight or less, still more preferably 3 parts by weight or less.
  • the content of the specific initiator in 100% by weight of the initiator is preferably 50% by weight or more, more preferably 80% by weight or more, and further preferably 90% by weight or more. Particularly preferably, it is 98% by weight or more, most preferably 99.5% by weight or more, and may be 100% by weight.
  • an initiator other than the specific initiator may be used together with the specific initiator.
  • the initiator include ketone peroxides such as methyl ethyl ketone peroxide (171 ° C.) and cyclohexanone peroxide (174 ° C.), 1,1,3,3-tetramethylbutyl hydroperoxide (246.6 ° C.), p. -Hydroperoxides such as methane hydroperoxide (199.5 ° C), diisopropylbenzene hydroperoxide (232.5 ° C), dilauroyl peroxide (116.4 ° C), benzoyl peroxide (130 ° C), etc.
  • diacyl peroxides include diacyl peroxides. These initiators may be used individually by 1 type, and may use 2 or more types together.
  • inorganic filler may be added to the thermosetting resin composition of the present invention as necessary.
  • inorganic fillers include fused silica, crystalline silica, alumina, quartz glass, hydrates of metals such as calcium carbonate, aluminum hydroxide, and calcium sulfate, glass powder, talc, mica, and the like.
  • the particle size of the inorganic filler is 0.1 to 100 ⁇ m. Preferably, it is 0.5 to 60 ⁇ m. If the particle size is too small, the composition viscosity increases, the reinforcing fibers are not sufficiently impregnated, air is likely to be mixed into the material, and the molded product tends to nest. On the other hand, if the particle size is too large, the specific surface area of the particles becomes small, and the fluidity is lowered.
  • the addition amount of the inorganic filler of the present invention may be 10 to 1000 parts by weight, and more preferably 200 to 800 parts by weight with respect to 100 parts by weight of the unsaturated polyester resin.
  • the addition amount is small, the handleability of the material before molding decreases.
  • the amount added is large, the viscosity is greatly increased, the fluidity during the molding process is lowered, the impregnation property for the reinforcing fibers is lowered, air is easily mixed into the material, and the molded product has a nest. Easy to enter.
  • thermosetting resin composition of the present invention contains components known in the technical field such as fiber reinforcing agents, low shrinkage agents, mold release agents, thickeners, pigments, thinning agents, In the range which does not inhibit the effect of this invention, it can contain.
  • the fiber reinforcing agent used in the present invention is not particularly limited, and those known in the technical field can be used.
  • fiber reinforcing materials include various organic fibers and inorganic fibers such as glass fibers, pulp fibers, Tetron (registered trademark) fibers, vinylon fibers, carbon fibers, aramid fibers, and wollastonite. Among them, it is preferable to use chopped strand glass cut to a fiber length of about 1.5 to 25 mm. These can be used alone or in combination of two or more.
  • low shrinkage agent used in the present invention examples include thermoplastic polymers generally used as low shrinkage agents such as polystyrene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, and styrene-butadiene rubber. These can be used alone or in combination of two or more.
  • mold release agent used in the present invention examples include stearic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, carnauba wax and the like. These can be used alone or in combination of two or more.
  • thickener used in the present invention examples include metal oxides such as magnesium oxide, magnesium hydroxide, calcium hydroxide and calcium oxide, and isocyanate compounds. These can be used alone or in combination of two or more.
  • thermosetting resin composition of the present invention can be produced by kneading using a method usually performed in the technical field, for example, a planetary mill or a kneader.
  • the cured product of the present invention can be obtained by thermosetting the thermosetting resin composition of the present invention.
  • the molded product of the present invention is formed by molding the thermosetting resin composition of the present invention.
  • the method of molding and thermosetting is not particularly limited, and a method usually performed in the technical field, for example, compression molding, transfer molding, injection molding, or the like can be used.
  • Unsaturated Polyester Resin Unsaturated Polyester Resin: Iupika 8552, manufactured by Nippon Upica Co., Ltd.
  • Initiator Initiator 1 perbutyl E (tert-butylperoxy-2-ethylhexyl-monocarbonate; 1 minute half-life temperature 161.4 ° C, molecular weight 246.35, hydrogen abstraction ability 49%, NOF (Made by Co., Ltd.)
  • Initiator 2 Perhexyl Z (tert-hexyl peroxybenzoate; 1 minute half-life temperature 160.3 ° C., molecular weight 222.3, hydrogen abstraction capacity 27%, manufactured by NOF Corporation)
  • Initiator 3 Perhexa HC (1,1-di (tert-hexylperoxy) cyclohexane; 1 minute half-life temperature 149.2 ° C., molecular weight 316.47, hydrogen abstraction capacity 10%, manufactured by NOF Corporation)
  • Initiator 4 Perbutyl Z (tert-butyl peroxybenzoate; 1 minute half-life temperature 166.8 ° C., molecular weight 19
  • Synthesis Example 1 Synthesis of diallyl 1,2-cyclohexanedicarboxylate (crosslinking agent) 170.5 g (2.93 mol) of allyl alcohol, 150.1 g (1.63 mol) of toluene, 1,2-cyclohexanedicarboxylic acid in a 500 mL flask 241.1 g (1.40 mol) and 7.18 g (0.022 mol) of dodecylbenzenesulfonic acid were charged, stirred with a magnetic stirrer and refluxed in an oil bath. After 20 hours, heating was stopped and the flask was cooled.
  • the obtained reaction solution was neutralized and washed with water, the low boiling point was distilled off with a rotary evaporator, and the resulting concentrated solution was distilled under reduced pressure to obtain the desired diallyl 1,2-cyclohexanedicarboxylate by 110. 6 g was obtained.
  • the resulting compound 1 was used in the examples.
  • Tables 1 and 2 show the composition of the components of the thermosetting resin composition used in Examples and Comparative Examples.
  • the numerical unit of the composition in the table is parts by weight.
  • Thermosetting Resin Composition According to the composition shown in Tables 1 and 2, the unsaturated polyester resin and the crosslinking agent were weighed so that the total weight of the unsaturated polyester resin and the crosslinking agent was 50 g, and a planetary mill (Kurashiki) The mixture was kneaded for 5 minutes in total using Mazerustar KK250S manufactured by Spinning Co., Ltd. Next, the mixture was stirred in a planetary mill until the unsaturated polyester resin was dissolved in the crosslinking agent while being heated to 80 to 90 ° C. When the unsaturated polyester resin was dissolved in the cross-linking agent and became uniform, heating and stirring were stopped, and the mixture was cooled to room temperature. After cooling to room temperature, the initiator having the blending amount shown in Tables 1 and 2 was added, and the mixture was stirred with a planetary mill so as not to have too much heat of 30 ° C. or more to prepare a thermosetting resin composition. .
  • thermosetting resin composition was poured into a test tube (model number: P-18SM (manufactured by Niommen Rika Glass Co., Ltd.)) with an outer diameter of 18 mm and a height of 165 mm from the bottom to a position of 7.5 cm.
  • the thermocouple was poured into the center of the resin height (3.75 cm from the bottom).
  • the test tube height is adjusted so that the liquid level of the poured thermosetting resin composition is 1 cm below the liquid level of the oil bath, and the resin temperature reaches the maximum temperature from 80 ° C. Time (curing time) and maximum temperature reached.
  • the high temperature curing characteristic test was conducted according to JISK6901. The measurement results are shown in Tables 3-4.
  • the examples using the alicyclic polyfunctional allyl ester as the cross-linking agent showed the highest temperature and curing time comparable to the comparative example using the diallyl phthalate monomer as the cross-linking agent. Yes. From this result, when using an alicyclic polyfunctional allyl ester as a crosslinking agent and combining with a specific initiator, it should have the same curability (especially curability at low temperature) when diallyl phthalate is used. Was suggested.
  • peroxide having a large hydrogen abstraction capability When a peroxide having a large hydrogen abstraction capability is used, resonance stabilization occurs when allyl radicals are extracted and polymerization does not proceed, so that the curing time is estimated to be long.
  • Perhexyl and peroxyketal systems have a small hydrogen abstraction ability, especially 1,1-di (tert-hexylperoxy) cyclohexane (perhexa HC) has a small hydrogen abstraction ability, which causes addition to double bonds. It is considered that the curing time was easily shortened.
  • thermosetting resin composition of the present invention relates to a thermosetting resin composition having very excellent fluidity without substantially impairing electrical characteristics and mechanical characteristics.
  • the thermosetting resin composition of the present invention makes use of excellent fluidity and can be used for electric / electronic parts such as small and thin coil bobbins, switch cases, terminal plates, connectors, and magnet switches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明の目的は、VOC等の環境問題がなく、架橋剤としてジアリルフタレートモノマーを用いた場合と同程度の硬化性(特に低温での硬化性)に優れる熱硬化性樹脂組成物を提供することにある。 本発明は、不飽和ポリエステル樹脂と、 式(1)で表される脂環式多官能アリルエステルと、 [式中、nは2~4のいずれかの整数を表わし、Zはn価の脂環式炭化水素基である。] 1分間半減期温度が100~250℃の範囲であり、 分子量が100~400であるパーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種の開始剤とを含有することを特徴とする熱硬化性樹脂組成物が、低温での硬化性に優れることを見出した。

Description

熱硬化性樹脂組成物
 本発明は、熱硬化性樹脂組成物に関するものである。
 最近、コンデンサー、コイル、抵抗体等の電子部品において、信頼性や生産性向上を目的として、封止用樹脂が用いられるようになってきている。封止用樹脂として求められる性能は、電子部品の形状や大きさによって異なるが、物理的性能として、耐湿性・低応力性・高熱伝導性・耐衝撃性等が挙げられる。この性能を満足する樹脂としてジアリルフタレート樹脂や不飽和ポリエステル樹脂等の熱硬化性樹脂が用いられている。
 公知の不飽和ポリエステル樹脂組成物、ビニルエステル樹脂組成物といった樹脂組成物は、架橋剤として、一般に反応性に優れるスチレンが用いられている(特許文献1参照)。しかしながら、海洋汚染等の環境問題、及び揮発性有機化合物(VOC)、さらには保存安定性の問題があるために、スチレンを使用しない樹脂組成物の開発が望まれている。
 また、特許文献2では、不飽和ポリエステル樹脂とジアリルフタレートモノマーを含む絶縁用樹脂組成物において、特定のパーオキシカーボネートを開始剤として用いることにより、比較的低温(80~130℃)にて硬化させ得ることが記載されている。しかしながら、ジアリルフタレートモノマーはフタレートに由来するため、用途によっては使用が避けられる場合がある。そのため、より広い汎用性を有し、ジアリルフタレートモノマーを用いた場合と同程度の硬化性(特に低温での硬化性)に優れる樹脂組成物の開発が求められている。
特許第2981330号公報 特開2010‐209142号公報
 本発明の目的は、VOC等の環境問題がなく、架橋剤としてジアリルフタレートモノマーを用いた場合と同程度の硬化性(特に低温での硬化性)に優れる熱硬化性樹脂組成物を提供することである。
 本願発明者らは、鋭意研究の結果、
 不飽和ポリエステル樹脂と、
式(1)で表される脂環式多官能アリルエステルと、
Figure JPOXMLDOC01-appb-C000002
 [式中、nは2~4のいずれかの整数を表わし、Zはn価の脂環式炭化水素基である。]
1分間半減期温度が100~250℃の範囲であり、
分子量が100~400であるパーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種の開始剤とを含有することを特徴とする熱硬化性樹脂組成物を用いることにより、硬化性(特に低温での硬化性)に優れる樹脂組成物が得られることを見出し、本発明を完成した。
項1. 不飽和ポリエステル樹脂と、
式(1)で表される脂環式多官能アリルエステルと、
Figure JPOXMLDOC01-appb-C000003
 [式中、nは2~4のいずれかの整数を表わし、Zはn価の脂環式炭化水素基である。]
1分間半減期温度が100~250℃の範囲であり、
分子量が100~400であるパーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種の開始剤とを含有することを特徴とする熱硬化性樹脂組成物。
項2. 項1に記載の熱硬化性樹脂組成物を熱硬化することによって得られることを特徴とする硬化物。
項3. 項1に記載の熱硬化性樹脂組成物を成形してなることを特徴とする成形品。
 本発明の熱硬化性樹脂組成物は、架橋剤として、式(1)で表される脂環式多官能アリルエステルを含有し、かつ、開始剤として、1分間半減期温度が100~250℃の範囲であり、分子量が100~400であるパーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種を含有するため、ジアリルフタレートモノマーを用いた場合と同程度の最高到達温度及び硬化時間が得られ、硬化性(特に低温での硬化性)に優れる。さらに、本発明の熱硬化性樹脂組成物を熱硬化することによって得られる硬化物、及び本発明の熱硬化性樹脂組成物を成形してなる成形品は、耐衝撃性(衝撃強度、曲げ強さ、荷重たわみ温度)等の機械的強度や、体積抵抗率に優れる。
 以下に熱硬化性樹脂組成物について詳細に説明する。
熱硬化性樹脂組成物
 本発明の熱硬化性脂組成物は、不飽和ポリエステル樹脂と、
式(1)で表される脂環式多官能アリルエステルと、
Figure JPOXMLDOC01-appb-C000004
 [式中、nは2~4のいずれかの整数を表わし、Zはn価の脂環式炭化水素基である。]
1分間半減期温度が100~250℃の範囲であり、
分子量が100~400であるパーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種の開始剤とを含有することを特徴とする。
不飽和ポリエステル樹脂
 本発明で用いる不飽和ポリエステル樹脂は、特に限定されず、当該技術分野において公知のものを用いることができる。不飽和ポリエステル樹脂は、一般的に、多価アルコールを多塩基酸(不飽和多塩基酸や飽和多塩基酸)と重縮合(エステル化)させて得られた化合物であり、所望の特性に応じて適宜選択して用いることができる。
 本発明における不飽和ポリエステル樹脂の重量平均分子量(Mw)は、特に限定されないが、例えば、3,000~50,000である。なお、本明細書において「重量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(昭和電工株式会社製Shodex GPC-101)を用いて常温(25℃)で測定し、標準ポリスチレン検量線を用いて求めた値のことを意味する。
 本発明の不飽和ポリエステル樹脂の合成に用いられる多価アルコールとしては、特に限定されず、公知のものを用いることができる。多価アルコールの例としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、水素化ビスフェノールA、ビスフェノールA、グリセリン等を例示することができる。これらの多価アルコールは、単独又は複数を組み合わせて用いることができる。これらの中でも、耐熱性、機械的強度及び成形性の観点から、プロピレングリコール、ネオペンチルグリコール、ビスフェノールA、水素化ビスフェノールAが好ましい。
 本発明の不飽和ポリエステル樹脂の合成に用いられる不飽和多塩基酸としては、特に限定されず、公知のものを用いることができる。不飽和多塩基酸の例としては、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等を例示することができる。これらは、単独又は複数を組み合わせて用いることができる。
 不飽和ポリエステル樹脂の合成に用いられる飽和多塩基酸としては、特に限定されず、公知のものを用いることができる。飽和多塩基酸の例としては、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等を例示することができる。これらは、単独又は複数を組み合わせて用いることができる。
上記多塩基酸の中でも、耐熱性、機械的強度及び成形性等の観点からは、不飽和多塩基酸が好ましく、無水マレイン酸及びフマル酸がより好ましい。一方、本発明の効果がより好適に得られるという観点からは、飽和多塩基酸が好ましく、無水フタル酸、イソフタル酸、テレフタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸がより好ましく、無水フタル酸、イソフタル酸、テレフタル酸が更に好ましく、イソフタル酸が特に好ましい。
 不飽和ポリエステル樹脂としては、特に限定されず、単独もしくは2種以上を併用してもよいが、本発明の効果がより好適に得られるという理由から、不飽和ポリエステル樹脂の合成に用いられる多塩基酸として飽和多塩基酸が使用された、飽和多塩基酸系不飽和ポリエステル樹脂が好ましく、不飽和ポリエステル樹脂の合成に用いられる多塩基酸としてイソフタル酸が使用された、イソフタル酸系不飽和ポリエステル樹脂がより好ましい。
 本発明の不飽和ポリエステル樹脂は、上記のような原料を用いて公知の方法で合成することができる。この合成における各種条件は、使用する原料やその量に応じて適宜設定する必要があるが、一般的に、窒素等の不活性ガス気流中、140~230℃の温度にて加圧又は減圧下でエステル化させればよい。このエステル化反応では、必要に応じてエステル化触媒を使用することができる。触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、及び酢酸コバルト等の公知の触媒を例示することができる。これらは、単独又は複数を組み合わせて用いることができる。
 本発明の不飽和ポリエステル樹脂の含有量は、特に限定されないが、熱硬化性樹脂組成物全量に対して、10~98重量%の範囲が好ましく、15~95重量%の範囲がより好ましく、20~90重量%の範囲が更に好ましく、30~80重量%の範囲が特に好ましく、40~70重量%の範囲が最も好ましい。上記範囲内であれば、本発明の効果を十分に得ることができる。
脂環式多官能アリルエステル(架橋剤)
 本発明の熱硬化性樹脂組成物は、式(1)で表される脂環式多官能アリルエステルを含有する。
Figure JPOXMLDOC01-appb-C000005
[式中、nは2~4のいずれかの整数を表わし、Zはn価の脂環式炭化水素基である。]
 式(1)において、n価の脂環式炭化水素基の炭素数は3~18であることが好ましく、4~12であることがより好ましく、4~10であることが更に好ましい。中でも、脂環式炭化水素基を構成する全ての炭素原子が環構造を形成していることが好ましい。すなわち、n価の脂環式炭化水素基は、3~18員環であることが好ましく、4~12員環であることがより好ましく、4~10員環であることが更に好ましい。
 n価の脂環式炭化水素基は、飽和のn価の脂環式炭化水素基であってもよく、一部において不飽和結合を有していてもよい。中でも、飽和のn価の脂環式炭化水素基が好ましい。尚、本発明において、脂環式とは芳香性を有しない環状構造を有することを意味し、脂環式炭化水素基とは芳香性を有しない環状構造を有する炭化水素基を意味する。
 式(1)で示される脂環式多官能アリルエステルを例示するとシクロブタンジカルボン酸ジアリル、シクロブテンジカルボン酸ジアリル、シクロヘキサンジカルボン酸ジアリル(ヘキサヒドロフタル酸ジアリル)、テトラヒドロフタル酸ジアリル等の式(2)~(9)で表される化合物等の脂環式多官能アリルエステルが挙げられ、これらの中でも、シクロヘキサンジカルボン酸ジアリル(ヘキサヒドロフタル酸ジアリル)、テトラヒドロフタル酸ジアリルであることが好ましく、シクロヘキサンジカルボン酸ジアリルがより好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 なお、式(2)~(9)中のnは、前記式(1)におけるnと同じ意味である。
 式(2)~(9)において、環構造内で架橋されていてもよく、環構造内で架橋されたものの例として、アダマンタン、ノルボルナン等を例示することができる。
 式(2)~(9)の環上におけるCOOCH‐CH=CH基の置換位置は何れの組み合わせであっても良く、それらの混合物でも良い。特に、2つのCOOCH‐CH=CH基が6員環に結合するときに、2つのCOOCH‐CH=CH基は、オルト配向、メタ配向、及びパラ配向のいずれでもよいが、オルト配向又はパラ配向であることが好ましい。
 脂環式多官能アリルエステルとしては、シクロブタンジカルボン酸ジアリル、シクロヘプタンジカルボン酸ジアリル、シクロヘキサンジカルボン酸ジアリル(ヘキサヒドロフタル酸ジアリル)、ノルボルナンジカルボン酸ジアリル、シクロブテンジカルボン酸ジアリル、シクロヘプテンジカルボン酸ジアリル、シクロヘキセンジカルボン酸ジアリル(テトラヒドロフタル酸ジアリル)、ノルボルネンジカルボン酸ジアリル等を例示することができる。
 中でも、1,2-シクロヘキサンジカルボン酸ジアリル、4-シクロヘキセン-1,2-ジカルボン酸ジアリル、1,4-シクロヘキサンジカルボン酸ジアリルが好ましく、1,2-シクロヘキサンジカルボン酸ジアリルがより好ましい。
 本発明の式(1)で表される脂環式多官能アリルエステルは、式(10)で表わされるカルボン酸化合物、又はそれらの酸無水物とハロゲン化アリル又はアリルアルコールとを例えば、酸性物質、塩基性物質、触媒、溶媒の存在下、反応させることにより製造することができる。式(10)で表わされるカルボン酸化合物は試薬や工業薬品として入手可能である。
Z-(COOH)n ・・・(10)
[式中、n、及びZに関しては、前記式(1)におけるn、及びZと同じ意味である。]
 式(10)で表わされるカルボン酸化合物としては、例えば1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸、2-シクロヘキセン-1,2-ジカルボン酸等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
 ハロゲン化アリルとしては、例えばアリルクロリド、アリルブロミド、アリルヨージド等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。ハロゲン化アリルの使用量に特に制限は無いが、式(10)で表わされるカルボン酸化合物に対して、通常、2~20モル当量の範囲であるのが好ましく、反応速度及び容積効率の観点からは、2.3~10モル当量の範囲であるのがより好ましい。これらのハロゲン化アリルは試薬や工業薬品として入手可能である。
 アリルアルコールは試薬や工業薬品として入手可能である。アリルアルコールの使用量に特に制限は無いが、式(10)で表わされるカルボン酸化合物に対して、通常、2~10モル当量の範囲であるのが好ましく、2~5モル当量の範囲であるのがより好ましい。
 酸性物質としては、例えばp-トルエンスルホン酸、ドデシルベンゼンスルホン酸、硫酸等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。酸性物質の使用量は、式(10)で表わされるカルボン酸化合物に対して0.001~0.1モル当量の範囲であるのが好ましく、0.005~0.05モル当量の範囲であるのがより好ましい。
 塩基性物質としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水素化ナトリウム、水素化カリウム等のアルカリ金属の水素化物、炭酸ナトリウム、炭酸カリウム等の炭酸化物、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素化物、アルコラート等が一般に用いられるが、第4級アンモニウム化合物や脂肪族アミンや芳香族アミンのような有機塩基を用いることも可能である。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。塩基性物質の使用量は、式(10)で表わされるカルボン酸化合物に対して0.5~30モル当量の範囲であるのが好ましく、2~15モル当量の範囲であるのがより好ましい。
 触媒としては、例えば銅、鉄、コバルト、ニッケル、クロム、バナジウム等の遷移金属や遷移金属塩が用いられるが、このうち銅化合物が好適に用いられる。
 銅化合物としては特に限定はなく、ほとんどの銅化合物が用いられるが、塩化第一銅、臭化第一銅、酸化第一銅、ヨウ化第一銅、シアン化第一銅、硫酸第一銅、硫酸第二銅、塩化第二銅、水酸化第二銅、臭化第二銅、リン酸第二銅、硝酸第一銅、硝酸第二銅、炭酸銅、酢酸第一銅、酢酸第二銅等が好ましい。その中でも特に、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅、硫酸第一銅、硫酸第二銅、酢酸第二銅は容易に入手可能で安価な点で好適である。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
 反応は、溶媒の存在下又は不存在下に実施できる。溶媒としては、反応に悪影響を与えない限り特に制限はないが、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素;ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン等の飽和脂肪族炭化水素;ジエチルエーテル、ジエチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等のエーテル;酢酸エチル、酢酸ブチル等のエステル;塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化炭化水素;ジメチルホルムアミド、N-メチルピロリドン、スルホラン等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。溶媒を使用する場合、その使用量に特に制限はないが、式(10)で表わされるカルボン酸化合物に対して、通常、0.01~20倍重量の範囲であるのが好ましく、0.1~10倍重量の範囲であるのがより好ましい。本反応の場合、溶媒を特に使用しなくても脂環式多官能アリルエステルを効率よく製造することができる。
 特に、塩基性物質を水溶液として反応に用いる場合、反応を促進させるために相間移動触媒を使用するのが好ましい。相間移動触媒に特に制限はないが、例えばトリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等の第四級アンモニウム塩;テトラブチルホスホニウムクロリド等のホスホニウム塩;15-クラウン-5、18-クラウン-6等のクラウンエーテル等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。相間移動触媒を使用する場合、その使用量は、式(10)で表わされるカルボン酸化合物に対して、通常、0.001~1モル当量の範囲であるのが好ましく、0.01~0.4モル当量の範囲であるのがより好ましい。
 反応温度は、十分な反応速度を得、かつ副反応を効果的に抑え高収率を得る意味において、通常、-30~150℃の範囲であるのが好ましく、-10~120℃の範囲であるのがより好ましい。また、反応時間は10分~15時間の範囲であるのが好ましく、副反応抑制の観点からは10分~10時間の範囲であるのが好ましい。
 反応は、窒素、アルゴンのような不活性ガス雰囲気下で実施するのが好ましい。また、反応は大気圧下でも加圧下でも実施できるが、製造設備面の観点からは、大気圧下で実施するのが好ましい。反応は、例えば攪拌型反応装置に原料を一度に、又は分割して仕込み、上述した反応温度で所定時間反応させることにより行なうことができる。
 反応終了後、得られた反応混合液を中和した後、必要に応じて水、飽和食塩水等で洗浄してから濃縮し、さらに蒸留、カラムクロマトグラフィー等の、有機化合物の精製において通常用いられる精製操作を行なうことによって、純度の高い脂環式多官能アリルエステルを取得できる。
 本発明の熱硬化性樹脂組成物において、不飽和ポリエステル樹脂100重量部に対して、脂環式多官能アリルエステルを5重量部以上含有することが好ましく、10重量部以上含有することがより好ましく、15重量部以上含有することが更に好ましく、30重量部以上含有することが特に好ましく、60重量部以上含有することが最も好ましく、80重量部以上含有することがより最も好ましく、200重量部以下含有することが好ましく、180重量部以下含有することがより好ましく、150重量部以下含有することが更に好ましく、120重量部以下含有することがより好ましい。
開始剤
 本発明の熱硬化性樹脂組成物は、パーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種の開始剤を含有する。これらの開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明に用いることのできる開始剤は、1分間半減期温度が100℃以上であり、125℃以上が好ましく、140℃以上がより好ましい。また、1分間半減期温度が250℃以下であり、200℃以下が好ましく、180℃以下がより好ましい。さらに、分子量は100以上であればよく、150以上が好ましい。また、分子量は400以下であればよく、350以下が好ましい。なお、本明細書において、「1分間半減期温度」とは、1分間で過酸化物の濃度が初期値の半分に減少する温度をいう。
 具体的には、1分間半減期温度は以下のようにして求めることができる。まず、過酸化物をある一定温度(T)で熱分解させた際、過酸化物の初期濃度をa、また、過酸化物の分解量をxとし、時間(t)とlna/(a-x)の関係をプロットし、得られた直線の傾き定数kを求める。温度(T)における半減期は、その定義である式 k(t1/2)=ln2に、先に求めたkを代入することで求めることができる。さらに、同様の手順を繰り返すことで異なる温度毎に、その温度での半減期(t1/2)をそれぞれ求め、得られたln(t1/2)と1/Tとをプロットする。
 このようにして得られた直線を外挿することで、このプロットした図から半減期(t1/2)が1分間である温度、すなわち1分間半減期温度を求めることができる。
 開始剤の水素引抜能は、特に限定されないが、3%以上が好ましく、5%以上がより好ましく、7%以上が更に好ましく、70%以下が好ましく、50%以下がより好ましく、20%以下が更に好ましい。なお、本明細書において、「水素引抜能」とは、開始剤の存在下でシクロヘキサン及びα-メチルスチレンダイマーを反応させたときに生成するシクロヘキサン-MSD付加生成物の量から求められる値であり、Polymer Journal 第29巻、No.4の366~369頁に記載されている測定方法に準拠して測定される値を意味する。
 以下に、本発明における、開始剤を例示する。なお、カッコ内の温度は1分間半減期温度を表す。
 ジアルキルパーオキサイド類の具体例としては、例えば、ジクミルパーオキサイド(175.2℃)、2,5-ジメチル-2,5-ビス(tert-ブチルペルオキシ)ヘキサン(179℃)、tert-ブチルクミルパーオキサイド(173.3℃)、ジ-tert-ブチルパーオキサイド(193℃)、2,5-ジメチル-2,5-ビス(tert-ブチルペルオキシ)ヘキシン3(193℃)等が挙げられる。
 パーオキシケタール類の具体例としては、例えば、1,1-ビス(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン(147℃)、1,1-ビス(tert-ブチルパーオキシ)-2-メチルシクロヘキサン(142.1℃)、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン(153.8℃)、2,2-ビス(tert-ブチルパーオキシ)ブタン(159.9℃)、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン(149.2℃)、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート(172.5℃)が挙げられる。
 パーオキシエステル類の具体例としては、例えば、tert-ブチルパーオキシネオデカノエート(103.5℃)、tert-ヘキシルパーオキシネオデカノエート(100.9℃)、tert-ブチルパーオキシネオヘプタノエート(104.6℃)、tert-ヘキシルパーオキシピバレート(109.1℃)、tert-ブチルパーオキシピバレート(110.3℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(124.3℃)、tert-アミルパーオキシ-2-エチルヘキサノエート(121℃)、tert-ブチルパーオキシ-2-エチルヘキサノエート(134℃)、tert-ブチルパーオキシイソブチレート(136.1℃)、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート(166.0℃)、tert-ブチルパーオキシアセテート(159.9℃)、tert-ブチルパーオキシベンゾエート(166.8℃)、tert-ヘキシルパーオキシイソプロピルモノカーボネート(155.0℃)、tert-ブチルパーオキシラウレート(159.4℃)、tert-ブチルパーオキシイソプロピルモノカーボネート(158.8℃)、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(161.4℃)、2,5-ジメチル-2,5-ジ-ベンゾイルパーオキシヘキサン(162℃)、tert-ヘキシルパーオキシベンゾエート(160.3℃)が挙げられる。
 パーオキシカーボネート類の具体例としては、例えば、tert-アミルパーオキシイソプロピルカーボネート(114℃)、tert-ブチルパーオキシイソプロピルカーボネート(156℃)、tert-ブチルパーオキシ-2-エチルヘキシルカーボネート(156℃)、tert-ブチルパーオキシ-2-エチルヘキシル-モノカルボネート(161.4℃)が挙げられる。
 これらの開始剤の中でも、硬化性(特に低温での硬化性)に優れる点で、パーオキシケタール類、パーオキシエステル類が好ましく、パーオキシケタール類がより好ましい。
 具体的な化合物としては、硬化性(特に低温での硬化性)に優れる点で、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、tert-ブチルパーオキシベンゾエート、tert-ヘキシルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキシル-モノカルボネートが好ましく、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレートがより好ましく、1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサンが更に好ましい。
 本発明の熱硬化性樹脂組成物において、不飽和ポリエステル樹脂と脂環式多官能アリルエステルの合計を100重量部として、上記特定の開始剤を0.01重量部以上含有することが好ましく、0.05重量部以上含有することがより好ましく、0.1重量部以上含有することが更に好ましく、0.5重量部以上含有することが更に好ましく、10重量部以下含有することが好ましく、8重量部以下含有することがより好ましく、5重量部以下含有することが更に好ましく、3重量部以下含有することが更に好ましい。
 本発明の熱硬化性樹脂組成物において、開始剤100重量%中の上記特定の開始剤の含有量は、好ましくは50重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上、特に好ましくは98重量%以上、最も好ましくは99.5重量%以上であり、100質量%であってもよい。
 本発明の熱硬化性樹脂組成物において、上記特定の開始剤と共に、更に上記特定の開始剤以外の開始剤を使用してもよい。該開始剤としては、メチルエチルケトンパーオキサイド(171℃)、シクロヘキサノンパーオキサイド(174℃)等のケトンパーオキサイド類、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(246.6℃)、p-メタンハイドロパーオキサイド(199.5℃)、ジイソプロピルベンゼンハイドロパーオキサイド(232.5℃)等のハイドロパーオキサイド類、ジラウロイルパーオキサイド(116.4℃)、ベンゾイルパーオキサイド(130℃)等のジアシルパーオキサイド類等が挙げられる。これらの開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
無機充填剤
 本発明の熱硬化性樹脂組成物には、必要に応じて無機充填剤を添加してもよい。無機充填剤として、溶融シリカ、結晶シリカ、アルミナ、石英ガラス、炭酸カルシウム、水酸化アルミニウム、硫酸カルシウム等の金属類の水和物、ガラス粉末、タルク、マイカ等を例示することができる。無機充填剤の粒径は、0.1~100μmである。好ましくは、0.5~60μmである。粒径が小さすぎると、組成物粘度が大きくなり、強化繊維に十分含浸せず、材料内部にエアーを混入しやすくなり、成形品に巣が入りやすい。一方、粒径が大きすぎると、粒子の比表面積が小さくなることにより、流動性が低下する。
 本発明の無機充填剤の添加量は、不飽和ポリエステル樹脂100重量部に対して、10~1000重量部であればよく、200~800重量部がより好ましい。添加量が少ないと、成形前の材料の取扱い性が低下する。また、添加量が多いと、粘度が大幅に上昇し、成形加工時の流動性が低下するとともに、強化繊維に対する含浸性が低下し、材料内部にエアーを混入しやすくなり、成形品に巣が入りやすい。
 本発明の熱硬化性樹脂組成物は、上記の成分に加えて、繊維強化剤、低収縮剤、離型剤、増粘剤、顔料、減粘剤等の当該技術分野において公知の成分を、本発明の効果を阻害しない範囲において含むことができる。
 本発明に用いられる繊維強化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。繊維強化材の例としては、ガラス繊維、パルプ繊維、テトロン(登録商標)繊維、ビニロン繊維、カーボン繊維、アラミド繊維、ワラストナイト等の様々な有機繊維及び無機繊維を例示することができる。中でも、繊維長1.5~25mm程度に切断したチョップドストランドガラスを用いることが好ましい。これらは、単独又は2種以上を組み合わせて用いることができる。
 本発明に用いられる低収縮剤としては、ポリスチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、スチレン-ブタジエン系ゴム等の低収縮剤として一般に使用されている熱可塑性ポリマーが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
 本発明に用いられる離型剤としては、ステアリン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、カルナバワックス等を例示することができる。これらは、単独又は2種以上を組み合わせて用いることができる。
 本発明に用いられる増粘剤としては、酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、酸化カルシウム等の金属酸化物、及びイソシアネート化合物等を例示することができる。これらは、単独又は2種以上を組み合わせて用いることができる。
 本発明の熱硬化性樹脂組成物は、当該技術分野において通常行われる方法、例えば、遊星ミル、ニーダー等を用いて混練することによって製造することができる。
 本発明の硬化物は、本発明の熱硬化性樹脂組成物を熱硬化することによって得られる。また、本発明の成形品は、本発明の熱硬化性樹脂組成物を成形してなる。成形及び熱硬化の方法としては、特に限定されず、当該技術分野において通常行われる方法、例えば、圧縮成形、トランスファー成形、射出成形等を用いることができる。
 以下、実施例により本発明を更に詳しく説明するが、本発明は実施例により何ら限定されるものではない。
 後述の実施例及び比較例で用いた材料を以下に説明する。
不飽和ポリエステル樹脂
 不飽和ポリエステル樹脂:日本ユピカ株式会社製 ユピカ8552 
開始剤
開始剤1;パーブチルE(tert-ブチルパーオキシ-2-エチルヘキシル-モノカルボネート;1分間半減期温度161.4℃、分子量246.35、水素引抜能49%、日油株式会社製)
開始剤2;パーヘキシルZ(tert-ヘキシルパーオキシベンゾエート;1分間半減期温度160.3℃、分子量222.3、水素引抜能27%、日油株式会社製)
開始剤3;パーヘキサHC(1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン;1分間半減期温度149.2℃、分子量316.47、水素引抜能10%、日油株式会社製)
開始剤4;パーブチルZ(tert-ブチルパーオキシベンゾエート;1分間半減期温度166.8℃、分子量194.2、水素引抜能56%、日油株式会社製)
開始剤5;パーブチルC(tert-ブチルクミルパーオキサイド;1分間半減期温度173.3℃、分子量208.3、水素引抜能65%、日油株式会社製)
開始剤6;パークミルD(ジクミルパーオキサイド;1分間半減期温度175.2℃、分子量270.38、水素引抜能60%、日油株式会社製)
開始剤7;パーヘキサV(n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート;1分間半減期温度172.5℃、分子量334.46、水素引抜能45%、日油株式会社製)
架橋剤
2-シクロヘキサンジカルボン酸ジアリル:合成例1で得られた化合物1
ジアリルフタレートモノマー:株式会社大阪ソーダ製
合成例1:1,2-シクロヘキサンジカルボン酸ジアリル(架橋剤)の合成
 500mLのフラスコにアリルアルコール170.5g(2.93mol)、トルエン150.1g(1.63mol)、1,2-シクロヘキサンジカルボン酸241.1g(1.40mol)、ドデシルベンゼンスルホン酸7.18g(0.022mol)を仕込み、磁気撹拌子で撹拌させオイルバスで還流させた。20時間後、加熱を止め、フラスコを冷却した。得られた反応液に対して中和、水洗を行い、低沸分をロータリーエバポレーターで留去し、得られた濃縮液を減圧蒸留することで目的の1,2-シクロヘキサンジカルボン酸ジアリルを110.6g得た。得られた化合物1を実施例に用いた。
 実施例及び比較例に用いた熱硬化性樹脂組成物の成分の組成を表1、2に示す。表内組成の数値単位は重量部である。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
熱硬化性樹脂組成物の調製
 表1~2に示す組成に従い、不飽和ポリエステル樹脂と架橋剤との重量合計が50gとなるように不飽和ポリエステル樹脂と架橋剤をそれぞれ秤量し、遊星ミル(倉敷紡績株式会社製マゼルスターKK250S)を用いて合計5分間混練した。次に、80~90℃に加温させつつ、不飽和ポリエステル樹脂が架橋剤に溶解するまで、遊星ミルでの撹拌を行った。不飽和ポリエステル樹脂が架橋剤に溶解し、均一になったところで加温、及び撹拌をやめ、室温になるまで冷却した。室温まで冷却させたのち、表1~2に記載の配合量の開始剤を添加し、遊星ミルで30℃以上の熱を持ち過ぎないように撹拌を行い、熱硬化性樹脂組成物を調製した。
高温硬化特性試験
 外径18mm×高さ165mmの試験管(型番:P-18SM(日電理化硝子株式会社製))に、底部から7.5cmの位置まで熱硬化性樹脂組成物を注ぎ込み、K型熱電対を注ぎ込んだ樹脂の高さの中心部(底部より3.75cm)のところに合わせた。表1及び2について、注ぎ込んだ熱硬化性樹脂組成物の液面がオイルバスの液面の1cm下になるように試験管の高さを併せて、樹脂温度が80℃から最高到達温度に達するまでの時間(硬化時間)と最高到達温度を測定した。なお、高温硬化特性試験は、JISK6901に準じて行った。
 測定結果を表3~4に示す。(表3の結果:実施例1~4、比較例1~4は硬化温度130℃、表4の結果:実施例5~8、比較例5~8は硬化温度160℃で反応をおこなった。)
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表3~4に示すように、脂環式多官能アリルエステルを架橋剤として用いた実施例では、架橋剤としてジアリルフタレートモノマーを用いた比較例と同程度の最高到達温度と硬化時間を示している。この結果より、架橋剤として、脂環式多官能アリルエステルを用い、特定の開始剤と組み合わせた際に、ジアリルフタレートを用いた場合と同等の硬化性(特に低温での硬化性)を有することが示唆された。
 水素引抜能が大きい過酸化物を使用するとアリルラジカルが引き抜かれた際に共鳴安定化が起こり、重合は進まなくなるため、硬化時間は長くなると推定される。パーヘキシル系、パーオキシケタール系は水素引抜能が小さく、その中でも特に1,1-ジ(tert-ヘキシルパーオキシ)シクロヘキサン(パーヘキサHC)は水素引抜能が小さい為、二重結合への付加が起こり易く硬化時間が短くなったと考えられる。
 本発明の熱硬化性樹脂組成物は、電気的特性及び機械的特性を実質的に損なうことなく非常に優れた流動性を有した熱硬化性樹脂組成物に関するものである。本発明の熱硬化性樹脂組成物は、優れた流動性を生かし、例えば小型・肉薄のコイルボビン、スイッチケース、端子板、コネクター、マグネットスイッチ等の電気・電子部品等に使用できる。
 

Claims (3)

  1.  不飽和ポリエステル樹脂と、
    式(1)で表される脂環式多官能アリルエステルと、
    Figure JPOXMLDOC01-appb-C000001
     [式中、nは2~4のいずれかの整数を表わし、Zはn価の脂環式炭化水素基である。]
    1分間半減期温度が100~250℃の範囲であり、
    分子量が100~400であるパーオキシケタール類、パーオキシエステル類、ジアルキルパーオキサイド類、及びパーオキシカーボネート類からなる群より選択される1種の開始剤とを含有することを特徴とする熱硬化性樹脂組成物。
  2.  請求項1に記載の熱硬化性樹脂組成物を熱硬化することによって得られることを特徴とする硬化物。
  3.  請求項1に記載の熱硬化性樹脂組成物を成形してなることを特徴とする成形品。
     
PCT/JP2019/009098 2018-03-28 2019-03-07 熱硬化性樹脂組成物 WO2019188089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020509784A JPWO2019188089A1 (ja) 2018-03-28 2019-03-07 熱硬化性樹脂組成物
CN201980019080.6A CN111868123A (zh) 2018-03-28 2019-03-07 热固化性树脂组合物
US16/962,473 US20210070909A1 (en) 2018-03-28 2019-03-07 Thermosetting resin composition
EP19777360.9A EP3778680A4 (en) 2018-03-28 2019-03-07 HEAT CURING RESIN COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061215 2018-03-28
JP2018-061215 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188089A1 true WO2019188089A1 (ja) 2019-10-03

Family

ID=68058137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009098 WO2019188089A1 (ja) 2018-03-28 2019-03-07 熱硬化性樹脂組成物

Country Status (5)

Country Link
US (1) US20210070909A1 (ja)
EP (1) EP3778680A4 (ja)
JP (1) JPWO2019188089A1 (ja)
CN (1) CN111868123A (ja)
WO (1) WO2019188089A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997887A (ja) * 1973-01-09 1974-09-17
JPS60100538A (ja) * 1983-11-08 1985-06-04 Japan Synthetic Rubber Co Ltd 脂環式ジカルボン酸ジアリル
JPH0733834A (ja) * 1993-07-21 1995-02-03 Showa Denko Kk 光学材料用重合組成物
JP2981330B2 (ja) 1991-12-24 1999-11-22 三井化学株式会社 フレークライニング用樹脂組成物
JP2003089709A (ja) * 2001-09-18 2003-03-28 Dainippon Ink & Chem Inc 熱硬化性樹脂組成物
JP2010209142A (ja) 2009-03-06 2010-09-24 Daiso Co Ltd 絶縁用樹脂組成物および絶縁性被覆材料を製造する方法
WO2017013950A1 (ja) * 2015-07-21 2017-01-26 株式会社大阪ソーダ ライニング用組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080260A (ja) * 1998-09-03 2000-03-21 Showa Highpolymer Co Ltd 硬化物が可撓性と耐熱性とを併せ有する熱硬化性樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997887A (ja) * 1973-01-09 1974-09-17
JPS60100538A (ja) * 1983-11-08 1985-06-04 Japan Synthetic Rubber Co Ltd 脂環式ジカルボン酸ジアリル
JP2981330B2 (ja) 1991-12-24 1999-11-22 三井化学株式会社 フレークライニング用樹脂組成物
JPH0733834A (ja) * 1993-07-21 1995-02-03 Showa Denko Kk 光学材料用重合組成物
JP2003089709A (ja) * 2001-09-18 2003-03-28 Dainippon Ink & Chem Inc 熱硬化性樹脂組成物
JP2010209142A (ja) 2009-03-06 2010-09-24 Daiso Co Ltd 絶縁用樹脂組成物および絶縁性被覆材料を製造する方法
WO2017013950A1 (ja) * 2015-07-21 2017-01-26 株式会社大阪ソーダ ライニング用組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER JOURNAL, vol. 29, no. 4, pages 366 - 369
See also references of EP3778680A4

Also Published As

Publication number Publication date
EP3778680A1 (en) 2021-02-17
CN111868123A (zh) 2020-10-30
EP3778680A4 (en) 2022-01-12
JPWO2019188089A1 (ja) 2021-03-18
US20210070909A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2008088501A1 (en) Molding resins using renewable resource component
JP2011006542A (ja) 不飽和ポリエステル樹脂組成物及び封入モータ
JP5202284B2 (ja) 熱硬化性樹脂組成物
JP6725079B2 (ja) 不飽和ポリエステル樹脂組成物
JP6993922B2 (ja) 特定のフェノールユニットを含むポリフェニレンエーテルおよびその製造方法。
WO2019188089A1 (ja) 熱硬化性樹脂組成物
WO2018131484A1 (ja) 不飽和ポリエステル樹脂組成物
JP6361907B2 (ja) 不飽和ポリエステル樹脂組成物
WO2019189628A1 (ja) 熱硬化性樹脂組成物
JP2009102586A (ja) 熱硬化性樹脂組成物、硬化物および高熱伝導コイル
JP6653713B2 (ja) 不飽和ポリエステル樹脂組成物および硬化物
JP2576572B2 (ja) 不飽和単量体の重合開始剤および不飽和ポリエステル樹脂組成物の硬化剤
CN114746456B (zh) 热固性树脂组合物
US3270089A (en) Flame-retardant compounds as crosslinking monomers
JP2019172913A (ja) 特定のフェノールユニットを含む変性ポリフェニレンエーテル及びその製造方法。
JP2020013865A (ja) 車載用イグニッションコイル封止用結晶性ラジカル重合性組成物、当該組成物を使用した車載用イグニッションコイル封止体、及び当該封止体の製造方法
US2475296A (en) Catalytic polymerization of allyl esters
JP4063171B2 (ja) 制振遮音材
JP2009099387A (ja) 電気絶縁用樹脂組成物及びこの組成物を用いた電気機器絶縁物の製造方法
JP2005294572A (ja) コイル含浸用樹脂組成物及びコイル
KR20060068252A (ko) 디시클로펜타디엔 아크릴레이트 및 이의 제조방법, 및이를 함유하는 난연성 조성물
JP2001131247A (ja) 熱硬化性樹脂組成物
JP2008103105A (ja) 電気絶縁用樹脂組成物及び電気機器絶縁物の製造方法
JPH06313033A (ja) 新規なアリル系オリゴマー
JPH0582290B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019777360

Country of ref document: EP

Effective date: 20201028