WO2019187977A1 - 研磨液、化学的機械的研磨方法 - Google Patents

研磨液、化学的機械的研磨方法 Download PDF

Info

Publication number
WO2019187977A1
WO2019187977A1 PCT/JP2019/008082 JP2019008082W WO2019187977A1 WO 2019187977 A1 WO2019187977 A1 WO 2019187977A1 JP 2019008082 W JP2019008082 W JP 2019008082W WO 2019187977 A1 WO2019187977 A1 WO 2019187977A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing liquid
ceria particles
mass
liquid according
Prior art date
Application number
PCT/JP2019/008082
Other languages
English (en)
French (fr)
Inventor
上村 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020510496A priority Critical patent/JP7175965B2/ja
Priority to KR1020207022275A priority patent/KR102500452B1/ko
Publication of WO2019187977A1 publication Critical patent/WO2019187977A1/ja
Priority to US16/939,227 priority patent/US11359113B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a polishing liquid and a chemical mechanical polishing method.
  • CMP chemical mechanical polishing
  • cerium oxide particles also referred to as “ceria particles”
  • silicon oxide particles also referred to as “silica particles”
  • aluminum oxide particles also referred to as “alumina particles”
  • polishing liquid for polishing an insulating material such as silicon oxide
  • a polishing liquid containing ceria particles is often used from the viewpoint of a high polishing rate for an inorganic insulating material.
  • Patent Document 1 discloses a method for producing ceria particles capable of obtaining ceria particles having excellent dispersibility.
  • the inventors of the present invention have prepared ceria particles with reference to the method for producing ceria particles described in Patent Document 1 and studied the obtained polishing liquid containing ceria particles. It has been found that many defects (particularly, polishing scratches called scratches) may occur on the polished surface. In recent years, there has been a demand for a polishing liquid capable of more selectively polishing silicon oxide with respect to silicon nitride, and a polishing liquid having a high polishing speed for both silicon nitride and silicon oxide.
  • the above-mentioned polishing liquid that can polish silicon oxide more selectively than silicon nitride is a polishing liquid whose silicon oxide polishing rate is relatively higher than the silicon nitride polishing rate (in other words, silicon nitride A polishing liquid in which the ratio of the polishing rate of silicon oxide to the polishing rate is higher) is intended.
  • an object of the present invention is to provide a polishing liquid that is less likely to cause defects on a surface to be polished and that can polish silicon oxide more selectively with respect to silicon nitride when applied to CMP.
  • Another object of the present invention is to provide a polishing liquid in which defects on the surface to be polished are less likely to occur when applied to CMP, and both the silicon nitride polishing rate and the silicon oxide polishing rate are high.
  • Another object of the present invention is to provide a chemical mechanical polishing method using the above polishing liquid.
  • the present inventors have found that the above-mentioned problems can be solved by a polishing liquid having a predetermined formulation, and have completed the present invention. That is, it has been found that the above object can be achieved by the following configuration.
  • the polishing liquid contains the anionic polymer,
  • the anionic polymer includes a first anionic polymer adsorbed on the ceria particles and a second anionic polymer not adsorbed on the ceria particles,
  • the polishing liquid according to any one of [1] to [13], wherein the ratio of the mass of the first anionic polymer to the mass of the second anionic polymer is 0.001 to 1.00.
  • the cationic polymer includes a first cationic polymer adsorbed on the ceria particles and a second cationic polymer not adsorbed on the ceria particles, The polishing liquid according to [15], wherein the ratio of the mass of the first cationic polymer to the mass of the second cationic polymer is 0.001 to 1.00.
  • polishing liquid In the case where the above polishing liquid is used for polishing silicon nitride, silicon oxide, or polysilicon, The polishing liquid according to any one of [1] to [14], wherein the ratio of the polishing rate of the silicon oxide to the polishing rate of the silicon nitride is 10 to 5000. [19] The polishing liquid according to [18], wherein the ratio of the polishing rate of the silicon oxide to the polishing rate of the polysilicon is 10 to 5000.
  • produce the defect of a to-be-polished surface and can polish silicon oxide more selectively with respect to silicon nitride can be provided.
  • the polishing liquid when applied to CMP, it is possible to provide a polishing liquid in which defects on the surface to be polished are unlikely to occur and both the polishing rate of silicon nitride and the polishing rate of silicon oxide are high.
  • a chemical mechanical polishing method using the above polishing liquid can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • ppm means “parts-per-million (10 ⁇ 6 )”
  • ppb means “parts-per-billion (10 ⁇ 9 )”
  • ppt means “parts-per-million”. trillion ( 10-12 ) ".
  • 1 ⁇ angstrom corresponds to 0.1 nm.
  • the polishing liquid according to the first embodiment of the present invention is used for chemical mechanical polishing, Inorganic acid containing ceria particles having an average aspect ratio of 1.5 or more, an anionic polymer, and at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group Alternatively, a polishing liquid containing an organic acid and having a pH of 3 to 8.
  • the polishing liquid has high selectivity for polishing silicon oxide (hereinafter also referred to as “SiO 2 ”) with respect to silicon nitride (hereinafter also referred to as “SiN”).
  • SiO 2 polishing silicon oxide
  • SiN silicon nitride
  • the mechanism of action is not clear, but is presumed to be due to the following reason.
  • the pH of the polishing liquid is 3 to 8 (particularly when the pH of the polishing liquid is 4 to 6)
  • the surface charge of SiN is positive and the surface charge of SiO 2 is negative.
  • the ceria particles are cationic when the pH of the polishing liquid is 3-8. For this reason, the ceria particles and SiN repel each other depending on the electrical relationship, and the ceria particles and SiO 2 tend to come into contact with each other.
  • the surface charge of SiN is positive. Tend to progress in some cases. Therefore, when the polishing liquid does not contain an anionic polymer and an inorganic acid or organic acid containing at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group. (See Comparative Example 1A in the Examples column), the selectivity of polishing SiO 2 with respect to SiN is insufficient.
  • the polishing liquid comprises an anionic polymer and an inorganic acid or an organic acid containing at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group.
  • polishing liquid of the first embodiment it is presumed that these components exist on the surface of SiN and work in a direction to suppress the polishing of SiN by ceria particles depending on the electrical relationship. As a result, it is considered that the selectivity of polishing SiO 2 with respect to SiN increases.
  • the average aspect ratio of the ceria particles is less than 1.5, it is often difficult to adjust the polishing selection ratio of SiN and SiO 2 .
  • the surface to be polished of the object to be polished which is polished by chemical mechanical polishing using the polishing liquid, has few defects (particularly scratches).
  • the mechanism of action is not clear, but is presumed to be due to the following reason.
  • the polishing liquid comprises an anionic polymer and an inorganic acid or an organic acid containing at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group.
  • the polishing liquid comprises an anionic polymer and an inorganic acid or an organic acid containing at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group.
  • the polishing liquid of the first embodiment contains ceria particles.
  • the ceria particles function as abrasive grains for polishing the object to be polished.
  • the average aspect ratio of the ceria particles is 1.5 or more, and 5.0 or more is preferable because the selection ratio of polishing of SiN and SiO 2 can be easily adjusted.
  • the upper limit of the average aspect ratio of the ceria particles is not particularly limited, but is preferably 15 or less, and more preferably 10 or less.
  • the average aspect ratio of ceria particles is calculated by measuring the major axis and minor axis for every 100 particles observed with the transmission electron microscope and calculating the aspect ratio (major axis / minor axis) for each particle. Then, it is obtained by arithmetically averaging 100 aspect ratios.
  • the major axis of the particle means the length in the major axis direction of the particle
  • the minor axis of the particle means the length of the particle orthogonal to the major axis direction of the particle.
  • the catalog value is preferentially adopted as the average aspect ratio of the ceria particles.
  • the ceria particles preferably contain an alkaline earth metal atom in at least one region of the surface in that aggregation of the ceria particles is suppressed and generation of defects on the surface to be polished is further suppressed.
  • the alkaline earth metal atom is contained in the ceria particles as an alkaline earth metal oxide in that the aggregation of the ceria particles is suppressed and the generation of defects on the surface to be polished is further suppressed.
  • At least 1 sort (s) chosen from the group which consists of a calcium atom, a strontium atom, and a barium atom is preferable at the point which is excellent by manufacturability.
  • the content of the alkaline earth metal atom is not particularly limited, but in the step of sintering the particles (corresponding to step B described later), the sintering efficiency is more excellent, and defects on the polished surface are further suppressed.
  • 10 mass ppt or more is preferable, 20 mass ppt or more is more preferable, and 50 mass ppt or more is more preferable.
  • the upper limit of the content of the alkaline earth metal atom is not particularly limited, but is, for example, 15 mass ppb or less, and preferably 10 mass ppb or less, more preferably 8 mass or less in terms of further suppressing defects on the polished surface. ppb or less is more preferable.
  • the mass content ratio of the cerium atoms to the alkaline earth metal atoms is, for example, 5 or more, and 10 or more in that the polishing power is more excellent. Preferably, 15 or more is more preferable.
  • the upper limit of the mass content ratio of the cerium atoms to the alkaline earth metal atoms is not particularly limited, but aggregation of the ceria particles is suppressed and generation of defects on the polished surface is further suppressed. In this respect, for example, it is 150 or less, preferably 100 or less, and more preferably 90 or less.
  • the mass content ratio of cerium atoms to alkaline earth metal atoms on the surface of the ceria particles can be measured by the following method. First, ceria particles are mixed with gelatin, and the obtained mixture is applied in a paste form on a Si substrate (film thickness: 1 ⁇ m). Next, after the obtained coating film is dried at a high temperature, gelatin is sintered from the substrate. ESCA (Electron Spectroscopy for Chemical Analysis) measurement is performed on the obtained sample and each atomic concentration is evaluated (each atomic concentration is obtained by measuring each atomic concentration obtained in 10 regions of the sample measured by ESCA. Calculated as the average value obtained by arithmetic averaging). Moreover, the ratio of a metal element and an oxide element can also be measured from the existence ratio by evaluating the binding energy of each element after the measurement. For example, the Thermo Scientific TM K-Alpha TM system can be used for ESCA measurement.
  • the median diameter D10 of the ceria particles is not particularly limited, for example, 10 nm or less is preferable because it is 250 nm or less and has excellent defect performance. Although a minimum in particular is not restrict
  • the median diameter D10 is intended to be a 10% diameter in the cumulative distribution of particle diameters.
  • the median diameter D50 of the ceria particles is not particularly limited, but is preferably, for example, 450 nm or less, and 15 nm or less from the viewpoint of excellent defect performance. Although a minimum in particular is not restrict
  • the median diameter D50 is intended to be a 50% diameter in the cumulative distribution of particle diameters.
  • the median diameter D90 of the ceria particles is not particularly limited, but is preferably 550 nm or less, for example, 20 nm or less from the viewpoint of excellent defect performance. Although a minimum in particular is not restrict
  • the median diameter D90 is intended to be a 90% diameter in the cumulative distribution of particle diameters.
  • the median diameter can be evaluated using a particle size distribution measuring instrument (for example, SALD-7500 nano, manufactured by Shimadzu Corporation).
  • the average primary particle diameter of the ceria particles is not particularly limited and is, for example, 500 nm or less, preferably 20 nm or less, and more preferably 15 nm or less, from the viewpoint of further suppressing generation of defects on the surface to be polished.
  • the lower limit value of the average primary particle diameter of the ceria particles is not particularly limited, but is, for example, 1 nm or more, and more preferably 3 nm or more from the viewpoint that aggregation of ceria particles is suppressed and the temporal stability of the polishing liquid is improved.
  • the average primary particle diameter is a particle diameter (equivalent circle diameter) of 1000 primary particles arbitrarily selected from an image taken using a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. Measure and find the arithmetic average.
  • the equivalent circle diameter is the diameter of the circle when assuming a true circle having the same projected area as the projected area of the particles at the time of observation.
  • the catalog value is preferentially adopted as the average primary particle diameter of the ceria particles.
  • the lower limit of the content of ceria particles is not particularly limited, but is, for example, 0.1% by mass or more and preferably 0.5% by mass or more with respect to the total mass of the polishing liquid.
  • the upper limit of the content of the ceria particles is not particularly limited, but is, for example, 10% by mass or less with respect to the total mass of the polishing liquid, and the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher.
  • 0.0 mass% or less is preferable, 5.0 mass% or less is more preferable, 1.8 mass% or less is further more preferable, and 1.2 mass% or less is particularly preferable.
  • a ceria particle may be used individually by 1 type, or may use 2 or more types together. When two or more kinds of ceria particles are used in combination, the total content is preferably within the above range.
  • Step A By stirring a mixed solution containing at least a solvent and a raw material containing cerium atoms (hereinafter also referred to as “cerium raw material”) at a stirring speed of 500 to 5000 rpm, at least one of the surfaces containing cerium atoms is obtained.
  • cerium raw material a raw material containing cerium atoms
  • Step B Step for firing the particles obtained in Step A
  • Step C Obtained in Step B Steps for obtaining ceria particles by dissolving at least part of oxides containing alkaline earth metal atoms contained in the fired product
  • Process A includes the process A1 and the process A2, or includes the process A3.
  • Process A1 A step of preparing a dispersion by dispersing a mixture obtained by mixing a solvent and a cerium raw material at a stirring speed of 500 to 5000 rpm.
  • a step of obtaining a dispersion containing ⁇ Process A3 ⁇ By dispersing a mixed solution containing a solvent, a cerium raw material, a polycarboxylic acid, and an alkaline earth metal salt at a stirring speed of 500 to 5000 rpm, at least one region on the surface containing the cerium atom is polycarboxylic acid. Obtaining a dispersion containing particles coated with an alkaline earth metal salt.
  • the cerium raw material can be coated with an alkaline earth metal salt of polycarboxylic acid.
  • an alkaline earth metal salt of polycarboxylic acid for example, various components used in Step A will be described.
  • the solvent polar solvents such as water, methanol, ethanol, isopropanol, and acetone are preferable. From the viewpoint of ease of handling, the solvent is preferably at least one of water and ethanol, more preferably water. Although it does not restrict
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • the cerium raw material is not particularly limited, and examples thereof include inorganic acid salts and organic acid salts.
  • inorganic acid salts include carbonates, oxycarbonates, nitrates, sulfates, and hydrates thereof.
  • organic acid salt include oxalate and malonate.
  • Cerium raw materials include carbonates, carbonate hydrates, oxycarbonates, oxycarbonate hydrates, oxalates, and oxalates from the viewpoint of easily reducing the solubility in a solvent (for example, water). At least one selected from the group consisting of hydrates is preferred.
  • a cerium raw material may be used individually by 1 type, or may use 2 or more types together.
  • polycarboxylic acid from the viewpoint of excellent adsorption power to the cerium raw material, acrylic acid homopolymer (polyacrylic acid), methacrylic acid homopolymer (polymethacrylic acid), acrylic acid copolymer, and At least one selected from the group consisting of methacrylic acid copolymers (excluding acrylic acid copolymers) is preferred.
  • Polycarboxylic acid may be used individually by 1 type, or may use 2 or more types together.
  • the weight average molecular weight of the polycarboxylic acid is preferably 1000 or more, more preferably 2000 or more, still more preferably 4000 or more, and particularly preferably 5000 or more, from the viewpoint of increasing the adsorptive power to a cerium raw material (for example, cerium carbonate). Most preferred is 7000 or more.
  • the weight average molecular weight of the polycarboxylic acid is preferably 500,000 or less, more preferably 200,000 or less, still more preferably 100,000 or less, particularly preferably 50,000 or less, from the viewpoint of easily preventing excessive aggregation of abrasive grains. The following are most preferred.
  • the weight average molecular weight of the polycarboxylic acid can be measured by gel permeation chromatography under the following conditions using a standard polystyrene calibration curve.
  • ⁇ Condition >> Sample: 10 ⁇ L Standard polystyrene: manufactured by Tosoh Corporation, standard polystyrene (molecular weight: 190000, 17900, 9100, 2980, 578, 474, 370, 266) Detector: manufactured by Hitachi, Ltd., RI-monitor, trade name “L-3000” Integrator: Hitachi, Ltd., GPC integrator, product name “D-2200” Pump: Hitachi, Ltd., trade name “L-6000” Degassing device: Showa Denko Co., Ltd., trade name "Shodex DEGAS" Column: manufactured by Hitachi Chemical Co., Ltd., trade names “GL-R440”, “GL-R430”, “GL-R420” are used in this order and connected.
  • Eluent Tetrahydrofuran (THF) Measurement
  • the alkaline earth metal atom of the alkaline earth metal salt is not particularly limited, but is a group consisting of a calcium atom, a strontium atom, and a barium atom in that the solubility in an alkaline earth metal oxide solution is likely to be high. At least one selected from the above is preferred.
  • alkaline earth metal salts alkaline earth metal nitrates, sulfates, hydrochlorides, acetates, and lactates are used from the viewpoint that the solubility of alkaline earth metal oxides in a solution tends to be high.
  • At least one selected from the group consisting of Alkaline earth metal salts may be used alone or in combination of two or more.
  • the lower limit of the molar ratio of the cerium atom of the cerium raw material to the carboxy group (carboxy group number) of the polycarboxylic acid (molar ratio: cerium atom / carboxy group of the polycarboxylic acid) From the viewpoint of easy covering with a metal salt, 0.1 or more is preferable, 0.5 or more is more preferable, 1 or more is more preferable, 10 or more is particularly preferable, and 20 or more is most preferable.
  • the number of carboxy groups (number of moles) of the polycarboxylic acid can be calculated, for example, by dividing the blending amount (g) of the polycarboxylic acid by the molecular weight (g / mol) of the constituent monomer.
  • the lower limit of the molar ratio of the alkaline earth metal atom of the alkaline earth metal salt to the carboxy group (carboxy group number) of the polycarboxylic acid ratio of the number of moles. Alkaline earth metal atom / carboxy group of the polycarboxylic acid
  • it is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.08 or more, and particularly preferably 0.1 or more.
  • the molar ratio of the alkaline earth metal (alkaline earth metal atom) of the alkaline earth metal salt to the carboxy group (carboxy group number) of the polycarboxylic acid ratio of the number of moles. Alkaline earth metal / carboxy group of the polycarboxylic acid
  • the upper limit is preferably 100 or less, more preferably 80 or less, still more preferably 60 or less, particularly preferably 40 or less, and most preferably 20 or less from the viewpoint of promoting the formation of an alkaline earth metal salt of polycarboxylic acid. .
  • the stirring speed for dispersing the cerium raw material in the solvent is 500 to 5000 rpm.
  • the stirring speed is 500 rpm or more, ceria particles having a small average primary particle diameter and median diameter can be obtained.
  • the stirring speed is 5000 rpm or less, the particle size and the degree of association distribution of the particles can be controlled (that is, more uniform particles can be obtained).
  • the stirring speed is preferably 1000 rpm or more, more preferably 1200 rpm or more, preferably 4500 rpm or less, more preferably 3500 rpm or less.
  • the stirring time is not particularly limited, but is, for example, 1 to 120 minutes, preferably 1 to 60 minutes, and more preferably 1 to 40 minutes.
  • step B the particles obtained in step A are fired (for example, sintered).
  • step B for example, the residue obtained by removing at least a part of the solvent from the dispersion obtained in step A is fired.
  • the method for removing the solvent is not particularly limited, and methods such as centrifugation, drying under reduced pressure, and drying under normal pressure can be applied.
  • limiting in particular as a method of baking the obtained residue Methods, such as a baking method using a rotary kiln or an electric furnace, are applicable.
  • the firing temperature in the firing step is preferably 300 ° C. or higher, more preferably 500 ° C. or higher, and even more preferably 600 ° C. or higher in that the cerium atoms in the particles obtained in Step A are easily oxidized.
  • the firing temperature in the firing step is preferably 1500 ° C. or less, more preferably 1200 ° C. or less, and still more preferably 1000 ° C. or less in that it is easy to prevent the particles from being excessively crystallized.
  • the firing time is not particularly limited, but is, for example, 5 to 300 minutes, and preferably 10 to 200 minutes.
  • step C ceria particles are obtained by dissolving at least a part of the alkaline earth metal oxide contained in the fired product obtained in step B above.
  • the step C is preferably a step of dissolving the alkaline earth metal oxide by dispersing the fired product obtained in the step B in a solution.
  • the solution used for dissolution is a group consisting of an inorganic acid (for example, nitric acid, sulfuric acid, and hydrochloric acid) and an organic acid (for example, acetic acid and oxalic acid) from the viewpoint of easily dissolving an alkaline earth metal oxide.
  • a solution for example, an aqueous solution whose liquidity is adjusted to be acidic with at least one acid component selected from the above is preferable.
  • the dissolution is preferably performed while applying ultrasonic waves.
  • the molar ratio of the acid component to the alkaline earth metal is 0.4 from the viewpoint that the liquidity can be easily kept acidic even if the oxide of the alkaline earth metal is dissolved.
  • the above is preferable, 0.6 or more is more preferable, and 0.8 or more is more preferable.
  • the polishing liquid of the first embodiment includes an anionic polymer.
  • an anionic polymer the polymer derived from the monomer containing an acid group or its salt, and the copolymer containing them are mentioned.
  • the acid group is not particularly limited, and examples thereof include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphonic acid group.
  • Specific examples of the anionic polymer include polyacrylic acid and salts thereof, and copolymers containing them; polymethacrylic acid and salts thereof, and copolymers containing them; polyamic acid and salts thereof, and the like.
  • polycarboxylic acids such as polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), and polyglyoxylic acid, and salts thereof, and copolymers containing them.
  • the anionic polymer preferably includes at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, a copolymer containing polyacrylic acid and polymethacrylic acid, and salts thereof. .
  • the anionic polymer may be ionized in the polishing liquid.
  • the lower limit of the weight average molecular weight of the anionic polymer is, for example, 1,000 or more, preferably 2,000 or more, and preferably 15,000 or more in that the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher. Is more preferable.
  • the upper limit value of the weight average molecular weight of the anionic polymer is, for example, 100,000 or less, preferably 50,000 or less, more preferably 30,000 or less, from the point that the occurrence of defects on the polished surface can be further suppressed. preferable.
  • the weight average molecular weight of an anionic polymer is a polystyrene conversion value by GPC (gel permeation chromatography) method.
  • the GPC method uses HLC-8020GPC (manufactured by Tosoh Corporation), TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm) as columns and THF (tetrahydrofuran) as an eluent. ).
  • the lower limit of the content of the anionic polymer is such that the selectivity of polishing of SiO 2 with respect to SiN is further improved with respect to the total mass of the polishing liquid, and the occurrence of defects on the surface to be polished can be further suppressed.
  • 0.01% by mass or more is preferable, 0.2% by mass or more is more preferable, and 1.5% by mass or more is still more preferable.
  • the upper limit of the content of the anionic polymer is preferably 10% by mass or less, more preferably 5% by mass or less, from the viewpoint of improving the temporal stability of the polishing solution with respect to the total mass of the polishing solution.
  • an anionic polymer may be used individually by 1 type, or may use 2 or more types together. When two or more kinds of anionic polymers are used in combination, the total content is preferably within the above range.
  • the anionic polymer includes a first anionic polymer adsorbed on the ceria particles (hereinafter also referred to as “adsorption component”) and a second anionic polymer not adsorbed on the ceria particles (hereinafter referred to as “free component”). ”)").
  • the lower limit of the mass content ratio of the adsorbing component to the free component (the mass of the adsorbing component / the mass of the free component) is preferably 0.001 or more in that the occurrence of defects on the polished surface can be further suppressed.
  • the upper limit value of the mass content ratio of the adsorbing component to the free component is preferably 1.00 or less because it can further suppress the occurrence of defects on the polished surface.
  • the content of the adsorbing component and the content of the free component in the polishing liquid can be measured by the following method.
  • the polishing liquid is applied to an ultracentrifuge, and components contained in the supernatant in the liquid after ultracentrifugation and the content thereof are identified by a gas chromatography (GC / MS) method or a liquid chromatography (LC / MS) method. Thereby, the content of free components is obtained.
  • the content of the adsorbing component can be obtained by subtracting the content of the above-mentioned free component from the total mass of the anionic polymer contained in the polishing liquid (total added amount of the anionic polymer).
  • the polishing liquid of the first embodiment includes an inorganic acid or an organic acid (hereinafter referred to as “specific acid”) containing at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group. Also called).
  • specific acid an inorganic acid or an organic acid
  • the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher, and it becomes easy to adjust the pH within a predetermined range.
  • the carboxylic acid group, phosphoric acid group, phosphonic acid group, and sulfonic acid group may be ionized in the polishing liquid.
  • the “organic acid” here does not include the above-mentioned anionic polymer, surfactant (for example, dodecylbenzenesulfonic acid), and heterometaphosphoric acid. Moreover, it is preferable that the molecular weight of a specific acid is 1000 or less.
  • Examples of the inorganic acid and organic acid containing a carboxylic acid group include acetic acid, oxalic acid, malic acid, glycine, and 2-pyridinecarboxylic acid.
  • As an inorganic acid and organic acid containing a phosphoric acid group phosphoric acid etc. are mentioned, for example.
  • Examples of the organic acid containing a phosphonic acid group include phosphonic acid and 1-hydroxyethane-1,1-diphosphonic acid.
  • Examples of the inorganic acid and organic acid containing a sulfonic acid group include sulfuric acid and p-toluenesulfonic acid (pTSA).
  • the content of the specific acid is preferably 0.0001 to 5.0% by mass and more preferably 0.1 to 1.2% by mass with respect to the total mass of the polishing liquid.
  • a specific acid may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types together, the total content is preferably within the above range.
  • the polishing liquid of the first embodiment may further contain an optional component in addition to the components described above.
  • the optional component include a nitrogen-containing heterocyclic compound, 4-pyrone, a surfactant, and hexametaphosphoric acid.
  • the polishing liquid of the first embodiment preferably contains at least one selected from the group consisting of a nitrogen-containing heterocyclic compound and 4-pyrone.
  • a nitrogen-containing heterocyclic compound intends a compound containing a heterocyclic ring containing one or more nitrogen atoms.
  • the polishing liquid contains a nitrogen-containing heterocyclic compound, the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher.
  • the number of nitrogen atoms that the nitrogen-containing heterocyclic compound has in the heterocyclic ring is preferably 2 or more, more preferably 2 to 4 in that the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher. preferable.
  • the nitrogen-containing heterocyclic compound may contain a hetero atom other than nitrogen (such as an oxygen atom) in the heterocyclic ring.
  • the nitrogen-containing heterocyclic ring contained in the nitrogen-containing heterocyclic compound is preferably a 5- to 6-membered ring, and more preferably a 5-membered ring.
  • Examples of the nitrogen-containing heterocyclic compound include compounds containing an imidazole skeleton, a pyrazole skeleton, a triazole skeleton, a tetrazole skeleton, a thiadiazole skeleton, or an oxadiazole skeleton, and the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is more From a high point, a compound containing an imidazole skeleton is preferable.
  • the nitrogen-containing heterocyclic compound may be a compound having a polycyclic structure containing a condensed ring, and specifically includes a purine skeleton, an indazole skeleton, a benzimidazole skeleton, a benzothiadiazole skeleton, or a naphthimidazole skeleton.
  • nitrogen-containing heterocyclic compound examples include histidine, imidazole, 4-imidazolecarboxylic acid, 5-methylbenzotriazole, 5-aminobenzotriazole, benzotriazole, 5,6-dimethylbenzoatriazole, 3-amino-1 , 2,4-triazole, 1,2,4-triazole, 3,5-dimethylpyrazole, and pyrazole, and includes an imidazole skeleton in that the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher
  • the compounds histidine, imidazole, and 4-imidazolecarboxylic acid are preferred.
  • the content of the nitrogen-containing heterocyclic compound is preferably 0.001 to 1% by mass with respect to the total mass of the polishing liquid in that the ratio of the polishing rate of SiO 2 to the polishing rate of SiN is higher. More preferably, the content is 0.5% by mass.
  • a nitrogen-containing heterocyclic compound may be used individually by 1 type, or may use 2 or more types together. When using together 2 or more types of nitrogen-containing heterocyclic compounds, it is preferable that total content is in the said range.
  • the content of 4-pyrone is preferably 0.001 to 1% by mass, more preferably 0.01 to 0.1% by mass, and particularly preferably 0.05 to 1% by mass with respect to the total mass of the polishing liquid. .
  • the content of hexametaphosphoric acid is preferably 0.001 to 1% by mass, more preferably 0.01 to 1% by mass, and particularly preferably 0.05 to 1% by mass with respect to the total mass of the polishing liquid.
  • the polishing liquid of the first embodiment may contain a surfactant.
  • the surfactant is not particularly limited, but is an ionic surfactant (anionic surfactant, anionic surfactant, in that the selectivity of polishing of SiO 2 with respect to polysilicon (hereinafter also referred to as “poly-Si”) can be increased. Or a cationic surfactant).
  • anionic surfactant examples include carboxylic acid salts, sulfonic acid salts such as alkylbenzene sulfonic acids, sulfuric acid ester salts, and phosphoric acid ester salts.
  • the content of the anionic surfactant is preferably 0.0001 to 1.0% by mass and more preferably 0.001 to 0.5% by mass with respect to the total mass of the polishing liquid.
  • anionic surfactant may be used individually by 1 type, or may use 2 or more types together. When using together 2 or more types of anionic surfactant, it is preferable that total content is in the said range.
  • the cationic surfactant examples include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts.
  • the content of the cationic surfactant is preferably 0.0001 to 1% by mass and more preferably 0.001 to 0.5% by mass with respect to the total mass of the polishing liquid.
  • a cationic surfactant may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of cationic surfactant together, it is preferable that total content is in the said range.
  • ionic surfactants it is preferable to include an anionic surfactant in that the defects on the surface to be polished can be further suppressed.
  • the polishing liquid of the first embodiment preferably contains water. Although it does not restrict
  • the water content is not particularly limited, but is preferably 90 to 99% by mass with respect to the total mass of the polishing liquid.
  • the polishing liquid of the first embodiment may contain components (other components) other than the above-described components used for the polishing liquid in CMP within a range that does not impair the above-described effects of the present invention.
  • the pH of the polishing liquid of the first embodiment is 3 to 8, and 4 to 6 is preferable in that the selectivity of polishing of SiO 2 with respect to SiN is higher, and defects on the surface to be polished can be further suppressed.
  • the pH of the polishing liquid can be measured with a pH meter, and the measurement temperature is 25 ° C.
  • the product name “LAQUA series” manufactured by Horiba, Ltd.) can be used for the pH meter. Although it does not restrict
  • the ratio of the polishing rate of SiO 2 and derivatives thereof to the polishing rate of SiN and derivatives thereof is preferably 10 to 5000.
  • the ratio of the polishing rate of SiO 2 and its derivative to the polishing rate of SiN and its derivative is the ratio of the polishing rate of SiO 2 to the polishing rate of SiN, the ratio of the polishing rate of SiO 2 to the polishing rate of the derivative of SiN, the ratio of the polishing rate for SiO 2 derivatives with respect to the polishing rate of the SiN, the ratio of the polishing rate of the SiO 2 of the derivative to the polishing rate of the SiN derivative means.
  • Specific examples of the SiO 2 derivative include SiOC and SiO 2 doped with doping.
  • Specific examples of the SiN derivative include SiON and SiN subjected to doping treatment.
  • the ratio of the polishing speed of SiO 2 and derivatives thereof to the polishing rate of poly-Si and derivatives thereof is 10 to 5000 is more preferable.
  • the polishing rate of the poly-Si and derivatives thereof the ratio of the polishing rate for SiO 2 and its derivatives, poly-Si ratio of the polishing rate of the SiO 2 to the polishing rate of, SiO against the polishing rate of the derivative of poly-Si 2 the ratio of the polishing rate means the ratio of the polishing rate of the SiO 2 derivatives with respect to the polishing rate of the poly-Si ratio of the polishing rate of SiO 2 of derivatives on the polishing rate of the derivative of poly-Si.
  • a specific example of the poly-Si derivative is poly-Si (modified polysilicon) subjected to a doping treatment or the like.
  • the polishing liquid of the second embodiment of the present invention is a polishing liquid used for chemical mechanical polishing, It contains ceria particles having an average aspect ratio of 1.5 or more and a cationic polymer, and has a pH of 3 to 8.
  • the polishing liquid has high SiN polishing rate and SiO 2 polishing rate.
  • the mechanism of action is not clear, but is presumed to be due to the following reason. Normally, ceria particles achieve high-speed polishing through a chemical reaction with the SiO 2 surface, as represented by glass polishing. On the other hand, SiN hardly causes such a chemical reaction with ceria particles. On the other hand, when the polishing liquid contains a cationic polymer, the interaction between the SiN and the ceria particles is changed by the action of the cationic polymer. As a result, the polishing rate of SiN and the polishing rate of SiO 2 are Is also considered to be high. In addition, although it is not clear regarding this reason, it is estimated that a chemical reaction is progressing and / or the physical contact frequency is increasing.
  • the surface to be polished of the object to be polished which is polished by chemical mechanical polishing using the polishing liquid, has few defects (particularly scratches).
  • the mechanism of action is not clear, but is presumed to be due to the following reason.
  • aggregate particles in the polishing liquid increase due to aggregation of ceria particles, it is considered that the surface to be polished is easily damaged by coarse aggregate particles.
  • the polishing liquid contains a cationic polymer, the ceria particles tend to repel each other, the ceria particles are less likely to aggregate, and the generation of defects on the surface to be polished due to coarse aggregated particles can be suppressed. Conceivable.
  • the polishing liquid of the second embodiment includes ceria particles.
  • the ceria particles contained in the polishing liquid according to the second embodiment are the same as the ceria particles contained in the polishing liquid according to the first embodiment described above, and the preferred embodiments thereof are also the same.
  • the lower limit of the content of the ceria particles is not particularly limited, the polishing speed of the polishing rate and SiO 2 of SiN points higher and more both based on the total mass of the polishing liquid, polishing the polishing rate and SiO 2 of SiN Since the speed is high, for example, it is 0.1% by mass or more, preferably 0.5% by mass or more, and more preferably 2.0% by mass or more.
  • the upper limit of the content of the ceria particles is not particularly limited, but is, for example, 10% by mass or less with respect to the total mass of the polishing liquid in that both the polishing rate of SiN and the polishing rate of SiO 2 are higher. 8.0 mass% or less is preferable and 5.0 mass% or less is more preferable.
  • a ceria particle may be used individually by 1 type, or may use 2 or more types together. When two or more kinds of ceria particles are used in combination, the total content is preferably within the above range.
  • the polishing liquid of the second embodiment contains a cationic polymer.
  • the cationic polymer is not particularly limited as long as it is a polymer containing a group exhibiting cationic properties (hereinafter also referred to as “cationic group”) at pH 3 to 8 (particularly preferably at pH 3 to 4).
  • a group such as R A , R B and R C each independently represents a hydrogen atom or an organic group (for example, an alkyl group, etc., and X ⁇ represents a counter anion).
  • the cationic polymer is preferably a polymer containing an onium salt structure, and more preferably a polymer containing a substituted or unsubstituted ammonium salt structure, from the viewpoint that generation of defects on the surface to be polished can be further suppressed.
  • Examples of the substituted or unsubstituted ammonium salt structure include a monovalent ammonium salt structure represented by the following general formula (1) and a divalent ammonium salt structure represented by the following general formula (2). .
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group.
  • X 1 represents a counter anion. * Represents a binding position.
  • R 4 and R 5 each independently represents a hydrogen atom or an organic group.
  • X 2 represents a counter anion. * Represents a binding position.
  • an allyl group or an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • An alkyl group having 1 to 3 carbon atoms is more preferable.
  • R 1 , R 2 , and R 3 may be bonded to each other to form a ring.
  • the monovalent ammonium salt structure represented by the general formula (1) and the divalent ammonium salt structure represented by the general formula (2) are those of the cationic polymer at the bonding position represented by *. Bind to other sites.
  • the anion represented by X 1 and X 2 is not particularly limited, and examples thereof include hydroxide ions, chlorine ions, bromine ions, iodine ions, fluorine ions, and alkyl sulfate ions.
  • the cationic polymer may be a linear polymer or a dendritic polymer.
  • the structure of the main chain is not particularly limited, and examples thereof include polyurethane, polyacrylate, polymethacrylate, polystyrene, polyester, polyamide, polyimide, and polyurea.
  • the cationic group may be contained in the main chain or in the side chain, but is preferably contained in the side chain from the viewpoint of excellent interaction with ceria particles.
  • the cationic polymer examples include poly (trimethylaminoethyl methacrylate / methyl sulfate), polyethylimine hydrochloride, a copolymer of diallyldimethylammonium chloride (DADMA), and a polymer of dimethylaminopropylacrylamide (DAPAA).
  • DADMA diallyldimethylammonium chloride
  • DAPAA dimethylaminopropylacrylamide
  • examples thereof include a polymer or a copolymer thereof, and cationized polyvinyl alcohol.
  • the lower limit of the weight average molecular weight of the cationic polymer is, for example, 1,000 or more, preferably 2,000 or more, and preferably 10,000 or more, in that both the polishing rate of SiN and the polishing rate of SiO 2 are higher. Is more preferable, 15,000 or more is further preferable, and 20,000 or more is particularly preferable.
  • the upper limit of the weight average molecular weight of the cationic polymer is, for example, 100,000 or less, preferably 50,000 or less, and preferably 30,000 or less, in terms of both the SiN polishing rate and the SiO 2 polishing rate being higher. 000 or less is more preferable.
  • the weight average molecular weight of the cationic polymer is a polystyrene conversion value by a GPC (gel permeation chromatography) method.
  • the GPC method uses HLC-8020GPC (manufactured by Tosoh Corporation), TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm) as columns and THF (tetrahydrofuran) as an eluent. ).
  • the lower limit of the content of the cationic polymer is preferably 0.01% by mass or more, more preferably 0.2% by mass or more, based on the total mass of the polishing liquid, in that generation of defects on the surface to be polished can be further suppressed. More preferred.
  • the upper limit of the content of the cationic polymer is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to the total mass of the polishing liquid, in that generation of defects on the surface to be polished can be further suppressed. A mass% or less is more preferable.
  • a cationic polymer may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of cationic polymers together, it is preferable that total content is in the said range.
  • the cationic polymer includes a first cationic polymer adsorbed on the ceria particles (hereinafter also referred to as “adsorption component”) and a second cationic polymer not adsorbed on the ceria particles (hereinafter referred to as “free component”). ”)).
  • the lower limit value of the mass content ratio of the adsorbing component to the free component is preferably 0.001 or more, and more preferably 0.50 or more in that the occurrence of defects on the polished surface can be further suppressed. Is more preferable.
  • the upper limit value of the mass content ratio of the adsorbing component to the free component is preferably 1.00 or less because it can further suppress the occurrence of defects on the polished surface.
  • the content of the adsorbing component and the content of the free component in the polishing liquid can be measured by the following method.
  • the polishing liquid is applied to an ultracentrifuge, and components contained in the supernatant in the liquid after ultracentrifugation and the content thereof are identified by a gas chromatography (GC / MS) method or a liquid chromatography (LC / MS) method. Thereby, the content of free components is obtained.
  • the content of the adsorption component can be obtained by subtracting the content of the free component described above from the total mass of the cationic polymer contained in the polishing liquid (total addition amount of the cationic polymer).
  • the polishing liquid of the second embodiment may further contain an optional component in addition to the components described above.
  • the optional component include a nitrogen-containing heterocyclic compound, 4-pyrone, a surfactant, a specific acid, and hexametaphosphoric acid.
  • the polishing liquid of the second embodiment preferably contains at least one selected from the group consisting of a nitrogen-containing heterocyclic compound and 4-pyrone.
  • a nitrogen-containing heterocyclic compound intends a compound containing a heterocyclic ring containing one or more nitrogen atoms. Note that the “nitrogen-containing heterocyclic compound” herein does not include a cationic polymer.
  • the polishing liquid contains a nitrogen-containing heterocyclic compound, the polishing rate for SiN and the polishing rate for SiO 2 are both higher.
  • the number of nitrogen atoms that the nitrogen-containing heterocyclic compound has in the heterocyclic ring is preferably 2 or more, more preferably 2 to 4 in that both the polishing rate of SiN and the polishing rate of SiO 2 are higher.
  • the nitrogen-containing heterocyclic compound may contain a hetero atom other than nitrogen (such as an oxygen atom) in the heterocyclic ring.
  • the nitrogen-containing heterocyclic ring contained in the nitrogen-containing heterocyclic compound is preferably a 5- to 6-membered ring, and more preferably a 5-membered ring.
  • the molecular weight of the nitrogen-containing heterocyclic compound is preferably less than 1000.
  • Examples of the nitrogen-containing heterocyclic compound include a compound containing an imidazole skeleton, a pyrazole skeleton, a triazole skeleton, a tetrazole skeleton, a thiadiazole skeleton, or an oxadiazole skeleton, and the polishing rate of SiN and the polishing rate of SiO 2 are both higher. From a high point, a compound containing an imidazole skeleton is preferable.
  • the nitrogen-containing heterocyclic compound may be a compound having a polycyclic structure containing a condensed ring, and specifically includes a purine skeleton, an indazole skeleton, a benzimidazole skeleton, a benzothiadiazole skeleton, or a naphthimidazole skeleton.
  • nitrogen-containing heterocyclic compound examples include histidine, imidazole, 4-imidazolecarboxylic acid, 5-methylbenzotriazole, 5-aminobenzotriazole, benzotriazole, 5,6-dimethylbenzoatriazole, 3-amino-1 , 2,4-triazole, 1,2,4-triazole, 3,5-dimethylpyrazole, and pyrazole, and includes an imidazole skeleton in that the polishing rate of SiN and the polishing rate of SiO 2 are both higher.
  • the compounds histidine, imidazole, and 4-imidazolecarboxylic acid are preferred.
  • the content of the nitrogen-containing heterocyclic compound is preferably 0.001 to 1% by mass with respect to the total mass of the polishing liquid in that both the polishing rate of SiN and the polishing rate of SiO 2 are higher. More preferably, the content is 0.5% by mass.
  • a nitrogen-containing heterocyclic compound may be used individually by 1 type, or may use 2 or more types together. When using together 2 or more types of nitrogen-containing heterocyclic compounds, it is preferable that total content is in the said range.
  • the content of 4-pyrone is preferably 0.001 to 1% by mass, more preferably 0.01 to 0.1% by mass, and particularly preferably 0.05 to 1% by mass with respect to the total mass of the polishing liquid. .
  • the content of hexametaphosphoric acid is preferably 0.001 to 1% by mass, more preferably 0.01 to 1% by mass, and particularly preferably 0.05 to 1% by mass with respect to the total mass of the polishing liquid.
  • the polishing liquid of the second embodiment may contain a surfactant.
  • the surfactant is not particularly limited, but is an ionic surfactant (an anionic surfactant or an anionic surfactant) in that the selectivity of polishing of SiN with respect to polysilicon (hereinafter also referred to as “poly-Si”) can be increased. It is preferable to contain a cationic surfactant).
  • anionic surfactant examples include carboxylic acid salts, sulfonic acid salts such as alkylbenzene sulfonic acids, sulfuric acid ester salts, and phosphoric acid ester salts.
  • the content of the anionic surfactant is preferably 0.0001 to 1.0% by mass and more preferably 0.001 to 0.5% by mass with respect to the total mass of the polishing liquid.
  • anionic surfactant may be used individually by 1 type, or may use 2 or more types together. When using together 2 or more types of anionic surfactant, it is preferable that total content is in the said range.
  • the cationic surfactant examples include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium chloride salts, benzethonium chloride, pyridinium salts, and imidazolinium salts.
  • the content of the cationic surfactant is preferably 0.0001 to 1% by mass and more preferably 0.001 to 0.5% by mass with respect to the total mass of the polishing liquid.
  • a cationic surfactant may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types of cationic surfactant together, it is preferable that total content is in the said range.
  • ionic surfactants it is preferable to include an anionic surfactant in that the selectivity of polishing of SiN with respect to poly-Si can be increased.
  • the hydrophobic group of the surfactant is arranged on the surface side of poly-Si, and the hydrophilic group of the surfactant is opposite to the surface side (surface of poly-Si) On the side away from the
  • the ceria particles in the polishing liquid are cationic, they are easily attracted to the hydrophilic group (anionic group) of the surfactant. This is thought to reduce the poly-Si polishing rate. As a result, it is considered that the selectivity of polishing SiN with respect to poly-Si increases.
  • the polishing liquid contains an anionic surfactant, defects on the surface to be polished can be further suppressed.
  • the polishing liquid of the second embodiment includes an inorganic acid and an organic acid (specific acid) containing at least one group selected from the group consisting of a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a sulfonic acid group. May be included.
  • the specific acid can function as a pH adjuster. As a specific acid, it is the same as that of the specific acid which the polishing liquid of 1st Embodiment mentioned above contains, and its suitable aspect is also the same.
  • the ratio of the polishing rate of SiN and derivatives thereof to the polishing rate of SiO 2 and derivatives thereof is preferably 0.25 to 4.0.
  • the polishing rate of SiO 2 and its derivatives, SiN and the ratio of the polishing rate of a derivative, the ratio of the polishing rate of the SiN for the polishing rate of SiO 2, the ratio of the polishing rate of the SiN for the polishing rate of the SiO 2 derivatives, the ratio of the polishing rate of the derivative of SiN on the polishing rate of the SiO 2, the ratio of the polishing rate of the derivative of SiN on the polishing rate of the SiO 2 derivative means.
  • Specific examples of the SiO 2 derivative include SiOC and SiO 2 doped with doping.
  • Specific examples of the SiN derivative include SiON and SiN subjected to doping treatment.
  • the ratio of the polishing speed of SiN and its derivatives to the polishing speed of poly-Si and its derivatives is 0.25 to 500 is preferred.
  • the ratio of the polishing rate of SiN and its derivatives to the polishing rate of poly-Si and its derivatives is the ratio of the polishing rate of SiN to the polishing rate of poly-Si and the polishing rate of SiN to the polishing rate of poly-Si derivatives
  • a specific example of the poly-Si derivative is poly-Si (modified polysilicon) subjected to a doping treatment or the like.
  • the polishing liquid of the second embodiment is 3 to 8, preferably 3 to 6, and more preferably 3 to 4 from the viewpoint of further suppressing defects on the surface to be polished.
  • the pH of the polishing liquid can be measured with a pH meter, and the measurement temperature is 25 ° C.
  • the product name “LAQUA series” (manufactured by Horiba, Ltd.) can be used for the pH meter. Although it does not restrict
  • CMP method The chemical mechanical polishing method of the present invention (hereinafter also referred to as “CMP method”) polishes the polishing liquids of the first and second embodiments described above (hereinafter abbreviated as “polishing liquid”). While supplying to the polishing pad attached to the surface plate, the surface to be polished is brought into contact with the polishing pad, and the surface to be polished is polished by relatively moving the object to be polished and the polishing pad. And a step of obtaining a polished object to be polished.
  • the object to be polished preferably contains SiN and SiO 2 , and more preferably further contains poly-Si.
  • Specific examples of the object to be polished include a laminate having a substrate and a SiN layer and a SiO 2 layer on the substrate.
  • a poly-Si layer may be further disposed on the substrate of the stacked body.
  • each layer may be arrange
  • the substrate include a single layer semiconductor substrate and a multilayer semiconductor substrate.
  • Specific examples of the material constituting the single-layer semiconductor substrate include Group III-V compounds such as silicon, silicon germanium, and GaAs, or any combination thereof.
  • a specific example of a multilayer semiconductor substrate is a substrate in which an exposed integrated circuit structure such as interconnect features such as metal wires and dielectric materials is disposed on a semiconductor substrate such as silicon described above. It is done.
  • a polishing apparatus capable of performing the CMP method a known chemical mechanical polishing apparatus (hereinafter also referred to as “CMP apparatus”) can be used.
  • CMP apparatus for example, it is common to have a holder that holds an object to be polished having a surface to be polished, and a polishing surface plate to which a polishing pad is attached (a motor that can change the number of revolutions is attached).
  • An example of such a CMP apparatus is available.
  • Reflexion manufactured by Applied Materials
  • the polishing pressure in the CMP method is preferably 3000 to 25000 Pa, more preferably 6500 to 14000 Pa.
  • the polishing pressure means the pressure generated on the contact surface between the surface to be polished and the polishing pad.
  • the rotation speed of the polishing surface plate in the CMP method is preferably 50 to 200 rpm, more preferably 60 to 150 rpm.
  • the holder may be rotated and / or rocked, the polishing platen may be rotated on a planetary surface, or the belt-shaped polishing pad may be long. It may be moved linearly in one direction.
  • the holder may be in any state of being fixed, rotating, or swinging.
  • the polishing liquid is preferably continuously supplied to the polishing pad on the polishing surface plate with a pump or the like while the surface to be polished is polished.
  • the polishing liquid is preferably continuously supplied to the polishing pad on the polishing surface plate with a pump or the like while the surface to be polished is polished.
  • the manufacturing method of the polishing liquid of the present invention includes the following process X and process Y (any one of the following process Y1 and the following process Y2).
  • Process X The process of obtaining a ceria particle with the manufacturing method of the ceria particle containing the process A, the process B, and the process C.
  • Step Y1 A step of mixing the ceria particles obtained in Step X, the anionic polymer described above, and the specific acid described above, and adjusting the pH to 3-8.
  • Step Y2 A step of mixing the ceria particles obtained in the step X and the above-mentioned cationic polymer and adjusting the pH to 3-8.
  • Step X the method for producing ceria particles including Step A, Step B, and Step C is as described above.
  • the order in which each component is added is not particularly limited.
  • One embodiment of the step Y1 includes an embodiment in which a specific acid is added to the ceria particle dispersion obtained in the step X to adjust the pH to 3 to 8, and then an anionic polymer is further added.
  • One embodiment of the step Y2 is an embodiment in which the cationic polymer is further added after adjusting the pH of the dispersion of ceria particles obtained in the step X to 3-8.
  • the process Y1 may be, for example, a process of obtaining the polishing liquid of the first embodiment by mixing the above-described components so as to have a predetermined concentration, or preparing a concentrated liquid of the polishing liquid by the process Y1.
  • the process Y2 may be, for example, a process of obtaining the polishing liquid of the second embodiment by mixing the above-described components so as to have a predetermined concentration, or preparing a concentrated liquid of the polishing liquid by the process Y2. And you may obtain the polishing liquid of 2nd Embodiment by the dilution process implemented after process Y2.
  • ceria particles were produced according to the following procedure.
  • a commercially available cerium raw material was dispersed in pure water, and then stirred at 200 rpm to obtain a dispersion (cerium dispersion). After adding polycarboxylic acid to this dispersion, the mixture was stirred for 15 minutes. Furthermore, after adding an alkaline earth metal salt, the mixture was stirred for 30 minutes.
  • the dispersion containing the alkaline earth metal salt was dried at 60 ° C. to obtain a white powder.
  • the ultrasonic dispersion was performed at an ultrasonic frequency of 400 kHz and a dispersion time of 90 minutes.
  • the obtained ceria dispersion was further centrifuged to remove the supernatant, and dried at 60 ° C. to obtain a powder.
  • this powder was phase-identified by X-ray diffraction, it was confirmed that it was ceria (cerium oxide).
  • the average primary particle size of the ceria particles in the obtained ceria dispersion is primary particles arbitrarily selected from images taken using a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. 1000 particle diameters (equivalent circle diameters) were measured and obtained by arithmetic averaging. The equivalent circle diameter is as described above. The evaluation results are shown in Table 1.
  • the average aspect ratio of ceria particles is calculated by measuring the major axis and minor axis for every 100 particles observed with the transmission electron microscope and calculating the aspect ratio (major axis / minor axis) for each particle. 100 aspect ratios were obtained by arithmetic averaging. The major axis of the particle is as described above. The evaluation results are shown in Table 1.
  • the surface metal species on the surface of the obtained ceria particles was measured according to the following procedure. First, ceria particles were mixed with gelatin, and the obtained mixture was applied on a Si substrate in a paste form (film thickness: 1 ⁇ m). Next, after the obtained coating film was dried at high temperature, gelatin was sintered from the substrate. The obtained sample was subjected to ESCA measurement using a Thermo Scientific TM K-Alpha TM system, and each atomic concentration was evaluated (each atomic concentration was measured in 10 regions of the sample measured by ESCA). Each atomic concentration obtained was determined as an average value obtained by arithmetic averaging).
  • the ratio of the metal element and the oxide element was measured from the existence ratio by evaluating the binding energy of each element after the measurement. Furthermore, the mass content ratio of cerium atoms to alkaline earth metal atoms on the surface of the ceria particles was calculated from the measurement results.
  • Particles 1 to 12 were produced and evaluated in the same manner as Particle 0 except that the components and blending amounts shown in Table 1 were used.
  • Table 1 is shown below.
  • “mass content ratio (cerium atom / alkaline earth metal atom)” intends the mass content ratio of cerium atoms to alkaline earth metal atoms on the surface of the ceria particles.
  • PAA-PMA copolymer containing polymethacrylic acid and polymethacrylic acid
  • Polishing speed calculation Each blanket wafer of SiN, SiO 2 , and poly-Si was polished for 60 seconds, and the difference in film thickness before and after polishing was calculated for 49 points at uniform intervals on the wafer surface. The value obtained by dividing by the polishing time was defined as the polishing rate (unit: nm / min). The results are shown in Table 1.
  • a defect (scratch) on the surface to be polished is evaluated by Surfscan SP2 (product name, manufactured by KLA, defect inspection device) for a blanket wafer of SiN after polishing for 60 seconds. It was. The results are shown in Table 2.
  • alkaline earth metal atom content means the content of alkaline earth metal atoms relative to the total mass of the ceria particles.
  • a ⁇ (A represents a numerical value) means larger than A, and “ ⁇ A” means smaller than A.
  • Example 1A corresponds to an embodiment in which the stirring speed is 200 rpm during the production of ceria particles
  • Example 4A corresponds to an embodiment in which the stirring speed is 5500 to 5000 rpm during the production of ceria particles.
  • the pH of the polishing liquid is 4 to 6
  • the selectivity (SiO 2 / SiN) is higher. confirmed.
  • the selectivity (SiO 2 / SiN) was higher when the polishing liquid contained hexametaphosphoric acid.
  • Example 4A when the mass content ratio of the cerium atom to the alkaline earth metal atom is 5 or more on the surface of the ceria particles, defects on the polished surface are less likely to occur. It was confirmed that the selectivity (SiO 2 / SiN) was higher. Further, from the comparison between Example 4A and Examples 15A to 18A, when the content of the alkaline earth metal atoms is 10 mass pp to 10 mass ppb with respect to the total mass of the ceria particles, It was confirmed that surface defects were less likely to occur.
  • Example 4A and Examples 9A to 18A the content of alkaline earth metal atoms is 10 mass pp to 10 mass ppb with respect to the total mass of the ceria particles, and the alkaline earth
  • the mass content ratio of cerium atoms to metal atoms was 10 to 100, it was confirmed that defects on the surface to be polished were less likely to occur and the selectivity (SiO 2 / SiN) was higher.
  • the content of ceria particles is 1.8% by mass or less with respect to the total mass of the polishing liquid (preferably 1.2% by mass). %), The selectivity (SiO 2 / SiN) was confirmed to be higher.
  • Example 4A and Examples 23A to 26A when the content of the specific acid is 0.1 to 1.2% by mass with respect to the total mass of the polishing liquid, the selection ratio ( It was confirmed that (SiO 2 / SiN) was higher. Further, from the comparison between Example 4A and Examples 27A to 30A, when the content of the anionic polymer is 0.2 to 5% by mass with respect to the total mass of the polishing liquid (preferably 1. It was confirmed that the selectivity (SiO 2 / SiN) was higher. Further, from the comparison between Example 4A and Examples 27A to 30A, the ratio of the mass of the first anionic polymer (adsorbing component) to the mass of the second anionic polymer (free component) is 0.001.
  • Example 4A In the case of ⁇ 1.00, it was confirmed that defects on the polished surface were less likely to occur. Further, from comparison between Example 4A and Examples 53A to 58A, it was confirmed that when the weight average molecular weight of the anionic polymer was 15,000 or more, the selectivity (SiO 2 / SiN) was higher. It was done. Further, from the comparison between Example 4A and Examples 59A to 61A, it was confirmed that when the polishing liquid contains a nitrogen-containing heterocyclic compound or 4-pyrone, the selectivity (SiO 2 / SiN) is higher. It was done. In addition, from the comparison between Example 4A and Examples 62A to 65A, it was confirmed that when the polishing liquid contains an anionic surfactant, defects on the surface to be polished are less likely to occur.
  • DADMA diallyldimethylammonium chloride
  • the content of alkaline earth metal atoms relative to the total mass of the celica particles was measured. Specifically, it was carried out by an ICP-MS method (measuring apparatus: Agilent 8900) using a solid of celica particles obtained by the above-described method for producing celica particles. Table 3 shows the measurement results.
  • Polishing speed calculation Each blanket wafer of SiN, SiO 2 , and poly-Si was polished for 60 seconds, and the difference in film thickness before and after polishing was calculated for 49 points at uniform intervals on the wafer surface. The value obtained by dividing by the polishing time was defined as the polishing rate (unit: nm / min). The results are shown in Table 1.
  • a defect (scratch) on the surface to be polished is evaluated by Surfscan SP2 (product name, manufactured by KLA, defect inspection device) for a blanket wafer of SiN after polishing for 60 seconds. It was. The results are shown in Table 3.
  • alkaline earth metal atom content means the content of alkaline earth metal atoms relative to the total mass of the ceria particles.
  • a ⁇ (A represents a numerical value) means larger than A, and “ ⁇ A” means smaller than A.
  • Example 1B corresponds to an embodiment in which the stirring speed is 200 rpm during the production of ceria particles
  • Example 4B corresponds to an embodiment in which the stirring speed is 5500 to 5000 rpm during the production of ceria particles.
  • Example 3B when the polishing solution had a pH of 3 to 6 (preferably 3 to 4), defects on the surface to be polished were less likely to occur. It was. From the comparison between Example 3B and Example 13B, when the mass content ratio of cerium atoms to alkaline earth metal atoms is 5 or more on the surface of the ceria particles, the polishing rate of SiN and the polishing rate of SiO 2 It was confirmed that all of these were higher and defects on the polished surface were less likely to occur.
  • Example 3B and Examples 15B to 18B when the alkaline earth metal atom content is 10 mass pp to 10 mass ppb with respect to the total mass of the ceria particles, It was confirmed that surface defects were less likely to occur. Further, from the comparison between Example 3B and Example 8B to Example 18B, the content of the alkaline earth metal atom is 10 mass pp to 10 mass ppb with respect to the total mass of the ceria particles, and the alkaline earth When the mass content ratio of cerium atoms to metal atoms was 10 to 100, it was confirmed that both the SiN polishing rate and the SiO 2 polishing rate were higher, and defects on the surface to be polished were less likely to occur.
  • Example 3B and Examples 19B to 22B when the content of ceria particles is 2.0% by mass or more with respect to the total mass of the polishing liquid, the polishing rate of SiN and SiO 2 It was confirmed that the polishing rate of 2 was higher. Further, from the comparison between Example 3B and Examples 23B to 26B, when the content of the specific acid is 0.03 to 0.2% by mass with respect to the total mass of the polishing liquid, the polishing of SiN It was confirmed that both the speed and the polishing speed of SiO 2 were higher.
  • Example 3B and Examples 27B to 30B when the content of the cationic polymer is 0.2 to 2% by mass with respect to the total mass of the polishing liquid, It was confirmed that defects are less likely to occur. Further, from the comparison between Example 3B and Examples 27B to 30B, the ratio of the mass of the first cationic polymer (adsorbing component) to the mass of the second cationic polymer (free component) is 0.001. In the case of ⁇ 1.00, it was confirmed that defects on the polished surface were less likely to occur.
  • the weight average molecular weight of the cationic polymer is 15,000 or more (preferably 20,000 or more).
  • the polymer contains quaternized nitrogen in the side chain (Example 54B corresponds)
  • both the SiN polishing rate and the SiO 2 polishing rate were higher.
  • the polishing liquid contains a nitrogen-containing heterocyclic compound or 4-pyrone, both the polishing rate of SiN and the polishing rate of SiO 2 are higher. It was confirmed to be high.
  • Example 3B From the comparison between Example 3B and Examples 62B to 65B, when the polishing liquid contains an anionic surfactant, the ratio of the polishing rate of SiN to the polishing rate of poly-Si (selection ratio (SiN / Poly-Si)) was confirmed to be higher. It was also confirmed that defects on the surface to be polished were less likely to occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

CMPに適用した場合、被研磨面の欠陥が発生しにくく、窒化珪素に対して酸化珪素をより選択的に研磨できる研磨液、並びに、被研磨面の欠陥が発生しにくく、窒化珪素の研磨速度と酸化珪素の研磨速度がいずれも高い研磨液を提供する。また、上記研磨液を使用した化学的機械的研磨方法を提供する。化学的機械的研磨に用いられる研磨液であって、平均アスペクト比が1.5以上のセリア粒子と、アニオン系ポリマー又はカチオン系ポリマーと、を含み、pHが3~8である、研磨液。但し、上記研磨液が上記アニオン系ポリマーを含む場合、上記研磨液は、更に、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選

Description

研磨液、化学的機械的研磨方法
 本発明は、研磨液、及び化学的機械的研磨方法に関する。
 半導体集積回路(LSI:large-scale integrated circuit)の製造において、ベアウェハの平坦化、層間絶縁膜の平坦化、金属プラグの形成、及び埋め込み配線形成等に化学的機械的研磨(CMP:chemical mechanical polishing)法が用いられている。
 このようなLSIの製造の中でも、半導体集積回路の製造の前工程であるFEOL(Front End of Line)において、CMPの利用増加が見込まれている。FEOLにおいてCMPの対象となる膜を構成する材料は、主に、窒化珪素、酸化珪素、及びポリシリコンである。これらの材料をどのような選択比で研磨加工するかは、用途に応じて多様な要求がある。
 CMPに含まれる砥粒としては、酸化セリウム粒子(「セリア粒子」ともいう。)、酸化ケイ素粒子(「シリカ粒子」ともいう。)、及び酸化アルミニウム粒子(「アルミナ粒子」ともいう。)等が知られている。酸化珪素等の絶縁材料を研磨するための研磨液としては、無機絶縁材料に対する研磨速度が速い観点から、なかでも、セリア粒子を含む研磨液が使用される場合が多い。
 例えば、特許文献1では、分散性に優れたセリア粒子を得ることが可能なセリア粒子の製造方法を開示している。
特開2017-202967号公報
 本発明者らは、特許文献1に記載されたセリア粒子の製造方法を参考にしてセリア粒子を作製し、得られたセリア粒子を含む研磨液について検討したところ、研磨後の被研磨体の被研磨面に多くの欠陥(特に、スクラッチと呼ばれる研磨傷)が生じる場合があることを知見した。
 また、昨今、窒化珪素に対して酸化珪素をより選択的に研磨できる研磨液、及び、窒化珪素の研磨速度と酸化珪素の研磨速度とがいずれも高い研磨液が求められている。
 なお、上述した窒化珪素に対して酸化珪素をより選択的に研磨できる研磨液とは、酸化珪素の研磨速度が窒化珪素の研磨速度に対して相対的に高い研磨液(言い換えると、窒化珪素の研磨速度に対する酸化珪素の研磨速度の比がより高い研磨液)を意図する。
 そこで、本発明は、CMPに適用した場合に、被研磨面の欠陥が発生しにくく、窒化珪素に対して酸化珪素をより選択的に研磨できる研磨液を提供することを課題とする。
 また、本発明は、CMPに適用した場合に、被研磨面の欠陥が発生しにくく、窒化珪素の研磨速度と酸化珪素の研磨速度とがいずれも高い研磨液を提供することも課題とする。
 また、本発明は、上記研磨液を使用した化学的機械的研磨方法を提供することも課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、所定処方の研磨液によれば上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 〔1〕 化学的機械的研磨に用いられる研磨液であって、
 平均アスペクト比が1.5以上のセリア粒子と、
 アニオン系ポリマー又はカチオン系ポリマーと、を含み、
 pHが3~8である、研磨液。
 但し、上記研磨液が上記アニオン系ポリマーを含む場合、上記研磨液は、更に、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む、無機酸又は有機酸を含む。
 〔2〕  上記セリア粒子の平均アスペクト比が、1.5~10である、〔1〕に記載の研磨液。
 〔3〕  上記セリア粒子は、その表面の少なくとも一領域にアルカリ土類金属原子を含む、〔1〕又は〔2〕に記載の研磨液。
 〔4〕  上記アルカリ土類金属原子の含有量が、上記セリア粒子の全質量に対して、10質量ppt~10質量ppbである、〔3〕に記載の研磨液。
 〔5〕 上記セリア粒子の表面において、上記アルカリ土類金属原子に対するセリウム原子の質量含有比が、5以上である、〔3〕又は〔4〕に記載の研磨液。
 〔6〕 上記セリア粒子は、上記アルカリ土類金属原子を含む酸化物を含む、〔3〕~〔5〕のいずれかに記載の研磨液。
 〔7〕 上記セリア粒子のメジアン径D10が、10nm以下である、〔1〕~〔6〕のいずれかに記載の研磨液。
 〔8〕 上記セリア粒子のメジアン径D50が、15nm以下である、〔1〕~〔7〕のいずれかに記載の研磨液。
 〔9〕 上記セリア粒子のメジアン径D90が、20nm以下である、〔1〕~〔8〕のいずれかに記載の研磨液。
 〔10〕 更に、含窒素複素環化合物及び4-ピロンからなる群より選ばれる少なくとも1種以上を含む、〔1〕~〔9〕のいずれかに記載の研磨液。
 〔11〕 更に、アニオン系界面活性剤を含む、〔1〕~〔10〕のいずれかに記載の研磨液。
 〔12〕 上記セリア粒子の平均一次粒径が、20nm以下である、〔1〕~〔11〕のいずれかに記載の研磨液。
 〔13〕 更に、ヘキサメタリン酸を含む、〔1〕~〔12〕のいずれかに記載の研磨液。
 〔14〕 上記研磨液が上記アニオン系ポリマーを含み、
 上記アニオン系ポリマーは、上記セリア粒子に吸着している第1アニオン系ポリマーと、上記セリア粒子に吸着していない第2アニオン系ポリマーとを含み、
 上記第2アニオン系ポリマーの質量に対する、上記第1アニオン系ポリマーの質量の比が、0.001~1.00である、〔1〕~〔13〕のいずれかに記載の研磨液。
 〔15〕 上記研磨液が、上記カチオン系ポリマーを含む、〔1〕~〔13〕のいずれかに記載の研磨液。
 〔16〕 上記カチオン系ポリマーは、上記セリア粒子に吸着している第1カチオン系ポリマーと、上記セリア粒子に吸着していない第2カチオン系ポリマーとを含み、
 上記第2カチオン系ポリマーの質量に対する、上記第1カチオン系ポリマーの質量の比が、0.001~1.00である、〔15〕に記載の研磨液。
 〔17〕 上記カチオン系ポリマーは、側鎖にカチオン性基を含むポリマーである、〔15〕又は〔16〕に記載の研磨液。
 〔18〕 窒化珪素、酸化珪素、又はポリシリコンの研磨に上記研磨液を用いた場合において、
 上記窒化珪素の研磨速度に対する、上記酸化珪素の研磨速度の比が、10~5000である、〔1〕~〔14〕のいずれかに記載の研磨液。
 〔19〕 更に、上記ポリシリコンの研磨速度に対する、上記酸化珪素の研磨速度の比が、10~5000である、〔18〕に記載の研磨液。
 〔20〕 窒化珪素、酸化珪素、又はポリシリコンの研磨に上記研磨液を用いた場合において、
 上記酸化珪素の研磨速度に対する、上記窒化珪素の研磨速度の比が、0.25~4.0である、〔1〕~〔13〕及び〔15〕~〔17〕のいずれかに記載の研磨液。
 〔21〕 更に、上記ポリシリコンの研磨速度に対する、上記窒化珪素の研磨速度の比が0.25~500である、〔20〕に記載の研磨液。
 〔22〕 〔1〕~〔21〕のいずれかに記載の研磨液を研磨定盤に取り付けられた研磨パッドに供給しながら、被研磨体の被研磨面を上記研磨パッドに接触させ、上記被研磨体及び上記研磨パッドを相対的に動かして上記被研磨面を研磨して、研磨済み被研磨体を得る工程を含む、化学的機械的研磨方法。
 〔23〕 上記被研磨体が、窒化珪素及び酸化珪素を含む、〔22〕に記載の化学的機械的研磨方法。
 〔24〕 上記被研磨体が、ポリシリコンを更に含む、〔23〕に記載の化学的機械的研磨方法。
 本発明によれば、CMPに適用した場合に、被研磨面の欠陥が発生しにくく、窒化珪素に対して酸化珪素をより選択的に研磨できる研磨液を提供できる。
 また、本発明によれば、CMPに適用した場合に、被研磨面の欠陥が発生しにくく、窒化珪素の研磨速度と酸化珪素の研磨速度とがいずれも高い研磨液を提供できる。
 また、本発明によれば、上記研磨液を使用した化学的機械的研磨方法を提供できる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、「ppm」は「parts-per-million(10-6)」、「ppb」は「parts-per-billion(10-9)」、「ppt」は「parts-per-trillion(10-12)」を意味する。
 また、本明細書において、1Å(オングストローム)は、0.1nmに相当する。
 以下、本発明の研磨液の第1実施形態及び第2実施形態についてそれぞれ説明する。
[研磨液の第1実施形態]
 本発明の第1実施形態の研磨液は、化学的機械的研磨に用いられ、
 平均アスペクト比が1.5以上のセリア粒子と、アニオン系ポリマーと、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む、無機酸又は有機酸と、を含み、pHが3~8である、研磨液である。
 上記研磨液は、窒化珪素(以下、「SiN」ともいう。)に対する酸化珪素(以下、「SiO」ともいう。)の研磨の選択性が高い。上記作用機序については明らかではないが、以下の理由によると推測される。
 一般的に、研磨液のpHが3~8である場合(特に、研磨液のpHが4~6である場合)、SiNの表面電荷はプラスであり、SiOの表面電荷はマイナスである。また、セリア粒子は、研磨液のpHが3~8である場合、カチオン性を帯びている。
 このため、電気的な関係によって、セリア粒子とSiNとは反発しあい、セリア粒子とSiOとは接触しやすくなる傾向にあるが、一方で、SiNの研磨は、SiNの表面電荷がプラスである場合に進行しやすい傾向がある。したがって、研磨液が、アニオン系ポリマーと、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む無機酸又は有機酸とを含まない場合(実施例欄の比較例1A参照)、SiNに対するSiOの研磨の選択性が不十分である。
 これに対して、研磨液が、アニオン系ポリマーと、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む無機酸又は有機酸とを含む場合(第1実施形態の研磨液)、電気的な関係によって、これらの成分は、SiNの表面に存在して、セリア粒子によるSiNの研磨を抑制する方向に働くと推測される。この結果として、SiNに対するSiOの研磨の選択性が高くなると考えられる。
 また、セリア粒子の平均アスペクト比が1.5未満である場合、SiNとSiOの研磨の選択比の調整が困難である場合が多い。
 また、上記研磨液を用いて化学的機械的研磨により研磨を実施した被研磨体の被研磨面は、欠陥(特に、スクラッチ)の発生が少ない。上記作用機序については明らかではないが、以下の理由によると推測される。
 セリア粒子の凝集によって研磨液中の凝集粒子が増加した場合、粗大な凝集粒子によって被研磨面が傷つきやすくなると考えられる。これに対して、研磨液が、アニオン系ポリマーと、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む無機酸又は有機酸とを含む場合、セリア粒子の凝集が抑制され、結果として被研磨面の欠陥の発生が抑制できると考えられる。
 以下、第1実施形態の研磨液が含む各種成分及び物性について詳述する。
〔セリア粒子〕
 第1の実施形態の研磨液は、セリア粒子を含む。セリア粒子は、被研磨体を研磨する砥粒として機能する。
 セリア粒子の平均アスペクト比は1.5以上であり、SiNとSiOの研磨の選択比の調整がし易い点で、5.0以上が好ましい。また、セリア粒子の平均アスペクト比の上限は特に制限されないが、例えば、15以下が好ましく、10以下がより好ましい。
 セリア粒子の平均アスペクト比は、上述の透過型電子顕微鏡にて観察された任意の100個の粒子毎に長径と短径とを測定して、粒子毎のアスペクト比(長径/短径)を計算し、100個のアスペクト比を算術平均して求められる。なお、粒子の長径とは、粒子の長軸方向の長さを意味し、粒子の短径とは、粒子の長軸方向に直交する粒子の長さを意味する。
 ただし、セリア粒子として市販品を用いる場合には、セリア粒子の平均アスペクト比としてカタログ値を優先的に採用する。
 セリア粒子は、セリア粒子の凝集が抑制されて、被研磨面の欠陥の発生がより抑制される点で、その表面の少なくとも一領域にアルカリ土類金属原子を含むことが好ましい。特に、セリア粒子の凝集が抑制されて、被研磨面の欠陥の発生がより抑制される点で、アルカリ土類金属原子は、アルカリ土類金属の酸化物としてセリア粒子に含まれることが好ましい。
 アルカリ土類金属原子としては特に制限されないが、製造性により優れる点で、カルシウム原子、ストロンチウム原子、及びバリウム原子からなる群より選ばれる少なくとも1種が好ましい。
 アルカリ土類金属原子の含有量は特に制限されないが、粒子を焼結する工程(後述する工程Bに該当)において焼結の効率がより優れる点、及び、被研磨面の欠陥がより抑制される点で、セリア粒子の全質量に対して、10質量ppt以上が好ましく、20質量ppt以上がより好ましく、50質量ppt以上がより好ましい。一方、アルカリ土類金属原子の含有量の上限値は特に制限されないが、例えば、15質量ppb以下であり、被研磨面の欠陥がより抑制される点で、10質量ppb以下が好ましく、8質量ppb以下がより好ましい。
 また、セリア粒子の表面において、アルカリ土類金属原子に対するセリウム原子の質量含有比(セリウム原子/アルカリ土類金属原子)は、例えば、5以上であり、研磨力がより優れる点で、10以上が好ましく、15以上がより好ましい。一方、セリア粒子の表面において、アルカリ土類金属原子に対するセリウム原子の質量含有比の上限値は特に制限されないが、セリア粒子の凝集が抑制されて、被研磨面の欠陥の発生がより抑制される点で、例えば、150以下であり、100以下が好ましく、90以下がより好ましい。
 セリア粒子の表面における、アルカリ土類金属原子に対するセリウム原子の質量含有比は、以下の方法により測定できる。
 まず、セリア粒子をゼラチンと混合し、得られた混合物をペースト状にSi基板上に塗布する(塗膜の膜厚:1μm)。次いで、得られた塗膜を高温乾燥した後、ゼラチンを基板から焼結させる。
 得られたサンプルに対してESCA(Electron Spectroscopy for Chemical Analysis)測定を行い、各原子濃度を評価する(各原子濃度は、ESCAにて測定したサンプルの10か所の領域において得られる各原子濃度を算術平均して得られる平均値として求める)。
 また、測定後に各元素の結合エネルギーを評価することで、その存在割合から金属元素と酸化物元素の割合も測定できる。
 ESCA測定には、例えば、Thermo ScientificTM K-AlphaTM システムを使用できる。
 セリア粒子のメジアン径D10は特に制限されないが、例えば、250nm以下であり欠陥性能に優れる点で、10nm以下が好ましい。下限は特に制限されないが、1nm以上が好ましい。
 なお、メジアン径D10とは、粒子径の累積分布における10%径を意図する。
 セリア粒子のメジアン径D50は特に制限されないが、例えば、450nm以下であり、欠陥性能に優れる点でで、15nm以下が好ましい。下限は特に制限されないが、3nm以上が好ましい。
 なお、メジアン径D50とは、粒子径の累積分布における50%径を意図する。
 セリア粒子のメジアン径D90は特に制限されないが、例えば、550nm以下であり、欠陥性能に優れる点でで、20nm以下が好ましい。下限は特に制限されないが、5nm以上が好ましい。
 なお、メジアン径D90とは、粒子径の累積分布における90%径を意図する。
 メジアン径は、粒度分布測定器(例えば、SALD-7500nano、島津製作所製)を用いて評価できる。
 セリア粒子の平均一次粒子径としては特に制限されず、例えば、500nm以下であり、被研磨面の欠陥の発生がより抑制される点で、20nm以下が好ましく、15nm以下がより好ましい。
 セリア粒子の平均一次粒子径の下限値は特に制限されないが、例えば1nm以上であり、セリア粒子の凝集が抑制されて、研磨液の経時安定性が向上する点で、3nm以上がより好ましい。
 平均一次粒子径は、日本電子(株)社製の透過型電子顕微鏡TEM2010(加圧電圧200kV)を用いて撮影された画像から任意に選択した一次粒子1000個の粒子径(円相当径)を測定し、それらを算術平均して求める。なお、円相当径とは、観察時の粒子の投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
 ただし、セリア粒子として市販品を用いる場合には、セリア粒子の平均一次粒子径としてカタログ値を優先的に採用する。
 セリア粒子の含有量の下限値は特に制限されないが、研磨液の全質量に対して、例えば、0.1質量%以上であり、0.5質量%以上が好ましい。
 セリア粒子の含有量の上限値は特に制限されないが、研磨液の全質量に対して、例えば10質量%以下であり、SiNの研磨速度に対するSiOの研磨速度の比がより高い点で、8.0質量%以下が好ましく、5.0質量%以下がより好ましく、1.8質量%以下が更に好ましく、1.2質量%以下が特に好ましい。
 なお、セリア粒子は1種を単独で用いても、2種以上を併用してもよい。2種以上のセリア粒子を併用する場合には、合計含有量が上記範囲内であることが好ましい。
<セリア粒子の製造方法>
 上述した表面の少なくとも一領域にアルカリ土類金属原子を含むセリア粒子は、例えば下記工程A~Cの手順を含む製造方法により製造することができる。
 工程A:溶媒と、セリウム原子を含む原料(以下「セリウム原料」ともいう。)とを少なくとも含む混合液を500~5000rpmの攪拌速度で攪拌することにより、セリウム原子含み、且つ、表面の少なくとも一領域がポリカルボン酸のアルカリ土類金属塩で被覆された粒子を含む分散液を得る工程Aと
 工程B:上記工程Aで得られた粒子を焼成する工程
 工程C:上記工程Bで得られた焼成物中に含まれる、アルカリ土類金属原子を含む酸化物の少なくとも一部を溶解して、セリア粒子を得る工程
 以下に、工程A~Cの各工程について詳述する。
(工程A)
 工程Aは、工程A1及び工程A2を含むか、又は、工程A3を含むことが好ましい。
≪工程A1≫
 溶媒とセリウム原料とを混合して得られる混合液を500~5000rpmの攪拌速度で分散することにより分散液を調製する工程。
≪工程A2≫
 工程A1で得られた分散液に、更にポリカルボン酸とアルカリ土類金属塩とを加え、セリウム原子含み、且つ、表面の少なくとも一領域がポリカルボン酸のアルカリ土類金属塩で被覆された粒子を含む分散液を得る工程。
≪工程A3≫
 溶媒と、セリウム原料と、ポリカルボン酸と、アルカリ土類金属塩とを含む混合液を500~5000rpmの攪拌速度で分散することにより、セリウム原子含み、且つ、表面の少なくとも一領域がポリカルボン酸のアルカリ土類金属塩で被覆された粒子を含む分散液を得る工程。
 工程Aを実施することで、例えば、セリウム原料をポリカルボン酸のアルカリ土類金属塩で被覆することができる。
 以下、工程Aにおいて使用される各種成分について説明する。
 溶媒としては、水、メタノール、エタノール、イソプロパノール、及びアセトン等の極性溶媒が好ましい。溶媒は、取り扱いの容易さの観点から、水及びエタノールの少なくとも1種が好ましく、水がより好ましい。水としては、特に制限されないが、脱イオン水、イオン交換水、及び超純水等が好ましい。
 溶媒は、1種を単独で用いても、2種以上を併用してもよい。
 セリウム原料としては特に制限されず、例えば、無機酸塩及び有機酸塩が挙げられる。
 無機酸塩としては、例えば、炭酸塩、オキシ炭酸塩、硝酸塩、及び硫酸塩、並びにその水和物等が挙げられる。有機酸塩としては、シュウ酸塩、及びマロン酸塩等が挙げられる。
 セリウム原料としては、溶媒(例えば水)への溶解度を低くしやすい観点から、炭酸塩、炭酸塩の水和物、オキシ炭酸塩、オキシ炭酸塩の水和物、シュウ酸塩、及びシュウ酸塩の水和物からなる群より選ばれる少なくとも1種が好ましい。
 セリウム原料は、1種を単独で用いても、2種以上を併用してもよい。
 ポリカルボン酸としては、セリウム原料への吸着力に優れる観点から、アクリル酸の単独重合体(ポリアクリル酸)、メタクリル酸の単独重合体(ポリメタクリル酸)、アクリル酸の共重合体、及び、メタクリル酸の共重合体(アクリル酸の共重合体を除く)からなる群より選ばれる少なくとも1種が好ましい。
 ポリカルボン酸は、1種を単独で用いても、2種以上を併用してもよい。
 ポリカルボン酸の重量平均分子量は、セリウム原料(例えば、炭酸セリウム等)への吸着力を高める観点から、1000以上が好ましく、2000以上がより好ましく、4000以上が更に好ましく、5000以上が特に好ましく、7000以上が最も好ましい。ポリカルボン酸の重量平均分子量は、砥粒の過剰な凝集を防ぎやすい観点から、50万以下が好ましく、20万以下がより好ましく、10万以下が更に好ましく、5万以下が特に好ましく、1万以下が最も好ましい。ポリカルボン酸の重量平均分子量は、標準ポリスチレンの検量線を用いて、以下の条件のゲルパーミエーションクロマトグラフィーにより測定できる。
≪条件≫
 試料:10μL
 標準ポリスチレン:東ソー株式会社製、標準ポリスチレン(分子量;190000、17900、9100、2980、578、474、370、266)
 検出器:株式会社日立製作所製、RI-モニター、商品名「L-3000」
 インテグレーター:株式会社日立製作所製、GPCインテグレーター、商品名「D-2200」
 ポンプ:株式会社日立製作所製、商品名「L-6000」
 デガス装置:昭和電工株式会社製、商品名「Shodex DEGAS」
 カラム:日立化成株式会社製、商品名「GL-R440」、「GL-R430」、「GL-R420」をこの順番で連結して使用
 溶離液:テトラヒドロフラン(THF)
 測定温度:23℃
 流速:1.75mL/min
 測定時間:45分
 アルカリ土類金属塩のアルカリ土類金属原子としては特に制限されないが、アルカリ土類金属の酸化物の溶解液への溶解度が高くなりやすい点で、カルシウム原子、ストロンチウム原子、及びバリウム原子からなる群より選ばれる少なくとも1種が好ましい。
 また、アルカリ土類金属塩としては、アルカリ土類金属の酸化物の溶解液への溶解度が高くなりやすい観点から、アルカリ土類金属の硝酸塩、硫酸塩、塩酸塩、酢酸塩、及び乳酸塩からなる群より選ばれる少なくとも1種が好ましい。
 アルカリ土類金属塩は、1種を単独で用いても、2種以上を併用してもよい。
 ポリカルボン酸のカルボキシ基(カルボキシ基数)に対するセリウム原料のセリウム原子のモル比(モル数の比。セリウム原子/ポリカルボン酸のカルボキシ基)の下限値としては、セリウム原料をポリカルボン酸のアルカリ土類金属塩で覆いやすい観点から、0.1以上が好ましく、0.5以上がより好ましく、1以上が更に好ましく、10以上が特に好ましく、20以上が最も好ましい。ポリカルボン酸のカルボキシ基数(モル数)は、例えばポリカルボン酸の配合量(g)を構成モノマの分子量(g/mol)で除算することにより算出することができる。
 ポリカルボン酸のカルボキシ基(カルボキシ基数)に対するセリウム原料のセリウム原子のモル比(モル数の比。セリウム原子/ポリカルボン酸のカルボキシ基)の上限値としては、セリウム原料をポリカルボン酸のアルカリ土類金属塩で覆いやすい観点から、500以下が好ましく、300以下がより好ましく、200以下が更に好ましく、150以下が特に好ましく、120以下が最も好ましい。
 ポリカルボン酸のカルボキシ基(カルボキシ基数)に対するアルカリ土類金属塩のアルカリ土類金属原子のモル比(モル数の比。アルカリ土類金属原子/ポリカルボン酸のカルボキシ基)の下限値としては、ポリカルボン酸のアルカリ土類金属塩の生成を促進させる観点から、0.01以上が好ましく、0.05以上がより好ましく、0.08以上が更に好ましく、0.1以上が特に好ましい。
 ポリカルボン酸のカルボキシ基(カルボキシ基数)に対するアルカリ土類金属塩のアルカリ土類金属(アルカリ土類金属原子)のモル比(モル数の比。アルカリ土類金属/ポリカルボン酸のカルボキシ基)の上限値としては、ポリカルボン酸のアルカリ土類金属塩の生成を促進させる観点から、100以下が好ましく、80以下がより好ましく、60以下が更に好ましく、40以下が特に好ましく、20以下が最も好ましい。
 工程Aにおいて、セリウム原料を溶媒に分散させる際の攪拌速度は、500~5000rpmである。攪拌速度が500rpm以上である場合、平均一次粒径及びメジアン径の小さいセリア粒子を得ることができる。また、攪拌速度が5000rpm以下である場合、粒子の粒径及び会合度の分布を制御できる(つまり、より均一な粒子が得られる)。
 攪拌速度は、1000rpm以上が好ましく、1200rpm以上がより好ましく、4500rpm以下が好ましく、3500rpm以下がより好ましい。
 攪拌時間は特に制限されないが、例えば、1~120分であり、1~60分が好ましく、1~40分がより好ましい。
(工程B)
 工程Bでは、工程Aで得られた粒子を焼成(例えば焼結)する。
 工程Bでは、例えば、工程Aで得られた分散液から溶媒の少なくとも一部を除去して得られる残留物を焼成する。溶媒を除去する方法としては特に制限はなく、遠心分離、減圧乾燥、及び常圧乾燥等の方法が適用できる。また、得られた残留物を焼成する方法としては特に制限はなく、ロータリーキルン又は電気炉を用いた焼成法等の方法が適用できる。
 焼成工程における焼成温度は、工程Aで得られた粒子中のセリウム原子を酸化しやすい点で、300℃以上が好ましく、500℃以上がより好ましく、600℃以上が更に好ましい。焼成工程における焼成温度は、粒子が過度に結晶化することを防ぎやすい点で、1500℃以下が好ましく、1200℃以下がより好ましく、1000℃以下が更に好ましい。
 焼成時間は特に制限されないが、例えば、5~300分であり、10~200分が好ましい。
(工程C)
 工程Cでは、上記工程Bで得られた焼成物中に含まれる、アルカリ土類金属の酸化物の少なくとも一部を溶解してセリア粒子を得る。
 工程Cとしては、具体的に、上記工程Bで得られた焼成物を溶解液に分散させてアルカリ土類金属の酸化物を溶解させる工程であることが好ましい。
 溶解に用いる溶解液としては、アルカリ土類金属の酸化物を溶解させやすい観点から、無機酸(例えば、硝酸、硫酸、及び塩酸等)及び有機酸(例えば、酢酸及びシュウ酸等)からなる群により選ばれる少なくとも1種の酸成分により液性が酸性に調整された溶液(例えば水溶液)が好ましい。
 アルカリ土類金属の酸化物を溶解させやすい観点から、溶解は、超音波を印加させながら行うことが好ましい。
 アルカリ土類金属に対する酸成分のモル比(酸成分/アルカリ土類金属)は、アルカリ土類金属の酸化物が溶解しても液性を酸性に容易に保つことができる観点から、0.4以上が好ましく、0.6以上がより好ましく、0.8以上が更に好ましい。
〔アニオン系ポリマー〕
 第1の実施形態の研磨液は、アニオン系ポリマーを含む。アニオン系ポリマーとしては、酸基又はその塩を含むモノマーに由来するポリマー、並びにそれらを含む共重合体が挙げられる。
 酸基としては、特に制限されないが、例えば、カルボン酸基、スルホン酸基、リン酸基、及び、ホスホン酸基等が挙げられる。
 アニオン系ポリマーとしては、具体的には、ポリアクリル酸及びその塩、並びにそれらを含む共重合体;ポリメタクリル酸及びその塩、並びにそれらを含む共重合体;ポリアミド酸及びその塩、並びにそれらを含む共重合体;ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p-スチレンカルボン酸)、及びポリグリオキシル酸等のポリカルボン酸及びその塩、並びにそれらを含む共重合体;が挙げられる。
 これらの中でも、アニオン系ポリマーは、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸及びポリメタクリル酸を含む共重合体、並びに、これらの塩からなる群より選択される少なくとも1種を含むことが好ましい。
 アニオン系ポリマーは、研磨液中で電離していてもよい。
 アニオン系ポリマーの重量平均分子量の下限値は、SiNの研磨速度に対するSiOの研磨速度の比がより高い点で、例えば、1,000以上であり、2,000以上が好ましく、15,000以上がより好ましい。また、アニオン系ポリマーの重量平均分子量の上限値は、被研磨面の欠陥の発生をより抑制できる点から、例えば、100,000以下であり、50,000以下が好ましく、30,000以下が更に好ましい。
 アニオン系ポリマーの重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)法によるポリスチレン換算値である。GPC法は、HLC-8020GPC(東ソー(株)製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー(株)製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
 アニオン系ポリマーの含有量の下限値は、研磨液の全質量に対して、SiNに対するSiOの研磨の選択性がより向上すること、及び、被研磨面の欠陥の発生をより抑制できること等の点から、0.01質量%以上が好ましく、0.2質量%以上がより好ましく、1.5質量%以上が更に好ましい。
 アニオン系ポリマーの含有量の上限値は、研磨液の全質量に対して、研磨液の経時安定性が向上すること等の点から、10質量%以下が好ましく、5質量%以下がより好ましく、4質量%以下が更に好ましく、2質量%以下が特に好ましく、0.8質量%以下が最も好ましい。
 なお、アニオン系ポリマーは1種を単独で用いても、2種以上を併用してもよい。2種以上のアニオン系ポリマーを併用する場合には、合計含有量が上記範囲内であることが好ましい。
 研磨液中、アニオン系ポリマーは、セリア粒子に吸着している第1アニオン系ポリマー(以下「吸着成分」ともいう。)と、セリア粒子に吸着していない第2アニオン系ポリマー(以下「遊離成分」ともいう。)とを含む。
 遊離成分に対する吸着成分の質量含有比(吸着成分の質量/遊離成分の質量)の下限値は、被研磨面の欠陥の発生をより抑制できる点で、0.001以上が好ましい。遊離成分に対する吸着成分の質量含有比の上限値は、被研磨面の欠陥の発生をより抑制できる点で、1.00以下が好ましい。
 研磨液中における吸着成分の含有量及び遊離成分の含有量は、以下の方法により測定できる。
 研磨液を超遠心分離機にかけ、超遠心分離後の液中の上澄みに含まれる成分及びその含有量をガスクロマトグラフィー(GC/MS)法又は液体クロマトグラフィー(LC/MS)法によって同定する。これにより遊離成分の含有量が得られる。吸着成分の含有量は、研磨液に含まれるアニオン系ポリマーの全質量(アニオン系ポリマーの全添加量)から、上述した遊離成分の含有量を差引くことで得られる。
〔カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む、無機酸又は有機酸〕
 第1実施形態の研磨液は、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む、無機酸又は有機酸(以下「特定酸」ともいう。)を含む。特定酸を用いれば、SiNの研磨速度に対するSiOの研磨速度の比がより高く、また、pHを所定の範囲内に調整することが容易になる。なお、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基は、研磨液中で電離していてもよい。なお、ここでいう「有機酸」には、上述したアニオン系ポリマー、界面活性剤(例えばドデシルベンゼンスルホン酸)、及びヘテロメタ燐酸は含まれない。また、特定酸の分子量は1000以下であることが好ましい。
 カルボン酸基を含む無機酸及び有機酸としては、例えば、酢酸、シュウ酸、リンゴ酸、グリシン、及び2-ピリジンカルボン酸等が挙げられる。リン酸基を含む無機酸及び有機酸としては、例えば、リン酸等が挙げられる。ホスホン酸基を含む有機酸としては、例えば、ホスホン酸、及び1-ヒドロキシエタン-1,1-ジホスホン酸等が挙げられる。スルホン酸基を含む無機酸及び有機酸としては、例えば、硫酸、及びp-トルエンスルホン酸(pTSA)等が挙げられる。
 特定酸の含有量は、研磨液の全質量に対して、0.0001~5.0質量%が好ましく、0.1~1.2質量%がより好ましい。
 なお、特定酸は1種を単独で用いても、2種以上を併用してもよい。2種以上の上記を併用する場合には、合計含有量が上記範囲内であることが好ましい。
〔任意成分〕
 第1の実施形態の研磨液は、上述した成分以外に、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、含窒素複素環化合物、4-ピロン、界面活性剤、及びヘキサメタリン酸等が挙げられる。
<含窒素複素環化合物及び4-ピロン>
 第1の実施形態の研磨液は含窒素複素環化合物及び4-ピロンからなる群より選ばれる少なくとも1種以上を含むことが好ましい。
 含窒素複素環化合物とは、窒素原子を1個以上含む複素環含む化合物を意図する。研磨液が含窒素複素環化合物を含む場合、SiNの研磨速度に対するSiOの研磨速度の比がより高い。
 含窒素複素環化合物が複素環中に有する窒素原子の数は、なかでも、SiNの研磨速度に対するSiOの研磨速度の比がより高い点で、2個以上が好ましく、2~4個がより好ましい。
 含窒素複素環化合物は、複素環中に窒素以外のヘテロ原子(例えば、酸素原子等)を含んでいてもよい。含窒素複素環化合物が有する含窒素複素環は、5~6員環が好ましく、5員環がより好ましい。
 含窒素複素環化合物としては、イミダゾール骨格、ピラゾール骨格、トリアゾール骨格、テトラゾール骨格、チアジアゾール骨格、又はオキサジアゾール骨格を含む化合物等が挙げられ、SiNの研磨速度に対するSiOの研磨速度の比がより高い点で、イミダゾール骨格を含む化合物が好ましい。
 さらに、含窒素複素環化合物は、縮合環を含む多環構造を含む化合物であってもよく、具体的には、プリン骨格、インダゾール骨格、ベンゾイミダゾール骨格、ベンゾチアジアゾール骨格、又はナフトイミダゾール骨格を含む化合物が挙げられる。
 含窒素複素環化合物の具体例としては、ヒスチジン、イミダゾール、4-イミダゾールカルボン酸、5-メチルベンゾトリアゾール、5-アミノベンゾトリアゾール、ベンゾトリアゾール、5,6-ジメチルベンゾアトリアゾール、3-アミノ-1,2,4-トリアゾール、1,2,4-トリアゾール、3,5-ジメチルピラゾール、及びピラゾールが挙げられ、SiNの研磨速度に対するSiOの研磨速度の比がより高い点で、イミダゾール骨格を含む化合物である、ヒスチジン、イミダゾール、及び4-イミダゾールカルボン酸が好ましい。
 含窒素複素環化合物の含有量は、SiNの研磨速度に対するSiOの研磨速度の比がより高い点で、研磨液の全質量に対して、0.001~1質量%が好ましく、0.01~0.5質量%がより好ましい。
 なお、含窒素複素環化合物は1種を単独で用いても、2種以上を併用してもよい。2種以上の含窒素複素環化合物を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 4-ピロンの含有量は、研磨液の全質量に対して、0.001~1質量%が好ましく、0.01~0.1質量%がより好ましく、0.05~1質量%が特に好ましい。
 ヘキサメタリン酸の含有量は、研磨液の全質量に対して、0.001~1質量%が好ましく、0.01~1質量%がより好ましく、0.05~1質量%が特に好ましい。
<界面活性剤>
 第1の実施形態の研磨液は、界面活性剤を含んでいてもよい。
 界面活性剤としては特に制限されないが、ポリシリコン(以下、「poly-Si」ともいう。)に対するSiOの研磨の選択性を大きくできる点で、イオン系界面活性剤(アニオン系界面活性剤、又はカチオン系界面活性剤)を含むことが好ましい。
 アニオン系界面活性剤の具体例としては、カルボン酸塩、アルキルベンゼンスルホン酸等のスルホン酸塩、硫酸エステル塩、及びリン酸エステル塩等が挙げられる。
 アニオン系界面活性剤の含有量は、研磨液の全質量に対して、0.0001~1.0質量%が好ましく、0.001~0.5質量%がより好ましい。
 なお、アニオン系界面活性剤は1種を単独で用いても、2種以上を併用してもよい。2種以上のアニオン系界面活性剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 カチオン系界面活性剤の具体例としては、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、及びイミダゾリニウム塩等が挙げられる。
 カチオン系界面活性剤の含有量は、研磨液の全質量に対して、0.0001~1質量%が好ましく、0.001~0.5質量%がより好ましい。
 なお、カチオン系界面活性剤は1種を単独で用いても、2種以上を併用してもよい。2種以上のカチオン系界面活性剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 イオン系界面活性剤のなかでも、被研磨面の欠陥をより抑制できる点で、アニオン系界面活性剤を含むことが好ましい。
<水>
 第1実施形態の研磨液は、水を含むことが好ましい。研磨液が含む水としては特に制限されないが、イオン交換水、又は純水等を使用することが好ましい。水の含有量は、特に制限されないが、研磨液の全質量に対して、90~99質量%が好ましい。
<他の成分>
 第1実施形態の研磨液は、本発明の上述した効果を損なわない範囲で、CMPにおける研磨液に用いる、上述した成分以外の成分(他の成分)を含んでいてもよい。
〔pH〕
 第1実施形態の研磨液のpHは、3~8であり、SiNに対するSiOの研磨の選択性がより高く、且つ、被研磨面の欠陥をより抑制できる点で、4~6が好ましい。
 研磨液のpHは、pHメータによって測定でき、測定温度は25℃である。なお、pHメータには、製品名「LAQUAシリーズ」(堀場製作所社製)を使用できる。
 pHを上記範囲に調整する方法としてはこれに制限されないが、例えば上述の特定酸を添加する方法が挙げられる。
〔研磨速度の比〕
 SiN、SiO、及びこれらの誘導体の研磨に研磨液を用いた場合において、SiN及びその誘導体の研磨速度に対する、SiO及びその誘導体の研磨速度の比は、10~5000が好ましい。
 SiN及びその誘導体の研磨速度に対する、SiO及びその誘導体の研磨速度の比とは、SiNの研磨速度に対するSiOの研磨速度の比、SiNの誘導体の研磨速度に対するSiOの研磨速度の比、SiNの研磨速度に対するSiOの誘導体の研磨速度の比、SiNの誘導体の研磨速度に対するSiOの誘導体の研磨速度の比、を意味する。
 SiOの誘導体の具体例としては、SiOC及びドーピング等を行ったSiOが挙げられる。
 SiNの誘導体の具体例としては、SiON及びドーピング処理を行ったSiNが挙げられる。
 研磨液がSiO、poly-Si、及びこれらの誘導体の研磨に研磨液を用いた場合において、poly-Si及びその誘導体の研磨速度に対する、SiO及びその誘導体の研磨速度の比は、10~5000がより好ましい。
 poly-Si及びその誘導体の研磨速度に対する、SiO及びその誘導体の研磨速度の比とは、poly-Siの研磨速度に対するSiOの研磨速度の比、poly-Siの誘導体の研磨速度に対するSiOの研磨速度の比、poly-Siの研磨速度に対するSiOの誘導体の研磨速度の比、poly-Siの誘導体の研磨速度に対するSiOの誘導体の研磨速度の比、を意味する。
 poly-Siの誘導体の具体例としては、ドーピング処理等を行ったpoly-Si(変性ポリシリコン)が挙げられる。
[研磨液の第2実施形態]
 本発明の第2実施形態の研磨液は、化学的機械的研磨に用いられる研磨液であって、
 平均アスペクト比が1.5以上のセリア粒子と、カチオン系ポリマーと、を含み、pHが3~8である。
 上記研磨液は、SiNの研磨速度とSiOの研磨速度がいずれも高い。上記作用機序については明らかではないが、以下の理由によると推測される。
 通常セリア粒子はガラス研磨に代表されるように、SiO面と化学的な反応を通して高速研磨を達成している。一方、SiNは、セリア粒子とこのような化学的な反応を起こしにくい。これに対して、研磨液がカチオン系ポリマーを含む場合、カチオン系ポリマーの作用によりSiNとセリア粒子間の相互作用に変化が生じ、この結果として、SiNの研磨速度とSiOの研磨速度がいずれも高くなると考えられる。なお、この理由に関しては明らかではないが、化学的反応が進行している、及び/又は、物理的な接触頻度が増大している等が推測される。
 また、上記研磨液を用いて化学的機械的研磨により研磨を実施した被研磨体の被研磨面は、欠陥(特に、スクラッチ)の発生が少ない。上記作用機序については明らかではないが、以下の理由によると推測される。
 セリア粒子の凝集によって研磨液中の凝集粒子が増加した場合、粗大な凝集粒子によって被研磨面が傷つきやすくなると考えられる。これに対して、研磨液が、カチオン系ポリマーを含む場合、セリア粒子同士が反発しやすくなって、セリア粒子が凝集しづらくなり、粗大な凝集粒子による被研磨面の欠陥の発生が抑制できたと考えられる。
 以下、第2実施形態の研磨液について詳述する。
〔セリア粒子〕
 第2の実施形態の研磨液は、セリア粒子を含む。
 第2実施形態の研磨液が含むセリア粒子は、上述した第1実施形態の研磨液が含むセリア粒子と同様であり、その好適態様についても同様である。
 セリア粒子の含有量の下限値は特に制限されないが、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、研磨液の全質量に対して、SiNの研磨速度とSiOの研磨速度がいずれも高いことから、例えば、0.1質量%以上であり、0.5質量%以上が好ましく、2.0質量%以上がより好ましい。
 セリア粒子の含有量の上限値は特に制限されないが、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、研磨液の全質量に対して、例えば、10質量%以下であり、8.0質量%以下が好ましく、5.0質量%以下がより好ましい。
 なお、セリア粒子は1種を単独で用いても、2種以上を併用してもよい。2種以上のセリア粒子を併用する場合には、合計含有量が上記範囲内であることが好ましい。
〔カチオン性ポリマー〕
 第2の実施形態の研磨液は、カチオン性ポリマーを含む。
 カチオン性ポリマーとしては、pH3~8において(特に好ましくはpH3~4において)カチオン性を示す基(以下、「カチオン性基」ともいう。)を含むポリマーであれば特に制限されず、例えば、-NR又は-N・Xで表される1価の基、及び、-NR-又は-N-・Xで表される2価の基(R、R及びRは、各々独立して、水素原子又は有機基(例えばアルキル基等)を表す。また、Xは、対アニオンを表す。)等のカチオン性基を含むポリマーが挙げられる。
 なかでも、被研磨面の欠陥の発生がより抑制できる点から、カチオン性ポリマーは、オニウム塩構造を含むポリマーが好ましく、置換又は無置換のアンモニウム塩構造を含むポリマーがより好ましい。
 置換又は無置換のアンモニウム塩構造としては、例えば、下記一般式(1)で表される1価のアンモニウム塩構造、及び下記一般式(2)で表される2価のアンモニウム塩構造が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R、R、及びRは、各々独立に、水素原子又は有機基を表す。Xは、対アニオンを表す。*は、結合位置を表す。また、一般式(2)中、R及びRは、各々独立に、水素原子又は有機基を表す。Xは、対アニオンを表す。*は、結合位置を表す。
 R、R、R、R、及びRで表される有機基としては、例えば、アリル基又は炭素数1~10のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~3のアルキル基が更に好ましい。また、R、R、及びRは、互いに結合して環を形成していてもよい。
 なお、上記一般式(1)で表される1価のアンモニウム塩構造、上記一般式(2)で表される2価のアンモニウム塩構造は、*で表される結合位置において、カチオン性ポリマーの他の部位と結合する。
 X及びXで表されるアニオンとしては特に制限されず、例えば、水酸化物イオン、塩素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、及びアルキル硫酸イオンが挙げられる。
 カチオン性ポリマーは、線状ポリマーであっても、樹状ポリマーであってもよい。
 カチオン性ポリマーが線状ポリマーである場合、主鎖の構造は特に制限されず、例えば、ポリウレタン、ポリアクリレート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリアミド、ポリイミド、及びポリウレア等が挙げられる。また、カチオン性基は、主鎖に含まれていても、側鎖に含まれていてもよいが、セリア粒子との相互作用により優れる点で、側鎖に含まれていることが好ましい。
 カチオン性ポリマーとしては、具体的に、ポリ(メタクリル酸トリメチルアミノエチル・メチル硫酸塩)、ポリエチルイミン塩酸塩、ジアリルジメチルアンモニウムクロリド(DADMA)の共重合体、ジメチルアミノプロピルアクリルアミド(DAPAA)の重合体又はその共重合体、及びカチオン化ポリビニルアルコール等が挙げられる。
 また、カチオン化ポリビニルアルコール等の市販品として、C-118、C-506、及びC-318(クラレ社製);並びに、ゴーセファイマーC-670、ゴーセファイマーC-820、ゴーセファイマーK-200、及びゴーセファイマーK-210(以上、日本合成化学工業社製)等が挙げられる。
 カチオン系ポリマーの重量平均分子量の下限値は、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、例えば、1,000以上であり、2,000以上が好ましく、10,000以上がより好ましく、15,000以上が更に好ましく、20,000以上が特に好ましい。また、カチオン系ポリマーの重量平均分子量の上限値は、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、例えば、100,000以下であり、50,000以下が好ましく、30,000以下が更に好ましい。
 カチオン系ポリマーの重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)法によるポリスチレン換算値である。GPC法は、HLC-8020GPC(東ソー(株)製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー(株)製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
 カチオン系ポリマーの含有量の下限値は、被研磨面の欠陥の発生をより抑制できる点で、研磨液の全質量に対して、0.01質量%以上が好ましく、0.2質量%以上がより好ましい。
 カチオン系ポリマーの含有量の上限値は、被研磨面の欠陥の発生をより抑制できる点で、研磨液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。
 なお、カチオン系ポリマーは1種を単独で用いても、2種以上を併用してもよい。2種以上のカチオン系ポリマーを併用する場合には、合計含有量が上記範囲内であることが好ましい。
 研磨液中、カチオン系ポリマーは、セリア粒子に吸着している第1カチオン系ポリマー(以下「吸着成分」ともいう。)と、セリア粒子に吸着していない第2カチオン系ポリマー(以下「遊離成分」ともいう。)とを含む。
 遊離成分に対する吸着成分の質量含有比(吸着成分の質量/遊離成分の質量)の下限値は、被研磨面の欠陥の発生をより抑制できる点で、0.001以上が好ましく、0.50以上がより好ましい。遊離成分に対する吸着成分の質量含有比の上限値は、被研磨面の欠陥の発生をより抑制できる点で、1.00以下が好ましい。
 研磨液中における吸着成分の含有量及び遊離成分の含有量は、以下の方法により測定できる。
 研磨液を超遠心分離機にかけ、超遠心分離後の液中の上澄みに含まれる成分及びその含有量をガスクロマトグラフィー(GC/MS)法又は液体クロマトグラフィー(LC/MS)法によって同定する。これにより遊離成分の含有量が得られる。吸着成分の含有量は、研磨液に含まれるカチオン系ポリマーの全質量(カチオン系ポリマーの全添加量)から、上述した遊離成分の含有量を差引くことで得られる。
〔任意成分〕
 第2の実施形態の研磨液は、上述した成分以外に、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、含窒素複素環化合物、4-ピロン、界面活性剤、特定酸、及びヘキサメタリン酸等が挙げられる。
<含窒素複素環化合物及び4-ピロン>
 第2の実施形態の研磨液は含窒素複素環化合物及び4-ピロンからなる群より選ばれる少なくとも1種以上を含むことが好ましい。
 含窒素複素環化合物とは、窒素原子を1個以上含む複素環含む化合物を意図する。なお、ここでいう「含窒素複素環化合物」には、カチオン系ポリマーは含まれない。研磨液が含窒素複素環化合物を含む場合、SiNの研磨速度とSiOの研磨速度がいずれもより高い。
 含窒素複素環化合物が複素環中に有する窒素原子の数は、なかでも、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、2個以上が好ましく、2~4個がより好ましい。
 含窒素複素環化合物は、複素環中に窒素以外のヘテロ原子(例えば、酸素原子等)を含んでいてもよい。含窒素複素環化合物が有する含窒素複素環は、5~6員環が好ましく、5員環がより好ましい。
 また、含窒素複素環化合物の分子量は、1000未満が好ましい。
 含窒素複素環化合物としては、イミダゾール骨格、ピラゾール骨格、トリアゾール骨格、テトラゾール骨格、チアジアゾール骨格、又はオキサジアゾール骨格を含む化合物等が挙げられ、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、イミダゾール骨格を含む化合物が好ましい。
 さらに、含窒素複素環化合物は、縮合環を含む多環構造を含む化合物であってもよく、具体的には、プリン骨格、インダゾール骨格、ベンゾイミダゾール骨格、ベンゾチアジアゾール骨格、又はナフトイミダゾール骨格を含む化合物が挙げられる。
 含窒素複素環化合物の具体例としては、ヒスチジン、イミダゾール、4-イミダゾールカルボン酸、5-メチルベンゾトリアゾール、5-アミノベンゾトリアゾール、ベンゾトリアゾール、5,6-ジメチルベンゾアトリアゾール、3-アミノ-1,2,4-トリアゾール、1,2,4-トリアゾール、3,5-ジメチルピラゾール、及びピラゾールが挙げられ、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、イミダゾール骨格を含む化合物である、ヒスチジン、イミダゾール、及び4-イミダゾールカルボン酸が好ましい。
 含窒素複素環化合物の含有量は、SiNの研磨速度とSiOの研磨速度がいずれもより高い点で、研磨液の全質量に対して、0.001~1質量%が好ましく、0.01~0.5質量%がより好ましい。
 なお、含窒素複素環化合物は1種を単独で用いても、2種以上を併用してもよい。2種以上の含窒素複素環化合物を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 4-ピロンの含有量は、研磨液の全質量に対して、0.001~1質量%が好ましく、0.01~0.1質量%がより好ましく、0.05~1質量%が特に好ましい。
 ヘキサメタリン酸の含有量は、研磨液の全質量に対して、0.001~1質量%が好ましく、0.01~1質量%がより好ましく、0.05~1質量%が特に好ましい。
<界面活性剤>
 第2の実施形態の研磨液は、界面活性剤を含んでいてもよい。
 界面活性剤としては特に制限されないが、ポリシリコン(以下、「poly-Si」ともいう。)に対するSiNの研磨の選択性を大きくできる点で、イオン系界面活性剤(アニオン系界面活性剤、又はカチオン系界面活性剤)を含むことが好ましい。
 アニオン系界面活性剤の具体例としては、カルボン酸塩、アルキルベンゼンスルホン酸等のスルホン酸塩、硫酸エステル塩、及びリン酸エステル塩等が挙げられる。
 アニオン系界面活性剤の含有量は、研磨液の全質量に対して、0.0001~1.0質量%が好ましく、0.001~0.5質量%がより好ましい。
 なお、アニオン系界面活性剤は1種を単独で用いても、2種以上を併用してもよい。2種以上のアニオン系界面活性剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 カチオン系界面活性剤の具体例としては、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、及びイミダゾリニウム塩等が挙げられる。
 カチオン系界面活性剤の含有量は、研磨液の全質量に対して、0.0001~1質量%が好ましく、0.001~0.5質量%がより好ましい。
 なお、カチオン系界面活性剤は1種を単独で用いても、2種以上を併用してもよい。2種以上のカチオン系界面活性剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 イオン系界面活性剤のなかでも、poly-Siに対するSiNの研磨の選択性を大きくできる点で、アニオン系界面活性剤を含むことが好ましい。
 すなわち、poly-Siの表面は疎水性であるため、界面活性剤の疎水基がpoly-Siの表面側に配置され、界面活性剤の親水基が表面側とは反対側(poly-Siの表面から離れた側)に配置される。ここで、研磨液中のセリア粒子はカチオン性を帯びているので、界面活性剤の親水基(アニオン性基)に引きつけられやすい。これにより、poly-Siの研磨速度が低下すると考えられる。その結果、poly-Siに対するSiNの研磨の選択性が大きくなると考えられる。
 また、研磨液がアニオン系界面活性剤を含む場合、被研磨面の欠陥をより抑制できる。
<特定酸>
 第2の実施形態の研磨液は、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む、無機酸及び有機酸(特定酸)を含んでいてもよい。特定酸は、pH調整剤として機能し得る。
 特定酸としては、上述した第1実施形態の研磨液が含む特定酸と同様であり、その好適態様についても同様である。
〔研磨速度の比〕
 SiN、SiO、及びこれらの誘導体の研磨に研磨液を用いた場合において、SiO及びその誘導体の研磨速度に対する、SiN及びその誘導体の研磨速度の比は、0.25~4.0が好ましい。
 SiO及びその誘導体の研磨速度に対する、SiN及びその誘導体の研磨速度の比とは、SiOの研磨速度に対するSiNの研磨速度の比、SiOの誘導体の研磨速度に対するSiNの研磨速度の比、SiOの研磨速度に対するSiNの誘導体の研磨速度の比、SiOの誘導体の研磨速度に対するSiNの誘導体の研磨速度の比、を意味する。
 SiOの誘導体の具体例としては、SiOC及びドーピング等を行ったSiOが挙げられる。
 SiNの誘導体の具体例としては、SiON及びドーピング処理を行ったSiNが挙げられる。
 研磨液がSiN、poly-Si、及びこれらの誘導体の研磨に研磨液を用いた場合において、poly-Si及びその誘導体の研磨速度に対する、SiN及びその誘導体の研磨速度の比は、0.25~500が好ましい。
 poly-Si及びその誘導体の研磨速度に対する、SiN及びその誘導体の研磨速度の比とは、poly-Siの研磨速度に対するSiNの研磨速度の比、poly-Siの誘導体の研磨速度に対するSiNの研磨速度の比、poly-Siの研磨速度に対するSiNの誘導体の研磨速度の比、poly-Siの誘導体の研磨速度に対するSiNの誘導体の研磨速度の比、を意味する。
 poly-Siの誘導体の具体例としては、ドーピング処理等を行ったpoly-Si(変性ポリシリコン)が挙げられる。
〔pH〕
 第2の実施形態の研磨液は、3~8であり、被研磨面の欠陥をより抑制できる点で、3~6が好ましく、3~4がより好ましい。
 研磨液のpHは、pHメータによって測定でき、測定温度は25℃である。なお、pHメータには、製品名「LAQUAシリーズ」(堀場製作所社製)を使用できる。
 pHを上記範囲に調整する方法としてはこれに制限されないが、例えば上述の特定酸を添加する方法が挙げられる。
[化学的機械的研磨方法]
 本発明の化学的機械的研磨方法(以下、「CMP方法」ともいう。)は、上述した第1実施形態及び第2実施形態の研磨液(以下、「研磨液」と略記する。)を研磨定盤に取り付けられた研磨パッドに供給しながら、被研磨体の被研磨面を上記研磨パッドに接触させ、上記被研磨体及び上記研磨パッドを相対的に動かして上記被研磨面を研磨して、研磨済み被研磨体を得る工程を含む。
<被研磨体>
 被研磨体は、SiN及びSiOを含むことが好ましく、poly-Siを更に含むことがより好ましい。
 被研磨体の具体例としては、基板と、基板上にSiN層及びSiO層と、を有する積層体が挙げられる。積層体の基板上には、更にpoly-Si層が配置されていてもよい。なお、各層は、厚み方向に配置されていてもよいし、厚み方向と交差する方向に配置されていてもよい。
 上記CMP方法により、SiN層、SiO層、及びpoly-Si層が研磨される。
 基板の具体例としては、単層からなる半導体基板、及び、多層からなる半導体基板が挙げられる。
 単層からなる半導体基板を構成する材料の具体例としては、シリコン、シリコンゲルマニウム、GaAsのような第III-V族化合物、又は、それらの任意の組み合わせが挙げられる。
 多層からなる半導体基板の具体例としては、上述のシリコン等の半導体基板上に、金属線及び誘電材料のような相互接続構造(interconnect features)等の露出した集積回路構造が配置された基板が挙げられる。
<研磨装置>
 上記CMP方法を実施できる研磨装置は、公知の化学的機械的研磨装置(以下、「CMP装置」ともいう。)を用いることができる。
 CMP装置としては、例えば、被研磨面を有する被研磨体を保持するホルダーと、研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤と、を有する一般的なCMP装置が挙げられる。CMP装置の市販品としては、Reflexion(アプライド・マテリアルズ社製)が挙げられる。
<研磨圧力>
 上記CMP方法における研磨圧力は、3000~25000Paが好ましく、6500~14000Paがより好ましい。なお、研磨圧力とは、被研磨面と研磨パッドとの接触面に生ずる圧力を意味する。
<研磨定盤の回転数>
 上記CMP方法における研磨定盤の回転数は、50~200rpmが好ましく、60~150rpmがより好ましい。
 なお、被研磨体及び研磨パッドを相対的に動かすために、ホルダーを回転及び/又は揺動させてもよいし、研磨定盤を遊星回転させてもよいし、ベルト状の研磨パッドを長尺方向の一方向に直線状に動かしてもよい。なお、ホルダーは、固定、回転、又は揺動のいずれの状態であってもよい。これらの研磨方法は、被研磨体及び研磨パッドを相対的に動かすのであれば、被研磨面及び/又は研磨装置により適宜選択できる。
<研磨液の供給方法>
 上記CMP方法では、被研磨面を研磨する間、研磨定盤上の研磨パッドに本研磨液をポンプ等で連続的に供給するのが好ましい。本研磨液の供給量に制限はないが、研磨パッドの表面が常に本研磨液で覆われていることが好ましい。
[研磨液の製造方法]
 本発明の研磨液の製造方法は、下記工程Xと、工程Y(下記工程Y1及び下記工程Y2のいずれか一方)と、を含む。
(工程X)工程A、工程B、及び工程Cを含むセリア粒子の製造方法によりセリア粒子を得る工程。
(工程Y1)工程Xにより得られたセリア粒子と、上述したアニオン系ポリマーと、上述した特定酸とを混合し、且つpHを3~8に調整する工程。
(工程Y2)工程Xにより得られたセリア粒子と、上述したカチオン系ポリマーとを混合し、且つpHを3~8に調整する工程。
 工程Xにおいて、工程A、工程B、及び工程Cを含むセリア粒子の製造方法については、上述の通りである。
 工程Y1及び工程Y2において、各成分を添加する順序は特に制限されない。工程Y1の一態様としては、工程Xにより得られたセリア粒子の分散液に特定酸を加えてpHを3~8に調整した後、更にアニオン系ポリマーを添加する態様が挙げられる。工程Y2の一態様としては、工程Xにより得られたセリア粒子の分散液をpHを3~8に調整した後、更にカチオン系ポリマーを添加する態様が挙げられる。
 また、工程Y1は、例えば、上述した各成分を所定の濃度になるように混合して第1実施形態の研磨液を得る工程であってもよいし、工程Y1により研磨液の濃縮液を調製し、工程Y1の後に実施される希釈工程により、第1実施形態の研磨液を得てもよい。また、工程Y2は、例えば、上述した各成分を所定の濃度になるように混合して第2実施形態の研磨液を得る工程であってもよいし、工程Y2により研磨液の濃縮液を調製し、工程Y2の後に実施される希釈工程により、第2実施形態の研磨液を得てもよい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[セリア粒子の作製]
〔粒子0の作製〕
<工程A>
 表1に示す成分及び配合量に基づいて、以下の手順に従ってセリア粒子を作製した。
 市販のセリウム原料を純水に分散させた後、200rpmで撹拌して分散液(セリウム分散液)を得た。この分散液に、ポリカルボン酸を添加した後、15分撹拌した。更に、アルカリ土類金属塩を添加した後、30分撹拌した。
 次に、アルカリ土類金属塩を含む分散液を60℃で乾燥させることで、白色の粉末を得た。
<工程B>
 この粉末をアルミナ製容器に入れ、800℃、空気中で1時間焼成することにより、白色から黄白色の粉末を得た。
<工程C>
 得られた粉末100gを硝酸水溶液(表1に示す濃度に調整したもの)に分散させた後、超音波分散機でアルカリ土類金属の酸化物を溶解させてセリア分散液を得た。超音波分散は、超音波周波数400kHz、分散時間90分で行った。
 得られたセリア分散液を更に遠心分離して上澄みを除去し、60℃で乾燥することで粉末を得た。この粉末の相同定をX線回折法で行ったところセリア(酸化セリウム)であることを確認した。
<平均一次粒径の測定>
 得られたセリア分散液中におけるセリア粒子の平均一次粒径は、日本電子(株)社製の透過型電子顕微鏡TEM2010(加圧電圧200kV)を用いて撮影された画像から任意に選択した一次粒子1000個の粒子径(円相当径)を測定し、それらを算術平均して求めた。なお、円相当径とは、上述したとおりである。評価結果を表1に示す。
<アスペクト比の測定>
 セリア粒子の平均アスペクト比は、上述の透過型電子顕微鏡にて観察された任意の100個の粒子毎に長径と短径を測定して、粒子毎のアスペクト比(長径/短径)を計算し、100個のアスペクト比を算術平均して求めた。なお、粒子の長径とは、上述したとおりである。評価結果を表1に示す。
<メジアン径の測定>
 得られたセリア分散液中におけるセリア粒子のメジアン径(D10、D50、D90)を粒度分布測定器(SALD-7500nano、島津製作所製)を用いて評価した。評価結果を表1に示す。
<表面金属種の測定>
 得られたセリア粒子の表面における、表面金属種の測定を下記の手順で実施した。
 まず、セリア粒子をゼラチンと混合し、得られた混合物をペースト状にSi基板上に塗布した(塗膜の膜厚:1μm)。次いで、得られた塗膜を高温乾燥した後、ゼラチンを基板から焼結させた。
 得られたサンプルに対して、Thermo ScientificTM K-AlphaTM システムを使用してESCA測定を行い、各原子濃度を評価した(各原子濃度は、ESCAにて測定したサンプルの10か所の領域において得られる各原子濃度を算術平均して得られる平均値として求めた)。また、測定後に各元素の結合エネルギーを評価することで、その存在割合から金属元素と酸化物元素の割合を測定した。更に、上記測定結果から、セリア粒子の表面における、アルカリ土類金属原子に対するセリウム原子の質量含有比を算出した。
〔粒子1~12の作製〕
 表1に示す成分及び配合量にかえた以外は、粒子0と同様の方法により、粒子1~12を作製し、評価を実施した。
 以下に表1を示す。
 また、表1において「質量含有比(セリウム原子/アルカリ土類金属原子)」とは、セリア粒子の表面における、アルカリ土類金属原子に対するセリウム原子の質量含有比を意図する。
Figure JPOXMLDOC01-appb-T000002
[実施例1A~65A、比較例1A~3Aの各研磨液の調製]
 表2に記載の各成分を混合し、実施例及び比較例の各研磨液を調製した。
 表2で示した成分の概要を以下に示す。
〔各種成分〕
<セリア粒子>
 上述したセリア粒子の製造方法により得られた粒子0~粒子12を使用した。
<特定酸>
・酢酸(カルボキシ基を含む有機酸に該当する)
・リンゴ酸(カルボキシ基を含む有機酸に該当する)
・リン酸(リン酸基を含む無機酸に該当する)
・pTSA(p-トルエンスルホン酸(スルホン酸基を含む有機酸に該当する))
・グリシン(カルボキシ基を含む有機酸に該当する)
・シュウ酸(カルボキシ基を含む有機酸に該当する)
・1-ヒドロキシエタン-1,1-ジホスホン酸(ホスホン酸基を含む有機酸に該当する))
・2-ピリジンカルボン酸(カルボキシ基を含む有機酸に該当する)
<アニオン系ポリマー>
・PAA(ポリアクリル酸)
・PMA(ポリメタクリル酸)
・PAA-PMA(ポリメタクリル酸とポリメタクリル酸を含む共重合体)
 なお、表中の「アニオン系ポリマー」欄における数値は、重量平均分子量を意味する。
<含窒素複素環化合物又は4-ピロン>
・2-メチルイミダゾール(含窒素複素環化合物に該当する)
・イミダゾール(含窒素複素環化合物に該当する)
・4-ピロン
<界面活性剤>
・DBSA(ドデシルベンゼンスルホン酸(アニオン系界面活性剤に該当する))
・Takesurf-A43-N(製品名、竹本油脂社製(アニオン系界面活性剤に該当する))
・セチルトリメチルアンモニウムクロリド(カチオン系界面活性剤に該当する)
・塩化セチルピリジニウム(カチオン系界面活性剤に該当する)
<水>
 水(純水)
〔各種測定〕
<pH>
 研磨液の25℃におけるpHをpHメータ(製品名「LAQUAシリーズ」、堀場製作所社製)を用いて測定した。測定結果を表2に示す。
<アルカリ土類金属原子の含有量の測定>
 使用するセリカ粒子について、セリカ粒子の全質量に対するアルカリ土類金属原子の含有量を測定した。具体的には、上述したセリカ粒子の製造方法により得られたセリカ粒子の固体を用いて、ICP-MS法(測定装置:Agillent8800)により行った。測定結果を表2に示す。
[実施例1A~65A、比較例1A~3Aの各研磨液の評価試験]
<研磨速度>
 研磨速度の算出:SiN、SiO、poly-Siのブランケットウェハをそれぞれ60秒間研磨し、ウェハ面上の均等間隔の49箇所に対し、研磨前後での膜厚差を求めて、膜厚差を研磨時間で割って求めた値を研磨速度(単位:nm/分)とした。結果を表1に示す。
・研磨装置:Reflexion(アプライド・マテリアルズ社製)
・研磨パッド:IC1010(ロデール社製)
・研磨条件;
  研磨圧力(被研磨面と研磨パッドとの接触圧力):1.5psi(なお、本明細書においてpsiとは、pound-force per square inch;重量ポンド毎平方インチを意図し、1psi=6894.76Paを意図する。)
  研磨液供給速度:200ml/分
  研磨定盤回転数:110rpm
  研磨ヘッド回転数:100rpm
<選択比>
 上記のようにして算出した各ウェハの研磨速度から、SiNの研磨速度に対するSiOの研磨速度の比(選択比(SiO/SiN))、及びpoly-Siの研磨速度に対するSiOの研磨速度の比(選択比(SiO/poly-Si))をそれぞれ求めた。結果を表2に示す。
<欠陥>
 上記研磨速度の算出と同様にして、60秒間研磨した後のSiNのブランケットウェハについて、Surfscan SP2(製品名、KLA社製、欠陥検査装置)によって、被研磨面の欠陥(スクラッチ)の評価を行った。結果を表2に示す。
A:研磨後の欠陥数が、20個以下
B:研磨後の欠陥数が、21~30個
C:研磨後の欠陥数が、31~50個
D:研磨後の欠陥数が、51~60個
E:研磨後の欠陥数が、61個以上
 以下に表2を示す。
 なお、表2において「アルカリ土類金属原子の含有量(質量ppt)」とは、セリア粒子の全質量に対する、アルカリ土類金属原子の含有量を意図する。
 また、表中、「A<」(Aは数値を表す。)はAよりも大きいことを意味し、「<A」はAよりも小さいことを意味する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表2の結果から、実施例の研磨液によれば、被研磨面の欠陥が発生しにくく、SiNの研磨速度に対するSiOの研磨速度の比(選択比(SiO/SiN))が高いことが明らかである。
 また、実施例1Aと実施例4Aとの対比から、セリア粒子のメジアン径が小さい場合(具体的には、D10が10nm以下であり、D50が15nm以下であり、D90が20nm以下である場合)、被研磨面の欠陥がより発生しにくく、選択比(SiO/SiN)がより高いことが確認された。なお、実施例1Aは、セリア粒子の製造時に攪拌速度が200rpmの態様に該当し、実施例4Aは、セリア粒子の製造時に攪拌速度が5500~5000rpmの態様に該当する。
 また、実施例2A~実施例7Aとの対比から、研磨液のpHが4~6である場合、被研磨面の欠陥がより発生しにくく、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと実施例8Aとの対比から、研磨液がヘキサメタリン酸を含む場合、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例13Aとの対比から、セリア粒子の表面において、アルカリ土類金属原子に対するセリウム原子の質量含有比が5以上である場合、被研磨面の欠陥がより発生しにくく、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例15A~実施例18Aの対比から、アルカリ土類金属原子の含有量が、セリア粒子の全質量に対して、10質量ppt~10質量ppbである場合、被研磨面の欠陥がより発生しにいことが確認された。また、実施例4A及び実施例9A~実施例18Aの対比から、アルカリ土類金属原子の含有量が、セリア粒子の全質量に対して10質量ppt~10質量ppbであり、且つ、アルカリ土類金属原子に対するセリウム原子の質量含有比が10~100である場合、被研磨面の欠陥がより発生しにくく、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例19A~実施例22Aとの対比から、セリア粒子の含有量が、研磨液の全質量に対して1.8質量%以下である場合(好ましくは1.2質量%以下である場合)、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例23A~実施例26Aとの対比から、特定酸の含有量が、研磨液の全質量に対して0.1~1.2質量%である場合、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例27A~実施例30Aとの対比から、アニオン系ポリマーの含有量が、研磨液の全質量に対して0.2~5質量%である場合(好ましくは1.5~4質量%である場合)、選択比(SiO/SiN)がより高いことが確認された。また、実施例4Aと、実施例27A~実施例30Aとの対比から、第2アニオン系ポリマー(遊離成分)の質量に対する、第1アニオン系ポリマー(吸着成分)の質量の比が、0.001~1.00である場合、被研磨面の欠陥がより発生しにくいことが確認された。
 また、実施例4Aと、実施例53A~実施例58Aとの対比から、アニオン系ポリマーの重量平均分子量が、15,000以上である場合、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例59A~実施例61Aとの対比から、研磨液が、含窒素複素環化合物又は4-ピロンを含む場合、選択比(SiO/SiN)がより高いことが確認された。
 また、実施例4Aと、実施例62A~実施例65Aとの対比から、研磨液が、アニオン系界面活性剤を含む場合、被研磨面の欠陥がより発生しにいことが確認された。
 表2の結果から、比較例の研磨液は、所望の要求を満たさないことが明らかである。
[実施例1B~65B、比較例1B~3Bの各研磨液の調製]
 表3に記載の各成分を混合し、実施例及び比較例の各研磨液を調製した。
 表3で示した成分の概要を以下に示す。
〔各種成分〕
<セリア粒子>
 上述したセリア粒子の製造方法により得られた粒子0~粒子12を使用した。
<特定酸>
・酢酸(カルボキシ基を含む有機酸に該当する)
・リンゴ酸(カルボキシ基を含む有機酸に該当する)
・リン酸(リン酸基を含む無機酸に該当する)
・pTSA(p-トルエンスルホン酸(スルホン酸基を含む有機酸に該当する))
・グリシン(カルボキシ基を含む有機酸に該当する)
・シュウ酸(カルボキシ基を含む有機酸に該当する)
・1-ヒドロキシエタン-1,1-ジホスホン酸(ホスホン酸基を含む有機酸に該当する))
・2-ピリジンカルボン酸(カルボキシ基を含む有機酸に該当する)
<カチオン系ポリマー>
・PMMA(ポリ(メタクリル酸トリメチルアミノエチル・メチル硫酸塩)、(一般式(1)で表される1価のアンモニウム塩構造を側鎖に含むポリマーに該当する))
・カチオン化POVAL(「クラレCポリマー」製品名(側鎖にカチオン性基を含むポリマーに該当する))
・DAPAA(ジメチルアミノプロピルアクリルアミド)の共重合体(側鎖にカチオン性基を含むポリマーに該当する))
・DADMA(ジアリルジメチルアンモニウムクロリド)の共重合体(側鎖にカチオン性基を含むポリマーに該当する))
・PEI(ポリエチルイミン塩酸塩、(主鎖にカチオン性基を含むポリマーに該当する))
 なお、表中の「カチオン系ポリマー」欄における数値は、重量平均分子量を意味する。
 
<含窒素複素環化合物又は4-ピロン>
・2-メチルイミダゾール(含窒素複素環化合物に該当する)
・イミダゾール(含窒素複素環化合物に該当する)
・4-ピロン
<界面活性剤>
・DBSA(ドデシルベンゼンスルホン酸(アニオン系界面活性剤に該当する))
・Takesurf-A43-N(製品名、竹本油脂社製(アニオン系界面活性剤に該当する))
・セチルトリメチルアンモニウムクロリド(カチオン系界面活性剤に該当する)
・塩化セチルピリジニウム(カチオン系界面活性剤に該当する)
<水>
 水(純水)
〔各種測定〕
<pH>
 研磨液の25℃におけるpHをpHメータ(製品名「LAQUAシリーズ」、堀場製作所社製)を用いて測定した。測定結果を表3に示す。
<アルカリ土類金属原子の含有量の測定>
 使用するセリカ粒子について、セリカ粒子の全質量に対するアルカリ土類金属原子の含有量を測定した。具体的には、上述したセリカ粒子の製造方法により得られたセリカ粒子の固体を用いて、ICP-MS法(測定装置:Agillent8900)により行った。測定結果を表3に示す。
[実施例1B~65B、比較例1B~3Bの各研磨液の評価試験]
<研磨速度>
 研磨速度の算出:SiN、SiO、poly-Siのブランケットウェハをそれぞれ60秒間研磨し、ウェハ面上の均等間隔の49箇所に対し、研磨前後での膜厚差を求めて、膜厚差を研磨時間で割って求めた値を研磨速度(単位:nm/分)とした。結果を表1に示す。
・研磨装置:Reflexion(アプライド・マテリアルズ社製)
・研磨パッド:IC1010(ロデール社製)
・研磨条件;
  研磨圧力(被研磨面と研磨パッドとの接触圧力):1.5psi(なお、本明細書においてpsiとは、pound-force per square inch;重量ポンド毎平方インチを意図し、1psi=6894.76Paを意図する。)
  研磨液供給速度:200ml/分
  研磨定盤回転数:110rpm
  研磨ヘッド回転数:100rpm
<選択比>
 上記のようにして算出した各ウェハの研磨速度から、SiNの研磨速度に対するSiOの研磨速度の比(選択比(SiO/SiN))、及びpoly-Siの研磨速度に対するSiNの研磨速度の比(選択比(SiN/poly-Si))をそれぞれ求めた。結果を表3に示す。
<欠陥>
 上記研磨速度の算出と同様にして、60秒間研磨した後のSiNのブランケットウェハについて、Surfscan SP2(製品名、KLA社製、欠陥検査装置)によって、被研磨面の欠陥(スクラッチ)の評価を行った。結果を表3に示す。
A:研磨後の欠陥数が、20個以下
B:研磨後の欠陥数が、21~30個
C:研磨後の欠陥数が、31~50個
D:研磨後の欠陥数が、51~60個
E:研磨後の欠陥数が、61個以上
 以下に表3を示す。
 なお、表3において「アルカリ土類金属原子の含有量(質量ppt)」とは、セリア粒子の全質量に対する、アルカリ土類金属原子の含有量を意図する。
 また、表中、「A<」(Aは数値を表す。)はAよりも大きいことを意味し、「<A」はAよりも小さいことを意味する。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表3の結果から、実施例の研磨液によれば、被研磨面の欠陥が発生しにくく、SiNの研磨速度とSiOの研磨速度がいずれも高いことが明らかである。
 また、実施例1Bと実施例4Bとの対比から、セリア粒子のメジアン径が小さい場合(具体的には、D10が10nm以下であり、D50が15nm以下であり、D90が20nm以下である場合)、被研磨面の欠陥がより発生しにくいことが確認された。なお、実施例1Bは、セリア粒子の製造時に攪拌速度が200rpmの態様に該当し、実施例4Bは、セリア粒子の製造時に攪拌速度が5500~5000rpmの態様に該当する。
 また、実施例2B~実施例7Bとの対比から、研磨液のpHが3~6である場合(好ましくは3~4である場合)、被研磨面の欠陥がより発生しにくいことが確認された。
 また、実施例3Bと、実施例13Bとの対比から、セリア粒子の表面において、アルカリ土類金属原子に対するセリウム原子の質量含有比が5以上である場合、SiNの研磨速度とSiOの研磨速度がいずれもより高く、被研磨面の欠陥がより発生しにくいことが確認された。
 また、実施例3Bと、実施例15B~実施例18Bの対比から、アルカリ土類金属原子の含有量が、セリア粒子の全質量に対して、10質量ppt~10質量ppbである場合、被研磨面の欠陥がより発生しにいことが確認された。また、実施例3B及び実施例8B~実施例18Bの対比から、アルカリ土類金属原子の含有量が、セリア粒子の全質量に対して10質量ppt~10質量ppbであり、且つ、アルカリ土類金属原子に対するセリウム原子の質量含有比が10~100である場合、SiNの研磨速度とSiOの研磨速度がいずれもより高く、被研磨面の欠陥がより発生しにくいことが確認された。
 また、実施例3Bと、実施例19B~実施例22Bとの対比から、セリア粒子の含有量が、研磨液の全質量に対して2.0質量%以上である場合、SiNの研磨速度とSiOの研磨速度がいずれもより高いことが確認された。
 また、実施例3Bと、実施例23B~実施例26Bとの対比から、特定酸の含有量が、研磨液の全質量に対して0.03~0.2質量%である場合、SiNの研磨速度とSiOの研磨速度がいずれもより高いことが確認された。
 また、実施例3Bと、実施例27B~実施例30Bとの対比から、カチオン系ポリマーの含有量が、研磨液の全質量に対して0.2~2質量%である場合、被研磨面の欠陥がより発生しにくいことが確認された。また、実施例3Bと、実施例27B~実施例30Bとの対比から、第2カチオン系ポリマー(遊離成分)の質量に対する、第1カチオン系ポリマー(吸着成分)の質量の比が、0.001~1.00である場合、被研磨面の欠陥がより発生しにくいことが確認された。
 また、実施例3Bと、実施例53B、実施例54B、実施例56B~実施例58Bとの対比から、カチオン系ポリマーの重量平均分子量が15,000以上(好ましくは20,000以上)であり、且つ、側鎖に4級化窒素を含むポリマーである場合(実施例54Bが該当)、SiNの研磨速度とSiOの研磨速度がいずれもより高いことが確認された。
 また、実施例3Bと、実施例59B~実施例61Bとの対比から、研磨液が、含窒素複素環化合物又は4-ピロンを含む場合、SiNの研磨速度とSiOの研磨速度がいずれもより高いことが確認された。
 また、実施例3Bと、実施例62B~実施例65Bとの対比から、研磨液が、アニオン系界面活性剤を含む場合、poly-Siの研磨速度に対するSiNの研磨速度の比(選択比(SiN/poly-Si))がより高いことが確認された。また、被研磨面の欠陥がより発生しにいことが確認された。
 表3の結果から、比較例の研磨液は、所望の要求を満たさないことが明らかである。

 

Claims (24)

  1.  化学的機械的研磨に用いられる研磨液であって、
     平均アスペクト比が1.5以上のセリア粒子と、
     アニオン系ポリマー又はカチオン系ポリマーと、を含み、
     pHが3~8である、研磨液、
     但し、前記研磨液が前記アニオン系ポリマーを含む場合、前記研磨液は、更に、カルボン酸基、リン酸基、ホスホン酸基、及びスルホン酸基からなる群より選ばれる少なくとも1種の基を含む、無機酸又は有機酸を含む。
  2.  前記セリア粒子の平均アスペクト比が、1.5~10である、請求項1に記載の研磨液。
  3.  前記セリア粒子は、その表面の少なくとも一領域にアルカリ土類金属原子を含む、請求項1又は2に記載の研磨液。
  4.  前記アルカリ土類金属原子の含有量が、前記セリア粒子の全質量に対して、10質量ppt~10質量ppbである、請求項3に記載の研磨液。
  5.  前記セリア粒子の表面において、前記アルカリ土類金属原子に対するセリウム原子の質量含有比が、5以上である、請求項3又は4に記載の研磨液。
  6.  前記セリア粒子は、前記アルカリ土類金属原子を含む酸化物を含む、請求項3~5のいずれか1項に記載の研磨液。
  7.  前記セリア粒子のメジアン径D10が、10nm以下である、請求項1~6のいずれか1項に記載の研磨液。
  8.  前記セリア粒子のメジアン径D50が、15nm以下である、請求項1~7のいずれか1項に記載の研磨液。
  9.  前記セリア粒子のメジアン径D90が、20nm以下である、請求項1~8のいずれか1項に記載の研磨液。
  10.  更に、含窒素複素環化合物及び4-ピロンからなる群より選ばれる少なくとも1種以上を含む、請求項1~9のいずれか1項に記載の研磨液。
  11.  更に、アニオン系界面活性剤を含む、請求項1~10のいずれか1項に記載の研磨液。
  12.  前記セリア粒子の平均一次粒径が、20nm以下である、請求項1~11のいずれか1項に記載の研磨液。
  13.  更に、ヘキサメタリン酸を含む、請求項1~12のいずれか1項に記載の研磨液。
  14.  前記研磨液が前記アニオン系ポリマーを含み、
     前記アニオン系ポリマーは、前記セリア粒子に吸着している第1アニオン系ポリマーと、前記セリア粒子に吸着していない第2アニオン系ポリマーとを含み、
     前記第2アニオン系ポリマーの質量に対する、前記第1アニオン系ポリマーの質量の比が、0.001~1.00である、請求項1~13のいずれか1項に記載の研磨液。
  15.  前記研磨液が、前記カチオン系ポリマーを含む、請求項1~13のいずれか1項に記載の研磨液。
  16.  前記カチオン系ポリマーは、前記セリア粒子に吸着している第1カチオン系ポリマーと、前記セリア粒子に吸着していない第2カチオン系ポリマーとを含み、
     前記第2カチオン系ポリマーの質量に対する、前記第1カチオン系ポリマーの質量の比が、0.001~1.00である、請求項15に記載の研磨液。
  17.  前記カチオン系ポリマーは、側鎖にカチオン性基を含むポリマーである、請求項15又は16に記載の研磨液。
  18.  窒化珪素、酸化珪素、又はポリシリコンの研磨に前記研磨液を用いた場合において、
     前記窒化珪素の研磨速度に対する、前記酸化珪素の研磨速度の比が、10~5000である、請求項1~14のいずれか1項に記載の研磨液。
  19.  更に、前記ポリシリコンの研磨速度に対する、前記酸化珪素の研磨速度の比が、10~5000である、請求項18に記載の研磨液。
  20.  窒化珪素、酸化珪素、又はポリシリコンの研磨に前記研磨液を用いた場合において、
     前記酸化珪素の研磨速度に対する、前記窒化珪素の研磨速度の比が、0.25~4.0である、請求項1~13及び請求項15~17のいずれか1項に記載の研磨液。
  21.  更に、前記ポリシリコンの研磨速度に対する、前記窒化珪素の研磨速度の比が0.25~500である、請求項20に記載の研磨液。
  22.  請求項1~21のいずれか1項に記載の研磨液を研磨定盤に取り付けられた研磨パッドに供給しながら、被研磨体の被研磨面を前記研磨パッドに接触させ、前記被研磨体及び前記研磨パッドを相対的に動かして前記被研磨面を研磨して、研磨済み被研磨体を得る工程を含む、化学的機械的研磨方法。
  23.  前記被研磨体が、窒化珪素及び酸化珪素を含む、請求項22に記載の化学的機械的研磨方法。
  24.  前記被研磨体が、ポリシリコンを更に含む、請求項23に記載の化学的機械的研磨方法。

     
PCT/JP2019/008082 2018-03-27 2019-03-01 研磨液、化学的機械的研磨方法 WO2019187977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510496A JP7175965B2 (ja) 2018-03-27 2019-03-01 研磨液、化学的機械的研磨方法
KR1020207022275A KR102500452B1 (ko) 2018-03-27 2019-03-01 연마액, 화학적 기계적 연마 방법
US16/939,227 US11359113B2 (en) 2018-03-27 2020-07-27 Polishing liquid and chemical mechanical polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-060516 2018-03-27
JP2018060516 2018-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/939,227 Continuation US11359113B2 (en) 2018-03-27 2020-07-27 Polishing liquid and chemical mechanical polishing method

Publications (1)

Publication Number Publication Date
WO2019187977A1 true WO2019187977A1 (ja) 2019-10-03

Family

ID=68061319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008082 WO2019187977A1 (ja) 2018-03-27 2019-03-01 研磨液、化学的機械的研磨方法

Country Status (5)

Country Link
US (1) US11359113B2 (ja)
JP (1) JP7175965B2 (ja)
KR (1) KR102500452B1 (ja)
TW (1) TWI798379B (ja)
WO (1) WO2019187977A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210115297A1 (en) * 2019-10-22 2021-04-22 Cmc Materials, Inc. Polishing composition and method with high selectivity for silicon nitride and polysilicon over silicon oxide
KR20220043424A (ko) * 2020-09-29 2022-04-05 에스케이씨솔믹스 주식회사 연마 패드, 연마 패드의 제조 방법 및 이를 이용한 반도체 소자의 제조 방법
EP4048745A4 (en) * 2019-10-22 2023-12-06 CMC Materials, Inc. COMPOSITION AND METHOD FOR DIELECTRIC CMP

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240062238A (ko) * 2022-10-28 2024-05-09 솔브레인 주식회사 화학적 기계적 연마 슬러리 조성물 및 반도체 소자의 제조 방법
CN116004122A (zh) * 2022-12-27 2023-04-25 嘉庚创新实验室 一种二氧化铈抛光液及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519466A (ja) * 2004-11-05 2008-06-05 キャボット マイクロエレクトロニクス コーポレイション 窒化ケイ素の除去速度が酸化ケイ素と比べて高い研磨組成物及び方法
JP2012503880A (ja) * 2008-09-26 2012-02-09 ローディア・オペラシオン 化学機械研磨用研磨剤組成物及びその使用法
JP2015224276A (ja) * 2014-05-27 2015-12-14 日立化成株式会社 研磨液及びこの研磨液を用いた基板の研磨方法
JP2016531429A (ja) * 2013-07-22 2016-10-06 キャボット マイクロエレクトロニクス コーポレイション 酸化ケイ素、窒化ケイ素及びポリシリコン材料のcmp用組成物及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083688A1 (en) * 2005-01-28 2006-08-10 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for making same
KR101349983B1 (ko) * 2006-09-13 2014-01-13 아사히 가라스 가부시키가이샤 반도체 집적 회로 장치용 연마제, 연마 방법 및 반도체 집적 회로 장치의 제조 방법
EP3160905B1 (en) * 2014-06-24 2021-02-24 Rhodia Operations Metal doped cerium oxide compositions
JP6769105B2 (ja) 2016-05-13 2020-10-14 日立化成株式会社 セリア粒子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519466A (ja) * 2004-11-05 2008-06-05 キャボット マイクロエレクトロニクス コーポレイション 窒化ケイ素の除去速度が酸化ケイ素と比べて高い研磨組成物及び方法
JP2012503880A (ja) * 2008-09-26 2012-02-09 ローディア・オペラシオン 化学機械研磨用研磨剤組成物及びその使用法
JP2016531429A (ja) * 2013-07-22 2016-10-06 キャボット マイクロエレクトロニクス コーポレイション 酸化ケイ素、窒化ケイ素及びポリシリコン材料のcmp用組成物及び方法
JP2015224276A (ja) * 2014-05-27 2015-12-14 日立化成株式会社 研磨液及びこの研磨液を用いた基板の研磨方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210115297A1 (en) * 2019-10-22 2021-04-22 Cmc Materials, Inc. Polishing composition and method with high selectivity for silicon nitride and polysilicon over silicon oxide
EP4048751A4 (en) * 2019-10-22 2023-11-29 CMC Materials, Inc. COMPOSITION AND POLISHING METHOD HAVING HIGH SELECTIVITY FOR SILICON NITRIDE AND POLYSILICON RATHER THAN FOR SILICON OXIDE
EP4048745A4 (en) * 2019-10-22 2023-12-06 CMC Materials, Inc. COMPOSITION AND METHOD FOR DIELECTRIC CMP
EP4048749A4 (en) * 2019-10-22 2023-12-06 CMC Materials, Inc. COMPOSITION AND METHOD FOR DIELECTRIC CMP
KR20220043424A (ko) * 2020-09-29 2022-04-05 에스케이씨솔믹스 주식회사 연마 패드, 연마 패드의 제조 방법 및 이를 이용한 반도체 소자의 제조 방법
KR102421888B1 (ko) 2020-09-29 2022-07-15 에스케이씨솔믹스 주식회사 연마 패드, 연마 패드의 제조 방법 및 이를 이용한 반도체 소자의 제조 방법

Also Published As

Publication number Publication date
US11359113B2 (en) 2022-06-14
KR20200102502A (ko) 2020-08-31
TWI798379B (zh) 2023-04-11
KR102500452B1 (ko) 2023-02-16
TW201942319A (zh) 2019-11-01
JPWO2019187977A1 (ja) 2021-02-12
US20200354610A1 (en) 2020-11-12
JP7175965B2 (ja) 2022-11-21

Similar Documents

Publication Publication Date Title
JP7175965B2 (ja) 研磨液、化学的機械的研磨方法
TW512169B (en) Aqueous chemical mechanical polishing composition, slurry and method for chemical-mechnical polishing of a substrate
TWI478227B (zh) 用於基板之化學機械研磨之方法
JP7300030B2 (ja) 研磨液および化学的機械的研磨方法
CN109312213B (zh) 研磨液、化学机械研磨方法
JP2003124160A (ja) 研磨用組成物およびそれを用いた研磨方法
JP2007280981A (ja) 化学機械研磨用水系分散体、化学機械研磨方法、化学機械研磨用キット、および化学機械研磨用水系分散体を調製するためのキット
JP6761469B2 (ja) 研磨液、化学的機械的研磨方法
JP2007251141A (ja) 多成分障壁研磨液
WO2014007063A1 (ja) Cmp用研磨液、貯蔵液及び研磨方法
WO2017057156A1 (ja) 研磨方法
WO2017057155A1 (ja) 研磨用組成物
JP7508275B2 (ja) 研磨用組成物、研磨方法および半導体基板の製造方法
JP5375025B2 (ja) 研磨液
JP7263516B2 (ja) 研磨液、及び、化学的機械的研磨方法
US11267989B2 (en) Polishing liquid and chemical mechanical polishing method
JP7331103B2 (ja) 研磨液、及び、化学的機械的研磨方法
JP6601209B2 (ja) Cmp用研磨液及びこれを用いた研磨方法
US20220106499A1 (en) Polishing liquid and chemical mechanical polishing method
TWI857056B (zh) 研磨液及化學機械研磨方法
JP2017045822A (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2004277620A (ja) 研磨用組成物
JP2004175903A (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207022275

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020510496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776826

Country of ref document: EP

Kind code of ref document: A1