WO2019187915A1 - リチウム二次電池及び電池内蔵カード - Google Patents

リチウム二次電池及び電池内蔵カード Download PDF

Info

Publication number
WO2019187915A1
WO2019187915A1 PCT/JP2019/007462 JP2019007462W WO2019187915A1 WO 2019187915 A1 WO2019187915 A1 WO 2019187915A1 JP 2019007462 W JP2019007462 W JP 2019007462W WO 2019187915 A1 WO2019187915 A1 WO 2019187915A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
negative electrode
lithium secondary
plate
Prior art date
Application number
PCT/JP2019/007462
Other languages
English (en)
French (fr)
Inventor
千織 鈴木
雄樹 藤田
春男 大塚
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020510467A priority Critical patent/JP6923747B2/ja
Priority to CN201980005622.4A priority patent/CN111902991B/zh
Publication of WO2019187915A1 publication Critical patent/WO2019187915A1/ja
Priority to US16/900,023 priority patent/US11424455B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery and a battery built-in card.
  • Smart cards with built-in batteries are being put into practical use.
  • An example of a smart card with a built-in primary battery is a credit card with a one-time password display function.
  • An example of a smart card with a built-in secondary battery is a card with a fingerprint authentication / wireless communication function including a wireless communication IC, a fingerprint analysis ASIC, and a fingerprint sensor.
  • Smart card batteries are generally required to have characteristics such as a thickness of less than 0.45 mm, high capacity and low resistance, bending resistance, and resistance to process temperatures.
  • Patent Document 1 Japanese Patent Laid-Open No. 2017-79192 discloses a secondary battery built in a plate member such as a card, which has a sufficient strength even when the plate member undergoes bending deformation.
  • a battery is disclosed.
  • the secondary battery includes an electrode body including a positive electrode and a negative electrode, a sheet-like laminate film outer package body that is welded on the outer peripheral side in a state of covering the electrode body, one end side connected to the electrode body, and the other end side being a laminate film
  • Patent Document 2 Japanese Patent Application Laid-Open No.
  • This thin battery includes a battery main body portion that accommodates a separator, a positive electrode layer and a negative electrode layer between a positive electrode current collector and a negative electrode current collector, and a resin frame member that seals the periphery of the battery main body portion.
  • the thickness of the seal portion is D1 and the maximum thickness of the battery central portion is D2, 100 ⁇ m ⁇ D1 ⁇ 320 ⁇ m and D1 / D2 ⁇ 0.85 are satisfied.
  • a powder-dispersed positive electrode produced by applying and drying a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder and the like is employed. Yes.
  • a powder-dispersed positive electrode contains a relatively large amount (for example, about 10% by weight) of a component that does not contribute to capacity (eg, about 10% by weight).
  • the packing density of the object is lowered.
  • the powder-dispersed positive electrode has much room for improvement in terms of capacity and charge / discharge efficiency. Therefore, attempts have been made to improve capacity and charge / discharge efficiency by forming the positive electrode or the positive electrode active material layer with a lithium composite oxide sintered plate.
  • the positive electrode or the positive electrode active material layer does not contain a binder or a conductive additive, it is expected that a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the lithium composite oxide.
  • Patent Document 3 Japanese Patent No. 5587052 discloses a lithium secondary battery including a positive electrode current collector and a positive electrode active material layer bonded to the positive electrode current collector through a conductive bonding layer.
  • a positive electrode is disclosed.
  • This positive electrode active material layer is said to be composed of a lithium composite oxide sintered plate having a thickness of 30 ⁇ m or more, a porosity of 3 to 30%, and an open pore ratio of 70% or more.
  • Patent Document 4 International Publication No. 2017/146088 discloses a plurality of primary particles composed of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) as a positive electrode of a lithium secondary battery including a solid electrolyte. And a plurality of primary particles are oriented with an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the positive electrode plate.
  • the present inventors have recently made a separation distance between the inner peripheral edge of the sealing portion of the outer film and the outer peripheral edge of the positive electrode plate, and electrolysis It has been found that when the amount of the liquid satisfies a predetermined condition, wrinkles are hardly generated near the positive electrode tab terminal even if it is repeatedly bent. In particular, wrinkles are generated in the vicinity of the positive electrode tab terminal even when the film-covered lithium secondary battery satisfying the above conditions is subjected to repeated bending tests over the hundreds of times required by the JIS standard in the form of a battery built-in card. We obtained knowledge that it was difficult.
  • the object of the present invention is to provide a lithium composite oxide sintered body plate as a positive electrode plate, and even when repeatedly bent (particularly in the form of a battery built-in card), wrinkles are unlikely to occur near the end of the positive electrode plate. It is providing the lithium secondary battery of a film exterior form.
  • a positive electrode plate which is a lithium composite oxide sintered body plate; A negative electrode layer containing carbon having a size larger than the size of the positive electrode plate; A separator interposed between the positive electrode plate and the negative electrode layer, and having a size larger than the size of the positive electrode plate and the negative electrode layer; A positive electrode current collector foil adhered to a surface of the positive electrode plate away from the separator; A negative electrode current collector foil adhered to a surface of the negative electrode layer away from the separator; An electrolyte solution impregnated with the positive electrode plate, the negative electrode layer, and the separator; The outer peripheral edges are sealed together to form an internal space, and the positive electrode plate, the positive electrode current collector foil, the negative electrode layer, the negative electrode current collector foil, the separator, and the electrolytic solution are accommodated in the internal space.
  • a pair of exterior films A positive electrode tab terminal connected to the positive electrode current collector foil and extending outward from a sealed portion of the pair of exterior films; A negative electrode tab terminal connected to the negative electrode current collector foil and extending outward from a sealing portion of the pair of exterior films;
  • a lithium secondary battery comprising: The outer peripheral portion of the separator is in close contact with at least the outer peripheral edge of the exterior film on the positive electrode plate side or a peripheral region in the vicinity thereof, and separates the compartment containing the positive electrode plate and the compartment containing the negative electrode layer.
  • the positive electrode tab terminal and the negative electrode tab terminal extend from different positions or different sides of a common side of the sealing portion of the exterior film, With respect to the side where the positive electrode tab terminal is sealed, the separation distance W p between the inner peripheral edge of the sealing portion of the exterior film and the outer peripheral edge of the positive electrode plate is 2.0 to 4.0 mm, A lithium secondary battery is provided in which the capacity of the electrolytic solution is 1.05 to 1.25 times the total void capacity of the positive electrode plate, the separator, and the negative electrode layer.
  • a battery built-in card comprising a resin base material and the lithium secondary battery embedded in the resin base material.
  • FIG. 2A A photograph of the film-clad battery is included at the right end of FIG. 2B.
  • SEM image shows an example of a cross section perpendicular
  • EBSD image in the cross section of the orientation positive electrode plate shown by FIG.
  • histogram shows distribution of the orientation angle of the primary particle in the EBSD image of FIG.
  • 2 is a laser microscope image obtained by photographing a cross section of the lithium secondary battery produced in Example 1. It is a schematic diagram of the surface profile for demonstrating the height H of the convex part which generate
  • 5 is a Cole-Cole plot measured by an alternating current impedance method at a battery voltage of 3.8 V for the lithium secondary battery produced in Example 1.
  • FIG. 1 schematically shows an example of the lithium secondary battery of the present invention.
  • a lithium secondary battery 10 shown in FIG. 1 includes a positive electrode plate 16, a separator 18, a negative electrode layer 20, a positive electrode current collector foil 14, a negative electrode current collector foil 22, an electrolyte solution 24, a positive electrode tab terminal 15, and a negative electrode tab terminal (not shown). And a pair of exterior films 26.
  • the positive electrode plate 16 is a lithium composite oxide sintered body plate.
  • the negative electrode layer 20 includes carbon and has a size larger than the size of the positive electrode plate 16.
  • the separator 18 is interposed between the positive electrode plate 16 and the negative electrode layer 20 and has a size larger than the size of the positive electrode plate 16 and the negative electrode layer 20.
  • the positive electrode current collector foil 14 is bonded to the surface of the positive electrode plate 16 away from the separator 18, while the negative electrode current collector foil 22 is bonded to the surface of the negative electrode layer away from the separator 18.
  • the electrolytic solution 24 is impregnated in the positive electrode plate 16, the negative electrode layer 20, and the separator 18.
  • the pair of exterior films 26 have their outer peripheries sealed together to form an internal space, in which the positive electrode plate 16, the positive electrode current collector foil 14, the negative electrode layer 20, the negative electrode current collector foil 22, and the separator 18. And the electrolytic solution 24 is accommodated.
  • the outer peripheral portion of the separator 18 is in close contact with at least the outer peripheral edge of the exterior film 26 on the positive electrode plate 16 side or a peripheral region in the vicinity thereof, and separates the compartment containing the positive electrode plate 16 from the compartment containing the negative electrode layer 20.
  • the positive electrode tab terminal 15 is connected to the positive electrode current collector foil 14 and extends outward from the sealed portion of the pair of exterior films 26, while the negative electrode tab terminal is connected to the negative electrode current collector foil 22 and connected to a pair of The outer film 26 extends outward from the sealing portion.
  • the positive electrode tab terminal 15 and the negative electrode tab terminal are extended from the different position of the common one side of the sealing part of the exterior film 26, or a different side (it is necessarily a different position in the latter case).
  • the negative electrode tab terminal (and its connection with the negative electrode current collector foil 22) is not drawn in FIG. 1, this exists in a position where the negative electrode tab terminal is hidden and cannot be seen on the back side of the positive electrode tab terminal 15 in the direction perpendicular to the paper surface. (See the negative electrode tab terminal 23 shown in FIG. 2). Then, with respect to the sides of the positive electrode tab terminal 15 is sealed, the distance W p of the outer edge of the inner peripheral edge and the positive electrode plate 16 of the sealing portion of the casing films 26 is 2.0 ⁇ 4.0 mm.
  • the capacity of the electrolytic solution 24 is 1.05 to 1.25 times the total void capacity of the positive electrode plate 16, the separator 18 and the negative electrode layer 20.
  • the separation distance between the inner peripheral edge of the sealing portion of the outer film 26 and the outer peripheral edge of the positive electrode plate 16, and the electrolytic solution When the amount of 24 satisfies the predetermined condition, wrinkles are unlikely to occur in the vicinity of the positive electrode tab terminal 15 even if it is repeatedly bent. In particular, wrinkles are formed in the vicinity of the positive electrode tab terminal 15 even when the film-covered lithium secondary battery 10 satisfying the above conditions is subjected to repeated bending tests over the hundreds of times required by the JIS standard in the form of a battery built-in card. Less likely to occur.
  • a card incorporating a film-clad battery equipped with a lithium composite oxide sintered body plate (positive electrode plate) as disclosed in Patent Documents 3 and 4 can be produced hundreds of times as required by the JIS standard.
  • a repeated bending test was performed, there was a problem that wrinkles were likely to occur around the side of the card surface where the positive electrode tab terminal was present.
  • these wrinkles can be effectively suppressed. The reason is not clear, but it is presumed as follows. That is, with the adoption of the positive electrode sintered body plate, an excess space in which the electrolytic solution stays around the side where the positive electrode tab terminal exists is likely to occur, and this is considered to be the main cause of wrinkles.
  • the lithium secondary battery 10 of the present invention is preferably a thin secondary battery that can be built in a card, and more preferably a thin secondary battery that is embedded in a resin base material to form a card. That is, according to another preferable aspect of the present invention, there is provided a battery built-in card including a resin base material and a lithium secondary battery embedded in the resin base material. Such a battery built-in card typically includes a pair of resin films and a lithium secondary battery sandwiched between the pair of resin films, and the resin films are heat-sealed by a heating press. Is preferred.
  • the lithium secondary battery 10 preferably has a low internal resistance.
  • the amount of the electrolytic solution 24 contributes to securing a desired low internal resistance by satisfying the predetermined condition described above.
  • a lithium secondary battery 10 is preferably resistance at 1Hz which is determined by the AC impedance method is less than 25 [Omega] ⁇ cm 2, more preferably less than 21 ⁇ ⁇ cm 2, more preferably less than 18 ⁇ ⁇ cm 2 .
  • the lower limit value of the resistance at 1 Hz is not particularly limited, but is typically 12 ⁇ ⁇ cm 2 or more.
  • the positive electrode plate 16 is a lithium composite oxide sintered body plate.
  • the fact that the positive electrode plate 16 is a sintered body plate means that the positive electrode plate 16 does not contain a binder. This is because even if the binder is contained in the green sheet, the binder disappears or burns out during firing. And since the positive electrode plate 16 does not contain a binder, there is an advantage that deterioration of the positive electrode due to the electrolytic solution 24 can be avoided.
  • the lithium composite oxide constituting the sintered body plate is particularly preferably lithium cobaltate (typically LiCoO 2 (hereinafter sometimes abbreviated as LCO)).
  • LCO lithium cobaltate
  • Various lithium composite oxide sintered plates or LCO sintered plates are known and disclosed in, for example, Patent Document 3 (Patent No. 587052) and Patent Document 4 (International Publication No. 2017/146088). Things can be used.
  • the positive electrode plate 16 that is, the lithium composite oxide sintered body plate includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles are on the plate surface of the positive electrode plate.
  • the positive electrode plate is oriented at an average orientation angle of more than 0 ° and not more than 30 °.
  • 3 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the alignment positive electrode plate 16
  • FIG. 4 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the alignment positive electrode plate 16.
  • EBSD electron backscatter diffraction
  • FIG. 5 shows a histogram showing the orientation angle distribution of the primary particles 11 in the EBSD image of FIG.
  • the orientation angle of each primary particle 11 is shown in shades of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
  • black portions in the alignment positive electrode plate 16 are pores.
  • the oriented positive plate 16 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other.
  • Each primary particle 11 is mainly plate-shaped, but may include particles formed in a rectangular parallelepiped shape, a cubic shape, a spherical shape, or the like.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni, and Mn. It is an oxide represented by.
  • the lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between, that is, the transition metal ion layer and the lithium single layer are alternately arranged via oxide ions.
  • lithium composite oxide examples include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (nickel / lithium manganate) , Li x NiCoO 2 (nickel / lithium cobaltate), Li x CoNiMnO 2 (cobalt / nickel / lithium manganate), Li x CoMnO 2 (cobalt / lithium manganate), and the like, particularly preferably Li x CoO 2.
  • the lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba
  • One or more elements selected from Bi, Bi, and W may be included.
  • the average value of the orientation angles of the primary particles 11, that is, the average orientation angle is more than 0 ° and not more than 30 °.
  • the average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image obtained by observing a 95 ⁇ m ⁇ 125 ⁇ m rectangular region as shown in FIG. 4 at a magnification of 1000 times, three horizontal lines that divide the alignment positive plate 16 into four in the thickness direction, and the alignment positive plate 16 Draw three vertical lines that equally divide the Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines.
  • the average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics.
  • the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of it is distributed in a region of more than 0 ° and not more than 30 °. Is preferred. That is, the oriented sintered body constituting the oriented positive electrode plate 16 has an orientation angle of 0 ° with respect to the plate surface of the oriented positive electrode plate 16 among the primary particles 11 included in the analyzed cross section when the cross section is analyzed by EBSD.
  • the total area of primary particles 11 (hereinafter referred to as low-angle primary particles) having an angle of 30 ° or less is included in the cross section of primary particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle).
  • the total area is preferably 70% or more, more preferably 80% or more. Thereby, since the ratio of the primary particle 11 with high mutual adhesiveness can be increased, rate characteristics can be further improved.
  • the total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
  • the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
  • each primary particle 11 is mainly plate-shaped, the cross-section of each primary particle 11 extends in a predetermined direction as shown in FIGS. 3 and 4, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
  • the total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 4, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the aspect ratio of the primary particles 11 is a value obtained by dividing the maximum ferret diameter of the primary particles 11 by the minimum ferret diameter.
  • the maximum ferret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when the cross section is observed.
  • the minimum ferret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel lines on the EBSD image.
  • the average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
  • the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 12 ⁇ m or more.
  • the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the density of the oriented sintered body constituting the oriented positive plate 16 is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the porosity of the oriented sintered body constituting the oriented positive plate 16 is preferably 30% or less, more preferably 20% or less, and even more preferably 10% or less.
  • the denseness of the oriented sintered body is calculated by binarizing the obtained SEM image by observing the cross section of the positive electrode plate by CP (cross section polisher) polishing and then SEM observation at 1000 magnifications.
  • the average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less. As the average equivalent circle diameter of each pore is smaller, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the average equivalent circle diameter of the pores is a value obtained by arithmetically averaging the equivalent circle diameters of the ten pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
  • Each pore formed inside the oriented sintered body may be an open pore connected to the outside of the oriented positive plate 16, but preferably does not penetrate the oriented positive plate 16. Each pore may be a closed pore.
  • the thickness of the positive electrode plate 16 is not particularly limited, but is preferably 70 to 120 ⁇ m, more preferably 80 to 100 ⁇ m, still more preferably 80 to 95 ⁇ m, and particularly preferably 85 to 95 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium secondary battery 10, and the battery characteristics are deteriorated (particularly, the resistance value is increased) due to repeated charge and discharge. In addition, it contributes to the suppression of wrinkling due to repeated bending.
  • the size of the positive electrode plate 16 is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm to 200 mm ⁇ 200 mm square, and further preferably 10 mm ⁇ 10 mm to 100 mm ⁇ 100 mm square. if, preferably 25 mm 2 or more, more preferably 100 ⁇ 40000 mm 2, more preferably from 100 ⁇ 10000 mm 2.
  • the negative electrode layer 20 contains carbon as a negative electrode active material.
  • carbon include graphite (graphite), pyrolytic carbon, coke, fired resin, mesophase spherules, mesophase pitch, and the like, preferably graphite.
  • the graphite may be either natural graphite or artificial graphite.
  • the negative electrode layer 20 preferably further contains a binder.
  • the binder include styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and the like, preferably styrene butadiene rubber (SBR) or polyvinylidene fluoride (PVDF).
  • ⁇ -butyrolactone (GBL) having excellent heat resistance is used as the electrolyte solution 24
  • SBR styrene butadiene rubber
  • the thickness of the negative electrode layer 20 is not particularly limited, but is preferably 70 to 160 ⁇ m, more preferably 80 to 150 ⁇ m, still more preferably 90 to 140 ⁇ m, and particularly preferably 100 to 130 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium secondary battery 10 and contribute to the suppression of wrinkle generation in the vicinity of the positive electrode tab terminal 15 due to repeated bending. .
  • the separator 18 is preferably a polyolefin, polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose separator, and the polyolefin separator may be a ceramic coated on one side.
  • polyolefins include polypropylene (PP), polyethylene (PE), and combinations thereof.
  • PP polypropylene
  • PE polyethylene
  • a separator made of polyolefin or cellulose is preferable.
  • a separator made of polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose is preferable.
  • the separator made of polyimide or cellulose is different from the widely used separator made of polyolefin having poor heat resistance, and is not only excellent in its own heat resistance but also in an electrolyte component having excellent heat resistance, ⁇ -butyrolactone (GBL). ) Excellent wettability. Therefore, when an electrolytic solution containing GBL is used, the electrolytic solution can be sufficiently permeated into the separator (without causing it to bounce).
  • a particularly preferable separator from the viewpoint of heat resistance is a polyimide separator. Although a polyimide separator is commercially available, it has an extremely complicated microstructure, and therefore has an advantage that it can more effectively prevent or delay the extension of lithium dendrite deposited during overcharge and the short circuit caused thereby.
  • the electrolytic solution 24 is not particularly limited, and an organic solvent (for example, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or ethylene carbonate (EC)).
  • an organic solvent for example, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or ethylene carbonate (EC)
  • a commercially available electrolytic solution for a lithium battery such as a solution in which a lithium salt (for example, LiPF 6 ) salt is dissolved in a mixed solvent of ethyl methyl carbonate (EMC) may be used.
  • a lithium salt for example, LiPF 6
  • EMC ethyl methyl carbonate
  • the electrolytic solution 24 preferably contains lithium borofluoride (LiBF 4 ) in a non-aqueous solvent.
  • the non-aqueous solvent may be a single solvent composed of ⁇ -butyrolactone (GBL) or a mixed solvent composed of ⁇ -butyrolactone (GBL) and ethylene carbonate (EC).
  • GBL ⁇ -butyrolactone
  • EC ethylene carbonate
  • the volume ratio of EC: GBL in the non-aqueous solvent is preferably 0: 1 to 1: 1 (GBL ratio 50 to 100% by volume), more preferably 0: 1 to 1: 1.5 ( GBL ratio 60 to 100% by volume), more preferably 0: 1 to 1: 2 (GBL ratio 66.6 to 100% by volume), particularly preferably 0: 1 to 1: 3 (GBL ratio 75 to 100% by volume).
  • Lithium borofluoride (LiBF 4 ) dissolved in a non-aqueous solvent is an electrolyte with a high decomposition temperature, which also brings about a significant improvement in heat resistance.
  • the LiBF 4 concentration in the electrolytic solution 24 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, still more preferably 0.7 to 1.7 mol / L, particularly preferably. 0.8 to 1.5 mol / L.
  • the electrolytic solution 24 preferably further contains vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinylethylene carbonate (VEC) as an additive. Both VC and FEC are excellent in heat resistance. Therefore, when the electrolytic solution 24 contains such an additive, an SEI film having excellent heat resistance can be formed on the surface of the negative electrode layer 20.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinylethylene carbonate
  • the positive electrode current collector foil 14 is bonded to the surface of the positive electrode plate 16 away from the separator 18, while the negative electrode current collector foil 22 is bonded to the surface of the negative electrode layer away from the separator 18. Accordingly, the positive electrode current collector foil 14 is interposed between the positive electrode plate 16 and the outer film 26, while the negative electrode current collector foil 22 is interposed between the negative electrode layer 20 and the outer film 26. Preferably, one of the positive electrode current collector foil 14 and the outer film 26 is bonded, and the other of the negative electrode current collector foil 22 and the outer film 26 is bonded.
  • the positive electrode current collector foil 14 and the negative electrode current collector foil 22 are not particularly limited, but are preferably metal foils such as a copper foil and an aluminum foil.
  • the positive electrode tab terminal 15 is connected to the positive electrode current collector foil 14 and extends outward from the sealed portion of the pair of exterior films 26, while the negative electrode tab terminal 23 is connected to the negative electrode current collector foil 22 and 1 pair It extends outside from the sealing part of the outer packaging film 26. More specifically, the positive electrode tab terminal 15 and the negative electrode tab terminal 23 extend from different positions or different sides of a common side of the sealing portion of the exterior film 26.
  • the positive electrode tab terminal 15 and the negative electrode tab terminal 23 are not particularly limited, but may be the same or different materials from the positive electrode current collector foil 14 and the negative electrode current collector foil 22, respectively, preferably a metal foil such as a copper foil or an aluminum foil. is there.
  • connection between the positive electrode tab terminal 15 and the positive electrode current collector foil 14 and the connection between the negative electrode tab terminal 23 and the negative electrode current collector foil 22 may be performed by a known connection method such as welding or adhesive, and are not particularly limited.
  • the positive electrode tab terminal 15 and the positive electrode current collector foil 14 or the negative electrode tab terminal 23 and the negative electrode current collector foil 22 may be an integrated product made of the same material.
  • the thickness of the lithium secondary battery 10 is preferably 350 to 500 ⁇ m, more preferably 380 to 450 ⁇ m, and still more preferably 400 to 430 ⁇ m. When the thickness is within such a range, a thin lithium battery suitable for being incorporated in a thin device such as a smart card can be obtained, and the generation of wrinkles in the vicinity of the positive electrode tab terminal 15 due to repeated bending can be suppressed. Also contribute.
  • the pair of exterior films 26 have their outer peripheral edges sealed together to form an internal space, and the battery element 12 and the electrolytic solution 24 are accommodated in the internal space. That is, as shown in FIG. 1, the battery element 12 and the electrolyte solution 24 which are the contents of the lithium secondary battery 10 are packaged and sealed with a pair of exterior films 26, and as a result, the lithium secondary battery 10 is sealed.
  • the battery 10 is in the form of a so-called film-clad battery.
  • the battery element 12 is defined as including the positive electrode plate 16, the positive electrode current collector foil 14, the separator 18, the negative electrode layer 20, and the negative electrode current collector foil 22.
  • the outer edge of the lithium secondary battery 10 is preferably sealed by heat sealing the exterior films 26 together.
  • Sealing by heat sealing is preferably performed using a heat bar (also referred to as a heating bar) that is generally used in heat sealing applications.
  • a heat bar also referred to as a heating bar
  • it is a quadrilateral shape of the lithium secondary battery 10, and it is preferable that the outer peripheral edge of the pair of exterior films 26 is sealed over all four outer peripheral sides.
  • the exterior film 26 may be a commercially available exterior film.
  • the thickness of the exterior film 26 is preferably 50 to 80 ⁇ m, more preferably 55 to 75 ⁇ m, still more preferably 55 to 65 ⁇ m.
  • a preferable exterior film 26 is a laminate film including a resin film and a metal foil, and more preferably an aluminum laminate film including a resin film and an aluminum foil.
  • the laminate film is preferably provided with resin films on both surfaces of a metal foil such as an aluminum foil.
  • the resin film on one side of the metal foil (hereinafter referred to as a surface protective film) is made of a material having excellent reinforcing properties such as nylon, polyamide, polyethylene terephthalate, polyimide, polytetrafluoroethylene, and polychlorotrifluoroethylene.
  • the resin film on the other side of the metal foil is preferably made of a heat seal material such as polypropylene.
  • the negative electrode layer 20 has a size larger than the size of the positive electrode plate 16, while the separator 18 has a size larger than the sizes of the positive electrode plate 16 and the negative electrode layer 20. Then, the outer peripheral portion of the separator 18 is in close contact with at least the outer peripheral edge of the exterior film 26 on the positive electrode plate 16 side or the peripheral region in the vicinity thereof, and the compartment containing the positive electrode plate 16 and the compartment containing the negative electrode layer 20 are isolated. ing. Further, the outer peripheral portion of the separator 18 may be in close contact with the outer peripheral edge of the exterior film 26 on the negative electrode layer 20 side or a peripheral region in the vicinity thereof.
  • a separation distance W p is 2.0 ⁇ 4.0 mm between the outer edge of the inner peripheral edge and the positive electrode plate 16 of the sealing portion of the casing films 26, preferably 2.
  • the thickness is 5 to 3.5 mm, more preferably 2.5 to 3.0 mm.
  • the capacity of the electrolytic solution 24 is 1.05 to 1.25 times, preferably 1.10 to 1.25 times, more preferably 1.10 times the total void capacity of the positive electrode plate 16, the separator 18 and the negative electrode layer 20. It is ⁇ 1.20 times, more preferably 1.12 to 1.20 times, and particularly preferably 1.12 to 1.18 times.
  • the capacity of the electrolytic solution 24 is obtained by measuring the weight of the lithium secondary battery 10 in advance, then opening the lithium secondary battery 10, vacuum drying (for example, heating at 120 ° C. for 12 hours), and measuring the weight after drying. It can be determined by measuring the weight change before and after drying.
  • the ratio (times) of the electrolyte volume to the total void volume can be calculated.
  • the void volume of each member of the positive electrode plate 16, the separator 18 and the negative electrode layer 20 is calculated by multiplying the outer volume (member volume including the void) calculated from the outer dimension of each member by the void ratio of each member. be able to.
  • the porosity of each member of the positive electrode plate 16, the negative electrode layer 20, and the separator 18 is such that the cross-sectional SEM images (reflected images) of the members are taken with respect to three visual fields that do not overlap each other, and the members and the voids can be distinguished for each visual field. It is desirable to determine by calculating the void ratio by adjusting the contrast and binarizing, and calculating the average value of the void ratio calculated from the three visual fields.
  • the oriented positive electrode plate or oriented sintered plate preferably used in the lithium secondary battery of the present invention may be produced by any production method, preferably as exemplified below. (1) Production of LiCoO 2 template particles, (2) Production of matrix particles, (3) Production of green sheets, and (4) Production of oriented sintered plates.
  • LiCoO 2 template particles Co 3 O 4 raw material powder and Li 2 CO 3 raw material powder are mixed.
  • the obtained mixed powder is fired at 500 to 900 ° C. for 1 to 20 hours to synthesize LiCoO 2 powder.
  • the obtained LiCoO 2 powder is pulverized to a volume-based D50 particle size of 0.1 to 10 ⁇ m by a pot mill to obtain plate-like LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface.
  • the obtained LiCoO 2 particles are easily cleaved along the cleavage plane. It is to cleave by crushing the LiCoO 2 particles to prepare a LiCoO 2 template particles.
  • Such LiCoO 2 particles can be obtained by a method of crushing after growing a green sheet using LiCoO 2 powder slurry, a plate method such as a flux method, hydrothermal synthesis, single crystal growth using a melt, or a sol-gel method. It can also be obtained by a method of synthesizing crystals.
  • the profile of the primary particles 11 constituting the aligned positive electrode plate 16 can be controlled as follows. -By adjusting at least one of the aspect ratio and the particle size of the LiCoO 2 template particles, the total area ratio of the low-angle primary particles having an orientation angle of more than 0 ° and not more than 30 ° can be controlled. Specifically, the larger the aspect ratio of LiCoO 2 template particles, also, the larger the particle size of the LiCoO 2 template particles, it is possible to increase the total area ratio of the low-angle primary particles.
  • the aspect ratio and particle size of the LiCoO 2 template particles are the particle size of the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder, the pulverization conditions (pulverization time, pulverization energy, pulverization method, etc.), and pulverization, respectively. It can be controlled by adjusting at least one of the subsequent classifications. -By adjusting the aspect ratio of the LiCoO 2 template particles, the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be controlled. Specifically, the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be increased as the aspect ratio of the LiCoO 2 template particles is increased.
  • the method for adjusting the aspect ratio of the LiCoO 2 template particles is as described above.
  • the average particle size of the primary particles 11 can be controlled by adjusting the particle size of the LiCoO 2 template particles.
  • the density of the aligned positive electrode plate 16 can be controlled by adjusting the particle size of the LiCoO 2 template particles. Specifically, the density of the aligned positive electrode plate 16 can be increased as the particle size of the LiCoO 2 template particles is reduced.
  • Co 3 O 4 raw material powder is used as matrix particles.
  • the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 ⁇ m, but is preferably smaller than the volume-based D50 particle size of LiCoO 2 template particles.
  • the matrix particles can also be obtained by subjecting a Co (OH) 2 raw material to heat treatment at 500 to 800 ° C. for 1 to 10 hours.
  • Co (OH) 2 particles or LiCoO 2 particles may be used as matrix particles.
  • the profile of the primary particles 11 constituting the aligned positive electrode plate 16 can be controlled as follows. -Low angle primary whose orientation angle is greater than 0 ° and less than 30 ° by adjusting the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles (hereinafter referred to as “matrix / template particle size ratio”)
  • matrix / template particle size ratio the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles.
  • the total area ratio of the particles can be controlled. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the easier it is for the matrix particles to be incorporated into the LiCoO 2 template particles in the firing step described later.
  • the total area ratio can be increased.
  • the total area ratio of the primary particles 11 having an aspect ratio of 4 or more can be controlled by adjusting the matrix / template particle size ratio. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the total area ratio of the primary particles 11 having an aspect ratio of 4 or more.
  • the density of the aligned positive electrode plate 16 can be controlled by adjusting the matrix / template particle size ratio. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the density of the aligned positive electrode plate 16 can be.
  • the profile of the primary particles 11 constituting the aligned positive electrode plate 16 can be controlled as follows. -By adjusting the molding speed, the total area ratio of the low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can be controlled. Specifically, the higher the molding speed, the higher the total area ratio of the low-angle primary particles. -The average particle diameter of the primary particles 11 can be controlled by adjusting the density of the compact. Specifically, the average particle diameter of the primary particles 11 can be increased as the density of the molded body is increased. -The density of the aligned positive electrode plate 16 can also be controlled by adjusting the mixing ratio of the LiCoO 2 template particles and the matrix particles. Specifically, the density of the aligned positive electrode plate 16 can be lowered as the number of LiCoO 2 template particles is increased.
  • a slurry compact is placed on a zirconia setter and heat treated (primary firing) at 500 to 900 ° C. for 1 to 10 hours to obtain a sintered plate as an intermediate.
  • This sintered plate is placed on a zirconia setter while being sandwiched between lithium sheets (for example, Li 2 CO 3 -containing sheets) and subjected to secondary firing to obtain a LiCoO 2 sintered plate.
  • a setter on which a sintered plate sandwiched between lithium sheets is placed is placed in an alumina sheath and baked at 700 to 850 ° C. for 1 to 20 hours in the atmosphere. It is sandwiched between sheets and fired at 750 to 900 ° C.
  • This firing step may be performed in two steps or may be performed once. When firing twice, it is preferable that the first firing temperature is lower than the second firing temperature.
  • the total amount of lithium sheet used in the secondary firing may be such that the Li / Co ratio, which is the molar ratio of the amount of Li in the green sheet and the lithium sheet, to 1.0 with respect to the amount of Co in the green sheet. .
  • the profile of the primary particles 11 constituting the aligned positive electrode plate 16 can be controlled as follows. -The total area ratio of the low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can be controlled by adjusting the heating rate during firing. Specifically, the higher the rate of temperature rise, the more the sintering of the matrix particles is suppressed, and the total area ratio of the low-angle primary particles can be increased. -The total area ratio of low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 ° can also be controlled by adjusting the heat treatment temperature of the intermediate.
  • the lower the heat treatment temperature of the intermediate the more the sintering of the matrix particles is suppressed, and the total area ratio of the low-angle primary particles can be increased.
  • the average particle diameter of the primary particles 11 can be controlled by adjusting at least one of the heating rate during firing and the heat treatment temperature of the intermediate. Specifically, the average particle diameter of the primary particles 11 can be increased as the rate of temperature increase is increased and the heat treatment temperature of the intermediate is decreased. -Controlling the average particle diameter of the primary particles 11 also by adjusting at least one of the amount of Li (for example, Li 2 CO 3 ) and the amount of sintering aid (for example, boric acid or bismuth oxide) during firing. Can do.
  • Li for example, Li 2 CO 3
  • the amount of sintering aid for example, boric acid or bismuth oxide
  • the average particle diameter of the primary particles 11 can be increased as the amount of Li is increased and as the amount of the sintering aid is increased.
  • the density of the aligned positive electrode plate 16 can be controlled by adjusting the profile during firing. Specifically, the density of the aligned positive electrode plate 16 can be increased as the firing temperature is lowered and the firing time is lengthened.
  • Examples 1-9 Production of Lithium Secondary Battery
  • a lithium secondary battery 10 in the form of a film-clad battery as schematically shown in FIG. 1 was produced according to the procedure shown in FIGS. 2A and 2B.
  • the lithium secondary battery manufactured in this example has excellent heat resistance that can withstand a high-temperature process (for example, hot lamination) at a high temperature (for example, 135 ° C.).
  • the specific procedure is as follows.
  • a LiCoO 2 sintered body plate (hereinafter referred to as an LCO sintered body plate) having a thickness of 90 ⁇ m and a porosity of 30% was prepared.
  • This LCO sintered body plate is manufactured in accordance with the above-described method for manufacturing a lithium composite oxide sintered plate, and satisfies the preferable conditions of the lithium composite oxide sintered plate described above.
  • the sintered body plate was cut into a 10.5 mm ⁇ 9.5 mm square with a laser processing machine to obtain a plurality of chip-like positive electrode plates 16.
  • FIG. 2A a plurality of chip-like positive electrode plates 16 are shown.
  • the present invention is not limited to this, and a positive electrode assembly 17 described later is formed using one positive electrode plate 16 that is not divided into chips. May be.
  • the exterior film 26 two aluminum laminate films (manufactured by Showa Denko Packaging Co., Ltd., thickness 61 ⁇ m, three-layer structure of polypropylene film / aluminum foil / nylon film) were prepared.
  • a plurality of chip-like positive electrode plates 16 are laminated on a single exterior film 26 via a positive electrode current collector foil 14 (a 9 ⁇ m thick aluminum foil) to obtain a positive electrode assembly 17.
  • the chip-like positive electrode plate 16 was fixed to the positive electrode current collector foil 14 with an adhesive, while the positive electrode current collector foil 14 was fixed to the exterior film 26 with an adhesive.
  • a positive electrode tab terminal 15 is fixed to the positive electrode current collector foil 14 so as to extend from the positive electrode current collector foil 14 by welding.
  • a negative electrode layer 20 (a carbon layer having a thickness of 130 ⁇ m) was laminated on another exterior film 26 via a negative electrode current collector foil 22 (a copper foil having a thickness of 10 ⁇ m) to obtain a negative electrode assembly 19. .
  • the negative electrode layer 20 was fixed to the negative electrode current collector foil 22 by the binder contained therein, while the negative electrode current collector foil 22 was fixed to the exterior film 26 with an adhesive.
  • a negative electrode tab terminal 23 is fixed to the negative electrode current collector foil 22 so as to extend from the negative electrode current collector foil 22 by welding.
  • the density of the negative electrode layer 20 was 1.4 g / cm 3 and the basis weight was 19 mg / cm 2 .
  • a porous polyimide film manufactured by Tokyo Ohka Co., Ltd., thickness 23 ⁇ m, porosity 80%
  • the positive electrode assembly 17, the separator 18, and the negative electrode assembly 19 are sequentially laminated so that the positive electrode plate 16 and the negative electrode layer 20 face the separator 18, and both surfaces are covered with an exterior film 26.
  • the thickness of the battery element 12 (the positive electrode current collector foil 14, the positive electrode plate 16, the separator 18, the negative electrode layer 20, and the negative electrode current collector foil 22) constructed in the laminate 28 is 0.33 mm, and its shape and size was a square of 2.3 cm ⁇ 3.2 cm.
  • 3 sides A of the obtained laminate 28 were sealed.
  • the outer peripheral portion of the laminate 28 is heated and pressed at 200 ° C. and 1.5 MPa for 10 seconds using a contact jig (heat bar) adjusted so that the sealing width becomes a value shown in Table 1.
  • the outer peripheral film 26 (aluminum laminate film) was heat-sealed at the outer peripheral portion. After sealing the three sides A, the laminate 28 was put in a vacuum dryer 34 to remove moisture and dry the adhesive.
  • a gap between the pair of exterior films 26 is formed on the remaining unsealed side B of the laminated body 28 in which the outer edge 3 side A is sealed,
  • the injection device 36 was inserted into the gap to inject the electrolyte solution 24, and the side B was temporarily sealed using a simple sealer in a reduced pressure atmosphere with an absolute pressure of 5 kPa.
  • As an electrolytic solution LiBF 4 was dissolved in a mixed solvent containing ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) at a ratio of 1: 3 (volume ratio) to a concentration of 1.5 mol / L, and vinylene was further added.
  • EC ethylene carbonate
  • GBL ⁇ -butyrolactone
  • the side B ′ produced by the excision of the temporary sealing was sealed in a reduced pressure atmosphere with an absolute pressure of 5 kPa.
  • This sealing was also performed by heat-pressing the outer peripheral portion of the laminate 28 at 200 ° C. and 1.5 MPa for 10 seconds, and heat-sealing the exterior film 26 (aluminum laminate film) with each other at the outer peripheral portion.
  • the side B ′ was sealed with a pair of exterior films 26 to obtain a lithium secondary battery 10 in the form of a film exterior battery.
  • the lithium secondary battery 10 was taken out from the glove box 38, and an extra portion on the outer periphery of the outer film 26 was cut out to adjust the shape of the lithium secondary battery 10.
  • the lithium secondary battery 10 in which the four outer edges of the battery element 12 were sealed with the pair of exterior films 26 and the electrolyte solution 24 was injected was obtained.
  • the obtained lithium secondary battery 10 was a rectangle having a size of 38 mm ⁇ 27 mm, a thickness of 0.45 mm or less, and a capacity of 30 mAh.
  • FIG. 6 shows a laser microscope image of a cross section of the lithium secondary battery manufactured in Example 1.
  • ⁇ Total void volume of positive electrode plate, separator and negative electrode layer The measurement of the porosity of each member of the positive electrode plate 16, the negative electrode layer 20, and the separator 18 was performed by photographing the cross-sectional SEM images (reflected images) of the members with respect to three visual fields that do not overlap each other so that the members and the voids can be distinguished for each visual field. The contrast was adjusted and binarized to calculate the porosity, and the average value of the porosity calculated from the three fields of view was calculated. And about each member of the positive electrode plate 16, the separator 18, and the negative electrode layer 20, the void volume of each member was computed by multiplying the void volume to the outer volume (member volume including the void) calculated from the outer dimensions. The total void volume of each member of the positive electrode plate 16, the separator 18 and the negative electrode layer 20 was obtained by adding the void volumes of the obtained members. The results were as shown in Table 1.
  • the lithium secondary battery was embedded in an epoxy resin to produce a rectangular battery built-in card having a thickness of 0.76 mm and a size of 86 mm ⁇ 54 mm.
  • the battery built-in card was subjected to a bending test according to JIS X 6305-1. Specifically, a card is set in a card holder of a bending tester, and the card is bent 250 times with a convex surface in the longitudinal direction, 250 times with a convex surface in the short direction, with a longitudinal direction. A total of 1000 bend tests were performed, with 250 bends with the back surface convex and 250 bends with the back surface convex in the short direction.
  • curd was measured using the surface roughness meter (The product made from TAYLOR HOBSON, Tarisurf). That is, the height of the outer film in the vicinity of the battery buried portion of the card was measured by a repeated bending test.
  • a peak corresponding to the convex portion is specified, a base line BL of the peak is drawn, and a vertical direction from the base line BL is drawn.
  • the distance to the peak top PT was measured as the height H of the convex portion, and the presence or absence of wrinkles was determined according to the following criteria. The results were as shown in Table 1.
  • FIG. 8 shows a Cole-Cole plot measured by the AC impedance method at a battery voltage of 3.8 V for the film-clad battery produced in Example 1.
  • the resistance value at 1 Hz in Example 9 is 32.9 ⁇ ⁇ cm 2 , which is higher resistance than Examples 1 to 8, and is therefore relatively inferior in battery characteristics. means.
  • Examples 10-18 Fabrication of batteries was carried out in the same manner as in Examples 1 to 9, except that the following materials were used as the negative electrode layer (carbon layer), separator, and electrolyte, and various fabrication conditions were as shown in Table 1. And evaluated.
  • the lithium secondary battery produced in this example is inferior in heat resistance to the lithium secondary batteries in Examples 1 to 9, but can be produced with a lower cost material.
  • the results were as shown in Table 2.
  • the resistance value at 1 Hz in Example 18 is 29.9 ⁇ ⁇ cm 2 , which is higher than Examples 10 to 17 and therefore relatively inferior in battery characteristics. Means.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

正極板としてリチウム複合酸化物焼結体板を備えながらも、繰り返し曲げられても正極板端部近傍にシワが発生しにくい、フィルム外装形態のリチウム二次電池が提供される。このリチウム二次電池は、リチウム複合酸化物焼結体板である正極板と、負極層と、セパレータと、正極集電箔と、負極集電箔と、電解液と、外周縁が互いに封止されて電池要素を収容する内部空間を成す1対の外装フィルムと、正極タブ端子と、負極タブ端子とを備えたものであり、正極タブ端子が封止される辺に関して、外装フィルムの封止部分の内周縁と正極板の外周縁との離間距離Wpが2.0~4.0mmであり、電解液の容量が、正極板、セパレータ及び負極層の合計空隙容量の1.05~1.25倍である。

Description

リチウム二次電池及び電池内蔵カード
 本発明は、リチウム二次電池及び電池内蔵カードに関する。
 近年、電池内蔵スマートカードが実用化されつつある。一次電池を内蔵したスマートカードの例としては、ワンタイムパスワード表示機能付きクレジットカードが挙げられる。二次電池を内蔵したスマートカードの例としては、無線通信IC、指紋解析用ASIC及び指紋センサを備えた、指紋認証・無線通信機能付きカードが挙げられる。スマートカード用電池には、厚さが0.45mm未満であること、高容量かつ低抵抗であること、耐曲げ性を有すること、プロセス温度に耐えうることといった特性が一般的に求められる。
 かかる用途向けの二次電池ないし二次電池搭載カードが提案されている。例えば、特許文献1(特開2017-79192号公報)には、カード等の板部材に内蔵される二次電池であって、板部材が曲げ変形を生じた場合でも十分な強度を有する二次電池が開示されている。この二次電池は、正極及び負極を含む電極体と、電極体を覆った状態で外周側が溶着されるシート状のラミネートフィルム外装体と、一端側が前記電極体に接続され、他端側がラミネートフィルム外装体から外方に延出する正極接続端子及び負極接続端子とを備えるとされている。また、特許文献2(特開2006-331838号公報)には、表面に大きなシワが生じにくく、耐屈曲性に優れた薄型電池が開示されている。この薄型電池は、 正極集電体と負極集電体との間にセパレータ、正極層及び負極層を収容する電池本体部と、この電池本体部の周囲を密封する樹脂製の枠部材を含むシール部とを備え、シール部の厚さをD1、電池中央部の最大厚さをD2としたとき、100μm≦D1≦320μm、かつ、D1/D2≦0.85を満たすものとされている。これらの特許文献1及び2に開示される二次電池では、正極活物質、導電助剤、バインダー等を含む正極合剤を塗布及び乾燥させて作製された、粉末分散型の正極が採用されている。
 ところで、一般的に、粉末分散型の正極は、容量に寄与しない成分(バインダーや導電助剤)を比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーや導電助剤が含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献3(特許第5587052号公報)には、正極集電体と、導電性接合層を介して正極集電体と接合された正極活物質層とを備えた、リチウム二次電池の正極が開示されている。この正極活物質層は、厚さが30μm以上であり、空隙率が3~30%であり、開気孔比率が70%以上であるリチウム複合酸化物焼結体板からなるとされている。また、特許文献4(国際公開第2017/146088号)には、固体電解質を備えるリチウム二次電池の正極として、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向焼結体板を用いることが開示されている。
特開2017-79192号公報 特開2006-331838号公報 特許第5587052号公報 国際公開第2017/146088号
 しかしながら、特許文献3や4に開示されるようなリチウム複合酸化物焼結体板(正極板)を備えたフィルム外装電池を内蔵したカードは、JIS規格(日本工業規格)で求められる何百回にもわたる繰り返し曲げ試験を行った場合に、カード表面の正極タブ端子の存在する辺のあたりでシワが発生しやすいという問題があった。
 本発明者らは、今般、正極焼結体板を備えたフィルム外装電池の形態のリチウム二次電池において、外装フィルムの封止部分の内周縁と正極板の外周縁との離間距離、及び電解液の量が所定の条件を満たすことで、繰り返し曲げられても正極タブ端子近傍にシワが生じにくくなるとの知見を得た。特に、上記条件を満たすフィルム外装リチウム二次電池を電池内蔵カードの形態でJIS規格で求められる何百回にもわたる繰り返し曲げ試験を行った場合であっても正極タブ端子近傍にシワが発生しにくいとの知見を得た。
 したがって、本発明の目的は、正極板としてリチウム複合酸化物焼結体板を備えながらも、(特に電池内蔵カードの形態で)繰り返し曲げられても正極板端部近傍にシワが発生しにくい、フィルム外装形態のリチウム二次電池を提供することにある。
 本発明の一態様によれば、
 リチウム複合酸化物焼結体板である正極板と、
 前記正極板のサイズよりも大きいサイズを有する、カーボンを含む負極層と、
 前記正極板と前記負極層との間に介在され、前記正極板及び前記負極層のサイズよりも大きいサイズのセパレータと、
 前記正極板の前記セパレータから離れた側の面に接着される正極集電箔と、
 前記負極層の前記セパレータから離れた側の面に接着される負極集電箔と、
 前記正極板、前記負極層、及び前記セパレータが含浸される電解液と、
 外周縁が互いに封止されて内部空間を成し、該内部空間に前記正極板、前記正極集電箔、前記負極層、前記負極集電箔、前記セパレータ、及び前記電解液を収容する、1対の外装フィルムと、
 前記正極集電箔に接続し、前記1対の外装フィルムの封止部分から外側に延出する正極タブ端子と、
 前記負極集電箔に接続し、前記1対の外装フィルムの封止部分から外側に延出する負極タブ端子と、
を備えた、リチウム二次電池であって、
 前記セパレータの外周部分が少なくとも前記正極板側の外装フィルムの前記外周縁又はその近傍の周囲領域と密着して、前記正極板を収容する区画と前記負極層を収容する区画とを隔離しており、
 前記正極タブ端子及び前記負極タブ端子が、前記外装フィルムの封止部分の共通の1辺の異なる位置又は異なる辺から延出しており、
 前記正極タブ端子が封止される辺に関して、前記外装フィルムの前記封止部分の内周縁と前記正極板の外周縁との離間距離Wが2.0~4.0mmであり、
 前記電解液の容量が、前記正極板、前記セパレータ及び前記負極層の合計空隙容量の1.05~1.25倍である、リチウム二次電池が提供される。
 本発明の他の一態様によれば、樹脂基材と、該樹脂基材内に埋設された前記リチウム二次電池とを備えた、電池内蔵カードが提供される。
本発明のリチウム二次電池の一例の模式断面図である。 リチウム二次電池の製造工程の一例の前半を示す図である。 リチウム二次電池の製造工程の一例の後半であって、図2Aに示される工程に続く工程を示す図である。図2Bの右端にはフィルム外装電池の写真が含まれる。 配向正極板の板面に垂直な断面の一例を示すSEM像である。 図3に示される配向正極板の断面におけるEBSD像である。 図4のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。 例1で作製したリチウム二次電池について、断面を撮影したレーザー顕微鏡画像である。 繰り返し曲げ試験によりカード表面に発生した凸状部の高さHを説明するための、表面プロファイルの模式図である。 例1で作製したリチウム二次電池に対して、電池電圧3.8Vにおいて交流インピーダンス法により測定されたCole-Coleプロットである。
 リチウム二次電池
 図1に本発明のリチウム二次電池の一例を模式的に示す。図1に示されるリチウム二次電池10は、正極板16、セパレータ18、負極層20、正極集電箔14、負極集電箔22、電解液24、正極タブ端子15、負極タブ端子(図示せず)、及び1対の外装フィルム26を備える。正極板16は、リチウム複合酸化物焼結体板である。負極層20はカーボンを含み、正極板16のサイズよりも大きいサイズを有する。セパレータ18は、正極板16と負極層20との間に介在され、正極板16及び負極層20のサイズよりも大きいサイズを有する。正極集電箔14は、正極板16のセパレータ18から離れた側の面に接着される一方、負極集電箔22は、負極層のセパレータ18から離れた側の面に接着される。電解液24は、正極板16、負極層20、及びセパレータ18に含浸される。1対の外装フィルム26は、それらの外周縁が互いに封止されて内部空間を成し、この内部空間に正極板16、正極集電箔14、負極層20、負極集電箔22、セパレータ18、及び電解液24を収容する。セパレータ18の外周部分は少なくとも正極板16側の外装フィルム26の外周縁又はその近傍の周囲領域と密着して、正極板16を収容する区画と負極層20を収容する区画とを隔離している。正極タブ端子15は、正極集電箔14に接続し、1対の外装フィルム26の封止部分から外側に延出する一方、負極タブ端子は、負極集電箔22に接続し、1対の外装フィルム26の封止部分から外側に延出する。また、正極タブ端子15及び負極タブ端子は、外装フィルム26の封止部分の共通の1辺の異なる位置又は異なる辺(後者の場合には必然的に異なる位置となる)から延出している。なお、図1において負極タブ端子(及びその負極集電箔22との接続)が描かれていないが、これは負極タブ端子が正極タブ端子15の紙面垂直方向裏側の隠れて見えない位置に存在しているためである(図2に示される負極タブ端子23を参照)。そして、正極タブ端子15が封止される辺に関して、外装フィルム26の封止部分の内周縁と正極板16の外周縁との離間距離Wが2.0~4.0mmである。また、電解液24の容量が、正極板16、セパレータ18及び負極層20の合計空隙容量の1.05~1.25倍である。このように、正極焼結体板を備えたフィルム外装電池の形態のリチウム二次電池10において、外装フィルム26の封止部分の内周縁と正極板16の外周縁との離間距離、及び電解液24の量が所定の条件を満たすことで、繰り返し曲げられても正極タブ端子15近傍にシワが生じにくくなる。特に、上記条件を満たすフィルム外装リチウム二次電池10を電池内蔵カードの形態でJIS規格で求められる何百回にもわたる繰り返し曲げ試験を行った場合であっても正極タブ端子15近傍にシワが発生しにくくなる。
 すなわち、前述のとおり、特許文献3や4に開示されるようなリチウム複合酸化物焼結体板(正極板)を備えたフィルム外装電池を内蔵したカードは、JIS規格で求められる何百回にもわたる繰り返し曲げ試験を行った場合に、カード表面の正極タブ端子の存在する辺のあたりでシワが発生しやすいという問題があった。この点、本発明のリチウム二次電池によれば、これらのシワを効果的に抑制することができる。その理由は定かではないが、以下のようなものと推察される。すなわち、正極焼結体板の採用に伴って正極タブ端子の存在する辺のあたりで電解液が滞留する余剰空間が生じやすく、それがシワの主な発生原因となっていたと考えられるところ、本発明の上記条件を満たすことで、そのような余剰空間ないしその中に滞留する余剰電解液を(内部抵抗を過度に上昇させない程度に)好都合に低減してシワの発生を効果的に実現できるものと考えられる。したがって、本発明のリチウム二次電池10は、カードに内蔵可能な薄型二次電池であるのが好ましく、より好ましくは樹脂基材に埋設されてカード化されるための薄型二次電池である。すなわち、本発明の別の好ましい態様によれば、樹脂基材と、該樹脂基材に埋設されたリチウム二次電池とを備えた、電池内蔵カードが提供される。かかる電池内蔵カードは、1対の樹脂フィルムと、該1対の樹脂フィルムに挟み込まれたリチウム二次電池とを備えるのが典型的であり、加熱プレスで樹脂フィルム同士が熱融着されているのが好ましい。
 リチウム二次電池10は内部抵抗が低いのが好ましい。特に、本発明のリチウム二次電池10においては、電解液24の量が上述した所定の条件を満たすことで、所望の低い内部抵抗の確保に寄与する。例えば、リチウム二次電池10は、交流インピーダンス法により決定される1Hzでの抵抗が好ましくは25Ω・cm未満であり、より好ましくは21Ω・cm未満、さらに好ましくは18Ω・cm未満である。1Hzでの抵抗の下限値は特に限定されないが、典型的には12Ω・cm以上である。
 正極板16は、リチウム複合酸化物焼結体板である。正極板16は焼結体板であるといことは、正極板16がバインダーを含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。そして、正極板16がバインダーを含まないことで、電解液24による正極の劣化を回避できるとの利点がある。なお、焼結体板を構成するリチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO(以下、LCOと略称することがある))であるのが特に好ましい。様々なリチウム複合酸化物焼結体板ないしLCO焼結体板が知られており、例えば特許文献3(特許第5587052号公報)や特許文献4(国際公開第2017/146088号)に開示されるものを使用することができる。
 本発明の好ましい態様によれば、正極板16、すなわちリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である。図3に配向正極板16の板面に垂直な断面SEM像の一例を示す一方、図4に配向正極板16の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図5に、図4のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図4に示されるEBSD像では、結晶方位の不連続性を観測することができる。図4では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図3及び4において、配向正極板16の内部で黒表示されている箇所は気孔である。
 配向正極板16は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。
 図4及び5に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板16では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板16の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図4に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極板16を厚み方向に四等分する3本の横線と、配向正極板16を板面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
 図5に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板16を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板16の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
 各一次粒子11は、主に板状であるため、図3及び4に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図4に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。
 配向正極板16を構成する配向焼結体の緻密度は70%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは90%以上である。換言すれば、配向正極板16を構成する配向焼結体の空隙率は30%以下であることが好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。これにより、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。配向焼結体の緻密度は、正極板の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、配向正極板16の外部につながる開気孔であってもよいが、配向正極板16を貫通していないことが好ましい。なお、各気孔は閉気孔であってもよい。
 正極板16の厚さは特に限定されないが、好ましくは70~120μm、より好ましくは80~100μm、さらに好ましくは80~95μm、特に好ましくは85~95μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制し、さらには繰り返しの曲げによるシワの発生抑制にも寄与する。また、正極板16のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm~200mm×200mm平方であり、さらに好ましくは10mm×10mm~100mm×100mm平方であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100~40000mmであり、さらに好ましくは100~10000mmである。
 負極層20は、負極活物質としてカーボンを含む。カーボンの例としては、黒鉛(グラファイト)、熱分解炭素、コークス、樹脂焼成体、メソフェーズ小球体、メソフェーズ系ピッチ等が挙げられ、好ましくは黒鉛である。黒鉛は、天然黒鉛及び人造黒鉛のいずれであってもよい。負極層20は、バインダーをさらに含むのが好ましい。バインダーの例としては、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が挙げられ、好ましくはスチレンブタジエンゴム(SBR)又はポリフッ化ビニリデン(PVDF)である。特に、電解液24として耐熱性に優れるγ-ブチロラクトン(GBL)を用いる場合には、バインダーとしてスチレンブタジエンゴム(SBR)を用いるのが、GBLに溶解しにくくバインダー機能の加熱による劣化を回避できる点でより好ましい。
 負極層20の厚さは特に限定されないが、好ましくは70~160μmであり、より好ましくは80~150μm、さらに好ましくは90~140μm、特に好ましくは100~130μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上するとともに、繰り返しの曲げによる正極タブ端子15近傍におけるシワの発生抑制にも寄与する。
 セパレータ18はポリオレフィン、ポリイミド、ポリエステル(例えばポリエチレンテレフタレート(PET))又はセルロース製のセパレータが好ましく、ポリオレフィン製セパレータは、片面にセラミックが塗布されたものであってもよい。ポリオレフィンの例としては、ポリプロピレン(PP)、ポリエチレン(PE)、及びこれらの組合せ等が挙げられる。安価であるという観点では、ポリオレフィン又はセルロース製のセパレータが好ましい。一方、耐熱性に優れるという観点からはポリイミド、ポリエステル(例えばポリエチレンテレフタレート(PET))又はセルロース製のセパレータが好ましい。ポリイミド又はセルロース製のセパレータは、広く用いられている、耐熱性に劣るポリオレフィン製セパレータとは異なり、それ自体の耐熱性に優れるだけでなく、耐熱性に優れる電解液成分であるγ-ブチロラクトン(GBL)に対する濡れ性にも優れる。したがって、GBLを含む電解液を用いる場合に、電解液をセパレータに(弾かせることなく)十分に浸透させることができる。耐熱性の観点から特に好ましいセパレータはポリイミド製セパレータである。ポリイミド製セパレータは市販されているが、極めて複雑な微細構造を有するため、過充電時に析出するリチウムデンドライトの伸展及びそれに起因する短絡をより効果的に阻止又は遅延できるとの利点がある。
 電解液24は特に限定されず、有機溶媒(例えばエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)の混合溶媒、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒、あるいはエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒)にリチウム塩(例えばLiPF)塩を溶解させた液等、リチウム電池用の市販の電解液を使用すればよい。
 耐熱性に優れたリチウム二次電池とする場合には、電解液24は、非水溶媒中にホウフッ化リチウム(LiBF)を含むのが好ましい。この場合、非水溶媒は、γ-ブチロラクトン(GBL)からなる単独溶媒であってもよいし、γ-ブチロラクトン(GBL)及びエチレンカーボネート(EC)からなる混合溶媒であってもよい。非水溶媒はγ-ブチロラクトン(GBL)を含むことで沸点が上昇し、耐熱性の大幅な向上をもたらす。かかる観点から、非水溶媒におけるEC:GBLの体積比は0:1~1:1(GBL比率50~100体積%)であるのが好ましく、より好ましくは0:1~1:1.5(GBL比率60~100体積%)、さらに好ましくは0:1~1:2(GBL比率66.6~100体積%)、特に好ましくは0:1~1:3(GBL比率75~100体積%)である。非水溶媒中に溶解されるホウフッ化リチウム(LiBF)は分解温度の高い電解質であり、これもまた耐熱性の大幅な向上をもたらす。電解液24におけるLiBF濃度は0.5~2mol/Lであるのが好ましく、より好ましくは0.6~1.9mol/L、さらに好ましくは0.7~1.7mol/L、特に好ましくは0.8~1.5mol/Lである。
 電解液24は添加剤としてビニレンカーボネート(VC)及び/又はフルオロエチレンカーボネート(FEC)及び/又はビニルエチレンカーボネート(VEC)をさらに含むのが好ましい。VC及びFECはいずれも耐熱性に優れる。したがって、かかる添加剤を電解液24が含むことで、耐熱性に優れたSEI膜を負極層20表面に形成させることができる。
 正極集電箔14は、正極板16のセパレータ18から離れた側の面に接着される一方、負極集電箔22は、負極層のセパレータ18から離れた側の面に接着される。したがって、正極集電箔14は正極板16と外装フィルム26との間に介在する一方、負極集電箔22は負極層20と外装フィルム26との間に介在する。好ましくは、正極集電箔14と外装フィルム26の一方が接着されており、かつ、負極集電箔22と外装フィルム26の他方が接着されている。正極集電箔14及び負極集電箔22は特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。
 正極タブ端子15は、正極集電箔14に接続し、1対の外装フィルム26の封止部分から外側に延出する一方、負極タブ端子23は、負極集電箔22に接続し、1対の外装フィルム26の封止部分から外側に延出する。より具体的には、正極タブ端子15及び負極タブ端子23は、外装フィルム26の封止部分の共通の1辺の異なる位置又は異なる辺から延出している。正極タブ端子15及び負極タブ端子23は特に限定されないが、正極集電箔14及び負極集電箔22とそれぞれ同じ又は異なる材料であることができ、好ましくは銅箔やアルミニウム箔等の金属箔である。また、正極タブ端子15と正極集電箔14との接続、及び負極タブ端子23と負極集電箔22との接続は、溶接、接着剤等の公知の接続手法により行えばよく特に限定されない。あるいは、正極タブ端子15及び正極集電箔14、又は負極タブ端子23及び負極集電箔22は、同じ材料で作製された一体品であってもよい。
 リチウム二次電池10の厚さは350~500μmであるのが好ましく、より好ましくは380~450μm、さらに好ましくは400~430μmである。このような範囲内の厚さであると、スマートカード等の薄型デバイスに内蔵させるのに適した薄型リチウム電池とすることができるとともに、繰り返しの曲げによる正極タブ端子15近傍におけるシワの発生抑制にも寄与する。
 1対の外装フィルム26は、それらの外周縁が互いに封止されて内部空間を成し、この内部空間に電池要素12及び電解液24を収容する。すなわち、図1に示されるように、リチウム二次電池10の中身である電池要素12及び電解液24は、1対の外装フィルム26で包装され且つ封止されており、その結果、リチウム二次電池10はいわゆるフィルム外装電池の形態とされる。ここで、電池要素12とは、正極板16、正極集電箔14、セパレータ18、負極層20、及び負極集電箔22を含むものとして定義される。リチウム二次電池10の外縁は外装フィルム26同士が熱融着されることで封止されるのが好ましい。熱融着による封止はヒートシール用途で一般的に使用される、ヒートバー(加熱バーとも称される)を用いて行うのが好ましい。典型的には、リチウム二次電池10の四辺形の形状であり、1対の外装フィルム26の外周縁が外周4辺の全てにわたって封止されるのが好ましい。
 外装フィルム26は、市販の外装フィルムを使用すればよい。外装フィルム26の厚さは1枚当たり50~80μmが好ましく、より好ましくは55~75μm、さらに好ましくは55~65μmである。好ましい外装フィルム26は、樹脂フィルムと金属箔とを含むラミネートフィルムであり、より好ましくは樹脂フィルムとアルミニウム箔とを含むアルミラミネートフィルムである。ラミネートフィルムはアルミニウム箔等の金属箔の両面に樹脂フィルムが設けられているのが好ましい。この場合、金属箔の一方の側の樹脂フィルム(以下、表面保護膜という)がナイロン、ポリアミド、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン等の補強性に優れた材料で構成され、金属箔の他方の側の樹脂フィルムがポリプロピレン等のヒートシール材料で構成されるのが好ましい。
 前述のとおり、負極層20が正極板16のサイズよりも大きいサイズを有する一方、セパレータ18は正極板16及び負極層20のサイズよりも大きいサイズを有する。そして、セパレータ18の外周部分が少なくとも正極板16側の外装フィルム26の外周縁又はその近傍の周囲領域と密着して、正極板16を収容する区画と負極層20を収容する区画とを隔離している。また、セパレータ18の外周部分は負極層20側の外装フィルム26の外周縁又はその近傍の周囲領域とも密着していてよい。
 正極タブ端子15が封止される辺に関して、外装フィルム26の封止部分の内周縁と正極板16の外周縁との離間距離Wが2.0~4.0mmであり、好ましくは2.5~3.5mm、より好ましくは2.5~3.0mmである。ここで、外装フィルム26の封止部分の内周縁と正極板16の外周縁との離間距離Wとは、図1に示されるように、正極タブ端子15が封止される辺に関して、1対の外装フィルム26が密着している最も内側の位置から、その近くの正極板16の端部までの距離を意味する。
 電解液24の容量は、正極板16、セパレータ18及び負極層20の合計空隙容量の1.05~1.25倍であり、好ましくは1.10~1.25倍、より好ましくは1.10~1.20倍、さらに好ましくは1.12~1.20倍、特に好ましくは1.12~1.18倍である。電解液24の容量は、リチウム二次電池10の重量を予め測定した後、リチウム二次電池10を開封して、真空乾燥(例えば120℃で12時間加熱)させて乾燥後の重量を測定し、乾燥前後の重量変化を測定することにより決定することができる。そして、得られた電解液量を、正極板16、セパレータ18及び負極層20の合計空隙容量で除することにより、合計空隙容量に対する電解液量の比率(倍)を算出することができる。なお、正極板16、セパレータ18及び負極層20の各部材の空隙容量は、各部材の外形寸法から算出した外形容積(空隙を含めた部材容積)に各部材の空隙率を乗じることにより算出することができる。そして、正極板16、負極層20及びセパレータ18の各部材の空隙率は、部材の断面SEM像(反射画像)を互いに重複しない3視野について撮影し、各視野について部材と空隙が区別できるようにコントラストの調整及び2値化を行って空隙率を算出し、3視野から算出された空隙率の平均値を算出することにより決定するのが望ましい。
 コバルト酸リチウム配向焼結板の製造方法
 本発明のリチウム二次電池に好ましく用いられる配向正極板ないし配向焼結板は、いかなる製法によって製造されてもよいが、好ましくは、以下に例示されるように、(1)LiCoOテンプレート粒子の作製、(2)マトリックス粒子の作製、(3)グリーンシートの作製、及び(4)配向焼結板の作製を経て製造される。
(1)LiCoOテンプレート粒子の作製
 Co原料粉末とLiCO原料粉末とを混合する。得られた混合粉末を500~900℃で1~20時間焼成して、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.1~10μmに粉砕して、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子を得る。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoOテンプレート粒子を作製する。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。
 本工程では、以下のとおり、配向正極板16を構成する一次粒子11のプロファイルを制御することができる。
‐ LiCoOテンプレート粒子のアスペクト比及び粒径の少なくとも一方を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、LiCoOテンプレート粒子のアスペクト比を大きくするほど、また、LiCoOテンプレート粒子の粒径を大きくするほど、低角一次粒子の合計面積割合を高めることができる。LiCoOテンプレート粒子のアスペクト比と粒径は、それぞれ、Co原料粉末及びLiCO原料粉末の粒径、粉砕時の粉砕条件(粉砕時間、粉砕エネルギー、粉砕手法等)、並びに粉砕後の分級のうち少なくとも1つを調整することによって制御することができる。
‐ LiCoOテンプレート粒子のアスペクト比を調整することによって、アスペクト比が4以上である一次粒子11の合計面積割合を制御することができる。具体的には、LiCoOテンプレート粒子のアスペクト比を大きくするほど、アスペクト比が4以上である一次粒子11の合計面積割合を高めることができる。LiCoOテンプレート粒子のアスペクト比の調整手法は上述のとおりである。
‐ LiCoOテンプレート粒子の粒径を調整することによって、一次粒子11の平均粒径を制御することができる。
‐ LiCoOテンプレート粒子の粒径を調整することによって、配向正極板16の緻密度を制御することができる。具体的には、LiCoOテンプレート粒子の粒径を小さくするほど、配向正極板16の緻密度を高めることができる。
(2)マトリックス粒子の作製
 Co原料粉末をマトリックス粒子として用いる。Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coの他、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
 本工程では、以下のとおり、配向正極板16を構成する一次粒子11のプロファイルを制御することができる。
‐ LiCoOテンプレート粒子の粒径に対するマトリックス粒子の粒径の比(以下、「マトリックス/テンプレート粒径比」という。)を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわちマトリックス粒子の粒径が小さいほど、後述する焼成工程においてマトリックス粒子がLiCoOテンプレート粒子に取り込まれやすくなるため、低角一次粒子の合計面積割合を高めることができる。
‐ マトリックス/テンプレート粒径比を調整することによって、アスペクト比が4以上である一次粒子11の合計面積割合を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわちマトリックス粒子の粒径が小さいほど、アスペクト比が4以上である一次粒子11の合計面積割合を高めることができる。
‐ マトリックス/テンプレート粒径比を調整することによって、配向正極板16の緻密度を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわち、マトリックス粒子の粒径が小さいほど、配向正極板16の緻密度を高めることができる。
(3)グリーンシートの作製
 LiCoOテンプレート粒子とマトリックス粒子を100:0~3:97に混合して混合粉末を得る。この混合粉末、分散媒、バインダー、可塑剤及び分散剤を混合しながら、減圧下で撹拌して脱泡し且つ所望の粘度に調整してスラリーとする。次に、LiCoOテンプレート粒子にせん断力を印加可能な成形手法を用いて、調製したスラリーを成形することによって成形体を形成する。こうして、各一次粒子11の平均配向角度を0°超30°以下とすることができる。LiCoOテンプレート粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。ドクターブレード法を用いる場合には、調製したスラリーをPETフィルムの上に成形することによって、成形体としてのグリーンシートが形成される。
 本工程では、以下のとおり、配向正極板16を構成する一次粒子11のプロファイルを制御することができる。
‐ 成形速度を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、成形速度が速いほど、低角一次粒子の合計面積割合を高めることができる。
‐ 成形体の密度を調整することによって、一次粒子11の平均粒径を制御することができる。具体的には、成形体の密度を大きくするほど、一次粒子11の平均粒径を大きくすることができる。
‐ LiCoOテンプレート粒子とマトリックス粒子との混合比を調整することによっても、配向正極板16の緻密度を制御することができる。具体的には、LiCoOテンプレート粒子を多くするほど、配向正極板16の緻密度を下げることができる。
(4)配向焼結板の作製
 スラリーの成形体をジルコニア製セッターに載置し、500~900℃で1~10時間加熱処理(一次焼成)して、中間体としての焼結板を得る。この焼結板をリチウムシート(例えばLiCO含有シート)で上下挟み込んだ状態でジルコニアセッター上に載置して二次焼成することで、LiCoO焼結板を得る。具体的には、リチウムシートで挟み込まれた焼結板が載置されたセッターをアルミナ鞘に入れ、大気中にて700~850℃で1~20時間焼成した後、この焼結板をさらにリチウムシートで上下挟み込んで750~900℃で1~40時間焼成して、LiCoO焼結板を得る。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。なお、二次焼成におけるリチウムシートの総使用量はグリーンシート中のCo量に対する、グリーンシート及びリチウムシート中のLi量のモル比であるLi/Co比が1.0になるようにすればよい。
 本工程では、以下のとおり、配向正極板16を構成する一次粒子11のプロファイルを制御することができる。
‐ 焼成時の昇温速度を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、昇温速度を速くするほど、マトリックス粒子同士の焼結が抑えられて、低角一次粒子の合計面積割合を高めることができる。
‐ 中間体の加熱処理温度を調整することによっても、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、中間体の加熱処理温度を低くするほど、マトリックス粒子同士の焼結が抑えられて、低角一次粒子の合計面積割合を高めることができる。
‐ 焼成時の昇温速度及び中間体の加熱処理温度の少なくとも一方を調整することによって、一次粒子11の平均粒径を制御することができる。具体的には、昇温速度を速くするほど、また、中間体の加熱処理温度を低くするほど、一次粒子11の平均粒径を大きくすることができる。
‐ 焼成時のLi(例えば、LiCO)量及び焼結助剤(例えば、ホウ酸や酸化ビスマス)量の少なくとも一方を調整することによっても、一次粒子11の平均粒径を制御することができる。具体的には、Li量多くするほど、また、焼結助剤量を多くするほど、一次粒子11の平均粒径を大きくすることができる。
‐ 焼成時のプロファイルを調整することによって、配向正極板16の緻密度を制御することができる。具体的には、焼成温度を遅くするほど、また、焼成時間を長くするほど、配向正極板16の緻密度を高めることができる。
 本発明を以下の例によってさらに具体的に説明する。
 例1~9
(1)リチウム二次電池の作製
 図1に模式的に示されるようなフィルム外装電池の形態のリチウム二次電池10を図2A及び2Bに示されるような手順で作製した。本例で作製するリチウム二次電池は高温(例えば135℃)の高温プロセス(例えばホットラミネート)に耐えうる優れた耐熱性を備えたものである。具体的な手順は以下のとおりである。
 まず、厚さ90μm及び空隙率30%のLiCoO焼結体板(以下、LCO焼結体板という)を用意した。このLCO焼結体板は前述したリチウム複合酸化物焼結体板の製造方法に従って製造されたものであり、前述したリチウム複合酸化物焼結体板の好ましい諸条件を満たすものである。この焼結体板を、レーザー加工機で10.5mm×9.5mm角の正方形に切断して、複数のチップ状の正極板16を得た。なお、図2Aでは、複数のチップ状の正極板16を示しているが、これに限定されず、チップ状に分割されていない1枚の正極板16を用いて後述する正極組立品17を形成してもよい。
 外装フィルム26として、アルミラミネートフィルム(昭和電工パッケージング製、厚さ61μm、ポリプロピレンフィルム/アルミニウム箔/ナイロンフィルムの3層構造)を2枚用意した。図2Aに示されるように、1枚の外装フィルム26に正極集電箔14(厚さ9μmのアルミニウム箔)を介して複数個のチップ状正極板16を積層して、正極組立品17とした。このとき、チップ状正極板16が正極集電箔14に接着剤で固定される一方、正極集電箔14が外装フィルム26に接着剤で固定された。なお、正極集電箔14には、正極タブ端子15が溶接により正極集電箔14から延出する形で固定されている。一方、もう1枚の外装フィルム26に、負極集電箔22(厚さ10μmの銅箔)を介して、負極層20(厚さ130μmのカーボン層)を積層して、負極組立品19とした。このとき、負極層20がそれに含まれるバインダーによって負極集電箔22に固定される一方、負極集電箔22が外装フィルム26に接着剤で固定された。なお、負極集電箔22には、負極タブ端子23が溶接により負極集電箔22から延出する形で固定されている。また、負極層20としてのカーボン層は、活物質としてのグラファイト粉末と、増粘剤としてのカルボキシメチルセルロース(CMC)と、バインダーとしてのスチレンブチレンゴム(SBR)との混合物を、グラファイト:CMC:SBR=98:1:1(重量比)で含む塗工膜とした。負極層20の密度は1.4g/cm、目付は19mg/cmであった。
 セパレータ18として、多孔質ポリイミド膜(東京応化株式会社製、厚さ23μm、空隙率80%)を用意した。図2Aに示されるように、正極組立品17、セパレータ18及び負極組立品19を、正極板16及び負極層20がセパレータ18と向かい合うように順に積層して、両面が外装フィルム26で覆われ且つ外装フィルム26の外周部分が電池要素12の外縁からはみ出した積層体28を得た。こうして積層体28内に構築された電池要素12(正極集電箔14、正極板16、セパレータ18、負極層20及び負極集電箔22)の厚さは0.33mmであり、その形状及びサイズは2.3cm×3.2cmの四角形であった。
 図2Aに示されるように、得られた積層体28の3辺Aの封止を行った。この封止は、封止幅が表1に示される値になるように調整された当て冶具(ヒートバー)を用いて、積層体28の外周部分を200℃、1.5MPaで10秒間加熱プレスして、外周部分で外装フィルム26(アルミラミネートフィルム)同士を熱融着させることにより行った。3辺Aの封止後、積層体28を真空乾燥器34に入れ、水分を除去するとともに接着剤を乾燥させた。
 図2Bに示されるように、グローブボックス38内において、外縁3辺Aが封止された積層体28の未封止の残り1辺Bにおいて1対の外装フィルム26間の隙間を形成し、その隙間に注入器具36を挿入して電解液24を注入し、絶対圧5kPaの減圧雰囲気下にて簡易シーラーを用いて辺Bを仮封止した。電解液としては、エチレンカーボネート(EC)及びγ-ブチロラクトン(GBL)を1:3(体積比)で含む混合溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させ、さらにビニレンカーボネート(VC)を5.3重量%の濃度となるように溶解させたものを用いた。こうして辺Bが仮封止された積層体に初期充電を施し、7日間のエージングを行った。最後に封止した残り1辺Bの外周部分(電池要素を含まない末端部分)を切除して、ガス抜きを行った。
 図2Bに示されるように、グローブボックス38内において、絶対圧5kPaの減圧雰囲気下、仮封止の切除により生じた辺B’の封止を行った。この封止もまた積層体28の外周部分を200℃、1.5MPaで10秒間加熱プレスして、外周部分で外装フィルム26(アルミラミネートフィルム)同士を熱融着させることにより行った。こうして辺B’を1対の外装フィルム26で封止して、フィルム外装電池の形態のリチウム二次電池10とした。リチウム二次電池10をグローブボックス38から取り出し、外装フィルム26の外周の余分な箇所を切除して、リチウム二次電池10の形状を整えた。こうして、電池要素12の外縁4辺が1対の外装フィルム26で封止され、かつ、電解液24が注入された、リチウム二次電池10を得た。得られたリチウム二次電池10はサイズ38mm×27mmの長方形であり、厚さ0.45mm以下、容量30mAhであった。
(2)評価
 作製されたリチウム二次電池に対して、以下の評価を行った。
<離間距離Wpの測定>
 リチウム二次電池の断面をレーザー顕微鏡で撮影し、正極タブ端子15が封止される辺に関して、 外装フィルム26の封止部分の内周縁と正極板16の外周縁との離間距離Wpを測定した。結果は表1に示されるとおりであった。また、図6に、例1で作製したリチウム二次電池について、断面を撮影したレーザー顕微鏡画像を示す。
<正極板、セパレータ及び負極層の合計空隙容量>
 正極板16、負極層20及びセパレータ18の各部材の空隙率の測定を、部材の断面SEM像(反射画像)を互いに重複しない3視野について撮影し、各視野について部材と空隙が区別できるようにコントラストの調整及び2値化を行って空隙率を算出し、3視野から算出された空隙率の平均値を算出することにより行った。そして、正極板16、セパレータ18及び負極層20の各部材について、外形寸法から算出した外形容積(空隙を含めた部材容積)に空隙率を乗じることにより、各部材の空隙容量を算出した。得られた各部材の空隙容量を足し合わせることで、正極板16、セパレータ18及び負極層20の各部材の合計空隙容量を得た。結果は、表1に示されるとおりであった。
<電解液量の測定>
 リチウム二次電池の初期重量を測定した。フィルム外装電池を開封して、120℃の真空乾燥下で12時間乾燥させて乾燥後の重量を測定した。乾燥前後の重量変化から、電解液量を算出した。また、得られた電解液量を、正極板16、セパレータ18及び負極層20の合計空隙容量で除することにより、合計空隙容量に対する電解液量の比率を算出した。結果は表1に示されるとおりであった。
<繰り返し曲げ試験>
 リチウム二次電池をエポキシ樹脂に埋設して、厚さ0.76mm、サイズ86mm×54mmの長方形の電池内蔵カードを作製した。この電池内蔵カードに対してJIS X 6305-1に準拠して曲げ試験を行った。具体的には、曲げ試験機のカードホルダにカードをセットして、カードに対し、長手方向で表面を凸にする曲げ250回、短手方向で表面を凸とする曲げ250回、長手方向で裏面を凸にする曲げ250回、短手方向で裏面を凸にする曲げ250回の、合計1000回の曲げ試験を行った。その後、表面粗さ計(TAYLOR HOBSON製、タリサーフ)を用いて、カードの電池埋設部の表面プロファイルを測定した。すなわち、繰り返し曲げ試験によってカードの電池埋設部付近の外装フィルムには程度の差こそあれ凸状部が発生するため、その高さを測定した。具体的には、図7に模式的に示されるように、得られた表面プロファイルにおいて、凸状部に相当するピークを特定し、当該ピークのベースラインBLを引き、ベースラインBLから垂直方向にピークトップPTまでの距離を凸状部の高さHとして測定し、以下の基準に従いシワの有無を判定した。結果は表1に示されるとおりであった。
‐シワなし:凸状部の高さHが40μm未満
‐シワあり:凸状部の高さHが40μm以上
<1Hz抵抗の測定>
 リチウム二次電池に対して、電池電圧3.8Vにおいて、交流インピーダンス法により内部抵抗を測定し、得られたCole-Coleプロットから1Hzでの抵抗値(Ω・cm)を読み取った。このとき1Hzちょうどのデータが測定できない場合には、線形補完した値を用いた。なお、接触抵抗は5Ω・cm未満とした。結果は表1に示されるとおりであった。また、図8に、例1で作製したフィルム外装電池に対して、電池電圧3.8Vにおいて交流インピーダンス法により測定されたCole-Coleプロットを示す。表1に示されるように、例9における1Hzでの抵抗値は32.9Ω・cmであり、これは例1~8よりも高抵抗であり、それ故電池特性に相対的に劣ることを意味する。
 例10~18
 負極層(カーボン層)、セパレータ及び電解液として以下に示されるものを用いたこと、及び各種作製条件を表1に示される値としたこと以外は、例1~9と同様にして電池の作製及び評価を行った。なお、本例で作製したリチウム二次電池は例1~9のリチウム二次電池よりも耐熱性に劣る反面、より低コストな材料で作製可能なものである。結果は表2に示されるとおりであった。なお、表2に示されるとおり、例18における1Hzでの抵抗値は29.9Ω・cmであり、これは例10~17よりも高抵抗であり、それ故電池特性に相対的に劣ることを意味する。
‐負極層(カーボン層):活物質としてのグラファイト粉末と、バインダーとしてのポリフッ化ビニリデン(PVDF)とを、グラファイト:PVDF=90:10の(重量比)で含む塗工膜
‐セパレータ:多孔質ポリプロピレン膜(ポリポア社製、厚さ25μm、空隙率55%)
‐電解液:エチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)を3:7(体積比)で含む混合溶媒に、LiPFを1.0mol/Lの濃度となるように溶解させ、さらにビニレンカーボネート(VC)を2重量%の濃度となるように溶解させたものを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (12)

  1.  リチウム複合酸化物焼結体板である正極板と、
     前記正極板のサイズよりも大きいサイズを有する、カーボンを含む負極層と、
     前記正極板と前記負極層との間に介在され、前記正極板及び前記負極層のサイズよりも大きいサイズのセパレータと、
     前記正極板の前記セパレータから離れた側の面に接着される正極集電箔と、
     前記負極層の前記セパレータから離れた側の面に接着される負極集電箔と、
     前記正極板、前記負極層、及び前記セパレータが含浸される電解液と、
     外周縁が互いに封止されて内部空間を成し、該内部空間に前記正極板、前記正極集電箔、前記負極層、前記負極集電箔、前記セパレータ、及び前記電解液を収容する、1対の外装フィルムと、
     前記正極集電箔に接続し、前記1対の外装フィルムの封止部分から外側に延出する正極タブ端子と、
     前記負極集電箔に接続し、前記1対の外装フィルムの封止部分から外側に延出する負極タブ端子と、
    を備えた、リチウム二次電池であって、
     前記セパレータの外周部分が少なくとも前記正極板側の外装フィルムの前記外周縁又はその近傍の周囲領域と密着して、前記正極板を収容する区画と前記負極層を収容する区画とを隔離しており、
     前記正極タブ端子及び前記負極タブ端子が、前記外装フィルムの封止部分の共通の1辺の異なる位置又は異なる辺から延出しており、
     前記正極タブ端子が封止される辺に関して、前記外装フィルムの前記封止部分の内周縁と前記正極板の外周縁との離間距離Wが2.0~4.0mmであり、
     前記電解液の容量が、前記正極板、前記セパレータ及び前記負極層の合計空隙容量の1.05~1.25倍である、リチウム二次電池。
  2.  カードに内蔵可能な薄型二次電池である、請求項1に記載のリチウム二次電池。
  3.  前記正極集電箔と前記外装フィルムの一方が接着されており、かつ、前記負極集電箔と前記外装フィルムの他方が接着されている、請求項1又は2に記載のリチウム二次電池。
  4.  交流インピーダンス法により決定される1Hzでの抵抗が25Ω・cm未満である、請求項1~3のいずれか一項に記載のリチウム二次電池。
  5.  前記リチウム二次電池の厚さが350~500μmである、請求項1~4のいずれか一項に記載のリチウム二次電池。
  6.  前記正極板の厚さが70~120μmである、請求項1~5のいずれか一項に記載のリチウム二次電池。
  7.  前記外装フィルムの厚さが1枚当たり50~80μmである、請求項1~6のいずれか一項に記載のリチウム二次電池。
  8.  前記外装フィルムが、樹脂フィルムと金属箔とを含むラミネートフィルムである、請求項1~7のいずれか一項に記載のリチウム二次電池。
  9.  前記セパレータが、ポリオレフィン、片面にセラミックが塗布されたポリオレフィン、セルロース、又はポリイミド製である、請求項1~8のいずれか一項に記載のリチウム二次電池。
  10.  前記リチウム複合酸化物がコバルト酸リチウムである、請求項1~9のいずれか一項に記載のリチウム二次電池。
  11.  前記リチウム複合酸化物焼結体板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である、請求項1~10のいずれか一項に記載のリチウム二次電池。
  12.  樹脂基材と、該樹脂基材内に埋設された請求項1~11のいずれか一項に記載のリチウム二次電池とを備えた、電池内蔵カード。
     

     
PCT/JP2019/007462 2018-03-28 2019-02-27 リチウム二次電池及び電池内蔵カード WO2019187915A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510467A JP6923747B2 (ja) 2018-03-28 2019-02-27 リチウム二次電池及び電池内蔵カード
CN201980005622.4A CN111902991B (zh) 2018-03-28 2019-02-27 锂二次电池及内置电池的卡片
US16/900,023 US11424455B2 (en) 2018-03-28 2020-06-12 Lithium secondary battery and card with built-in battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063173 2018-03-28
JP2018-063173 2018-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/900,023 Continuation US11424455B2 (en) 2018-03-28 2020-06-12 Lithium secondary battery and card with built-in battery

Publications (1)

Publication Number Publication Date
WO2019187915A1 true WO2019187915A1 (ja) 2019-10-03

Family

ID=68059019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007462 WO2019187915A1 (ja) 2018-03-28 2019-02-27 リチウム二次電池及び電池内蔵カード

Country Status (5)

Country Link
US (1) US11424455B2 (ja)
JP (1) JP6923747B2 (ja)
CN (1) CN111902991B (ja)
TW (1) TWI772625B (ja)
WO (1) WO2019187915A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149997A (ja) * 1998-08-31 2000-05-30 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2006004816A (ja) * 2004-06-18 2006-01-05 Fuji Xerox Co Ltd Icカード
JP2012054003A (ja) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The リチウムイオン電池
WO2017188232A1 (ja) * 2016-04-25 2017-11-02 日本碍子株式会社 正極

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3980505B2 (ja) * 1998-08-31 2007-09-26 株式会社東芝 薄型リチウムイオン二次電池
TW431001B (en) * 1998-08-31 2001-04-21 Toshiba Corp Nonaqueous electrolytic secondary battery and manufacture method thereof
JP2006331838A (ja) 2005-05-26 2006-12-07 Ngk Spark Plug Co Ltd 薄型電池
CN101351907B (zh) * 2005-10-11 2010-09-29 埃克塞勒特龙固体公司 制造锂电池的方法
JP5043338B2 (ja) * 2006-01-19 2012-10-10 パナソニック株式会社 リチウム二次電池
JP5141356B2 (ja) * 2008-04-22 2013-02-13 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5564649B2 (ja) * 2010-06-23 2014-07-30 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP5587052B2 (ja) * 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP2012094354A (ja) * 2010-10-26 2012-05-17 Dainippon Printing Co Ltd リチウムイオン二次電池、および電池パック
US9209451B2 (en) * 2010-12-24 2015-12-08 Kyocera Corporation Lithium rechargeable battery comprising a lithium titanate sintered body
JP2016012495A (ja) * 2014-06-30 2016-01-21 トヨタ自動車株式会社 リチウム固体二次電池およびその製造方法
KR101555594B1 (ko) * 2014-10-02 2015-10-06 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
JP6730016B2 (ja) 2015-10-22 2020-07-29 マクセルホールディングス株式会社 電気化学素子及びそれを備えたカード
KR102643570B1 (ko) 2016-02-24 2024-03-04 엔지케이 인슐레이터 엘티디 판형 리튬 복합 산화물
JP6906523B2 (ja) * 2016-08-02 2021-07-21 日本碍子株式会社 全固体リチウム電池の使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149997A (ja) * 1998-08-31 2000-05-30 Toshiba Corp 非水電解液二次電池及び非水電解液二次電池の製造方法
JP2006004816A (ja) * 2004-06-18 2006-01-05 Fuji Xerox Co Ltd Icカード
JP2012054003A (ja) * 2010-08-31 2012-03-15 Furukawa Battery Co Ltd:The リチウムイオン電池
WO2017188232A1 (ja) * 2016-04-25 2017-11-02 日本碍子株式会社 正極

Also Published As

Publication number Publication date
CN111902991B (zh) 2024-04-26
US11424455B2 (en) 2022-08-23
TW201943140A (zh) 2019-11-01
JP6923747B2 (ja) 2021-08-25
TWI772625B (zh) 2022-08-01
US20200313195A1 (en) 2020-10-01
CN111902991A (zh) 2020-11-06
JPWO2019187915A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102368344B1 (ko) 리튬 이차전지 및 전지 내장 카드
KR102368342B1 (ko) 리튬 이차 전지 및 전지 내장 디바이스의 제조 방법
WO2020079819A1 (ja) リチウム二次電池
WO2019187915A1 (ja) リチウム二次電池及び電池内蔵カード
WO2020129775A1 (ja) リチウム二次電池
JP6957737B2 (ja) リチウム二次電池及び電池内蔵カード
WO2019187917A1 (ja) リチウム二次電池及び電池内蔵カード
WO2019187916A1 (ja) リチウム二次電池及び電池内蔵カード
JP2019175843A (ja) リチウム二次電池及び電池内蔵カード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776710

Country of ref document: EP

Kind code of ref document: A1