WO2019187472A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2019187472A1
WO2019187472A1 PCT/JP2019/000200 JP2019000200W WO2019187472A1 WO 2019187472 A1 WO2019187472 A1 WO 2019187472A1 JP 2019000200 W JP2019000200 W JP 2019000200W WO 2019187472 A1 WO2019187472 A1 WO 2019187472A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature
refrigerant
liquid
liquid film
Prior art date
Application number
PCT/JP2019/000200
Other languages
English (en)
French (fr)
Inventor
北川 広明
洋祐 塙
悠太 佐々木
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019187472A1 publication Critical patent/WO2019187472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus including a process of forming a liquid film on the upper surface of a substrate, solidifying the liquid film, and then removing the solidified film.
  • Some substrate processing technologies for supplying a liquid to a substrate and performing wet processing include a process of forming a liquid film with a liquid on the upper surface of a horizontally oriented substrate, solidifying the liquid film, and then removing the solidified film.
  • the purpose of such a process is to clean the upper surface of the substrate by, for example, taking particles adhering to the upper surface of the substrate into the solidified film and removing them. That is, this process is performed as a process for cleaning the upper surface of the substrate as a surface to be processed.
  • Such a cleaning process is sometimes referred to as “solidification cleaning” or “phase change cleaning” because it involves a phase change of the processing liquid between the liquid phase and the solid phase.
  • Patent Document 1 An example of such a technique is described in Patent Document 1, for example.
  • This technique includes a process of solidifying the liquid film by supplying a coolant to the center of the lower surface of the substrate while rotating the substrate having the liquid film formed on the upper surface in a horizontal posture.
  • the liquid film is formed by deionized water (DIW). Therefore, a liquid cooled to a temperature lower than 0 degrees Celsius is required as a refrigerant for solidifying the liquid film.
  • DIW deionized water
  • the present invention has been made in view of the above problems, and in a substrate processing technique including a process of forming a liquid film on a substrate, solidifying it, and removing it, a substrate can be satisfactorily used even if a relatively low purity substance is used. It aims at providing the technology which can be processed.
  • a first step of forming a liquid film with a liquid on the processing surface of the substrate whose processing surface is held in an upward horizontal posture a first step of forming a liquid film with a liquid on the processing surface of the substrate whose processing surface is held in an upward horizontal posture. And rotating the substrate around a vertical axis in an atmosphere at a temperature higher than the freezing point of the liquid to supply a coolant to the surface opposite to the surface to be processed, and cooling the substrate to solidify the liquid film.
  • a third step of dissolving the solidified film and removing it from the surface to be processed
  • a substrate holding unit that holds a substrate in a horizontal posture and rotates about a vertical axis with a surface to be processed facing upward, Supplying a liquid to the surface to be processed and forming a liquid film by the liquid; supplying a coolant to a surface of the rotating substrate opposite to the surface to be processed; cooling the substrate; A coolant supply unit for solidifying the liquid film, a melt supply unit for supplying a melt at a temperature higher than the freezing point of the liquid to the solidified film obtained by solidifying the liquid film, and the substrate held by the substrate holding unit. And a processing chamber accommodated in an atmosphere at a temperature higher than the freezing point.
  • the temperature of the refrigerant is lowered, and the first temperature is lower than the freezing point and the first flow rate is set.
  • the temperature is higher than the second temperature, which is the maximum temperature of the refrigerant, that can solidify the entire liquid film by continuously supplying the liquid film to the substrate.
  • the liquid supplied to the surface to be processed which is the upper surface of the substrate, forms a liquid film in an atmosphere at a temperature higher than the freezing point, and the substrate is removed by the coolant supplied to the lower surface side of the substrate. Cooled through.
  • the refrigerant supplied to the substrate at the first temperature does not have a cooling capacity enough to solidify the entire liquid film. For this reason, the solidification of the liquid film at this stage is local, and more specifically, in the portion in contact with the upper surface (surface to be processed) corresponding to the position where the coolant is supplied on the lower surface side of the substrate, The phase change from the liquid phase to the solid phase begins.
  • Liquids especially liquids that crystallize during solidification, have the property of solidifying (segregation) while eliminating impurities contained inside.
  • a temperature gradient is generated in which the temperature is lowest on the lower surface side in contact with the substrate and higher on the upper surface side exposed to the ambient atmosphere. For this reason, the boundary between the liquid phase and the solid phase generated by the solidification of the liquid sequentially proceeds in the liquid film toward the upper side and the direction along the upper surface of the substrate.
  • both impurities contained in the liquid and impurities (particles or the like) adhering to the upper surface (surface to be processed) of the substrate are conveyed in a direction away from the surface to be processed due to a segregation phenomenon.
  • a solidified film from which impurities are eliminated is formed in the vicinity of the surface to be processed.
  • the liquid film solidifies before the removal of impurities progresses.
  • the substrate is cooled by continuously supplying a first temperature refrigerant that does not have a cooling capacity sufficient to rapidly solidify the liquid film for a predetermined period. Therefore, since the solidification of the liquid film proceeds more slowly, the effect of eliminating impurities becomes higher. Thereafter, by further lowering the temperature of the refrigerant, the boundary between the liquid phase and the solid phase further proceeds, and finally the entire liquid film is solidified.
  • the impurities in the liquid or on the surface to be processed are taken into the solidified film while being separated from the surface to be processed. Therefore, by subsequently removing the solidified film containing the impurities, the surface to be processed of the substrate becomes clean with no impurities. Not only the impurities attached to the substrate are removed, but also impurities contained in the liquid are prevented from remaining on the surface to be processed. Thus, according to the present invention, it is possible to satisfactorily treat the substrate even when a relatively low-purity substance is used for forming the liquid film.
  • the liquid film can be solidified while removing impurities adhering to the substrate and impurities contained in the liquid film. Therefore, the substrate can be satisfactorily processed even when a relatively low-purity substance is used for forming the liquid film.
  • the substrate means a semiconductor substrate, a glass substrate for photomask, a glass substrate for liquid crystal display, an organic EL (Electroluminescence) display substrate, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for optical disc, It refers to various substrates such as a magnetic disk substrate, a magneto-optical disk substrate, a ceramic substrate, and a solar cell substrate.
  • a substrate processing system mainly used for processing a semiconductor substrate will be described as an example with reference to the drawings. However, the present invention can also be applied to the processing of various substrates exemplified above.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing apparatus according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a wet processing apparatus that performs wet processing such as cleaning with a processing liquid and etching processing on a disk-shaped substrate W such as a semiconductor wafer.
  • Various known techniques can be applied as the wet treatment.
  • it is suitable for substrate processing according to the present invention, including a process of solidifying and removing a liquid film formed on the upper surface of the substrate.
  • the substrate processing apparatus 1 includes a substrate holding unit 10 provided in a chamber 70, a splash guard 20, processing liquid discharge units 30 and 40, a processing liquid supply unit 50, and a control unit 80 that controls these units. It has.
  • the substrate holding unit 10 rotates the substrate W while holding the substrate W in a substantially horizontal posture with the substrate surface facing upward.
  • the substrate holder 10 includes a spin chuck 11 in which a spin base 111 and a rotation support shaft 112 are integrally coupled.
  • the spin base 111 has a substantially circular shape in plan view, and a hollow rotation support shaft 112 extending in a substantially vertical direction is fixed to the center of the spin base 111.
  • the rotation support shaft 112 is connected to a rotation shaft of a chuck rotation mechanism 103 including a motor.
  • the chuck rotating mechanism 103 is accommodated in a cylindrical casing 101.
  • the rotation spindle 112 is supported by the casing 101 so as to be rotatable about a vertical rotation axis.
  • the chuck rotation mechanism 103 rotates the rotation support shaft 112 around the rotation axis by driving from the chuck drive unit 87 of the control unit 80. Thereby, the spin base 111 attached to the upper end part of the rotation spindle 112 rotates around the vertical axis.
  • the control unit 80 can adjust the rotation speed of the spin base 111 by controlling the chuck rotation mechanism 103 via the chuck drive unit 87.
  • a plurality of chuck pins 114 for holding the peripheral edge of the substrate W are provided upright.
  • Three or more chuck pins 114 may be provided to securely hold the circular substrate W (six in this example), and are arranged at equiangular intervals along the peripheral edge of the spin base 111.
  • Each of the chuck pins 114 is configured to be switchable between a pressing state in which the outer peripheral end surface of the substrate W is pressed and a released state in which the chuck pin 114 is separated from the outer peripheral end surface of the substrate W.
  • each of the plurality of chuck pins 114 is released.
  • each of the plurality of chuck pins 114 is brought into a pressed state.
  • the chuck pin 114 can hold the peripheral end portion of the substrate W and hold the substrate W in a substantially horizontal posture at a predetermined interval from the spin base 111.
  • the substrate W is supported with its front surface facing upward and the back surface facing downward.
  • the chuck pins 114 are not limited to the above, and various known configurations can be used.
  • the chuck rotating mechanism 103 is operated in a state where the substrate W is held on the spin chuck 11, more specifically, in a state where the peripheral portion of the substrate W is held by the chuck pin 114 provided on the spin base 111.
  • the substrate W rotates around the vertical rotation axis AX.
  • Wa and Wb the upper and lower surfaces of the substrate W rotating in this way are denoted by the symbols Wa and Wb, respectively.
  • a refrigerant discharge part 12 is provided below the substrate W supported in a horizontal posture by the spin chuck 11. As will be described later, the refrigerant discharge unit 12 discharges a refrigerant having a temperature lower than the freezing point of the liquid constituting the liquid film toward the lower surface Wb of the substrate W on which the liquid film is formed on the upper surface Wa of the substrate W. Has the function of coagulating the membrane.
  • the refrigerant discharge portion 12 has a disk-like outer shape slightly smaller than the substrate W, and is disposed in a vertical direction with a counter member 121 disposed with a horizontal upper surface facing the substrate lower surface Wb, and a central portion of the counter member 121. And a supply pipe 122 extending downward. The supply pipe 122 is inserted into the hollow portion of the rotary spindle 112 but is not connected to the rotary spindle 112. Therefore, even when the spin chuck 11 rotates, the refrigerant discharge unit 12 does not rotate.
  • the supply pipe 122 is a hollow pipe, and the upper end of the supply pipe 122 opens upward at the center of the opposing member 121.
  • the supply pipe 122 is connected to a processing liquid supply unit 50 which will be described later, and discharges the refrigerant in the processing liquid output from the processing liquid supply unit 50 toward the substrate lower surface Wb.
  • the coolant is supplied to the gap space between the substrate lower surface Wb and the upper surface of the facing member 121. That is, the upper end of the supply pipe 122 functions as a nozzle having a discharge port that opens toward the lower surface side rotation center of the substrate W. Therefore, when necessary in the following, this portion is referred to as a “lower surface nozzle” and denoted by reference numeral 123.
  • the refrigerant discharge unit 12 cools the substrate W by bringing the discharged refrigerant into contact with the substrate lower surface Wb, and solidifies the liquid film carried on the substrate upper surface Wa.
  • a splash guard 20 is provided around the casing 101 so as to be movable up and down along the rotation axis of the spin chuck 11 so as to surround the periphery of the substrate W held in a horizontal posture on the spin chuck 11.
  • the splash guard 20 has a substantially rotationally symmetric shape with respect to the rotation axis.
  • Each of the splash guards 20 is arranged concentrically with the spin chuck 11 and has a plurality of stages (in this example, two stages) of guards 21 that receive the processing liquid scattered from the substrate W, and a liquid that receives the processing liquid flowing down from the guard 21. And a receiving portion 22.
  • guard raising / lowering part 86 provided in the control part 80 raises / lowers the guard 21 in steps, so that it becomes possible to separate and collect the processing liquid such as the chemical liquid and the rinsing liquid scattered from the rotating substrate W. ing.
  • At least one liquid supply unit for supplying various processing liquids such as a chemical liquid such as an etching liquid, a rinsing liquid, a solvent, pure water, and DIW (deionized water) to the substrate W is provided.
  • various processing liquids such as a chemical liquid such as an etching liquid, a rinsing liquid, a solvent, pure water, and DIW (deionized water)
  • the treatment liquid discharge unit 30 is driven by an arm driving unit 83 of the control unit 80 and configured to be rotatable about a vertical axis, and an arm extending in the horizontal direction from the rotary shaft 31. 32 and a nozzle 33 attached downward to the tip of the arm 32.
  • the rotation shaft 31 is rotationally driven by the arm driving unit 83, the arm 32 swings around the vertical axis.
  • the nozzle 33 moves between a retracted position (a position indicated by a solid line in FIG. 1) outside the splash guard 20 and an upper position (a position indicated by a dotted line in FIG. 1) of the rotation center of the substrate W.
  • the nozzle 33 discharges a predetermined processing liquid supplied from the processing liquid supply unit 50 while being positioned above the substrate W, and supplies the processing liquid to the surface of the substrate W.
  • the processing liquid discharge section 40 is provided from a processing liquid supply unit 50 provided at a pivot shaft 41 that is rotationally driven by an arm driving section 83, an arm 42 connected thereto, and a tip of the arm 42. And a nozzle 43 for discharging the processed liquid.
  • the number of treatment liquid discharge units is not limited to this, and may be increased or decreased as necessary.
  • the processing liquid discharge units 30 and 40 sequentially position the nozzles 33 and 43 above the substrate W to supply the processing liquid to the substrate W. To do. Thereby, the wet process with respect to the board
  • different processing liquids may be discharged from the nozzles 33 and 43, or the same processing liquid may be discharged. Two or more kinds of processing liquids may be discharged from one nozzle.
  • the processing liquid supplied to the vicinity of the rotation center of the substrate W spreads outward due to the centrifugal force accompanying the rotation of the substrate W, and is finally shaken off laterally from the peripheral edge of the substrate W.
  • the processing liquid splashed from the substrate W is received by the guard 21 of the splash guard 20 and collected by the liquid receiving portion 22.
  • the processing liquid supply unit 50 has a function of supplying various processing liquids to the refrigerant discharge unit 12, the processing liquid discharge unit 30, and the processing liquid discharge unit 40 as the processing process proceeds.
  • the specific configuration of the processing liquid supply unit 50 can be various depending on the purpose of processing. Here, as an example, a configuration necessary for implementing the substrate processing method according to the present invention will be mainly described.
  • the processing liquid supply unit 50 supplies the processing liquid for forming a liquid film on the upper surface Wa of the substrate W to the processing liquid discharge unit 30, the refrigerant for solidifying the liquid film to the refrigerant discharge unit 12, and the liquid film.
  • a solution for dissolving the coagulated film formed by solidifying is supplied to the treatment liquid discharge unit 40, respectively.
  • the processing liquid supply unit 50 processes the first supply part 51 that supplies the processing liquid to the processing liquid discharge part 30, the second supply part 52 that supplies the refrigerant to the refrigerant discharge part 12, and the melt.
  • a third supply unit 53 that supplies the liquid discharge unit 40 is provided.
  • the first supply unit 51 includes a treatment liquid delivery unit 511 that delivers a treatment liquid for forming a liquid film on the substrate W, a pipe 512 that connects the treatment liquid delivery part 511 and the treatment liquid discharge unit 30, and the pipe And a control valve 513 inserted in 512.
  • the processing liquid sending unit 511 may have a function of storing the processing liquid inside, or may have only a function of sending the processing liquid supplied from the outside to the pipe 512.
  • the control valve 513 operates in response to a control command from the valve control unit 84 provided in the control unit 80, and the flow rate of the processing liquid supplied from the processing liquid delivery unit 511 to the processing liquid discharge unit 30 via the pipe 512. Adjust.
  • the processing liquid supplied from the first supply unit 51 to the processing liquid discharge unit 13 forms a liquid film on the substrate W, solidifies, and is then melted and removed.
  • the substance that can be used as such a processing liquid is preferably a liquid that is normal temperature, solidified at a relatively high temperature that is lower than normal temperature, and that does not include impurities that become contaminants of the substrate W. .
  • the freezing point is higher than 0 degrees Celsius, cold water can be used as a refrigerant as described below, and a special refrigerant or a large-scale cooling device is not required. Therefore, the effect of energy saving and cost reduction required for processing is great.
  • the treatment liquid may be a mixture of a plurality of substances.
  • Examples of substances that satisfy the above requirements include Tert-butanol water (freezing point: 20 degrees Celsius), ethylene carbonate water (freezing point: 20 degrees Celsius), and the like. If the freezing point of the substance used as the treatment liquid is lower than room temperature, it is not necessary to consume energy to keep it in a liquid state.
  • the second supply unit 52 has the following configuration.
  • Pipes 521 and 522 are branched from a pipe 55 that takes in deionized water (DIW) at room temperature from the outside.
  • the pipe 521 is connected to the mixer 527 through the control valve 525.
  • the pipe 522 is connected to the cooler 523.
  • the cooler 523 cools the room temperature DIW to a predetermined temperature of 0 degrees Celsius or higher (for example, 2 degrees Celsius), and outputs it to the pipe 524 as a low temperature DIW.
  • a control valve 526 is inserted in the pipe 524.
  • the normal temperature DIW flowing through the pipe 521 and the low temperature DIW flowing through the pipe 524 are mixed by the mixer 527.
  • the mixed liquid is supplied to the refrigerant discharge unit 12 as a refrigerant through the pipe 528.
  • Opening and closing of the control valves 525 and 526 is controlled by the valve control unit 84 of the control unit 80.
  • the control valve 525, 526 operates at an opening degree according to a control command from the valve control unit 84, so that the mixing ratio of the normal temperature DIW and the low temperature DIW is adjusted. Thereby, it is possible to use DIW having any temperature from about 0 degrees Celsius to room temperature and any flow rate as a refrigerant.
  • the temperature of the low temperature DIW output from the cooler 523 and the temperature of the refrigerant after mixing with the normal temperature DIW are managed by the temperature management unit 85 provided in the control unit 80.
  • a pipe 531 branched from the pipe 55 is connected to the heater 532.
  • the heater 532 heats room temperature DIW supplied from the outside and raises the temperature to a predetermined temperature (for example, 50 degrees Celsius).
  • the high-temperature DIW generated by heating is output as a melt to the pipe 533 connected to the processing liquid discharge unit 40.
  • a control valve 534 is inserted in the pipe 533.
  • the control valve 534 operates according to a control command from the valve control unit 84 provided in the control unit 80. As a result, the flow rate of the melt supplied from the heater 532 to the processing liquid discharge unit 40 via the pipe 533 is adjusted.
  • the temperature of the high-temperature DIW output from the heater 532 is managed by the temperature management unit 85.
  • control unit 80 of the substrate processing system 1 includes a CPU 81 that executes a predetermined processing program to control the operation of each unit, a processing program executed by the CPU 81, and data generated during the processing. And a display unit 88 for notifying the user of the progress of processing and the occurrence of abnormality as necessary.
  • the substrate processing apparatus 1 is applicable to various processes.
  • a process for forming a liquid film with a processing liquid on the upper surface Wa of the substrate W and coagulating it after performing an appropriate wet process on the substrate W will be described.
  • Such a process is applied to, for example, a cleaning process (phase change cleaning process) in which the deposit on the substrate surface Wa is released and taken into the solidified film and removed together with the solidified film. Since the principle of such processing is known, the description thereof is omitted here.
  • FIG. 2 is a flowchart showing the operation of the substrate processing apparatus of this embodiment.
  • 3A to 3D are diagrams schematically showing the state of each part in this operation.
  • the operation of the substrate processing apparatus 1 described below is realized by causing the CPU 81 to execute a control program stored in advance in the memory 82 and cause each part of the apparatus to execute a predetermined operation.
  • an appropriate wet process is performed using the substrate W carried into the apparatus as a workpiece (step S101).
  • Many known techniques are known as the wet process, and these processes can also be applied in this embodiment. Therefore, detailed description is omitted here.
  • the atmosphere in the chamber 70 is maintained at a temperature higher than the freezing point of the processing liquid L1 described later.
  • the chuck rotating mechanism 103 is operated by driving from the chuck driving unit 87, and the spin chuck 11 is rotated at the liquid film forming speed.
  • the wet-processed substrate W rotates at the liquid film forming speed (step S102).
  • the nozzle 33 of the processing liquid discharge unit 30 is positioned above the rotation center of the substrate W, and the processing liquid for forming a liquid film is discharged from the nozzle 33 (step S103).
  • the processing liquid L1 discharged from the nozzle 33 is supplied to the central portion of the rotating substrate W, the processing liquid L1 spreads toward the outer peripheral portion of the substrate W by the action of centrifugal force.
  • a liquid film LF that covers the entire upper surface Wa of the substrate W is formed.
  • the rotation speed of the substrate W is set to be relatively low, for example, 300 rpm or less so that the supplied processing liquid is not shaken out. Note that the thickness of the liquid film LF can be controlled by the rotation speed of the substrate W.
  • the nozzle 33 stops discharging the processing liquid and moves to the retracted position on the side of the substrate W (step S105).
  • the substrate W continues to rotate at a solidification rotation speed that is a liquid film formation speed or lower (step S106)
  • the upper surface Wa of the substrate W has a predetermined thickness as shown in FIG. 3B. The state covered with the film LF is maintained.
  • the second supply unit 52 of the processing liquid supply unit 50 sends out the refrigerant toward the refrigerant discharge unit 12.
  • the refrigerant having the predetermined temperature T1 and the predetermined flow rate F1 is discharged from the lower surface nozzle 123 of the refrigerant discharge unit 12, and is supplied to the vicinity of the rotation center of the substrate lower surface Wb (step S107).
  • the refrigerant is DIW whose temperature is adjusted to a temperature lower than the freezing point of the treatment liquid L1.
  • the liquid film LF can be efficiently cooled. The setting of the temperature T1 and the flow rate F1 of the refrigerant F at this time will be described later.
  • step S108 when the substrate lower surface Wb contacts the coolant F and the substrate W is cooled, the liquid film LF formed on the substrate upper surface Wa is solidified and converted into a solidified film SF.
  • the supply of the refrigerant F is continued for a predetermined time (step S108), and after the entire liquid film LF is converted into the solidified film SF, the discharge of the refrigerant F from the lower surface nozzle 123 is stopped (step S109).
  • the solidified film SF thus formed is removed. That is, the rotation speed of the substrate W is set to a predetermined rinse processing rotation speed (step S110). Since the entire upper surface Wa of the substrate W is covered with the coagulation film SF, the rotation speed for the rinsing process can be higher than the rotation speed for the coagulation. Then, the nozzle 43 of the processing liquid discharge unit 40 is positioned above the center of rotation of the substrate W, and high temperature DIW as a melt is discharged from the nozzle 43 (step S111). As shown in FIG.
  • step S112 when the high-temperature melt L2 is supplied to the solidified film SF covering the substrate W, the solidified film SF is melted, and finally, the substrate W is rotated to be shaken off from the substrate W together with the melt. It is. By making the rotational speed for the rinsing process relatively high, it is possible to prevent the contaminants in the solidified film SF from reattaching to the substrate W.
  • step S112 After the supply of the melt is continued for a predetermined time (step S112), the nozzle 43 stops the discharge of the melt and moves to a predetermined retreat position (position shown in FIG. 1) (step S113).
  • a spin drying process is executed (step S114).
  • the spin drying process is a known technique, and is a process in which the liquid remaining on the surface of the substrate W is spun off and the substrate surface is dried by rotating the substrate W at a high speed. After the substrate W is dried, the substrate W is unloaded from the substrate processing apparatus 1 (step S115), and the processing in the substrate processing apparatus 1 is completed.
  • step S107 temperature management of the refrigerant F supplied to the lower surface Wb of the substrate W in order to solidify the liquid film LF.
  • the entire liquid film LF formed on the upper surface (surface to be processed) Wa of the substrate W is solidified, and then the solidified film SF is removed. It has passed.
  • the temperature of the refrigerant F discharged in step S107 is controlled so that the following phenomenon occurs.
  • FIG. 4 is a diagram illustrating the temperature distribution in the liquid film during the solidification process.
  • the liquid film LF Before the liquid film LF starts to solidify, the liquid film LF is formed so as to cover the upper surface Wa of the substrate W as shown in the left figure of FIG. At this time, particles P1 (indicated by white circles) adhere to the surface to be processed, that is, the upper surface Wa of the substrate W, and the purpose of the processing is to remove the particles P1.
  • the liquid film LF may contain a trace amount of contaminants P2 (indicated by white squares in the figure) such as impurities originally contained in the liquid constituting the liquid film LF. It is required that such particles P1 and contaminants P2 do not remain on the substrate W after processing.
  • the temperature of the substrate lower surface Wb is lowered while the upper surface of the liquid film LF is the ambient temperature as shown in the right diagram of FIG. That is, the temperature of room temperature RT is maintained. Therefore, a temperature gradient as shown in the figure is generated in the vertical direction between the upper surface of the liquid film LF and the substrate lower surface Wb.
  • the symbol mp represents the freezing point of the substance constituting the liquid film LF.
  • the temperature gradient in the substrate W and the liquid film LF is approximately linear.
  • the substrate W has a higher thermal conductivity than the liquid film LF.
  • the temperature gradient between the upper surface of the liquid film LF and the substrate lower surface Wb can be represented by a broken line as shown in the figure.
  • the continuous temperature of the refrigerant causes the overall temperature to drop.
  • FIG. 4B when the temperature of the upper surface Wa of the substrate W in contact with the liquid film LF reaches the freezing point mp, solidification starts from the lower portion of the liquid film LF in contact with the upper surface Wa of the substrate W. That is, as shown in FIG. 4C, in the portion of the liquid film LF that is close to the substrate upper surface Wa and whose temperature is below the freezing point mp, the liquid constituting the liquid film LF is solidified to form a thin solidified film SF. Is done. As the time further elapses, as shown in FIG.
  • the refrigerant temperature T1 is set slightly lower than the freezing point mp. In this way, the cooling capacity of the refrigerant is suppressed, so that rapid solidification of the liquid film LF does not proceed.
  • the temperature T1 of such a refrigerant can be a temperature at which the temperature difference from the freezing point mp is within 5 degrees Celsius, for example.
  • the temperature distribution in the liquid film varies depending on conditions such as the thickness of the substrate W, the ambient temperature, and the freezing point mp of the liquid film LF. Therefore, it is desirable that the optimum value of the refrigerant temperature T1 is experimentally determined according to the processing conditions.
  • FIG. 5A and FIG. 5B are diagrams schematically showing the progress of solidification.
  • FIG. 5A shows an ideal progress state.
  • the solidification of the liquid film LF is started uniformly in the lower part touching the substrate upper surface Wa, gradually proceeds upward, and finally the entire liquid film is converted into the solidified film SF. desirable.
  • contaminants and the like in the substrate upper surface Wa and the liquid film LF can be moved to the upper part of the solidified film SF and away from the substrate W.
  • the refrigerant supplied to the central portion of the substrate lower surface Wb spreads in the radial direction as the substrate W rotates. Therefore, in actuality, as shown in FIG. 5B, coagulation starts first in the lower part of the central portion of the liquid film LF, and the coagulated film SF spreads upward and radially outward. Even in such a case, if the solidification progress rate is sufficiently low, the solidification progresses microscopically from the lower part to the upper part at each position in the liquid film LF. In order to realize this, it is effective to set the temperature of the refrigerant slightly lower than the freezing point mp of the liquid film LF.
  • the cooling capacity of the refrigerant gradually decreases toward the outer side in the radial direction. This is because the ambient temperature is higher than the temperature of the refrigerant, the thermal energy of the refrigerant moves to the substrate W and the liquid film LF, and the temperature of the refrigerant rises. For this reason, the refrigerant having a small temperature difference from the freezing point mp is not sufficiently cooled to the peripheral portion of the substrate W, and the entire liquid film cannot be solidified.
  • the temperature T1 and the flow rate F1 of the refrigerant need to be selected to values that do not lead to solidification of the entire liquid film even if the refrigerant at the temperature is continuously supplied to the substrate W at the flow rate. is there.
  • the liquid film is prevented from coagulating at a stretch, and the progress of coagulation can be delayed.
  • the supply of the refrigerant at such a temperature and flow rate that can solidify the entire liquid film is not preferable because it causes rapid solidification in the central part of the liquid film.
  • the temperature of the refrigerant is gradually reduced.
  • the temperature of the refrigerant is lowered to a temperature at which the entire liquid film LF can be solidified.
  • the entire liquid film LF is converted into the coagulated film SF, and the final temperature reached by the coagulated film SF can be sufficiently lowered.
  • FIG. 6 is a profile showing the temperature change of the refrigerant and each part in this embodiment. More specifically, FIG. 6A shows the definition of the position of each part. As shown in the figure, at a position close to the rotation axis AX of the substrate W, one point of the substrate lower surface Wb is represented by reference numeral A1, one point of the substrate upper surface Wa is represented by reference numeral A2, and one point above the liquid film LF is represented by reference numeral A3.
  • one point of the substrate lower surface Wb is denoted by reference symbol B1
  • one point of the substrate upper surface Wa is denoted by symbol B2
  • one point above the liquid film LF is denoted by symbol B3.
  • FIG. 6 is a profile which shows the time change of the temperature of the refrigerant F discharged from the refrigerant discharge part 12.
  • the refrigerant F at the temperature T1 is discharged at time t0, and this state is continued for a certain period.
  • the temperature of the refrigerant F is changed to T2, which is lower.
  • the temperature of the refrigerant F is lowered step by step to temperature T3 at time tb and to temperature T4 at time tc. That is, the refrigerant F is initially supplied to the substrate lower surface Wb at a temperature T1 slightly lower than the freezing point mp of the liquid film LF, and then the temperature is gradually lowered and finally supplied at the temperature T4.
  • Various temperature change profiles of the refrigerant F can be realized by changing the mixing ratio of the normal temperature DIW and the low temperature DIW in the second supply unit 52.
  • the final temperature T4 of the refrigerant F is slightly higher than 0 degrees Celsius.
  • This temperature T4 is sufficiently lower than the freezing point mp of the liquid film LF, and is a temperature at which the liquid film LF can be further cooled after being solidified.
  • it is the temperature which DIW which is a refrigerant
  • coolant can maintain a liquid state, without freezing.
  • such a temperature can be realized by supplying the low temperature DIW output from the cooler 523 to the refrigerant discharge unit 12 as it is, that is, without being mixed with the room temperature DIW. Since a coolant lower than 0 degrees Celsius is not required in the treatment process, it is possible to use a low-cost coolant such as water or DIW.
  • the flow rate of the refrigerant may be constant regardless of the temperature, but may be configured such that the flow rate increases as the temperature decreases.
  • the entire liquid film can be solidified reliably and the temperature reached can be lowered.
  • the temperature change of each part at this time is as follows.
  • a schematic temperature change at each of the points A1, A2, and A3 in the central portion of the substrate W near the rotation axis AX is shown in FIG.
  • the temperatures of the points A1, A2, and A3 are approximately room temperature RT.
  • the temperature at each point also gradually decreases.
  • the point A1 on the lower surface Wb of the substrate that is in contact with the refrigerant F immediately after the discharge shows almost the same temperature change as the temperature change of the refrigerant F, and is immediately cooled below the freezing point mp.
  • FIG. 4B shows the vertical temperature gradient at time t1.
  • the time t1 is exceeded, the portion of the liquid film LF that is in contact with the substrate upper surface Wa is cooled to below the freezing point mp, and solidification starts.
  • (c) or (d) in FIG. 4 shows a temperature gradient corresponding to time t2.
  • FIG. 4E shows the temperature gradient at this time, and the upper surface of the liquid film LF is cooled below the freezing point mp and solidifies.
  • a schematic temperature change at points B1, B2, B3 close to the peripheral edge of the substrate W is shown in FIG. Since the temperature of the refrigerant F rises in the process of reaching the peripheral edge of the substrate W, its cooling capacity is greatly reduced. For this reason, the temperature change at points B1, B2, and B3 shows a larger time delay. Moreover, the ultimate temperature is not sufficiently lowered. If the temperature of the refrigerant F is lowered stepwise, the temperatures of the points B1, B2, B3 on the peripheral edge of the substrate W are also gradually lowered. Also in this case, the temperature of the liquid film LF has a temperature gradient that is lowest on the side in contact with the substrate upper surface Wa and highest on the upper surface of the liquid film. For this reason, the solidification of the liquid film LF starts from the portion in contact with the substrate upper surface Wa, the thickness of the solidified film SF increases with the decrease in the coolant temperature, and finally solidifies to the upper surface.
  • FIG. 4B corresponds to the temperature gradient at time t4 when the temperature of the point B1 on the substrate lower surface Wb reaches the freezing point mp.
  • 4C or 4D corresponds to the temperature gradient at time t5 when the temperature at the point B2 on the substrate upper surface Wa reaches the freezing point mp.
  • FIG. 4 (e) corresponds to the temperature gradient at time t6 when the temperature of the point B3 on the upper surface of the liquid film LF reaches the freezing point mp.
  • the above process is a cleaning process using the upper surface Wa of the substrate as a surface to be processed.
  • the temperature T1 of the refrigerant supplied to the substrate lower surface Wb will be described.
  • the temperature T1 qualitatively is preferably a “slightly” lower temperature than the solidification point mp in order to cause the solidification of the liquid film LF to proceed slowly.
  • the preferable specific temperature range can be considered as follows.
  • FIG. 7A and 7B are diagrams showing the relationship between the temperature of the refrigerant and the temperature distribution of the liquid film in the radial direction.
  • FIG. 7A consider a steady state in which a refrigerant F having a temperature T1 slightly lower than the freezing point mp of the liquid film LF is continuously supplied to the substrate W at a flow rate F1 for a sufficiently long time. It can be said that the steady state is a state in which the cold energy supplied by the refrigerant F and the cold energy taken away by the substrate W, the liquid film LF, and the ambient atmosphere are balanced.
  • the symbol F (T1, F1) means the refrigerant F having the temperature T1 and the flow rate F1.
  • the liquid film LF is cooled to a temperature close to the temperature T1 of the refrigerant F at the central portion of the substrate W to which the refrigerant F is directly supplied on the lower surface side.
  • the temperature of the liquid film LF increases toward the outside in the radial direction of the substrate W (shown here as a linear temperature distribution), and is higher than the freezing point mp at the periphery. That is, the refrigerant F (T1, F1) having a constant temperature T1 and a constant flow rate F1 cannot coagulate the entire liquid film even if it takes a long time.
  • the upper limit value of the temperature T1 of the refrigerant F is the freezing point mp of the liquid film LF.
  • the lower limit value can be considered as follows. As shown in FIG. 7B, in a steady state in which the refrigerant F (Ta, F1) having a certain temperature Ta and a flow rate F1 is continuously supplied to the substrate W, the temperature of the liquid film LF at the periphery of the substrate W is just at the freezing point mp. Suppose that This means that in the refrigerant F at the flow rate F1, if the temperature is Ta, the entire liquid film can be solidified by taking a sufficiently long time. If the temperature is lower, the required time can be shortened.
  • the temperature Ta is the maximum temperature of the refrigerant F that can solidify the entire liquid film LF at the flow rate F1.
  • the coolant that can cool the liquid film LF on the peripheral edge of the substrate W to the freezing point mp is the lower limit value that the refrigerant temperature T1 can take.
  • the refrigerant temperature T1 is more preferably a temperature close to the freezing point mp. According to the knowledge of the present inventor, it has been confirmed that particularly good cleaning results can be obtained when the temperature difference between the freezing point mp and the refrigerant temperature T1 is 5 degrees Celsius or less. With such a temperature difference, solidification of the liquid film LF progresses slowly even in the central portion of the substrate W, and an effect of eliminating contaminants due to a segregation phenomenon can be expected.
  • the temperature difference between the freezing point mp and the refrigerant temperature T1 is small, the solidification progresses slowly and the effect of removing contaminants and the like increases, but the time required for cooling the liquid film increases.
  • the temperature T1 may be set as appropriate within the above range, for example, based on the result of a preliminary experiment.
  • the temperature T4 shown in FIG. 6B may be set lower than Ta. By doing so, it is possible to obtain a contaminant removal effect on the entire surface of the substrate W. If the temperature of the solidified film is lowered by further cooling after the entire liquid film is solidified, the effect of removing contaminants and the like can be further enhanced. In this sense, the temperature T2 or the temperature T3 may be approximately the same as the temperature Ta. As a result, the temperature T4 is sufficiently lower than the temperature Ta.
  • the substrate W corresponds to the “substrate” of the present invention
  • the upper surface Wa corresponds to the “surface to be processed” of the present invention.
  • the first supply unit 51 and the processing liquid discharge unit 30 function as a “liquid film forming unit” of the present invention.
  • the second supply unit 52 and the refrigerant discharge unit 12 function as a “refrigerant supply unit” of the present invention.
  • the third supply part 53 and the processing liquid discharge part 40 function as a “removed liquid supply part” of the present invention as a whole.
  • the chamber 70 and the control unit 80 function as a “processing chamber” and a “control unit” of the present invention, respectively.
  • the temperature T1, the temperature Ta, and the flow rate F1 correspond to the “first temperature”, “second temperature”, and “first flow rate” of the present invention, respectively.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • it is a temperature change profile that the temperature of the refrigerant
  • the change mode of the refrigerant temperature is not limited to this, and may be as follows, for example.
  • FIG. 8A and FIG. 8B are diagrams showing modifications of the temperature change profile of the refrigerant.
  • the temperature change profile is such that the temperature of the refrigerant slowly and monotonously decreases after the refrigerant having a temperature T1 slightly lower than the freezing point mp of the liquid film is supplied for a certain period of time.
  • the temperature of the refrigerant is additionally reduced to further cool the solidified film even after the entire liquid film has solidified. However, this additional cooling is not essential for the purpose of merely solidifying the liquid film.
  • the profile is such that the DIW having a temperature T0 higher than the freezing point mp of the liquid film is first discharged from the refrigerant discharge part 12 and then the refrigerant temperature is lowered to T1.
  • the DIW at the temperature T0 does not have the ability to solidify the liquid film and does not function as a “refrigerant”.
  • the substrate W may be cooled by a wet process prior to the process of the present embodiment.
  • the temperature of the refrigerant is adjusted by the mixing ratio of the normal temperature DIW and the low temperature DIW cooled by the cooler, but is not limited to this.
  • the temperature of the low-temperature DIW output from the cooler may be changed by adjusting the cooling capacity of the cooler.
  • a configuration may be employed in which a refrigerant having a necessary temperature is selectively output from a plurality of coolers that cool the DIW to different temperatures without being mixed with the room temperature DIW.
  • the refrigerant mainly composed of water is not necessarily DIW, and may be water having a lower purity, or water added with other chemicals.
  • the liquid film is removed by supplying a melt having a temperature higher than the freezing point to the solidified film.
  • a solution for dissolving the coagulated film may be supplied to dissolve the coagulated film and remove it from the substrate upper surface Wa.
  • the substrate processing apparatus includes a solution supply unit for supplying the solution to the substrate W as the “removed solution supply unit” of the present invention.
  • water DIW
  • SC1 solution mixed solution containing ammonium hydroxide NH 4 OH and hydrogen peroxide H 2 O 2
  • alcohol such as IPA (isopropyl alcohol)
  • fluorine-based solvent such as HFE (hydrofluoroether)
  • the substrate processing method according to the present invention may be configured to lower the temperature of the coolant to a temperature lower than the second temperature, for example, as described in the specific embodiment. Good.
  • the second temperature is the maximum temperature of the refrigerant that can solidify the entire liquid film by being supplied to the substrate at the first flow rate. Therefore, if the temperature of the refrigerant is finally lowered to a temperature lower than the second temperature, the entire liquid film can be reliably solidified.
  • the refrigerant may be a liquid mainly composed of water.
  • the cost of the refrigerant can be reduced by using a refrigerant mainly composed of water as a refrigerant for cooling the liquid film.
  • the final reached temperature of the refrigerant may be 0 degrees Celsius or higher.
  • the difference between the first temperature and the freezing point may be within 5 degrees Celsius. If the difference between the temperature of the refrigerant and the freezing point is large, the liquid film is rapidly solidified, and the effect of eliminating contaminants due to segregation is impaired. According to the knowledge of the present inventor, it is effective to set this temperature difference to 5 degrees Celsius or less.
  • the coolant supply unit mixes a cooler that cools room temperature water to a temperature lower than the second temperature, water cooled by the cooler, and room temperature water.
  • the substrate processing apparatus may further include a controller that controls the mixer to adjust the temperature of the refrigerant that is output. According to such a configuration, it is possible to generate refrigerants at various temperatures by changing the mixing ratio of water.
  • control unit may change and set the temperature of the refrigerant in multiple stages. According to such a configuration, it is possible to more appropriately manage the progress of coagulation at each position in the liquid film.
  • the present invention can be applied to all substrate processing techniques including a process of forming a liquid film on a substrate, solidifying the liquid film, and removing the film.
  • it can be suitably applied to a cleaning process for removing particles and the like attached to the substrate.
  • Substrate processing apparatus 10 Substrate holding part 12 Refrigerant discharge part (refrigerant supply part) 30 Processing liquid discharge part (Liquid film forming part) 40 Treatment liquid discharge part (removal liquid supply part) 51 1st supply part (liquid film formation part) 52 2nd supply part (refrigerant supply part) 53 3rd supply part (removal liquid supply part) 70 chamber (processing chamber) 80 Control unit (control unit) 523 Cooler 527 Mixer F Refrigerant F1 First flow LF Liquid film SF Solidified film T1 First temperature Ta Second temperature W Substrate Wa Substrate upper surface (surface to be processed)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板に液膜を形成して凝固させ、これを除去するプロセスを含む基板処理技術において、比較的純度の低い物質を用いても良好に基板を処理する。この基板処理方法は、基板の被処理面に液膜を形成する第1工程と、液体の凝固点より高温の雰囲気下で、基板を鉛直軸回りに回転させて被処理面と反対側の面に冷媒を供給し、基板を冷却して液膜を凝固させる第2工程と、液膜が凝固した凝固膜に、凝固点よりも高温の融解液を供給して凝固膜を融解させ被処理面から除去する、または凝固膜を溶解する溶解液を供給して凝固膜を溶解させ被処理面から除去する第3工程とを備える。第2工程では、第1温度の冷媒を第1流量で所定期間供給した後、冷媒の温度を低下させる。第1温度は、凝固点より低く、かつ、第1流量で継続的に基板に供給することで液膜全体を凝固させることのできる冷媒の温度の最高値である第2温度よりも高い。

Description

基板処理方法および基板処理装置
 この発明は、基板の上面に液膜を形成してこれを凝固させた後、凝固膜を除去するプロセスを含む基板処理方法および基板処理装置に関するものである。
 基板に液体を供給して湿式処理する基板処理技術には、水平姿勢の基板の上面に液体による液膜を形成してこれを凝固させた後、凝固膜を除去するプロセスを含むものがある。このようなプロセスは、例えば基板の上面に付着したパーティクル等を凝固膜に取り込んで除去することにより、基板の上面を洗浄することを目的とする。すなわちこの処理は、基板の上面を被処理面として、これを洗浄するための処理として行われるものである。このような洗浄処理は、液相と固相との間での処理液の相変化を伴うことから、「固化洗浄」あるいは「相変化洗浄」等と称されることがある。
 このような技術の一例として、例えば特許文献1に記載されたものがある。この技術は、上面に液膜が形成された基板を水平姿勢で回転させながら、基板の下面中央部に冷媒を供給することで液膜を凝固させるプロセスを含むものである。液膜は脱イオン水(DIW)によって形成されている。したがって、液膜を凝固させるための冷媒としては摂氏0度よりも低温に冷却された液体が必要である。
特開2008-028008号公報
 近年では、液膜を形成する材料として、DIWに代えてより常温に近い温度で凝固する物質を用いることが検討されている。その目的は、処理に必要な消費エネルギーを節減するとともに処理コストを低減するためである。このような物質を使用する場合の問題点として、次のようなものがある。第1に、凝固点が常温に近い物質では、液相から固相への相変化、および固相から液相への相変化が基板や周囲雰囲気の温度の影響を受けやすい。このため、良好な処理結果を安定して得ることが難しい。第2に、基板の処理に用いられる処理液には極めて高い純度が求められるが、そのような高純度かつ常温に近い凝固点を有する物質は種類が限られ、また調達コストが非常に高くなる。
 これらの問題から、このような高純度の材料を必要とせず、しかも良好な処理結果を得ることのできる処理プロセスが望まれる。しかしながら、現在までそのような技術が確立されるには至っていない。
 この発明は上記課題に鑑みなされたものであり、基板に液膜を形成して凝固させ、これを除去するプロセスを含む基板処理技術において、比較的純度の低い物質を用いても良好に基板を処理することのできる技術を提供することを目的とする。
 この発明に係る基板処理方法の一の態様は、上記目的を達成するため、被処理面が上向きの水平姿勢に保持された基板の前記被処理面に、液体による液膜を形成する第1工程と、前記液体の凝固点より高温の雰囲気下で、前記基板を鉛直軸回りに回転させて前記被処理面と反対側の面に冷媒を供給し、前記基板を冷却して前記液膜を凝固させる第2工程と、前記液膜が凝固した凝固膜に、前記凝固点よりも高温の融解液を供給して前記凝固膜を融解させ前記被処理面から除去する、または前記凝固膜を溶解する溶解液を供給して前記凝固膜を溶解させ前記被処理面から除去する第3工程とを備えている。
 また、この発明に係る基板処理装置の一の態様は、上記目的を達成するため、被処理面を上向きにして基板を水平姿勢に保持し鉛直軸回りに回転させる基板保持部と、前記基板の前記被処理面に液体を供給し該液体による液膜を形成する液膜形成部と、回転する前記基板の前記被処理面と反対側の面に冷媒を供給し、前記基板を冷却して前記液膜を凝固させる冷媒供給部と、前記液膜が凝固した凝固膜に前記液体の凝固点よりも高温の融解液を供給する融解液供給部と、前記基板保持部に保持される前記基板を前記凝固点より高温の雰囲気内に収容する処理チャンバとを備えている。
 これらの発明においては、第1温度の前記冷媒を第1流量で所定期間供給した後、前記冷媒の温度を低下させ、しかも、前記第1温度は、前記凝固点より低く、かつ、前記第1流量で継続的に前記基板に供給することで前記液膜全体を凝固させることのできる前記冷媒の温度の最高値である第2温度よりも高い。
 このように構成された発明では、基板の上面である被処理面に供給された液体は、凝固点よりも高温の雰囲気中では液膜を形成し、基板の下面側に供給される冷媒により基板を介して冷却される。ここで、第1温度で基板に供給される冷媒は、液膜全体を凝固させるだけの冷却能力を有していない。このため、この段階での液膜の凝固は局所的であり、より具体的には、基板の下面側で冷媒が供給される位置に対応する基板の上面(被処理面)に接する部分において、液相から固相への相変化が始まる。
 液体、特に凝固の際に結晶化する液体は、内部に含まれる不純物を排斥しながら凝固する性質(偏析)を有している。基板の下面側から基板を介して冷却される液膜中では、基板に接する下面側で最も温度が低く、周囲雰囲気に露出する上面側で温度が高くなる温度勾配が生じる。このため、液体が順次凝固することで生じる液相と固相との境界は、液膜中において上方および基板上面に沿った方向に向けて進行してゆく。このとき、液体中に含まれる不純物、および基板上面(被処理面)に付着する不純物(パーティクル等)のいずれもが、偏析現象によって被処理面から遠ざかる方向に搬送される。これにより、被処理面の近傍には不純物が排斥された凝固膜が形成される。
 従来技術のように、液膜全体を凝固させることができるような高い冷却能力を有する冷媒が当初より基板に供給されると、不純物の排斥が進まないうちに液膜が凝固してしまう。これに対し本発明では、液膜を急速に凝固させるほどの冷却能力を持たない第1温度の冷媒を所定期間継続して供給することにより基板を冷却する。そのため、液膜の凝固はよりゆっくりと進行するので、不純物の排斥効果がより高くなる。その後、冷媒の温度をさらに低下させることで、液相と固相との境界がさらに進行し、最終的に液膜全体が凝固する。
 このように、本発明では、液中あるいは被処理面上にあった不純物は被処理面から引き離された状態で凝固膜中に取り込まれる。そのため、その後に不純物を内包する凝固膜を除去することにより、基板の被処理面は不純物のない清浄な状態となる。基板に付着していた不純物が除去されるのみならず、液中に含まれている不純物が被処理面に残留することも防止される。このように、本発明によれば、液膜の形成に比較的純度の低い物質を用いた場合でも、基板を良好に処理することが可能である。
 上記のように、本発明では、基板に付着する不純物および液膜に含まれる不純物を排斥させながら液膜を凝固させることができる。そのため、液膜の形成に比較的純度の低い物質を用いた場合でも、基板を良好に処理することが可能である。
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。
本発明の一実施形態である基板処理装置の概略構成を示す図である。 この実施形態の基板処理装置の動作を示すフローチャートである。 この動作における各部の状態を模式的に示す第1の図である。 この動作における各部の状態を模式的に示す第2の図である。 この動作における各部の状態を模式的に示す第3の図である。 この動作における各部の状態を模式的に示す第4の図である。 凝固過程における液膜中の温度分布を例示する図である。 凝固の進行の様子を模式的に示す第1の図である。 凝固の進行の様子を模式的に示す第2の図である。 冷媒および各部の温度変化を示す図である。 冷媒の温度と液膜の温度分布との関係を示す第1の図である。 冷媒の温度と液膜の温度分布との関係を示す第2の図である。 冷媒の温度変化プロファイルの変形例を示す第1の図である。 冷媒の温度変化プロファイルの変形例を示す第2の図である。
 以下、本発明を適用可能な基板処理装置の概要について説明する。以下において、基板とは、半導体基板、フォトマスク用ガラス基板、液晶表示用ガラス基板、有機EL(Electroluminescence)表示用基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、セラミック基板、太陽電池用基板などの各種基板をいう。以下では主として半導体基板の処理に用いられる基板処理システムを例に採って図面を参照して説明するが、上に例示した各種の基板の処理にも本発明を適用可能である。
 図1は本発明の一実施形態である基板処理装置の概略構成を示す図である。基板処理装置1は、半導体ウエハ等の円盤状の基板Wに対して処理液による洗浄やエッチング処理などの湿式処理を施す湿式処理装置である。湿式処理としては各種の公知技術を適用することができる。特に、基板上面に形成した液膜を凝固させこれを除去するプロセスを含む、本発明に係る基板処理に好適なものである。基板処理装置1は、チャンバ70内に設けられた基板保持部10と、スプラッシュガード20と、処理液吐出部30,40と、処理液供給ユニット50と、これらの各部を制御する制御ユニット80とを備えている。
 基板保持部10は、基板表面を上方に向けた状態で基板Wを略水平姿勢に保持して回転させるものである。この基板保持部10は、スピンベース111と回転支軸112とが一体的に結合されたスピンチャック11を有している。スピンベース111は平面視において略円形形状を有しており、その中心部に、略鉛直方向に延びる中空状の回転支軸112が固定されている。回転支軸112はモータを含むチャック回転機構103の回転軸に連結されている。チャック回転機構103は円筒状のケーシング101内に収容される。回転支軸112はケーシング101により、鉛直方向の回転軸周りに回転自在に支持されている。
 チャック回転機構103は、制御ユニット80のチャック駆動部87からの駆動により回転支軸112を回転軸周りに回転させる。これにより、回転支軸112の上端部に取り付けられたスピンベース111が鉛直軸周りに回転する。制御ユニット80は、チャック駆動部87を介してチャック回転機構103を制御して、スピンベース111の回転速度を調整することが可能である。
 スピンベース111の周縁部付近には、基板Wの周端部を把持するための複数個のチャックピン114が立設されている。チャックピン114は、円形の基板Wを確実に保持するために3つ以上設けてあればよく(この例では6つ)、スピンベース111の周縁部に沿って等角度間隔で配置されている。チャックピン114のそれぞれは、基板Wの外周端面を押圧する押圧状態と、基板Wの外周端面から離れる解放状態との間を切り替え可能に構成されている。
 スピンベース111に対して基板Wが受け渡しされる際には、複数のチャックピン114のそれぞれを解放状態とする。一方、基板Wを回転させて所定の処理を行う際には、複数のチャックピン114のそれぞれを押圧状態とする。このように押圧状態とすることによって、チャックピン114は基板Wの周端部を把持してその基板Wをスピンベース111から所定間隔を隔てて略水平姿勢に保持することができる。これにより、基板Wはその表面を上方に向け、裏面を下方に向けた状態で支持される。なお、チャックピン114としては、上記に限定されず種々の公知の構成を用いることができる。
 スピンチャック11に基板Wが保持された状態、より具体的にはスピンベース111に設けられたチャックピン114によって基板Wがその周縁部を保持された状態でチャック回転機構103が作動することで、基板Wは鉛直方向の回転軸AX周りに回転する。以下では、このようにして回転する基板Wの上面および下面にそれぞれ符号Wa、Wbを付す。
 スピンチャック11により水平姿勢に支持される基板Wの下方に、冷媒吐出部12が設けられている。後述するように、冷媒吐出部12は、基板Wの上面Waに液膜が形成された基板Wの下面Wbに向けて、液膜を構成する液体の凝固点よりも低温の冷媒を吐出し、液膜を凝固させる機能を有する。冷媒吐出部12は、基板Wより少し小さい円盤状の外形を有し、水平な上面を基板下面Wbと対向させて配置された対向部材121と、対向部材121の中心部に取り付けられて鉛直方向下向きに延びる供給管122とを備えている。供給管122は回転支軸112の中空部に挿通されているが、回転支軸112とは接続されていない。したがって、スピンチャック11が回転する際にも、冷媒吐出部12は回転しない。
 供給管122は中空の管であり、その上端部が対向部材121の中心部で上向きに開口している。供給管122は、後述する処理液供給ユニット50に接続されており、処理液供給ユニット50から出力される処理液のうちの冷媒を基板下面Wbに向けて吐出する。これにより基板下面Wbと対向部材121の上面との間のギャップ空間に冷媒が供給される。すなわち、供給管122の上端は、基板Wの下面側回転中心に向けて開口する吐出口を有するノズルとして機能する。そこで、以下において必要な場合には、この部分を「下面ノズル」と称し符号123を付す。このように、冷媒吐出部12は、吐出した冷媒を基板下面Wbに触れさせることで基板Wを冷却し、基板上面Waに担持される液膜を凝固させる。
 またケーシング101の周囲には、スピンチャック11に水平姿勢で保持されている基板Wの周囲を包囲するように、スプラッシュガード20がスピンチャック11の回転軸に沿って昇降自在に設けられている。このスプラッシュガード20は回転軸に対して略回転対称な形状を有している。スプラッシュガード20は、それぞれスピンチャック11と同心円状に配置されて基板Wから飛散する処理液を受け止める複数段の(この例では2段の)ガード21と、ガード21から流下する処理液を受け止める液受け部22とを備えている。そして、制御部80に設けられたガード昇降部86がガード21を段階的に昇降させることで、回転する基板Wから飛散する薬液やリンス液などの処理液を分別して回収することが可能となっている。
 スプラッシュガード20の周囲には、エッチング液等の薬液、リンス液、溶剤、純水、DIW(脱イオン水)など各種の処理液を基板Wに供給するための液供給部が少なくとも1つ設けられる。この例では、図1に示すように、2組の処理液吐出部30,40が設けられている。処理液吐出部30は、制御部80のアーム駆動部83により駆動されて鉛直軸回りに回動可能に構成された回動軸31と、該回動軸31から水平方向に延設されたアーム32と、アーム32の先端に下向きに取り付けられたノズル33とを備えている。アーム駆動部83により回動軸31が回動駆動されることで、アーム32が鉛直軸回りに揺動する。これによりノズル33は、スプラッシュガード20よりも外側の退避位置(図1に実線で示す位置)と基板Wの回転中心の上方位置(図1に点線で示す位置)との間を移動する。ノズル33は、基板Wの上方に位置決めされた状態で、処理液供給ユニット50から供給される所定の処理液を吐出し、基板Wの表面に処理液を供給する。
 同様に、処理液吐出部40は、アーム駆動部83により回動駆動される回動軸41と、これに連結されたアーム42と、アーム42の先端に設けられて処理液供給ユニット50から供給される処理液を吐出するノズル43とを備えている。なお、処理液吐出部の数はこれに限定されず、必要に応じて増減されてもよい。
 スピンチャック11の回転により基板Wが所定の回転速度で回転した状態で、これらの処理液吐出部30,40がノズル33,43を順次基板Wの上方に位置させて処理液を基板Wに供給する。これにより、基板Wに対する湿式処理が実行される。処理の目的に応じて、各ノズル33,43からは互いに異なる処理液が吐出されてもよく、同じ処理液が吐出されてもよい。また、1つのノズルから2種類以上の処理液が吐出されてもよい。基板Wの回転中心付近に供給された処理液は、基板Wの回転に伴う遠心力により外側へ広がり、最終的には基板Wの周縁部から側方へ振り切られる。基板Wから飛散した処理液はスプラッシュガード20のガード21によって受け止められて液受け部22により回収される。
 処理液供給ユニット50は、冷媒吐出部12、処理液吐出部30および処理液吐出部40に対し、処理プロセスの進行に応じて各種の処理液を供給する機能を有する。処理液供給ユニット50の具体的構成は処理の目的に応じて種々のものを取り得る。ここではその一例として、主に本発明に係る基板処理方法を実施するために必要な構成について説明する。
 この場合、処理液供給ユニット50は、基板Wの上面Waに液膜を形成するための処理液を処理液吐出部30へ、液膜を凝固させるための冷媒を冷媒吐出部12へ、液膜が凝固してなる凝固膜を溶解させるための溶解液を処理液吐出部40へ、それぞれ供給する。具体的には、処理液供給ユニット50は、処理液を処理液吐出部30に供給する第1供給部51、冷媒吐出部12へ冷媒を供給する第2供給部52、および、融解液を処理液吐出部40に供給する第3供給部53を備えている。
 第1供給部51は、基板Wに液膜を形成するための処理液を送出する処理液送出部511と、処理液送出部511と処理液吐出部30とを接続する配管512と、該配管512に介挿された制御バルブ513とを有する。処理液送出部511は、処理液を内部に貯留する機能を有していてもよく、また外部から供給される処理液を配管512に対し送出する機能のみを有していてもよい。制御バルブ513は、制御ユニット80に設けられたバルブ制御部84からの制御指令に応じて作動し、処理液送出部511から配管512を介して処理液吐出部30に供給される処理液の流量を調節する。
 第1供給部51から処理液吐出部13に供給される処理液は、基板Wに液膜を形成して凝固し、その後に融解除去されるものである。このような処理液として利用可能な物質は、常温において液体であり、常温より低いが比較的高い温度において凝固し、かつ基板Wの汚染物質となるような不純物を含まないものであることが望ましい。特に、凝固点が摂氏0度よりも高い物質であれば、下記のように冷媒として冷水を使用可能であり、特殊な冷媒や大掛かりな冷却装置を必要としない。そのため、処理に要するエネルギーの節減およびコスト低減の効果が大きい。なお処理液としては複数物質の混合物であってもよい。上記のような要求を満たす物質としては、例えばTert-ブタノール水(凝固点:摂氏20度)、炭酸エチレン水(凝固点:摂氏20度)等を使用可能である。処理液として用いられる物質の凝固点が常温より低い温度であれば、これを液状に保つためにエネルギーを消費する必要がない。
 第2供給部52は以下のような構成を有している。外部から常温の脱イオン水(De-ionized Water;DIW)を取り込む配管55から、配管521,522が分岐している。配管521は制御バルブ525を介して混合器527に接続されている。一方、配管522は冷却器523に接続されている。冷却器523は、常温のDIWを摂氏0度以上の所定温度(例えば摂氏2度)まで冷却し、低温DIWとして配管524へ出力する。配管524には制御バルブ526が介挿されている。
 配管521を流通する常温DIWと配管524を流通する低温DIWとは、混合器527により混合される。混合された液体が、配管528を介し冷媒として冷媒吐出部12に供給される。制御バルブ525,526の開閉は、制御ユニット80のバルブ制御部84により制御されている。制御バルブ525,526がバルブ制御部84からの制御指令に応じた開度で作動することで、常温DIWと低温DIWとの混合比が調節される。これにより、摂氏0度付近から常温までの任意の温度かつ任意の流量のDIWを冷媒として利用することが可能である。冷却器523から出力される低温DIWの温度および常温DIWとの混合後の冷媒の温度については、制御ユニット80に設けられた温度管理部85により管理される。
 第3供給部53では、配管55から分岐した配管531が加熱器532に接続されている。加熱器532は、外部から供給される常温DIWを加熱して所定の温度(例えば摂氏50度)まで昇温する。加熱により生成された高温DIWは、処理液吐出部40に接続された配管533へ融解液として出力される。配管533には制御バルブ534が介挿されている。制御バルブ534は、制御ユニット80に設けられたバルブ制御部84からの制御指令に応じて作動する。これにより、加熱器532から配管533を介して処理液吐出部40に供給される融解液の流量が調節される。加熱器532から出力される高温DIWの温度は温度管理部85により管理されている。
 上記の他、この基板処理システム1の制御ユニット80には、予め定められた処理プログラムを実行して各部の動作を制御するCPU81と、CPU81により実行される処理プログラムや処理中に生成されるデータ等を記憶保存するためのメモリ82と、処理の進行状況や異常の発生などを必要に応じてユーザーに報知するための表示部88とが設けられている。
 次に、以上のように構成された基板処理装置1の動作について説明する。上記の基板処理装置1は各種の処理に適用可能である。ここでは、基板Wに対し適宜の湿式処理を実行した後、基板Wの上面Waに処理液による液膜を形成しこれを凝固させるための処理について説明する。このような処理は、例えば、基板表面Waへの付着物を遊離させて凝固膜中に取り込み、凝固膜とともに除去する洗浄処理(相変化洗浄処理)に適用される。このような処理の原理は公知であるため、ここでは説明を省略する。
 図2はこの実施形態の基板処理装置の動作を示すフローチャートである。また、図3Aないし図3Dはこの動作における各部の状態を模式的に示す図である。以下に説明する基板処理装置1の動作は、CPU81がメモリ82に予め記憶された制御プログラムを実行し装置各部に所定の動作を実行させることにより実現される。最初に、装置に搬入された基板Wをワークとして適宜の湿式処理が行われる(ステップS101)。湿式処理としては多くの公知技術が知られており、本実施形態においてもそれらの処理を適用することができる。そこで、ここでは詳しい説明を省略する。また、チャンバ70内の雰囲気は、後述する処理液L1の凝固点よりも高い温度に保たれているものとする。
 湿式処理の終了後、チャック駆動部87からの駆動によってチャック回転機構103が作動し、スピンチャック11が液膜形成用速度で回転される。これにより湿式処理後の基板Wが液膜形成用速度で回転する(ステップS102)。そして、処理液吐出部30のノズル33が基板Wの回転中心の上方に位置決めされ、ノズル33から液膜形成用の処理液が吐出される(ステップS103)。図3Aに示すように、ノズル33から吐出される処理液L1が回転する基板Wの中央部に供給されると、遠心力の作用により処理液L1は基板Wの外周部に向けて広がる。処理液L1の供給量および基板Wの回転速度が適宜に設定されることにより、基板Wの上面Waの全体を覆う液膜LFが形成される。基板Wの回転速度は、供給された処理液が振り切られないように比較的低く、例えば300rpm以下に設定される。なお基板Wの回転速度により液膜LFの厚さを制御することが可能である。
 処理液L1が基板Wに所定時間供給され液膜LFが形成されると(ステップS104)、ノズル33は処理液の吐出を停止し、基板W側方の退避位置に移動する(ステップS105)。基板Wが液膜形成用速度またはそれ以下の回転速度である凝固用回転速度で回転を継続することにより(ステップS106)、図3Bに示すように、基板Wの上面Waが所定厚さの液膜LFで覆われた状態が維持される。
 続いて、処理液供給ユニット50の第2供給部52が冷媒吐出部12に向けて冷媒を送出する。これにより冷媒吐出部12の下面ノズル123から所定温度T1および所定流量F1の冷媒が吐出され、基板下面Wbの回転中心近傍に供給される(ステップS107)。この例において、冷媒は処理液L1の凝固点よりも低温に温度調節されたDIWである。冷媒として比熱の比較的大きな液体を使用することで、液膜LFを効率よく冷却することができる。このときの冷媒Fの温度T1、流量F1の設定については後で説明する。
 図3Cに示すように、基板下面Wbが冷媒Fに触れて基板Wが冷却されることで、基板上面Waに形成されている液膜LFが凝固して凝固膜SFに転換する。冷媒Fの供給が所定時間継続され(ステップS108)、液膜LFの全体が凝固膜SFに転換された後、下面ノズル123からの冷媒Fの吐出が停止される(ステップS109)。
 次に、こうして形成された凝固膜SFの除去が行われる。すなわち、基板Wの回転速度が所定のリンス処理用回転速度に設定される(ステップS110)。基板Wは上面Waの全体が凝固膜SFによって覆われた状態となっているため、リンス処理用回転速度は凝固用回転速度よりも高速とすることができる。そして、処理液吐出部40のノズル43が基板Wの回転中心の上方に位置決めされ、ノズル43から融解液としての高温DIWが吐出される(ステップS111)。図3Dに示すように、基板Wを覆う凝固膜SFに高温の融解液L2が供給されることで、凝固膜SFが融解し、最終的には基板Wの回転により融解液とともに基板Wから振り切られる。リンス処理用回転速度を比較的高速とすることで、凝固膜SF中の汚染物質が基板Wに再付着するのを抑制することができる。融解液の供給が所定時間継続された後(ステップS112)、ノズル43は融解液の吐出を停止し、所定の退避位置(図1に示す位置)へ移動する(ステップS113)。
 続いて、スピン乾燥処理が実行される(ステップS114)。スピン乾燥処理は公知の技術であり、基板Wを高速で回転させることにより、基板Wの表面に残留する液体を振り切り基板表面を乾燥させる処理である。基板Wが乾燥した後、基板Wは基板処理装置1から外部へ搬出され(ステップS115)、当該基板処理装置1での処理は完了する。
 次に、液膜LFを凝固させるために基板Wの下面Wbに供給される冷媒Fの温度管理について説明する。上記したように、この実施形態における基板処理では、巨視的には基板Wの上面(被処理面)Waに形成した液膜LFの全体を凝固させた後、凝固膜SFを除去するというプロセスを経ている。ここで、液膜が凝固する過程をより微視的に見たとき、以下のような現象が生じるように、ステップS107において吐出される冷媒Fの温度管理がなされている。
 図4は凝固過程における液膜中の温度分布を例示する図である。液膜LFが凝固開始する前においては、図4の(a)左図に示すように、基板Wの上面Waを覆うように液膜LFが形成されている。このとき、被処理面つまり基板Wの上面WaにはパーティクルP1(図に白丸で示す)が付着しており、このパーティクルP1を除去することが処理の目的である。一方、液膜LF中には、液膜LFを構成する液体にもともと含まれる不純物等、微量の汚染物質P2(図に白四角形で示す)が含まれていることがある。処理後の基板WにはこのようなパーティクルP1や汚染物質P2が残留しないことが求められる。
 基板下面Wbに温度T1の冷媒Fが供給開始された直後では、図4の(a)右図に示すように、基板下面Wbの温度が低下する一方、液膜LFの上面は周囲雰囲気の温度、すなわち室温RT程度の温度を保ったままである。このため、液膜LFの上面と基板下面Wbとの間には、鉛直方向において図示のような温度勾配が生じる。図において、符号mpは液膜LFを構成する物質の凝固点を表す。
 なお、ここでは理解を容易にするために、基板W内および液膜LF内における温度勾配を近似的に線形としている。また一般的には、液膜LFよりも基板Wの方が熱伝導率が高い。このため、液膜LFの上面と基板下面Wbとの間における温度勾配は、図に示すように折れ線によって表すことができる。
 冷媒の継続的な供給により、全体の温度が低下してゆく。図4の(b)に示すように、液膜LFと接する基板Wの上面Waの温度が凝固点mpに達すると、液膜LFのうち基板Wの上面Waと接する下部から凝固が始まる。すなわち、図4の(c)に示すように、液膜LFのうち基板上面Waに近くその温度が凝固点mpを下回る部分において、液膜LFを構成する液体が凝固し、薄い凝固膜SFが形成される。そして、さらに時間が経過するのにつれて、図4の(d)に示すように、液膜LFと凝固膜SFとの境界が上向きに進行して凝固膜SFの厚みが次第に増加する。最終的には、図4の(e)に示すように、液膜の上面まで凝固点mp以下に冷却されて液膜全体が凝固する。
 この過程において、液体が凝固する際に偏析現象が起こることにより、図4の(c)ないし(e)に示すように、基板上面Waおよび液膜LF中のパーティクルP1や汚染物質P2(以下、「汚染物質等」と総称する)が基板上面Waから排斥される。その結果、液膜LFの上部では汚染物質等の濃度が高まるが、凝固膜SF内からは汚染物質等が排除される。この現象を利用して、基板上面Waに付着したパーティクルP1を除去し、また液膜LF中に含まれる汚染物質P2が基板上面Waに付着するのを防止することが可能となる。
 上記した偏析現象による汚染物質等の排斥を効果的に生じさせるためには、凝固をできるだけゆっくり進行させることが望ましい。この目的のために、本実施形態では、冷媒の温度T1を凝固点mpより僅かに低い温度とする。こうすることで冷媒の有する冷却能力を抑制し、急激な液膜LFの凝固が進行しないようにしている。このような冷媒の温度T1としては、例えば凝固点mpとの温度差が摂氏5度以内である温度とすることができる。ただし、基板Wの厚さや周囲温度、液膜LFの凝固点mp等の条件によって液膜中の温度分布は異なる。そのため、冷媒温度T1の最適値については処理条件に応じて実験的に定められることが望ましい。
 従来の相変化洗浄技術においては、液膜の凝固に要する時間を短くして処理の高速化を図るために、冷却能力の高い、つまり液膜の凝固点に対し十分に低温の冷媒を、当初より基板に供給するという手段が採られていた。この場合、液膜が短時間で凝固するため、汚染物質等を基板から遠ざけるのに十分な時間を確保することができていなかった。また例えば、液膜に低温のガスを触れさせて凝固させる技術もあるが、この場合にはどちらかと言えば液膜の上面側から凝固が進行するため、上記のような偏析による汚染物質等の排斥効果が得られない。これらの技術では、液膜を形成する液体に極めて高い純度が必要となり、処理液のコストが高くなりがちである。
 これに対し、本実施形態では、液膜LFの凝固が基板上面Wa側からゆっくりと進行するため、液膜LF中に含まれる汚染物質等を排斥しながら凝固膜SFを形成することが可能である。このため、比較的純度の低い物質を液膜材料として使用することが可能となり、処理コストの低減を図ることができる。
 図5Aおよび図5Bは凝固の進行の様子を模式的に示す図である。図5Aは理想的な進行状態を示している。同図に示されるように、液膜LFの凝固は基板上面Waに触れる下部において一様に開始され、上向きに徐々に進行して、最終的に液膜全体が凝固膜SFに転換することが望ましい。こうすることで、基板上面Waや液膜LF中の汚染物質等を凝固膜SFの上部に移動させ基板Wから遠ざけることができる。
 しかしながら、基板下面Wbの中央部に供給された冷媒は、基板Wの回転に伴ってその径方向に広がってゆく。そのため、実際には図5Bに示すように、液膜LFのうち中央部分の下部で最初に凝固が始まり、凝固膜SFは上向きおよび径方向外向きに広がってゆく。このような場合でも、凝固の進行速度が十分に低ければ、液膜LF内の各位置において微視的には下部から上部に向けて凝固が進行する。これを実現するために、冷媒の温度を液膜LFの凝固点mpより僅かに低い温度とすることが有効である。
 冷媒が基板Wの径方向外側に広がってゆくのにつれて、冷媒の冷却能力は径方向外側に向かって次第に低下する。周囲温度が冷媒の温度より高いこと、また冷媒の熱エネルギーが基板Wおよび液膜LFに移動して冷媒の温度が上昇すること等がその理由である。このため、凝固点mpとの温度差が小さい冷媒では基板Wの周縁部まで十分に冷却されず、液膜全体を凝固させることができない。
 言い換えれば、冷媒の温度T1およびその流量F1は、当該温度の冷媒が当該流量で継続的に基板Wに供給されたとしても、液膜全体の凝固には至らないような値に選ばれる必要がある。このような冷媒を用いることで、液膜が一気に凝固してしまうことが回避され、凝固の進行を遅らせることができる。液膜全体を凝固させることができるような温度および流量での冷媒の供給は、液膜中央部分での急速な凝固を引き起こすため好ましくない。
 基板Wに付着するパーティクルP1を除去するという目的のために、最終的には液膜全体を凝固させる必要がある。また、相変化洗浄処理においては、除去直前の凝固膜SFの最終到達温度が低いほどパーティクル除去効果が高くなることがわかっている。これらのことから、温度T1の冷媒を一定期間供給した後、冷媒の冷却能力を高めて基板Wをさらに冷却する必要がある。基板Wの最終到達温度を低下させるためには、冷媒の温度を低下させることが有効である。
 そこで、この実施形態では、次に説明するように、温度T1の冷媒を所定流量で一定期間供給した後、冷媒の温度を段階的に低下させてゆく。最終的には、液膜LFの全体を凝固させることのできる温度まで、冷媒の温度を低下させる。これにより、液膜LFの全体が凝固膜SFに転換し、また凝固膜SFの最終到達温度も十分に低くすることができる。
 図6はこの実施形態における冷媒および各部の温度変化を示すプロファイルである。より具体的には、図6の(a)は各部の位置の定義を示す図である。同図に示すように、基板Wの回転軸AXに近い位置における、基板下面Wbの一点を符号A1、基板上面Waの一点を符号A2、液膜LF上部の一点を符号A3によりそれぞれ表す。また、基板Wの回転軸AXから遠く基板Wの周縁部に近い位置における、基板下面Wbの一点を符号B1、基板上面Waの一点を符号B2、液膜LF上部の一点を符号B3によりそれぞれ表す。
 図6の(b)は冷媒吐出部12から吐出される冷媒Fの温度の時間変化を示すプロファイルである。同図に示すように、時刻t0において温度T1の冷媒Fが吐出され、この状態が一定期間継続される。時刻taにおいて冷媒Fの温度がより低いT2に変更される。さらに、冷媒Fの温度は時刻tbにおいて温度T3に、時刻tcにおいて温度T4に、段階的に低下される。すなわち、冷媒Fは、当初は液膜LFの凝固点mpより僅かに低い温度T1で基板下面Wbに供給された後、段階的に温度が下げられて最終的には温度T4で供給される。
 第2供給部52において常温DIWと低温DIWとの混合比を変化させることにより、このような冷媒Fの種々の温度変化プロファイルを実現することができる。冷媒Fの最終的な温度T4は摂氏0度より少し高い温度である。この温度T4は、液膜LFの凝固点mpに対しては十分低く、液膜LF全体を凝固させた上でさらに冷却することのできる温度である。かつ、冷媒であるDIWが凍結せず液状を保つことのできる温度である。例えば冷却器523から出力される低温DIWがそのまま、つまり常温DIWと混合されずに冷媒吐出部12に供給されることにより、このような温度を実現することが可能である。処理プロセスにおいて摂氏0度より低い冷媒を必要としないため、冷媒として水、DIW等低コストのものを用いることが可能となる。
 冷媒の流量は温度によらず一定とされてもよいが、温度低下とともに流量が増大するように構成されてもよい。前記したように、液膜LFが凝固膜SFに転換する過程では凝固がゆっくり進行するのが望ましいのに対し、完全に凝固した後には急冷されても問題がないからである。このようにして冷媒の冷却能力を高めてゆくことで、液膜全体を確実に凝固させ、しかもその到達温度を低くすることができる。
 このときの各部の温度変化は以下の通りである。基板Wの回転軸AXに近い中央部分の各点A1,A2,A3の概略の温度変化が、図6の(c)に示される。冷媒Fが供給開始される時刻t0においては、各点A1,A2,A3の温度は概ね室温RTとなっている。冷媒吐出部12から冷媒Fの吐出が開始されると、各点の温度も次第に低下する。このうち吐出直後の冷媒Fに触れる基板下面Wbの点A1は、冷媒Fの温度変化とほぼ同じ温度変化を示し、直ちに凝固点mp以下まで冷却される。
 基板上面Waの点A2では、温度変化に少しの時間遅れがあり、時刻t1において凝固点mpに達する。この時刻t1における鉛直方向の温度勾配を示すのが図4の(b)である。時刻t1を超過すると、液膜LFのうち基板上面Waに接する部分が凝固点mp以下まで冷却されて凝固が始まる。例えば時刻t2に対応する温度勾配を示すのが図4の(c)または(d)である。
 液膜LFの上部の点A3における温度変化はさらに大きな時間遅れを生じ、時刻t3において凝固点mpに到達する。このときの温度勾配を示すのが図4の(e)であり、液膜LFの上面までが凝固点mp以下に冷やされて凝固する。
 一方、基板Wの周縁部に近い点B1,B2,B3における概略の温度変化は図6の(d)に示される。冷媒Fの温度は基板Wの周縁部まで到達する過程で上昇しているため、その冷却能力は大きく低下している。このため、点B1,B2,B3における温度変化はより大きな時間遅れを示す。また、到達温度も十分に低くならない。冷媒Fの温度を段階的に低下させるようにすれば、基板Wの周縁部の各点B1,B2,B3の温度も次第に低下する。この場合も、液膜LFの温度は基板上面Waに接する側で最も低く、液膜上面で最も高くなるような温度勾配を有する。このため、基板上面Waに接する部分から液膜LFの凝固が始まり、冷媒温度の低下に伴って凝固膜SFの厚みが増加して最終的に上面まで凝固する。
 この場合も、基板下面Wbの点B1の温度が凝固点mpに到達する時刻t4における温度勾配に対応するのが図4の(b)である。また、基板上面Waの点B2の温度が凝固点mpに到達する時刻t5における温度勾配に対応するのが図4の(c)または(d)である。また、液膜LF上面の点B3の温度が凝固点mpに到達する時刻t6における温度勾配に対応するのが図4の(e)である。液膜の上面まで凝固した後は、冷媒のさらなる温度低下は凝固膜の到達温度を下げることに寄与する。
 このように、基板W上に形成された液膜LFの各位置では、基板W側から順次冷却されることで、基板Wに接する部分から上方に向けて凝固が進行する。これにより、基板上面Waの各位置においては、液膜の凝固過程で汚染物質等が基板Wから引き離され、凝固膜SF中に取り込まれる。汚染物質等を取り込んだ凝固膜SFを融解液により除去することで、処理後の基板上面Waを汚染物質等の付着のない清浄な状態にすることができる。すなわち、上記処理は、基板上面Waを被処理面とする洗浄処理となっている。
 液膜LFが凝固する過程で、基板Wの被処理面Waに付着していたパーティクルのみならず、当初より液膜中に含まれている不純物等についても、基板Wから引き離した状態で凝固膜中に取り込むことができる。このため、液膜を構成する物質に求められる純度のレベルを比較的低くすることが可能となる。これにより、液膜を形成する物質として利用可能な材料の自由度が高くなり、処理コストの低減を図ることが可能となる。
 ここで、基板下面Wbに供給される冷媒の温度T1の好ましい範囲について説明する。前記したように、温度T1は定性的には、液膜LFの凝固をゆっくりと進行させるため、その凝固点mpに対し「僅かに」低い温度であることが好ましい。その好ましい具体的な温度範囲については、次のように考えることができる。
 図7Aおよび図7Bは冷媒の温度と径方向における液膜の温度分布との関係を示す図である。図7Aに示すように、液膜LFの凝固点mpより僅かに低い温度T1の冷媒Fが、流量F1で十分に長い時間継続的に基板Wに供給されている定常状態を考える。定常状態は、冷媒Fにより供給される冷熱エネルギーと、基板W、液膜LFおよび周囲雰囲気によって奪われる冷熱エネルギーとが平衡した状態であるということができる。記号F(T1,F1)は、温度T1、流量F1の冷媒Fを意味するものとする。
 この場合、下面側で冷媒Fが直接供給される基板W中央部では、液膜LFは冷媒Fの温度T1に近い温度まで冷却されている。一方、基板Wの径方向外側に向かうにつれて液膜LFの温度は高くなり(ここでは線形の温度分布として示す)、周縁部では凝固点mpよりも高温となっている。つまり、一定温度T1、一定流量F1の冷媒F(T1,F1)は、たとえ長時間をかけたとしても、液膜全体を凝固させることができない。
 このような冷媒Fの温度T1の上限値は液膜LFの凝固点mpである。一方、下限値については以下のように考えることができる。図7Bに示すように、ある温度Taおよび流量F1の冷媒F(Ta,F1)を継続的に基板Wに供給した定常状態において、基板Wの周縁部で液膜LFの温度がちょうど凝固点mpになったとする。このことは、流量F1の冷媒Fにおいては、その温度がTaであれば、十分に長い時間をかけることで液膜全体を凝固させることができることを意味する。より温度が低ければ、その所要時間を短縮することが可能である。一方で、温度がTaより高ければ周縁部の液膜を凝固させることができないとも言える。この意味で、温度Taは、流量F1のときに液膜LF全体を凝固させることのできる冷媒Fの温度の最高値であるということができる。
 したがって、第2供給部52および冷媒吐出部12がその構成上合理的に基板Wに供給可能な流量F1を考えたとき、基板W周縁部の液膜LFを凝固点mpまで冷却することのできる冷媒温度の最高値Taが、冷媒の温度T1の取り得る下限値であるといえる。なお、このように温度T1の下限値を考えることができるが、前記した通り、冷媒温度T1は凝固点mpに近い温度であることがより好ましい。本願発明者の知見では、凝固点mpと冷媒温度T1との温度差は摂氏5度またはそれ以下であるときに、特に良好な洗浄結果を得られることが確認されている。この程度の温度差であれば基板Wの中央部においても液膜LFの凝固がゆっくりと進行し、偏析現象による汚染物質等の排斥効果が期待できる。
 凝固点mpと冷媒温度T1との温度差が小さいと凝固の進行が遅くなり、汚染物質等の排斥効果は高くなるが、液膜の冷却に要する時間は長くなる。求められる基板の清浄度および許容される処理時間に応じて、例えば予備実験の結果に基づき、温度T1を上記範囲で適宜設定すればよい。
 一方で、冷媒F(T1,F1)の供給を継続しても液膜全体を凝固させることはできないから、順次その温度を低下させてゆくことが必要となる。液膜全体を凝固させるためには、最終的な冷媒Fの到達温度、つまり図6の(b)に示す温度T4を、Taよりも低い温度とすればよい。こうすることで、基板Wの全面において汚染物質等の除去効果を得ることができる。そして、液膜全体の凝固後もさらに冷却し凝固膜の到達温度を下げるようにすれば、汚染物質等の除去効果をさらに高めることが可能である。この意味で、温度T2あるいは温度T3が温度Taと同程度になるようにしてもよい。こうすると、温度T4は温度Taよりも十分に低い温度となる。
 以上説明したように、本実施形態においては、基板Wが本発明の「基板」に相当しており、その上面Waが本発明の「被処理面」に相当する。また、上記実施形態の基板処理装置1では、第1供給部51および処理液吐出部30が一体として本発明の「液膜形成部」として機能している。また、第2供給部52および冷媒吐出部12が一体として本発明の「冷媒供給部」として機能している。また、第3供給部53および処理液吐出部40が一体として本発明の「除去液供給部」として機能している。
 そして、チャンバ70および制御ユニット80がそれぞれ本発明の「処理チャンバ」および「制御部」として機能している。また、上記実施形態においては、温度T1、温度Ta、流量F1が、それぞれ本発明の「第1温度」、「第2温度」、「第1流量」に相当している。
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、冷媒Fの温度が段階的に低下するような温度変化プロファイルとなっている。しかしながら、冷媒温度の変化態様はこれに限定されず、例えば以下のようであってもよい。
 図8Aおよび図8Bは冷媒の温度変化プロファイルの変形例を示す図である。図8Aに示す変形例では、液膜の凝固点mpより少し低い温度T1の冷媒が一定時間供給された後、冷媒の温度がゆっくりと単調に低下する温度変化プロファイルとなっている。本発明の技術思想では、液膜全体が凝固するまでは液膜を基板側からゆっくり冷却することが重要である。この目的が達成される限りにおいて、このように単調に低下する温度変化プロファイルであっても構わない。また、上記実施形態では液膜全体が凝固した後も凝固膜をさらに冷却すべく冷媒の温度を追加的に低下させている。しかしながら、単に液膜を凝固させるという目的においてはこの追加的な冷却は必須ではない。
 また、図8Bに示す変形例では、最初に液膜の凝固点mpよりも高い温度T0のDIWが冷媒吐出部12から吐出された後、冷媒温度がT1に低下するようなプロファイルとなっている。温度T0のDIWは液膜を凝固させる能力を有しておらず「冷媒」として機能するものではない。しかしながら、本実施形態の処理に先立つ湿式処理によって基板Wが冷やされている場合もあり得る。そこで、冷媒供給の前にこのように凝固点mpより高温の液体を基板Wに供給することで、冷媒供給直前の基板Wの温度を安定させて液膜LFを確実に液状に保っておくことが可能となる。これにより、上記した汚染物質等の排斥効果をより確実なものとすることができる。冷媒の温度がT1に変更された後の温度変化プロファイルについては、図8Bに実線および点線で示すように、上記した種々のプロファイルを採用することが可能である。
 また例えば、上記実施形態では、常温DIWと冷却器で冷却された低温DIWとの混合比によって冷媒の温度が調節されているが、これに限定されない。例えば、冷却器の冷却能力を調節して、冷却器から出力される低温DIWの温度自体を変化させるようにしてもよい。また例えば、常温DIWとの混合によらず、DIWを互いに異なる温度に冷却する複数の冷却器から選択的に必要な温度の冷媒が出力される構成であってもよい。
 また例えば、上記実施形態では、低コストで調達、生成が可能な冷媒として水(DIW)を用いることが想定されており、冷媒の最終的な温度が摂氏0度以上とされている。しかしながら、凝固点が0度より低い物質が冷媒として用いられてもよく、この場合は当然に冷媒の最終到達温度は0度より低くても構わない。また、水を主体とする冷媒についてもDIWである必要は必ずしもなく、より純度の低い水、あるいは水に他の薬剤を添加したものであってもよい。
 また例えば、上記実施形態では、凝固膜に対し凝固点よりも高温の融解液を供給して液膜の除去を行っている。しかしながら、これに限定されず、例えば凝固膜を溶解する溶解液を供給し、凝固膜を溶解させて基板上面Waから除去してもよい。この場合、基板処理装置は、溶解液を基板Wに供給するための溶解液供給部を本発明の「除去液供給部」として備えることとなる。なお、溶解液としては水(DIW)、SC1液(水酸化アンモニウムNH4OHと過酸化水素H22とを含む混合液)などの公知の洗浄液、IPA(イソプロピルアルコール)などのアルコール、およびHFE(ハイドロフルオロエーテル)などのフッ素系溶剤を用いることができる。
 以上、具体的な実施形態を例示して説明してきたように、本発明に係る基板処理方法は、例えば、冷媒の温度を最終的に第2温度より低い温度まで低下させるように構成されてもよい。第2温度は第1流量で基板に供給されることで液膜全体を凝固させることのできる冷媒の最高温度である。したがって、冷媒の温度を最終的に第2温度より低温にまで低下させれば、液膜全体を確実に凝固させることが可能である。
 また例えば、冷媒は水を主成分とする液体であってもよい。液膜が摂氏0度以上の凝固点を有する物質により形成される場合、これを冷却する冷媒として水を主成分とするものを用いることで、冷媒のコストを低減することができる。この場合、冷媒の最終到達温度が摂氏0度以上であってもよい。こうすることで、単体の水を冷媒として用いることができ、さらに処理コストを引き下げることができる。
 また例えば、第1温度と凝固点との差が摂氏5度以内であってもよい。冷媒の温度と凝固点との差が大きいと液膜の急激な凝固が発生し、偏析による汚染物質等の排斥効果が損なわれてしまう。本願発明者の知見では、この温度差を摂氏5度以下とすることが有効である。
 また、本発明に係る基板処理装置において、例えば、冷媒供給部は、常温の水を第2温度よりも低温に冷却する冷却器と、冷却器で冷却された水と常温の水とを混合し冷媒として出力する混合器とを有し、基板処理装置は、混合器を制御して出力される冷媒の温度を調節する制御部をさらに備えてもよい。このような構成によれば、水の混合比を変えることで種々の温度の冷媒を生成することが可能である。
 この場合、制御部は、冷媒の温度を多段階に変更設定するものであってもよい。このような構成によれば、液膜中の各位置における凝固の進行をより適切に管理することが可能となる。
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。
 この発明は、基板に液膜を形成してこれを凝固させた後に除去するプロセスを含む基板処理技術全般に適用することができる。特に、基板に付着したパーティクル等を除去する洗浄処理に好適に適用可能である。
 1 基板処理装置
 10 基板保持部
 12 冷媒吐出部(冷媒供給部)
 30 処理液吐出部(液膜形成部)
 40 処理液吐出部(除去液供給部)
 51 第1供給部(液膜形成部)
 52 第2供給部(冷媒供給部)
 53 第3供給部(除去液供給部)
 70 チャンバ(処理チャンバ)
 80 制御ユニット(制御部)
 523 冷却器
 527 混合器
 F 冷媒
 F1 第1流量
 LF 液膜
 SF 凝固膜
 T1 第1温度
 Ta 第2温度
 W 基板
 Wa 基板上面(被処理面)

Claims (6)

  1.  被処理面が上向きの水平姿勢に保持された基板の前記被処理面に、液体による液膜を形成する第1工程と、
     前記液体の凝固点より高温の雰囲気下で、前記基板を鉛直軸回りに回転させて前記被処理面と反対側の面に冷媒を供給し、前記基板を冷却して前記液膜を凝固させる第2工程と、
     前記液膜が凝固した凝固膜に、前記凝固点よりも高温の融解液を供給して前記凝固膜を融解させ前記被処理面から除去する、または前記凝固膜を溶解する溶解液を供給して前記凝固膜を溶解させ前記被処理面から除去する第3工程と
    を備え、
     前記第2工程では、第1温度の前記冷媒を第1流量で所定期間供給した後、前記冷媒の温度を低下させ、
     前記第1温度は、前記凝固点より低く、かつ、前記第1流量で継続的に前記基板に供給することで前記液膜全体を凝固させることのできる前記冷媒の温度の最高値である第2温度よりも高い、基板処理方法。
  2.  前記冷媒の温度を、最終的に前記第2温度より低い温度まで低下させる請求項1に記載の基板処理方法。
  3.  前記第1温度と前記凝固点との差が摂氏5度以内である請求項1または2に記載の基板処理方法。
  4.  被処理面を上向きにして基板を水平姿勢に保持し鉛直軸回りに回転させる基板保持部と、
     前記基板の前記被処理面に液体を供給し該液体による液膜を形成する液膜形成部と、
     回転する前記基板の前記被処理面と反対側の面に冷媒を供給し、前記基板を冷却して前記液膜を凝固させる冷媒供給部と、
     前記液膜が凝固した凝固膜に、前記液体の凝固点よりも高温の融解液を供給する、または前記凝固膜を溶解する溶解液を供給する、除去液供給部と、
     前記基板保持部に保持される前記基板を前記凝固点より高温の雰囲気内に収容する処理チャンバと
    を備え、
     前記冷媒供給部は、第1温度の前記冷媒を第1流量で所定期間供給した後、前記冷媒の温度を低下させ、
     前記第1温度は、前記凝固点より低く、かつ、前記第1流量で継続的に前記基板に供給することで前記液膜全体を凝固させることのできる前記冷媒の温度の最高値である第2温度よりも高い、基板処理装置。
  5.  前記冷媒供給部は、常温の水を前記第2温度よりも低温に冷却する冷却器と、前記冷却器で冷却された水と常温の水とを混合し前記冷媒として出力する混合器とを有し、
     前記混合器を制御して、出力される前記冷媒の温度を調節する制御部をさらに備える、請求項4に記載の基板処理装置。
  6.  前記制御部は、前記冷媒の温度を多段階に変更設定する請求項5に記載の基板処理装置。
PCT/JP2019/000200 2018-03-26 2019-01-08 基板処理方法および基板処理装置 WO2019187472A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057707 2018-03-26
JP2018057707A JP7058156B2 (ja) 2018-03-26 2018-03-26 基板処理方法および基板処理装置

Publications (1)

Publication Number Publication Date
WO2019187472A1 true WO2019187472A1 (ja) 2019-10-03

Family

ID=68057997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000200 WO2019187472A1 (ja) 2018-03-26 2019-01-08 基板処理方法および基板処理装置

Country Status (3)

Country Link
JP (1) JP7058156B2 (ja)
TW (1) TWI705497B (ja)
WO (1) WO2019187472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833145B (zh) * 2020-12-31 2024-02-21 南韓商細美事有限公司 用於處理基板之設備及用於處理基板之方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781763B (zh) * 2020-09-18 2022-10-21 日商斯庫林集團股份有限公司 基板洗淨裝置及基板洗淨方法
JP2022148455A (ja) * 2021-03-24 2022-10-06 株式会社Screenホールディングス 基板処理方法、および、基板処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028008A (ja) * 2006-07-19 2008-02-07 Dainippon Screen Mfg Co Ltd 基板処理装置、基板処理システムおよび基板処理方法
JP2011198894A (ja) * 2010-03-18 2011-10-06 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2012146696A (ja) * 2011-01-06 2012-08-02 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2013051301A (ja) * 2011-08-31 2013-03-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480937B (zh) * 2011-01-06 2015-04-11 Screen Holdings Co Ltd 基板處理方法及基板處理裝置
JP6612632B2 (ja) * 2016-01-26 2019-11-27 株式会社Screenホールディングス 基板処理装置および基板処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028008A (ja) * 2006-07-19 2008-02-07 Dainippon Screen Mfg Co Ltd 基板処理装置、基板処理システムおよび基板処理方法
JP2011198894A (ja) * 2010-03-18 2011-10-06 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2012146696A (ja) * 2011-01-06 2012-08-02 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2013051301A (ja) * 2011-08-31 2013-03-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833145B (zh) * 2020-12-31 2024-02-21 南韓商細美事有限公司 用於處理基板之設備及用於處理基板之方法

Also Published As

Publication number Publication date
TWI705497B (zh) 2020-09-21
TW201941304A (zh) 2019-10-16
JP2019169656A (ja) 2019-10-03
JP7058156B2 (ja) 2022-04-21

Similar Documents

Publication Publication Date Title
JP6612632B2 (ja) 基板処理装置および基板処理方法
US20180147609A1 (en) Substrate processing apparatus
KR100877276B1 (ko) 기판처리장치, 액막동결방법 및 기판처리방법
JP5243165B2 (ja) 基板洗浄方法および基板洗浄装置
US8623146B2 (en) Substrate processing method and substrate processing apparatus
US20080121252A1 (en) Substrate processing apparatus and substrate processing method
WO2019187472A1 (ja) 基板処理方法および基板処理装置
WO2018179945A1 (ja) 基板処理装置および基板処理方法
JP5315271B2 (ja) 基板処理方法および基板処理装置
JP2009021409A (ja) 凍結処理装置、凍結処理方法および基板処理装置
JP2008130951A (ja) 基板処理装置および基板処理方法
JP5786190B2 (ja) 基板処理方法および基板処理装置
JP5658549B2 (ja) 基板処理方法および基板処理装置
TWI700740B (zh) 基板處理裝置以及基板處理方法
JP2008235737A (ja) 基板処理装置および基板処理方法
JP2013051301A (ja) 基板処理装置および基板処理方法
JP6680631B2 (ja) 基板処理装置および基板処理方法
JP4877783B2 (ja) 裏面洗浄装置、基板処理装置および裏面洗浄方法
JP5860731B2 (ja) 基板処理装置および基板処理方法
JP2005175228A (ja) レジスト剥離方法およびレジスト剥離装置
TWI421927B (zh) 基板清洗方法及基板清洗裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778360

Country of ref document: EP

Kind code of ref document: A1