WO2019187236A1 - レーダ画像処理装置及びレーダ画像処理方法 - Google Patents

レーダ画像処理装置及びレーダ画像処理方法 Download PDF

Info

Publication number
WO2019187236A1
WO2019187236A1 PCT/JP2018/036184 JP2018036184W WO2019187236A1 WO 2019187236 A1 WO2019187236 A1 WO 2019187236A1 JP 2018036184 W JP2018036184 W JP 2018036184W WO 2019187236 A1 WO2019187236 A1 WO 2019187236A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
radar image
calculation unit
radar
pixel
Prior art date
Application number
PCT/JP2018/036184
Other languages
English (en)
French (fr)
Inventor
由美子 片山
啓 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019518017A priority Critical patent/JP6599050B1/ja
Priority to EP18913118.8A priority patent/EP3757609A4/en
Priority to CA3095695A priority patent/CA3095695C/en
Publication of WO2019187236A1 publication Critical patent/WO2019187236A1/ja
Priority to US17/015,836 priority patent/US20200408901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9023SAR image post-processing techniques combined with interferometric techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9058Bistatic or multistatic SAR
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10044Radar image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination

Definitions

  • the present invention relates to a radar image processing apparatus and a radar image processing method for calculating a difference between a pixel included in a first radar image and a pixel after phase rotation included in a second radar image. .
  • a building having a high height may be reflected as a scatterer.
  • the distance from the platform on which the radar apparatus is mounted to the high position of the scatterer is shorter than the distance from the platform to the low position of the scatterer by the height of the scatterer.
  • the signal reflected at the high position of the scatterer causes a layover, which is a phenomenon that falls to the platform side. .
  • the layover occurs, the signal reflected at a high position of the scatterer overlaps with another reflected signal that has fallen down, so that a plurality of reflected signals may be mixed in one pixel in the radar image. is there.
  • Non-Patent Document 1 discloses a radar image processing apparatus that calculates a difference between a pixel included in a first radar image and a pixel included in a second radar image.
  • the radar image processing apparatus calculates the difference, and thus, among the plurality of reflected signals mixed in one pixel, the phase difference between the phase with respect to the first radio wave reception point and the phase with respect to the second radio wave reception point It is possible to suppress a reflected signal in which is zero.
  • the first radio wave reception point is the position of the platform when the first radar image is captured
  • the second radio wave reception point is the position of the platform when the second radar image is captured.
  • a conventional radar image processing apparatus is a reflection in which a phase difference between a phase with respect to a first radio wave reception point and a phase with respect to a second radio wave reception point is zero among a plurality of reflection signals mixed in one pixel. Signals can be suppressed. However, among the plurality of reflected signals mixed in one pixel, the reflected signal scattered at the same height as the position where the suppressable reflected signal is scattered is the phase with respect to the first radio wave reception point. And the phase difference from the phase with respect to the second radio wave reception point does not become zero. There is a problem that a reflected signal whose phase difference between the phase with respect to the first radio wave reception point and the phase with respect to the second radio wave reception point is not zero cannot be suppressed.
  • the present invention has been made to solve the above-described problems, and a radar image processing apparatus and a radar image processing method capable of suppressing a reflected signal having a phase difference other than zero with respect to different radio wave reception points.
  • the purpose is to obtain.
  • the radar image processing apparatus is mixed in one pixel for each pixel included in the first and second radar images in which the same observation area is captured from different radio wave reception points.
  • a phase difference calculation unit that calculates a phase difference that is a phase difference with respect to each radio wave reception point, and a second radar image from each phase difference calculated by the phase difference calculation unit
  • a rotation amount calculation unit for calculating the rotation amounts of the phases of the plurality of pixels included in the second radar, and the difference calculation unit based on the respective rotation amounts calculated by the rotation amount calculation unit.
  • Each pixel location is obtained so as to calculate the difference of pixel values between pixels that correspond.
  • a phase difference calculation unit that calculates a phase difference that is a phase difference with respect to each different radio wave reception point, and each phase difference To a rotation amount calculation unit for calculating the rotation amounts of the phases of the plurality of pixels included in the second radar image, and the difference calculation unit determines whether the second radar image is based on each rotation amount.
  • the radar image processing apparatus is configured to calculate the difference between pixel values of pixels corresponding to the respective pixel positions. Therefore, the radar image processing apparatus according to the present invention can suppress a reflected signal whose phase difference with respect to each different radio wave reception point is not zero.
  • FIG. 1 is a configuration diagram illustrating a radar image processing apparatus 10 according to a first embodiment.
  • 1 is a configuration diagram showing a phase processing unit 12 of a radar image processing apparatus 10 according to Embodiment 1.
  • FIG. 1 is a configuration diagram illustrating an image processing unit 13 of a radar image processing apparatus 10 according to a first embodiment. It is a hardware block diagram which shows each hardware in the phase process part 12 and the image process part 13.
  • FIG. 3 is a hardware configuration diagram of a computer when a phase processing unit 12 and an image processing unit 13 are realized by software or firmware.
  • 4 is a flowchart showing processing contents of a phase processing unit 12. It is explanatory drawing which shows the inclined surface 51, the parallel surface 52, and an imaging parameter.
  • FIG. 6 is a configuration diagram illustrating an image processing unit 13 of a radar image processing apparatus 10 according to a third embodiment. It is a hardware block diagram which shows each hardware in the phase process part 12 and the image process part 13.
  • FIG. 6 is a configuration diagram illustrating an image processing unit 13 of a radar image processing apparatus 10 according to a third embodiment. It is a hardware block diagram which shows each hardware in the phase process part 12 and the image process part 13.
  • FIG. 10 is a configuration diagram illustrating an image processing unit 13 of a radar image processing apparatus 10 according to a fourth embodiment. It is a hardware block diagram which shows each hardware in the phase process part 12 and the image process part 13. It is a block diagram which shows the image process part 13 of the radar image processing apparatus 10 by Embodiment 5. FIG. It is a hardware block diagram which shows each hardware in the phase process part 12 and the image process part 13.
  • FIG. 1 is a configuration diagram illustrating a radar image processing apparatus 10 according to the first embodiment.
  • a radar 1 corresponds to a synthetic aperture radar (SAR) or a real aperture radar, and is mounted on a platform for observing the earth or the like.
  • the radar 1 captures a radar image and acquires parameters at the time of capturing the radar image.
  • As the platform an artificial satellite or an aircraft is applicable.
  • the radar 1 images the observation area from a certain radio wave reception point, and then images the observation area again when the platform is at a radio wave reception point close to the radio wave reception point.
  • the radar 1 images an observation area from a certain radio wave reception point, and then the platform orbits the earth and is close to the above radio wave reception point. When returning to, the radar 1 captures the same observation area again and acquires a radar image. If the platform is an aircraft, it is steered to repeatedly pass through the same trajectory, and when the platform is substantially at the same radio wave reception point, the radar 1 captures the same observation area and acquires a radar image. In the case of single-path imaging, a plurality of radars 1 are mounted on the same platform, and the plurality of radars 1 capture the same observation area from a certain radio wave reception point and acquire a radar image.
  • the plurality of radars 1 are installed at different positions on the same platform.
  • each of a plurality of radars 1 having the same imaging parameter such as a wavelength is mounted on a different platform, and the plurality of radars 1 capture the same observation region from a certain radio wave reception point and acquire a radar image.
  • the radar 1 acquires the first radar image and the second radar image as two radar images by capturing the same observation area twice from each different radio wave reception point.
  • the position of the platform when the first radar image is captured is referred to as a first radio wave reception point
  • the position of the platform when the second radar image is captured is referred to as a second radio wave reception point.
  • the resolution of the first radar image and the resolution of the second radar image are the same resolution.
  • the pixel positions of the plurality of pixels included in the first radar image and the pixel positions of the plurality of pixels included in the second radar image are represented by the same (pixel, line).
  • pixel is a variable indicating the position of the pixel in the slant range direction in each of the first radar image and the second radar image
  • line is the pixel in the azimuth direction in each of the first radar image and the second radar image. This is a variable indicating the position.
  • the radar 1 transmits a radar image group 2 including a first radar image and a second radar image to the radar image processing apparatus 10.
  • the radar 1 transmits to the radar image processing apparatus 10 an imaging parameter group 3 including a first imaging parameter corresponding to the first radar image and a second imaging parameter corresponding to the second radar image. .
  • the radar image group 2 is an image group including a first radar image and a second radar image. Since the type of each polarization used for imaging the first radar image and the second radar image is not limited, each of the first radar image and the second radar image is a single-polarization radar image, Either a two-polarization radar image or a four-polarization radar image may be used. Each of the first radar image and the second radar image is a radar image showing the intensity distribution of the radio wave received by the radar 1 after being reflected from the observation area after the radio wave is radiated from the radar 1. The plurality of pixels included in the first radar image and the plurality of pixels included in the second radar image each have a complex pixel value.
  • the complex pixel value is information indicating the distance between the radar 1 and the scatterer existing in the observation region, and information indicating the phase shift generated when the radio wave radiated from the radar 1 is reflected by the scatterer. Is included. Hereinafter, it is assumed that the “pixel value” has a complex value unless otherwise specified.
  • the imaging parameter group 3 is a parameter group including a first imaging parameter and a second imaging parameter.
  • the first imaging parameter includes position information of the trajectory on the platform when the first radar image is captured by the radar 1 and sensor information.
  • the second imaging parameter includes position information of the trajectory on the platform when the second radar image is captured by the radar 1 and sensor information.
  • the orbital position information is information indicating the latitude, longitude, and altitude of the platform when the first radar image or the second radar image is captured by the radar 1. Therefore, the position information of the orbit is used as information indicating the first radio wave reception point or the second radio wave reception point.
  • the sensor information includes information indicating the off-nadir angle ⁇ of the radar 1 when the first radar image or the second radar image is captured, information indicating the wavelength ⁇ of the radiated radio wave from the radar 1, and an observation region from the radar 1.
  • the information which shows the average value R of the distance to is included.
  • the radar image processing apparatus 10 includes a radar image acquisition unit 11, a phase processing unit 12, and an image processing unit 13.
  • the radar image acquisition unit 11 acquires each of the radar image group 2 and the imaging parameter group 3 transmitted from the radar 1.
  • the radar image acquisition unit 11 outputs the radar image group 2 to the image processing unit 13 and outputs the imaging parameter group 3 to the phase processing unit 12.
  • the phase processing unit 12 acquires the imaging parameter group 3 output from the radar image acquisition unit 11 and the inclination angle ⁇ of the two-dimensional inclination surface 51 (see FIG. 7) with respect to the ground range direction.
  • the phase processing unit 12 acquires a distance z 0 between the inclined surface 51 and a parallel surface 52 (see FIG. 7) that is a surface parallel to the inclined surface 51. Details of the inclined surface 51 and the parallel surface 52 will be described later.
  • the phase processing unit 12 uses the first imaging parameter, the second imaging parameter, and the tilt angle ⁇ to calculate the phase change component ⁇ (x) in the x-axis (first axis) direction on the tilt plane 51. Perform the calculation process.
  • the phase processing unit 12 calculates the phase ⁇ (z 0 ) of the parallel plane 52 with respect to the inclined plane 51 using the first imaging parameter, the second imaging parameter, the inclination angle ⁇ , and the distance z 0. Perform the process. For each pixel included in the first and second radar images, the phase processing unit 12 determines the phase and the second phase with respect to the first radio wave reception point in each of a plurality of reflected signals mixed in one pixel. A process of calculating a phase difference ⁇ (x, z 0 ) with respect to the phase of the radio wave reception point is performed.
  • the image processing unit 13 acquires the radar image group 2 output from the radar image acquisition unit 11 and the respective phase differences ⁇ (x, z 0 ) output from the phase processing unit 12. From the respective phase differences ⁇ (x, z 0 ) output from the phase processing unit 12, the image processing unit 13 rotates the phase rotation amounts exp [j ⁇ ⁇ of the plurality of pixels included in the second radar image. (X, z 0 )] is calculated. The image processing unit 13 performs a process of rotating the phases of a plurality of pixels included in the second radar image based on the calculated rotation amounts exp [j ⁇ ⁇ (x, z 0 )]. . The image processing unit 13 corresponds to each pixel position among a plurality of pixels included in the first radar image and a plurality of pixels after phase rotation included in the second radar image. A process of calculating a difference between pixel values of pixels is performed.
  • FIG. 2 is a configuration diagram showing the phase processing unit 12 of the radar image processing apparatus 10 according to the first embodiment.
  • FIG. 3 is a configuration diagram illustrating the image processing unit 13 of the radar image processing apparatus 10 according to the first embodiment.
  • FIG. 4 is a hardware configuration diagram illustrating hardware in the phase processing unit 12 and the image processing unit 13.
  • the phase change component calculation unit 21 is realized by, for example, the phase change component calculation circuit 41 illustrated in FIG. 4.
  • the phase change component calculation unit 21 acquires the imaging parameter group 3 output from the radar image acquisition unit 11 and the tilt angle ⁇ .
  • the phase change component calculation unit 21 performs processing for calculating the phase change component ⁇ (x) in the x-axis direction on the inclined plane 51 using the first imaging parameter, the second imaging parameter, and the inclination angle ⁇ . carry out.
  • the phase change component calculation unit 21 outputs the phase change component ⁇ (x) in the x-axis direction to the phase difference calculation unit 23.
  • the phase calculation unit 22 is realized by, for example, the phase calculation circuit 42 illustrated in FIG.
  • the phase calculation unit 22 acquires the imaging parameter group 3, the inclination angle ⁇ , and the distance z 0 output from the radar image acquisition unit 11.
  • the phase calculation unit 22 calculates the phase ⁇ (z 0 ) of the parallel plane 52 with respect to the inclined plane 51 using the first imaging parameter, the second imaging parameter, the inclination angle ⁇ , and the distance z 0. Perform the process.
  • the phase calculation unit 22 outputs the phase ⁇ (z 0 ) to the phase difference calculation unit 23.
  • the phase difference calculation unit 23 is realized by, for example, the phase difference calculation circuit 43 illustrated in FIG.
  • the phase difference calculation unit 23 includes a plurality of pixels mixed in one pixel for each pixel included in the first and second radar images from the phase change component ⁇ (x) and the phase ⁇ (z 0 ). In each of the reflected signals, a process of calculating the phase difference ⁇ (x, z 0 ) is performed.
  • the phase difference ⁇ (x, z 0 ) is the phase difference between the phase of the reflected signal with respect to the first radio wave reception point and the phase of the reflected signal with respect to the second radio wave reception point.
  • the phase difference calculation unit 23 outputs each phase difference ⁇ (x, z 0 ) to the image processing unit 13.
  • the rotation amount calculation unit 31 is realized by, for example, a rotation amount calculation circuit 44 illustrated in FIG. 4.
  • the rotation amount calculation unit 31 calculates the rotation amount exp [j of the phase of the plurality of pixels included in the second radar image from each phase difference ⁇ (x, z 0 ) output from the phase difference calculation unit 23.
  • a process of calculating ⁇ (x, z 0 )] is performed.
  • the rotation amount calculation unit 31 outputs each rotation amount exp [j ⁇ ⁇ (x, z 0 )] to the phase rotation unit 33.
  • the difference calculation unit 32 includes a phase rotation unit 33 and a difference calculation processing unit 34.
  • the phase rotation unit 33 is realized by, for example, the phase rotation circuit 45 illustrated in FIG.
  • the phase rotation unit 33 acquires a second radar image from the radar image group 2 output from the radar image acquisition unit 11.
  • the phase rotation unit 33 is based on the respective rotation amounts exp [j ⁇ ⁇ (x, z 0 )] output from the rotation amount calculation unit 31, and the phases of the plurality of pixels included in the second radar image. Execute the process of rotating.
  • the phase rotation unit 33 outputs a second radar image including a plurality of pixels after the phase rotation to the difference calculation processing unit 34.
  • the difference calculation processing unit 34 is realized by, for example, a difference calculation processing circuit 46 illustrated in FIG.
  • the difference calculation processing unit 34 acquires a first radar image from the radar image group 2 output from the radar image acquisition unit 11 and acquires a second radar image output from the phase rotation unit 33.
  • the difference calculation processing unit 34 corresponds to each pixel position among the plurality of pixels included in the first radar image and the plurality of pixels after phase rotation included in the second radar image.
  • a process of calculating a difference ⁇ S (pixel, line) between pixel values of existing pixels is performed.
  • the difference ⁇ S (pixel, line) is a pixel of the suppressed image in which the reflection signal of the unnecessary scatterer is suppressed.
  • the difference calculation processing unit 34 outputs a suppressed image including each difference ⁇ s (pixel, line) to the outside.
  • each of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23, which are components of the phase processing unit 12, is realized by dedicated hardware as shown in FIG. Assumed.
  • the rotation amount calculation unit 31, the phase rotation unit 33, and the difference calculation processing unit 34, which are components of the image processing unit 13 are each realized by dedicated hardware as shown in FIG. Is assumed. That is, the phase processing unit 12 and the image processing unit 13 are realized by the phase change component calculation circuit 41, the phase calculation circuit 42, the phase difference calculation circuit 43, the rotation amount calculation circuit 44, the phase rotation circuit 45, and the difference calculation processing circuit 46. Is assumed.
  • each of the phase change component calculation circuit 41, the phase calculation circuit 42, the phase difference calculation circuit 43, the rotation amount calculation circuit 44, the phase rotation circuit 45, and the difference calculation processing circuit 46 includes, for example, a single circuit, a composite circuit, A programmed processor, a parallel-programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
  • the components of the phase processing unit 12 and the components of the image processing unit 13 are not limited to those realized by dedicated hardware.
  • the phase processing unit 12 and the image processing unit 13 may be realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is stored in the memory of a computer as a program.
  • the computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor) To do.
  • FIG. 5 is a hardware configuration diagram of a computer when the phase processing unit 12 and the image processing unit 13 are realized by software or firmware.
  • the phase processing unit 12 is realized by software or firmware
  • a program for causing the computer to execute the processing procedures of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23 is stored in the memory 61.
  • the image processing unit 13 is realized by software or firmware
  • a program for causing the computer to execute the processing procedure of the rotation amount calculation unit 31, the phase rotation unit 33, and the difference calculation processing unit 34 is stored in the memory 61. Is done.
  • the computer processor 62 executes the program stored in the memory 61.
  • phase processing unit 12 and the components of the image processing unit 13 are realized by dedicated hardware.
  • the phase processing unit 12 and the image processing unit 13 are An example realized by software or firmware is shown.
  • the present invention is not limited to this.
  • some components in the phase processing unit 12 and some components in the image processing unit 13 are realized by dedicated hardware, and the remaining components are software or firmware. It may be realized by.
  • a radar 1 is a radar image processing device that includes a radar image group 2 including a first radar image and a second radar image, and an imaging parameter group 3 including a first imaging parameter and a second imaging parameter. 10 to send.
  • the radar image acquisition unit 11 acquires each of the radar image group 2 and the imaging parameter group 3 transmitted from the radar 1.
  • the radar image acquisition unit 11 outputs the radar image group 2 to the image processing unit 13 and outputs the imaging parameter group 3 to the phase processing unit 12.
  • the pixel value of the pixel included in the radar image is a complex number and is expressed as the following Expression (1).
  • Av (pixel, line) is the amplitude of the pixel whose pixel position is (pixel, line).
  • ⁇ (pixel, line) is the phase (deflection angle) of the pixel whose pixel position is (pixel, line).
  • j is a symbol indicating an imaginary unit.
  • the phase processing unit 12 performs a process of calculating the phase difference ⁇ (x, z 0 ).
  • FIG. 6 is a flowchart showing the processing contents of the phase processing unit 12. Hereinafter, the processing content of the phase processing unit 12 will be described in detail with reference to FIG.
  • the phase change component calculation unit 21 acquires the imaging parameter group 3 output from the radar image acquisition unit 11 and the tilt angle ⁇ (step ST1 in FIG. 6).
  • the phase calculation unit 22 acquires the imaging parameter group 3, the tilt angle ⁇ , and the distance z 0 output from the radar image acquisition unit 11 (step ST2 in FIG. 6).
  • the inclination angle ⁇ is a parameter set in advance by the user, for example, and is expressed as shown in FIG.
  • the distance z 0 is a parameter set in advance by the user, for example, and is expressed as shown in FIG.
  • Each of the inclination angle ⁇ and the distance z 0 may be given to the phase calculation unit 22 by a manual operation by the user, or may be given to the phase calculation unit 22 by an external device (not shown). Good.
  • FIG. 7 is an explanatory diagram showing the inclined surface 51, the parallel surface 52, and the imaging parameters.
  • an inclined plane 51 is a common two-dimensional plane included in each of the first radar image and the second radar image.
  • the direction of the x-axis that is the first axis of the inclined surface 51 is a direction that is inclined by the inclination angle ⁇ from the ground range direction, and the direction of the second axis of the inclined surface 51 is the azimuth direction (in FIG. In the depth direction of the drawing).
  • Parallel surface 52 is a plane parallel to the slope surface 51, the distance between the slope surface 51 is z 0.
  • the inclined surface 51 is, for example, a horizontal roof of a building that is built vertically on a horizontal ground, 0 degree is set as the inclination angle ⁇ .
  • the inclined surface 51 is a wall surface of a building that is built vertically on a horizontal ground, 90 degrees is set as the inclination angle ⁇ .
  • P 1 indicates a first radio wave reception point
  • P 2 indicates a second radio wave reception point
  • the first radio wave reception point P 1 is the center position of the platform trajectory when the first radar image was captured
  • the second radio wave reception point P 2 when the second radar image is captured Is the center position of the platform trajectory.
  • B 1 , 2 are directions of radio waves radiated from the radar 1 among the distances between the first radio wave reception point P 1 and the second radio wave reception point P 2 (hereinafter referred to as “slant range direction”). Is a distance component in a direction perpendicular to.
  • is an off-nadir angle
  • the off-nadir angle is an angle formed by a direction directly below the platform and a slant range direction.
  • R are each a first radio wave reception point P 1 and the second radio wave receiving point P 2, the average value of the distance between the observed region.
  • the distance component B 1 , 2 , the off-nadir angle ⁇ , and the average value R of the distance are information included in the imaging parameter.
  • Sw is the range of the first radar image and the range of the second radar image capturing the observation target.
  • the range Sw of the first radar image and the range Sw of the second radar image are the same range.
  • the phase change component calculation unit 21 calculates the off-nadir angle ⁇ and the average value R of the distances. Each of these is treated as not changing. That is, the off-nadir angle ⁇ included in the first imaging parameter and the off-nadir angle ⁇ included in the second imaging parameter are the same value. Further, the average value R of the distance included in the first imaging parameter and the average value R of the distance included in the second imaging parameter are the same value.
  • the pixel position is (pixel, line)
  • the pixel position is ( (pixel, line) is a pixel at the same pixel position.
  • FIG. 8 shows the pixel spacing ⁇ sl in the slant range direction, the range Sw of the range image (first radar image, second radar image), and the position in the slant range direction corresponding to the center position of the radar image. It is explanatory drawing which shows the relationship with the distance sl to an area
  • the distance from the position in the slant range direction corresponding to the near range of the radar image to the position in the slant range direction corresponding to the center position of the radar image is (Sw / 2) ⁇ sin ⁇ . Therefore, the distance sl is expressed as the following formula (2).
  • Each of the spacing ⁇ sl and the range Sw of the radar image is information included in the imaging parameter.
  • the phase change component calculation unit 21 calculates the position x on the inclined plane 51 corresponding to the position pixel by substituting the pixel position pixel in the slant range direction in the radar image into the equation (4).
  • the reflection signal of a plurality of scatterers is mixed in the pixel at the position pixel to be substituted into Expression (4).
  • the position pixel to be substituted into Expression (4) may be given to the phase change component calculation unit 21 by a manual operation by the user, for example, or given to the phase change component calculation unit 21 by an external device (not shown). You may do it.
  • the phase change component calculation unit 21 uses the distance components B 1 and 2 , the off-nadir angle ⁇ , the average value R of the distance, the wavelength ⁇ of the radiated radio wave, the inclination angle ⁇ , and the observation path parameter p, On the inclined surface 51, the phase change component ⁇ (x) at the position x in the x-axis direction is calculated (step ST3 in FIG. 6).
  • the observation path parameter p may be given to the phase change component calculation unit 21 and the phase calculation unit 22 by, for example, a manual operation by the user, or may be provided by an external device (not shown) You may make it give to the phase calculation part 22.
  • FIG. The following formula (5) is a formula for calculating the phase change component ⁇ (x) used by the phase change component calculation unit 21.
  • the phase change component calculation unit 21 outputs the phase change component ⁇ (x) in the x-axis direction to the phase difference calculation unit 23.
  • the phase calculation unit 22 calculates the distance components B 1 and 2 , the off-nadir angle ⁇ , the average value R of the distance, the wavelength ⁇ of the radiated radio wave, the inclination angle ⁇ , the distance z 0, and the observation path parameter p.
  • the phase ⁇ (z 0 ) of the parallel plane 52 with respect to the inclined plane 51 is calculated (step ST4 in FIG. 6).
  • the following formula (6) is a formula for calculating the phase ⁇ (z 0 ) used by the phase calculation unit 22.
  • the phase calculation unit 22 outputs the phase ⁇ (z 0 ) to the phase difference calculation unit 23.
  • the phase difference calculation unit 23 uses a phase change component ⁇ (x) and a phase ⁇ (z 0 ) to mix each pixel included in the first and second radar images in one pixel.
  • the phase difference ⁇ (x, z 0 ) is calculated (step ST5 in FIG. 6).
  • the phase difference ⁇ (x, z 0 ) is the position of each reflected signal between the phase of the reflected signal with respect to the first radio wave reception point P 1 and the phase of the reflected signal with respect to the second radio wave reception point P 2. It is a phase difference.
  • the following formula (7) is a formula for calculating the phase difference ⁇ (x, z 0 ) used by the phase difference calculation unit 23.
  • the phase difference calculation unit 23 outputs each phase difference ⁇ (x, z 0 ) to the image processing unit 13.
  • the image processing unit 13 performs processing for obtaining a suppressed image.
  • FIG. 9 is a flowchart showing the processing contents of the image processing unit 13. Hereinafter, the processing content of the image processing unit 13 will be described in detail with reference to FIG.
  • the rotation amount calculation unit 31 acquires each phase difference ⁇ (x, z 0 ) output from the phase difference calculation unit 23.
  • Rotation amount calculating unit 31, the retardation ⁇ (x, z 0) from the amount of rotation of the phases of a plurality of pixels included in the second radar image exp [j ⁇ ⁇ (x, z 0)] Are respectively calculated (step ST11 in FIG. 9).
  • the rotation amount calculation unit 31 outputs each rotation amount exp [j ⁇ ⁇ (x, z 0 )] to the phase rotation unit 33.
  • the phase rotation unit 33 acquires a second radar image from the radar image group 2 output from the radar image acquisition unit 11.
  • the phase rotation unit 33 is based on the respective rotation amounts exp [j ⁇ ⁇ (x, z 0 )] output from the rotation amount calculation unit 31, and the phases of the plurality of pixels included in the second radar image. Is performed (step ST12 in FIG. 9).
  • the following equation (8) is an equation showing the phase rotation processing by the phase rotation unit 33.
  • S 2 (pixel, line) is the pixel value of the pixel included in the second radar image output from the radar image acquisition unit 11
  • S 2 ′ (pixel, line) is the phase The pixel value of the pixel included in the second radar image in which the phase of the pixel is rotated by the rotation unit 33.
  • the phase rotation unit 33 outputs a second radar image including a plurality of pixels after the phase rotation to the difference calculation processing unit 34.
  • the difference calculation processing unit 34 acquires a first radar image from the radar image group 2 output from the radar image acquisition unit 11, and includes a plurality of pixels after phase rotation output from the phase rotation unit 33. A second radar image is acquired.
  • the difference calculation processing unit 34 corresponds to each pixel position among the plurality of pixels included in the first radar image and the plurality of pixels after phase rotation included in the second radar image.
  • the difference ⁇ S (pixel, line) between the pixel values of the existing pixels is calculated (step ST13 in FIG. 9).
  • the following formula (9) is a calculation formula for the difference ⁇ S (pixel, line) used by the difference calculation processing unit 34.
  • S 1 (pixel, line) is a pixel value of a pixel included in the first radar image.
  • the difference calculation processing unit 34 outputs a suppressed image including each difference ⁇ s (pixel, line) to the outside.
  • FIG. 10 is an explanatory diagram illustrating suppression of the reflection signal mixed in one pixel when the phase of the pixel included in the second radar image is not rotated by the phase rotation unit 33. .
  • the reflected signal with “1” the distance from the scatterer that scatters the reflected signal to the first radio wave reception point P 1 and the scattered signal that scatters the reflected signal. the distance from the body to a second radio wave receiving point P 2 are equal. Therefore, for the reflected signal to which “1” is attached, the phase difference ⁇ (x, z 0 ) between the phase with respect to the first radio wave reception point P 1 and the phase with respect to the second radio wave reception point P 2 is zero. is there. Therefore, since the difference ⁇ S (pixel, line) for the reflected signal with “1” is zero, the reflected signal with “1” is suppressed.
  • FIG. 11 is an explanatory diagram illustrating the suppression of the reflection signal mixed in one pixel when the phase of the pixel included in the second radar image is rotated by the phase rotation unit 33.
  • the reflected signal with “1” attached as shown in FIG. 10, the distance from the scatterer that scatters the reflected signal to the first radio wave receiving point P 1 and the reflected signal are scattered. and the distance from the scattering body is to a second radio wave receiving point P 2 are equal. Therefore, for the reflected signal to which “1” is attached, the phase difference ⁇ (x, z 0 ) between the phase with respect to the first radio wave reception point P 1 and the phase with respect to the second radio wave reception point P 2 is zero.
  • the rotation amount exp [j ⁇ ⁇ (x, z 0 )] of the phase calculated by the rotation amount calculation unit 31 is zero.
  • the phase difference ⁇ (x, z 0 ) remains zero for the reflected signal with “1”, so the difference ⁇ S (pixel, line) becomes zero and “1” is added. The reflected signal is suppressed.
  • the distance from the scatterer that scatters the reflected signal to the first radio wave reception point P 1 and the reflected signal are scattered. and the distance from the scattering body is to a second radio wave receiving point P 2 is not equal. Therefore, for the reflected signal to which “2” is attached, the phase difference ⁇ (x, z 0 ) between the phase with respect to the first radio wave reception point P 1 and the phase with respect to the second radio wave reception point P 2 is not zero. It is. Therefore, the phase rotation amount exp [j ⁇ ⁇ (x, z 0 )] calculated by the rotation amount calculation unit 31 is non-zero. As shown in FIG.
  • the reflected signal after the phase rotation to which “2” is attached is rotated by the rotation amount exp [j ⁇ ⁇ (x, z 0 )] by the phase rotation unit 33, as shown in FIG. and the distance to the radio reception point P 1 of 1, and are not equal distance to the second radio wave receiving point P 2. Therefore, for the reflected signal after phase rotation to which “2” is attached, the phase difference ⁇ (x, z 0) between the phase with respect to the first radio wave reception point P 1 and the phase with respect to the second radio wave reception point P 2 . ) Is non-zero. Therefore, the difference ⁇ S (pixel, line) for the reflected signal after phase rotation to which “2” is attached is not zero, so that the reflected signal after phase rotation to which “2” is attached is not suppressed. .
  • the distance from the scatterer that scatters the reflected signal to the first radio wave reception point P 1 and the reflected signal are scattered. and the distance from the scattering body is to a second radio wave receiving point P 2 is not equal. Therefore, for the reflected signal to which “3” is attached, the phase difference ⁇ (x, z 0 ) between the phase with respect to the first radio wave reception point P 1 and the phase with respect to the second radio wave reception point P 2 is not zero. It is. Therefore, the phase rotation amount exp [j ⁇ ⁇ (x, z 0 )] calculated by the rotation amount calculation unit 31 is non-zero. As shown in FIG.
  • the reflected signal with “3” is rotated by the rotation amount exp [j ⁇ ⁇ (x, z 0 )] by the phase rotation unit 33, so that the first and the distance to the radio wave receiving point P 1, and the distance to the second radio wave receiving point P 2 are equal. Therefore, with respect to the reflected signal after phase rotation to which “3” is attached, the phase difference ⁇ (x, z 0) between the phase with respect to the first radio wave reception point P 1 and the phase with respect to the second radio wave reception point P 2 . ) Is zero. Therefore, since the difference ⁇ S (pixel, line) for the reflected signal after phase rotation with “3” is zero, the reflected signal after phase rotation with “3” is suppressed. .
  • a phase difference calculation unit 23 that calculates a phase difference that is a phase difference with respect to different radio wave reception points, respectively,
  • a rotation amount calculation unit 31 that calculates a rotation amount of the phase of each of the plurality of pixels included in the second radar image from the phase difference, and a difference calculation unit 32, based on each rotation amount,
  • the phase of a plurality of pixels included in the second radar image is rotated, the plurality of pixels included in the first radar image, and the plurality of pixels after the phase rotation included in the second radar image
  • the radar image processing apparatus 10 is configured to calculate a pixel value difference between pixels corresponding to pixel positions among the pixels. Therefore, the radar image processing apparatus 10 can suppress a reflection signal whose phase difference with respect to different radio wave reception points is not zero.
  • FIG. The radar image processing apparatus 10 shows an example in which a radar image group 2 including a first radar image and a second radar image is acquired and a suppression image is output.
  • a radar image processing apparatus that acquires a radar image group 2 including two or more radar images in which the same observation area is captured from different radio wave reception points and outputs a suppression image. 10 will be described.
  • each of the phase processing unit 12 and the image processing unit 13 performs processing for each combination of two radar images included in the radar image group 2.
  • one radar image included in each combination is a first radar image
  • the other radar image included in each combination is a second radar image.
  • the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23 complete the calculation process of the phase difference ⁇ i (x, z 0 ) for all combinations i of the two radar images. Until this is done, the calculation process of the phase difference ⁇ i (x, z 0 ) is repeated.
  • i is a variable indicating a combination of two radar images.
  • Rotation amount calculation unit 31 the phase rotation unit 33 and the difference calculation unit 34, for all combinations i of the two radar images, up to the calculation process of the difference ⁇ S i (pixel, line) is finished, the difference [Delta] S i (pixel , Line) is repeatedly performed.
  • the configuration of the radar image processing apparatus 10 according to the second embodiment is the same as that of the radar image processing apparatus 10 according to the first embodiment as shown in FIG.
  • the configuration of the phase processing unit 12 in the second embodiment is the same as that of the phase processing unit 12 in the first embodiment as shown in FIG.
  • the radar image group 2 includes two or more radar images
  • the imaging parameter group 3 includes two or more imaging parameters.
  • FIG. 12 is a configuration diagram illustrating the image processing unit 13 of the radar image processing apparatus 10 according to the second embodiment.
  • FIG. 13 is a hardware configuration diagram illustrating hardware in the phase processing unit 12 and the image processing unit 13. 12 and FIG. 13, the same reference numerals as those in FIG. 3 and FIG.
  • the image composition unit 35 is realized by, for example, an image composition circuit 47 shown in FIG.
  • Image synthesizing unit 35 obtains the weighting parameter w i to be used for generating of the suppression image.
  • the image compositing unit 35 uses the weight parameter w i to calculate the difference ⁇ S i (pixel, line) corresponding to each pixel position among the differences calculated for each combination i by the difference calculation processing unit 34.
  • the process of synthesizing is performed.
  • the image synthesis unit 35 outputs a suppressed image including the difference S sup (pixel, line) after each synthesis to the outside.
  • each of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23 that are components of the phase processing unit 12 is realized by dedicated hardware as illustrated in FIG. 13. Assumed. Further, in FIG. 12, each of the rotation amount calculation unit 31, the phase rotation unit 33, the difference calculation processing unit 34, and the image composition unit 35, which are components of the image processing unit 13, is provided with dedicated hardware as shown in FIG. Is assumed to be realized. That is, the phase processing unit 12 and the image processing unit 13 include a phase change component calculation circuit 41, a phase calculation circuit 42, a phase difference calculation circuit 43, a rotation amount calculation circuit 44, a phase rotation circuit 45, a difference calculation processing circuit 46, and an image composition. It is assumed that the circuit 47 is realized.
  • each of the phase change component calculation circuit 41, the phase calculation circuit 42, the phase difference calculation circuit 43, the rotation amount calculation circuit 44, the phase rotation circuit 45, the difference calculation processing circuit 46, and the image composition circuit 47 is, for example, a single A circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC, an FPGA, or a combination thereof is applicable.
  • the components of the phase processing unit 12 and the components of the image processing unit 13 are not limited to those realized by dedicated hardware.
  • the phase processing unit 12 and the image processing unit 13 may be realized by software, firmware, or a combination of software and firmware.
  • a program for causing a computer to execute the processing procedures of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23 is shown in FIG. 61 is stored.
  • the image processing unit 13 is realized by software or firmware, a program for causing a computer to execute the processing procedures of the rotation amount calculation unit 31, the phase rotation unit 33, the difference calculation processing unit 34, and the image composition unit 35 Is stored in the memory 61.
  • the computer processor 62 executes the program stored in the memory 61.
  • the phase processing unit 12 calculates a phase difference ⁇ i (x, z 0 ) for each combination i of two radar images among two or more radar images included in the radar image group 2. .
  • the phase change component calculation unit 21 acquires a combination of two imaging parameters corresponding to two radar images from the imaging parameter group 3 output from the radar image acquisition unit 11.
  • one radar image included in the combination i is a first radar image
  • the other radar image included in the combination i is a second radar image.
  • a radio wave reception point related to a first radar image included in a certain combination and a radio wave reception point related to a first radar image included in another combination are different points.
  • both of the radio wave receiving point the first is a radio wave receiving point P 1.
  • the radio wave reception point related to the second radar image included in a certain combination and the radio wave reception point related to the second radar image included in another combination are different points.
  • both of the radio wave receiving point the second is a radio wave receiving point P 2.
  • the imaging parameter corresponding to the first radar image is the first imaging parameter
  • the imaging parameter corresponding to the second radar image is the second imaging parameter.
  • the phase change component calculation unit 21 acquires the tilt angle ⁇ .
  • the phase calculation unit 22 acquires the first imaging parameter, the second imaging parameter, the tilt angle ⁇ , and the distance z 0 .
  • the phase change component calculation unit 21 calculates the position x on the inclined plane 51 corresponding to the position pixel by substituting the pixel position pixel in the slant range direction in the radar image into the equation (4).
  • the pixel at the position pixel that is substituted into the equation (4) is a pixel in which the reflection signals of a plurality of scatterers are mixed.
  • the phase change component calculation unit 21 uses the distance components B 1 and 2 , the off-nadir angle ⁇ , the average value R of the distance, the wavelength ⁇ of the radiated radio wave, the inclination angle ⁇ , and the observation path parameter p, A phase change component ⁇ i (x) in the x-axis direction on the inclined surface 51 is calculated.
  • the following formula (10) is a formula for calculating the phase change component ⁇ i (x) used by the phase change component calculation unit 21.
  • the phase change component calculation unit 21 outputs the phase change component ⁇ i (x) in the x-axis direction to the phase difference calculation unit 23.
  • the phase calculation unit 22 calculates the distance components B 1 and 2 , the off-nadir angle ⁇ , the average value R of the distance, the wavelength ⁇ of the radiated radio wave, the inclination angle ⁇ , the distance z 0, and the observation path parameter p.
  • the phase ⁇ i (z 0 ) of the parallel plane 52 with respect to the inclined plane 51 is calculated.
  • the phase ⁇ i (z 0 ) is the same regardless of the combination.
  • the following formula (11) is a calculation formula for the phase ⁇ i (z 0 ) used by the phase calculation unit 22.
  • the phase calculation unit 22 outputs the phase ⁇ i (z 0 ) to the phase difference calculation unit 23.
  • the phase difference calculation unit 23 uses the phase change component ⁇ i (x) and the phase ⁇ i (z 0 ) for each of the plurality of reflected signals mixed in one pixel.
  • a phase difference ⁇ i (x, z 0 ) between the phase for the first radio wave reception point P 1 and the phase for the second radio wave reception point P 2 is calculated.
  • the following formula (12) is a formula for calculating the phase difference ⁇ i (x, z 0 ) used by the phase difference calculation unit 23.
  • the phase difference calculation unit 23 outputs each phase difference ⁇ i (x, z 0 ) to the image processing unit 13.
  • the rotation amount calculation unit 31 acquires each phase difference ⁇ i (x, z 0 ) output from the phase difference calculation unit 23.
  • the rotation amount calculation unit 31 calculates the rotation amount exp [j ⁇ ⁇ i of the phase of the plurality of pixels included in the second radar image from the respective phase differences ⁇ i (x, z 0 ) for each combination i. (X, z 0 )] are respectively calculated.
  • the rotation amount calculation unit 31 outputs each rotation amount exp [j ⁇ ⁇ i (x, z 0 )] to the phase rotation unit 33.
  • the phase rotation unit 33 acquires a second radar image included in the combination i from the radar image group 2 output from the radar image acquisition unit 11.
  • the phase rotation unit 33 is based on the respective rotation amounts exp [j ⁇ ⁇ i (x, z 0 )] output from the rotation amount calculation unit 31 and includes a plurality of pieces included in the acquired second radar image.
  • a process of rotating the phase of the pixel is performed.
  • the following expression (13) is an expression showing a phase rotation process by the phase rotation unit 33.
  • the phase rotation unit 33 outputs a second radar image including a plurality of pixels after the phase rotation to the difference calculation processing unit 34.
  • the difference calculation processing unit 34 acquires the first radar image included in the combination i from the radar image group 2 output from the radar image acquisition unit 11, and the phase rotation output from the phase rotation unit 33. A second radar image including a plurality of subsequent pixels is acquired.
  • the difference calculation processing unit 34 is configured to detect each pixel position among a plurality of pixels included in the acquired first radar image and a plurality of pixels after phase rotation included in the acquired second radar image.
  • the difference ⁇ S i (pixel, line) between the pixel values of the pixels corresponding to is calculated.
  • the following formula (14) is a calculation formula for the difference ⁇ S i (pixel, line) used by the difference calculation processing unit 34.
  • the difference calculation processing unit 34 outputs each difference ⁇ S i (pixel, line) to the image composition unit 35.
  • Rotation amount calculation unit 31 the phase rotation unit 33 and the difference calculation unit 34, for all combinations i of the two radar images, up to the calculation process of the difference ⁇ S i (pixel, line) is finished, the difference [Delta] S i (pixel , Line) is repeatedly performed.
  • Image synthesizing unit 35 obtains the weighting parameter w i to be used for generating of the suppression image.
  • Weighting parameter w i may, for example, may be given to the image synthesizing unit 35 by manual operation by the user, may be given to the image synthesizing unit 35 by an external device (not shown).
  • the image compositing unit 35 uses the weight parameter w i to calculate the difference ⁇ S i (pixel, line) corresponding to each pixel position among the differences calculated for each combination i by the difference calculation processing unit 34. Is synthesized.
  • the image synthesis unit 35 outputs a suppressed image including the difference S sup (pixel, line) after each synthesis to the outside.
  • the image synthesis unit 35 synthesizes the differences ⁇ S i (pixel, line) of all combinations by the following equation (15).
  • the image synthesis unit 35 synthesizes the differences ⁇ S i (pixel, line) of all combinations by the following equation (16).
  • N is the number of combinations of two radar images.
  • FIG. 14 shows a plurality of pixels mixed in one pixel when the radar image group 2 includes only two radar images as in the radar image processing apparatus 10 of the first embodiment. It is explanatory drawing which shows the reflected signal.
  • the difference calculation processing unit 34 performs a calculation process of the difference ⁇ S i (pixel, line), thereby A null point may be formed.
  • null points are formed in all of the reflected signal with “1”, the reflected signal with “2”, and the reflected signal with 3 ”. Therefore, in the example of FIG. 14, all of the reflected signal with “1”, the reflected signal with “2”, and the reflected signal with “3” are suppressed.
  • FIG. 15 shows a plurality of reflected signals mixed in one pixel when there are two or more radar images included in the radar image group 2 as in the radar image processing apparatus 10 of the second embodiment. It is explanatory drawing which shows.
  • an M number radar image is contained in the radar image group 2
  • P M is the radar image of the M is the position of the platform when it is captured.
  • the radar image group 2 includes two or more radar images, and the image composition unit 35 synthesizes the differences ⁇ S i (pixel, line) corresponding to the pixel positions, respectively.
  • the number of null points is reduced as compared with the case of two radar images.
  • the number of null points to be formed is one, and no null point is formed in the reflected signal to which “2” is attached.
  • the image synthesizer synthesizes the differences ⁇ S i (pixel, line) corresponding to the pixel positions.
  • the radar image processing apparatus 10 is configured to include 35. Therefore, the radar image processing apparatus 10 can reduce the number of null points to be formed and prevent suppression of reflected signals that need to be left.
  • Embodiment 3 FIG.
  • the radar image processing apparatus 10 according to the second embodiment shows an example in which the combined difference S sup (pixel, line) is output as a suppressed image.
  • the radar image processing apparatus 10 calculates an image in which a plurality of reflection signals mixed in one pixel are extracted from the difference S sup (pixel, line) after being combined by the image combining unit 35. explain.
  • the configuration of the radar image processing apparatus 10 according to the third embodiment is the same as that of the radar image processing apparatus 10 according to the first and second embodiments, as shown in FIG.
  • the configuration of the phase processing unit 12 in the third embodiment is the same as that of the phase processing unit 12 in the first and second embodiments, as shown in FIG.
  • the radar image group 2 includes two or more radar images
  • the imaging parameter group 3 includes two or more imaging parameters.
  • FIG. 16 is a configuration diagram illustrating the image processing unit 13 of the radar image processing apparatus 10 according to the third embodiment.
  • FIG. 17 is a hardware configuration diagram illustrating hardware in the phase processing unit 12 and the image processing unit 13. 16 and 17, the same reference numerals as those in FIGS. 3, 4, 12, and 13 indicate the same or corresponding parts, and thus description thereof is omitted.
  • the extracted image calculation unit 36 is realized by, for example, an extracted image calculation circuit 48 illustrated in FIG.
  • the extracted image calculation unit 36 acquires the first radar image from the radar image group 2 output from the radar image acquisition unit 11, and each combined difference S sup ( pixel, line).
  • the extracted image calculation unit 36 includes a plurality of pixels that are mixed in one pixel based on the pixel values of the plurality of pixels included in the first radar image and the respective combined differences S sup (pixel, line). The process which calculates the image from which the reflected signal was extracted is implemented.
  • each of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23, which are components of the phase processing unit 12, is realized by dedicated hardware as shown in FIG. Assumed. Further, in FIG. 16, each of the rotation amount calculation unit 31, the phase rotation unit 33, the difference calculation processing unit 34, the image composition unit 35, and the extracted image calculation unit 36 that are components of the image processing unit 13 is illustrated in FIG. 17. It is assumed to be realized with such dedicated hardware. That is, the phase processing unit 12 and the image processing unit 13 include a phase change component calculation circuit 41, a phase calculation circuit 42, a phase difference calculation circuit 43, a rotation amount calculation circuit 44, a phase rotation circuit 45, a difference calculation processing circuit 46, and an image composition.
  • phase processing unit 12 and the components of the image processing unit 13 are not limited to those realized by dedicated hardware.
  • the phase processing unit 12 and the image processing unit 13 may be realized by software, firmware, or a combination of software and firmware.
  • the radar image processing device 10 is the same as the radar image processing device 10 of the second embodiment except that the radar image processing device 10 includes the extraction image calculation unit 36, only the operation of the extraction image calculation unit 36 is performed here. explain.
  • the extracted image calculation unit 36 acquires the first radar image from the radar image group 2 output from the radar image acquisition unit 11, and each combined difference S sup ( pixel, line).
  • the extracted image calculation unit 36 includes a plurality of reflected signals mixed from the pixel values of the plurality of pixels included in the first radar image and the respective combined differences S sup (pixel, line).
  • a pixel value S ext (pixel, line) of the pixel is calculated.
  • the following formula (17) is a formula for calculating the pixel value S ext (pixel, line) used by the extracted image calculation unit 36.
  • the extracted image calculation unit 36 outputs an image including a pixel having a pixel value S ext (pixel, line) as an image from which a plurality of reflection signals mixed in one pixel are extracted.
  • the third embodiment described above is mixed in one pixel from the pixel values of a plurality of pixels included in the first radar image and the difference S sup (pixel, line) after each combination.
  • the radar image processing apparatus 10 is configured to include an extracted image calculation unit 36 that calculates an image from which a plurality of reflection signals are extracted. Therefore, the radar image processing apparatus 10 can output not only the suppressed image in which the reflected signal is suppressed but also the extracted image from which the reflected signal is extracted.
  • Embodiment 4 FIG. In the fourth embodiment, from the difference ⁇ S C1 (pixel, line) at each pixel position in the first combination C1 and the difference ⁇ S C2 (pixel, line) at each pixel position in the second combination C2, respectively.
  • the radar image processing apparatus 10 that calculates the phase at the pixel position as the interference phase ⁇ C1, C2 (pixel, line) will be described.
  • the configuration of the radar image processing apparatus 10 according to the fourth embodiment is the same as that of the radar image processing apparatus 10 according to the first to third embodiments, as shown in FIG.
  • the configuration of the phase processing unit 12 in the fourth embodiment is the same as that of the phase processing unit 12 in the first to third embodiments, as shown in FIG.
  • the radar image group 2 includes three or more radar images in which the same observation area is captured from different radio wave reception points
  • the imaging parameter group 3 includes three or more imaging parameters.
  • FIG. 18 is a configuration diagram illustrating the image processing unit 13 of the radar image processing apparatus 10 according to the fourth embodiment.
  • FIG. 19 is a hardware configuration diagram illustrating hardware in the phase processing unit 12 and the image processing unit 13. 18 and 19, the same reference numerals as those in FIGS. 3, 4, 12, 13, 16, and 17 indicate the same or corresponding parts, and thus description thereof is omitted.
  • a combination of any two radar images included in the radar image group 2 is defined as a first combination C1.
  • a combination of any two radar images included in the radar image group 2 is defined as a second combination C2.
  • the two radar images included in the first combination C1 are different from the two radar images included in the second combination C2.
  • one of the two radar images included in the first combination C1 may be the same as any one of the two radar images included in the second combination C2.
  • the difference calculation processing unit 34 uses the difference ⁇ S C1 (pixel, line) at each pixel position in the first combination C1 and each pixel in the second combination C2.
  • a difference ⁇ S C2 (pixel, line) at the position is calculated.
  • the interference phase calculation unit 37 is realized by, for example, an interference phase calculation circuit 49 illustrated in FIG.
  • the interference phase calculation unit 37 calculates the difference ⁇ S C1 (pixel, line) at each pixel position calculated for the first combination C1 by the difference calculation processing unit 14 and each pixel calculated for the second combination C2.
  • the difference ⁇ S C2 (pixel, line) at the position is acquired.
  • the interference phase calculating unit 37 calculates the phase at each pixel position as the interference phase ⁇ C1, C2 (pixel, line) from the difference ⁇ S C1 (pixel, line) and the difference ⁇ S C2 (pixel, line).
  • each of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23, which are components of the phase processing unit 12, is realized by dedicated hardware as shown in FIG. Assumed.
  • the rotation amount calculation unit 31, the phase rotation unit 33, the difference calculation processing unit 34, and the interference phase calculation unit 37, which are components of the image processing unit 13, each have a dedicated hardware as illustrated in FIG. 19.
  • the phase processing unit 12 and the image processing unit 13 include a phase change component calculation circuit 41, a phase calculation circuit 42, a phase difference calculation circuit 43, a rotation amount calculation circuit 44, a phase rotation circuit 45, a difference calculation processing circuit 46, and an interference phase.
  • the one realized by the calculation circuit 49 is assumed.
  • the components of the phase processing unit 12 and the components of the image processing unit 13 are not limited to those realized by dedicated hardware.
  • the phase processing unit 12 and the image processing unit 13 may be realized by software, firmware, or a combination of software and firmware.
  • the phase processing unit 12 calculates the phase difference ⁇ C1 (x, z 0 ) for the first combination C1, and calculates the phase difference ⁇ C2 (x, z 0 ) for the second combination C2. To implement.
  • the phase difference calculation processing by the phase processing unit 12 will be described in detail.
  • the phase change component calculation unit 21 acquires a combination of two imaging parameters corresponding to two radar images included in the first combination C1 from the imaging parameter group 3 output from the radar image acquisition unit 11. To do.
  • one radar image included in the first combination C1 is a first radar image
  • the other radar image included in the first combination C1 is a second radar image.
  • the imaging parameter corresponding to the first radar image is the first imaging parameter
  • the imaging parameter corresponding to the second radar image is the second imaging parameter.
  • the phase change component calculation unit 21 acquires the tilt angle ⁇ .
  • the phase calculation unit 22 acquires the first imaging parameter, the second imaging parameter, the tilt angle ⁇ , and the distance z 0 .
  • the phase change component calculation unit 21 calculates the position x on the inclined plane 51 corresponding to the position pixel by substituting the pixel position pixel in the slant range direction in the radar image into the equation (4).
  • the phase change component calculation unit 21 calculates the distance components B 1 and 2 , the off-nadir angle ⁇ , the average distance R, the wavelength ⁇ of the radiated radio wave, the tilt angle ⁇ , the observation path Using the parameter p, the phase change component ⁇ C1 (x) in the x-axis direction on the inclined surface 51 is calculated.
  • the following formula (18) is a formula for calculating the phase change component ⁇ C1 (x) used by the phase change component calculation unit 21.
  • the phase change component calculation unit 21 outputs the phase change component ⁇ C1 (x) in the x-axis direction to the phase difference calculation unit 23.
  • the phase change component calculation unit 21 selects a combination of two imaging parameters corresponding to two radar images included in the second combination C2 from the imaging parameter group 3 output from the radar image acquisition unit 11. get.
  • one radar image included in the second combination C2 is a first radar image
  • the other radar image included in the second combination C2 is a second radar image.
  • the imaging parameter corresponding to the first radar image is the first imaging parameter
  • the imaging parameter corresponding to the second radar image is the second imaging parameter.
  • the phase change component calculation unit 21 acquires the tilt angle ⁇ .
  • the phase calculation unit 22 acquires the first imaging parameter, the second imaging parameter, the tilt angle ⁇ , and the distance z 0 .
  • the phase change component calculation unit 21 calculates the position x on the inclined plane 51 corresponding to the position pixel by substituting the pixel position pixel in the slant range direction in the radar image into the equation (4).
  • the phase change component calculation unit 21 calculates the distance components B 1 and 2 , the off-nadir angle ⁇ , the average distance R, the wavelength ⁇ of the radiated radio wave, the inclination angle ⁇ , the observation path Using the parameter p, the phase change component ⁇ C2 (x) in the x-axis direction on the inclined surface 51 is calculated.
  • the following formula (19) is a formula for calculating the phase change component ⁇ C2 (x) used by the phase change component calculation unit 21.
  • the phase change component calculation unit 21 outputs the phase change component ⁇ C2 (x) in the x-axis direction to the phase difference calculation unit 23.
  • the phase calculation unit 22 calculates the distance components B 1 and 2 , the off-nadir angle ⁇ , the average value R of the distance, the wavelength ⁇ of the radiated radio wave, the inclination angle ⁇ , the distance z 0, and the observation path parameter p.
  • the phase ⁇ C1 (z 0 ), ⁇ C2 (z 0 ) of the parallel surface 52 with respect to the inclined surface 51 is calculated.
  • the following formula (20) is a formula for calculating the phases ⁇ C1 (z 0 ) and ⁇ C2 (z 0 ) used by the phase calculation unit 22.
  • the phase calculation unit 22 outputs the phases ⁇ C1 (z 0 ) and ⁇ C2 (z 0 ) to the phase difference calculation unit 23.
  • the phase difference calculation unit 23 acquires the respective phase change components ⁇ C2 (x) and ⁇ C1 (x) output from the phase change component calculation unit 21, and the respective phases ⁇ C1 output from the phase calculation unit 22. (Z 0 ), ⁇ C2 (z 0 ) is acquired.
  • the phase difference calculation unit 23 uses the phase change component ⁇ C1 (x) and the phase ⁇ C1 (z 0 ) for each of the plurality of reflected signals mixed in one pixel for the first combination C1.
  • the phase difference ⁇ C1 (x, z 0 ) is calculated.
  • the following formula (21) is a formula for calculating the phase difference ⁇ C1 (x, z 0 ) used by the phase difference calculation unit 23.
  • the phase difference calculation unit 23 outputs each phase difference ⁇ C1 (x, z 0 ) to the image processing unit 13.
  • the phase difference calculation unit 23 uses the phase change component ⁇ C2 (x) and the phase ⁇ C2 (z 0 ) for the second combination C2, and a plurality of reflected signals mixed in one pixel. In each case, a phase difference ⁇ C2 (x, z 0 ) is calculated.
  • the following formula (22) is a formula for calculating the phase difference ⁇ C2 (x, z 0 ) used by the phase difference calculation unit 23.
  • the phase difference calculation unit 23 outputs each phase difference ⁇ C2 (x, z 0 ) to the image processing unit 13.
  • the rotation amount calculation unit 31 acquires the respective phase differences ⁇ C1 (x, z 0 ) and ⁇ C2 (x, z 0 ) output from the phase difference calculation unit 23.
  • the rotation amount calculation unit 31 calculates the rotation amount exp [j ⁇ of the phase of a plurality of pixels included in the second radar image from the respective phase differences ⁇ C1 (x, z 0 ) for the first combination C1.
  • ⁇ C1 (x, z 0 )] is calculated.
  • the rotation amount calculation unit 31 outputs the respective rotation amounts exp [j ⁇ ⁇ C1 (x, z 0 )] to the phase rotation unit 33.
  • the rotation amount calculation unit 31 calculates the rotation amount exp of the phase of the plurality of pixels included in the second radar image from the respective phase differences ⁇ C2 (x, z 0 ) for the second combination C2. [J ⁇ ⁇ C2 (x, z 0 )] is calculated. The rotation amount calculation unit 31 outputs each rotation amount exp [j ⁇ ⁇ C2 (x, z 0 )] to the phase rotation unit 33.
  • the phase rotation unit 33 acquires a second radar image included in the first combination C1 from the radar image group 2 output from the radar image acquisition unit 11.
  • the phase rotation unit 33 is based on each rotation amount exp [j ⁇ ⁇ C1 (x, z 0 )] output from the rotation amount calculation unit 31, and includes a plurality of included in the acquired second radar image.
  • a process of rotating the phase of the pixel is performed.
  • the following formula (23) is a formula showing the phase rotation processing by the phase rotation unit 33.
  • the phase rotation unit 33 outputs a second radar image including a plurality of pixels after the phase rotation to the difference calculation processing unit 34.
  • the phase rotation unit 33 acquires a second radar image included in the second combination C2 from the radar image group 2 output from the radar image acquisition unit 11.
  • the phase rotation unit 33 is based on each rotation amount exp [j ⁇ ⁇ C2 (x, z 0 )] output from the rotation amount calculation unit 31 and includes a plurality of included in the acquired second radar image.
  • a process of rotating the phase of the pixel is performed.
  • the following formula (24) is a formula showing a phase rotation process by the phase rotation unit 33.
  • the phase rotation unit 33 outputs a second radar image including a plurality of pixels after the phase rotation to the difference calculation processing unit 34.
  • the difference calculation processing unit 34 acquires the first radar image included in the first combination C1 from the radar image group 2 output from the radar image acquisition unit 11. In addition, the difference calculation processing unit 34 acquires a second radar image including a plurality of pixels after phase rotation for the first combination C1 output from the phase rotation unit 33.
  • the difference calculation processing unit 34 is configured to detect each pixel position among a plurality of pixels included in the acquired first radar image and a plurality of pixels after phase rotation included in the acquired second radar image.
  • the difference ⁇ S C1 (pixel, line) between the pixel values of the pixels corresponding to is calculated.
  • the following formula (25) is a calculation formula for the difference ⁇ S C1 (pixel, line) used by the difference calculation processing unit 34.
  • the difference calculation processing unit 34 outputs each difference ⁇ S C1 (pixel, line) to the interference phase calculation unit 37.
  • the difference calculation processing unit 34 acquires the first radar image included in the second combination C2 from the radar image group 2 output from the radar image acquisition unit 11. In addition, the difference calculation processing unit 34 acquires a second radar image including a plurality of pixels after phase rotation for the second combination C2 output from the phase rotation unit 33.
  • the difference calculation processing unit 34 is configured to detect each pixel position among a plurality of pixels included in the acquired first radar image and a plurality of pixels after phase rotation included in the acquired second radar image.
  • the difference ⁇ S C2 (pixel, line) between the pixel values of the pixels corresponding to is calculated.
  • the following formula (26) is a calculation formula for the difference ⁇ S C2 (pixel, line) used by the difference calculation processing unit 34.
  • the difference calculation processing unit 34 outputs each difference ⁇ S C2 (pixel, line) to the interference phase calculation unit 37.
  • the interference phase calculation unit 37 acquires the difference ⁇ S C1 (pixel, line) at each pixel position calculated by the difference calculation processing unit 14 for the first combination C1. Further, the interference phase calculation unit 37 acquires the difference ⁇ S C2 (pixel, line) at each pixel position calculated for the second combination C2 by the difference calculation processing unit 14. The interference phase calculation unit 37 calculates the phase at each pixel position from the difference ⁇ S C1 (pixel, line) and the difference ⁇ S C2 (pixel, line) using the following equation (27) or equation (28). The interference phase is calculated as ⁇ C1, C2 (pixel, line). In Expressions (27) and (28), ⁇ is a symbol indicating a complex argument.
  • the interference phase ⁇ C1, C2 (pixel, line) is the phase of only the reflected signal remaining unsuppressed among the plurality of reflected signals mixed in one pixel.
  • the interference phase calculation unit 37 outputs the interference phase ⁇ C1, C2 (pixel, line) to the outside.
  • the signal is reflected on the ground surface by the phase processing unit 12 and the image processing unit 13.
  • the reflected signal is suppressed and only the reflected signal reflected on the roof of the building remains. Therefore, the interference phase ⁇ C1, C2 (pixel, line) is calculated as the phase of the reflected signal reflected on the roof of the building.
  • the radar image processing apparatus 10 is configured to include an interference phase calculation unit 37 that calculates the phase as an interference phase ⁇ C1, C2 (pixel, line). Therefore, the radar image processing apparatus 10 can obtain the phase of the reflected signal while suppressing the reflected signal of the unnecessary scatterer.
  • Embodiment 5 FIG.
  • the radar image processing apparatus 10 that estimates the position of a scatterer existing in the observation region using the interference phase ⁇ C1, C2 (pixel, line) calculated by the interference phase calculation unit 37. explain.
  • the configuration of the radar image processing apparatus 10 is FIG. 1 as in the first embodiment.
  • the configuration of the phase processing unit 12 is shown in FIG. 2 as in the first to third embodiments.
  • FIG. 20 is a configuration diagram illustrating the image processing unit 13 of the radar image processing apparatus 10 according to the fifth embodiment.
  • FIG. 21 is a hardware configuration diagram illustrating hardware in the phase processing unit 12 and the image processing unit 13. 20 and 21, the same reference numerals as those in FIGS. 3, 4, 12, 13, and 16 to 19 denote the same or corresponding parts, and thus description thereof is omitted.
  • the position estimation unit 38 is realized by, for example, the position estimation circuit 50 shown in FIG.
  • the position estimation unit 38 estimates the position of the scatterer existing in the observation region by using the interference phase ⁇ C1, C2 (pixel, line) calculated by the interference phase calculation unit 37.
  • each of the phase change component calculation unit 21, the phase calculation unit 22, and the phase difference calculation unit 23, which are components of the phase processing unit 12, is realized by dedicated hardware as shown in FIG. Assumed.
  • each of the rotation amount calculation unit 31, the phase rotation unit 33, the difference calculation processing unit 34, the interference phase calculation unit 37, and the position estimation unit 38 that are components of the image processing unit 13 is illustrated in FIG. 21. It is assumed to be realized with such dedicated hardware. That is, the phase processing unit 12 and the image processing unit 13 include a phase change component calculation circuit 41, a phase calculation circuit 42, a phase difference calculation circuit 43, a rotation amount calculation circuit 44, a phase rotation circuit 45, a difference calculation processing circuit 46, an interference phase.
  • phase processing unit 12 and the components of the image processing unit 13 are not limited to those realized by dedicated hardware.
  • the phase processing unit 12 and the image processing unit 13 may be realized by software, firmware, or a combination of software and firmware.
  • the radar image processing apparatus 10 is the same as the radar image processing apparatus 10 of the fourth embodiment except that the position estimation unit 38 is provided, only the operation of the position estimation unit 38 will be described here. .
  • the radio wave reception point of the first radar images included in the first combination C1, a radio wave receiving point P a, according to the second radar images included in the first combination C1 radio reception point is assumed to be a radio wave receiving point P b.
  • the radio wave reception point related to the first radar image included in the second combination C2 is the radio wave reception point Pc
  • the radio wave reception point related to the second radar image included in the second combination C2 is and a radio wave receiving point P d.
  • the position estimation unit 38 acquires the interference phase ⁇ C1, C2 (pixel, line) output from the interference phase calculation unit 37. Further, the position estimating unit 38 acquires the respective phase differences ⁇ C1 (x, z 0 ) and ⁇ C2 (x, z 0 ) output from the phase difference calculating unit 23. The position estimation unit 38, as shown in the following equation (29), the interference phase ⁇ C1, C2 (pixel, line) and each phase difference ⁇ 1 (x, z 0 ) output from the phase difference calculation unit 23. ), ⁇ 2 (x, z 0 ), and the position z hat of the scatterer existing in the observation region is estimated.
  • B a, c of the distance between the radio wave reception point P a and radio reception point P c, which is the distance component in the direction perpendicular to the slant range direction.
  • B b, d is a distance component in a direction perpendicular to the slant range direction among the distances between the radio wave reception point P b and the radio wave reception point P d .
  • R is an average value of distances between the observation area and each of the radio wave reception point P a , the radio wave reception point P b , the radio wave reception point P c, and the radio wave reception point P d .
  • the distance component B a, c , the distance component B b, d , the off-nadir angle ⁇ , and the average value R of the distance are information included in the imaging parameter.
  • x is a position on the inclined plane 51 corresponding to the position pixel, and is output from the phase change component calculation unit 21.
  • the position z hat of the scatterer is the distance (height) in the z-axis direction from the inclined surface 51 to the signal reflection surface of the scatterer.
  • the position estimation unit 38 outputs the estimated position z hat of the scatterer to the outside.
  • the present invention is not limited to this, and one radar image in the two radar images included in the first combination C1 is the same as any one of the two radar images included in the second combination C2. May be.
  • the second radar image included in the first combination C1 and the second radar image included in the second combination C2 may be the same radar image.
  • the position z Expression (29) used for hat estimation is simplified as the following expression (30).
  • the radar image processing apparatus 10 is configured to include the unit 38. Therefore, the radar image processing apparatus 10 can obtain the position of the scatterer existing in the observation region.
  • the present invention relates to a radar image processing apparatus and radar image processing for calculating differences between a plurality of pixels included in a first radar image and a plurality of pixels after phase rotation included in a second radar image, respectively. Suitable for the method.

Abstract

1つの画素に混在している複数の反射信号のそれぞれにおいて、互いに異なるそれぞれの電波受信地点に対する位相の差である位相差を算出する位相差算出部(23)と、それぞれの位相差から、第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出する回転量算出部(31)とを設け、差分算出部(32)が、それぞれの回転量に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させ、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出するように、レーダ画像処理装置(10)を構成した。

Description

レーダ画像処理装置及びレーダ画像処理方法
 この発明は、第1のレーダ画像に含まれている画素と第2のレーダ画像に含まれている位相回転後の画素との差分を算出するレーダ画像処理装置及びレーダ画像処理方法に関するものである。
 レーダ装置により得られるレーダ画像には、高さが高い建物などが散乱体として映っていることがある。
 レーダ装置を実装しているプラットフォームから散乱体の高い位置までの距離は、散乱体の高さの分だけ、プラットフォームから散乱体の低い位置までの距離よりも短くなる。
 プラットフォームから散乱体の高い位置までの距離が、散乱体の低い位置までの距離よりも短くなることで、散乱体の高い位置で反射された信号が、プラットフォーム側に倒れ込む現象であるレイオーバが発生する。
 レイオーバが発生することで、散乱体の高い位置で反射された信号は、倒れ込んだ先の別の反射信号と重なるため、レーダ画像において、複数の反射信号が1つの画素に混在してしまうことがある。
 以下の非特許文献1には、第1のレーダ画像に含まれている画素と第2のレーダ画像に含まれている画素との差分を算出するレーダ画像処理装置が開示されている。
 レーダ画像処理装置は、差分を算出することで、1つの画素に混在している複数の反射信号のうち、第1の電波受信地点に対する位相と、第2の電波受信地点に対する位相との位相差が零である反射信号については抑圧することができる。
 第1の電波受信地点は、第1のレーダ画像を撮像したときのプラットフォームの位置であり、第2の電波受信地点は、第2のレーダ画像を撮像したときのプラットフォームの位置である。
 従来のレーダ画像処理装置は、1つの画素に混在している複数の反射信号のうち、第1の電波受信地点に対する位相と、第2の電波受信地点に対する位相との位相差が零である反射信号については抑圧することが可能である。
 しかし、1つの画素に混在している複数の反射信号のうち、抑圧可能な反射信号が散乱された位置と同じ高さの位置で散乱されている反射信号は、第1の電波受信地点に対する位相と、第2の電波受信地点に対する位相との位相差が零にならない。
 第1の電波受信地点に対する位相と、第2の電波受信地点に対する位相との位相差が零でない反射信号については、抑圧することができないという課題があった。
 この発明は上記のような課題を解決するためになされたもので、互いに異なるそれぞれの電波受信地点に対する位相の差が零でない反射信号についても抑圧することができるレーダ画像処理装置及びレーダ画像処理方法を得ることを目的とする。
 この発明に係るレーダ画像処理装置は、互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている第1及び第2のレーダ画像に含まれている画素毎に、1つの画素に混在している複数の反射信号のそれぞれにおいて、それぞれの電波受信地点に対する位相の差である位相差を算出する位相差算出部と、位相差算出部により算出されたそれぞれの位相差から、第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出する回転量算出部とを設け、差分算出部が、回転量算出部により算出されたそれぞれの回転量に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させ、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出するようにしたものである。
 この発明によれば、1つの画素に混在している複数の反射信号のそれぞれにおいて、互いに異なるそれぞれの電波受信地点に対する位相の差である位相差を算出する位相差算出部と、それぞれの位相差から、第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出する回転量算出部とを設け、差分算出部が、それぞれの回転量に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させ、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出するように、レーダ画像処理装置を構成した。したがって、この発明に係るレーダ画像処理装置は、互いに異なるそれぞれの電波受信地点に対する位相の差が零でない反射信号についても抑圧することができる。
実施の形態1によるレーダ画像処理装置10を示す構成図である。 実施の形態1によるレーダ画像処理装置10の位相処理部12を示す構成図である。 実施の形態1によるレーダ画像処理装置10の画像処理部13を示す構成図である。 位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。 位相処理部12及び画像処理部13が、ソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。 位相処理部12の処理内容を示すフローチャートである。 傾き面51、平行面52及び撮像パラメータを示す説明図である。 スラントレンジ方向の画素のスペーシングΔslと、レーダ画像(第1のレーダ画像、第2のレーダ画像)の範囲Swと、レーダ画像の中心位置に対応するスラントレンジ方向の位置から観測領域までの距離slとの関係を示す説明図である。 画像処理部13の処理内容を示すフローチャートである。 位相回転部33によって、第2のレーダ画像に含まれている画素の位相が回転されない場合の、1つの画素に混在している反射信号の抑圧を示す説明図である。 位相回転部33によって、第2のレーダ画像に含まれている画素の位相が回転された場合の、1つの画素に混在している反射信号の抑圧を示す説明図である。 実施の形態2によるレーダ画像処理装置10の画像処理部13を示す構成図である。 位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。 レーダ画像群2に含まれているレーダ画像が2つだけである場合の、1つの画素に混在している複数の反射信号を示す説明図である。 レーダ画像群2に含まれているレーダ画像が2つ以上である場合の、1つの画素に混在している複数の反射信号を示す説明図である。 実施の形態3によるレーダ画像処理装置10の画像処理部13を示す構成図である。 位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。 実施の形態4によるレーダ画像処理装置10の画像処理部13を示す構成図である。 位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。 実施の形態5によるレーダ画像処理装置10の画像処理部13を示す構成図である。 位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1によるレーダ画像処理装置10を示す構成図である。
 図1において、レーダ1は、合成開口レーダ(SAR:Synthetic Aperture Radar)又は実開口レーダなどが該当し、地球等を観測するプラットフォームに実装されている。レーダ1は、レーダ画像を撮像するとともに、レーダ画像の撮像時のパラメータを取得する。プラットフォームとしては、人工衛星又は航空機などが該当する。
 レーダ1は、或る電波受信地点から、観測領域を撮像した後、プラットフォームが、上記の電波受信地点と近い電波受信地点にあるときに、上記の観測領域を再度撮像する。
 リピートパス撮像の場合、プラットフォームが人工衛星であれば、レーダ1が、或る電波受信地点から、観測領域を撮像した後、プラットフォームが地球を周回して、上記の電波受信地点と近い電波受信地点に戻ったときに、レーダ1が、同じ観測領域を再度撮像してレーダ画像を取得する。プラットフォームが航空機であれば、同じ軌道を繰り返し通過するように操縦されており、プラットフォームが、概ね同じ電波受信地点にあるときに、レーダ1が、同じ観測領域を撮像してレーダ画像を取得する。
 シングルパス撮像の場合、複数のレーダ1が同じプラットフォームに実装されており、複数のレーダ1が、或る電波受信地点から、同じ観測領域を撮像してレーダ画像を取得する。このとき、複数のレーダ1は、同じプラットフォームの異なる位置に設置されている。
 また、波長などの撮像パラメータの等しい複数のレーダ1のそれぞれが、異なるプラットフォームに実装されており、複数のレーダ1が、或る電波受信地点から、同じ観測領域を撮像してレーダ画像を取得する。
 したがって、レーダ1は、互いに異なるそれぞれの電波受信地点から、同じ観測領域を2回撮像することで、2つレーダ画像として、第1のレーダ画像と第2のレーダ画像とを取得する。
 以下、第1のレーダ画像を撮像したときのプラットフォームの位置を第1の電波受信地点、第2のレーダ画像を撮像したときのプラットフォームの位置を第2の電波受信地点とする。
 第1のレーダ画像の解像度と第2のレーダ画像の解像度とは、同じ解像度である。したがって、第1のレーダ画像に含まれている複数の画素の画素位置と、第2のレーダ画像に含まれている複数の画素の画素位置とは、同じ(pixel,line)で表される。
 pixelは、第1のレーダ画像及び第2のレーダ画像のそれぞれにおけるスラントレンジ方向の画素の位置を示す変数、lineは、第1のレーダ画像及び第2のレーダ画像のそれぞれにおけるアジマス方向の画素の位置を示す変数である。
 レーダ1は、第1のレーダ画像及び第2のレーダ画像を含んでいるレーダ画像群2をレーダ画像処理装置10に送信する。
 レーダ1は、第1のレーダ画像に対応する第1の撮像パラメータと、第2のレーダ画像に対応する第2の撮像パラメータとを含んでいる撮像パラメータ群3をレーダ画像処理装置10に送信する。
 レーダ画像群2は、第1のレーダ画像及び第2のレーダ画像を含んでいる画像群である。
 第1のレーダ画像の撮像及び第2のレーダ画像の撮像に用いられるそれぞれの偏波の種類は限定されないため、第1のレーダ画像及び第2のレーダ画像のそれぞれは、単偏波レーダ画像、二偏波レーダ画像又は四偏波レーダ画像のいずれであってもよい。
 第1のレーダ画像及び第2のレーダ画像のそれぞれは、レーダ1から電波が放射されたのち、観測領域に反射されて、レーダ1により受信された上記電波の強度分布を示すレーダ画像である。
 第1のレーダ画像に含まれている複数の画素及び第2のレーダ画像に含まれている複数の画素は、それぞれ複素数の画素値を有している。
 複素数の画素値は、レーダ1と観測領域に存在している散乱体との距離を示す情報のほか、レーダ1から放射された電波が散乱体に反射された際に発生する位相シフトを示す情報を含んでいる。以降特に断りが無い場合、「画素値」とは複素数の値を持つとする。
 撮像パラメータ群3は、第1の撮像パラメータ及び第2の撮像パラメータを含んでいるパラメータ群である。
 第1の撮像パラメータは、レーダ1によって第1のレーダ画像が撮像されたときのプラットフォームにおける軌道の位置情報と、センサ情報とを含んでいる。
 第2の撮像パラメータは、レーダ1によって第2のレーダ画像が撮像されたときのプラットフォームにおける軌道の位置情報と、センサ情報とを含んでいる。
 軌道の位置情報は、レーダ1によって、第1のレーダ画像又は第2のレーダ画像が撮影されたときのプラットフォームの緯度、経度及び高度を示す情報である。したがって、軌道の位置情報は、第1の電波受信地点又は第2の電波受信地点を示す情報として用いられる。
 センサ情報は、第1のレーダ画像又は第2のレーダ画像が撮像されたときのレーダ1のオフナディア角θを示す情報、レーダ1からの放射電波の波長λを示す情報及びレーダ1から観測領域までの距離の平均値Rを示す情報を含んでいる。
 レーダ画像処理装置10は、レーダ画像取得部11、位相処理部12及び画像処理部13を備えている。
 レーダ画像取得部11は、レーダ1から送信されたレーダ画像群2及び撮像パラメータ群3のそれぞれを取得する。
 レーダ画像取得部11は、レーダ画像群2を画像処理部13に出力し、撮像パラメータ群3を位相処理部12に出力する。
 位相処理部12は、レーダ画像取得部11から出力された撮像パラメータ群3と、グランドレンジ方向に対する2次元の傾き面51(図7を参照)の傾き角度αとを取得する。
 また、位相処理部12は、傾き面51と、傾き面51と平行な面である平行面52(図7を参照)との距離zを取得する。
 傾き面51及び平行面52の詳細については後述する。
 位相処理部12は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αとを用いて、傾き面51におけるx軸(第1の軸)方向の位相変化成分φ(x)を算出する処理を実施する。
 位相処理部12は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αと、距離zとを用いて、平行面52における傾き面51に対する位相ρ(z)を算出する処理を実施する。
 位相処理部12は、第1及び第2のレーダ画像に含まれている画素毎に、1つの画素に混在している複数の反射信号のそれぞれにおいて、第1の電波受信地点に対する位相と第2の電波受信地点に対する位相との位相差Δφ(x,z)を算出する処理を実施する。
 画像処理部13は、レーダ画像取得部11から出力されたレーダ画像群2と、位相処理部12から出力されたそれぞれの位相差Δφ(x,z)とを取得する。
 画像処理部13は、位相処理部12より出力されたそれぞれの位相差Δφ(x,z)から、第2のレーダ画像に含まれている複数の画素の位相の回転量exp[j・Δφ(x,z)]をそれぞれ算出する処理を実施する。
 画像処理部13は、算出したそれぞれの回転量exp[j・Δφ(x,z)]に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させる処理を実施する。
 画像処理部13は、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出する処理を実施する。
 図2は、実施の形態1によるレーダ画像処理装置10の位相処理部12を示す構成図である。
 図3は、実施の形態1によるレーダ画像処理装置10の画像処理部13を示す構成図である。
 図4は、位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。
 図2において、位相変化成分算出部21は、例えば、図4に示す位相変化成分算出回路41で実現される。
 位相変化成分算出部21は、レーダ画像取得部11から出力された撮像パラメータ群3と、傾き角度αとを取得する。
 位相変化成分算出部21は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αとを用いて、傾き面51におけるx軸方向の位相変化成分φ(x)を算出する処理を実施する。
 位相変化成分算出部21は、x軸方向の位相変化成分φ(x)を位相差算出部23に出力する。
 位相算出部22は、例えば、図4に示す位相算出回路42で実現される。
 位相算出部22は、レーダ画像取得部11から出力された撮像パラメータ群3と、傾き角度αと、距離zとを取得する。
 位相算出部22は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αと、距離zとを用いて、平行面52における傾き面51に対する位相ρ(z)を算出する処理を実施する。
 位相算出部22は、位相ρ(z)を位相差算出部23に出力する。
 位相差算出部23は、例えば、図4に示す位相差算出回路43で実現される。
 位相差算出部23は、位相変化成分φ(x)と位相ρ(z)とから、第1及び第2のレーダ画像に含まれている画素毎に、1つの画素に混在している複数の反射信号のそれぞれにおいて、位相差Δφ(x,z)を算出する処理を実施する。
 位相差Δφ(x,z)は、それぞれの反射信号において、当該反射信号における第1の電波受信地点に対する位相と、当該反射信号における第2の電波受信地点に対する位相との位相差である。
 位相差算出部23は、それぞれの位相差Δφ(x,z)を画像処理部13に出力する。
 図3において、回転量算出部31は、例えば、図4に示す回転量算出回路44で実現される。
 回転量算出部31は、位相差算出部23より出力されたそれぞれの位相差Δφ(x,z)から、第2のレーダ画像に含まれている複数の画素の位相の回転量exp[j・Δφ(x,z)]をそれぞれ算出する処理を実施する。
 回転量算出部31は、それぞれの回転量exp[j・Δφ(x,z)]を位相回転部33に出力する。
 差分算出部32は、位相回転部33及び差分算出処理部34を備えている。
 位相回転部33は、例えば、図4に示す位相回転回路45で実現される。
 位相回転部33は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第2のレーダ画像を取得する。
 位相回転部33は、回転量算出部31から出力されたそれぞれの回転量exp[j・Δφ(x,z)]に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させる処理を実施する。
 位相回転部33は、位相回転後の複数の画素を含む第2のレーダ画像を差分算出処理部34に出力する。
 差分算出処理部34は、例えば、図4に示す差分算出処理回路46で実現される。
 差分算出処理部34は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第1のレーダ画像を取得し、位相回転部33から出力された第2のレーダ画像を取得する。
 差分算出処理部34は、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分ΔS(pixel,line)を算出する処理を実施する。
 差分ΔS(pixel,line)は、不要な散乱体の反射信号が抑圧された抑圧画像の画素である。
 差分算出処理部34は、それぞれの差分Δs(pixel,line)を含む抑圧画像を外部に出力する。
 図2では、位相処理部12の構成要素である位相変化成分算出部21、位相算出部22及び位相差算出部23のそれぞれが、図4に示すような専用のハードウェアで実現されるものを想定している。
 また、図3では、画像処理部13の構成要素である回転量算出部31、位相回転部33及び差分算出処理部34のそれぞれが、図4に示すような専用のハードウェアで実現されるものを想定している。
 即ち、位相処理部12及び画像処理部13が、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45及び差分算出処理回路46で実現されるものを想定している。
 ここで、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45及び差分算出処理回路46のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 位相処理部12の構成要素及び画像処理部13の構成要素は、専用のハードウェアで実現されるものに限るものではない。位相処理部12及び画像処理部13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図5は、位相処理部12及び画像処理部13が、ソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
 位相処理部12が、ソフトウェア又はファームウェアなどで実現される場合、位相変化成分算出部21、位相算出部22及び位相差算出部23の処理手順をコンピュータに実行させるためのプログラムがメモリ61に格納される。
 また、画像処理部13が、ソフトウェア又はファームウェアなどで実現される場合、回転量算出部31、位相回転部33及び差分算出処理部34の処理手順をコンピュータに実行させるためのプログラムがメモリ61に格納される。
 そして、コンピュータのプロセッサ62がメモリ61に格納されているプログラムを実行する。
 また、図4では、位相処理部12の構成要素及び画像処理部13の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図5では、位相処理部12及び画像処理部13が、ソフトウェア又はファームウェアなどで実現される例を示している。
 しかし、これに限るものではなく、例えば、位相処理部12における一部の構成要素及び画像処理部13における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェア又はファームウェアなどで実現されるものであってもよい。
 次に、図1に示すレーダ画像処理装置10の動作について説明する。
 レーダ1は、第1のレーダ画像及び第2のレーダ画像を含んでいるレーダ画像群2と、第1の撮像パラメータ及び第2の撮像パラメータを含んでいる撮像パラメータ群3とをレーダ画像処理装置10に送信する。
 レーダ画像取得部11は、レーダ1から送信されたレーダ画像群2及び撮像パラメータ群3のそれぞれを取得する。
 レーダ画像取得部11は、レーダ画像群2を画像処理部13に出力し、撮像パラメータ群3を位相処理部12に出力する。
 レーダ画像(第1のレーダ画像、第2のレーダ画像)に含まれている画素の画素値は、複素数であり、以下の式(1)のように表される。
Figure JPOXMLDOC01-appb-I000001
 式(1)において、Av(pixel,line)は、画素位置が(pixel,line)の画素の振幅である。
 Ψ(pixel,line)は、画素位置が(pixel,line)の画素の位相(偏角)である。
 jは、虚数単位を示す記号である。
 位相処理部12は、位相差Δφ(x,z)を算出する処理を実施する。
 図6は、位相処理部12の処理内容を示すフローチャートである。
 以下、図6を参照しながら、位相処理部12の処理内容を具体的に説明する。
 位相変化成分算出部21は、レーダ画像取得部11から出力された撮像パラメータ群3と、傾き角度αとを取得する(図6のステップST1)。
 位相算出部22は、レーダ画像取得部11から出力された撮像パラメータ群3と、傾き角度αと、距離zとを取得する(図6のステップST2)。
 傾き角度αは、例えば、ユーザによって事前に設定されるパラメータであり、図7のように表される。
 距離zは、例えば、ユーザによって事前に設定されるパラメータであり、図7のように表される。
 傾き角度α及び距離zのそれぞれは、例えば、ユーザによる手動の操作で位相算出部22に与えられるようにしてもよいし、図示せぬ外部機器によって位相算出部22に与えられるようにしてもよい。
 図7は、傾き面51、平行面52及び撮像パラメータを示す説明図である。
 図7において、傾き面51は、第1のレーダ画像及び第2のレーダ画像のそれぞれに含まれている共通の2次元面である。
 傾き面51の第1の軸であるx軸の方向は、グランドレンジ方向から傾き角度αだけ傾いている方向であり、傾き面51の第2の軸の方向は、アジマス方向(図7において、紙面奥行き方向)である。
 平行面52は、傾き面51と平行な面であり、傾き面51との距離がzである。
 傾き面51が、例えば、水平な地面に垂直に建てられている建物の水平屋根である場合、傾き角度αとして、0度が設定される。
 傾き面51が、例えば、水平な地面に垂直に建てられている建物の壁面である場合、傾き角度αとして、90度が設定される。
 Pは、第1の電波受信地点を示し、Pは、第2の電波受信地点を示している。
 第1の電波受信地点Pは、第1のレーダ画像が撮像されたときのプラットフォームの軌道の中心位置であり、第2の電波受信地点Pは、第2のレーダ画像が撮像されたときのプラットフォームの軌道の中心位置である。
 B1,2は、第1の電波受信地点Pと第2の電波受信地点Pとの距離のうち、レーダ1から放射される電波の方向(以下、「スラントレンジ方向」と称する。)に対して垂直な方向の距離成分である。
 θは、オフナディア角であり、オフナディア角は、プラットフォームの鉛直直下方向と、スラントレンジ方向とのなす角である。
 Rは、第1の電波受信地点P及び第2の電波受信地点Pのそれぞれと、観測領域との距離の平均値である。
 距離成分B1,2、オフナディア角θ及び距離の平均値Rは、撮像パラメータに含まれている情報である。
 Swは、観測対象を撮像している第1のレーダ画像の範囲及び第2のレーダ画像の範囲である。
 第1のレーダ画像の範囲Swと第2のレーダ画像の範囲Swとは、同じ範囲である。
 ここでは、第1の電波受信地点P及び第2の電波受信地点Pのそれぞれと観測領域との距離が長いため、位相変化成分算出部21は、オフナディア角θ及び距離の平均値Rのそれぞれが変化しないものとして取り扱う。
 即ち、第1の撮像パラメータに含まれているオフナディア角θと、第2の撮像パラメータに含まれているオフナディア角θとが同じ値である。
 また、第1の撮像パラメータに含まれている距離の平均値Rと、第2の撮像パラメータに含まれている距離の平均値Rとが同じ値である。
 また、第1のレーダ画像に含まれている複数の画素のうち、画素位置が(pixel,line)の画素と、第2のレーダ画像に含まれている複数の画素のうち、画素位置が(pixel,line)の画素とは、同じ画素位置の画素である。
 図8は、スラントレンジ方向の画素のスペーシングΔslと、レンジ画像(第1のレーダ画像、第2のレーダ画像)の範囲Swと、レーダ画像の中心位置に対応するスラントレンジ方向の位置から観測領域までの距離slとの関係を示す説明図である。
 図8において、レーダ画像のニアレンジに対応するスラントレンジ方向の位置から、レーダ画像の中心位置に対応するスラントレンジ方向の位置までの距離は、(Sw/2)・sinθである。
 したがって、距離slは、以下の式(2)のように表される。
Figure JPOXMLDOC01-appb-I000002
 スペーシングΔsl及びレーダ画像の範囲Swのそれぞれは、撮像パラメータに含まれている情報である。
 また、レーダ画像の中心位置から、傾き面51におけるx軸方向の位置xと、距離slとの関係は、以下の式(3)のように表される。
Figure JPOXMLDOC01-appb-I000003
 式(2)と式(3)より、以下の式(4)が成立する。
Figure JPOXMLDOC01-appb-I000004
 位相変化成分算出部21は、レーダ画像におけるスラントレンジ方向の画素の位置pixelを式(4)に代入することで、位置pixelに対応する傾き面51での位置xを算出する。
 式(4)に代入する位置pixelにある画素には、複数の散乱体の反射信号が混在している。
 式(4)に代入する位置pixelは、例えば、ユーザによる手動の操作で位相変化成分算出部21に与えられるようにしてもよいし、図示せぬ外部機器によって位相変化成分算出部21に与えられるようにしてもよい。
 位相変化成分算出部21は、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、観測パスパラメータpとを用いて、傾き面51において、x軸方向の位置xでの位相変化成分φ(x)を算出する(図6のステップST3)。
 観測パスパラメータpは、レーダ画像撮像時の観測パスが、リピートパスであるのか、シングルパスであるのかを区別するパラメータであり、リピートパスの場合、p=2、シングルパスの場合、p=1となる。観測パスパラメータpは、例えば、ユーザによる手動の操作によって、位相変化成分算出部21及び位相算出部22に与えられるようにしてもよいし、図示せぬ外部機器によって、位相変化成分算出部21及び位相算出部22に与えられるようにしてもよい。
 以下の式(5)は、位相変化成分算出部21が用いる位相変化成分φ(x)の算出式である。
Figure JPOXMLDOC01-appb-I000005
 位相変化成分算出部21は、x軸方向の位相変化成分φ(x)を位相差算出部23に出力する。
 位相算出部22は、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、距離zと、観測パスパラメータpとを用いて、平行面52における傾き面51に対する位相ρ(z)を算出する(図6のステップST4)。
 以下の式(6)は、位相算出部22が用いる位相ρ(z)の算出式である。

Figure JPOXMLDOC01-appb-I000006

 位相算出部22は、位相ρ(z)を位相差算出部23に出力する。
 位相差算出部23は、位相変化成分φ(x)と位相ρ(z)とを用いて、第1及び第2のレーダ画像に含まれている画素毎に、1つの画素に混在している複数の反射信号のそれぞれにおいて、位相差Δφ(x,z)を算出する(図6のステップST5)。
 位相差Δφ(x,z)は、それぞれの反射信号において、当該反射信号における第1の電波受信地点Pに対する位相と、当該反射信号における第2の電波受信地点Pに対する位相との位相差である。
 以下の式(7)は、位相差算出部23が用いる位相差Δφ(x,z)の算出式である。
Figure JPOXMLDOC01-appb-I000007
 位相差算出部23は、それぞれの位相差Δφ(x,z)を画像処理部13に出力する。
 画像処理部13は、抑圧画像を得る処理を実施する。
 図9は、画像処理部13の処理内容を示すフローチャートである。
 以下、図9を参照しながら、画像処理部13の処理内容を具体的に説明する。
 回転量算出部31は、位相差算出部23から出力されたそれぞれの位相差Δφ(x,z)を取得する。
 回転量算出部31は、それぞれの位相差Δφ(x,z)から、第2のレーダ画像に含まれている複数の画素の位相の回転量exp[j・Δφ(x,z)]をそれぞれ算出する(図9のステップST11)。
 回転量算出部31は、それぞれの回転量exp[j・Δφ(x,z)]を位相回転部33に出力する。
 位相回転部33は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第2のレーダ画像を取得する。
 位相回転部33は、回転量算出部31から出力されたそれぞれの回転量exp[j・Δφ(x,z)]に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させる処理を実施する(図9のステップST12)。
 以下の式(8)は、位相回転部33による位相の回転処理を示す式である。
Figure JPOXMLDOC01-appb-I000008
 式(8)において、S(pixel,line)は、レーダ画像取得部11から出力された第2のレーダ画像に含まれている画素の画素値、S’(pixel,line)は、位相回転部33によって、画素の位相が回転された第2のレーダ画像に含まれている画素の画素値である。
 位相回転部33は、位相回転後の複数の画素を含む第2のレーダ画像を差分算出処理部34に出力する。
 差分算出処理部34は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第1のレーダ画像を取得し、位相回転部33から出力された位相回転後の複数の画素を含む第2のレーダ画像を取得する。
 差分算出処理部34は、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分ΔS(pixel,line)を算出する(図9のステップST13)。
 以下の式(9)は、差分算出処理部34が用いる差分ΔS(pixel,line)の算出式である。
Figure JPOXMLDOC01-appb-I000009
 式(9)において、S(pixel,line)は、第1のレーダ画像に含まれている画素の画素値である。
 差分算出処理部34は、それぞれの差分Δs(pixel,line)を含む抑圧画像を外部に出力する。
 ここで、図10は、位相回転部33によって、第2のレーダ画像に含まれている画素の位相が回転されない場合の、1つの画素に混在している反射信号の抑圧を示す説明図である。
 図10において、“1”が付されている反射信号については、当該反射信号を散乱している散乱体から第1の電波受信地点Pまでの距離と、当該反射信号を散乱している散乱体から第2の電波受信地点Pまでの距離とが等しい。したがって、“1”が付されている反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零である。
 よって、“1”が付されている反射信号についての差分ΔS(pixel,line)が零になるため、“1”が付されている反射信号は、抑圧される。
 “2”が付されている反射信号については、当該反射信号を散乱している散乱体から第1の電波受信地点Pまでの距離と、当該反射信号を散乱している散乱体から第2の電波受信地点Pまでの距離とが等しくない。したがって、“2”が付されている反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零以外である。
 よって、“2”が付されている反射信号についての差分ΔS(pixel,line)が零以外になるため、“2”が付されている反射信号は、抑圧されない。
 “3”が付されている反射信号についても、当該反射信号を散乱している散乱体から第1の電波受信地点Pまでの距離と、当該反射信号を散乱している散乱体から第2の電波受信地点Pまでの距離とが等しくない。したがって、“3”が付されている反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零以外である。
 よって、“3”が付されている反射信号についての差分ΔS(pixel,line)が零以外になるため、“3”が付されている反射信号は、抑圧されない。
 図11は、位相回転部33によって、第2のレーダ画像に含まれている画素の位相が回転された場合の、1つの画素に混在している反射信号の抑圧を示す説明図である。
  “1”が付されている反射信号については、図10に示すように、当該反射信号を散乱している散乱体から第1の電波受信地点Pまでの距離と、当該反射信号を散乱している散乱体から第2の電波受信地点Pまでの距離とが等しい。したがって、“1”が付されている反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零であり、回転量算出部31によって算出される位相の回転量exp[j・Δφ(x,z)]は零である。
 “1”が付されている反射信号については、位相の回転量exp[j・Δφ(x,z)]が零であるであるため、図10及び図11に示すように、位相回転部33によって、回転されない。したがって、“1”が付されている反射信号については、位相差Δφ(x,z)が零のままであるため、差分ΔS(pixel,line)が零になり、“1”が付されている反射信号は、抑圧される。
 “2”が付されている反射信号については、図10に示すように、当該反射信号を散乱している散乱体から第1の電波受信地点Pまでの距離と、当該反射信号を散乱している散乱体から第2の電波受信地点Pまでの距離とが等しくない。したがって、“2”が付されている反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零以外である。よって、回転量算出部31によって算出される位相の回転量exp[j・Δφ(x,z)]は零以外である。
 “2”が付されている位相回転後の反射信号は、図11に示すように、位相回転部33によって、回転量exp[j・Δφ(x,z)]だけ回転されても、第1の電波受信地点Pまでの距離と、第2の電波受信地点Pまでの距離とが等しくない。したがって、“2”が付されている位相回転後の反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零以外である。
 よって、“2”が付されている位相回転後の反射信号についての差分ΔS(pixel,line)が零以外になるため、“2”が付されている位相回転後の反射信号は、抑圧されない。
 “3”が付されている反射信号については、図10に示すように、当該反射信号を散乱している散乱体から第1の電波受信地点Pまでの距離と、当該反射信号を散乱している散乱体から第2の電波受信地点Pまでの距離とが等しくない。したがって、“3”が付されている反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零以外である。よって、回転量算出部31によって算出される位相の回転量exp[j・Δφ(x,z)]は零以外である。
 “3”が付されている反射信号については、図11に示すように、位相回転部33によって、回転量exp[j・Δφ(x,z)]だけ回転されることで、第1の電波受信地点Pまでの距離と、第2の電波受信地点Pまでの距離とが等しくなっている。したがって、“3”が付されている位相回転後の反射信号については、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)が零である。
 よって、“3”が付されている位相回転後の反射信号についての差分ΔS(pixel,line)が零になるため、“3”が付されている位相回転後の反射信号は、抑圧される。
 以上の実施の形態1は、1つの画素に混在している複数の反射信号のそれぞれにおいて、互いに異なるそれぞれの電波受信地点に対する位相の差である位相差を算出する位相差算出部23と、それぞれの位相差から、第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出する回転量算出部31とを設け、差分算出部32が、それぞれの回転量に基づいて、第2のレーダ画像に含まれている複数の画素の位相を回転させ、第1のレーダ画像に含まれている複数の画素と、第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出するように、レーダ画像処理装置10を構成した。したがって、レーダ画像処理装置10は、互いに異なるそれぞれの電波受信地点に対する位相の差が零でない反射信号についても抑圧することができる。
実施の形態2.
 実施の形態1のレーダ画像処理装置10は、第1のレーダ画像及び第2のレーダ画像を含んでいるレーダ画像群2を取得して、抑圧画像を出力する例を示している。
 実施の形態2では、互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている2つ以上のレーダ画像を含んでいるレーダ画像群2を取得して、抑圧画像を出力するレーダ画像処理装置10について説明する。
 実施の形態2のレーダ画像処理装置10では、位相処理部12及び画像処理部13のそれぞれが、レーダ画像群2に含まれている2つのレーダ画像の組み合わせ毎に、処理を実施する。このとき、それぞれの組み合わせに含まれる一方のレーダ画像を第1のレーダ画像、それぞれの組み合わせに含まれる他方のレーダ画像を第2のレーダ画像とする。
 具体的には、位相変化成分算出部21、位相算出部22及び位相差算出部23は、2つのレーダ画像の全ての組み合わせiについて、位相差Δφ(x,z)の算出処理が終了するまで、位相差Δφ(x,z)の算出処理を繰り返し実施する。iは、2つのレーダ画像の組み合わせを示す変数である。
 回転量算出部31、位相回転部33及び差分算出処理部34は、2つのレーダ画像の全ての組み合わせiについて、差分ΔS(pixel,line)の算出処理が終了するまで、差分ΔS(pixel,line)の算出処理を繰り返し実施する。
 実施の形態2におけるレーダ画像処理装置10の構成は、実施の形態1のレーダ画像処理装置10と同様に、図1である。
 実施の形態2における位相処理部12の構成は、実施の形態1の位相処理部12と同様に、図2である。
 ただし、レーダ画像群2は、2つ以上のレーダ画像を含んでおり、撮像パラメータ群3は、2つ以上の撮像パラメータを含んでいる。
 図12は、実施の形態2によるレーダ画像処理装置10の画像処理部13を示す構成図である。
 図13は、位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。
 図12及び図13において、図3及び図4と同一符号は同一又は相当部分を示すので説明を省略する。
 画像合成部35は、例えば、図13に示す画像合成回路47で実現される。
 画像合成部35は、抑圧画像の生成に用いる重みパラメータwを取得する。
 画像合成部35は、重みパラメータwを用いて、差分算出処理部34により組み合わせi毎に算出されたそれぞれの差分のうち、それぞれ画素位置が対応している差分ΔS(pixel,line)同士を合成する処理を実施する。
 画像合成部35は、それぞれの合成後の差分Ssup(pixel,line)を含む抑圧画像を外部に出力する。
 図2では、位相処理部12の構成要素である位相変化成分算出部21、位相算出部22及び位相差算出部23のそれぞれが、図13に示すような専用のハードウェアで実現されるものを想定している。
 また、図12では、画像処理部13の構成要素である回転量算出部31、位相回転部33、差分算出処理部34及び画像合成部35のそれぞれが、図13に示すような専用のハードウェアで実現されるものを想定している。
 即ち、位相処理部12及び画像処理部13が、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45、差分算出処理回路46及び画像合成回路47で実現されるものを想定している。
 ここで、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45、差分算出処理回路46及び画像合成回路47のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
 位相処理部12の構成要素及び画像処理部13の構成要素は、専用のハードウェアで実現されるものに限るものではない。位相処理部12及び画像処理部13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 位相処理部12が、ソフトウェア又はファームウェアなどで実現される場合、位相変化成分算出部21、位相算出部22及び位相差算出部23の処理手順をコンピュータに実行させるためのプログラムが図5に示すメモリ61に格納される。
 また、画像処理部13が、ソフトウェア又はファームウェアなどで実現される場合、回転量算出部31、位相回転部33、差分算出処理部34及び画像合成部35の処理手順をコンピュータに実行させるためのプログラムがメモリ61に格納される。
 そして、コンピュータのプロセッサ62がメモリ61に格納されているプログラムを実行する。
 次に、レーダ画像処理装置10の動作について説明する。
 位相処理部12は、レーダ画像群2に含まれている2つ以上のレーダ画像のうち、2つのレーダ画像の組み合わせi毎に、位相差Δφ(x,z)の算出処理を実施する。
 位相変化成分算出部21は、レーダ画像取得部11から出力された撮像パラメータ群3の中から、2つのレーダ画像に対応する2つの撮像パラメータの組み合わせを取得する。
 ここでは、組み合わせiに含まれる一方のレーダ画像が第1のレーダ画像、組み合わせiに含まれる他方のレーダ画像が第2のレーダ画像であるとする。
 或る組み合わせに含まれる第1のレーダ画像に係る電波受信地点と、他の組み合わせに含まれる第1のレーダ画像に係る電波受信地点とは、互いに異なる地点である。しかし、ここでは、説明の便宜上、どちらの電波受信地点も、第1の電波受信地点Pであるとする。
 また、或る組み合わせに含まれる第2のレーダ画像に係る電波受信地点と、他の組み合わせに含まれる第2のレーダ画像に係る電波受信地点とは、互いに異なる地点である。しかし、ここでは、説明の便宜上、どちらの電波受信地点も、第2の電波受信地点Pであるとする。
 第1のレーダ画像に対応する撮像パラメータが第1の撮像パラメータ、第2のレーダ画像に対応する撮像パラメータが第2の撮像パラメータであるとする。
 また、位相変化成分算出部21は、傾き角度αを取得する。
 位相算出部22は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αと、距離zとを取得する。
 位相変化成分算出部21は、レーダ画像におけるスラントレンジ方向の画素の位置pixelを式(4)に代入することで、位置pixelに対応する傾き面51での位置xを算出する。
 式(4)に代入する位置pixelにある画素は、複数の散乱体の反射信号が混在している画素である。
 位相変化成分算出部21は、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、観測パスパラメータpとを用いて、傾き面51におけるx軸方向の位相変化成分φ(x)を算出する。
 以下の式(10)は、位相変化成分算出部21が用いる位相変化成分φ(x)の算出式である。
Figure JPOXMLDOC01-appb-I000010
 位相変化成分算出部21は、x軸方向の位相変化成分φ(x)を位相差算出部23に出力する。
 位相算出部22は、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、距離zと、観測パスパラメータpとを用いて、平行面52における傾き面51に対する位相ρ(z)を算出する。位相ρ(z)は、どの組み合わせであっても同じである。
 以下の式(11)は、位相算出部22が用いる位相ρ(z)の算出式である。

Figure JPOXMLDOC01-appb-I000011
 位相算出部22は、位相ρ(z)を位相差算出部23に出力する。
 位相差算出部23は、組み合わせi毎に、位相変化成分φ(x)と位相ρ(z)とを用いて、1つの画素に混在している複数の反射信号のそれぞれにおいて、第1の電波受信地点Pに対する位相と第2の電波受信地点Pに対する位相との位相差Δφ(x,z)を算出する。
 以下の式(12)は、位相差算出部23が用いる位相差Δφ(x,z)の算出式である。
Figure JPOXMLDOC01-appb-I000012
 位相差算出部23は、それぞれの位相差Δφ(x,z)を画像処理部13に出力する。
 回転量算出部31は、位相差算出部23から出力されたそれぞれの位相差Δφ(x,z)を取得する。
 回転量算出部31は、組み合わせi毎に、それぞれの位相差Δφ(x,z)から、第2のレーダ画像に含まれている複数の画素の位相の回転量exp[j・Δφ(x,z)]をそれぞれ算出する。
 回転量算出部31は、それぞれの回転量exp[j・Δφ(x,z)]を位相回転部33に出力する。
 位相回転部33は、レーダ画像取得部11から出力されたレーダ画像群2の中から、組み合わせiに含まれている第2のレーダ画像を取得する。
 位相回転部33は、回転量算出部31から出力されたそれぞれの回転量exp[j・Δφ(x,z)]に基づいて、取得した第2のレーダ画像に含まれている複数の画素の位相を回転させる処理を実施する。
 以下の式(13)は、位相回転部33による位相の回転処理を示す式である。
Figure JPOXMLDOC01-appb-I000013
 位相回転部33は、位相回転後の複数の画素を含む第2のレーダ画像を差分算出処理部34に出力する。
 差分算出処理部34は、レーダ画像取得部11から出力されたレーダ画像群2の中から、組み合わせiに含まれている第1のレーダ画像を取得し、位相回転部33から出力された位相回転後の複数の画素を含む第2のレーダ画像を取得する。
 差分算出処理部34は、取得した第1のレーダ画像に含まれている複数の画素と、取得した第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分ΔS(pixel,line)を算出する。
 以下の式(14)は、差分算出処理部34が用いる差分ΔS(pixel,line)の算出式である。
Figure JPOXMLDOC01-appb-I000014
 差分算出処理部34は、それぞれの差分ΔS(pixel,line)を画像合成部35に出力する。
 回転量算出部31、位相回転部33及び差分算出処理部34は、2つのレーダ画像の全ての組み合わせiについて、差分ΔS(pixel,line)の算出処理が終了するまで、差分ΔS(pixel,line)の算出処理を繰り返し実施する。
 画像合成部35は、抑圧画像の生成に用いる重みパラメータwを取得する。
 重みパラメータwは、例えば、ユーザによる手動の操作で画像合成部35に与えられるようにしてもよいし、図示せぬ外部機器によって画像合成部35に与えられるようにしてもよい。
 画像合成部35は、重みパラメータwを用いて、差分算出処理部34により組み合わせi毎に算出されたそれぞれの差分のうち、それぞれ画素位置が対応している差分ΔS(pixel,line)同士を合成する。
 画像合成部35は、それぞれの合成後の差分Ssup(pixel,line)を含む抑圧画像を外部に出力する。
 全ての組み合わせの差分ΔS(pixel,line)同士を合成する方法として、相加平均を求める方法と、相乗平均を求める方法とがある。
 相加平均を求める方法を用いる場合、画像合成部35は、以下の式(15)によって、全ての組み合わせの差分ΔS(pixel,line)同士を合成する。
Figure JPOXMLDOC01-appb-I000015
 相乗平均を求める方法を用いる場合、画像合成部35は、以下の式(16)によって、全ての組み合わせの差分ΔS(pixel,line)同士を合成する。
Figure JPOXMLDOC01-appb-I000016
 式(15)及び式(16)において、Nは、2つのレーダ画像の組み合わせ数である。
 ここで、図14は、実施の形態1のレーダ画像処理装置10のように、レーダ画像群2に含まれているレーダ画像が2つだけである場合の、1つの画素に混在している複数の反射信号を示す説明図である。
 レーダ画像群2に含まれているレーダ画像が2つだけの場合、図14に示すように、差分算出処理部34が差分ΔS(pixel,line)の算出処理を実施することで、複数のnull点が形成されることがある。
 図14の例では、“1”が付されている反射信号、“2”が付されている反射信号及び3”が付されている反射信号の全てにnull点が形成されている。
 したがって、図14の例では、“1”が付されている反射信号、“2”が付されている反射信号及び“3”が付されている反射信号の全てが抑圧されてしまう。
 図15は、実施の形態2のレーダ画像処理装置10のように、レーダ画像群2に含まれているレーダ画像が2つ以上である場合の、1つの画素に混在している複数の反射信号を示す説明図である。
 図15では、レーダ画像群2に含まれているレーダ画像がM個であり、Pは、第Mのレーダ画像が撮像されたときのプラットフォームの位置である。
 レーダ画像群2に含まれているレーダ画像が2つ以上であり、画像合成部35が、それぞれ画素位置が対応している差分ΔS(pixel,line)同士を合成することで、形成されるnull点の数が、レーダ画像が2つの場合よりも減少する。
 図15の例では、形成されるnull点の数が1つであり、“2”が付されている反射信号には、null点が形成されていない。
 以上の実施の形態2は、差分算出処理部34により組み合わせi毎に算出されたそれぞれの差分のうち、それぞれ画素位置が対応している差分ΔS(pixel,line)同士を合成する画像合成部35を備えるように、レーダ画像処理装置10を構成した。したがって、レーダ画像処理装置10は、形成されるnull点の数を減らして、残す必要がある反射信号の抑圧を防止することができる。
実施の形態3.
 実施の形態2のレーダ画像処理装置10は、合成後の差分Ssup(pixel,line)を抑圧画像として出力する例を示している。
 実施の形態3では、画像合成部35による合成後の差分Ssup(pixel,line)から、1つの画素に混在している複数の反射信号が抽出された画像を算出するレーダ画像処理装置10について説明する。
 実施の形態3におけるレーダ画像処理装置10の構成は、実施の形態1,2のレーダ画像処理装置10と同様に、図1である。
 実施の形態3における位相処理部12の構成は、実施の形態1,2の位相処理部12と同様に、図2である。
 ただし、レーダ画像群2は、2つ以上のレーダ画像を含んでおり、撮像パラメータ群3は、2つ以上の撮像パラメータを含んでいる。
 図16は、実施の形態3によるレーダ画像処理装置10の画像処理部13を示す構成図である。
 図17は、位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。
 図16及び図17において、図3、図4、図12及び図13と同一符号は同一又は相当部分を示すので説明を省略する。
 抽出画像算出部36は、例えば、図17に示す抽出画像算出回路48で実現される。
 抽出画像算出部36は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第1のレーダ画像を取得し、画像合成部35から出力されたそれぞれの合成後の差分Ssup(pixel,line)を取得する。
 抽出画像算出部36は、第1のレーダ画像に含まれている複数の画素の画素値と、それぞれの合成後の差分Ssup(pixel,line)とから、1つの画素に混在している複数の反射信号が抽出された画像を算出する処理を実施する。
 図2では、位相処理部12の構成要素である位相変化成分算出部21、位相算出部22及び位相差算出部23のそれぞれが、図17に示すような専用のハードウェアで実現されるものを想定している。
 また、図16では、画像処理部13の構成要素である回転量算出部31、位相回転部33、差分算出処理部34、画像合成部35及び抽出画像算出部36のそれぞれが、図17に示すような専用のハードウェアで実現されるものを想定している。
 即ち、位相処理部12及び画像処理部13が、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45、差分算出処理回路46、画像合成回路47及び抽出画像算出回路48で実現されるものを想定している。
 位相処理部12の構成要素及び画像処理部13の構成要素は、専用のハードウェアで実現されるものに限るものではない。位相処理部12及び画像処理部13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 次に、レーダ画像処理装置10の動作について説明する。
 ただし、レーダ画像処理装置10が、抽出画像算出部36を備えている点以外は、実施の形態2のレーダ画像処理装置10と同様であるため、ここでは、抽出画像算出部36の動作だけを説明する。
 抽出画像算出部36は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第1のレーダ画像を取得し、画像合成部35から出力されたそれぞれの合成後の差分Ssup(pixel,line)を取得する。
 抽出画像算出部36は、第1のレーダ画像に含まれている複数の画素の画素値と、それぞれの合成後の差分Ssup(pixel,line)とから、複数の反射信号が混在している画素の画素値Sext(pixel,line)を算出する。
 以下の式(17)は、抽出画像算出部36が用いる画素値Sext(pixel,line)の算出式である。
Figure JPOXMLDOC01-appb-I000017
 抽出画像算出部36は、1つの画素に混在している複数の反射信号が抽出された画像として、画素値Sext(pixel,line)を有する画素を含む画像を外部に出力する。
 以上の実施の形態3は、第1のレーダ画像に含まれている複数の画素の画素値と、それぞれの合成後の差分Ssup(pixel,line)とから、1つの画素に混在している複数の反射信号が抽出された画像を算出する抽出画像算出部36を備えるように、レーダ画像処理装置10を構成した。したがって、レーダ画像処理装置10は、反射信号が抑圧された抑圧画像だけでなく、反射信号が抽出された抽出画像を出力することができる。
実施の形態4.
 実施の形態4では、第1の組み合わせC1におけるそれぞれ画素位置での差分ΔSC1(pixel,line)と、第2の組み合わせC2におけるそれぞれ画素位置での差分ΔSC2(pixel,line)とから、それぞれの画素位置での位相を干渉位相ΔγC1,C2(pixel,line)として算出するレーダ画像処理装置10について説明する。
 実施の形態4におけるレーダ画像処理装置10の構成は、実施の形態1~3のレーダ画像処理装置10と同様に、図1である。
 実施の形態4における位相処理部12の構成は、実施の形態1~3の位相処理部12と同様に、図2である。
 ただし、レーダ画像群2は、互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている3つ以上のレーダ画像を含んでおり、撮像パラメータ群3は、3つ以上の撮像パラメータを含んでいる。
 図18は、実施の形態4によるレーダ画像処理装置10の画像処理部13を示す構成図である。
 図19は、位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。
 図18及び図19において、図3、図4、図12、図13、図16及び図17と同一符号は同一又は相当部分を示すので説明を省略する。
 実施の形態4のレーダ画像処理装置10では、レーダ画像群2に含まれているいずれか2つのレーダ画像の組み合わせを第1の組み合わせC1とする。また、レーダ画像群2に含まれているいずれか2つのレーダ画像の組み合わせを第2の組み合わせC2とする。
 第1の組み合わせC1に含まれる2つのレーダ画像と、第2の組み合わせC2に含まれる2つのレーダ画像とは、異なっている。ただし、第1の組み合わせC1に含まれる2つのレーダ画像の中の1つのレーダ画像は、第2の組み合わせC2に含まれる2つのレーダ画像のいずれか1つと同じであってもよい。
 実施の形態4のレーダ画像処理装置10では、差分算出処理部34が、第1の組み合わせC1におけるそれぞれの画素位置での差分ΔSC1(pixel,line)と、第2の組み合わせC2におけるそれぞれの画素位置での差分ΔSC2(pixel,line)とを算出する。
 干渉位相算出部37は、例えば、図19に示す干渉位相算出回路49で実現される。
 干渉位相算出部37は、差分算出処理部14により第1の組み合わせC1について算出されたそれぞれの画素位置での差分ΔSC1(pixel,line)と、第2の組み合わせC2について算出されたそれぞれの画素位置での差分ΔSC2(pixel,line)とを取得する。
 干渉位相算出部37は、差分ΔSC1(pixel,line)と差分ΔSC2(pixel,line)とから、それぞれの画素位置での位相を干渉位相ΔγC1,C2(pixel,line)として算出する。
 図2では、位相処理部12の構成要素である位相変化成分算出部21、位相算出部22及び位相差算出部23のそれぞれが、図19に示すような専用のハードウェアで実現されるものを想定している。
 また、図18では、画像処理部13の構成要素である回転量算出部31、位相回転部33、差分算出処理部34及び干渉位相算出部37のそれぞれが、図19に示すような専用のハードウェアで実現されるものを想定している。
 即ち、位相処理部12及び画像処理部13が、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45、差分算出処理回路46及び干渉位相算出回路49で実現されるものを想定している。
 位相処理部12の構成要素及び画像処理部13の構成要素は、専用のハードウェアで実現されるものに限るものではない。位相処理部12及び画像処理部13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 次に、レーダ画像処理装置10の動作について説明する。
 位相処理部12は、第1の組み合わせC1についての位相差ΔφC1(x,z)の算出処理を実施し、第2の組み合わせC2についての位相差ΔφC2(x,z)の算出処理を実施する。
 以下、位相処理部12による位相差の算出処理を具体的に説明する。
 まず、位相変化成分算出部21は、レーダ画像取得部11から出力された撮像パラメータ群3の中から、第1の組み合わせC1に含まれる2つのレーダ画像に対応する2つの撮像パラメータの組み合わせを取得する。
 ここでは、第1の組み合わせC1に含まれる一方のレーダ画像が第1のレーダ画像、第1の組み合わせC1に含まれる他方のレーダ画像が第2のレーダ画像であるとする。
 また、第1のレーダ画像に対応する撮像パラメータが第1の撮像パラメータ、第2のレーダ画像に対応する撮像パラメータが第2の撮像パラメータであるとする。
 また、位相変化成分算出部21は、傾き角度αを取得する。
 位相算出部22は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αと、距離zとを取得する。
 位相変化成分算出部21は、レーダ画像におけるスラントレンジ方向の画素の位置pixelを式(4)に代入することで、位置pixelに対応する傾き面51での位置xを算出する。
 位相変化成分算出部21は、第1の組み合わせC1について、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、観測パスパラメータpとを用いて、傾き面51におけるx軸方向の位相変化成分φC1(x)を算出する。
 以下の式(18)は、位相変化成分算出部21が用いる位相変化成分φC1(x)の算出式である。
Figure JPOXMLDOC01-appb-I000018
 位相変化成分算出部21は、x軸方向の位相変化成分φC1(x)を位相差算出部23に出力する。
 次に、位相変化成分算出部21は、レーダ画像取得部11から出力された撮像パラメータ群3の中から、第2の組み合わせC2に含まれる2つのレーダ画像に対応する2つの撮像パラメータの組み合わせを取得する。
 ここでは、第2の組み合わせC2に含まれる一方のレーダ画像が第1のレーダ画像、第2の組み合わせC2に含まれる他方のレーダ画像が第2のレーダ画像であるとする。
 また、第1のレーダ画像に対応する撮像パラメータが第1の撮像パラメータ、第2のレーダ画像に対応する撮像パラメータが第2の撮像パラメータであるとする。
 また、位相変化成分算出部21は、傾き角度αを取得する。
 位相算出部22は、第1の撮像パラメータと、第2の撮像パラメータと、傾き角度αと、距離zとを取得する。
 位相変化成分算出部21は、レーダ画像におけるスラントレンジ方向の画素の位置pixelを式(4)に代入することで、位置pixelに対応する傾き面51での位置xを算出する。
 位相変化成分算出部21は、第2の組み合わせC2について、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、観測パスパラメータpとを用いて、傾き面51におけるx軸方向の位相変化成分φC2(x)を算出する。
 以下の式(19)は、位相変化成分算出部21が用いる位相変化成分φC2(x)の算出式である。
Figure JPOXMLDOC01-appb-I000019
 位相変化成分算出部21は、x軸方向の位相変化成分φC2(x)を位相差算出部23に出力する。
 位相算出部22は、距離成分B1,2と、オフナディア角θと、距離の平均値Rと、放射電波の波長λと、傾き角度αと、距離zと、観測パスパラメータpとを用いて、平行面52における傾き面51に対する位相ρC1(z),ρC2(z)を算出する。
 以下の式(20)は、位相算出部22が用いる位相ρC1(z),ρC2(z)の算出式である。
Figure JPOXMLDOC01-appb-I000020
 位相算出部22は、位相ρC1(z),ρC2(z)を位相差算出部23に出力する。
 位相差算出部23は、位相変化成分算出部21から出力されたそれぞれの位相変化成分φC2(x),φC1(x)を取得し、位相算出部22から出力されたそれぞれの位相ρC1(z),ρC2(z)を取得する。
 位相差算出部23は、第1の組み合わせC1について、位相変化成分φC1(x)と位相ρC1(z)とを用いて、1つの画素に混在している複数の反射信号のそれぞれにおいて、位相差ΔφC1(x,z)を算出する。
 以下の式(21)は、位相差算出部23が用いる位相差ΔφC1(x,z)の算出式である。
Figure JPOXMLDOC01-appb-I000021
 位相差算出部23は、それぞれの位相差ΔφC1(x,z)を画像処理部13に出力する。
 次に、位相差算出部23は、第2の組み合わせC2について、位相変化成分φC2(x)と位相ρC2(z)とを用いて、1つの画素に混在している複数の反射信号のそれぞれにおいて、位相差ΔφC2(x,z)を算出する。
 以下の式(22)は、位相差算出部23が用いる位相差ΔφC2(x,z)の算出式である。
Figure JPOXMLDOC01-appb-I000022
 位相差算出部23は、それぞれの位相差ΔφC2(x,z)を画像処理部13に出力する。
 回転量算出部31は、位相差算出部23から出力されたそれぞれの位相差ΔφC1(x,z),ΔφC2(x,z)を取得する。
 回転量算出部31は、第1の組み合わせC1について、それぞれの位相差ΔφC1(x,z)から、第2のレーダ画像に含まれている複数の画素の位相の回転量exp[j・ΔφC1(x,z)]をそれぞれ算出する。
 回転量算出部31は、それぞれの回転量exp[j・ΔφC1(x,z)]を位相回転部33に出力する。
 次に、回転量算出部31は、第2の組み合わせC2について、それぞれの位相差ΔφC2(x,z)から、第2のレーダ画像に含まれている複数の画素の位相の回転量exp[j・ΔφC2(x,z)]をそれぞれ算出する。
 回転量算出部31は、それぞれの回転量exp[j・ΔφC2(x,z)]を位相回転部33に出力する。
 まず、位相回転部33は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第1の組み合わせC1に含まれている第2のレーダ画像を取得する。
 位相回転部33は、回転量算出部31から出力されたそれぞれの回転量exp[j・ΔφC1(x,z)]に基づいて、取得した第2のレーダ画像に含まれている複数の画素の位相を回転させる処理を実施する。
 以下の式(23)は、位相回転部33による位相の回転処理を示す式である。
Figure JPOXMLDOC01-appb-I000023
 位相回転部33は、位相回転後の複数の画素を含む第2のレーダ画像を差分算出処理部34に出力する。
 次に、位相回転部33は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第2の組み合わせC2に含まれている第2のレーダ画像を取得する。
 位相回転部33は、回転量算出部31から出力されたそれぞれの回転量exp[j・ΔφC2(x,z)]に基づいて、取得した第2のレーダ画像に含まれている複数の画素の位相を回転させる処理を実施する。
 以下の式(24)は、位相回転部33による位相の回転処理を示す式である。
Figure JPOXMLDOC01-appb-I000024

 位相回転部33は、位相回転後の複数の画素を含む第2のレーダ画像を差分算出処理部34に出力する。
 差分算出処理部34は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第1の組み合わせC1に含まれている第1のレーダ画像を取得する。
 また、差分算出処理部34は、位相回転部33から出力された第1の組み合わせC1についての位相回転後の複数の画素を含む第2のレーダ画像を取得する。
 差分算出処理部34は、取得した第1のレーダ画像に含まれている複数の画素と、取得した第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分ΔSC1(pixel,line)を算出する。
 以下の式(25)は、差分算出処理部34が用いる差分ΔSC1(pixel,line)の算出式である。
Figure JPOXMLDOC01-appb-I000025
 差分算出処理部34は、それぞれの差分ΔSC1(pixel,line)を干渉位相算出部37に出力する。
 次に、差分算出処理部34は、レーダ画像取得部11から出力されたレーダ画像群2の中から、第2の組み合わせC2に含まれている第1のレーダ画像を取得する。
 また、差分算出処理部34は、位相回転部33から出力された第2の組み合わせC2についての位相回転後の複数の画素を含む第2のレーダ画像を取得する。
 差分算出処理部34は、取得した第1のレーダ画像に含まれている複数の画素と、取得した第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分ΔSC2(pixel,line)を算出する。
 以下の式(26)は、差分算出処理部34が用いる差分ΔSC2(pixel,line)の算出式である。
Figure JPOXMLDOC01-appb-I000026
 差分算出処理部34は、それぞれの差分ΔSC2(pixel,line)を干渉位相算出部37に出力する。
 干渉位相算出部37は、差分算出処理部14により第1の組み合わせC1について算出されたそれぞれの画素位置での差分ΔSC1(pixel,line)を取得する。
 また、干渉位相算出部37は、差分算出処理部14により第2の組み合わせC2について算出されたそれぞれの画素位置での差分ΔSC2(pixel,line)を取得する。
 干渉位相算出部37は、以下の式(27)又は式(28)を用いて、差分ΔSC1(pixel,line)と差分ΔSC2(pixel,line)とから、それぞれの画素位置での位相を干渉位相ΔγC1,C2(pixel,line)として算出する。
Figure JPOXMLDOC01-appb-I000027
 式(27)及び式(28)において、∠は、複素数の偏角を示す記号である。
 干渉位相ΔγC1,C2(pixel,line)は、1つの画素に混在している複数の反射信号のうち、抑圧されずに残っている反射信号のみの位相である。
 干渉位相算出部37は、干渉位相ΔγC1,C2(pixel,line)を外部に出力する。
 例えば、地表に反射された反射信号と、建物の屋上に反射された反射信号とが、1つの画素に混在しているときは、位相処理部12及び画像処理部13によって、地表に反射された反射信号が抑圧されて、建物の屋上に反射された反射信号のみが残る。したがって、干渉位相ΔγC1,C2(pixel,line)は、建物の屋上に反射された反射信号の位相として算出される。
 以上の実施の形態4は、第1の組み合わせC1についての差分ΔSC1(pixel,line)と、第2の組み合わせC2についての差分ΔSC2(pixel,line)とから、それぞれの画素位置での位相を干渉位相ΔγC1,C2(pixel,line)として算出する干渉位相算出部37を備えるように、レーダ画像処理装置10を構成した。したがって、レーダ画像処理装置10は、不要な散乱体の反射信号を抑圧した状態で、反射信号の位相を得ることができる。
実施の形態5.
 実施の形態5では、干渉位相算出部37により算出された干渉位相ΔγC1,C2(pixel,line)を用いて、観測領域に存在している散乱体の位置を推定するレーダ画像処理装置10について説明する。
 レーダ画像処理装置10の構成は、実施の形態1と同様に、図1である。
 位相処理部12の構成は、実施の形態1~3と同様に、図2である。
 図20は、実施の形態5によるレーダ画像処理装置10の画像処理部13を示す構成図である。
 図21は、位相処理部12及び画像処理部13におけるそれぞれのハードウェアを示すハードウェア構成図である。
 図20及び図21において、図3、図4、図12、図13、図16~図19と同一符号は同一又は相当部分を示すので説明を省略する。
 位置推定部38は、例えば、図21に示す位置推定回路50で実現される。
 位置推定部38は、干渉位相算出部37により算出された干渉位相ΔγC1,C2(pixel,line)を用いて、観測領域に存在している散乱体の位置を推定する。
 図2では、位相処理部12の構成要素である位相変化成分算出部21、位相算出部22及び位相差算出部23のそれぞれが、図21に示すような専用のハードウェアで実現されるものを想定している。
 また、図20では、画像処理部13の構成要素である回転量算出部31、位相回転部33、差分算出処理部34、干渉位相算出部37及び位置推定部38のそれぞれが、図21に示すような専用のハードウェアで実現されるものを想定している。
 即ち、位相処理部12及び画像処理部13が、位相変化成分算出回路41、位相算出回路42、位相差算出回路43、回転量算出回路44、位相回転回路45、差分算出処理回路46、干渉位相算出回路49及び位置推定回路50で実現されるものを想定している。
 位相処理部12の構成要素及び画像処理部13の構成要素は、専用のハードウェアで実現されるものに限るものではない。位相処理部12及び画像処理部13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
 次に、レーダ画像処理装置10の動作について説明する。
 ただし、レーダ画像処理装置10が、位置推定部38を備えている点以外は、実施の形態4のレーダ画像処理装置10と同様であるため、ここでは、位置推定部38の動作だけを説明する。
 ここでは、説明の便宜上、第1の組み合わせC1に含まれる第1のレーダ画像に係る電波受信地点が、電波受信地点Pであり、第1の組み合わせC1に含まれる第2のレーダ画像に係る電波受信地点が、電波受信地点Pであるとする。
 また、第2の組み合わせC2に含まれる第1のレーダ画像に係る電波受信地点が、電波受信地点Pであり、第2の組み合わせC2に含まれる第2のレーダ画像に係る電波受信地点が、電波受信地点Pであるとする。
 位置推定部38は、干渉位相算出部37から出力された干渉位相ΔγC1,C2(pixel,line)を取得する。
 また、位置推定部38は、位相差算出部23から出力されたそれぞれの位相差ΔφC1(x,z),ΔφC2(x,z)を取得する。
 位置推定部38は、以下の式(29)に示すように、干渉位相ΔγC1,C2(pixel,line)と、位相差算出部23から出力されたそれぞれの位相差Δφ(x,z),Δφ(x,z)とを用いて、観測領域に存在している散乱体の位置zハットを推定する。
 明細書の文章中では、電子出願の関係上、文字「z」の上に、「^」の記号を付することができないため、zハットのように表記している。
Figure JPOXMLDOC01-appb-I000028
 式(29)において、Ba,cは、電波受信地点Pと電波受信地点Pとの距離のうち、スラントレンジ方向に対して垂直な方向の距離成分である。
 Bb,dは、電波受信地点Pと電波受信地点Pとの距離のうち、スラントレンジ方向に対して垂直な方向の距離成分である。
 Rは、電波受信地点P、電波受信地点P、電波受信地点P及び電波受信地点Pのそれぞれと、観測領域との距離の平均値である。
 距離成分Ba,c、距離成分Bb,d、オフナディア角θ及び距離の平均値Rは、撮像パラメータに含まれている情報である。
 xは、位置pixelに対応する傾き面51での位置であり、位相変化成分算出部21から出力される。
 散乱体の位置zハットは、傾き面51から、散乱体の信号反射面までのz軸の方向の距離(高さ)である。
 位置推定部38は、推定した散乱体の位置zハットを外部に出力する。
 ここでは、第1の組み合わせC1に含まれる2つのレーダ画像と、第2の組み合わせC2に含まれる2つのレーダ画像とが、異なっているものとしている。しかし、これに限るものではなく、第1の組み合わせC1に含まれる2つのレーダ画像の中の1つのレーダ画像が、第2の組み合わせC2に含まれる2つのレーダ画像のいずれか1つと同じであってもよい。
 例えば、第1の組み合わせC1に含まれる第2のレーダ画像と、第2の組み合わせC2に含まれる第2のレーダ画像とが、同じレーダ画像であってもよい。
 第1の組み合わせC1に含まれる第2のレーダ画像と、第2の組み合わせC2に含まれる第2のレーダ画像とが、同じレーダ画像である場合、Bb,d=0となるため、位置zハットの推定に用いる式(29)は、以下の式(30)のように、簡略化される。
Figure JPOXMLDOC01-appb-I000029
 以上の実施の形態5は、干渉位相算出部37により算出された干渉位相ΔγC1,C2(pixel,line)を用いて、観測領域に存在している散乱体の位置zハットを推定する位置推定部38を備えるように、レーダ画像処理装置10を構成した。したがって、レーダ画像処理装置10は、観測領域に存在している散乱体の位置を得ることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、第1のレーダ画像に含まれている複数の画素と第2のレーダ画像に含まれている位相回転後の複数の画素との差分をそれぞれ算出するレーダ画像処理装置及びレーダ画像処理方法に適している。
 1 レーダ、2 レーダ画像群、3 撮像パラメータ群、10 レーダ画像処理装置、11 レーダ画像取得部、12 位相処理部、13 画像処理部、21 位相変化成分算出部、22 位相算出部、23 位相差算出部、31 回転量算出部、32 差分算出部、33 位相回転部、34 差分算出処理部、35 画像合成部、36 抽出画像算出部、37 干渉位相算出部、38 位置推定部、41 位相変化成分算出回路、42 位相算出回路、43 位相差算出回路、44 回転量算出回路、45 位相回転回路、46 差分算出処理回路、47 画像合成回路、48 抽出画像算出回路、49 干渉位相算出回路、50 位置推定回路、51 傾き面、52 平行面、61 メモリ、62 プロセッサ。

Claims (7)

  1.  互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている第1及び第2のレーダ画像に含まれている画素毎に、1つの画素に混在している複数の反射信号のそれぞれにおいて、それぞれの電波受信地点に対する位相の差である位相差を算出する位相差算出部と、
     前記位相差算出部により算出されたそれぞれの位相差から、前記第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出する回転量算出部と、
     前記回転量算出部により算出されたそれぞれの回転量に基づいて、前記第2のレーダ画像に含まれている複数の画素の位相を回転させ、前記第1のレーダ画像に含まれている複数の画素と、前記第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出する差分算出部と
     を備えたレーダ画像処理装置。
  2.  前記第1のレーダ画像と前記第2のレーダ画像とに含まれている2次元の傾き面の第1の軸が、グランドレンジ方向から傾いている方向であり、前記傾き面の第2の軸が、アジマス方向であるとき、前記傾き面における前記第1の軸方向の位相変化成分を算出する位相変化成分算出部と、
     前記傾き面と平行な面における前記傾き面に対する位相を算出する位相算出部とを備え、
     前記位相差算出部は、前記位相変化成分算出部により算出された位相変化成分と、前記位相算出部により算出された位相とから、前記複数の反射信号のそれぞれにおいて、前記位相差を算出することを特徴とする請求項1記載のレーダ画像処理装置。
  3.  互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている2つ以上のレーダ画像を含むレーダ画像群があり、
     前記位相変化成分算出部は、
     前記レーダ画像群に含まれる2つのレーダ画像の組み合わせ毎に、それぞれの組み合わせに含まれる一方のレーダ画像を前記第1のレーダ画像、それぞれの組み合わせに含まれる他方のレーダ画像を前記第2のレーダ画像として、前記傾き面における前記第1の軸方向の位相変化成分を算出し、
     前記位相差算出部は、
     前記2つのレーダ画像の組み合わせ毎に、前記位相変化成分算出部により組み合わせ毎に算出された位相変化成分と、前記位相算出部により算出された位相とから、前記複数の反射信号のそれぞれにおいて、前記位相差を算出し、
     前記回転量算出部は、
     前記2つのレーダ画像の組み合わせ毎に、前記位相差算出部により組み合わせ毎に算出されたそれぞれの位相差から、前記第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出し、
     前記差分算出部は、
     前記2つのレーダ画像の組み合わせ毎に、前記回転量算出部により組み合わせ毎に算出されたそれぞれの回転量に基づいて、前記第2のレーダ画像に含まれている複数の画素の位相を回転させ、前記第1のレーダ画像に含まれている複数の画素と、前記第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出し、
     前記差分算出部により組み合わせ毎に算出されたそれぞれの差分のうち、それぞれ画素位置が対応している差分同士を合成する画像合成部を備えたことを特徴とする請求項2記載のレーダ画像処理装置。
  4.  第1のレーダ画像に含まれている複数の画素の画素値と、前記画像合成部によるそれぞれの合成後の差分とから、前記複数の反射信号が抽出された画像を算出する抽出画像算出部を備えたことを特徴とする請求項3記載のレーダ画像処理装置。
  5.  互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている3つ以上のレーダ画像のうち、いずれか2つのレーダ画像を含む第1の組み合わせと、前記3つ以上のレーダ画像のうち、前記第1の組み合わせに含まれる2つのレーダ画像と少なくとも1つが異なる2つのレーダ画像を含む第2の組み合わせとがあり、
     前記位相変化成分算出部は、
     前記第1及び第2の組み合わせ毎に、それぞれの組み合わせに含まれる一方のレーダ画像を前記第1のレーダ画像、それぞれの組み合わせに含まれる他方のレーダ画像を前記第2のレーダ画像として、前記傾き面における前記第1の軸方向の位相変化成分を算出し、
     前記位相差算出部は、
     前記第1及び第2の組み合わせ毎に、前記位相変化成分算出部により組み合わせ毎に算出された位相変化成分と、前記位相算出部により算出された位相とから、前記複数の反射信号のそれぞれにおいて、前記位相差を算出し、
     前記回転量算出部は、
     前記第1及び第2の組み合わせ毎に、前記位相差算出部により組み合わせ毎に算出されたそれぞれの位相差から、前記第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出し、
     前記差分算出部は、
     前記第1及び第2の組み合わせ毎に、前記回転量算出部により組み合わせ毎に算出されたそれぞれの回転量に基づいて、前記第2のレーダ画像に含まれている複数の画素の位相を回転させ、前記第1のレーダ画像に含まれている複数の画素と、前記第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出し、
     前記差分算出部により第1の組み合わせについて算出されたそれぞれの画素位置での差分と、前記差分算出部により第2の組み合わせについて算出されたそれぞれの画素位置での差分とから、それぞれの画素位置での位相を干渉位相として算出する干渉位相算出部を備えたことを特徴とする請求項2記載のレーダ画像処理装置。
  6.  前記干渉位相算出部により算出された干渉位相を用いて、観測領域に存在している散乱体の位置を推定する位置推定部を備えたことを特徴とする請求項5記載のレーダ画像処理装置。
  7.  位相差算出部が、互いに異なるそれぞれの電波受信地点から同じ観測領域が撮像されている第1及び第2のレーダ画像に含まれている画素毎に、1つの画素に混在している複数の反射信号のそれぞれにおいて、それぞれの電波受信地点に対する位相の差である位相差を算出し、
     回転量算出部が、前記位相差算出部により算出されたそれぞれの位相差から、前記第2のレーダ画像に含まれている複数の画素の位相の回転量をそれぞれ算出し、
     差分算出部が、前記回転量算出部により算出されたそれぞれの回転量に基づいて、前記第2のレーダ画像に含まれている複数の画素の位相を回転させ、前記第1のレーダ画像に含まれている複数の画素と、前記第2のレーダ画像に含まれている位相回転後の複数の画素とのうち、それぞれ画素位置が対応している画素同士の画素値の差分を算出する
     レーダ画像処理方法。
PCT/JP2018/036184 2018-03-30 2018-09-28 レーダ画像処理装置及びレーダ画像処理方法 WO2019187236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019518017A JP6599050B1 (ja) 2018-03-30 2018-09-28 レーダ画像処理装置及びレーダ画像処理方法
EP18913118.8A EP3757609A4 (en) 2018-03-30 2018-09-28 RADAR IMAGE PROCESSING DEVICE AND RADAR IMAGE PROCESSING METHOD
CA3095695A CA3095695C (en) 2018-03-30 2018-09-28 Radar image processing device and radar image processing method
US17/015,836 US20200408901A1 (en) 2018-03-30 2020-09-09 Radar image processing device and radar image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/013795 WO2019187061A1 (ja) 2018-03-30 2018-03-30 レーダ画像処理装置及びレーダ画像処理方法
JPPCT/JP2018/013795 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/015,836 Continuation US20200408901A1 (en) 2018-03-30 2020-09-09 Radar image processing device and radar image processing method

Publications (1)

Publication Number Publication Date
WO2019187236A1 true WO2019187236A1 (ja) 2019-10-03

Family

ID=68059626

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/013795 WO2019187061A1 (ja) 2018-03-30 2018-03-30 レーダ画像処理装置及びレーダ画像処理方法
PCT/JP2018/036184 WO2019187236A1 (ja) 2018-03-30 2018-09-28 レーダ画像処理装置及びレーダ画像処理方法
PCT/JP2019/014008 WO2019189765A1 (ja) 2018-03-30 2019-03-29 レーダ画像処理装置及びレーダ画像処理方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013795 WO2019187061A1 (ja) 2018-03-30 2018-03-30 レーダ画像処理装置及びレーダ画像処理方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014008 WO2019189765A1 (ja) 2018-03-30 2019-03-29 レーダ画像処理装置及びレーダ画像処理方法

Country Status (5)

Country Link
US (2) US11474236B2 (ja)
EP (2) EP3757609A4 (ja)
JP (2) JP6599050B1 (ja)
CA (2) CA3095695C (ja)
WO (3) WO2019187061A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307030A (zh) * 2020-03-25 2020-06-19 桂林理工大学 顾及有色噪声影响的gb-rar高铁桥梁形变信息估计模型
JP2024034579A (ja) * 2022-09-01 2024-03-13 日本電気株式会社 信号処理装置および信号処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095433A (ja) * 1995-06-21 1997-01-10 Nec Corp 干渉型合成開口レーダ画像処理方法及び干渉型合 成開口レーダ装置
JP2007322383A (ja) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp 画像レーダ装置
JP2010175330A (ja) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp レーダ画像信号処理装置
JP2010281584A (ja) * 2009-06-02 2010-12-16 Mitsubishi Electric Corp レーダ画像処理装置
US20130069819A1 (en) * 2010-02-22 2013-03-21 Elbit Systems Ltd. Three dimensional radar system
WO2016125206A1 (ja) * 2015-02-06 2016-08-11 三菱電機株式会社 合成開口レーダ信号処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720679A (en) 1985-12-31 1988-01-19 Picker International, Inc. Magnetic resonance imaging with phase encoded chemical shift correction
US6011505A (en) * 1996-07-11 2000-01-04 Science Applications International Corporation Terrain elevation measurement by interferometric synthetic aperture radar (IFSAR)
AU5721900A (en) * 1999-03-08 2000-09-28 Lockheed Martin Corporation Single-pass interferometric synthetic aperture radar
US6424287B1 (en) * 2001-04-24 2002-07-23 Sandia Corporation Error correction for IFSAR
WO2015151134A1 (ja) * 2014-04-04 2015-10-08 三菱電機株式会社 レーダ信号処理装置
JP6381825B2 (ja) * 2016-03-11 2018-08-29 三菱電機株式会社 移動目標検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095433A (ja) * 1995-06-21 1997-01-10 Nec Corp 干渉型合成開口レーダ画像処理方法及び干渉型合 成開口レーダ装置
JP2007322383A (ja) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp 画像レーダ装置
JP2010175330A (ja) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp レーダ画像信号処理装置
JP2010281584A (ja) * 2009-06-02 2010-12-16 Mitsubishi Electric Corp レーダ画像処理装置
US20130069819A1 (en) * 2010-02-22 2013-03-21 Elbit Systems Ltd. Three dimensional radar system
WO2016125206A1 (ja) * 2015-02-06 2016-08-11 三菱電機株式会社 合成開口レーダ信号処理装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BICKEL, D. L.: "A null-steering viewpoint of interferometric SAR, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium", TAKING THE PULSE OF THE PLANET: THE ROLE OF REMOTE SENSING IN MANAGING THE ENVIRONMENT PROCEEDINGS (CAT. NO. 00 CH 37120, July 2000 (2000-07-01), pages 3206 - 3209, XP010506326, ISBN: 0-7803-6359-0 *
See also references of EP3757609A4 *
XIANG, Z. ET AL.: "A new DEM reconstruction method based on an accurate flattening algorithm in interferometric SAR", 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2008, pages 1093 - 1096, XP031250746 *

Also Published As

Publication number Publication date
WO2019187061A1 (ja) 2019-10-03
JPWO2019189765A1 (ja) 2020-04-30
WO2019189765A1 (ja) 2019-10-03
US20200408901A1 (en) 2020-12-31
JPWO2019187236A1 (ja) 2020-04-30
EP3757610A4 (en) 2021-04-21
EP3757609A4 (en) 2021-08-11
US11474236B2 (en) 2022-10-18
EP3757610B1 (en) 2023-07-26
CA3092620A1 (en) 2019-10-03
CA3095695A1 (en) 2019-10-03
EP3757610A1 (en) 2020-12-30
CA3092620C (en) 2021-01-19
JP6698964B2 (ja) 2020-05-27
JP6599050B1 (ja) 2019-10-30
US20200408902A1 (en) 2020-12-31
EP3757609A1 (en) 2020-12-30
CA3095695C (en) 2021-01-19

Similar Documents

Publication Publication Date Title
US9417323B2 (en) SAR point cloud generation system
JP6320577B2 (ja) 合成開口レーダ信号処理装置
Damini et al. A videoSAR mode for the X-band wideband experimental airborne radar
JP2020511678A (ja) 周波数変調連続波アンテナシステム
US11029403B2 (en) Millimeter-wave airborne radar for 3-Dimensional imaging of moving and stationary targets
JP6599050B1 (ja) レーダ画像処理装置及びレーダ画像処理方法
KR102121474B1 (ko) 비선형 비행 궤적에서 스퀸트 스포트라이트 모드를 위한 sar 신호 처리기와 항공기 탑재 합성구경 레이더 및 방법
Reigber et al. Wavenumber domain SAR focusing with integrated motion compensation
WO2015151134A1 (ja) レーダ信号処理装置
JP6289672B2 (ja) 合成開口レーダ信号処理装置及び合成開口レーダ信号処理プログラム
KR100425283B1 (ko) 간섭측정용 합성 개구 레이다의 기하학적 특성을 이용한지형고도 측정방법
WO2000054006A2 (en) Single-pass interferometric synthetic aperture radar
Vu Area resolution for bistatic ultrawideband ultrawidebeam SAR
CN108303685A (zh) 一种无源雷达超分辨三维成像方法及系统
WO2024042675A1 (ja) 信号処理装置および信号処理方法
WO2022264187A1 (ja) レーダ信号処理装置、レーダ信号処理方法及びレーダ装置
Brooker et al. Millimetre wave radar imaging of mining vehicles
Tian et al. A Modified Interferometric Phase Model for Imaging Integral Angle Applied to UAV InSAR
US20230082823A1 (en) Axis-misalignment estimation device
Vavriv et al. Developing SAR for small aircrafts in Ukraine
Wang et al. Altimetry Accuracy Analysis of Sliding Spotlight Mode Interferometric SAR
Ling et al. Algorithm for Motion Compensation In An Airborne Mosaic Mode SAR System
Xiangkun et al. High-resolution SAR imaging by general synthetic aperture processing of two observations
Cantalloube et al. Towards a polarimetric SAR processor for airborne sensor
JP2023170302A (ja) 目標速度検出装置及び目標速度検出方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3095695

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018913118

Country of ref document: EP

Effective date: 20200924