WO2019186762A1 - Drive device, electric vehicle, and drive device control method - Google Patents

Drive device, electric vehicle, and drive device control method Download PDF

Info

Publication number
WO2019186762A1
WO2019186762A1 PCT/JP2018/012750 JP2018012750W WO2019186762A1 WO 2019186762 A1 WO2019186762 A1 WO 2019186762A1 JP 2018012750 W JP2018012750 W JP 2018012750W WO 2019186762 A1 WO2019186762 A1 WO 2019186762A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
voltage
control circuit
smoothing capacitor
charging voltage
Prior art date
Application number
PCT/JP2018/012750
Other languages
French (fr)
Japanese (ja)
Inventor
一由希 目黒
雄大 井ノ口
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to CN201880091437.7A priority Critical patent/CN111886796B/en
Priority to JP2020510295A priority patent/JP7083891B2/en
Priority to PCT/JP2018/012750 priority patent/WO2019186762A1/en
Priority to TW108110738A priority patent/TWI732199B/en
Publication of WO2019186762A1 publication Critical patent/WO2019186762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a drive device, an electric vehicle, and a drive device control method.
  • An electric motorcycle using a battery as a power source and a three-phase motor (hereinafter referred to as a motor) as a power source is known.
  • a three-phase full bridge circuit (that is, an inverter circuit) having a high-side switch and a low-side switch for each phase is used to drive the motor to each phase coil of the motor.
  • the energization was controlled.
  • a smoothing capacitor was provided between the battery and the three-phase bullbridge circuit.
  • Japanese Unexamined Patent Application Publication No. 2013-38895 discloses a capacitor discharge circuit.
  • a high-resistance parallel connection body is connected between the input terminals of the inverter in order to ensure a discharge path even when an abnormality occurs in the resistor of the discharge circuit. Therefore, there is a problem that the discharge resistance increases.
  • the present invention provides a drive device, an electric vehicle, and a drive device manufacturing method that can prevent the amount of heat generated by the discharge resistor from becoming excessive and can reduce the size of the discharge resistor. Objective.
  • a driving device includes: A smoothing connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the grounding terminal.
  • a capacitor Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor, A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor; A main control circuit for controlling the operation of the discharge control circuit; A drive circuit for driving the motor by supplying an AC voltage obtained by converting the DC voltage between the power supply terminal and the ground terminal to the motor; and The main control circuit includes: Detecting the first charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal before starting discharge by the discharge resistor; The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance.
  • a discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of Detecting a second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when the set time elapses; Comparing the second charge voltage and the sustainable voltage;
  • the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
  • the main control circuit includes: When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the smoothing capacitor is discharged by the discharge resistor until the charging voltage of the smoothing capacitor becomes equal to or lower than a third charging voltage smaller than the second charging voltage.
  • the discharge control circuit may be controlled so as to continue.
  • the main control circuit includes: When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the discharge control circuit is controlled to maintain the connection of the discharge resistor to the smoothing capacitor, while the second charging voltage is When the voltage is higher than the discharge continuable voltage, the discharge control circuit may be controlled so as to cut off the discharge resistance from the smoothing capacitor.
  • the main control circuit includes: The discharge continuation possible voltage may be calculated before the start of discharge by the discharge resistance.
  • the coefficient may be set so as to correlate with a minimum value of the discharge amount of the smoothing capacitor predicted when the set time elapses.
  • the coefficient is set to change according to the elapsed time from the start of the discharge
  • the main control circuit includes:
  • the discharge continuable voltage may be calculated by multiplying the first charging voltage by a coefficient when the elapsed time is the set time.
  • the main control circuit monitors an integrated value of the first charging voltage and the coefficient for each cycle at a cycle shorter than the set time from the start of discharge by the discharge resistor, and the discharge control circuit based on a monitoring result May be controlled.
  • the main control circuit includes: By multiplying the first charging voltage by the second coefficient set so as to correlate with the maximum value of the discharge amount of the smoothing capacitor predicted when the set time elapses, the prediction is made when the set time elapses. Calculating a lower limit charging voltage of the smoothing capacitor, When the second charging voltage is equal to or higher than the lower limit charging voltage, the discharge control circuit may be controlled to continue discharging by the discharge resistance.
  • the main control circuit may further control the operation of the drive circuit.
  • the main control circuit includes: When the discharge control circuit is controlled so as to stop the discharge of the smoothing capacitor by the discharge resistor, the discharge of the smoothing capacitor by the motor may be controlled by controlling the drive circuit.
  • the drive circuit is A first transistor having one end connected to the power supply terminal and the other end connected to a first output terminal of a first phase; A second transistor having one end connected to the power supply terminal and the other end connected to a second output terminal of the second phase; A third transistor having one end connected to the power supply terminal and the other end connected to a third phase third output terminal; A fourth transistor having one end connected to the first output terminal and the other end connected to the ground terminal; A fifth transistor having one end connected to the second output terminal and the other end connected to the ground terminal; A sixth transistor having one end connected to the third output terminal and the other end connected to the ground terminal;
  • the main control circuit includes: The discharge of the smoothing capacitor by the motor may be controlled by controlling the first to sixth transistors.
  • the main control circuit detects the first charging voltage, calculates the discharge continuable voltage, detects the second charging voltage, and the second charging voltage. And the discharge control circuit may be controlled in accordance with a comparison result between the discharge sustainable voltage and the discharge continuable voltage.
  • the discharge control circuit includes: Detecting the first charging voltage and the second charging voltage, and outputting information on the first and second charging voltages to the main control circuit;
  • the main control circuit includes: The first and second charging voltages may be detected by inputting the information.
  • An electric vehicle includes: An electric vehicle including a battery, a motor, and a drive device,
  • the driving device includes: Connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the ground terminal.
  • a smoothing capacitor Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor, A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor; A main control circuit for controlling the operation of the discharge control circuit; A drive circuit for driving the motor by supplying an AC voltage obtained by converting a DC voltage between the power supply terminal and the ground terminal to the motor; and The main control circuit includes: Detecting the first charging voltage of the smoothing capacitor before starting discharge by the discharge resistor; The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance.
  • a discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of Detecting a second charging voltage of the smoothing capacitor when the set time elapses; Comparing the second charge voltage and the sustainable voltage;
  • the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
  • a control method of a driving device includes: A smoothing connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the grounding terminal.
  • a capacitor Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor, A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor; A drive circuit that supplies an AC voltage obtained by converting a DC voltage between the power supply terminal and the ground terminal to a motor and drives the motor, Detecting the first charging voltage of the smoothing capacitor before starting discharge by the discharge resistor; The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance.
  • a discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of Detecting a second charging voltage of the smoothing capacitor when the set time elapses; Comparing the second charge voltage and the sustainable voltage;
  • the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
  • a drive device is connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and is supplied from the battery between the power supply terminal and the ground terminal. Between the power supply terminal and the ground terminal, and between the power supply terminal and the ground terminal, and between the power supply terminal and the ground terminal.
  • a power control is performed on the DC voltage between the power supply terminal and the ground terminal, connected to the resistor in series and controlling the discharge of the smoothing capacitor by the discharge resistor, the main control circuit controlling the operation of the discharge control circuit, and A drive circuit for driving the motor by supplying an AC voltage to the motor, and the main control circuit performs the first charging of the smoothing capacitor between the power supply terminal and the ground terminal before the discharge by the discharge resistor is started.
  • a discharge continuable voltage which is a charge voltage of a smoothing capacitor capable of continuing discharge, is calculated, and a second charge voltage of the smoothing capacitor between the power supply terminal and the ground terminal is detected when the set time has elapsed, and the second charge is performed.
  • the discharge control circuit is controlled to continue the discharge by the discharge resistor, while the second charge voltage is
  • the discharge control circuit is controlled to stop the discharge by the discharge resistance.
  • the drive device of the present invention it is possible to prevent the amount of heat generated by the discharge resistor from becoming excessive and to reduce the size of the discharge resistor.
  • FIG. 1 is a diagram illustrating an example of a configuration of an electric vehicle control device 100 according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an operation example of the electric vehicle control device 100 according to the first embodiment.
  • FIG. 3 is a charging voltage graph showing an operation example of the electric vehicle control apparatus 100 according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the configuration of the electric vehicle control device 100 according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of an electric vehicle control device 100 according to the first embodiment.
  • the electric vehicle control device 100 generates drive voltages MU, MV, and MW from the voltage of the battery B, and the drive voltages MU, MV, and MW.
  • the motor M is driven.
  • the electric vehicle control apparatus 100 converts the back electromotive voltage output from the motor M into a DC regenerative voltage during regeneration by the motor M, and supplies the DC regenerative voltage between the power supply terminal TB and the ground terminal TG to supply the battery BH. May be charged.
  • the electric vehicle control apparatus 100 includes a power supply terminal TB, a ground terminal TG, a smoothing capacitor FC, a discharge resistor FR, a discharge control circuit FX, a drive circuit Z, And a control circuit CON.
  • the motor M drives a wheel of an electric motorcycle, for example.
  • the electric vehicle control device 100, the battery B, and the switch SW are mounted on, for example, the above-described electric motorcycle.
  • the positive terminal of the battery B is connected to the power supply terminal TB via the switch SW.
  • the ground terminal TG is connected to the negative electrode of the battery B as shown in FIG.
  • the switch SW has one end connected to the positive electrode of the battery B and the other end connected to the power supply terminal TB.
  • the switch SW When the switch SW is turned on, the switch SW is electrically connected between the positive electrode of the battery B and the power supply terminal TB.
  • the switch SW On the other hand, when the switch SW is turned off, the positive electrode of the battery B and the power supply terminal TB are electrically disconnected.
  • the switch SW is controlled to be turned on or off by the main control circuit CON as will be described later.
  • the smoothing capacitor FC is connected between the power supply terminal TB and the ground terminal TG.
  • the smoothing capacitor FC is charged with a voltage supplied between the power supply terminal TB and the ground terminal TG.
  • the smoothing capacitor FC is charged with the voltage output from the battery B.
  • the smoothing capacitor FC may be charged with regenerative power output from the drive circuit Z.
  • the discharge resistor FR is connected in parallel with the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.
  • This discharge resistor FR is for discharging the smoothing capacitor FC.
  • the discharge resistor FR is, for example, a single resistor disposed so as to fit in the constrained space of the electric vehicle control device 100.
  • discharge control circuit FX is connected in series with the discharge resistor FR between the power supply terminal TB and the ground terminal TG, for example, as shown in FIG.
  • one end of the discharge resistor FR is connected to the power supply terminal TB.
  • the discharge control circuit FX has one end connected to the other end of the discharge resistor FR and the other end connected to the ground terminal TG.
  • the discharge control circuit FX controls the discharge of the smoothing capacitor FC by the discharge resistor FR.
  • the discharge control circuit FX is configured to discharge the smoothing capacitor FC by conducting (that is, turning on) between the other end of the discharge resistor FR and the ground terminal TG (the other end of the smoothing capacitor FC). .
  • the discharge control circuit FX blocks (that is, turns off) between the other end of the discharge resistor FR and the ground terminal TG (the other end of the smoothing capacitor FC). It is like that.
  • the discharge control circuit FX may be operated by a voltage between the power supply terminal TB and the ground terminal TG (charging voltage of the smoothing capacitor FC). For example, the discharge control circuit FX may be activated when the voltage between the power supply terminal TB and the ground terminal TG (the charging voltage VFC of the smoothing capacitor FC) is equal to or higher than a predetermined value.
  • the drive circuit Z generates three-phase AC voltages MU, MV, and MW obtained by converting the DC voltage between the power supply terminal TB and the ground terminal TG when the motor M is driven.
  • the motor M is driven by being supplied to the motor M via the first output terminal TU, the second output terminal TV, and the third output terminal TW.
  • the drive circuit Z generates a back electromotive voltage (supplied via the first output terminal TU, the second output terminal TV, and the third output terminal TW) output from the motor M during regeneration by the motor M. It may be converted into a DC regenerative voltage and supplied between the power supply terminal TB and the ground terminal TG. That is, the drive circuit Z may be configured to return (charge) the regenerative power supplied from the motor M to the battery B and the smoothing capacitor FC.
  • the battery B When the switch SW is turned on (when not in the cutoff state described later), the battery B is also charged with the regenerative power, and the rise of the charging voltage VFC of the smoothing capacitor FC is moderated. .
  • the drive circuit Z includes a first output terminal TU, a second output terminal TV, a third output terminal TW, a first transistor Q1, and a second transistor Q2.
  • the first output terminal TU is connected to a U-phase coil (not shown) of the motor M.
  • the second output terminal TV is connected to a V-phase coil (not shown) of the motor M.
  • the third output terminal TW is connected to a W-phase coil (not shown) of the motor M.
  • the first transistor Q1 has one end (drain) connected to the power supply terminal TB and the other end (source) connected to the first output terminal TU of the first phase (U phase).
  • the first transistor Q1 is an nMOS transistor in the example of FIG.
  • the first diode D1 has a cathode connected to the power supply terminal TB and an anode connected to the first output terminal TU.
  • the second transistor Q2 has one end (drain) connected to the power supply terminal TB and the other end (source) connected to the second output terminal TV of the second phase (V phase).
  • the second transistor Q2 is an nMOS transistor in the example of FIG.
  • the second diode D2 has a cathode connected to the power supply terminal TB and an anode connected to the second output terminal TV.
  • the third transistor Q3 has one end (drain) connected to the power supply terminal TB and the other end (source) connected to the third output terminal TW of the third phase (W phase).
  • the third transistor Q3 is an nMOS transistor in the example of FIG.
  • the third diode D3 has a cathode connected to the power supply terminal TB and an anode connected to the third output terminal TW.
  • the fourth transistor Q4 has one end (drain) connected to the first output terminal TU and the other end (source) connected to the ground terminal TG.
  • the fourth transistor Q4 is an nMOS transistor in the example of FIG.
  • the fourth diode D4 has a cathode connected to the first output terminal TU and a cathode connected to the ground terminal TG.
  • the fifth transistor Q5 has one end (source) connected to the second output terminal TV and the other end (drain) connected to the ground terminal TG.
  • the fifth transistor Q5 is an nMOS transistor in the example of FIG.
  • the fifth diode D5 has a cathode connected to the second output terminal TV and an anode connected to the ground terminal TG.
  • the sixth transistor Q6 has one end (source) connected to the third output terminal TW and the other end (drain) connected to the ground terminal TG.
  • the sixth transistor Q6 is an nMOS transistor in the example of FIG.
  • the sixth diode D6 has a cathode connected to the third output terminal TW and an anode connected to the ground terminal TG.
  • the first to sixth transistors Q1 to Q6 have a predetermined pattern when a gate control signal (gate voltage) output from the main control circuit CON is supplied to the gates of the first to sixth transistors Q1 to Q6. It is supposed to work.
  • the main control circuit CON turns off the switch SW when the battery B is fully charged, and turns on the switch SW when the voltage of the battery B becomes less than a predetermined value.
  • the main control circuit CON controls the operation of the discharge control circuit FX.
  • the main control circuit CON detects the first charging voltage of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG before the discharge by the discharge resistor FR is started.
  • the main control circuit CON After detecting the first charging voltage, the main control circuit CON multiplies the detected first charging voltage and a preset coefficient before the preset time elapses from the start of discharge by the discharge resistor FR.
  • a discharge continuable voltage which is a charging voltage of the smoothing capacitor FC capable of continuing the discharge by the discharge resistor FR predicted when the set time has elapsed, is calculated.
  • the main control circuit CON detects the second charging voltage of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.
  • the main control circuit CON After detecting the second charging voltage, the main control circuit CON compares the detected second charging voltage with the calculated discharge continuation possible voltage.
  • the main control circuit CON controls the discharge control circuit FX so as to continue the discharge by the discharge resistor FR.
  • the main control circuit CON controls the discharge control circuit FX so as to stop the discharge by the discharge resistor FR.
  • the main control circuit CON determines that the smoothing capacitor FC by the discharge resistor FR until the charging voltage of the smoothing capacitor FC becomes equal to or lower than the third charging voltage smaller than the second charging voltage.
  • the discharge control circuit FX may be controlled so as to continue the discharge.
  • the third charging voltage is, for example, a voltage that is low enough to assume that discharging of the smoothing capacitor FC has been completed.
  • the main control circuit CON controls the discharge control circuit FX so as to maintain the connection of the discharge resistance FR to the smoothing capacitor FC, whereby the discharge resistance FR
  • the discharge control circuit FX may be controlled so as to continue the discharge.
  • the main control circuit CON controls the discharge control circuit FX so as to cut off the discharge resistance FR from the smoothing capacitor FC, thereby discharging by the discharge resistance FR.
  • the discharge control circuit FX may be controlled to stop.
  • the coefficient used for calculating the discharge continuable voltage may be set so as to correlate with the minimum value of the discharge amount of the smoothing capacitor FC predicted when the set time elapses.
  • the coefficient may be set so as to change according to the elapsed time from the start of discharge.
  • the main control circuit CON may calculate the discharge continuable voltage by multiplying the first charging voltage by a coefficient when the elapsed time is the set time.
  • the main control circuit CON monitors the integrated value of the first charging voltage and the coefficient for each cycle in a monitoring cycle shorter than the set time from the start of discharge by the discharge resistor FR, and controls the discharge control circuit FX based on the monitoring result. May be. For example, the main control circuit CON compares the integrated value obtained by multiplying the first charging voltage and the coefficient for each monitoring period with the charging voltage of the smoothing capacitor FC actually detected in each monitoring period for each monitoring period, When the state where the actual charging voltage is smaller than the integrated value is maintained until the set time elapses, control may be performed to continue discharging by the discharge resistor FR.
  • the main control circuit CON multiplies the first charging voltage by the second coefficient set so as to correlate with the maximum value of the discharge amount of the smoothing capacitor FC predicted when the set time elapses.
  • the lower limit charging voltage of the smoothing capacitor FC predicted during the elapse of time may be calculated.
  • the main control circuit CON may control the discharge control circuit FX so as to continue the discharge by the discharge resistance when the second charging voltage is equal to or higher than the lower limit charging voltage.
  • the main control circuit CON controls the driving circuit Z to control the discharge of the smoothing capacitor FC by the motor M. Good. That is, the main control circuit CON may control the discharge of the smoothing capacitor FC by the motor M by controlling the first to sixth transistors Q1 to Q6.
  • the main control circuit CON detects the first charge voltage, calculates the discharge continuable voltage, detects the second charge voltage, and discharges the second charge voltage and discharge.
  • the discharge control circuit FX may be controlled according to the comparison result with the continuable voltage.
  • the main control circuit CON detects the first charging voltage before starting the discharge of the smoothing capacitor FC by the discharge resistor FR (step S1).
  • the detection of the first charging voltage may be executed, for example, when the rotational speed of the rotor of the motor M is equal to or lower than a preset threshold speed.
  • the main control circuit CON After detecting the first charging voltage, calculates a discharge continuable voltage based on the detected first charging voltage and the coefficient stored in advance in the storage unit of the main control circuit CON (step) S2).
  • FIG. 3 is a graph of charging voltage showing an operation example of the electric vehicle control device 100 according to the first embodiment.
  • the main control circuit CON is a minimum coefficient set so as to correlate with the first charge voltage and the minimum value of the discharge amount of the smoothing capacitor FC, and from the start of discharge (ie, time t1).
  • the product of the minimum coefficient when the elapsed time is the set time (that is, time t2) is calculated as the discharge continuable voltage.
  • the main control circuit CON controls the discharge control circuit FX so as to start the discharge of the smoothing capacitor FC by the discharge resistor FR (step S3).
  • the main control circuit CON determines whether or not the set period has elapsed from the start of the discharge (step S4).
  • step S4 When the set period has elapsed (step S4: Yes), the main control circuit CON detects the second charging voltage (step S5).
  • the main control circuit CON After detecting the second charging voltage, the main control circuit CON compares the detected second charging voltage with the calculated discharge continuable voltage, and determines whether or not the second charging voltage is equal to or lower than the discharge continuable voltage. Is determined (step S6).
  • the main control circuit CON controls the discharge control circuit FX so as to continue the discharge by the discharge resistor FR (step S7).
  • the normal charging voltage transitions with a value smaller than the product of the minimum coefficient and the first charging voltage.
  • Such a normal charging voltage is equal to or lower than the discharge continuable voltage at the time t2 when the set time has elapsed, that is, the second charging voltage.
  • the smoothing capacitor FC is continuously discharged by the discharge resistor FR until the discharge of the smoothing capacitor FC is completed.
  • the main control circuit CON controls the discharge control circuit FX so as to stop the discharge by the discharge resistor FR.
  • Step S8 the charging voltage at the time of abnormality transitions with a value larger than the product of the minimum coefficient and the first charging voltage.
  • the charging voltage at the time of such an abnormality is greater than the voltage at which discharge can be continued at the time t2 when the set time has elapsed, that is, the second charging voltage.
  • the discharge resistor FR is cut off from the smoothing capacitor FC by the discharge control circuit FX, and the discharge of the smoothing capacitor FC by the discharge resistor FR is stopped.
  • the main control circuit CON shifts to the discharge of the smoothing capacitor FC by the motor M by controlling the driving of the first to sixth transistors Q1 to Q6. May be.
  • the main control circuit performs the first charging of the smoothing capacitor between the power supply terminal and the ground terminal before the discharge by the discharge resistor is started. Detect voltage.
  • the main control circuit multiplies the first charging voltage by a preset coefficient before the preset set time elapses from the start of discharge by the discharge resistor, thereby predicting the discharge predicted when the preset time elapses.
  • a discharge continuable voltage which is a charging voltage of a smoothing capacitor capable of continuing discharge by a resistor, is calculated.
  • the main control circuit detects the second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when the set time has elapsed.
  • the main control circuit compares the second charging voltage with the discharge continuable voltage, and if the second charge voltage is equal to or lower than the discharge continuable voltage, the main control circuit sets the discharge control circuit to continue the discharge by the discharge resistor Control. On the other hand, the main control circuit controls the discharge control circuit to stop the discharge by the discharge resistance when the second charging voltage is larger than the voltage capable of continuing the discharge.
  • the electric vehicle control device when the second charging voltage becomes higher than the discharge continuable voltage, it is possible to stop the discharge due to the discharge resistance. As a result, it is possible to prevent a large voltage from being applied to the discharge resistor, so it is possible to prevent the amount of heat generated by the discharge resistor from becoming excessive, and to ensure the pressure resistance of the discharge resistor. Since it is not necessary to increase the discharge resistance, the discharge resistance can be reduced in size.
  • the main control circuit also discharges the smoothing capacitor by the discharge resistor until the charging voltage of the smoothing capacitor becomes equal to or lower than the third charging voltage smaller than the second charging voltage when the second charging voltage is equal to or lower than the discharge continuation possible voltage.
  • the discharge control circuit can be controlled so as to continue. Thereby, the smoothing capacitor can be completely discharged.
  • the main control circuit controls the discharge control circuit so as to maintain the connection of the discharge resistor to the smoothing capacitor when the second charge voltage is equal to or lower than the voltage at which the power can be continued, while the second charge voltage is When the voltage is higher than the discharge continuable voltage, the discharge control circuit can be controlled to cut off the discharge resistance from the smoothing capacitor. Thereby, continuation and a stop of discharge can be reliably performed with a simple configuration.
  • the main control circuit can calculate the discharge continuable voltage before the start of discharge by the discharge resistor. Thereby, even when the set time is short, it is possible to reliably compare the discharge continuable voltage with the second charging voltage.
  • the coefficient can be set so as to correlate with the minimum value of the smoothing capacitor discharge amount predicted when the set time elapses. Thereby, the discharge continuation possible voltage can be calculated accurately.
  • the coefficient is set so as to change according to the elapsed time from the start of discharge, and the main control circuit multiplies the first charging voltage by the coefficient when the elapsed time is the set time, so that the discharge continuable voltage Can be calculated. Thereby, it is possible to calculate the discharge continuable voltage more accurately.
  • the main control circuit can monitor the integrated value of the first charging voltage and the coefficient for each cycle at a cycle shorter than the set time from the start of discharge by the discharge resistor, and control the discharge control circuit based on the monitoring result. it can. Thereby, the discharge by discharge resistance can be controlled more appropriately.
  • the main control circuit multiplies the first charging voltage by a second coefficient set so as to correlate with the maximum value of the smoothing capacitor discharge amount predicted when the set time elapses.
  • the lower limit charging voltage of the smoothing capacitor predicted at the time is calculated, and when the second charging voltage is equal to or higher than the lower limit charging voltage, the discharge control circuit can be controlled to continue discharging by the discharge resistance. Thereby, the discharge by discharge resistance can be controlled more appropriately.
  • the main control circuit can further control the operation of the drive circuit. Thereby, the discharge by the discharge resistor and the operation of the drive circuit can be controlled by a common control circuit, so that the number of parts can be suppressed.
  • the main control circuit controls the discharge control circuit so as to stop the discharge of the smoothing capacitor by the discharge resistor
  • the main control circuit can control the discharge of the smoothing capacitor by the motor by controlling the drive circuit.
  • the drive circuit includes first to sixth transistors, and the main control circuit can control the discharge of the smoothing capacitor by the motor by controlling the first to sixth transistors. As a result, the discharge by the motor can be performed easily and reliably through the first to sixth transistors.
  • the main control circuit also detects the first charge voltage, calculates the discharge continuable voltage, detects the second charge voltage, and detects the second charge voltage and the discharge continuable voltage when the smoothing capacitor is connected to the battery.
  • the discharge control circuit can be controlled in accordance with the comparison result. As a result, even when a large voltage is applied to the discharge resistor due to the smoothing capacitor connected to the battery, the discharge by the discharge resistor can be controlled so that the amount of heat generated by the discharge resistor does not become excessive.
  • the main control circuit CON directly detects the charging voltage of the smoothing capacitor FC.
  • the discharge control circuit FX detects the charging voltage VFC of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.
  • the main control circuit CON indirectly detects the charging voltage of the smoothing capacitor FC by inputting information from the discharge control circuit FX.
  • the circuit configuration can be simplified as compared with the first embodiment.

Abstract

A main control circuit of this drive device detects the first charged voltage of a smoothing capacitor before the start of discharging through a discharging resistor. Before a preset set time elapses from the start of discharging through the discharging resistor, the main control circuit calculates, by multiplying the first charged voltage by a preset factor, a discharging continuable voltage that is the charged voltage of the smoothing capacitor estimated during the elapse of the set time and capable of being continuously discharged through the discharging resistor. The main control circuit detects the second charged voltage of the smoothing capacitor during the elapse of the set time and compares the second charged voltage with the discharging continuable voltage. When the second charged voltage is less than or equal to the discharging continuable voltage, the main control circuit controls a discharging control circuit so as to continue discharging through the discharging resistor. Meanwhile, when the second charged voltage is greater than the discharging continuable voltage, the main control circuit controls the discharging control circuit so as to stop discharging through the discharging resistor.

Description

駆動装置、電動車両および駆動装置の制御方法Drive device, electric vehicle, and control method of drive device
 本発明は、駆動装置、電動車両および駆動装置の制御方法に関する。 The present invention relates to a drive device, an electric vehicle, and a drive device control method.
 バッテリを電源とし、3相モータ(以下、モータと呼ぶ)を動力源とした電動二輪車が知られている。 An electric motorcycle using a battery as a power source and a three-phase motor (hereinafter referred to as a motor) as a power source is known.
 この種の電動二輪車においては、モータを駆動するため、各相毎にハイサイドおよびローサイドのスイッチを備えた3相フルブリッジ回路(すなわち、インバータ回路)によって、バッテリからモータの各相のコイルへの通電を制御していた。 In this type of electric motorcycle, in order to drive the motor, a three-phase full bridge circuit (that is, an inverter circuit) having a high-side switch and a low-side switch for each phase is used to drive the motor to each phase coil of the motor. The energization was controlled.
 また、バッテリと3相ブルブリッジ回路との間には、平滑コンデンサが設けられていた。 Also, a smoothing capacitor was provided between the battery and the three-phase bullbridge circuit.
 平滑化コンデンサの充電電圧を放電するため、従来から放電抵抗を用いた放電が行われていた。 In order to discharge the charging voltage of the smoothing capacitor, discharging using a discharge resistor has been conventionally performed.
 しかしながら、平滑コンデンサにバッテリが接続されている状態で放電抵抗に大きな電圧が印加される場合、放電抵抗の発熱量が過大となるといった問題が生じていた。 However, when a large voltage is applied to the discharge resistor while the battery is connected to the smoothing capacitor, there has been a problem that the amount of heat generated by the discharge resistor becomes excessive.
 ここで、特開2013-38895号公報には、コンデンサの放電回路が開示されている。しかしながら、特開2013-38895号公報では、放電回路の抵抗体に異常が生じる場合であっても放電経路を確保するために、インバータの入力端子間に高抵抗体の並列接続体を接続していたため、放電抵抗が大型化する問題がある。 Here, Japanese Unexamined Patent Application Publication No. 2013-38895 discloses a capacitor discharge circuit. However, in Japanese Patent Laid-Open No. 2013-38895, a high-resistance parallel connection body is connected between the input terminals of the inverter in order to ensure a discharge path even when an abnormality occurs in the resistor of the discharge circuit. Therefore, there is a problem that the discharge resistance increases.
 そこで、本発明では、放電抵抗の発熱量が過大となることを防止することができるとともに放電抵抗の小型化を図ることが可能な駆動装置、電動車両および駆動装置の製造方法を提供することを目的とする。 Accordingly, the present invention provides a drive device, an electric vehicle, and a drive device manufacturing method that can prevent the amount of heat generated by the discharge resistor from becoming excessive and can reduce the size of the discharge resistor. Objective.
 本発明の一態様に係る駆動装置は、
 バッテリの正極に接続される電源端子と前記バッテリの負極に接続される接地端子との間に接続され、前記バッテリから前記電源端子と前記接地端子との間に供給された電圧で充電される平滑コンデンサと、
 前記電源端子と前記接地端子との間で、前記平滑コンデンサと並列に接続され、前記平滑コンデンサを放電させるための放電抵抗と、
 前記電源端子と前記接地端子との間で、前記放電抵抗と直列に接続され、前記放電抵抗による前記平滑コンデンサの放電を制御する放電制御回路と、
 前記放電制御回路の動作を制御する主制御回路と、
 前記電源端子と前記接地端子との間の直流電圧を電力変換した交流電圧をモータに供給して、前記モータを駆動する駆動回路と、を備え、
 前記主制御回路は、
 前記放電抵抗による放電開始前に、前記電源端子と前記接地端子との間の前記平滑コンデンサの第1充電電圧を検出し、
 前記放電抵抗による放電開始から予め設定された設定時間の経過前に、前記第1充電電圧と予め設定された係数とを乗じることで、前記設定時間の経過時において予測される前記放電抵抗による放電の継続が可能な前記平滑コンデンサの充電電圧である放電継続可能電圧を算出し、
 前記設定時間の経過時に、前記電源端子と前記接地端子との間の前記平滑コンデンサの第2充電電圧を検出し、
 前記第2充電電圧と前記放電継続可能電圧とを比較し、
 前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記放電抵抗による放電を継続するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記放電抵抗による放電を停止するように前記放電制御回路を制御する。
A driving device according to one embodiment of the present invention includes:
A smoothing connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the grounding terminal. A capacitor,
Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor,
A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor;
A main control circuit for controlling the operation of the discharge control circuit;
A drive circuit for driving the motor by supplying an AC voltage obtained by converting the DC voltage between the power supply terminal and the ground terminal to the motor; and
The main control circuit includes:
Detecting the first charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal before starting discharge by the discharge resistor;
The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance. A discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of
Detecting a second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when the set time elapses;
Comparing the second charge voltage and the sustainable voltage;
When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
 前記駆動装置において、
 前記主制御回路は、
 前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記平滑コンデンサの充電電圧が前記第2充電電圧よりも小さい第3充電電圧以下になるまで前記放電抵抗による前記平滑コンデンサの放電を継続するように前記放電制御回路を制御してもよい。
In the driving device,
The main control circuit includes:
When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the smoothing capacitor is discharged by the discharge resistor until the charging voltage of the smoothing capacitor becomes equal to or lower than a third charging voltage smaller than the second charging voltage. The discharge control circuit may be controlled so as to continue.
 前記駆動装置において、
 前記主制御回路は、
 前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記平滑コンデンサへの前記放電抵抗の接続を維持するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記平滑コンデンサから前記放電抵抗を遮断するように前記放電制御回路を制御してもよい。
In the driving device,
The main control circuit includes:
When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the discharge control circuit is controlled to maintain the connection of the discharge resistor to the smoothing capacitor, while the second charging voltage is When the voltage is higher than the discharge continuable voltage, the discharge control circuit may be controlled so as to cut off the discharge resistance from the smoothing capacitor.
 前記駆動装置において、
 前記主制御回路は、
 前記放電抵抗による放電開始前に前記放電継続可能電圧を算出してもよい。
In the driving device,
The main control circuit includes:
The discharge continuation possible voltage may be calculated before the start of discharge by the discharge resistance.
 前記駆動装置において、
 前記係数は、前記設定時間の経過時において予測される前記平滑コンデンサの放電量の最小値に相関するように設定されていてもよい。
In the driving device,
The coefficient may be set so as to correlate with a minimum value of the discharge amount of the smoothing capacitor predicted when the set time elapses.
 前記駆動装置において、
 前記係数は、前記放電開始からの経過時間に応じて変化するように設定され、
 前記主制御回路は、
 前記経過時間が前記設定時間であるときの係数を前記第1充電電圧に乗じることで前記放電継続可能電圧を算出してもよい。
In the driving device,
The coefficient is set to change according to the elapsed time from the start of the discharge,
The main control circuit includes:
The discharge continuable voltage may be calculated by multiplying the first charging voltage by a coefficient when the elapsed time is the set time.
 前記駆動装置において、
 前記主制御回路は、前記放電抵抗による放電開始から前記設定時間よりも短い周期で、前記第1充電電圧と周期毎の前記係数との積算値を監視し、監視結果に基づいて前記放電制御回路を制御してもよい。
In the driving device,
The main control circuit monitors an integrated value of the first charging voltage and the coefficient for each cycle at a cycle shorter than the set time from the start of discharge by the discharge resistor, and the discharge control circuit based on a monitoring result May be controlled.
 前記駆動装置において、
 前記主制御回路は、
 前記設定時間の経過時において予測される前記平滑コンデンサの放電量の最大値に相関するように設定された第2の係数を前記第1充電電圧に乗じることで、前記設定時間の経過時において予測される前記平滑コンデンサの下限充電電圧を算出し、
 前記第2充電電圧が前記下限充電電圧以上である場合に、前記放電抵抗による放電を継続するように前記放電制御回路を制御してもよい。
In the driving device,
The main control circuit includes:
By multiplying the first charging voltage by the second coefficient set so as to correlate with the maximum value of the discharge amount of the smoothing capacitor predicted when the set time elapses, the prediction is made when the set time elapses. Calculating a lower limit charging voltage of the smoothing capacitor,
When the second charging voltage is equal to or higher than the lower limit charging voltage, the discharge control circuit may be controlled to continue discharging by the discharge resistance.
 前記駆動装置において、
 前記主制御回路は、更に、前記駆動回路の動作を制御してもよい。
In the driving device,
The main control circuit may further control the operation of the drive circuit.
 前記駆動装置において、
 前記主制御回路は、
 前記放電抵抗による前記平滑コンデンサの放電を停止するように前記放電制御回路を制御する場合には、前記駆動回路を制御することで前記モータによる前記平滑コンデンサの放電を制御してもよい。
In the driving device,
The main control circuit includes:
When the discharge control circuit is controlled so as to stop the discharge of the smoothing capacitor by the discharge resistor, the discharge of the smoothing capacitor by the motor may be controlled by controlling the drive circuit.
 前記駆動装置において、
 前記駆動回路は、
 一端が前記電源端子に接続され、他端が第1相の第1出力端子に接続された第1トランジスタと、
 一端が前記電源端子に接続され、他端が第2相の第2出力端子に接続された第2トランジスタと、
 一端が前記電源端子に接続され、他端が第3相の第3出力端子に接続された第3トランジスタと、
 一端が前記第1出力端子に接続され、他端が前記接地端子に接続された第4トランジスタと、
 一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第5トランジスタと、
 一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6トランジスタと、を有し、
 前記主制御回路は、
 前記第1~第6トランジスタを制御することで前記モータによる前記平滑コンデンサの放電を制御してもよい。
In the driving device,
The drive circuit is
A first transistor having one end connected to the power supply terminal and the other end connected to a first output terminal of a first phase;
A second transistor having one end connected to the power supply terminal and the other end connected to a second output terminal of the second phase;
A third transistor having one end connected to the power supply terminal and the other end connected to a third phase third output terminal;
A fourth transistor having one end connected to the first output terminal and the other end connected to the ground terminal;
A fifth transistor having one end connected to the second output terminal and the other end connected to the ground terminal;
A sixth transistor having one end connected to the third output terminal and the other end connected to the ground terminal;
The main control circuit includes:
The discharge of the smoothing capacitor by the motor may be controlled by controlling the first to sixth transistors.
 前記駆動装置において、
 前記主制御回路は、前記平滑コンデンサが前記バッテリに接続されているときに、前記第1充電電圧の検出、前記放電継続可能電圧の算出、前記第2充電電圧の検出、および前記第2充電電圧と前記放電継続可能電圧との比較結果に応じた前記放電制御回路の制御を行ってもよい。
In the driving device,
When the smoothing capacitor is connected to the battery, the main control circuit detects the first charging voltage, calculates the discharge continuable voltage, detects the second charging voltage, and the second charging voltage. And the discharge control circuit may be controlled in accordance with a comparison result between the discharge sustainable voltage and the discharge continuable voltage.
 前記駆動装置において、
 前記放電制御回路は、
 前記第1充電電圧および前記第2充電電圧を検出し、前記第1および第2充電電圧に関する情報を前記主制御回路に出力し、
 前記主制御回路は、
 前記情報の入力によって前記第1および第2充電電圧を検出してもよい。
In the driving device,
The discharge control circuit includes:
Detecting the first charging voltage and the second charging voltage, and outputting information on the first and second charging voltages to the main control circuit;
The main control circuit includes:
The first and second charging voltages may be detected by inputting the information.
 本発明の一態様に係る電動車両は、
 バッテリと、モータと、駆動装置とを備えた電動車両であって、
 前記駆動装置は、
 前記バッテリの正極に接続される電源端子と前記バッテリの負極に接続される接地端子との間に接続され、前記バッテリから前記電源端子と前記接地端子との間に供給された電圧で充電される平滑コンデンサと、
 前記電源端子と前記接地端子との間で、前記平滑コンデンサと並列に接続され、前記平滑コンデンサを放電させるための放電抵抗と、
 前記電源端子と前記接地端子との間で、前記放電抵抗と直列に接続され、前記放電抵抗による前記平滑コンデンサの放電を制御する放電制御回路と、
 前記放電制御回路の動作を制御する主制御回路と、
 前記電源端子と前記接地端子との間の直流電圧を電力変換した交流電圧を前記モータに供給して、前記モータを駆動する駆動回路と、を備え、
 前記主制御回路は、
 前記放電抵抗による放電開始前に、前記平滑コンデンサの第1充電電圧を検出し、
 前記放電抵抗による放電開始から予め設定された設定時間の経過前に、前記第1充電電圧と予め設定された係数とを乗じることで、前記設定時間の経過時において予測される前記放電抵抗による放電の継続が可能な前記平滑コンデンサの充電電圧である放電継続可能電圧を算出し、
 前記設定時間の経過時に、前記平滑コンデンサの第2充電電圧を検出し、
 前記第2充電電圧と前記放電継続可能電圧とを比較し、
 前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記放電抵抗による放電を継続するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記放電抵抗による放電を停止するように前記放電制御回路を制御する。
An electric vehicle according to an aspect of the present invention includes:
An electric vehicle including a battery, a motor, and a drive device,
The driving device includes:
Connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the ground terminal. A smoothing capacitor;
Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor,
A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor;
A main control circuit for controlling the operation of the discharge control circuit;
A drive circuit for driving the motor by supplying an AC voltage obtained by converting a DC voltage between the power supply terminal and the ground terminal to the motor; and
The main control circuit includes:
Detecting the first charging voltage of the smoothing capacitor before starting discharge by the discharge resistor;
The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance. A discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of
Detecting a second charging voltage of the smoothing capacitor when the set time elapses;
Comparing the second charge voltage and the sustainable voltage;
When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
 本発明の一態様に係る駆動装置の制御方法は、
 バッテリの正極に接続される電源端子と前記バッテリの負極に接続される接地端子との間に接続され、前記バッテリから前記電源端子と前記接地端子との間に供給された電圧で充電される平滑コンデンサと、
 前記電源端子と前記接地端子との間で、前記平滑コンデンサと並列に接続され、前記平滑コンデンサを放電させるための放電抵抗と、
 前記電源端子と前記接地端子との間で、前記放電抵抗と直列に接続され、前記放電抵抗による前記平滑コンデンサの放電を制御する放電制御回路と、
 前記電源端子と前記接地端子との間の直流電圧を電力変換した交流電圧をモータに供給して、前記モータを駆動する駆動回路と、を備えた駆動装置の制御方法であって、
 前記放電抵抗による放電開始前に、前記平滑コンデンサの第1充電電圧を検出し、
 前記放電抵抗による放電開始から予め設定された設定時間の経過前に、前記第1充電電圧と予め設定された係数とを乗じることで、前記設定時間の経過時において予測される前記放電抵抗による放電の継続が可能な前記平滑コンデンサの充電電圧である放電継続可能電圧を算出し、
 前記設定時間の経過時に、前記平滑コンデンサの第2充電電圧を検出し、
 前記第2充電電圧と前記放電継続可能電圧とを比較し、
 前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記放電抵抗による放電を継続するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記放電抵抗による放電を停止するように前記放電制御回路を制御する。
A control method of a driving device according to an aspect of the present invention includes:
A smoothing connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the grounding terminal. A capacitor,
Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor,
A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor;
A drive circuit that supplies an AC voltage obtained by converting a DC voltage between the power supply terminal and the ground terminal to a motor and drives the motor,
Detecting the first charging voltage of the smoothing capacitor before starting discharge by the discharge resistor;
The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance. A discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of
Detecting a second charging voltage of the smoothing capacitor when the set time elapses;
Comparing the second charge voltage and the sustainable voltage;
When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
 本発明の一態様に係る駆動装置は、バッテリの正極に接続される電源端子とバッテリの負極に接続される接地端子との間に接続され、バッテリから電源端子と接地端子との間に供給された電圧で充電される平滑コンデンサと、電源端子と接地端子との間で、平滑コンデンサと並列に接続され、平滑コンデンサを放電させるための放電抵抗と、電源端子と接地端子との間で、放電抵抗と直列に接続され、放電抵抗による平滑コンデンサの放電を制御する放電制御回路と、放電制御回路の動作を制御する主制御回路と、電源端子と接地端子との間の直流電圧を電力変換した交流電圧をモータに供給して、モータを駆動する駆動回路と、を備え、主制御回路は、放電抵抗による放電開始前に、電源端子と接地端子との間の平滑コンデンサの第1充電電圧を検出し、放電抵抗による放電開始から予め設定された設定時間の経過前に、第1充電電圧と予め設定された係数とを乗じることで、設定時間の経過時において予測される放電抵抗による放電の継続が可能な平滑コンデンサの充電電圧である放電継続可能電圧を算出し、設定時間の経過時に、電源端子と接地端子との間の平滑コンデンサの第2充電電圧を検出し、第2充電電圧と放電継続可能電圧とを比較し、第2充電電圧が放電継続可能電圧以下である場合には、放電抵抗による放電を継続するように放電制御回路を制御し、一方、第2充電電圧が放電継続可能電圧よりも大きい場合には、放電抵抗による放電を停止するように放電制御回路を制御する。 A drive device according to one embodiment of the present invention is connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and is supplied from the battery between the power supply terminal and the ground terminal. Between the power supply terminal and the ground terminal, and between the power supply terminal and the ground terminal, and between the power supply terminal and the ground terminal. A power control is performed on the DC voltage between the power supply terminal and the ground terminal, connected to the resistor in series and controlling the discharge of the smoothing capacitor by the discharge resistor, the main control circuit controlling the operation of the discharge control circuit, and A drive circuit for driving the motor by supplying an AC voltage to the motor, and the main control circuit performs the first charging of the smoothing capacitor between the power supply terminal and the ground terminal before the discharge by the discharge resistor is started. By detecting the voltage and multiplying the first charging voltage by a preset coefficient before the preset set time elapses from the start of discharge by the discharge resistor, the discharge resistance is predicted when the preset time elapses. A discharge continuable voltage, which is a charge voltage of a smoothing capacitor capable of continuing discharge, is calculated, and a second charge voltage of the smoothing capacitor between the power supply terminal and the ground terminal is detected when the set time has elapsed, and the second charge is performed. When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistor, while the second charge voltage is When the voltage is higher than the discharge continuable voltage, the discharge control circuit is controlled to stop the discharge by the discharge resistance.
 これにより、本発明の駆動装置によれば、放電抵抗の発熱量が過大となることを防止することができるとともに放電抵抗の小型化を図ることができる。 Thereby, according to the drive device of the present invention, it is possible to prevent the amount of heat generated by the discharge resistor from becoming excessive and to reduce the size of the discharge resistor.
図1は、第1の実施形態に係る電動式車両用制御装置100の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of an electric vehicle control device 100 according to the first embodiment. 図2は、第1の実施形態に係る電動式車両用制御装置100の動作例を示すフローチャートである。FIG. 2 is a flowchart illustrating an operation example of the electric vehicle control device 100 according to the first embodiment. 図3は、第1の実施形態に係る電動式車両用制御装置100の動作例を示す充電電圧のグラフである。FIG. 3 is a charging voltage graph showing an operation example of the electric vehicle control apparatus 100 according to the first embodiment. 図4は、第2の実施形態に係る電動式車両用制御装置100の構成の一例を示す図である。FIG. 4 is a diagram illustrating an example of the configuration of the electric vehicle control device 100 according to the second embodiment.
 以下、図面を参照して本発明に係る実施形態を説明する。なお、以下に示す実施形態は、本発明を限定するものではない。また、実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, embodiment shown below does not limit this invention. In the drawings referred to in the embodiments, the same portions or portions having similar functions are denoted by the same or similar reference numerals, and the repeated description thereof is omitted.
(第1の実施形態)
 まず、図1~図3を参照して、駆動装置の一例としての第1の実施形態に係る電動式車両用制御装置100について説明する。
(First embodiment)
First, an electric vehicle control apparatus 100 according to a first embodiment as an example of a drive apparatus will be described with reference to FIGS. 1 to 3.
 図1は、第1の実施形態に係る電動式車両用制御装置100の構成の一例を示す図である。 FIG. 1 is a diagram illustrating an example of a configuration of an electric vehicle control device 100 according to the first embodiment.
 例えば、図1に示すように、第1の実施形態に係る電動式車両用制御装置100は、バッテリBの電圧から駆動電圧MU、MV、MWを生成して、この駆動電圧MU、MV、MWにより、モータMを駆動するようになっている。 For example, as shown in FIG. 1, the electric vehicle control device 100 according to the first embodiment generates drive voltages MU, MV, and MW from the voltage of the battery B, and the drive voltages MU, MV, and MW. Thus, the motor M is driven.
 電動式車両用制御装置100は、モータMによる回生時に、モータMから出力された逆起電圧を直流の回生電圧に変換して、電源端子TBと接地端子TGとの間に供給して電池BHを充電してもよい。 The electric vehicle control apparatus 100 converts the back electromotive voltage output from the motor M into a DC regenerative voltage during regeneration by the motor M, and supplies the DC regenerative voltage between the power supply terminal TB and the ground terminal TG to supply the battery BH. May be charged.
 電動式車両用制御装置100は、例えば、図1に示すように、電源端子TBと、接地端子TGと、平滑コンデンサFCと、放電抵抗FRと、放電制御回路FXと、駆動回路Zと、主制御回路CONと、を備える。 For example, as shown in FIG. 1, the electric vehicle control apparatus 100 includes a power supply terminal TB, a ground terminal TG, a smoothing capacitor FC, a discharge resistor FR, a discharge control circuit FX, a drive circuit Z, And a control circuit CON.
 なお、モータMは、例えば、電動二輪車の車輪を駆動するものである。 In addition, the motor M drives a wheel of an electric motorcycle, for example.
 また、電動式車両用制御装置100、バッテリB、スイッチSWは、例えば、既述の電動二輪車に積載される。 Further, the electric vehicle control device 100, the battery B, and the switch SW are mounted on, for example, the above-described electric motorcycle.
 また、電源端子TBは、例えば、図1に示すように、バッテリBの正極がスイッチSWを介して接続されるようになっている。 Further, for example, as shown in FIG. 1, the positive terminal of the battery B is connected to the power supply terminal TB via the switch SW.
 そして、接地端子TGは、例えば、図1に示すように、バッテリBの負極が接続されるようになっている。 The ground terminal TG is connected to the negative electrode of the battery B as shown in FIG.
 また、スイッチSWは、一端がバッテリBの正極に接続され、他端が電源端子TBに接続されている。このスイッチSWは、オンすることにより、バッテリBの正極と電源端子TBとの間を電気的に導通するようになっている。一方、スイッチSWは、オフすることにより、バッテリBの正極と電源端子TBとの間を電気的に遮断するようになっている。 The switch SW has one end connected to the positive electrode of the battery B and the other end connected to the power supply terminal TB. When the switch SW is turned on, the switch SW is electrically connected between the positive electrode of the battery B and the power supply terminal TB. On the other hand, when the switch SW is turned off, the positive electrode of the battery B and the power supply terminal TB are electrically disconnected.
 このスイッチSWは、後述のように、主制御回路CONにより、オン又はオフに制御されるようになっている。 The switch SW is controlled to be turned on or off by the main control circuit CON as will be described later.
 また、平滑コンデンサFCは、電源端子TBと接地端子TGとの間に接続されている。この平滑コンデンサFCは、電源端子TBと接地端子TGとの間に供給された電圧で充電されるようになっている。 The smoothing capacitor FC is connected between the power supply terminal TB and the ground terminal TG. The smoothing capacitor FC is charged with a voltage supplied between the power supply terminal TB and the ground terminal TG.
 例えば、図1に示すように、平滑コンデンサFCは、バッテリBが出力した電圧で充電されるようになっている。平滑コンデンサFCは、駆動回路Zが出力した回生電力で充電されてもよい。 For example, as shown in FIG. 1, the smoothing capacitor FC is charged with the voltage output from the battery B. The smoothing capacitor FC may be charged with regenerative power output from the drive circuit Z.
 また、放電抵抗FRは、例えば、図1に示すように、電源端子TBと接地端子TGとの間で、平滑コンデンサFCと並列に接続されている。この放電抵抗FRは、平滑コンデンサFCを放電させるためのものである。放電抵抗FRは、制約された電動式車両用制御装置100のスペースに収まるように配置された、例えば単一の抵抗である。 Further, for example, as shown in FIG. 1, the discharge resistor FR is connected in parallel with the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG. This discharge resistor FR is for discharging the smoothing capacitor FC. The discharge resistor FR is, for example, a single resistor disposed so as to fit in the constrained space of the electric vehicle control device 100.
 また、放電制御回路FXは、例えば、図1に示すように、電源端子TBと接地端子TGとの間で、放電抵抗FRと直列に接続されている。 Further, the discharge control circuit FX is connected in series with the discharge resistor FR between the power supply terminal TB and the ground terminal TG, for example, as shown in FIG.
 例えば、図1の例では、放電抵抗FRは、一端が電源端子TBに接続されている。そして、放電制御回路FXは、一端が放電抵抗FRの他端に接続され、他端が接地端子TGに接続されている。 For example, in the example of FIG. 1, one end of the discharge resistor FR is connected to the power supply terminal TB. The discharge control circuit FX has one end connected to the other end of the discharge resistor FR and the other end connected to the ground terminal TG.
 放電制御回路FXは、放電抵抗FRによる平滑コンデンサFCの放電を制御するようになっている。 The discharge control circuit FX controls the discharge of the smoothing capacitor FC by the discharge resistor FR.
 例えば、放電制御回路FXは、放電抵抗FRの他端と接地端子TG(平滑コンデンサFCの他端)との間を導通(すなわちオン)することにより、平滑コンデンサFCを放電させるようになっている。 For example, the discharge control circuit FX is configured to discharge the smoothing capacitor FC by conducting (that is, turning on) between the other end of the discharge resistor FR and the ground terminal TG (the other end of the smoothing capacitor FC). .
 一方、放電制御回路FXは、平滑コンデンサFCが充電される状態にする場合には、放電抵抗FRの他端と接地端子TG(平滑コンデンサFCの他端)との間を遮断(すなわちオフ)するようになっている。 On the other hand, when the smoothing capacitor FC is charged, the discharge control circuit FX blocks (that is, turns off) between the other end of the discharge resistor FR and the ground terminal TG (the other end of the smoothing capacitor FC). It is like that.
 放電制御回路FXは、電源端子TBと接地端子TGとの間の電圧(平滑コンデンサFCの充電電圧)によって動作してもよい。例えば、放電制御回路FXは、電源端子TBと接地端子TGとの間の電圧(平滑コンデンサFCの充電電圧VFC)が所定値以上になることで起動してもよい。 The discharge control circuit FX may be operated by a voltage between the power supply terminal TB and the ground terminal TG (charging voltage of the smoothing capacitor FC). For example, the discharge control circuit FX may be activated when the voltage between the power supply terminal TB and the ground terminal TG (the charging voltage VFC of the smoothing capacitor FC) is equal to or higher than a predetermined value.
 また、駆動回路Zは、例えば、図1に示すように、モータMの駆動時に、電源端子TBと接地端子TGとの間の直流電圧を電力変換した3相の交流電圧MU、MV、MWを、第1出力端子TU、第2出力端子TV、及び第3出力端子TWを介して、モータMに供給して、モータMを駆動するようになっている。 In addition, as shown in FIG. 1, for example, the drive circuit Z generates three-phase AC voltages MU, MV, and MW obtained by converting the DC voltage between the power supply terminal TB and the ground terminal TG when the motor M is driven. The motor M is driven by being supplied to the motor M via the first output terminal TU, the second output terminal TV, and the third output terminal TW.
 一方、この駆動回路Zは、モータMによる回生時に、モータMから出力された(第1出力端子TU、第2出力端子TV、及び第3出力端子TWを介して供給された)逆起電圧を直流の回生電圧に変換して、電源端子TBと接地端子TGとの間に供給してもよい。すなわち、駆動回路Zは、モータMから供給された回生電力をバッテリB、平滑コンデンサFCに戻す(充電する)ように構成されていてもよい。 On the other hand, the drive circuit Z generates a back electromotive voltage (supplied via the first output terminal TU, the second output terminal TV, and the third output terminal TW) output from the motor M during regeneration by the motor M. It may be converted into a DC regenerative voltage and supplied between the power supply terminal TB and the ground terminal TG. That is, the drive circuit Z may be configured to return (charge) the regenerative power supplied from the motor M to the battery B and the smoothing capacitor FC.
 なお、スイッチSWがオンされている場合(後述の遮断状態では無い場合)には、バッテリBにも、当該回生電力が充電されることとなり、平滑コンデンサFCの充電電圧VFCの上昇が緩やかになる。 When the switch SW is turned on (when not in the cutoff state described later), the battery B is also charged with the regenerative power, and the rise of the charging voltage VFC of the smoothing capacitor FC is moderated. .
 ここで、この駆動回路Zは、例えば、図1に示すように、第1出力端子TUと、第2出力端子TVと、第3出力端子TWと、第1トランジスタQ1と、第2トランジスタQ2と、第3トランジスタQ3と、第4トランジスタQ4と、第5トランジスタQ5と、第6トランジスタQ6と、第1ダイオードD1と、第2ダイオードD2と、第3ダイオードD3と、第4ダイオードD4と、第5ダイオードD5と、第6ダイオードD6と、を備える。 Here, for example, as shown in FIG. 1, the drive circuit Z includes a first output terminal TU, a second output terminal TV, a third output terminal TW, a first transistor Q1, and a second transistor Q2. The third transistor Q3, the fourth transistor Q4, the fifth transistor Q5, the sixth transistor Q6, the first diode D1, the second diode D2, the third diode D3, the fourth diode D4, 5 diode D5 and 6th diode D6.
 そして、第1出力端子TUは、モータMのU相のコイル(図示せず)に接続されている。 The first output terminal TU is connected to a U-phase coil (not shown) of the motor M.
 また、第2出力端子TVは、モータMのV相のコイル(図示せず)に接続されている。 The second output terminal TV is connected to a V-phase coil (not shown) of the motor M.
 また、第3出力端子TWは、モータMのW相のコイル(図示せず)に接続されている。 The third output terminal TW is connected to a W-phase coil (not shown) of the motor M.
 そして、例えば、図1に示すように、第1トランジスタQ1は、一端(ドレイン)が電源端子TBに接続され、他端(ソース)が第1相(U相)の第1出力端子TUに接続されている。この第1トランジスタQ1は、図1の例では、nMOSトランジスタである。 For example, as shown in FIG. 1, the first transistor Q1 has one end (drain) connected to the power supply terminal TB and the other end (source) connected to the first output terminal TU of the first phase (U phase). Has been. The first transistor Q1 is an nMOS transistor in the example of FIG.
 また、第1ダイオードD1は、カソードが電源端子TBに接続され、アノードが第1出力端子TUに接続されている。 The first diode D1 has a cathode connected to the power supply terminal TB and an anode connected to the first output terminal TU.
 そして、第2トランジスタQ2は、一端(ドレイン)が電源端子TBに接続され、他端(ソース)が第2相(V相)の第2出力端子TVに接続されている。この第2トランジスタQ2は、図1の例では、nMOSトランジスタである。 The second transistor Q2 has one end (drain) connected to the power supply terminal TB and the other end (source) connected to the second output terminal TV of the second phase (V phase). The second transistor Q2 is an nMOS transistor in the example of FIG.
 また、第2ダイオードD2は、カソードが電源端子TBに接続され、アノードが前記第2出力端子TVに接続されている。 The second diode D2 has a cathode connected to the power supply terminal TB and an anode connected to the second output terminal TV.
 そして、第3トランジスタQ3は、一端(ドレイン)が電源端子TBに接続され、他端(ソース)が第3相(W相)の第3出力端子TWに接続されている。この第3トランジスタQ3は、図1の例では、nMOSトランジスタである。 The third transistor Q3 has one end (drain) connected to the power supply terminal TB and the other end (source) connected to the third output terminal TW of the third phase (W phase). The third transistor Q3 is an nMOS transistor in the example of FIG.
 また、第3ダイオードD3は、カソードが電源端子TBに接続され、アノードが第3出力端子TWに接続されている。 The third diode D3 has a cathode connected to the power supply terminal TB and an anode connected to the third output terminal TW.
 そして、第4トランジスタQ4は、一端(ドレイン)が第1出力端子TUに接続され、他端(ソース)が接地端子TGに接続されている。この第4トランジスタQ4は、図1の例では、nMOSトランジスタである。 The fourth transistor Q4 has one end (drain) connected to the first output terminal TU and the other end (source) connected to the ground terminal TG. The fourth transistor Q4 is an nMOS transistor in the example of FIG.
 また、第4ダイオードD4は、カソードが第1出力端子TUに接続され、カソードが接地端子TGに接続されている。 
 そして、第5トランジスタQ5は、一端(ソース)が第2出力端子TVに接続され、他端(ドレイン)が接地端子TGに接続されている。この第5トランジスタQ5は、図1の例では、nMOSトランジスタである。
The fourth diode D4 has a cathode connected to the first output terminal TU and a cathode connected to the ground terminal TG.
The fifth transistor Q5 has one end (source) connected to the second output terminal TV and the other end (drain) connected to the ground terminal TG. The fifth transistor Q5 is an nMOS transistor in the example of FIG.
 また、第5ダイオードD5は、カソードが第2出力端子TVに接続され、アノードが接地端子TGに接続されている。 The fifth diode D5 has a cathode connected to the second output terminal TV and an anode connected to the ground terminal TG.
 そして、第6トランジスタQ6は、一端(ソース)が第3出力端子TWに接続され、他端(ドレイン)が接地端子TGに接続されている。この第6トランジスタQ6は、図1の例では、nMOSトランジスタである。 The sixth transistor Q6 has one end (source) connected to the third output terminal TW and the other end (drain) connected to the ground terminal TG. The sixth transistor Q6 is an nMOS transistor in the example of FIG.
 また、第6ダイオードD6は、カソードが第3出力端子TWに接続され、アノードが接地端子TGに接続されている。 The sixth diode D6 has a cathode connected to the third output terminal TW and an anode connected to the ground terminal TG.
 当該第1ないし第6トランジスタQ1~Q6は、主制御回路CONが出力するゲート制御信号(ゲート電圧)が、第1ないし第6トランジスタQ1~Q6のゲートに供給されることにより、所定のパターンで動作するようになっている。 The first to sixth transistors Q1 to Q6 have a predetermined pattern when a gate control signal (gate voltage) output from the main control circuit CON is supplied to the gates of the first to sixth transistors Q1 to Q6. It is supposed to work.
 主制御回路CONは、バッテリBが満充電になると、スイッチSWをオフし、バッテリBの電圧が所定値未満になると、スイッチSWをオンするようになっている。 The main control circuit CON turns off the switch SW when the battery B is fully charged, and turns on the switch SW when the voltage of the battery B becomes less than a predetermined value.
 主制御回路CONは、放電制御回路FXの動作を制御する。 The main control circuit CON controls the operation of the discharge control circuit FX.
 主制御回路CONは、放電抵抗FRによる放電開始前に、電源端子TBと接地端子TGとの間の平滑コンデンサFCの第1充電電圧を検出する。 The main control circuit CON detects the first charging voltage of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG before the discharge by the discharge resistor FR is started.
 第1充電電圧を検出した後、主制御回路CONは、放電抵抗FRによる放電開始から予め設定された設定時間の経過前に、検出された第1充電電圧と予め設定された係数とを乗じることで、設定時間の経過時において予測される放電抵抗FRによる放電の継続が可能な平滑コンデンサFCの充電電圧である放電継続可能電圧を算出する。 After detecting the first charging voltage, the main control circuit CON multiplies the detected first charging voltage and a preset coefficient before the preset time elapses from the start of discharge by the discharge resistor FR. Thus, a discharge continuable voltage, which is a charging voltage of the smoothing capacitor FC capable of continuing the discharge by the discharge resistor FR predicted when the set time has elapsed, is calculated.
 設定時間の経過時に、主制御回路CONは、電源端子TBと接地端子TGとの間の平滑コンデンサFCの第2充電電圧を検出する。 When the set time has elapsed, the main control circuit CON detects the second charging voltage of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.
 第2充電電圧を検出した後、主制御回路CONは、検出された第2充電電圧と算出された放電継続可能電圧とを比較する。 After detecting the second charging voltage, the main control circuit CON compares the detected second charging voltage with the calculated discharge continuation possible voltage.
 そして、第2充電電圧が放電継続可能電圧以下である場合には、主制御回路CONは、放電抵抗FRによる放電を継続するように放電制御回路FXを制御する。 When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the main control circuit CON controls the discharge control circuit FX so as to continue the discharge by the discharge resistor FR.
 一方、第2充電電圧が放電継続可能電圧よりも大きい場合には、主制御回路CONは、放電抵抗FRによる放電を停止するように放電制御回路FXを制御する。 On the other hand, when the second charging voltage is higher than the voltage capable of continuing the discharge, the main control circuit CON controls the discharge control circuit FX so as to stop the discharge by the discharge resistor FR.
 第2充電電圧が放電継続可能電圧以下である場合、主制御回路CONは、平滑コンデンサFCの充電電圧が第2充電電圧よりも小さい第3充電電圧以下になるまで放電抵抗FRによる平滑コンデンサFCの放電を継続するように放電制御回路FXを制御してもよい。第3充電電圧は、例えば、平滑コンデンサFCの放電が完了したとみなせる程度に低い電圧である。 When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the main control circuit CON determines that the smoothing capacitor FC by the discharge resistor FR until the charging voltage of the smoothing capacitor FC becomes equal to or lower than the third charging voltage smaller than the second charging voltage. The discharge control circuit FX may be controlled so as to continue the discharge. The third charging voltage is, for example, a voltage that is low enough to assume that discharging of the smoothing capacitor FC has been completed.
 また、第2充電電圧が放電継続可能電圧以下である場合、主制御回路CONは、平滑コンデンサFCへの放電抵抗FRの接続を維持するように放電制御回路FXを制御することで、放電抵抗FRによる放電を継続するように放電制御回路FXを制御してもよい。 Further, when the second charging voltage is equal to or lower than the discharge continuation possible voltage, the main control circuit CON controls the discharge control circuit FX so as to maintain the connection of the discharge resistance FR to the smoothing capacitor FC, whereby the discharge resistance FR The discharge control circuit FX may be controlled so as to continue the discharge.
 一方、第2充電電圧が放電継続可能電圧よりも大きい場合、主制御回路CONは、平滑コンデンサFCから放電抵抗FRを遮断するように放電制御回路FXを制御することで、放電抵抗FRによる放電を停止するように放電制御回路FXを制御してもよい。 On the other hand, when the second charging voltage is larger than the voltage capable of continuing the discharge, the main control circuit CON controls the discharge control circuit FX so as to cut off the discharge resistance FR from the smoothing capacitor FC, thereby discharging by the discharge resistance FR. The discharge control circuit FX may be controlled to stop.
 放電継続可能電圧の算出に用いられる係数は、設定時間の経過時において予測される平滑コンデンサFCの放電量の最小値に相関するように設定されていてもよい。また、係数は、放電開始からの経過時間に応じて変化するように設定されていてもよい。この場合、主制御回路CONは、経過時間が設定時間であるときの係数を第1充電電圧に乗じることで放電継続可能電圧を算出してもよい。 The coefficient used for calculating the discharge continuable voltage may be set so as to correlate with the minimum value of the discharge amount of the smoothing capacitor FC predicted when the set time elapses. The coefficient may be set so as to change according to the elapsed time from the start of discharge. In this case, the main control circuit CON may calculate the discharge continuable voltage by multiplying the first charging voltage by a coefficient when the elapsed time is the set time.
 主制御回路CONは、放電抵抗FRによる放電開始から、設定時間よりも短い監視周期で第1充電電圧と周期毎の係数との積算値を監視し、監視結果に基づいて放電制御回路FXを制御してもよい。例えば、主制御回路CONは、監視周期毎に、第1充電電圧と監視周期毎の係数とを乗じた積算値を、各監視周期において実際に検出された平滑コンデンサFCの充電電圧と比較し、実際の充電電圧が積算値よりも小さい状態が設定時間の経過時まで維持された場合に、放電抵抗FRによる放電を継続する制御を行ってもよい。 The main control circuit CON monitors the integrated value of the first charging voltage and the coefficient for each cycle in a monitoring cycle shorter than the set time from the start of discharge by the discharge resistor FR, and controls the discharge control circuit FX based on the monitoring result. May be. For example, the main control circuit CON compares the integrated value obtained by multiplying the first charging voltage and the coefficient for each monitoring period with the charging voltage of the smoothing capacitor FC actually detected in each monitoring period for each monitoring period, When the state where the actual charging voltage is smaller than the integrated value is maintained until the set time elapses, control may be performed to continue discharging by the discharge resistor FR.
 また、主制御回路CONは、設定時間の経過時において予測される平滑コンデンサFCの放電量の最大値に相関するように設定された第2の係数を第1充電電圧に乗じることで、設定時間の経過時において予測される平滑コンデンサFCの下限充電電圧を算出してもよい。そして、主制御回路CONは、第2充電電圧が下限充電電圧以上である場合に、放電抵抗による放電を継続するように放電制御回路FXを制御してもよい。 Further, the main control circuit CON multiplies the first charging voltage by the second coefficient set so as to correlate with the maximum value of the discharge amount of the smoothing capacitor FC predicted when the set time elapses. The lower limit charging voltage of the smoothing capacitor FC predicted during the elapse of time may be calculated. Then, the main control circuit CON may control the discharge control circuit FX so as to continue the discharge by the discharge resistance when the second charging voltage is equal to or higher than the lower limit charging voltage.
 放電抵抗FRによる平滑コンデンサFCの放電を停止するように放電制御回路FXを制御する場合、主制御回路CONは、駆動回路Zを制御することでモータMによる平滑コンデンサFCの放電を制御してもよい。すなわち、主制御回路CONは、第1ないし第6トランジスタQ1~Q6を制御することでモータMによる平滑コンデンサFCの放電を制御してもよい。 When controlling the discharge control circuit FX so as to stop the discharge of the smoothing capacitor FC by the discharge resistor FR, the main control circuit CON controls the driving circuit Z to control the discharge of the smoothing capacitor FC by the motor M. Good. That is, the main control circuit CON may control the discharge of the smoothing capacitor FC by the motor M by controlling the first to sixth transistors Q1 to Q6.
 また、主制御回路CONは、平滑コンデンサFCがバッテリBに接続されているときに、第1充電電圧の検出、放電継続可能電圧の算出、第2充電電圧の検出、および第2充電電圧と放電継続可能電圧との比較結果に応じた放電制御回路FXの制御を行ってもよい。 Further, when the smoothing capacitor FC is connected to the battery B, the main control circuit CON detects the first charge voltage, calculates the discharge continuable voltage, detects the second charge voltage, and discharges the second charge voltage and discharge. The discharge control circuit FX may be controlled according to the comparison result with the continuable voltage.
 以下、図2のフローチャートを参照して、第1の実施形態の動作例について説明する。なお、図2のフローチャートは、必要に応じて繰り返される。 Hereinafter, an operation example of the first embodiment will be described with reference to the flowchart of FIG. Note that the flowchart of FIG. 2 is repeated as necessary.
 先ず、主制御回路CONは、放電抵抗FRによる平滑コンデンサFCの放電を開始する前に、第1充電電圧を検出する(ステップS1)。第1充電電圧の検出は、例えば、モータMのロータの回転速度が予め設定された閾値速度以下となった場合に実行してもよい。 First, the main control circuit CON detects the first charging voltage before starting the discharge of the smoothing capacitor FC by the discharge resistor FR (step S1). The detection of the first charging voltage may be executed, for example, when the rotational speed of the rotor of the motor M is equal to or lower than a preset threshold speed.
 第1充電電圧を検出した後、主制御回路CONは、検出された第1充電電圧と予め主制御回路CONの記憶部に記憶された係数とに基づいて、放電継続可能電圧を算出する(ステップS2)。 After detecting the first charging voltage, the main control circuit CON calculates a discharge continuable voltage based on the detected first charging voltage and the coefficient stored in advance in the storage unit of the main control circuit CON (step) S2).
 図3は、第1の実施形態に係る電動式車両用制御装置100の動作例を示す充電電圧のグラフである。図3の例において、主制御回路CONは、第1充電電圧と、平滑コンデンサFCの放電量の最小値に相関するように設定された最小係数であって、放電開始(すなわち時刻t1)からの経過時間が設定時間(すなわち時刻t2)であるときの最小係数との積を、放電継続可能電圧として算出する。 FIG. 3 is a graph of charging voltage showing an operation example of the electric vehicle control device 100 according to the first embodiment. In the example of FIG. 3, the main control circuit CON is a minimum coefficient set so as to correlate with the first charge voltage and the minimum value of the discharge amount of the smoothing capacitor FC, and from the start of discharge (ie, time t1). The product of the minimum coefficient when the elapsed time is the set time (that is, time t2) is calculated as the discharge continuable voltage.
 放電継続可能電圧を算出した後、図2に示すように、主制御回路CONは、放電抵抗FRによる平滑コンデンサFCの放電を開始するように放電制御回路FXを制御する(ステップS3)。 After calculating the discharge continuation possible voltage, as shown in FIG. 2, the main control circuit CON controls the discharge control circuit FX so as to start the discharge of the smoothing capacitor FC by the discharge resistor FR (step S3).
 放電制御回路FXの制御によって放電抵抗FRによる平滑コンデンサFCの放電を開始した後、主制御回路CONは、放電開始時から設定期間が経過したか否かを判定する(ステップS4)。 After starting the discharge of the smoothing capacitor FC by the discharge resistor FR under the control of the discharge control circuit FX, the main control circuit CON determines whether or not the set period has elapsed from the start of the discharge (step S4).
 設定期間が経過した場合(ステップS4:Yes)、主制御回路CONは、第2充電電圧を検出する(ステップS5)。 When the set period has elapsed (step S4: Yes), the main control circuit CON detects the second charging voltage (step S5).
 第2充電電圧を検出した後、主制御回路CONは、検出された第2充電電圧と、算出された放電継続可能電圧とを比較し、第2充電電圧が放電継続可能電圧以下であるか否かを判定する(ステップS6)。 After detecting the second charging voltage, the main control circuit CON compares the detected second charging voltage with the calculated discharge continuable voltage, and determines whether or not the second charging voltage is equal to or lower than the discharge continuable voltage. Is determined (step S6).
 第2充電電圧が放電継続可能電圧以下である場合(ステップS6:Yes)、主制御回路CONは、放電抵抗FRによる放電を継続するように放電制御回路FXを制御する(ステップS7)。図3の例において、正常時の充電電圧は、最小係数と第1充電電圧との積よりも小さい値で遷移する。このような正常時の充電電圧は、設定時間の経過時t2すなわち第2充電電圧において放電継続可能電圧以下となる。この場合、平滑コンデンサFCは、例えば、平滑コンデンサFCの放電が完了するまで放電抵抗FRによって継続的に放電される。 When the second charging voltage is equal to or lower than the discharge continuation possible voltage (step S6: Yes), the main control circuit CON controls the discharge control circuit FX so as to continue the discharge by the discharge resistor FR (step S7). In the example of FIG. 3, the normal charging voltage transitions with a value smaller than the product of the minimum coefficient and the first charging voltage. Such a normal charging voltage is equal to or lower than the discharge continuable voltage at the time t2 when the set time has elapsed, that is, the second charging voltage. In this case, for example, the smoothing capacitor FC is continuously discharged by the discharge resistor FR until the discharge of the smoothing capacitor FC is completed.
 一方、図2に示すように、第2充電電圧が放電継続可能電圧以下でない場合(ステップS6:No)、主制御回路CONは、放電抵抗FRによる放電を停止するように放電制御回路FXを制御する(ステップS8)。図3の例において、異常時の充電電圧は、最小係数と第1充電電圧との積よりも大きい値で遷移する。このような異常時の充電電圧は、設定時間の経過時t2すなわち第2充電電圧において放電継続可能電圧より大きくなる。この場合、放電制御回路FXによって放電抵抗FRが平滑コンデンサFCから遮断されて、放電抵抗FRによる平滑コンデンサFCの放電が停止される。 On the other hand, as shown in FIG. 2, when the second charging voltage is not equal to or lower than the discharge continuation possible voltage (step S6: No), the main control circuit CON controls the discharge control circuit FX so as to stop the discharge by the discharge resistor FR. (Step S8). In the example of FIG. 3, the charging voltage at the time of abnormality transitions with a value larger than the product of the minimum coefficient and the first charging voltage. The charging voltage at the time of such an abnormality is greater than the voltage at which discharge can be continued at the time t2 when the set time has elapsed, that is, the second charging voltage. In this case, the discharge resistor FR is cut off from the smoothing capacitor FC by the discharge control circuit FX, and the discharge of the smoothing capacitor FC by the discharge resistor FR is stopped.
 放電抵抗FRによる放電を停止する制御(ステップS8)を行った後、主制御回路CONは、第1ないし第6トランジスタQ1~Q6を駆動制御することでモータMによる平滑コンデンサFCの放電に移行してもよい。 After performing the control for stopping the discharge by the discharge resistor FR (step S8), the main control circuit CON shifts to the discharge of the smoothing capacitor FC by the motor M by controlling the driving of the first to sixth transistors Q1 to Q6. May be.
 以上述べたように、第1の実施形態に係る電動式車両用制御装置100において、主制御回路は、放電抵抗による放電開始前に、電源端子と接地端子との間の平滑コンデンサの第1充電電圧を検出する。また、主制御回路は、放電抵抗による放電開始から予め設定された設定時間の経過前に、第1充電電圧と予め設定された係数とを乗じることで、設定時間の経過時において予測される放電抵抗による放電の継続が可能な平滑コンデンサの充電電圧である放電継続可能電圧を算出する。また、主制御回路は、設定時間の経過時に、電源端子と接地端子との間の平滑コンデンサの第2充電電圧を検出する。そして、主制御回路は、第2充電電圧と放電継続可能電圧とを比較し、第2充電電圧が放電継続可能電圧以下である場合には、放電抵抗による放電を継続するように放電制御回路を制御する。一方、主制御回路は、第2充電電圧が放電継続可能電圧よりも大きい場合には、放電抵抗による放電を停止するように放電制御回路を制御する。 As described above, in the electric vehicle control apparatus 100 according to the first embodiment, the main control circuit performs the first charging of the smoothing capacitor between the power supply terminal and the ground terminal before the discharge by the discharge resistor is started. Detect voltage. In addition, the main control circuit multiplies the first charging voltage by a preset coefficient before the preset set time elapses from the start of discharge by the discharge resistor, thereby predicting the discharge predicted when the preset time elapses. A discharge continuable voltage, which is a charging voltage of a smoothing capacitor capable of continuing discharge by a resistor, is calculated. The main control circuit detects the second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when the set time has elapsed. Then, the main control circuit compares the second charging voltage with the discharge continuable voltage, and if the second charge voltage is equal to or lower than the discharge continuable voltage, the main control circuit sets the discharge control circuit to continue the discharge by the discharge resistor Control. On the other hand, the main control circuit controls the discharge control circuit to stop the discharge by the discharge resistance when the second charging voltage is larger than the voltage capable of continuing the discharge.
 これにより、第1の実施形態に係る電動式車両用制御装置によれば、第2充電電圧が放電継続可能電圧よりも大きくなる場合には、放電抵抗による放電を停止することができる。これにより、放電抵抗に大きな電圧が印加されることを防止することができるので、放電抵抗の発熱量が過大となることを防止することができ、また、放電抵抗の耐圧性を確保するために放電抵抗を大きく形成することを要しないので、放電抵抗の小型化を図ることができる。 Thereby, according to the electric vehicle control device according to the first embodiment, when the second charging voltage becomes higher than the discharge continuable voltage, it is possible to stop the discharge due to the discharge resistance. As a result, it is possible to prevent a large voltage from being applied to the discharge resistor, so it is possible to prevent the amount of heat generated by the discharge resistor from becoming excessive, and to ensure the pressure resistance of the discharge resistor. Since it is not necessary to increase the discharge resistance, the discharge resistance can be reduced in size.
 また、主制御回路は、第2充電電圧が放電継続可能電圧以下である場合に、平滑コンデンサの充電電圧が第2充電電圧よりも小さい第3充電電圧以下になるまで放電抵抗による平滑コンデンサの放電を継続するように前記放電制御回路を制御することができる。これにより、平滑コンデンサを完全に放電することができる。 The main control circuit also discharges the smoothing capacitor by the discharge resistor until the charging voltage of the smoothing capacitor becomes equal to or lower than the third charging voltage smaller than the second charging voltage when the second charging voltage is equal to or lower than the discharge continuation possible voltage. The discharge control circuit can be controlled so as to continue. Thereby, the smoothing capacitor can be completely discharged.
 また、主制御回路は、第2充電電圧が電継続可能電圧以下である場合には、平滑コンデンサへの放電抵抗の接続を維持するように放電制御回路を制御し、一方、第2充電電圧が放電継続可能電圧よりも大きい場合には、平滑コンデンサから放電抵抗を遮断するように放電制御回路を制御することができる。これにより、放電の継続および停止を簡易な構成で確実に行うことができる。 Further, the main control circuit controls the discharge control circuit so as to maintain the connection of the discharge resistor to the smoothing capacitor when the second charge voltage is equal to or lower than the voltage at which the power can be continued, while the second charge voltage is When the voltage is higher than the discharge continuable voltage, the discharge control circuit can be controlled to cut off the discharge resistance from the smoothing capacitor. Thereby, continuation and a stop of discharge can be reliably performed with a simple configuration.
 また、主制御回路は、放電抵抗による放電開始前に放電継続可能電圧を算出することができる。これにより、設定時間が短い場合でも、放電継続可能電圧と第2充電電圧との比較を確実に行うことができる。 Also, the main control circuit can calculate the discharge continuable voltage before the start of discharge by the discharge resistor. Thereby, even when the set time is short, it is possible to reliably compare the discharge continuable voltage with the second charging voltage.
 また、設定時間の経過時において予測される平滑コンデンサの放電量の最小値に相関するように、係数を設定することができる。これにより、放電継続可能電圧を正確に算出することができる。 Also, the coefficient can be set so as to correlate with the minimum value of the smoothing capacitor discharge amount predicted when the set time elapses. Thereby, the discharge continuation possible voltage can be calculated accurately.
 また、放電開始時からの経過時間に応じて変化するように係数を設定し、主制御回路は、経過時間が設定時間であるときの係数を第1充電電圧に乗じることで、放電継続可能電圧を算出することができる。これにより、放電継続可能電圧をより正確に算出することができる。 Further, the coefficient is set so as to change according to the elapsed time from the start of discharge, and the main control circuit multiplies the first charging voltage by the coefficient when the elapsed time is the set time, so that the discharge continuable voltage Can be calculated. Thereby, it is possible to calculate the discharge continuable voltage more accurately.
 また、主制御回路は、放電抵抗による放電開始から設定時間よりも短い周期で第1充電電圧と周期毎の係数との積算値を監視し、監視結果に基づいて放電制御回路を制御することができる。これにより、放電抵抗による放電をより適切に制御することができる。 The main control circuit can monitor the integrated value of the first charging voltage and the coefficient for each cycle at a cycle shorter than the set time from the start of discharge by the discharge resistor, and control the discharge control circuit based on the monitoring result. it can. Thereby, the discharge by discharge resistance can be controlled more appropriately.
 また、主制御回路は、設定時間の経過時において予測される平滑コンデンサの放電量の最大値に相関するように設定された第2の係数を第1充電電圧に乗じることで、設定時間の経過時において予測される平滑コンデンサの下限充電電圧を算出し、第2充電電圧が下限充電電圧以上である場合に、放電抵抗による放電を継続するように放電制御回路を制御することができる。これにより、放電抵抗による放電をより適切に制御することができる。 Further, the main control circuit multiplies the first charging voltage by a second coefficient set so as to correlate with the maximum value of the smoothing capacitor discharge amount predicted when the set time elapses. The lower limit charging voltage of the smoothing capacitor predicted at the time is calculated, and when the second charging voltage is equal to or higher than the lower limit charging voltage, the discharge control circuit can be controlled to continue discharging by the discharge resistance. Thereby, the discharge by discharge resistance can be controlled more appropriately.
 また、主制御回路は、更に、駆動回路の動作を制御することができる。これにより、放電抵抗による放電と駆動回路の動作とを共通の制御回路で制御することができるので、部品点数を抑えることができる。 The main control circuit can further control the operation of the drive circuit. Thereby, the discharge by the discharge resistor and the operation of the drive circuit can be controlled by a common control circuit, so that the number of parts can be suppressed.
 また、主制御回路は、放電抵抗による平滑コンデンサの放電を停止するように放電制御回路を制御する場合には、駆動回路を制御することでモータによる平滑コンデンサの放電を制御することができる。これにより、放電抵抗による放電を停止する場合に、モータによる放電に切り替えることで、平滑コンデンサFCを確実に放電することができる。 Further, when the main control circuit controls the discharge control circuit so as to stop the discharge of the smoothing capacitor by the discharge resistor, the main control circuit can control the discharge of the smoothing capacitor by the motor by controlling the drive circuit. Thereby, when the discharge by the discharge resistor is stopped, the smoothing capacitor FC can be reliably discharged by switching to the discharge by the motor.
 また、駆動回路は、第1~第6トランジスタを有し、主制御回路は、第1~第6トランジスタを制御することでモータによる平滑コンデンサの放電を制御することができる。これにより、第1~第6トランジスタを通じてモータによる放電を簡便かつ確実に行うことができる。 The drive circuit includes first to sixth transistors, and the main control circuit can control the discharge of the smoothing capacitor by the motor by controlling the first to sixth transistors. As a result, the discharge by the motor can be performed easily and reliably through the first to sixth transistors.
 また、主制御回路は、平滑コンデンサがバッテリに接続されているときに、第1充電電圧の検出、放電継続可能電圧の算出、第2充電電圧の検出、および第2充電電圧と放電継続可能電圧との比較結果に応じた放電制御回路の制御を行うことができる。これにより、平滑コンデンサがバッテリに接続されていることで放電抵抗に大きな電圧が印加される状況においても、放電抵抗の発熱量が過大とならないように放電抵抗による放電を制御することができる。 The main control circuit also detects the first charge voltage, calculates the discharge continuable voltage, detects the second charge voltage, and detects the second charge voltage and the discharge continuable voltage when the smoothing capacitor is connected to the battery. The discharge control circuit can be controlled in accordance with the comparison result. As a result, even when a large voltage is applied to the discharge resistor due to the smoothing capacitor connected to the battery, the discharge by the discharge resistor can be controlled so that the amount of heat generated by the discharge resistor does not become excessive.
(第2の実施形態)
 次に、図4を参照して第2の実施形態に係る電動式車両用制御装置100について説明する。
(Second Embodiment)
Next, an electric vehicle control apparatus 100 according to a second embodiment will be described with reference to FIG.
 第1の実施形態においては、主制御回路CONが平滑コンデンサFCの充電電圧を直接的に検出していた。 In the first embodiment, the main control circuit CON directly detects the charging voltage of the smoothing capacitor FC.
 これに対して、第2の実施形態においては、放電制御回路FXが、電源端子TBと接地端子TGとの間の平滑コンデンサFCの充電電圧VFCを検出する。 On the other hand, in the second embodiment, the discharge control circuit FX detects the charging voltage VFC of the smoothing capacitor FC between the power supply terminal TB and the ground terminal TG.
 そして、充電電圧VFCに関する情報を主制御回路CONに出力する。 Then, information on the charging voltage VFC is output to the main control circuit CON.
 主制御回路CONは、放電制御回路FXからの情報の入力によって、平滑コンデンサFCの充電電圧を間接的に検出する。 The main control circuit CON indirectly detects the charging voltage of the smoothing capacitor FC by inputting information from the discharge control circuit FX.
 第2の実施形態によれば、第1の実施形態と比較して回路構成を簡素化することができる。 According to the second embodiment, the circuit configuration can be simplified as compared with the first embodiment.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
100 電動式車両用制御装置
M モータ
TB 電源端子
TG 接地端子
FC 平滑コンデンサ
FR 放電抵抗
FX 放電制御回路
Z 駆動回路
CON 主制御回路
Q1 第1トランジスタ
Q2 第2トランジスタ
Q3 第3トランジスタ
Q4 第4トランジスタ
Q5 第5トランジスタ
Q6 第6トランジスタ
100 Electric Vehicle Control Device M Motor TB Power Terminal TG Ground Terminal FC Smoothing Capacitor FR Discharge Resistor FX Discharge Control Circuit Z Drive Circuit CON Main Control Circuit Q1 First Transistor Q2 Second Transistor Q3 Third Transistor Q4 Fourth Transistor Q5 First 5 transistor Q6 6th transistor

Claims (15)

  1.  バッテリの正極に接続される電源端子と前記バッテリの負極に接続される接地端子との間に接続され、前記バッテリから前記電源端子と前記接地端子との間に供給された電圧で充電される平滑コンデンサと、
     前記電源端子と前記接地端子との間で、前記平滑コンデンサと並列に接続され、前記平滑コンデンサを放電させるための放電抵抗と、
     前記電源端子と前記接地端子との間で、前記放電抵抗と直列に接続され、前記放電抵抗による前記平滑コンデンサの放電を制御する放電制御回路と、
     前記放電制御回路の動作を制御する主制御回路と、
     前記電源端子と前記接地端子との間の直流電圧を電力変換した交流電圧をモータに供給して、前記モータを駆動する駆動回路と、を備え、
     前記主制御回路は、
     前記放電抵抗による放電開始前に、前記電源端子と前記接地端子との間の前記平滑コンデンサの第1充電電圧を検出し、
     前記放電抵抗による放電開始から予め設定された設定時間の経過前に、前記第1充電電圧と予め設定された係数とを乗じることで、前記設定時間の経過時において予測される前記放電抵抗による放電の継続が可能な前記平滑コンデンサの充電電圧である放電継続可能電圧を算出し、
     前記設定時間の経過時に、前記電源端子と前記接地端子との間の前記平滑コンデンサの第2充電電圧を検出し、
     前記第2充電電圧と前記放電継続可能電圧とを比較し、
     前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記放電抵抗による放電を継続するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記放電抵抗による放電を停止するように前記放電制御回路を制御することを特徴とする駆動装置。
    A smoothing connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the grounding terminal. A capacitor,
    Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor,
    A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor;
    A main control circuit for controlling the operation of the discharge control circuit;
    A drive circuit for driving the motor by supplying an AC voltage obtained by converting the DC voltage between the power supply terminal and the ground terminal to the motor; and
    The main control circuit includes:
    Detecting the first charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal before starting discharge by the discharge resistor;
    The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance. A discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of
    Detecting a second charging voltage of the smoothing capacitor between the power supply terminal and the ground terminal when the set time elapses;
    Comparing the second charge voltage and the sustainable voltage;
    When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. And the discharge control circuit is controlled so as to stop the discharge by the discharge resistor.
  2.  前記主制御回路は、
     前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記平滑コンデンサの充電電圧が前記第2充電電圧よりも小さい第3充電電圧以下になるまで前記放電抵抗による前記平滑コンデンサの放電を継続するように前記放電制御回路を制御することを特徴とする請求項1に記載の駆動装置。
    The main control circuit includes:
    When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the smoothing capacitor is discharged by the discharge resistor until the charging voltage of the smoothing capacitor becomes equal to or lower than a third charging voltage smaller than the second charging voltage. The drive device according to claim 1, wherein the discharge control circuit is controlled to continue the operation.
  3.  前記主制御回路は、
     前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記平滑コンデンサへの前記放電抵抗の接続を維持するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記平滑コンデンサから前記放電抵抗を遮断するように前記放電制御回路を制御することを特徴とする請求項1に記載の駆動装置。
    The main control circuit includes:
    When the second charging voltage is equal to or lower than the discharge continuation possible voltage, the discharge control circuit is controlled to maintain the connection of the discharge resistor to the smoothing capacitor, while the second charging voltage is 2. The driving device according to claim 1, wherein the discharge control circuit is controlled to cut off the discharge resistance from the smoothing capacitor when the voltage is higher than a discharge continuable voltage.
  4.  前記主制御回路は、
     前記放電抵抗による放電開始前に前記放電継続可能電圧を算出することを特徴とする請求項1に記載の駆動装置。
    The main control circuit includes:
    The drive device according to claim 1, wherein the discharge continuable voltage is calculated before the discharge by the discharge resistor is started.
  5.  前記係数は、前記設定時間の経過時において予測される前記平滑コンデンサの放電量の最小値に相関するように設定されていることを特徴とする請求項1に記載の駆動装置。 2. The driving apparatus according to claim 1, wherein the coefficient is set so as to correlate with a minimum value of the discharge amount of the smoothing capacitor predicted when the set time elapses.
  6.  前記係数は、前記放電開始からの経過時間に応じて変化するように設定され、
     前記主制御回路は、
     前記経過時間が前記設定時間であるときの係数を前記第1充電電圧に乗じることで前記放電継続可能電圧を算出することを特徴とする請求項4に記載の駆動装置。
    The coefficient is set to change according to the elapsed time from the start of the discharge,
    The main control circuit includes:
    5. The driving device according to claim 4, wherein the discharge continuable voltage is calculated by multiplying the first charging voltage by a coefficient when the elapsed time is the set time. 6.
  7.  前記主制御回路は、前記放電抵抗による放電開始から前記設定時間よりも短い周期で、前記第1充電電圧と周期毎の前記係数との積算値を監視し、監視結果に基づいて前記放電制御回路を制御することを特徴とする請求項6に記載の駆動装置。 The main control circuit monitors an integrated value of the first charging voltage and the coefficient for each cycle at a cycle shorter than the set time from the start of discharge by the discharge resistor, and the discharge control circuit based on a monitoring result The driving device according to claim 6, wherein the driving device is controlled.
  8.  前記主制御回路は、
     前記設定時間の経過時において予測される前記平滑コンデンサの放電量の最大値に相関するように設定された第2の係数を前記第1充電電圧に乗じることで、前記設定時間の経過時において予測される前記平滑コンデンサの下限充電電圧を算出し、
     前記第2充電電圧が前記下限充電電圧以上である場合に、前記放電抵抗による放電を継続するように前記放電制御回路を制御することを特徴とする請求項4に記載の駆動装置。
    The main control circuit includes:
    By multiplying the first charging voltage by the second coefficient set so as to correlate with the maximum value of the discharge amount of the smoothing capacitor predicted when the set time elapses, the prediction is made when the set time elapses. Calculating a lower limit charging voltage of the smoothing capacitor,
    5. The drive device according to claim 4, wherein when the second charging voltage is equal to or higher than the lower limit charging voltage, the discharge control circuit is controlled to continue discharging by the discharge resistor.
  9.  前記主制御回路は、更に、前記駆動回路の動作を制御することを特徴とする請求項1に記載の駆動装置。 The driving apparatus according to claim 1, wherein the main control circuit further controls the operation of the driving circuit.
  10.  前記主制御回路は、
     前記放電抵抗による前記平滑コンデンサの放電を停止するように前記放電制御回路を制御する場合には、前記駆動回路を制御することで前記モータによる前記平滑コンデンサの放電を制御することを特徴とする請求項8に記載の駆動装置。
    The main control circuit includes:
    When the discharge control circuit is controlled to stop the discharge of the smoothing capacitor by the discharge resistor, the discharge of the smoothing capacitor by the motor is controlled by controlling the drive circuit. Item 9. The driving device according to Item 8.
  11.  前記駆動回路は、
     一端が前記電源端子に接続され、他端が第1相の第1出力端子に接続された第1トランジスタと、
     一端が前記電源端子に接続され、他端が第2相の第2出力端子に接続された第2トランジスタと、
     一端が前記電源端子に接続され、他端が第3相の第3出力端子に接続された第3トランジスタと、
     一端が前記第1出力端子に接続され、他端が前記接地端子に接続された第4トランジスタと、
     一端が前記第2出力端子に接続され、他端が前記接地端子に接続された第5トランジスタと、
     一端が前記第3出力端子に接続され、他端が前記接地端子に接続された第6トランジスタと、を有し、
     前記主制御回路は、
     前記第1~第6トランジスタを制御することで前記モータによる前記平滑コンデンサの放電を制御することを特徴とする請求項9に記載の駆動装置。
    The drive circuit is
    A first transistor having one end connected to the power supply terminal and the other end connected to a first output terminal of a first phase;
    A second transistor having one end connected to the power supply terminal and the other end connected to a second output terminal of the second phase;
    A third transistor having one end connected to the power supply terminal and the other end connected to a third phase third output terminal;
    A fourth transistor having one end connected to the first output terminal and the other end connected to the ground terminal;
    A fifth transistor having one end connected to the second output terminal and the other end connected to the ground terminal;
    A sixth transistor having one end connected to the third output terminal and the other end connected to the ground terminal;
    The main control circuit includes:
    10. The driving apparatus according to claim 9, wherein discharge of the smoothing capacitor by the motor is controlled by controlling the first to sixth transistors.
  12.  前記主制御回路は、前記平滑コンデンサが前記バッテリに接続されているときに、前記第1充電電圧の検出、前記放電継続可能電圧の算出、前記第2充電電圧の検出、および前記第2充電電圧と前記放電継続可能電圧との比較結果に応じた前記放電制御回路の制御を行うことを特徴とする請求項1に記載の駆動装置。 When the smoothing capacitor is connected to the battery, the main control circuit detects the first charging voltage, calculates the discharge continuable voltage, detects the second charging voltage, and the second charging voltage. 2. The driving device according to claim 1, wherein the discharge control circuit is controlled in accordance with a comparison result between the voltage and the discharge continuation possible voltage.
  13.  前記放電制御回路は、
     前記第1充電電圧および前記第2充電電圧を検出し、前記第1および第2充電電圧に関する情報を前記主制御回路に出力し、
     前記主制御回路は、
     前記情報の入力によって前記第1および第2充電電圧を検出することを特徴とする請求項1に記載の駆動装置。
    The discharge control circuit includes:
    Detecting the first charging voltage and the second charging voltage, and outputting information on the first and second charging voltages to the main control circuit;
    The main control circuit includes:
    The driving apparatus according to claim 1, wherein the first and second charging voltages are detected by inputting the information.
  14.  バッテリと、モータと、駆動装置とを備えた電動車両であって、
     前記駆動装置は、
     前記バッテリの正極に接続される電源端子と前記バッテリの負極に接続される接地端子との間に接続され、前記バッテリから前記電源端子と前記接地端子との間に供給された電圧で充電される平滑コンデンサと、
     前記電源端子と前記接地端子との間で、前記平滑コンデンサと並列に接続され、前記平滑コンデンサを放電させるための放電抵抗と、
     前記電源端子と前記接地端子との間で、前記放電抵抗と直列に接続され、前記放電抵抗による前記平滑コンデンサの放電を制御する放電制御回路と、
     前記放電制御回路の動作を制御する主制御回路と、
     前記電源端子と前記接地端子との間の直流電圧を電力変換した交流電圧を前記モータに供給して、前記モータを駆動する駆動回路と、を備え、
     前記主制御回路は、
     前記放電抵抗による放電開始前に、前記平滑コンデンサの第1充電電圧を検出し、
     前記放電抵抗による放電開始から予め設定された設定時間の経過前に、前記第1充電電圧と予め設定された係数とを乗じることで、前記設定時間の経過時において予測される前記放電抵抗による放電の継続が可能な前記平滑コンデンサの充電電圧である放電継続可能電圧を算出し、
     前記設定時間の経過時に、前記平滑コンデンサの第2充電電圧を検出し、
     前記第2充電電圧と前記放電継続可能電圧とを比較し、
     前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記放電抵抗による放電を継続するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記放電抵抗による放電を停止するように前記放電制御回路を制御することを特徴とする電動車両。
    An electric vehicle including a battery, a motor, and a drive device,
    The driving device includes:
    Connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the ground terminal. A smoothing capacitor;
    Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor,
    A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor;
    A main control circuit for controlling the operation of the discharge control circuit;
    A drive circuit for driving the motor by supplying an AC voltage obtained by converting a DC voltage between the power supply terminal and the ground terminal to the motor; and
    The main control circuit includes:
    Detecting the first charging voltage of the smoothing capacitor before starting discharge by the discharge resistor;
    The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance. A discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of
    Detecting a second charging voltage of the smoothing capacitor when the set time elapses;
    Comparing the second charge voltage and the sustainable voltage;
    When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is too large, the discharge control circuit is controlled so as to stop the discharge by the discharge resistance.
  15.  バッテリの正極に接続される電源端子と前記バッテリの負極に接続される接地端子との間に接続され、前記バッテリから前記電源端子と前記接地端子との間に供給された電圧で充電される平滑コンデンサと、
     前記電源端子と前記接地端子との間で、前記平滑コンデンサと並列に接続され、前記平滑コンデンサを放電させるための放電抵抗と、
     前記電源端子と前記接地端子との間で、前記放電抵抗と直列に接続され、前記放電抵抗による前記平滑コンデンサの放電を制御する放電制御回路と、
     前記電源端子と前記接地端子との間の直流電圧を電力変換した交流電圧をモータに供給して、前記モータを駆動する駆動回路と、を備えた駆動装置の制御方法であって、
     前記放電抵抗による放電開始前に、前記平滑コンデンサの第1充電電圧を検出し、
     前記放電抵抗による放電開始から予め設定された設定時間の経過前に、前記第1充電電圧と予め設定された係数とを乗じることで、前記設定時間の経過時において予測される前記放電抵抗による放電の継続が可能な前記平滑コンデンサの充電電圧である放電継続可能電圧を算出し、
     前記設定時間の経過時に、前記平滑コンデンサの第2充電電圧を検出し、
     前記第2充電電圧と前記放電継続可能電圧とを比較し、
     前記第2充電電圧が前記放電継続可能電圧以下である場合には、前記放電抵抗による放電を継続するように前記放電制御回路を制御し、一方、前記第2充電電圧が前記放電継続可能電圧よりも大きい場合には、前記放電抵抗による放電を停止するように前記放電制御回路を制御することを特徴とする駆動装置の制御方法。
    A smoothing connected between a power supply terminal connected to the positive electrode of the battery and a ground terminal connected to the negative electrode of the battery, and charged with a voltage supplied from the battery between the power supply terminal and the grounding terminal. A capacitor,
    Between the power supply terminal and the ground terminal, connected in parallel with the smoothing capacitor, a discharge resistor for discharging the smoothing capacitor,
    A discharge control circuit that is connected in series with the discharge resistor between the power supply terminal and the ground terminal, and controls discharge of the smoothing capacitor by the discharge resistor;
    A drive circuit that supplies an AC voltage obtained by converting a DC voltage between the power supply terminal and the ground terminal to a motor and drives the motor,
    Detecting the first charging voltage of the smoothing capacitor before starting discharge by the discharge resistor;
    The discharge due to the discharge resistance predicted when the set time elapses by multiplying the first charging voltage and the preset coefficient before the preset set time elapses from the start of the discharge due to the discharge resistance. A discharge continuation possible voltage which is a charging voltage of the smoothing capacitor capable of continuation of
    Detecting a second charging voltage of the smoothing capacitor when the set time elapses;
    Comparing the second charge voltage and the sustainable voltage;
    When the second charge voltage is equal to or lower than the discharge continuable voltage, the discharge control circuit is controlled to continue the discharge by the discharge resistance, while the second charge voltage is higher than the discharge continuable voltage. If it is larger, the discharge control circuit is controlled so as to stop the discharge by the discharge resistance.
PCT/JP2018/012750 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method WO2019186762A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880091437.7A CN111886796B (en) 2018-03-28 2018-03-28 Driving device, electric vehicle, and control method for driving device
JP2020510295A JP7083891B2 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle and control method of drive device
PCT/JP2018/012750 WO2019186762A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method
TW108110738A TWI732199B (en) 2018-03-28 2019-03-27 Drive device, electric vehicle and control method of drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012750 WO2019186762A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method

Publications (1)

Publication Number Publication Date
WO2019186762A1 true WO2019186762A1 (en) 2019-10-03

Family

ID=68059392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012750 WO2019186762A1 (en) 2018-03-28 2018-03-28 Drive device, electric vehicle, and drive device control method

Country Status (4)

Country Link
JP (1) JP7083891B2 (en)
CN (1) CN111886796B (en)
TW (1) TWI732199B (en)
WO (1) WO2019186762A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031329A (en) * 2011-07-29 2013-02-07 Hitachi Automotive Systems Ltd Power conversion device
JP2017055620A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Power converter
JP2017103945A (en) * 2015-12-03 2017-06-08 スズキ株式会社 High voltage control device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200803134A (en) * 2006-06-23 2008-01-01 Yuieh Hsene Electronics Co Ltd Driving circuit of power converter for modular matching
JP5094797B2 (en) * 2009-08-07 2012-12-12 日立オートモティブシステムズ株式会社 DC power supply smoothing capacitor discharge circuit
JP2013143818A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Semiconductor fuse device
JP6255781B2 (en) * 2013-08-02 2018-01-10 株式会社ジェイテクト Abnormality detection method for power supply circuit
CN104953686B (en) * 2014-03-24 2017-02-22 国家电网公司 Control method for charge-discharge virtual synchronization motor for electromobile energy storage
JP2016201929A (en) * 2015-04-10 2016-12-01 オムロンオートモーティブエレクトロニクス株式会社 Power supply device, and control method for power supply device
JP2017060225A (en) * 2015-09-14 2017-03-23 アイシン・エィ・ダブリュ株式会社 Inverter device
US10035422B2 (en) * 2016-06-14 2018-07-31 Ford Global Technologies, Llc Self-limiting active discharge circuit for electric vehicle inverter
CN107809223B (en) * 2016-09-08 2023-06-09 恩智浦美国有限公司 Low temperature coefficient clock signal generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031329A (en) * 2011-07-29 2013-02-07 Hitachi Automotive Systems Ltd Power conversion device
JP2017055620A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Power converter
JP2017103945A (en) * 2015-12-03 2017-06-08 スズキ株式会社 High voltage control device

Also Published As

Publication number Publication date
TW202005256A (en) 2020-01-16
TWI732199B (en) 2021-07-01
CN111886796A (en) 2020-11-03
CN111886796B (en) 2023-12-12
JP7083891B2 (en) 2022-06-13
JPWO2019186762A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5954356B2 (en) Electric vehicle
JP5094797B2 (en) DC power supply smoothing capacitor discharge circuit
JP5648000B2 (en) Power converter
JP6503636B2 (en) Motor controller
US8467938B2 (en) Electric power steering apparatus
JP4715928B2 (en) Buck-boost converter
JP2006320176A (en) Method and device for diagnosing inverter
JP5786629B2 (en) Power converter
JP2016086578A (en) Discharge control device, and power conversion device with the same
JP5223758B2 (en) Driving circuit for power conversion circuit
KR101826992B1 (en) Power system of fuel cell vehicle
JP5223367B2 (en) Drive device
JP4771172B2 (en) Smoothing capacitor discharge device for vehicle power converter
JP5561197B2 (en) Electronic equipment
JP2007195352A (en) Power supply unit for motor
JP6392464B2 (en) VEHICLE DRIVE DEVICE, VEHICLE DRIVE SYSTEM, AND CONTROL METHOD FOR VEHICLE DRIVE DEVICE
WO2019186762A1 (en) Drive device, electric vehicle, and drive device control method
JP5135971B2 (en) Motor control device for electric power steering device
JP6773450B2 (en) Power supply for inductive load
JP5115064B2 (en) Robot controller
JP2023053563A (en) Power supply device
JP2021164286A (en) Power supply circuit and power supply method
JP2005184910A (en) Fault determining device of electrical circuit for vehicle
WO2022019038A1 (en) Control circuit for power converter
JP2020005429A (en) Power conversion device and discharge control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912756

Country of ref document: EP

Kind code of ref document: A1