WO2019186062A1 - Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier - Google Patents

Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier Download PDF

Info

Publication number
WO2019186062A1
WO2019186062A1 PCT/FR2019/050698 FR2019050698W WO2019186062A1 WO 2019186062 A1 WO2019186062 A1 WO 2019186062A1 FR 2019050698 W FR2019050698 W FR 2019050698W WO 2019186062 A1 WO2019186062 A1 WO 2019186062A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
trajectory
registration
workshop
resetting
Prior art date
Application number
PCT/FR2019/050698
Other languages
English (en)
Inventor
Kevin AMETEPE
Matthieu LUTZ
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to US17/043,336 priority Critical patent/US20210025917A1/en
Priority to EP19720943.0A priority patent/EP3775966A1/fr
Priority to CN201980023282.8A priority patent/CN111971571A/zh
Publication of WO2019186062A1 publication Critical patent/WO2019186062A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0888Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values for indicating angular acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0258Hybrid positioning by combining or switching between measurements derived from different systems
    • G01S5/02585Hybrid positioning by combining or switching between measurements derived from different systems at least one of the measurements being a non-radio measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/02Indoor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0278Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving statistical or probabilistic considerations

Definitions

  • the present invention is in the industrial field, and more particularly in the field of management of production workshops.
  • operators are required to move, especially to interact with large machines, some automated, for a number of tasks.
  • tasks to be accomplished we can cite in particular the ordinary driving of machines, the reaction to hazards, correction or maintenance actions, the supply of machinery with raw materials.
  • the present invention aims to overcome these disadvantages by providing a method of evaluating operators in a production workshop that meet all of the above needs.
  • the invention relates to a method of evaluating the trajectory of an operator provided with a magneto-inertial device in an industrial manufacturing workshop, the method comprising the following steps:
  • the trajectories are advantageously calculated on the basis of measurement made by at least one magnetic sensor and at least one inertial sensor, which make it possible to determine, directly or indirectly, the following parameters: angles of roll, pitch, and yaw ( ) of the system ; movement speed ; relative displacement.
  • the invention proposes a step of resetting the trajectory calculated to correct these determination errors.
  • the magneto-inertial device comprises at least one magnetic sensor and at least one inertial sensor. Such a device will be described in more detail later.
  • a method according to the invention comprises a step, prior to the data transmission step, of compressing said data. This makes it possible to reduce the size of the data to be transmitted, and thus to reduce the system architecture necessary for the implementation of such a method.
  • the resetting step is a path resetting step by radiofrequency terminals, which comprises the following steps:
  • the connected device records identification information from radio frequency devices installed in the workshop,
  • the identification information is transmitted together with the measurement data,
  • the calculated trajectory is modified based on the location of the radio frequency terminals identified.
  • this radiofrequency registration step comprises a step of interrogating a database associating the radio frequency terminal identification information with a location of these terminals.
  • Radio frequency terminals are for example RF1D chips or devices using BlueTooth technology or BlueTooth Low Energy technology. These terminals are preferably installed in different locations of the workshop in which a method according to the invention is intended to be implemented. The choice of locations is determined based on operators' characteristic waypoints, known to the workshop managers, and their location is recorded in a database.
  • the choice of this type of technology for radiofrequency terminals is particularly guided by the need for small size devices, and also energy autonomy and service life.
  • the terminals Preferably, have an adhesive support which allows easy positioning in different locations.
  • the location of the radiofrequency terminals will advantageously be chosen so as to ensure a smooth passage of the operators.
  • the radiofrequency terminals will preferably be chosen so as to fulfill one or more of the following criteria, particularly in view of the type of workshop accommodating the invention: the radio range of the resetting of the terminals is between 50 cm and 1 meter, the precision is of the order of 10 centimeters, and at most 50 centimeters, the energy autonomy of the registration terminals is between one week and one month.
  • the method is such that the resetting step comprises a mapping registration step.
  • various methods are known for making mapping resetting.
  • the type of registration and the techniques used depend on the authorized movement space and the nature of the positioning solution, absolute or estimated.
  • it has a means of absolute positioning of the vehicle, which reduces the risk of error trajectory determination.
  • a map of the workshop in which the operator moves is used to perform a mapping resetting, and the resetting step then consists in determining a trajectory that respects both the shop floor plan and the uncertainty ranges on the measurements made.
  • a particulate filter which consists in distributing the uncertainty on the trajectory in a set of particles, evolving independently and each containing a possible state of the system. Each particle that achieves an impossible path is eliminated. When the number of particles becomes too small, a re-sampling is carried out on the basis of the remaining particles. The new trajectory estimate then consists of the average of the positions of the "surviving" particles. Except in special cases, this average makes a valid journey and respects the initial uncertainty range.
  • An isolated cloud is defined as a set of particles whose smallest distance with all the other particles exceeds a predefined threshold. This step is not performed at each iteration because it involves a large number of operations (proportional to the square of the number of particles).
  • the particulate filtering implemented must also allow to correct a trajectory in a plan incorporating different levels as is the case in some workshops.
  • the knowledge of the plan of the workshop includes a knowledge of the positions and directions of access to the different means of changing floors, as well as their destinations (gateway, stairs to a feeding point, etc. ).
  • the measurements made by the connected device to include a measurement of the altitude of the wearer.
  • This measurement of altitude makes it possible, in the implementation of the particulate filter, to eliminate the particles situated on a bad level.
  • a step of height adjustment will therefore be expected, consisting of detecting the moments for which the carrier stage can be detected with certainty, and to remove particles accordingly.
  • a particulate filter is particularly advantageous since it allows to limit the drift using the constraints imposed by the building of the plant to the trajectory followed. In addition, it does not require heavy prior work, since the plans of the workshop are sufficient, without the need to perform a full mesh of the workshop, as is the case for other techniques mapping.
  • Different levels of card can be used: outer walls only when only the footprint of the plant is available, complete plan with the partitions, the spaces used by the machines, plan on different floors with identification of means of passage from one floor to another,
  • This mapping registration technique to perform the trajectory correction thus has the following interests:
  • transitions which include passages, doors, walls, stairs, walkways leading to one or more levels, and obstacles of all types.
  • the algorithm is simplified accordingly, and makes it possible to estimate a path on several levels without any altitude information, i.e. starting only from the horizontal component of the trajectory.
  • a classification of the transitions according to the soils to which they belong which makes it possible to significantly reduce the processing time compared to the case where the possibility of each path should be evaluated with respect to all the obstacles of the plane.
  • This method has a robustness vis-à-vis the non-accuracies in the positioning of the elements (positions of the doors relative to the corresponding walls, or soils compared to neighboring floors). It is the average distance of the path of a particle between two time steps, to be parameterized by the user according to the case, which determines the precision required for the plane. More precisely, this average distance must be situated between the distance corresponding to the inaccuracies of the plane and the characteristic distance of the obstacles of the plane.
  • This method offers the possibility, when a transition element is located at the intersection of two soils (eg wall of an area), to connect it to any of these two soils.
  • This method ensures the validity of the path for a particle encountering several transitions on several soils between two time steps.
  • the resetting step will comprise a first step of registration by radiofrequency terminals, and a second mapping resetting step.
  • the registration step advantageously comprises two sub-steps: A pretreatment stage of the trajectory of the operator during which the trajectory resulting from the calculation is modified as a function of the detection of the radiofrequency terminals. In this pretreatment, the trajectory is deformed so that the points identified as close to a radiofrequency terminal are found in their proximity. The deformation of the segment between two different terminals may take into account the uncertainty estimated by the trajectory calculation.
  • a step of applying a particulate filter to the modified path is a step of applying a particulate filter to the modified path.
  • the trajectory can already be globally positioned and oriented on the building plan.
  • the course drifts are limited to the paths between two terminals. For long journeys passing from time to time by different terminals, the accumulation of a significant error in heading can be excluded.
  • the extension of the particulate filter reduces the cloud of particles, which reflects the certainty of the proximity of the terminal.
  • the invention also relates to a system for implementing a method according to the invention, the system comprising one or more of:
  • a connected device for example a connected bracelet, an example of which will be described later.
  • the device advantageously comprises one or more of the following elements: magnetic and inertial sensors, on-board calculation software, a radio module for the detection of signals from radio frequency terminals, a power supply, and preferably a barometer / altimeter, radio frequency terminals installed at specific locations in the workshop.
  • a remote computing server comprising the software means for calculating the trajectories from the raw data and the registration elements (radiofrequency terminals, vector cartography of the documented site of the forbidden zones).
  • system further comprises a remote application server provided with data display means calculated to allow operation by a manager of the workshop.
  • FIG. 1 shows a system according to the invention
  • FIG. 2 shows an example of a connected bracelet.
  • a system according to the invention is implemented in a workshop or a plant comprising several tire assembly machines.
  • a modeled map 1 of the workshop or factory including o the constraints (walls, machinery, forbidden passages ...) o the means of changing stage (position on each level, approximate relative height) - io -
  • Measurements from connected devices 3 carried by one or more operators working on one of the machines namely, the speed - or position - vertical on the one hand, the speed - or position - horizontal on the other hand.
  • the attitude can also be raised if it is relevant, for example if the workshop is located on several levels.
  • An initialization step 4 performed at startup, but also possible at any time to reset the filter will take as input the horizontal position, the level and direction of start of advancement provided by the user.
  • a floor change detection filter 5 will rotate for each particle with the means of changing the nearest stage for it from its position. As soon as a beginning of change of stage is detected (which will happen on a large set of particles at the same time), the constraint is integrated in the weighting 6 of the particles.
  • the second element used for weighting will be the crossing of walls or machines, indicating that the particle is again not in the right position.
  • a resampling 7 is also used to adapt the number of particles used to the available computing power and the time given to the treatment.
  • Figure 2 shows an example of a bracelet for a portable device advantageously implemented in the present invention. More specifically, Figure 2 - It - shows the two elements 10 and 20 of a bracelet, each element being shown in two different views.
  • the portable device has a touch screen display, not shown in the figure, and intended to display alerts from, and a bracelet for hanging on the wrist of an operator.
  • This bracelet has a secure clasp, which ensures the maintenance position of the device running, but allows the release of the wrist in case of attachment of the bracelet. Indeed, such a device is intended to be used near a dangerous industrial machine. It is therefore useful to provide an opening of the clasp, for example when the bracelet is caught by an element of the industrial machine, in order to avoid injury to the wearer of the bracelet.
  • the clasp comprises two parts, each of the parts being intended to be attached to a strand of the bracelet.
  • each part comprises mechanical connection means for connecting it to the corresponding bracelet strand, and magnetic assembly means.
  • the magnetic assembly means of the first and second parts are intended to cooperate.
  • the first piece is intended to be inserted into a hole in the first strand bracelet.
  • This first strand has several orifices 12 for adjusting the size of the bracelet.
  • this first piece comprises an axis having at a first end a ball 13 for insertion into the orifice of the bracelet.
  • the diameter of the ball is chosen so that it is possible to insert voluntarily the first piece in an orifice of the bracelet, but it is impossible to exit it involuntarily.
  • a circular metal plate 14 At the other end of the axis is a circular metal plate 14, having in its center a pin 15.
  • the second part also comprises a magnetic circular plate 24, in the center of which is formed a circular notch 25 for receiving the stud of the first piece.
  • the magnetic and metallic nature of the two plates allows a hooking of the two parts when they are in contact.
  • the stud 15 and the notch 25 make it possible to prevent lateral sliding of one piece relative to the other.
  • the magnetic plate is installed on a support 22 having an axis intended to be inserted into an end having a preformed orifice.
  • the shape of the support is advantageously chosen so that it does not protrude, or slightly, laterally from the bracelet after closure.
  • the characteristics of the plates of the first and second parts are chosen to allow a recess when a large force is exerted on the bracelet.
  • the magnetic elements will be chosen so that they unhook when a lateral force between 15N and 40N is exerted.
  • lateral force means a force exerted in a direction substantially parallel to the length of the bracelet, and not a force exerted according to the normal strap.

Landscapes

  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Navigation (AREA)
  • General Factory Administration (AREA)

Abstract

L'invention concerne un procédé d'évaluation de la trajectoire d'un opérateur muni d'un dispositif magnéto-inertiel dans un atelier de fabrication industrielle. L'invention concerne également un système permettant la mise en oeuvre d'un tel procédé.

Description

PROCEDE ET SYSTEME D’EVALUATION DE LA TRAJECTOIRE D’UN
OPERATEUR DANS UN ATELIER
DOMAINE DE L’INVENTION
[0001] La présente invention se situe dans le domaine industriel, et plus particulièrement dans le domaine de la gestion des ateliers de production. Au sein des usines de fabrication industrielle, les opérateurs sont amenés à se déplacer, notamment pour interagir avec des machines de grande taille, certaines automatisées, pour un certain nombre de tâches. Parmi les tâches à accomplir, on peut citer notamment la conduite ordinaire des machines, la réaction à des aléas, des actions de correction ou de maintenance, l’approvisionnement des machines en matières premières.
[0002] L’ ensemble de ces tâches joue un rôle clé dans la continuité de fonctionnement de la production, et il serait utile, pour les responsables de production, de pouvoir évaluer les déplacements des opérateurs pour réaliser ces différentes tâches.
[0003] En effet, les fonctionnements et les habitudes qui régissent les déplacements des opérateurs et leurs interactions avec les machines sont au cœur du potentiel d'optimisation de l'organisation et des procédés au sein des usines, puisque le taux de disponibilité de l’outil de production en usine est fortement dépendant des procédés mis en œuvre pour la maintenance des machines et la production.
[0004] Pour répondre à ce besoin, différentes solutions ont été proposées. De manière la plus courante, les actions d’observation des opérateurs sont effectuées périodiquement, sur des équipes spécifiquement dédiées à l’optimisation des procédés. Les observations sont effectuées par des observateurs qui les retranscrivent manuellement, sous forme de diagrammes spaghetti.
[0005] Or, il apparaît que ces actions d'observation des procédés sont coûteuses et qu’elles induisent un biais évident dans l’évaluation puisque le comportement d’une personne est différent lorsqu’elle sait qu’elle est observée. En outre, les données ne sont qu’approximatives avec peu de granularité, et difficilement reproductibles et comparables dans le temps, Les données collectées ne permettent donc pas une analyse fiable et objectivée des comportements. [0006] Par ailleurs, l'absence d'analyse fine du comportement et des déplacements des opérateurs au sein de l'usine ne permet pas d'évaluer la fatigue et la charge mentale supportées par les opérateurs. Ils sont en effet fortement sollicités, de manière non linéaire, au cours de la journée, par exemple lors de pics d’activité liés aux alimentations machine, pannes, ou à cause d’importantes distances parcourues.
[0007] La présente invention vise à remédier à ces inconvénients en proposant un procédé d’évaluation des opérateurs dans un atelier de production qui répondent à l’ensemble des besoins précités.
BREVE DESCRIPTION DE L’INVENTION
[0008] Ainsi, l’invention concerne un procédé d’évaluation de la trajectoire d’un opérateur muni d’un dispositif magnéto-inertiel dans un atelier de fabrication industrielle, le procédé comprenant les étapes suivantes :
Une étape d’enregistrement de mesures effectuées par au moins un capteur inertiel et/ou magnétique installé dans le dispositif magnéto-inertiel,
Une étape de transmission des mesures vers un serveur distant,
Une étape de calcul, sur le serveur distant, d’une trajectoire de l’opérateur en fonction des mesures, et
Une étape de recalage de la trajectoire calculée.
[0009] Les trajectoires sont avantageusement calculées sur la base de mesure effectuées par au moins un capteur magnétique et au moins un capteur inertiel, qui permettent de déterminer, directement ou indirectement, les paramètres suivants : angles de roulis, tangage, et lacet (cap) du système ; vitesse de déplacement ; déplacement relatif.
[0010] Or, on a constaté que les trajectoires déterminées uniquement à partir des enregistrements magnéto-inertielles présentaient une dérive dans le temps par rapport à la trajectoire réelle. Cette dérive s'explique par des erreurs caractérisées notamment en cap, mais aussi en distance. Par conséquent, l’invention propose une étape de recalage de la trajectoire calculée pour corriger ces erreurs de détermination.
[0011] De manière préférentielle, le dispositif magnéto-inertiel comporte au moins un capteur magnétique et au moins un capteur inertiel. Un tel dispositif sera ultérieurement décrit plus en détail.
[0012] Dans un exemple de réalisation, un procédé selon l’invention comprend une étape, préalablement à l’étape de transmission des données, de compression desdites données. Ceci permet de réduire la taille des données à transmettre, et donc d’alléger l’architecture système nécessaire à la mise en œuvre d’un tel procédé.
[0013] Dans un premier exemple de réalisation, l’étape de recalage est une étape de recalage de trajectoire par bornes radiofréquence, qui comprend les étapes suivantes :
Pendant l’étape d’enregistrement de mesure, le dispositif connecté enregistre des informations d’identification en provenance de dispositifs radiofréquences installés dans l’atelier,
Les informations d’identification sont transmises en même temps que les données de mesure,
La trajectoire calculée est modifiée en se basant sur la localisation des bornes radiofréquence identifiées.
[0014] De manière avantageuse, cette étape de recalage par radiofréquence comprend une étape d’interrogation d’une base de données associant les informations d’identification de bornes radiofréquence avec une localisation de ces bornes. Ainsi, à partir de l’identification des bornes radio fréquence on peut connaître leur localisation, ce qui indique que l’opérateur est passé à proximité de cette localisation, et qui permet ensuite de déformer la trajectoire pour qu’elle passe par ces points.
[0015] Les bornes radio fréquence sont par exemple des puces RF1D ou des dispositifs utilisant la technologie BlueTooth ou la technologie BlueTooth Low Energy. Ces bornes sont préférentiellement installées en différents emplacements de l’atelier dans lequel un procédé selon l’invention est destiné à être mis en œuvre. Le choix des emplacements est déterminé en fonction de points de passage caractéristiques des opérateurs, connus des gestionnaires de l’atelier, et leur localisation est enregistrée dans une base de données.
[0016] Le choix de ce type de technologie pour les bornes radiofréquence est notamment guidé par le besoin de faible encombrement des dispositifs, et également l’autonomie énergétique et la durée de vie. De manière préférentielle, les bornes possèdent un support adhésif qui permet un positionnement aisé en différents emplacements.
[0017] L’emplacement des bornes radiofréquence sera avantageusement choisi de manière à assurer un passage régulier des opérateurs. Ainsi, on pourra par exemple choisir d’installer les bornes au niveau des pupitres de commande des machines industrielles, puisque les opérateurs doivent régulièrement s’approcher de ces pupitres pour un pilotage correct de la machine.
[0018] En outre, les bornes radiofréquence seront préférentiellement choisies de manière à remplir un ou plusieurs critères parmi les suivants, notamment au vu du type d’atelier accueillant l’invention : la portée radio du recalage des bornes est comprise entre 50 cm et 1 mètre, la précision est de l'ordre de 10 centimètres, et au maximum de 50 centimètres, l'autonomie énergétique des bornes de recalage est comprise entre une semaine et un mois.
[0019] Dans un second exemple de réalisation, le procédé est tel que l’étape de recalage comprend une étape de recalage cartographique. On connaît, dans l’état de la technique, différentes méthodes permettant de faire du recalage cartographie.
[0020] Le type de recalage et les techniques utilisées dépendent de l'espace de déplacement autorisé et de la nature de la solution de positionnement, absolue ou à l'estime. Ainsi, dans le cas d’un déplacement d’un véhicule doté d’un récepteur GPS, on dispose d’un moyen de positionnement absolu du véhicule, ce qui réduit les risques d’erreur de détermination de trajectoire.
[0021] De la même façon, lorsqu’un véhicule circule dans une zone déjà cartographiée, il est aisé de recaler la trajectoire pour qu’elle corresponde avec une route existante. Dans ce cas, il est possible d’accepter une erreur de mesure plus importante, puisqu’il s’agit uniquement, pour déterminer la trajectoire du véhicule, de déterminer sur quel chemin déjà existant le véhicule se situe. Même en cas d’erreur lors d’une intersection, il est facile de recaler la trajectoire après quelque temps.
[0022] En revanche, dans le cas d’un atelier, on se trouve dans un espace beaucoup plus ouvert, où les cheminements piétons ne sont pas nécessairement balisés. Il convient donc d’utiliser les contraintes du bâtiment, lorsqu’elles sont présentes, pour réduire la zone d’incertitude.
[0023] Ainsi, dans un procédé selon l’invention, on utilisera, pour effectuer un recalage cartographie, un plan de l’atelier dans lequel l’opérateur se déplace, et l’étape de recalage consiste alors à déterminer une trajectoire qui respecte à la fois le plan de l’atelier et les plages d’incertitude sur les mesures effectuées.
[0024] A cet effet, on utilise, dans un exemple de réalisation, un filtre particulaire, qui consiste à répartir l’incertitude sur la trajectoire dans un ensemble de particules, évoluant indépendamment et contenant chacune un état possible du système. Chaque particule qui réalise un trajet impossible est éliminée. Lorsque le nombre de particules devient trop faible, un ré échantillonnage est réalisé sur la base des particules restantes. La nouvelle estimation de trajectoire consiste alors en la moyenne des positions des particules « survivantes ». Sauf cas particulier, cette moyenne réalise un trajet valide et respecte la plage d’incertitude fixée au départ.
[0025] Il arrive que plusieurs chemins bien distincts soient utilisés par différents groupes de particules. Afin de les discriminer, on réalise à intervalles réguliers une étape de classification. Lorsqu’on détecte un nuage isolé dont la taille est en deçà d’un seuil prédéfini, on élimine l’ensemble des particules correspondantes. Il peut arriver que plusieurs nuages de particules isolés suivent des chemins distincts, tous valides. Afin d’éliminer rapidement les trajectoires trop improbables, on choisit d’éliminer les nuages de points isolés de petite taille. On identifie comme nuage isolé un ensemble de particules dont la plus petite distance avec l’ensemble des autres particules dépasse un seuil prédéfini. Cette étape n’est pas effectuée à chaque itération, car elle implique un grand nombre d’opérations (proportionnel au carré du nombre de particules). [0026] On se réserve la possibilité de réaliser deux types de moyennes pour la nouvelle estimation de trajectoire : la première de manière causale, en se basant à chaque instant sur l’état courant du nuage de particules. Cette méthode pourrait être utilisée pour l’estimation de position en temps réel pour un cadre d'usage ultérieur. la seconde en prenant en compte l’évolution du nuage de particules sur l’ensemble du trajet, et en ne considérant que les particules qui demeurent valides jusqu’à la fin (ou les particules dont elles sont issues lors des ré-échantillonnages).
[0027] Dans un autre exemple de réalisation, le filtrage particulaire mis en œuvre doit permettre également de corriger une trajectoire dans un plan intégrant différents niveaux comme c'est le cas dans certains ateliers. A cet effet, il est utile que la connaissance du plan de l’atelier comprenne une connaissance des positions et orientations des accès aux différents moyens de changer d’étage, ainsi que leurs destinations (passerelle, escalier vers un point d'alimentation, etc).
[0028] Dans ce cas, il est également utile que les mesures effectuées par le dispositif connecté comprennent une mesure d’altitude du porteur. Cette mesure d’altitude permet, dans la mise en œuvre du filtre particulaire, d’éliminer les particules se situant sur un mauvais niveau. Une étape de recalage en hauteur sera donc à prévoir, consistant à détecter les instants pour lesquels l’étage du porteur peut être détecté avec certitude, et à éliminer des particules en conséquence.
[0029] Ainsi, il apparaît que l’utilisation d’un filtre particulaire est particulièrement avantageuse puisque cela permet de limiter la dérive en utilisant les contraintes imposées par le bâtiment de l'usine à la trajectoire suivie. En outre, il ne nécessite pas de travail préalable trop lourd, puisque les plans de l’atelier suffisent, sans qu’il soit besoin d’effectuer un maillage complet de l’atelier, comme c’est les cas pour d’autres techniques de recalage cartographie.
[0030] Différents niveaux de carte peuvent être utilisés: murs extérieurs seuls lorsque seule l'empreinte de l'usine est disponible, plan complet avec les cloisons, les espaces utilisés par les machines, plan sur différents étages avec identification des moyens de passage d’un étage à l’autre,
En outre, il est possible d’utiliser des cartographies enrichies en identifiant des zones d'accès peu probable qui seraient modélisées en mettant des probabilités de passage faibles mais non nulles comme pour les murs.
[0031] Cette technique de recalage cartographique pour effectuer la correction de trajectoire présente ainsi les intérêts suivants :
Une définition très générique des transitions, qui incluent les passages, portes, murs, escaliers, passerelles menant à un ou plusieurs niveaux, et obstacles de tous types. L’algorithme est simplifié en conséquence, et permet d’estimer un trajet sur plusieurs niveaux sans aucune information d’altitude, i.e. en partant uniquement de la composante horizontale de la trajectoire.
Une classification des transitions en fonction des sols auxquelles elles appartiennent, ce qui permet de réduire significativement le temps de traitement par rapport au cas où l’on devrait évaluer la possibilité de chaque trajet par rapport à l’ensemble des obstacles du plan. Cette méthode présente une robustesse vis-à-vis des non exactitudes dans le positionnement des éléments (positions des portes par rapport aux murs correspondants, ou des sols par rapport aux sols voisins). C’est la distance moyenne du trajet d’une particule entre deux pas de temps, à paramétrer par l’utilisateur en fonction du cas, qui détermine la précision requise pour le plan. Plus précisément, cette distance moyenne doit être située entre la distance correspondant aux imprécisions du plan et la distance caractéristique des obstacles du plan.
Cette méthode offre la possibilité, lorsqu’un élément de transition se situe à l’intersection de deux sols (ex. mur d'une zone), de le rattacher à n’importe lequel de ces deux sols.
Cette méthode assure la validité du trajet pour une particule rencontrant plusieurs transitions sur plusieurs sols entre deux pas de temps.
[0032] Dans un exemple de réalisation particulièrement avantageux, l’étape de recalage comprendra une première étape de recalage par bornes radiofréquence, et une seconde étape de recalage cartographie. Ainsi, l’étape de recalage comprend avantageusement deux sous-étapes : Une étape prétraitement de la trajectoire de l'opérateur au cours de laquelle la trajectoire issue du calcul est modifiée en fonction de la détection des bornes radiofréquence. Dans ce prétraitement, la trajectoire est déformée en sorte que les points identifiés comme proches d’une borne radiofréquence se retrouvent en effet dans leur proximité. La déformation du segment entre deux bornes différentes peut prendre en compte l’incertitude estimée par le calcul de trajectoire.
Une étape d’application d’un filtre particulaire sur la trajectoire modifiée.
[0033] Grâce au prétraitement, la trajectoire peut déjà être globalement positionnée et orientée sur le plan du bâtiment. Les dérives du cap sont limitées aux trajets entre deux bornes. Pour les trajets longs qui passent de temps en temps à côté de bornes différents, l’accumulation d’une erreur en cap importante peut donc être exclue.
[0034] L’ extension du filtre particulaire permet de réduire le nuage des particules, ce qui reflète la certitude de la proximité de la borne.
[0035] L’ invention concerne également un système permettant la mise en œuvre d’un procédé selon l’invention, le système comprenant un ou plusieurs éléments parmi :
Un dispositif connecté, par exemple un bracelet connecté dont un exemple sera ultérieurement décrit. Le dispositif comprend avantageusement un ou plusieurs éléments suivants : o des capteurs magnétiques et inertiels, o un logiciel de calcul embarqué, o un module radio pour la détection de signaux issus des bornes radiofréquence, o une alimentation, et o préférentiellement un baromètre/altimètre, des bornes radiofréquences installées en des emplacements spécifiques de l’atelier. On choisira par exemple d’installer ces bornes au niveau des pupitres de commande des machines devant lesquels l’utilisateur est souvent présent, un serveur distant de calcul comportant les moyens logiciel pour le calcul des trajectoires à partir des données brutes et des éléments de recalage (bornes radiofréquence, cartographie vectorielle du site documentée des zones interdites).
[0036] Dans un exemple de réalisation avantageux, le système comprend en outre un serveur applicatif distant muni de moyens d'affichage des données calculées, pour permettre l'exploitation par un gestionnaire de l’atelier.
BREVE DESCRIPTION DES FIGURES
[0037] D’autres objectifs et avantages de l’invention apparaîtront clairement dans la description qui va suivre d’un mode de réalisation préféré mais non limitatif, illustré par la figure 1 qui montre un système selon l’invention, et par la figure 2 montrant un exemple de bracelet connecté.
DESCRIPTION DU MEILLEUR MODE DE REALISATION DE L’INVENTION
[0038] Dans un exemple de réalisation préférentiel, un système selon l’invention est mis en œuvre dans un atelier ou une usine comportant plusieurs machines d’assemblage de pneumatiques.
[0039] Nous allons décrire, à l’aide de la figure 1, un exemple d’architecture logique d’un système permettant la mise en œuvre d’un procédé selon l’invention.
[0040] Trois éléments d'entrée sont nécessaires pour déterminer une position 8 d’un opérateur dans un atelier :
Une carte modélisée 1 de l’atelier ou de l’usine comprenant o les contraintes (murs, machines, passages interdits...) o les moyens de changer d'étage (position sur chaque niveau, hauteur relative approximative) - io -
Un point de départ 2 fourni par l'utilisateur. Ce point comprendra à la fois le niveau, la position 2D et la direction d'avancement des premiers mètres. Il pourra également être fourni au système en cours de route pour recaler celui-ci si nécessaire. L'ensemble des points de recalage seront enregistrés, ils pourront servir à découper la trajectoire pour faire passer un lisseur en temps différé.
Des mesures issues de dispositifs connectés 3 portés par un ou plusieurs opérateurs travaillant sur une des machines, à savoir, la vitesse - ou position - verticale d'une part, la vitesse - ou position - horizontale d'autre part. L'attitude pourra également être remontée si c’est pertinent, par exemple si l’atelier se situe sur plusieurs niveaux.
[0041] Une étape d’initialisation 4 effectuée au démarrage, mais également possible à tout moment pour réinitialiser le filtre prendra en entrée la position horizontale, le niveau et la direction de début d'avancement fournis par l'utilisateur.
[0042] Un filtre 5 de détection de changement d'étage tournera pour chaque particule avec le moyen de changer d'étage le plus proche pour elle à partir de sa position. Dès qu'un début de changement d'étage est détecté (ce qui arrivera a priori sur un ensemble important de particules à la fois), la contrainte est intégrée dans la pondération 6 des particules.
[0043] Deux éléments seront intégrés pour modifier la pondération des particules suite à la propagation: les changements d'étage et les murs :
Si une particule commence à changer d'étage alors qu'elle n'est pas à côté ou sur un moyen de changer d'étage (escalier, passerelle, etc), c'est qu'elle a peu de chance d'être effectivement à l'emplacement qu'elle indique.
Le second élément utilisé pour la pondération sera la traversée de mur ou de machines, indiquant que la particule n'est, là encore, pas à la bonne position.
[0044] Optionnellement, on utilise également un ré-échantillonnage 7 pour adapter le nombre de particules utilisées à la puissance de calcul disponible et au temps accordé au traitement.
[0045] La figure 2 montre un exemple de bracelet pour dispositif portable avantageusement mis en œuvre dans la présente invention. De manière plus précise, la figure 2 - i l - montre les deux éléments 10 et 20 d’un bracelet, chaque élément étant montré sous deux vues différentes.
[0046] Le dispositif portable présente un écran d’affichage tactile, non montré sur la figure, et destiné à afficher des alertes en provenance, et un bracelet permettant l’accrochage sur le poignet d’un opérateur.
[0047] Ce bracelet présente un fermoir sécuritaire, qui permet de garantir le maintien en position du dispositif en marche courante, mais qui permet la libération du poignet en cas d’accrochage du bracelet. En effet, un tel dispositif est destiné à être utilisé à proximité de machine industrielle dangereuse. Il est donc utile de prévoir une ouverture du fermoir par exemple lorsque le bracelet est happé par un élément de la machine industrielle, ceci afin d’éviter des blessures à l’opérateur porteur du bracelet.
[0048] A cet effet, le fermoir comprend deux pièces, chacune des pièces étant destinée à être accrochée à un brin du bracelet. Ainsi, chaque pièce comprend des moyens de liaisons mécaniques pour la relier au brin de bracelet correspondant, et des moyens d’assemblage magnétiques. Les moyens d’assemblage magnétiques de la première et seconde pièces sont destinés à coopérer.
[0049] Dans l’exemple montré sur la figure 2, la première pièce est destinée à être insérée dans un orifice ménagé dans le premier brin de bracelet. Ce premier brin présente plusieurs orifices 12 permettant un réglage de la taille du bracelet. Ainsi, cette première pièce comporte un axe ayant à une première extrémité une boule 13 destinée à l’insertion dans l’orifice du bracelet. Le diamètre de la boule est choisi de manière à ce qu’il soit possible d’insérer volontairement la première pièce dans un orifice du bracelet, mais qu’il soit impossible de l’en sortir involontairement. A l’autre extrémité de l’axe se trouve une platine circulaire métallique 14, comportant en son centre un téton 15.
[0050] La seconde pièce comporte également une platine circulaire magnétique 24, au centre de laquelle est ménagée une encoche circulaire 25 destinée à accueillir le téton de la première pièce. Le caractère magnétique et métallique des deux platines permet un accrochage des deux pièces lorsqu’elles sont en contact. Le téton 15 et l’encoche 25 permettent d’éviter un glissement latéral d’une pièce par rapport à l’autre. [0051] La platine magnétique est installée sur un support 22 comportant un axe destiné à être inséré dans une extrémité présentant un orifice préformé. La forme du support est choisie avantageusement de manière à ce qu’il ne dépasse pas, ou peu, latéralement du bracelet après fermeture. [0052] Les caractéristiques des platines des première et seconde pièces sont choisies de manière à permettre un décrochement lorsqu’une force importante est exercée sur le bracelet. De manière préférentielle, on choisira les éléments magnétiques de manière à ce qu’ils se décrochent lorsqu’une force latérale comprise entre 15N et 40N est exercée. Par force latérale, on entend une force s’exerçant selon une direction sensiblement parallèle à la longueur du bracelet, et non pas une force s’exerçant selon la normale au bracelet.

Claims

REVENDICATIONS
1. Procédé d’évaluation de la trajectoire d’un opérateur muni d’un dispositif magnéto-inertiel dans un atelier de fabrication industrielle, le procédé comprenant les étapes suivantes :
Une étape d’enregistrement de mesures effectuées par au moins un capteur inertiel et/ou magnétique installé dans le dispositif magnéto-inertiel,
Une étape de transmission des mesures vers un serveur distant,
Une étape de calcul, sur le serveur distant, d’une trajectoire de l’opérateur en fonction des mesures, et
Une étape de recalage de la trajectoire calculée.
2. Procédé d’évaluation selon la revendication 1, comprenant une étape, préalablement à l’étape de transmission des données, de compression desdites données.
3. Procédé d’évaluation selon la revendication 1 ou 2, dans lequel l’étape de recalage est une étape de recalage de trajectoire par bornes radiofréquence.
4. Procédé d’évaluation selon la revendication 3, dans lequel l’étape de recalage comprend les étapes suivantes :
Pendant l’étape d’enregistrement de mesure, le dispositif connecté enregistre des informations d’identification en provenance de dispositifs radiofréquences installés dans l’atelier,
Les informations d’identification sont transmises en même temps que les données de mesure,
La trajectoire calculée est modifiée en se basant sur la localisation des bornes radiofréquence identifiées.
5. Procédé selon l’une des revendications précédentes, dans lequel l’étape de recalage comprend une étape de recalage cartographique.
6. Procédé selon l’une des revendications précédentes dans lequel l’étape de recalage comprend une étape de recalage par bornes radiofréquence préalable à une étape de recalage cartographique.
7. Système permettant la mise en œuvre d’un procédé selon l’une des revendications 1 à 6, comprenant :
Un dispositif connecté comprenant des moyens de mesure et des moyens radio de transmission des mesures,
des bornes radiofréquences installées en des emplacements spécifiques de l’atelier, un serveur distant de calcul comportant les moyens logiciel pour le calcul des trajectoires à partir des données brutes et des éléments de recalage.
8. Système selon la revendication 7, dans lequel le dispositif connecté comprend un ou plusieurs éléments parmi :
des capteurs magnétiques et inertiels, un logiciel de calcul embarqué, un module radio pour la détection de signaux issus des bornes radiofréquence, une alimentation, un baromètre et/ou /altimètre.
9. Système selon les revendications 7 ou 8, comprenant en outre une base de données associant les informations d’identification de bornes radiofréquence avec une localisation de ces bornes.
10. Système selon l’une des revendications 7 à 9 le système comprenant en outre un serveur applicatif distant muni de moyens d'affichage des données calculées et l'exploitation par un gestionnaire de l’atelier.
PCT/FR2019/050698 2018-03-29 2019-03-27 Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier WO2019186062A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/043,336 US20210025917A1 (en) 2018-03-29 2019-03-27 Method and system for evaluating the path of an operator on a shop floor
EP19720943.0A EP3775966A1 (fr) 2018-03-29 2019-03-27 Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier
CN201980023282.8A CN111971571A (zh) 2018-03-29 2019-03-27 用于评估车间操作人员的轨迹的方法与系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1852717A FR3079618B1 (fr) 2018-03-29 2018-03-29 Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier
FR18/52717 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019186062A1 true WO2019186062A1 (fr) 2019-10-03

Family

ID=62948215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050698 WO2019186062A1 (fr) 2018-03-29 2019-03-27 Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier

Country Status (5)

Country Link
US (1) US20210025917A1 (fr)
EP (1) EP3775966A1 (fr)
CN (1) CN111971571A (fr)
FR (1) FR3079618B1 (fr)
WO (1) WO2019186062A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210396522A1 (en) * 2020-06-17 2021-12-23 Microsoft Technology Licensing, Llc Pedestrian dead reckoning using map constraining features

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130331121A1 (en) * 2012-06-12 2013-12-12 Trx Systems, Inc. Wi-fi enhanced tracking algorithms
US20140309960A1 (en) * 2013-04-12 2014-10-16 p3d systems GmbH Method for Calibrating a Detection Device, and Detection Device
US20150285637A1 (en) * 2013-01-10 2015-10-08 MCube Inc. Dead reckoning based initialization of position and heading using discrete position indicators

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239962B2 (en) * 2003-02-21 2007-07-03 Sony Corporation Method and apparatus for a routing agent
US20070156372A1 (en) * 2003-07-31 2007-07-05 Thomas Christ Determining distances in a warehouse
US7243001B2 (en) * 2004-06-15 2007-07-10 Amazon Technologies, Inc. Time-based warehouse movement maps
KR101099151B1 (ko) * 2004-10-29 2011-12-27 스카이후크 와이어리스, 인크. 위치 표지 데이터베이스와 서버, 위치 표지 데이터베이스구축 방법 및 이것을 이용한 위치 기반 서비스
FR2886501A1 (fr) * 2005-05-31 2006-12-01 France Telecom Procede et dispositif de localisattion d'un terminal dans un reseau local sans fil
US8731817B2 (en) * 2010-03-03 2014-05-20 Aaron E. Ballew Indoor localization with wayfinding techniques
US9322657B2 (en) * 2011-10-04 2016-04-26 International Business Machines Corporation Mobility route optimization
CN102927980B (zh) * 2012-10-12 2017-05-10 深圳市宇恒互动科技开发有限公司 一种基于三维多点无线与微惯导的室内定位系统、方法
US9326103B2 (en) * 2013-07-12 2016-04-26 Microsoft Technology Licensing, Llc Indoor location-finding using magnetic field anomalies
CN103616025A (zh) * 2013-12-05 2014-03-05 金陵科技学院 一种现场人员三维定位导航系统
TWI565962B (zh) * 2015-05-19 2017-01-11 萊特旺服務有限公司 室內及其週邊地區定位系統、定位方法及行動通訊裝置
CN107094319B (zh) * 2016-02-17 2021-06-04 王庆文 一种高精度室内外融合定位系统和方法
US9881277B2 (en) * 2016-03-28 2018-01-30 Amazon Technologies, Inc. Wrist band haptic feedback system
US9820100B1 (en) * 2016-06-17 2017-11-14 Qualcomm Incorporated Multi-source positioning
CN106403946A (zh) * 2016-12-12 2017-02-15 北京华源热力管网有限公司 一种用于热网运检人员的智能微惯导三维定位系统
US10234291B1 (en) * 2017-10-06 2019-03-19 Cisco Technology, Inc. Collaborative localization between phone and infrastructure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130331121A1 (en) * 2012-06-12 2013-12-12 Trx Systems, Inc. Wi-fi enhanced tracking algorithms
US20150285637A1 (en) * 2013-01-10 2015-10-08 MCube Inc. Dead reckoning based initialization of position and heading using discrete position indicators
US20140309960A1 (en) * 2013-04-12 2014-10-16 p3d systems GmbH Method for Calibrating a Detection Device, and Detection Device

Also Published As

Publication number Publication date
US20210025917A1 (en) 2021-01-28
CN111971571A (zh) 2020-11-20
FR3079618B1 (fr) 2020-04-10
EP3775966A1 (fr) 2021-02-17
FR3079618A1 (fr) 2019-10-04

Similar Documents

Publication Publication Date Title
EP1886517B1 (fr) Procédé et dispositif de localisation d'un terminal dans un réseau local sans fil
EP2502209B1 (fr) Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant
FR3004841A1 (fr) Procede et dispositif de gestion dynamique de la mobilite urbaine
FR2939946A1 (fr) Procede et systeme d'aide a la gestion de l'espacement relatif entre aeronefs
WO2015019002A1 (fr) Dispositif et procede de mise a jour automatique d'une base de donnees des vitesses limites de circulation
EP3506166A1 (fr) Prédiction de déplacement et de topologie pour un réseau de caméras
EP3760506B1 (fr) Procede de caracterisation de l'etat d'une route
FR3068777A1 (fr) Procede de planification de trajet d'un vehicule automobile equipe d'un systeme de conduite automatisee et vehicule mettant en œuvre le procede
EP3775966A1 (fr) Procede et systeme d'evaluation de la trajectoire d'un operateur dans un atelier
WO2023186371A1 (fr) Procede et systeme d'estimation de duree de vie residuelle des pneumatiques des vehicules de transport sur la base des donnees telematiques
WO2020201243A1 (fr) Procédé de mise à jour d'une carte routière à partir d'un réseau de contributeurs
EP2804016B1 (fr) Procédé amélioré de détermination de la position et/ou de la vitesse d'un véhicule guidé ; système associé
EP2584378B1 (fr) Procédé et système de détection de fraude d'informations de position d'un dispositif mobile
EP3635690A1 (fr) Dispositif d'enregistrement de données de déplacement, procédé et programme correspondant
FR3131048A1 (fr) Procédé de surveillance d’un utilisateur, dispositif de surveillance et programme d’ordinateur correspondants
WO2017216495A1 (fr) Procédé de détermination d'une classe de conduite de référence
WO2023104683A1 (fr) Procédé de prédiction d'une variation de qualité de service dans un réseau de communication v2x, dispositif de prédiction et programme d'ordinateur correspondants
FR3075949A1 (fr) Procede de determination sur une distance d’anticipation de la trajectoire d’un vehicule automobile.
FR3032286A1 (fr) Procede et systeme d'estimation d'une population
FR3080246A1 (fr) Procede de traitement d'une communication recue et equipement associe
FR3005189A1 (fr) Systeme de controle et de gestion du stationnement des vehicules
WO2023118498A1 (fr) Procédé de modélisation d'un environnement tactique d'un véhicule automobile.
WO2017001674A1 (fr) Procédé de gestion de l'utilisation d'un espace stationnement et dispositifs associés
WO2024170580A1 (fr) Procédé et système d'estimation de l'état d'un réseau routier et/ou d'un véhicule
FR3124149A1 (fr) Procédé et dispositif d’aide à la conduite d’un véhicule autonome.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19720943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019720943

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019720943

Country of ref document: EP

Effective date: 20201029