EP2502209B1 - Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant - Google Patents

Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant Download PDF

Info

Publication number
EP2502209B1
EP2502209B1 EP10785149.5A EP10785149A EP2502209B1 EP 2502209 B1 EP2502209 B1 EP 2502209B1 EP 10785149 A EP10785149 A EP 10785149A EP 2502209 B1 EP2502209 B1 EP 2502209B1
Authority
EP
European Patent Office
Prior art keywords
data
casing
tank
machine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10785149.5A
Other languages
German (de)
English (en)
Other versions
EP2502209A1 (fr
Inventor
Eric ELKAÏM
Sylvain Heinry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADD
Original Assignee
ADD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42315660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2502209(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ADD filed Critical ADD
Priority to RS20170355A priority Critical patent/RS55869B1/sr
Priority to PL10785149T priority patent/PL2502209T3/pl
Priority to SI201031430A priority patent/SI2502209T1/sl
Publication of EP2502209A1 publication Critical patent/EP2502209A1/fr
Application granted granted Critical
Publication of EP2502209B1 publication Critical patent/EP2502209B1/fr
Priority to HRP20170516TT priority patent/HRP20170516T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/004Indicating the operating range of the engine
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time

Definitions

  • the present invention relates to the general field of electronic monitoring systems comprising an on-board housing on a device including at least one motor, a reservoir and an electronic supply circuit and a sedentary control tool to which the onboard box is able to be connected wired or not. More specifically, the invention relates to electronic monitoring systems for monitoring fuel consumption by the engine of the device on which the housing is embedded.
  • Fuel consumption monitoring is currently a particularly critical issue from both an economic and an environmental point of view.
  • the invention therefore relates primarily to the road transport of goods.
  • This sector of activity annually consumes several tens of billions of liters of diesel and the share of the cost of fuel in the cost price of road transport continues to grow. It turns out that controlling this item of expenditure is now very important to ensure the profitability of road transport companies.
  • Such software makes it possible to monitor consumption, to make an initial analysis of the types of driving in order to compare the consumption of the vehicles and the consumptions associated with the types of driving of the drivers.
  • onboard boxes that are able to connect to the tachograph of a vehicle, its GPS receiver and the CAN bus of the vehicle on which the box is shipped. Such a box is likely to repatriate wired or not, for example via a cable or via a modem, data on fuel consumption to a restitution software managed by an operator of the fleet of vehicles concerned.
  • the consumption data can then be known a posteriori or in real time by the rendering software. This can lead to decisions based on the observed data.
  • the use of the tachograph chrono makes it possible to know the speed of the vehicle as well as to have access to data of timestamping of the data.
  • the GPS receiver provides access to geolocation data.
  • the CAN bus provides access to data from the on-board electronic system on the vehicle.
  • the only electronic data circulating on the CAN bus making it possible to follow the fuel consumption carried out by the engine of the vehicle is, in the usual way, a data item from a flowmeter placed on the pipe allowing the fuel to enter the vehicle. combustion chamber or data from an equivalent system measuring the amount of fuel flowing to the combustion chamber.
  • Such a structure of an electronic system for monitoring the fuel consumption by a vehicle allows a proper tracking of fuel consumption.
  • known electronic surveillance systems do not provide information on the place of the violation or on the date and time of the violation. They do not know how to distinguish a flight from other events that may occur at a constant geographical position.
  • WO 2008/146307 describes a geolocation-based electronic system for monitoring the fuel level in a vehicle's tank and for detecting theft.
  • FR 2,871,741 describes a system for monitoring the filling operations of a tank and its level, using several sources of information to detect fuel thefts.
  • US 2001/018628 describes a system for recording the performance of a vehicle and a driver.
  • the main purpose of the present invention is to overcome the deficiencies observed in known electronic surveillance systems by proposing an electronic monitoring system according to independent claim 1.
  • the term "apparatus at standstill" means that the apparatus has a zero speed.
  • the onboard box periodically has access to a quantitative measurement of the actual level of fuel in the tank through the presence of a quantitative fuel level sensor placed in the tank.
  • these fuel level data are permanently coupled in real time with the geolocation data and the time stamp data on the same data line, the invention enables a real-time monitoring of the fuel tanks. .
  • this fuel level sensor is previously calibrated to take quantitative fuel level measurements between a top wall and a bottom wall of the tank.
  • the invention is such that the specific sensor is calibrated prior to the commissioning of the electronic system so that each output value of the sensor is associated bijectively with a fuel level position between the upper wall and the bottom wall of the tank and a precise volume of fuel remaining in the tank regardless of the fuel level between the upper wall and the lower wall.
  • This feature is not accessible with gauges usually installed in tanks.
  • the known gauges are generally tubular or lever gauges measuring the level by level. From 18 to 21 millimeters on the height. What is more, the known gauges generally allow to quantitatively measure the level on only 80% of the height of the tank excluding the upper part.
  • a particular embodiment requires that a new interface be installed between a gauge and the housing according to the invention to perform the quantitative calibration of the gauge that it is dedicated to the implementation of the invention or a previously installed gauge for another goal, especially indicative.
  • a particular embodiment proposes the use of the quantitative data from the fuel level sensor in combination with the geolocation and time stamping data, these data being recorded together for a given moment with a given periodicity. They are known within the embedded box according to the invention regardless of the operating status of the device on which the box is embedded.
  • the power supply system of the on-board unit uses either a connection to the power supply circuit of the device, or a connection to a stand-alone battery that recharges when the device is operating. This ensures the storage of data with strictly the same periodicity regardless of the status of the device, including the shutdown of the device.
  • the combination between the control of the power supply of the on-board box and the storage of the data specific to the invention at fixed periodicity allows a strict monitoring of what takes place in the tank.
  • This allows, according to the invention, the implementation of the data processing module capable of detecting a fuel level drop at a constant geographical position from the successive data lines recorded regardless of the operating status of the device .
  • the permanent power supply of the embedded box proves to be essential to implement such a detection which otherwise would absolutely not be reliable or could miss events.
  • the invention allows to be informed continuously and permanently of the presence of a fuel level drop constant geographical position knowing the date, location and fuel volume corresponding to the fall of the fuel level.
  • the invention makes it possible to completely control the need or not to refuel the vehicles before their departure from a logistics center having its own fuel tank.
  • the invention provides access to real-time information of the volume present in the tanks. This saves time because it makes it possible to drive trucks that have enough fuel safely and this reduces the queue in front of the tanks. It is common to observe such queues of several hours from the trucks in the morning at some carriers. This necessarily generates an economic gain.
  • none of the known devices makes it possible to have real-time access to the real level of fuel within one or more tanks. Indeed, in the known devices, only the consumption of the vehicle is known from the data relating to the amount of fuel that goes to the combustion chamber, for example through the use of a flow meter. Also, only an approximation can be given according to the average consumption since the last full.
  • the invention makes it possible to have knowledge of the real consumption of vehicles by deducting fuel drops at a constant geographical position which can only correspond to a siphoning of the tank. In this case, it is possible to deduce fuel theft by calculating the actual consumption and therefore the environmental impact of a company on CO 2 emissions, the main greenhouse gas, which are directly linked to consumption. real fuel.
  • the invention of course makes it possible to identify the liters lost for any reason whatsoever and thus to calculate the financial losses due to the liters of fuel paid and not consumed by the vehicles of the company.
  • the invention makes it possible to eliminate the engine running events while stopping fuel drops at a constant geographical position. Indeed, in the event that the system is not able to know the status of operation of the engine, it can not separate a flight from normal consumption of the engine running at a standstill.
  • the invention thus allows a great fineness of determination of the events of fuel drops and their nature.
  • the engine status in operation is different from the position of the ignition key. Indeed, the ignition key can be in the on position while the engine is not running. In this case, no fuel consumption can be observed.
  • the invention is concerned here with the rotating motor.
  • the characteristic according to which an alert is provided to the control tool to which the on-board box can be connected can take various forms, from a simple report to a sound or visual alert in real time or in real time. deferred time.
  • the data processing advantageously carried out in the housing can, in a degraded mode, be performed at within the control tool after receiving the data lines.
  • the invention makes it possible to know exactly the date and time at which a siphoning was carried out. Indeed, the fuel drop at constant geographical position is clearly indicative of a siphoning of the tank.
  • the geolocation data also gives the position of the vehicle at the time of the flight. The data on the operating status of the engine makes it possible to eliminate the engine time events on the aircraft when the flight events themselves are stopped.
  • the knowledge of the rotating engine data in the case where, in addition to the disappearance of fuel, the kinetics of the disappearance of the fuel sign the presence of a theft, further reinforces the evidence of guilt of the driver responsible for the vehicle at the time of the fuel drop. In addition, it also makes it possible to identify unproductive consumption such as vehicles with the engine stopped.
  • an additional advantage of having access to the operating status of the engine is the possibility of accessing the engine time switched off device with, directly associated, the place, the day and the hour when it was product.
  • the invention gives access not only to the duration during which the engine remained on but at the beginning of this event as well as at the end of this event.
  • a time elapsed between two specific dates is known thanks to the time stamp.
  • RFID solutions may also be used.
  • the housing can in particular be connected to these instruments. It will then be possible to trace the information available on these instruments without an intermediate box and to cross all this information.
  • the engine times switched on device at a standstill are precisely known and localized in time and space. This is accessible whether the device is running or not.
  • the distinction between these two types of fuel drop at the stop is a very interesting because it allows not to accuse a driver wrongly for a flight and conversely not to fail to report inappropriate behavior to fuel savings.
  • the invention assists road haulage companies to reduce their fuel consumption and also to reduce the share of the fuel station in their accounts in addition to monitoring the theft of fuel. Companies can also subscribe to charters allowing a voluntary commitment from an environmental point of view.
  • the monitoring system according to the invention makes it possible to achieve a precise and effective measurement of the actual CO 2 consumption and emissions by excluding or excluding fuel thefts according to the desired information and by identifying the unproductive consumption such as the vehicles in question. the engine stop switched on which can be reduced by driver education.
  • the invention makes it possible to deliver CO 2 emission calculations. by geographical area for specific periods, or by customer of the carrier, or by vehicle and / or driver.
  • the crossing of the vehicle location information and the movement of the illuminated vehicle thus allows an optimal monitoring of the behavior of the drivers and the fuel consumption. They therefore make it possible to know the points on which improvements can be made and actions carried out.
  • the control tool has access to the engine time off, engine time on device to the shutdown and engine time on moving device.
  • the invention thus makes it possible to have a measure of the total consumption on the journeys made. This makes it possible to target actions in a quantified and realistic reduction objective based on the perfect knowledge of the consumption by vehicles and / or drivers that defines an initial inventory.
  • the onboard box also allows access to the distance detail traveled, the visualization of the road on digital maps and to have access to the stops of the vehicle.
  • the means for detecting the operating status of the motor are chosen from a connection to a sensor placed at the excitation terminal of an alternator of the circuit electrical supply of the device, a connection to a bodybuilder giving the information engine running, a connection to the battery to make a measurement of the voltage difference across the main battery, the data processing module knowing previously the voltage difference observed between the voltage observed with a ignition key position ON and the voltage observed with the engine on.
  • the data processing module of the housing is capable of detecting a fuel level increase at a constant geographical position characteristic of carrying out filling of the tank from the successive data lines recorded and communicating, when a fuel increase at a constant geographic position is detected, in real time or delayed, a signal specific to the control tool to signal the presence of a filling.
  • This characteristic makes it possible to locate, in a set of data lines, the instants of realization of a tank filling whether it is a full or only a relative fuel increase in the tank. This characteristic also makes it possible to know the location, date and time of each filling or filling of the tank with possibly visualization on a map.
  • This feature allows the user of the control tool to have the dates and times of the tank refills and the quantity actually supplied within the tank.
  • This feature is useful for not only locating refills / full in time but also for confirming the presence of a fuel substitution as is sometimes observed.
  • control tool furthermore comprises a data entry interface for enabling a user to enter external data relating to the refills of the reservoir, the data processing unit being adapted to receive these external data inputted. , to detect inconsistencies between the external data entered by the user and the specific signals to the fills communicated by the onboard box.
  • this feature can detect flights to the tank. Such flights are for example made by filling a can before, during or after the filling of the vehicle tank on which the onboard case of the electronic monitoring system according to the invention is installed.
  • the control tool By comparing the increase in fuel level observed and detected in the on-board unit and signaled by the specific signal sent to the control tool with the data entered with the control tool and indicating the amount of fuel paid. , usually announced on the receipt provided by the service station in which the filling of the tank was made, on the same date and approximately at the same time, the control tool has access to the quantity of fuel which was then dumped in another container than the tank of the apparatus on which the on-board housing of the electronic system according to the invention is installed.
  • the electronic monitoring system makes it possible to know how the missing fuel has been stolen. Indeed, when a fuel drop at a constant geographical position is observed, it will be a siphoning and when the comparison between the amount of fuel paid on a charge of filling a tank with the amount of fuel measured during an increase in fuel level reveals an inconsistency, a theft to the tank will be detected.
  • the recording periodicity of the data lines is between 60 and 120 seconds.
  • This recording period makes it possible to achieve a rough compromise between the fluctuations in the fuel level that can be detected within the tank and a sufficiently fine sampling of the level in the tank to enable the detection of a fuel drop.
  • Fluctuations in the tank may be due in particular to acceleration and deceleration of the vehicle.
  • the recording periodicity of the data lines is between 85 and 95 seconds.
  • a time interval chosen around 90 seconds makes it possible to optimally overcome the fluctuations in levels due to the acceleration and deceleration of the vehicle and such a measurement every minute and half allows very reliable tracking of driver behavior.
  • this measurement made with a chosen period around 90 seconds avoids having to achieve an average fuel level when a fluctuation due to acceleration or deceleration is observed.
  • the casing further comprises a connector for being connected to at least one contact key position detector and in that the data coming from this detector are included in the data line and are processed by the module. processing of data to include the contact key position data in the alert communicated to the control tool.
  • this contact key position data makes it possible to provide the operator where the control tool is installed to have additional proof to characterize the theft of fuel and especially to identify the person responsible because the key contact is usually issued to a particular driver at the start of the race and returned by the latter at the end of the race. If the ignition key has been left in the "On" position when the tank drops at a constant geographical position, the driver in question will then be difficult to say that he is not responsible or that he ignores the realization of this larceny.
  • the housing comprises a calibration module of the fuel level sensor chosen from the ultrasonic-type sensors, the sensors using a float, the calibration associating automatically in a bijective manner, prior to the commissioning of the system.
  • electronic a sensor output value at each fuel level position between the top wall and the bottom wall of the tank and at a precise volume of fuel remaining in the tank.
  • the data processing unit of the control tool is adapted to calculate an actual consumption of the apparatus from the recorded data lines.
  • the data processing unit of the control tool is adapted to calculate a carbon dioxide emission carried out by the apparatus.
  • This calculation provides direct access to the carbon footprint of the business developed by the device, which can be part of a commercially viable approach to customer chargers increasingly sensitive to environmental issues. It can also contribute to a modern corporate image that respects the environment and is part of a sustainable development perspective. Overall, this may lead to a better image of road transport.
  • the apparatus having a working function complementary to the operation of its engine, the housing comprises means for determining the operating status of this auxiliary work function, the operating status data of the ancillary work function being included in the data line, the control tool thus determining the engine times turned on device at work stop and engine times turned on device off off work.
  • This status data in operation of a work function allows to dissociate the engine time turned on device at the productive stop, that is to say the engine time on the device stopped at work engine time switched on device to stop unproductive, that is to say without work.
  • the specialized vehicles must have the engine running to perform the work function. In this case, the engine times when the appliance is switched off must not be counted as consumption.
  • specialized vehicles must have the engine running to perform the work function. In this case, the engine times when the appliance is switched off must not be counted as unproductive consumption. This characteristic makes it possible to dissociate these two cases.
  • this feature will identify the times during which, typically, a power take-off used for performing the ancillary work function (pump, crane, etc.). ..) was enabled. This duration will be excluded from unproductive consumption.
  • ancillary work function pump, crane, etc.
  • the invention also relates to a housing according to claim 15.
  • Such a suitable housing may be connected to a control tool if necessary and allows the implementation of the invention within the apparatus of which the electronic system according to the invention is intended to monitor consumption.
  • the invention also relates to a sedentary control tool connected wired or not to an embedded box according to the invention, comprising at least one memory for recording alerts and data lines communicated by the onboard box from which it accesses the motor time on when the engine is stopped and on when the engine is running, a screen to display the alerts and data communicated by the on-board unit.
  • the invention further relates to a monitoring method according to independent claim 17.
  • the various steps of the method according to the invention are determined by instructions of computer programs.
  • the invention also relates to a computer program on an information medium, this program being capable of being implemented in a computer, this program comprising instructions adapted to the implementation of the steps of the method according to the invention.
  • This program can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in any other form desirable shape.
  • the invention also relates to a computer-readable information medium, comprising instructions of a computer program as mentioned above.
  • the information carrier may be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or a magnetic recording means, for example example a floppy disc, a hard disk, a flash memory, a USB key and so on.
  • the information medium may be a transmissible medium such as an electrical or optical signal, which may be conveyed via an electrical or optical cable, by radio or by other means.
  • the program according to the invention can be downloaded in particular on an Internet type network.
  • the information carrier may be an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the method in question.
  • the figure 1 schematically represents an electronic monitoring system according to the invention.
  • This system comprises a housing 10, embedded on a device including at least one motor 11, a reservoir 12 and an electrical supply circuit.
  • This power supply circuit conventionally comprises a battery 13 and various means of connection to the motor 11, in particular to recover the energy delivered by the latter through an alternator.
  • the battery 13 is also connected to a plurality of sensors generally present on board the apparatus 1, either directly or via the housing 10.
  • the battery 13 is connected to the housing 10, itself connected to a fuel level sensor 14 capable of taking quantitative measurements of fuel level in the tank 12 between the upper wall and the lower wall of this tank 12.
  • the sensor 14 is also connected to the housing 10 so that it can transmit the fuel level data that it is able to acquire.
  • the housing 10 comprises a connector 101. This connector which allows the transmission of data advantageously also supports the supply of the sensor 14 via the housing 10.
  • the housing 10 further comprises a tilt power connector 102, able to switch the supply of the housing 10 between the electrical supply circuit of the device 1 and therefore by a direct supply by the battery 13 and an auxiliary and autonomous power supply circuit based on the implementation of a battery 15 appendix.
  • the battery 15 is advantageously connected to the housing 10, itself connected to the main battery 13.
  • this auxiliary battery 15 is able to recharge on the electrical supply circuit of the device 1 during operation of the engine 11 and supplying electrical power to the housing 10 as soon as the electrical supply circuit of the apparatus 1 is de-energized.
  • the housing 10 further comprises a data processing module 104, a clock 103, able to provide timestamp data to the data processing module 104, a receiver 105 for receiving geolocation data and a memory 106.
  • the memory 106 is used in particular according to the invention to record successive data lines comprising the fuel level data from the sensor 14, the time stamping data from the clock 103, geo-location data from from the receiver 105 at a given instant with a periodicity of between 1 and 240 seconds.
  • the recording periodicity of the data lines will advantageously be between 60 and 120 seconds to enable the fastest oscillations of the fuel level within the tank 12 to be eliminated.
  • the periodicity of 120 seconds makes it possible to have a sufficient fuel level sampling to identify the acts that the monitoring system according to the invention is intended to detect.
  • the optimum period range for optimizing both the amount of stored data, the suppression of oscillations in the reservoir and the detection of desired events is between 85 and 95 seconds.
  • the housing 10 of the system can be installed advantageously inside the dashboard.
  • the electronic monitoring system also comprises a control tool 2 provided with a memory 20 for recording the alerts and the data lines communicated by the on-board box 10, a data processing unit 21 and a screen 22 for display the alerts and the data communicated by the onboard box 10.
  • control tool further comprises a data entry interface 23, allowing the user to enter external data relating to the filling of the reservoir 12.
  • the figure 2 shows a number of data lines as recorded with a period of 90 seconds during operation of a vehicle followed by the monitoring device according to the invention.
  • the speed of sending data is programmable between 4800, 9600 and 19200 bauds per second.
  • the control tool has access to sensor statuses giving information on the operation of the engine and the position of the ignition key.
  • Other possible statuses available through other sensors installed on the vehicle may also be included in data lines of the type shown on the figure 2 .
  • the Figures 3A and 3B respectively show the setting of the over-consumption warning thresholds and the detection of a tank filling. These thresholds are able to trigger an alert when they are exceeded at the constant geographical position.
  • the data processing module compares the fuel level observed on two or more successive lines and compares with the maximum flows parameterized within the housing as shown on FIG. figure 3A .
  • maximum flows are indicated for various states of operation of the engine and the movement of the vehicle.
  • the choice of a parameterization of the overconsumption adapted to the average consumption of the vehicle avoids the triggering of false alarms and makes it possible to detect selectively the overconsumption.
  • the invention in fact provides that the data processing module performs various comparisons of levels, in particular comparisons between two lines of data recorded at the beginning and at the end of a constant geographical position.
  • the figure 3B shows a number of detected overconsumptions as displayed on the control tool screen. Overconsumption observed are each associated with an operating site (Marseille, Toulon or Nice) of several vehicles identified by their registration. The alert has previously been sent to the control tool 2 by the boxes 10 installed on the vehicles concerned.
  • the control tool 20 then displays the overconsumption in the format presented on the figure 3B which shows the site of operation, the registration of the vehicle concerned, the date and time of the observation of the abnormal overconsumption, the volume of decrementation observed as well as the code of the driver who was, at that time, driving the vehicle bearing the registration concerned.
  • FIGS. 4A , 4B, 4C and 4D show examples of, respectively, data lines in which a flight is detected, a constant geographically-positioned fuel level curve showing a siphoning flight, an alert as displayed on the control tool and a curve monitoring the fuel level with vehicle movements and on which appear suspicious events.
  • the control tool can calculate and display a fuel level curve according to the successive registers.
  • the curve of the Figure 4B graphically displays the detected theft on the board of the Figure 4A .
  • the figure 4C shows an example of displaying the alert "flight" associated with the flight visible on the data table of the Figure 4A .
  • the control tool may also possibly display the locations of the events observed on a map. It can also provide all kinds of consumption statistics over more or less important time slots.
  • the figure 4D shows an example of a fuel level curve on which suspicious events are detected. It can thus be seen that the VM zones of the curve correspond to the vehicle in motion by correlation with the geolocation data. There is also a VA zone where the vehicle is stopped. There are also two suspicious events E1 and E2 where the fuel level has dropped rapidly. In the case where the vehicle is found immobilized at times corresponding to these registers with the geolocation data, a flight is detected.
  • the figure 5 shows a float sensor 14, which can be used in the invention. It will be noted here that other types of sensors, for example ultrasonic sensors, may be used to implement the invention as soon as a quantitative measurement of the fuel level can be acquired between the upper wall of the tank 12 and the lower wall of it. There are also tubular-type sensors where the float is wound around a sensor axis and which can be used within a device according to the invention.
  • the sensor 14 represented on the figure 5 has a fixing disk 140 on the tank, a longitudinal body 141, intended to be placed vertically in the tank and advantageously adjustable in its length to be able to adapt to various tank sizes, a lever arm 142 provided at its end with A float 143.
  • the lever arm 142 is articulated about an axis 144 placed on the lower end of the body 141 of the sensor 14.
  • the height L of the body 141 of the sensor can be adjusted using screws placed in orifices placed for this purpose along the body 141.
  • the length R of the lever arm 142 of the float 143 may also be varied depending on where the float 143 and the attachment pin 144 are attached to the sensor body.
  • the installation of the sensor comprises two steps. The first is to adjust the length L of the body 141 so that it is equal to 50% of the diameter H of the tank when it is cylindrical or 50% of the height H of the tank when it is cubic, square or rectangular. Then, float position 143 is set on lever arm 142 so that when arm 142 of float 143 is in the full tank position, the top wall of float 143 is at the height of the tank top wall. ..
  • the high rotational position be quantitative for the highest possible fuel levels in the tank 12.
  • the float 143 is always in the buoyant position and can not be wedged against the high wall.
  • the float and the various elements of the sensor will be dimensioned for this even if a margin of error at the top and bottom of the tank may possibly be accepted.
  • the shape of the tank and the position of the filling port will be such that the float 143 can not be plated on the top wall.
  • the height L of the sensor body 141 between the upper wall of the reservoir 12 and the hinge axis 144 of the lever arm 142 and the length R of the lever arm 142 will in fact be chosen as a function of the height H of the tank 12.
  • Adjustable arm fuel level sensors may thus be used within the tanks of the apparatus on which the invention will be installed.
  • the figure 6 shows a table in which are listed an example of different calibration points associating the output signal, denoted SC, of the sensor 14 with the quantity of fuel present in the tank 12.
  • SC the output signal
  • the advantage of the manual calibration is its accuracy and reliability since the quantity of fuel introduced into the tank 12 is completely controlled. It is thus possible to precisely associate an output signal SC of the sensor 14 corresponding exactly to the quantity of fuel. present in the tank.
  • the tank is previously emptied and disconnected from any other tanks on the device.
  • the absence of connection between the tanks avoids in fact that, during calibration, the fuel of the other tanks filters to the tank during calibration or vice versa.
  • the embedded box 10 is connected to its power source and that the sensor is further connected to the housing 10.
  • the float 143 must of course be installed correctly in the tank 12 and the movement of the lever arm 142 of the float 143 must be able to be done without obstacle over the entire height of the tank 12.
  • the calibration can be done via the user interface present on the control tool. This is an advantageous achievement. Nevertheless, an ancillary device could also be used to perform this operation.
  • Such an auxiliary device or the control tool is, in any case, able to program the housing 10 by indicating the identifiers of the connected tanks, their maximum capacity and their position.
  • This operation is started with empty tank and it is necessary to stop several times to capture the signal at the exit of the level sensor and add a new line of data to the calibration files according to the quantity of fuel that has been introduced into the tank. tank.
  • a file is then generated which precisely describes the float and the reservoir in addition to the calibration points which associate the sensor signal with the quantity of fuel.
  • the calibration file will be identified by data corresponding to the size and volume of the tank.
  • Such a calibration file is typically a result of a manual preliminary calibration of a reservoir identical to that for which the calibration file has been downloaded.
  • the tank up to about 1/16 th .
  • 75 liters of fuel will be placed in the tank.
  • the output signal SC of the sensor is then captured and a data point is added to the calibration file.
  • the tank is filled by 16 th .
  • the divisions of the fractions tank volume ranging from 1/12 th to 1/20 th are quite possible to ensure the reliability of the calibration of the monitoring system.
  • the intermediate values are then calculated automatically by the housing 10, typically by linear approximation.
  • the position of the float 143 corresponds to an analog resistance measurement measured on a potentiometer or ohmmeter 145 placed under the path of the lever arm 142 near the axis 145 of the sensor.
  • the value of the resistance of the potentiometer 145 is then variable as a function of the position of the lever arm 142 which is due to the buoyancy of the float 143 at the level of the fuel surface.
  • the position of the float is then marked according to the outgoing value of the potentiometer 145 on a number of positions of the order of one hundred and preferably around 65 positions.
  • the sensors used with the system will advantageously have a resistance that can vary between two extremal values, previously known, from the full tank to the empty tank.
  • extremal resistance values correspond to the extreme positions of the float 143 respectively for a full tank and an empty tank.
  • these values will range from 33 to 245 ohms or from 0 to 180, 33 ohms or 0 ohms corresponding to the empty tank or the full tank and 245 and 180 corresponding to the full tank or the empty tank.
  • These resistance values of the float 143 correspond to intervals of digital values ranging, for example, from 19,700 to 48,700 respectively for a full tank and an empty tank.
  • a particular embodiment therefore uses a voltage at the output of the circuit of the level sensor 14. This voltage varies as a function of the resistance which itself varies according to the height of the fuel level and, with the type of sensor of the figure 5 , the position of the float.
  • the voltage which is an analog datum is transformed into a digital datum which is advantageously an index whose rank is, for example, from 0 to 65.535.
  • the digital index is associated with a total volume in liters present in the tank. This transforms an analog value that is a voltage at the output of the sensor into a digital value that is associated with a value "liters in tank”.
  • Liters in tank between two consecutive calibration points are automatically calculated pro rata.
  • a calibration file of 20 lines allows a real calibration of the fuel level in the tank every 3 centimeters, from 0 to 60 centimeters.
  • each 3 centimeters corresponds to 30 liters of fuel. Intermediate positions are pro-rated.
  • the figure 7 shows a flowchart of the method according to the invention. This method is implemented mainly in the control box 10 but also partially within the control tool 20.
  • the supply of the casing 10 is permanently ensured by means of a certain number of steps looped on themselves, making it possible permanently to supply the casing 10, either by the battery 13 or by the battery 15 according to the state of the engine 11.
  • step EA1 the operation of the motor 11 is examined.
  • the battery 13 is turned on.
  • the battery 13 is selected by the tilt connector 102, within a step EA2, to supply the housing 10 in a step EA4.
  • step EA3 the battery 15 is selected by the tilt connector 102 to supply the housing 10 in a step EA4.
  • the operation of the motor 11 is examined to allow the tilt connector 102 to choose between the two power modes. Nevertheless, it is quite possible to use a sensor of position of the ignition key instead of an operating sensor of the engine 11, typically a voltage sensor placed on the excitation terminal of the alternator. Indeed, generally, as soon as the ignition key is in the "ON" position, the power supply circuit is energized and is therefore able to power the housing 10.
  • the method according to the invention questions the clock 103, in a step EM1, in order to know the appropriate sampling instant at which the various data constituting a data line will be captured at the chosen and preprogrammed periodicity, here 90 seconds.
  • the date and time D / H are then used to associate, in a step EM2, an acquisition at the appropriate time of the output signal SC of the sensor 14. Finally, in a step EM3, the locational geo-location data at the instant D / H are acquired from the geolocation receiver 105.
  • the set of data Loc, SC, D / H is stored in the memory in the form of a line L D / H.
  • the memory implemented within the embedded box 10 will advantageously have a capacity around 20,000 lines, 24,000 for example, which corresponds to about 20 consecutive days.
  • the lines L D / H and L D / H + 90N successive for N ranging from 1 to a predefined number, for example 10, are then examined within a step EM5 to detect a drop in fuel level or an increase fuel level at a constant geographical position.
  • an AL alarm is then sent to the control tool 20 which receives it, records it and advantageously proceeds to a display of this AL alert in a step FM2.
  • control tool 2 is connected to or connects to the housing 10 in a step FM0. Then, in a step FM1, the lines L D / H are transferred offline or in real time to the control tool 20 where they are stored in a memory.
  • the control tool 20 then makes it possible to draw up various tables of results of the type of that presented in the figure 8 .
  • this table are presented the characteristics of consumptions observed for a plurality of vehicles operated at different operating sites and driven by different drivers.
  • the identity of the driver who drove the vehicle on which the housing 10 is embedded is generally external data acquired within the control tool 20 by data entry through the user interface 23.
  • C ' this is also the case for other data relating to the operation of vehicles, in particular a zone of activity, for example to achieve in particular virtual guarding ("geofencing" in English).
  • the information can be retrieved by the onboard system when the one is connected to the tachograph of the vehicle.
  • the data can be automatically detected in real time by the onboard system.
  • the device can automatically control whether the GPS position at the time of detection of a full corresponds to the location of a fuel pump. This corresponds to a combination of information.
  • Such a dashboard makes it possible to follow the consumption more or less detailed according to the driver, according to the site of operation or depending on the vehicle.
  • control tool 20 comprises a user interface 23 for acquiring external data provided by a user of the control tool 20.
  • control tool 20 will then be advantageously informed on the amount of fuel introduced into each tank, depending on fuel bills.
  • control tool 20 will be able, automatically and autonomously, to provide an alert to signal an inconsistency between the two quantities, if any. A robbery will then be suspected.
  • control tool 20 since the control tool 20 has L D / H data lines as received and stored in the control tool, it is possible to perform a number of calculations, including ratios between time. from engine on to stopped vehicle and the engine time on to moving vehicle. These ratios give access to a percentage of consumption that can be saved.
  • the invention makes it possible to know the place, the date and the time of the overconsumption due to a motor running vehicle stopped. This makes it possible to correct the behavior of the drivers and to reduce the overconsumption due to keeping the engine switched off.
  • the apparatus may have a function of work ancillary to the operation of its engine requiring the operation of the engine to be activated.
  • the housing then comprises means for determining the operating status of this ancillary work function, the operating status data of the engine being included in the data line to be processed by the data processing module.
  • the times during which the work function is activated are then excluded from the idle idle engine running times.
  • the knowledge of the operating status of the work function is typically determined from the activation or not of a power take-off carried by the device.
  • the control tool 20 also makes it possible to collect the data by group. For example, all vehicles operating on a site could be grouped together to calculate an average consumption of the site and to be able to compare the exploitations on various sites. Comparisons between trucks can be also made or comparisons between drivers.
  • the control tool 20 according to the invention in combination with the embedded box 10 according to the invention, therefore makes it possible to report on the past of an operation as well as reporting on the current operation, that is, that is to say at the present time of operation, since it makes it possible to send alerts in real time to the control tool 20.
  • the control tool 20 is connected wirelessly to the embedded box 10 for, for example, that the housing 10 can transmit AL alerts in real time to the control tool 20.
  • the embedded box 10 can be wiredly connected to the control tool 20 to transfer the data lines.
  • a wired path is more suited to the amount of data then transferred from the housing 10 to the control tool 20.
  • an RS232 connection may be used.
  • the control tool 20 will also advantageously be capable of displaying, on its display device, maps showing the path of the vehicle as well as the locations of the tank fillings and, possibly, the places at which a drop in the fuel level has occurred. been observed.
  • the invention makes it possible to have a detailed precise vision of the fuel consumption and thus to reduce irregular and unproductive consumption.
  • the invention therefore makes it possible overall to reduce fuel consumption and to enhance the profitability and competitiveness of companies.
  • the invention allows better overall management by setting up tables various tracking.
  • Commitments in structuring approaches can be undertaken by the road transport companies through the invention and thus generate an additional source of mobilization and motivation of all staff.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Burglar Alarm Systems (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général des systèmes électroniques de surveillance comprenant un boîtier embarqué sur un appareil incluant au moins un moteur, un réservoir et un circuit électronique d'alimentation et un outil de contrôle sédentaire auquel le boîtier embarqué est apte à être connecté par voie filaire ou non. Plus précisément, l'invention concerne les systèmes électroniques de surveillance visant à suivre la consommation de carburant effectuée par le moteur de l'appareil sur lequel le boîtier est embarqué.
  • Le suivi de la consommation de carburant est actuellement un sujet particulièrement crucial que ce soit d'un point de vue économique ou d'un point de vue environnemental.
  • L'invention concerne donc en premier lieu le transport routier de marchandises. Ce secteur d'activité consomme annuellement plusieurs dizaines de milliards de litres de gasoil et la part du coût du carburant dans le coût de revient du transport routier ne cesse de s'accroître. Il s'avère donc que la maîtrise de ce poste de dépense est aujourd'hui très importante pour assurer la rentabilité des entreprises de transports routiers.
  • Les secteurs du BTP par l'utilisation d'engins de travaux divers et celui des groupes électrogènes sont aussi concernés puisqu'on y observe aussi d'importantes consommations de carburant.
  • Il existe actuellement des logiciels permettant d'optimiser la consommation de carburant. Ces logiciels sont principalement mis en oeuvre au sein d'un outil de contrôle qui n'est pas placé sur le véhicule lui-même. Il en existe aussi qui sont destinés à être installés au sein du véhicule lui-même.
  • Ces outils logiciels permettent généralement la saisie ou la capture de données sur la fourniture de carburant dans un véhicule et les distances parcourues pour calculer des consommations moyennes.
  • De tels logiciels permettent de réaliser un suivi de la consommation, de faire une première analyse des types de conduite afin de comparer les consommations des véhicules et les consommations associées aux types de conduite des conducteurs.
  • Ces logiciels permettent déjà de sensibiliser les conducteurs à l'impact de la conduite sur la consommation afin de les amener à avoir une conduite plus économe.
  • Néanmoins, ces logiciels de suivi de consommation du carburant ne permettent d'avoir accès qu'à une consommation moyenne par véhicule sans pouvoir accéder à des données plus précises sur la consommation du carburant.
  • Il existe également des boîtiers embarqués qui sont aptes à se connecter sur le chrono tachygraphe d'un véhicule, sur son récepteur GPS et sur le Bus CAN du véhicule sur lequel le boîtier est embarqué. Un tel boîtier est susceptible de rapatrier par voie filaire ou non, par exemple via un câble ou encore via un modem, des données sur la consommation de carburant vers un logiciel de restitution géré par un exploitant de la flotte des véhicules concernés.
  • Les données de consommation peuvent alors être connues a posteriori ou en temps réel par le logiciel de restitution. Cela peut donner lieu à des prises de décisions en fonction des données observées.
  • L'utilisation du chrono tachygraphe permet de connaître la vitesse du véhicule ainsi que d'avoir accès à une donnée d'horodatage des données. Le récepteur GPS permet d'avoir accès à des données de géo localisation. Le Bus CAN permet d'avoir accès à des données issues du système électronique embarqué sur le véhicule.
  • En l'occurrence, la seule donnée électronique circulant sur le Bus CAN permettant de suivre la consommation de carburant effectuée par le moteur du véhicule est, classiquement, une donnée issue d'un débitmètre placé sur la canalisation permettant au carburant d'entrer dans la chambre de combustion ou une donnée issue d'un système équivalent mesurant la quantité de carburant qui part vers la chambre à combustion.
  • Actuellement, dans l'électronique embarquée sur les véhicules, le volume d'essence consommé est seulement accessible via ce dispositif.
  • Une telle structure d'un système électronique de surveillance de la consommation de carburant par un véhicule permet un suivi correct de la consommation de carburant.
  • Néanmoins, on observe qu'aujourd'hui de tels systèmes montrent des limites. En particulier, il s'avère que ces logiciels ne permettent pas de faire face à de nouveaux comportements de la part des chauffeurs et de réseaux structurés qui organisent des vols, substitutions de carburant et autres violations.
  • Surtout, les systèmes électroniques de surveillance connus ne permettent pas de donner une information sur le lieu de la violation ni sur la date et l'heure de celle-ci. Ils ne savent pas distinguer un vol d'autres événements pouvant survenir à position géographique constante.
  • Ils ne permettent pas non plus d'avoir accès même indirectement à l'identité de la personne ayant effectuée le délit ni comment cette personne s'y est prise.
  • WO 2008/146307 décrit un système électronique à géo-localisation pour la surveillance du niveau de carburant dans le réservoir d'un véhicule et la détection de vol.
  • FR 2 871 741 décrit un système de surveillance des opérations de remplissage d'un réservoir et de son niveau, utilisant plusieurs sources d'informations pour détecter des vols de carburant.
  • US 2001/018628 décrit un système pour enregistrer les performances d'un véhicule et d'un conducteur.
  • Objet et résumé de l'invention
  • La présente invention a pour but principal de palier les insuffisances observées dans les systèmes électroniques de surveillance connus en proposant un système électronique de surveillance suivant la revendication indépendante 1.
  • Au sens de l'invention, les termes « appareil à l'arrêt » signifie que l'appareil présente une vitesse nulle. Avec un tel système de surveillance utilisant une télémesure du niveau de carburant, le boîtier embarqué a périodiquement accès à une mesure quantitative du niveau réel du carburant dans le réservoir grâce à la présence d'un capteur de niveau de carburant quantitatif placé dans le réservoir. Dans la mesure où ces données de niveau de carburant sont couplées en permanence et en temps réel avec les données de géo localisation et les données d'horodatage sur une même ligne de données, l'invention permet un monitoring en temps réel des réservoirs de carburants.
  • Selon l'invention, ce capteur de niveau de carburant est préalablement calibré pour prendre des mesures quantitatives de niveau de carburant entre une paroi haute et une paroi basse du réservoir. En effet, l'invention est telle que le capteur spécifique est étalonné préalablement à la mise en service du système électronique de telle façon que chaque valeur de sortie du capteur est associé de manière bijective à une position du niveau de carburant entre la paroi haute et la paroi basse du réservoir et à un volume précis de carburant restant dans le réservoir quel que soit le niveau de carburant entre la paroi haute et la paroi basse. Cette caractéristique n'est pas accessible avec les jauges habituellement installées dans les réservoirs. En effet, les jauges connues sont généralement des jauges tubulaires ou à levier mesurant le niveau par palier. De 18 à 21 millimètres sur la hauteur. Qui plus est, les jauges connues permettent généralement de mesurer quantitativement le niveau sur seulement 80 % de la hauteur du réservoir excluant la partie haute.
  • On note ici qu'actuellement les jauges de carburant telles qu'utilisées dans les véhicules et envoyant leurs données de mesure sur le Bus CAN des véhicules ne sont pas étalonnées de manière à permettre une mesure quantitative du niveau de carburant. Elles permettent plutôt une mesure indicative permettant seulement de suivre la décroissance du niveau de carburant à partir du moment où il ne reste qu'une quantité donnée de carburant à partir de laquelle la jauge commence à montrer une décroissance. Les jauges à essence connues restent en effet généralement un certain temps au niveau maximum à la suite d'un plein avant que la jauge n'indique une décroissance progressive du niveau de carburant. Le but de cette indication est effectivement d'éviter que l'utilisateur ne tombe en panne et pas de suivre en temps réel la diminution de niveau du carburant.
  • Une réalisation particulière exige que soit installée une interface nouvelle entre une jauge et le boîtier selon l'invention pour réaliser la calibration quantitative de la jauge que celle-ci soit dédié à la mise en oeuvre de l'invention ou soit une jauge préalablement installée pour un autre but, notamment indicatif.
  • Une réalisation particulière propose alors l'utilisation des données quantitatives issues du capteur de niveau de carburant en combinaison avec les données de géolocalisation et d'horodatage, ces données étant enregistrées ensemble pour un instant donné avec une périodicité donnée. Elles sont connues au sein du boîtier embarqué selon l'invention quel que soit le statut du fonctionnement de l'appareil sur lequel le boîtier est embarqué.
  • En effet, le système d'alimentation du boîtier embarqué utilise soit une connexion au circuit d'alimentation électrique de l'appareil, soit une connexion à une batterie autonome qui se recharge lorsque l'appareil fonctionne. Cela permet d'assurer le stockage des données avec strictement toujours la même périodicité quel que soit le statut de l'appareil, y compris à l'arrêt de l'appareil.
  • Cette caractéristique est inconnue des systèmes électroniques de surveillance tels qu'actuellement connus puisque il n'est jamais prévu que des données soient enregistrées en dehors du fonctionnement de l'appareil sur lequel est embarqué tout ou partie du système électronique de surveillance.
  • La combinaison entre le contrôle de l'alimentation électrique du boîtier embarqué et le stockage des données spécifiques à l'invention à périodicité fixe autorise à faire un suivi strict de ce qui se déroule dans le réservoir. Cela permet, selon l'invention, la mise en oeuvre du module de traitement de données capable de détecter une chute de niveau de carburant à position géographique constante à partir des lignes de données successives enregistrées quel que soit le statut du fonctionnement de l'appareil.
  • En effet, l'alimentation permanente du boîtier embarqué s'avère être indispensable pour mettre en oeuvre une telle détection qui, sinon, ne saurait absolument pas être fiable ou risquerait de manquer des événements.
  • On remarque donc que, outre le fait de pouvoir accéder à la connaissance de la consommation par chauffeur ou par véhicule, ainsi que cela est déjà partiellement permis par les dispositifs connus antérieurement, l'invention permet d'être informé en continu et en permanence de la présence d'une chute de niveau de carburant à position géographique constante en connaissant la date, le lieu et le volume de carburant correspondant à la chute du niveau de carburant.
  • En outre, l'invention permet de complètement piloter la nécessité ou non de faire le plein des véhicules avant le départ de ceux-ci à partir d'une centrale logistique possédant sa propre cuve de carburant. En effet, l'invention permet d'accéder à une information en temps réel du volume présent dans les réservoirs. Cela génère un gain de temps car cela permet de faire partir les camions qui disposent de suffisamment de carburant de manière assurée et cela réduit la file d'attente devant les cuves. Il est courant d'observer de telles files d'attente de plusieurs heures au départ des camions le matin chez certains transporteurs routiers. Cela engendre nécessairement un gain économique.
  • En effet, aucun des dispositifs connus ne permet d'avoir accès en temps réel au niveau réel de carburant au sein d'un ou plusieurs réservoirs. En effet, dans les dispositifs connus, seule la consommation du véhicule est connue à l'aide des données relatives à la quantité de carburant qui part vers la chambre à combustion, par exemple grâce à l'utilisation d'un débitmètre. Aussi, seule une approximation peut être donnée en fonction de la moyenne de consommation depuis le dernier plein.
  • Plus généralement, l'invention permet de disposer de la connaissance de la consommation réelle des véhicules en déduisant les chutes de carburant à position géographique constante qui ne peuvent que correspondre à un siphonage du réservoir. Cela permet en l'occurrence de déduire les vols de carburant du calcul de la consommation réelle et donc de l'impact environnemental d'une entreprise sur les émissions de CO2, principal gaz à effet de serre, qui sont directement liés à la consommation réelle du carburant.
  • L'invention permet bien entendu d'identifier les litres perdus pour quelque raison que ce soit et donc de calculer les pertes financières dues aux litres de carburant payés et non consommés par les véhicules de l'entreprise.
  • L'invention permet d'éliminer les événements moteur allumé appareil à l'arrêt des chutes de carburant à position géographique constante. En effet, dans le cas où le système n'est pas en mesure de connaître le statut de fonctionnement du moteur, il ne peut pas dissocier un vol d'une consommation normale du moteur tournant à l'arrêt. L'invention permet donc une grande finesse de détermination des événements de chutes de carburant et de leur nature. Il faut ici souligner que le statut moteur en fonctionnement est différent de la position de la clé de contact. En effet, la clé de contact peut être en position allumée alors que le moteur ne tourne pas. Dans ce cas, aucune consommation de carburant ne saurait être observée. L'invention s'intéresse ici au moteur tournant.
  • On note enfin que la caractéristique selon laquelle une alerte est fournie à l'outil de contrôle auquel peut être connecté le boîtier embarqué peut prendre diverses formes allant du simple compte rendu à une alerte en bonne et due forme sonore ou visuelle en temps réel ou en temps différé. Dans le cas d'une alerte différée, notamment lorsque le boîtier doit être connecté à l'outil de contrôle pour lui fournir les données, on remarque que le traitement des données avantageusement réalisé dans le boîtier pourra, dans un mode dégradé, être effectué au sein de l'outil de contrôle après réception des lignes de données.
  • Grâce aux données d'horodatage, l'invention permet de connaître exactement la date et l'heure à laquelle un siphonage a été effectué. En effet, la chute de carburant à position géographique constante est clairement révélatrice d'un siphonage du réservoir. La donnée de géolocalisation donne en plus la position du véhicule au moment du vol. La donnée sur le statut en fonctionnement du moteur permet d'éliminer les événements temps moteur allumé appareil à l'arrêt des événements de vol proprement dits.
  • En outre, la connaissance de la donnée de moteur tournant, dans le cas où, outre la disparition de carburant, la cinétique de disparation du carburant signe la présence d'un vol, renforce encore les preuves de culpabilité du chauffeur responsable du véhicule au moment de la chute de carburant. En outre, cela permet aussi d'identifier les consommations improductives comme les véhicules à l'arrêt moteur allumé.
  • En effet, un avantage supplémentaire d'avoir accès au statut en fonctionnement du moteur est la possibilité d'accéder aux temps moteur allumé appareil à l'arrêt avec, directement associés, le lieu, le jour et l'heure où cela s'est produit. L'invention donne accès non seulement à la durée durant laquelle le moteur est resté allumé à l'arrêt mais aussi au début de cet événement ainsi qu'à la fin de cet événement. On connaît ainsi une durée écoulée entre deux dates précises grâce à l'horodatage. Il ne s'agit pas de calculer une moyenne de consommation excessive en utilisant un index kilométrique interrogé entre deux points ou de comparer avec la consommation théorique en utilisant les données issues du bus CAN de l'appareil. Néanmoins les données issues du bus CAN pourront être comparées aux données obtenues avec l'invention. Il en est de même pour les données issues d'autres instruments comme le chrono tachymètre qui pourra en parallèle délivrer la distance parcourue, les temps de travail, de repos et la vitesse, l'identité chauffeur. Des solutions de type RFID pourront aussi être utilisées.
  • Le boîtier pourra en particulier être connecté lui-même à ces instruments. Il sera alors possible de faire remonter les infos disponibles sur ces instruments sans boîtier intermédiaire et de croiser toutes ces informations.
  • Avec l'invention, les temps moteur allumé appareil à l'arrêt sont précisément connus et localisés dans le temps et l'espace. Cela est accessible que l'appareil soit en marche ou non. La distinction entre ces deux types de chute de carburant à l'arrêt est une donnée très intéressante car elle permet de ne pas accuser un chauffeur à tort pour un vol et inversement de ne pas manquer de signaler un comportement inadapté aux économies de carburant.
  • Cela permet alors de rectifier le comportement d'un chauffeur particulier qui aurait tendance à laisser son moteur tourner engendrant ainsi non seulement des coûts pour l'entreprise mais aussi des émissions de CO2 qu'il est parfaitement souhaitable de diminuer d'autant plus que les entreprises sont aujourd'hui particulièrement enclines à fournir des données de performance environnementale en leur faveur.
  • Ainsi, l'invention aide les entreprises du transport routier de marchandises à réduire leur consommation de carburant et à alléger aussi la part du poste de carburant dans leurs comptes en plus de permettre de surveiller les vols de carburant. Les entreprises peuvent aussi alors adhérer à des chartes permettant un engagement volontaire d'un point de vue environnemental.
  • En particulier, la charte « Objectif CO2 : les transporteurs s'engagent ... » pourra être signée par les entreprises qui se seront munies du système de surveillance selon l'invention afin de valoriser leurs engagements en interne et en externe.
  • Le système de surveillance selon l'invention permet effectivement de réaliser une mesure précise et efficace de la consommation et des émissions réelles en CO2 en excluant ou pas les vols de carburant en fonction des informations désirées et en identifiant les consommations improductives comme les véhicules à l'arrêt moteur allumé qui peuvent être réduites par l'éducation des chauffeurs.
  • Grâce à la récurrence de ses enregistrements de mesure de niveaux de carburant et à la combinaison avec des données de géo-localisation, d'horodatage et de statut de fonctionnement du moteur, l'invention permet de délivrer des calculs d'émission de CO2 par zone géographique sur des périodes précises, ou par client du transporteur, ou bien encore par véhicule et/ou par chauffeur.
  • Le croisement des informations d'emplacement du véhicule et de mouvement du véhicule moteur allumé permet ainsi un suivi optimal du comportement des chauffeurs et de la consommation de carburant. Elles permettent donc de savoir les points sur lesquels des améliorations peuvent être effectuées et des actions menées.
  • En plus, dans la mesure où le boîtier embarqué fonctionne quel que soit le statut de fonctionnement de l'appareil sur lequel il est embarqué, l'outil de contrôle a accès aux temps de moteur éteint, aux temps de moteur allumé appareil à l'arrêt et aux temps de moteur allumé appareil en mouvement. L'invention permet ainsi d'avoir une mesure de la consommation totale sur les trajets effectués. Cela permet de cibler des actions dans un objectif de réduction chiffré et réaliste à partir de la connaissance parfaite des consommations par véhicules et/ou conducteurs qui définit un état des lieux initial.
  • Bien entendu, le boîtier embarqué permet en outre d'accéder au détail de distance parcourue, à la visualisation de la route sur des cartes digitales ainsi que d'avoir accès aux arrêts du véhicule.
  • Selon des réalisations particulières de l'invention, les moyens pour détecter le statut en fonctionnement du moteur sont choisis parmi une connexion à un capteur placé au niveau de la borne d'excitation d'un alternateur du circuit électrique d'alimentation de l'appareil, une connexion sur une prise carrossier donnant l'information moteur tournant, une connexion à la batterie pour réaliser une mesure de la différence de tension aux bornes de la batterie principale, le module de traitement de données connaissant préalablement la différence de tension observée entre la tension observée avec une position de clef de contact sur ON et la tension observée avec le moteur allumé.
  • Ces différents moyens pour connaître le statut en fonctionnement du moteur donnent un résultat sûr permettant de savoir si le moteur tourne et consomme du carburant ou est éteint et ne consomme donc plus de carburant.
  • Selon une caractéristique avantageuse, le module de traitement de données du boîtier est capable de détecter une hausse de niveau de carburant à position géographique constante caractéristique de la réalisation d'un remplissage du réservoir à partir des lignes de données successives enregistrées et de communiquer, lorsqu'une hausse de carburant à position géographique constante est détectée, en temps réel ou en différé, un signal spécifique à l'outil de contrôle pour signaler la présence d'un remplissage.
  • Cette caractéristique permet de repérer, dans un ensemble de lignes de données, les instants de réalisation d'un remplissage du réservoir que ce soit un plein ou uniquement une hausse de carburant relative dans le réservoir. Cette caractéristique permet en outre de connaître la localisation, la date et l'heure de chaque plein ou remplissage de réservoir avec éventuellement visualisation sur une carte.
  • Cette caractéristique permet à l'utilisateur de l'outil de contrôle de disposer des dates et heures des remplissages du réservoir et de la quantité effectivement fournie au sein du réservoir.
  • Cette caractéristique est utile pour, non seulement, repérer les remplissages/pleins dans le temps mais aussi pour confirmer la présence d'une substitution de carburant comme cela est parfois observé.
  • En effet, une chute du niveau du carburant à position géographique constante suivie d'une hausse de ce niveau à position géographique constante, que ce soit la même position ou une position différente de la baisse de carburant observée précédemment, ou éventuellement le contraire, sera pleinement caractéristique d'une substitution de carburant.
  • Selon une caractéristique particulière, l'outil de contrôle comprend en outre une interface de saisie de données pour permettre à un utilisateur de saisir des données externes relatives aux remplissages du réservoir, l'unité de traitement de données étant adaptée pour recevoir ces données externes saisies, pour détecter des incohérences entre les données externes saisies par l'utilisateur et les signaux spécifiques aux remplissages communiqués par le boîtier embarqué.
  • En combinaison avec la caractéristique précédente, cette caractéristique permet de détecter des vols à la cuve. De tels vols sont par exemple effectués par le remplissage d'un bidon avant, pendant ou à la suite du remplissage du réservoir du véhicule sur lequel le boîtier embarqué du système électronique de surveillance selon l'invention est installé.
  • En effet, en comparant la hausse du niveau de carburant observée et détectée au sein du boîtier embarqué et signalée par le signal spécifique envoyé à l'outil de contrôle avec les données saisies auprès de l'outil de contrôle et signalant la quantité de carburant payée, annoncée généralement sur le reçu fourni par la station service dans laquelle le remplissage du réservoir a été effectué, à la même date et approximativement à la même heure, l'outil de contrôle a accès à la quantité de carburant qui a alors été déversé dans un autre récipient que le réservoir de l'appareil sur lequel le boîtier embarqué du système électronique selon l'invention est installé.
  • Outre le lieu, la date, on comprend ainsi que le système électronique de surveillance selon l'invention permet de savoir de quelle manière le carburant manquant a été dérobé. En effet, lorsqu'une chute de carburant à position géographique constante est observée, il s'agira d'un siphonage et lorsque la comparaison entre la quantité de carburant payé sur une note de frais de remplissage d'un réservoir avec la quantité de carburant mesurée lors d'une hausse du niveau de carburant révèle une incohérence, un vol à la cuve sera détecté.
  • Aussi grâce à cet outil de contrôle, il est ainsi possible de connaître où, quand, et comment un voleur s'y est pris pour voler du carburant.
  • Selon une caractéristique particulière, la périodicité d'enregistrement des lignes de données est comprise entre 60 et 120 secondes.
  • Cette périodicité d'enregistrement permet de réaliser un compromis grossier entre les fluctuations du niveau de carburant que l'on est capable de détecter au sein du réservoir et un échantillonnage suffisamment fin du niveau dans le réservoir pour permettre la détection d'une chute de carburant à position géographique constante ainsi que cela est visé par l'invention. Les fluctuations dans le réservoir peuvent être notamment dues aux accélérations et décélérations du véhicule.
  • Selon une caractéristique préférentielle de l'invention, la périodicité d'enregistrement des lignes de données est comprise entre 85 et 95 secondes.
  • Les inventeurs ont en effet noté qu'un intervalle de temps choisi autour de 90 secondes permet de s'affranchir de manière optimale des fluctuations de niveaux dues à l'accélération et à la décélération du véhicule et une telle prise de mesure toutes les minutes et demi permet un suivi très fiable du comportement du conducteur.
  • Cela permet au système électronique de surveillance selon l'invention de fournir une quantité de données optimale, ni trop faible, ni trop importante pour faire un suivi de la consommation réelle par le véhicule fiable et suffisamment précise au vu des observations sur le niveau de carburant dans un réservoir effectuées par ailleurs au sein de l'outil de contrôle.
  • En effet, cette prise de mesure effectuée avec une période choisie autour de 90 secondes permet d'éviter d'avoir à réaliser une moyenne du niveau de carburant dès lors qu'une fluctuation due à une accélération ou à une décélération est observée.
  • En effet, en réalisant un échantillonnage avec une période inférieure à 60 secondes, on observe qu'il est nécessaire de faire une moyenne du niveau signalé par le capteur sous peine de ne pas détecter certaines chutes de carburant à position géographique constante ou encore de détecter des fausses chutes de carburant à position géographique constante.
  • Le calcul d'une telle moyenne de niveau mobilise des ressources de calcul au sein des moyens de traitement. Cela peut être souhaitable à éviter pour des raisons d'économie ou de rapidité de calcul.
  • Ainsi l'optimisation de la périodicité des enregistrements des lignes de données est particulièrement importante dans le cadre de l'invention et un choix autour de 90 secondes se révèle particulièrement adapté.
  • Selon une caractéristique avantageuse, le boîtier comprend en outre un connecteur pour être connecté à au moins un détecteur de position de clé de contact et en ce que les données issues de ce détecteur sont incluses dans la ligne de données et sont traitées par le module de traitement de données de manière à inclure les données de position de clé de contact dans l'alerte communiquée à l'outil de contrôle.
  • Cette caractéristique permet de savoir si le conducteur est resté à proximité du véhicule lorsqu'une chute de carburant est détectée. En effet, lors d'un vol de véhicule, les personnes qui réalisent cet acte prennent généralement leurs précautions pour pouvoir repartir aisément et sans perte de temps. Ainsi, on constate en général que les clés de contact restent généralement en position « On » voire que le moteur continue de tourner lors des vols par siphonage des réservoirs des véhicules. Dans ce cas, la cinétique de disparition du carburant avec le moteur allumé permet de dissocier le vol d'une simple consommation à l'arrêt du moteur tournant.
  • La présence de cette donnée de position de clé de contact permet de fournir à l'exploitant chez lequel l'outil de contrôle est installé de disposer d'une preuve complémentaire pour caractériser le vol de carburant et surtout pour identifier la personne responsable puisque la clé de contact est généralement délivrée à un chauffeur particulier en début de course et rendue par celui-ci en fin de course. Si la clé de contact a été laissée en position « On » lors de la chute de réservoir à position géographique constante, le chauffeur en question sera alors difficilement en mesure d'affirmer qu'il n'est pas responsable ou qu'il ignore la réalisation de ce larcin.
  • Selon une caractéristique particulière, le boîtier comprend un module d'étalonnage du capteur de niveau de carburant choisi parmi les capteurs du type ultrasonore, les capteurs utilisant un flotteur, l'étalonnage associant automatiquement de manière bijective, préalablement à la mise en service du système électronique, une valeur de sortie du capteur à chaque position du niveau de carburant entre la paroi haute et la paroi basse du réservoir et à un volume précis de carburant restant dans le réservoir.
  • Cette caractéristique permet d'associer chaque niveau observé de carburant dans le réservoir à une valeur de sortie du capteur assurant automatiquement le caractère quantitatif des mesures effectuées par le capteur du niveau de carburant. L'utilisation d'un tel module automatique d'étalonnage est intéressante mais un étalonnage manuel pourra aussi être réalisé sur chaque type de réservoir pour associer un volume de carburant restant à une valeur de sortie du capteur.
  • Selon une caractéristique avantageuse, l'unité de traitement de données de l'outil de contrôle est adaptée pour calculer une consommation réelle de l'appareil à partir des lignes de données enregistrées.
  • Selon une autre caractéristique avantageuse du système électronique selon l'invention, l'unité de traitement de données de l'outil de contrôle est adaptée pour calculer une émission dioxyde de carbone effectuée par l'appareil.
  • Ce calcul permet d'accéder directement au bilan carbone de l'activité développé par l'appareil ce qui peut participer d'une démarche commercialement valorisable auprès des clients chargeurs de plus en plus sensibles aux questions environnementales. Cela peut aussi contribuer à donner une image d'entreprise moderne respectueuse de l'environnement et s'inscrivant dans une perspective de développement durable. Globalement, cela pourra aboutir à une meilleure image du transport routier.
  • Selon une caractéristique avantageuse, l'appareil ayant une fonction de travail annexe au fonctionnement de son moteur, le boîtier comprend des moyens pour déterminer le statut en fonctionnement de cette fonction de travail annexe, les données de statut en fonctionnement de la fonction de travail annexe étant incluses dans la ligne de données, l'outil de contrôle déterminant ainsi les temps moteur allumé appareil à l'arrêt en travail et les temps moteur allumé appareil à l'arrêt hors travail.
  • Cette donnée de statut en fonctionnement d'une fonction de travail permet de dissocier les temps moteur allumé appareil à l'arrêt productifs, c'est-à-dire les temps moteur allumé appareil à l'arrêt en travail des temps moteur allumé appareil à l'arrêt improductifs, c'est-à-dire sans travail. En effet, pour certaines actions particulières, les véhicules spécialisés doivent avoir le moteur en marche pour effectuer la fonction de travail. Dans ce cas, les temps moteur allumé appareil à l'arrêt ne doivent pas être comptés parmi les consommations certaines actions particulières, les véhicules spécialisés doivent avoir le moteur en marche pour effectuer la fonction de travail. Dans ce cas, les temps moteur allumé appareil à l'arrêt ne doivent pas être comptés parmi les consommations improductives. Cette caractéristique permet de dissocier ces deux cas. Sur une période de plusieurs heures où le moteur est resté allumé appareil à l'arrêt, cette caractéristique permettra de repérer les durées pendant lesquelles, typiquement, une prise de force servant pour la réalisation de la fonction de travail annexe (pompe, grue etc...) était activée. Cette durée sera exclue des consommations improductives.
  • L'invention concerne aussi un boîtier suivant la revendication 15.
  • Un tel boîtier adapté pourra être connecté au besoin à un outil de contrôle et permet la mise en oeuvre de l'invention au sein de l'appareil dont le système électronique selon l'invention est destiné à surveiller la consommation.
  • L'invention concerne aussi un outil de contrôle sédentaire connecté par voie filaire ou non à un boîtier embarqué selon l'invention, comprenant au moins une mémoire pour enregistrer les alertes et les lignes de données communiquées par le boîtier embarqué à partir desquelles il accède aux temps moteur allumé à l'arrêt et aux temps moteur allumé en mouvement, un écran pour afficher les alertes et les données communiquées par le boîtier embarqué.
  • L'invention concerne encore un procédé de surveillance suivant la revendication indépendante 17.
  • Selon une implémentation préférée, les différentes étapes du procédé selon l'invention sont déterminées par des instructions de programmes d'ordinateurs.
  • En conséquence, l'invention vise aussi un programme d'ordinateur sur un support d'informations, ce programme étant susceptible d'être mis en oeuvre dans un ordinateur, ce programme comportant des instructions adaptées à la mise en oeuvre des étapes du procédé selon l'invention.
  • Ce programme peut utiliser n'importe quel langage de programmation, et être sous la forme de code source, code objet, ou de code intermédiaire entre code source et code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable.
  • L'invention vise aussi un support d'informations lisible par un ordinateur, et comportant des instructions d'un programme d'ordinateur tel que mentionné ci-dessus.
  • Le support d'informations peut être n'importe quelle entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, tel qu'une ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore un moyen d'enregistrement magnétique, par exemple une disquette (floppy disc), un disque dur, une mémoire flash, une clé USB etc.
  • D'autre part, le support d'informations peut être un support transmissible tel qu'un signal électrique ou optique, qui peut être acheminé via un câble électrique ou optique, par radio ou par d'autres moyens. Le programme selon l'invention peut être en particulier téléchargé sur un réseau de type Internet.
  • Alternativement, le support d'informations peut être un circuit intégré dans lequel le programme est incorporé, le circuit étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé en question.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
    • la figure 1 montre schématiquement un système de surveillance électronique selon l'invention ;
    • la figure 2 montre un exemple de lignes de données successives enregistrées au sein du boîtier embarqué et téléchargées dans l'outil de contrôle avant d'y être fiché à la façon représentée sur cette figure;
    • les figures 3A et 3B montrent respectivement un exemple de paramétrage d'alerte pour signaler une chute du niveau de carburant à position géographique constante et d'un signal spécifique signalant la présence d'un remplissage du réservoir à position géographique constante et un exemple d'affichage d'alertes de surconsommation ;
    • les figures 4A, 4B, 4C et 4D montrent des tableaux et graphiques dans lesquels des événements de surconsommation anormaux sont détectés ;
    • la figure 5 montre un exemple de capteurs utilisant un flotteur susceptible d'être utilisé pour la mise en oeuvre de l'invention.
    • la figure 6 montre un tableau résultat d'un étalonnage du capteur de niveau de carburant selon l'invention ;
    • la figure 7 montre un organigramme du procédé selon l'invention ;
    • enfin la figure 8 montre une fiche susceptible d'être dressée au sein de l'outil de contrôle pour la gestion d'une flotte de véhicules ou d'un groupe de chauffeurs.
    Description détaillée d'un mode de réalisation
  • La figure 1 représente schématiquement un système de surveillance électronique selon l'invention. Ce système comprend un boîtier 10, embarqué sur un appareil incluant au moins un moteur 11, un réservoir 12 et un circuit électrique d'alimentation.
  • Ce circuit électrique d'alimentation comprend classiquement une batterie 13 et divers moyens de connexion vers le moteur 11, notamment pour récupérer l'énergie dispensée par celui-ci au travers d'un alternateur. En général, la batterie 13 est en outre reliée à une pluralité de capteurs généralement présents à bord de l'appareil 1, soit directement, soit par l'intermédiaire du boîtier 10.
  • Ainsi, la batterie 13 est connectée au boîtier 10, lui-même connecté à un capteur 14 de niveau de carburant capable de prendre des mesures quantitatives de niveau de carburant dans le réservoir 12 entre la paroi haute et la paroi basse de ce réservoir 12.
  • Le capteur 14 est également relié au boîtier 10 de telle manière qu'il puisse lui transmettre les données de niveau de carburant qu'il est en mesure d'acquérir. Pour cela, le boîtier 10 comprend un connecteur 101. Ce connecteur qui permet la transmission de données prend, avantageusement, aussi en charge l'alimentation du capteur 14 via le boîtier 10.
  • Selon une réalisation particulière, le boîtier 10 comprend en outre un connecteur d'alimentation à basculement 102, capable de faire basculer l'alimentation du boîtier 10 entre le circuit électrique d'alimentation de l'appareil 1 et donc par une alimentation directe par la batterie 13 et un circuit d'alimentation annexe et autonome basé sur l'implémentation d'une batterie 15 annexe. La batterie 15 est avantageusement connectée au boîtier 10, lui-même connecté à la batterie principale 13. Ainsi, cette batterie annexe 15 est capable de se recharger sur le circuit électrique d'alimentation de l'appareil 1 lors du fonctionnement du moteur 11 et de fournir de l'énergie électrique au boîtier 10 dès lors que le circuit électrique d'alimentation de l'appareil 1 est mis hors tension.
  • Le boîtier 10 comprend en outre un module de traitement de données 104, une horloge 103, apte à fournir des données d'horodatage au module de traitement de données 104, un récepteur 105 pour recevoir des données de géolocalisation et une mémoire 106.
  • La mémoire 106 est notamment utilisée selon l'invention pour enregistrer des lignes de données successives comprenant les données de niveau de carburant en provenance du capteur 14, les données d'horodatage en provenance de l'horloge 103, des données de géo-localisation en provenance du récepteur 105 à un instant donné avec une périodicité comprise entre 1 et 240 secondes.
  • Selon une réalisation particulière, la périodicité d'enregistrement des lignes de données sera avantageusement comprise entre 60 et 120 secondes pour permettre d'éliminer les oscillations du niveau de carburant les plus rapides au sein du réservoir 12. La périodicité de 120 secondes permet d'avoir un échantillonnage du niveau de carburant suffisant pour repérer les actes que le système de surveillance selon l'invention est destiné à détecter.
  • Plus précisément, la fourchette de périodicité optimale permettant d'optimiser à la fois la quantité de données stockées, la suppression des oscillations dans le réservoir et la détection des événements souhaités est comprise entre 85 et 95 secondes.
  • Le boîtier 10 du système peut s'installer avantageusement à l'intérieur du tableau de bord.
  • Le système électronique de surveillance selon l'invention comprend également un outil de contrôle 2 muni d'une mémoire 20 pour enregistrer les alertes et les lignes de données communiquées par le boîtier embarqué 10, une unité de traitement de données 21 et un écran 22 pour afficher les alertes et les données communiquées par le boîtier embarqué 10.
  • Avantageusement, l'outil de contrôle comprend en outre une interface de saisie de données 23, permettant à l'utilisateur de saisir des données externes relatives au remplissage du réservoir 12.
  • La figure 2 montre un certain nombre de lignes de données telles qu'enregistrées avec une périodicité de 90 secondes lors du fonctionnement d'un véhicule suivi par le dispositif de surveillance selon l'invention.
  • Le message transféré par le boîtier vers l'outil de contrôle a le format suivant :
    • ymmddnnn,ddmmaaaa,hhmmss,xxxx.x,yyyy.y,zzzz.z,ABCDEFrr,IJKLMOPr,sss.s,d dmm.mmm,S,dddmm.mmm,W,cc.cccc,tt.t,tt.t,tt.t
  • Ce format est interprété de la façon suivante : Identification du véhicule - numéro de série : ymmddnnn,
    Date : ddmmaaaa,
    Heure : hhmmss,
    Litres R1 : xxxx.x,
    Litres R2 : yyyy-y,
    Litres R3 : zzzz.z,
    Statut 1 : ABCDEFrr,
    Statut 2 : IJKLMOPr,
    Vitesse NM/hr : sss.s,
    Latitude : ddmm.mmm,
    Latitude : S,
    Longitude : dddmm.mmm,
    Longitude : W,
    Interface client (EcoG par exemple) : cc.cccc,
    Température 1 : +/- tt.t,
    Température 2 : +/- tt.t,
    Température 3 : +/- tt.t
  • La vitesse d'envoi des données est programmable entre 4800, 9600 et 19200 bauds par seconde.
  • Il peut être ajouté à cette trame l'ensemble des informations fournies par le bus CAN, le chrono tachygraphe du véhicule et au moins un module de RFID
  • Dans ce tableau, on voit, au vu des données de géo-localisation notées Loc1 et Loc2, que le véhicule s'est déplacé entre 21:06 et 21:27. Le niveau de carburant diminue logiquement avec le déplacement du véhicule. Néanmoins, on note ici que l'observation de cette décrémentation est conditionnée par la sensibilité du capteur 14 implémenté dans le réservoir 12.
  • On constate aussi que l'outil de contrôle a accès à des statuts de capteurs donnant des informations sur le fonctionnement du moteur et la position de la clé de contact. D'autres éventuels statuts disponibles grâce à d'autres capteurs installés sur le véhicule pourront être aussi inclus dans des lignes de données du type de celles présentées sur la figure 2. Ici le statut 1 nous informe que la clé de contact est en position ON (deuxième donnée du statut 1 : 0 = ignition ON) et que le moteur du véhicule est allumé (quatrième donnée du statut 1 : 1 = moteur allumé). Les figures 3A et 3B montrent respectivement le paramétrage des seuils d'alerte de surconsommation et de détection d'un remplissage du réservoir. Ces seuils sont aptes à déclencher une alerte dès lors qu'ils sont dépassés à la position géographique constante. Pour réaliser cette détection, le module de traitement de données réalise une comparaison entre le niveau de carburant observé sur deux ou plusieurs lignes successives et compare avec les flux maximaux paramétrés au sein du boîtier ainsi que montré sur la figure 3A.
  • Avantageusement, ainsi que présenté sur la figure 3, des flux maximaux sont indiqués pour divers statuts de fonctionnement du moteur et de déplacement du véhicule. Le choix d'un paramétrage des surconsommations adapté à la consommation moyenne du véhicule évite le déclenchement de fausses alertes et permet de détecter sélectivement les surconsommations.
  • L'invention prévoit en effet que le module de traitement de données effectue diverses comparaisons de niveaux, en particulier des comparaisons entre deux lignes de données enregistrées au début et à la fin d'une position géographique constante.
  • La figure 3B montre un certain nombre de surconsommations détectées telles qu'affichées sur l'écran de l'outil de contrôle. Les surconsommations observées sont associées chacune à un site d'exploitation (Marseille, Toulon ou Nice) de plusieurs véhicules repérés par leur immatriculation. L'alerte a préalablement été envoyée vers l'outil de contrôle 2 par les boîtiers 10 installés sur les véhicules concernés.
  • L'outil de contrôle 20 affiche alors les surconsommations sous le format présenté sur la figure 3B qui montre le site d'exploitation, l'immatriculation du véhicule concerné, la date et l'heure de l'observation de la surconsommation anormale, le volume de décrémentation observé ainsi que le code du chauffeur qui était, à ce moment-là, au volant du véhicule portant l'immatriculation concernée.
  • Il est ainsi possible de suivre de manière très fine tout vol de carburant sur un véhicule donné et de pouvoir préciser l'heure à laquelle ce vol a été perpétré ainsi que l'endroit, qui n'est pas ici précisé mais qui est connu dans les lignes de données telle que communiquée à l'outil de contrôle. Il est aussi possible de dissocier un vol d'une surconsommation due à un moteur allumé appareil à l'arrêt.
  • Jusqu'à présent, il n'était pas possible de détecter un tel vol et d'en donner les caractéristiques car l'utilisation d'un débitmètre ou d'une mesure de la quantité de carburant dispensée vers le moteur pour mesurer une consommation ne permet aucunement de détecter la date et l'heure d'un vol.
  • En effet, dans les dispositifs connus, autant il est possible de connaître la consommation de carburant à chaque instant, autant il n'est pas possible de suivre en temps réel la quantité de carburant dans le réservoir du véhicule et cela empêche de détecter les vols par siphonage.
  • Les figures 4A, 4B, 4C et 4D montrent des exemples de, respectivement, des lignes de données au sein desquelles un vol est détecté, une courbe du niveau de carburant à position géographique constante montrant un vol par siphonage, une alerte telle qu'affichée sur l'outil de contrôle et une courbe de suivi du niveau de carburant avec déplacements du véhicule et sur laquelle apparaissent des événements suspects.
  • Sur la figure 4A, on voit que le camion fait un petit déplacement visible sur les données de géolocalisation, avant de s'immobiliser en registre/ligne de données 7. Ensuite, le volume V1 du réservoir a selon les registres successifs 9 à 12, diminué de 41 litres sans mouvement du véhicule. Cela signe typiquement l'occurrence d'un siphonage, la quantité disparue en fonction de la durée d'arrêt étant supérieure à la consommation d'un moteur tournant à l'arrêt.
  • En outre, en dehors des problèmes de vol, on remarque que, comme on a accès aux statuts de la clé de contact et du moteur en même temps qu'aux données de géo-localisation, il serait possible de détecter des surconsommations du au fait que le chauffeur a laissé le moteur tourner à l'arrêt. Il est même possible de donner un résultat sous la forme : le véhicule est resté 20% du temps global de fonctionnement du moteur à l'arrêt.
  • Ainsi que représenté sur la figure 4B, l'outil de contrôle peut calculer et afficher une courbe de niveau de carburant en fonction des registres successifs. La courbe de la figure 4B affiche sous forme graphique le vol détecté sur le tableau de la figure 4A.
  • La figure 4C montre un exemple d'affichage de l'alerte « vol » associée au vol visible sur le tableau de données de la figure 4A. L'outil de contrôle pourra aussi éventuellement afficher les lieux des événements observés sur une carte. Il peut aussi fournir toutes sortes de statistiques de consommation sur des plages horaires plus ou moins importantes.
  • La figure 4D montre un exemple de courbe de niveau de carburant sur laquelle sont détectés des événements suspects. On voit ainsi que des zones VM de la courbe correspondent au véhicule en mouvement par corrélation avec les données de géolocalisation. On observe aussi ici une zone VA où le véhicule est arrêté. On observe également deux événements suspects E1 et E2 où le niveau de carburant a baissé rapidement. Dans le cas où le véhicule est constaté immobilisé aux instants correspondant à ces registres grâce aux données de géolocalisation, un vol est détecté.
  • La figure 5 montre un capteur à flotteur 14, susceptible d'être utilisé dans l'invention. On note ici que d'autres types de capteurs, par exemple des capteurs à ultrasons, pourront être utilisés pour mettre en oeuvre l'invention dès lors qu'une mesure quantitative du niveau de carburant peut être acquise entre la paroi haute du réservoir 12 et la paroi basse de celui-ci. Il existe aussi des capteurs de type tubulaire où le flotteur est enroulé autour d'un axe du capteur et qui pourront être utilisés au sein d'un dispositif selon l'invention
  • Le capteur 14 représenté sur la figure 5 présente un disque de fixation 140 sur le réservoir, un corps 141 longitudinal, destiné à être placé verticalement dans le réservoir et avantageusement réglable dans sa longueur pour pouvoir s'adapter à diverses tailles de réservoir, un bras de levier 142 muni à son extrémité d'un flotteur 143. Le bras de levier 142 est articulé autour d'un axe 144 placé sur l'extrémité basse du corps 141 du capteur 14. Dans l'exemple présenté, la hauteur L du corps 141 du capteur peut être réglée en utilisant des vis placées dans des orifices placés à cet effet le long du corps 141.
  • La longueur R du bras de levier 142 du flotteur 143 peut également être modifiée en fonction de l'endroit où sont fixés le flotteur 143 et l'axe de fixation 144 sur le corps du capteur.
  • Ainsi l'installation du capteur comprend deux étapes. La première consiste à régler la longueur L du corps 141 de manière à ce qu'elle soit égale à 50 % du diamètre H du réservoir quand celui-ci est cylindrique ou 50 % de la hauteur H du réservoir quand celui-ci est cubique, carré ou rectangulaire. Ensuite, on règle position du flotteur 143 sur le bras de levier 142 de manière à ce que, quand le bras 142 du flotteur 143 est en position du réservoir plein, la paroi supérieure du flotteur 143 soit à la hauteur de la paroi haute du réservoir..
  • En outre, dans le cas où un tel capteur est utilisé, il est nécessaire que, pour la position basse du flotteur 143, c'est-à-dire la position en rotation la plus basse, le flotteur 143 touche la paroi basse du réservoir 12.
  • Il est aussi nécessaire pour l'invention que la position rotationnelle haute soit quantitative pour les niveaux de carburants les plus hauts possibles dans le réservoir 12. Pour cela il faut que le flotteur 143 soit toujours en position de flottabilité et ne puisse pas être coincé contre la paroi haute. Le flotteur et les divers éléments du capteur seront dimensionnés pour cela même si une marge d'erreur en haut et en bas du réservoir peut éventuellement être acceptée. Cependant, idéalement, la forme du réservoir et la position de l'orifice de remplissage seront tels que le flotteur 143 ne pourra pas se trouver plaqué sur la paroi haute.
  • Ainsi que présenté sur la figure 5 et décrit ci-dessus, la hauteur L du corps 141 du capteur entre la paroi haute du réservoir 12 et l'axe d'articulation 144 du bras de levier 142 et la longueur R du bras de levier 142 seront en réalité choisies en fonction de la hauteur H du réservoir 12.
  • Des capteurs de niveau de carburant à bras ajustable pourront ainsi être utilisés au sein des réservoirs des appareils sur lesquels sera installée l'invention.
  • La figure 6 montre un tableau dans lequel sont répertoriés un exemple de différents points de calibration associant le signal de sortie, noté SC, du capteur 14 à la quantité de carburant présente dans le réservoir 12. Un tel tableau peut être le résultat d'une calibration manuelle ou d'une calibration automatique.
  • L'avantage de la calibration manuelle est sa précision et sa fiabilité puisque l'on contrôle complètement la quantité de carburant introduite dans le réservoir 12. On peut ainsi associer précisément un signal de sortie SC du capteur 14 correspondant très exactement à la quantité de carburant présente dans le réservoir.
  • Pour réaliser une calibration manuelle, il est nécessaire que le réservoir soit préalablement vidé et déconnecté des éventuels autres réservoirs présents sur l'appareil considéré. L'absence de connexion entre les réservoirs évite en effet que, lors de la calibration, le carburant des autres réservoirs filtre jusqu'au réservoir en cours de calibration ou vice-versa. Dans tous les cas, il est nécessaire que le boîtier embarqué 10 soit connecté à sa source d'énergie et que le capteur soit connecté en outre au boîtier 10.
  • Le flotteur 143 doit bien sûr être installé de manière correcte dans le réservoir 12 et le mouvement du bras de levier 142 du flotteur 143 doit pouvoir se faire sans obstacle sur toute la hauteur du réservoir 12.
  • Enfin, il est nécessaire que le réservoir 12, qui va être calibré, soit bien identifié au sein du boîtier 10. Avantageusement, la capacité maximale du réservoir considéré sera aussi indiquée auprès du boîtier 10.
  • On note ici que la calibration peut être faite par l'intermédiaire de l'interface utilisateur présente sur l'outil de contrôle. Cela est une réalisation avantageuse. Néanmoins, un dispositif annexe pourrait aussi être utilisé pour réaliser cette opération.
  • Un tel dispositif annexe ou l'outil de contrôle est, en tout cas, apte à programmer le boîtier 10 en indiquant les identifiants des réservoirs connectés, leur capacité maximum et leur position.
  • En effet, la calibration manuelle du réservoir est nécessaire pour que le système de surveillance donne la précision maximale de lecture des niveaux de carburant dans le réservoir.
  • Cette opération est débutée à réservoir vide et il faut s'arrêter plusieurs fois pour capturer le signal à la sortie du capteur de niveau et ajouter une nouvelle ligne de données aux fichiers de calibration en fonction de la quantité de carburant qui a été introduite dans le réservoir.
  • Un fichier est alors généré qui décrit précisément le flotteur et le réservoir en complément des points de calibration qui associent le signal du capteur avec la quantité de carburant.
  • Un tel fichier du type de celui représenté sur la figure 6 est ensuite utilisé pour des installations suivantes dans des véhicules présentant des configurations similaires de flotteurs et de tailles de réservoirs.
  • En effet, il est prévu de pouvoir calibrer de manière automatique le réservoir. Il s'agit alors de télécharger un fichier de calibration depuis un dispositif annexe ou plus préférentiellement, depuis l'outil de contrôle. Dans ce cas, le fichier de calibration sera identifié par des données correspondant à la taille et au volume du réservoir. Un tel fichier de calibration est typiquement un fichier résultat d'une calibration manuelle préalable d'un réservoir identique à celui pour lequel le fichier de calibration a été téléchargé.
  • Néanmoins, cette calibration ne sera pas strictement adaptée au réservoir particulier considéré et pourra éventuellement engendrer des erreurs au niveau des mesures quantitatives de niveau de carburant. Une calibration manuelle sera alors indispensable.
  • En début d'opération de calibration manuelle, il est donc nécessaire de s'assurer que le réservoir est bien vide. Dans le cas contraire, les surconsommations et les pleins réalisés en dessous du niveau de carburant alors observés ne seront pas détectés ou seront faussés. Il faut aussi attendre que le signal de sortie du capteur soit stabilisé.
  • Ensuite, on peut par exemple remplir le réservoir jusqu'au 1/16ème environ. Ainsi, pour un réservoir de 1 200 litres, 75 litres de carburant seront placés dans le réservoir. On capture alors le signal de sortie SC du capteur et on ajoute un point de données dans le fichier de calibration. Bien entendu, il est nécessaire d'attendre que le signal de sortie du capteur soit stabilisé avant de réaliser la capture. Cela peut prendre une minute ou légèrement plus après avoir terminé d'ajouter le carburant dans le réservoir.
  • Ensuite, un autre point est réalisé à 2/16ème de remplissage du réservoir. Cette opération est réalisée jusqu'à ce que le réservoir soit plein.
  • Dans l'exemple donné, le réservoir est rempli par 16ème. Néanmoins, des divisions du volume du réservoir en fractions allant d'1/12ème à 1/20ème sont tout à fait envisageables pour assurer la fiabilité de la calibration du système de surveillance. Les valeurs intermédiaires sont alors calculées automatiquement par le boîtier 10, typiquement par approximation linéaire.
  • Avec le capteur de la figure 5, la position du flotteur 143 correspond à une mesure analogique de résistance mesurée sur un potentiomètre ou ohmmètre 145 placé sous le trajet du bras de levier 142 à proximité de l'axe 145 du capteur. La valeur de la résistance du potentiomètre 145 est alors variable en fonction de la position du bras de levier 142 qui est due à la flottabilité du flotteur 143 au niveau de la surface de carburant.
  • Typiquement, la position du flotteur est alors repérée en fonction de la valeur sortante du potentiomètre 145 sur un nombre de positions de l'ordre de la centaine et préférentiellement autour de 65 positions.
  • Les capteurs utilisés avec le système auront avantageusement une résistance pouvant varier entre deux valeurs extrémales, connues préalablement, du réservoir plein au réservoir vide.
  • Ces valeurs extrémales de résistance correspondent aux positions extrémales du flotteur 143 respectivement pour un réservoir plein et un réservoir vide. Par exemple, ces valeurs iront de 33 à 245 ohms ou encore de 0 à 180, 33 ohms ou 0 ohms correspondant au réservoir vide ou au réservoir plein et 245 et 180 correspondant au réservoir plein ou au réservoir vide.
  • Ces valeurs de résistance du flotteur 143 correspondent à des intervalles de valeurs digitales allant par exemple de 19,700 à 48,700 respectivement pour un réservoir plein et un réservoir vide.
  • Une réalisation particulière utilise donc un voltage en sortie du circuit du capteur de niveau 14. Ce voltage varie en fonction de la résistance qui elle-même varie en fonction de la hauteur du niveau de carburant et, avec le type de capteur de la figure 5, de la position du flotteur. Le voltage qui est une donnée analogique est transformé en une donnée digitale qui est avantageusement un indice dont le rang va, par exemple, de 0 à 65,535.
  • Lors du processus de calibration manuelle, à chaque étape de la calibration, on associe à l'indice digital un volume total en litres présents en réservoir. On transforme ainsi une valeur analogique qui est un voltage à la sortie du capteur en une valeur digitale que l'on associe à une valeur « litres en réservoir ».
  • Un nombre de lignes égal à 10 étant un minima, préférentiellement, le nombre de lignes du fichier de calibration sera compris entre 16 et 20 lignes. Typiquement, si la capacité maximale du réservoir est de 460 litres et si un fichier de 20 lignes est requis, il faudra remplir le réservoir par portions de 23 litres environ.
  • Les litres en réservoir entre deux points de calibrations consécutifs sont automatiquement calculés au prorata. Pour un réservoir qui a une hauteur de 60 centimètres et une capacité de 600 litres, un fichier de calibration de 20 lignes permet une calibration réelle du niveau de carburant en réservoir tous les 3 centimètres, de 0 à 60 centimètres. On remarque ici que pour un réservoir type pavé de 600 litres, chaque 3 centimètres correspond à 30 litres de carburant. Les positions intermédiaires sont calculées au-prorata.
  • Sur la figure 6, des portions de 20 litres sont utilisées pour réaliser le fichier de calibration.
  • On note ici que si une jauge d'origine préalablement installée sur un réservoir est utilisée pour la mise en oeuvre de l'invention, une calibration manuelle préalable est nécessaire à la manière présentée plus haut. Une interface dédiée sera avantageusement alors utilisée.
  • La figure 7 montre un organigramme du procédé selon l'invention. Ce procédé est mis en oeuvre principalement dans le boîtier de commande 10 mais également partiellement au sein de l'outil de contrôle 20.
  • En premier lieu, l'alimentation du boîtier 10 est assurée en permanence grâce à un certain nombre d'étapes bouclées sur elles-mêmes permettant, en permanence, d'assurer l'alimentation du boîtier 10, soit par la batterie 13, soit par la batterie 15 en fonction de l'état du moteur 11.
  • Ainsi, sur la figure 7, dans l'étape EA1, le fonctionnement du moteur 11 est examiné. Dans le cas où le moteur 11 est en cours de fonctionnement (cas O), la batterie 13 est mise sous tension. Dans ce cas, la batterie 13 est sélectionnée par le connecteur à basculement 102, au sein d'une étape EA2, pour alimenter le boîtier 10 dans une étape EA4.
  • Dans le cas où le moteur 11 n'est pas en fonctionnement, dans une étape EA3, la batterie 15 est sélectionnée par le connecteur à basculement 102 pour alimenter le boîtier 10 dans une étape EA4.
  • On note ici que le fonctionnement du moteur 11 est examiné pour permettre au connecteur à basculement 102 de choisir entre les deux modes d'alimentation. Néanmoins, il est tout à fait envisageable d'utiliser un capteur de position de la clé de contact au lieu d'un capteur de fonctionnement du moteur 11, typiquement un capteur de tension placé sur la borne d'excitation de l'alternateur. En effet, généralement, dès que la clé de contact est en position « ON », le circuit d'alimentation électrique est mis sous tension et est donc apte à alimenter le boîtier 10.
  • Ensuite, le procédé selon l'invention questionne l'horloge 103, dans une étape EM1, afin de connaître l'instant d'échantillonnage adéquat auquel vont être capturées les diverses données constituant une ligne de données à la périodicité choisie et préprogrammée, ici 90 secondes.
  • La date et l'heure D/H sont alors utilisées pour associer, dans une étape EM2, une acquisition à l'instant adéquat du signal de sortie SC du capteur 14. Enfin, dans une étape EM3, les données de géo-localisation Loc à l'instant D/H sont acquises auprès du récepteur de géo-localisation 105.
  • Ensuite, dans une étape EM4, l'ensemble des données Loc, SC, D/H est stocké dans la mémoire sous la forme d'une ligne LD/H. La mémoire implémentée au sein du boîtier embarqué 10 aura avantageusement une capacité autour de 20 000 lignes, 24000 par exemple, ce qui correspond à environ 20 jours consécutifs.
  • Les lignes LD/H et LD/H+90N successives pour N allant de 1 à un nombre prédéfini, par exemple 10, sont alors examinées au sein d'une étape EM5 pour détecter une chute de niveau de carburant ou encore une augmentation de niveau de carburant à position géographique constante.
  • Dans le cas où une chute de niveau de carburant est observée à position géographique constante dans l'étape EM5, une alarme AL est alors envoyée à destination de l'outil de contrôle 20 qui la reçoit, l'enregistre et procède avantageusement à un affichage de cette alerte AL dans une étape FM2.
  • En parallèle, l'outil de contrôle 2 est connecté ou se connecte au boîtier 10 dans une étape FM0. Ensuite, dans une étape FM1, les lignes LD/H sont transférées en différé ou en temps réel vers l'outil de contrôle 20 où elles sont stockées dans une mémoire.
  • L'outil de contrôle 20 permet alors d'élaborer divers tableaux de résultats du type de celui présenté dans la figure 8. Dans ce tableau, sont présentées les caractéristiques des consommations observées pour une pluralité de véhicules exploités au sein de sites d'exploitation différents et conduits par différents chauffeurs. On remarque ici que l'identité du chauffeur qui a conduit le véhicule sur lequel le boîtier 10 est embarqué est généralement une donnée externe acquise au sein de l'outil de contrôle 20 par saisie de données grâce à l'interface utilisateur 23. C'est aussi le cas pour les autres données relatives à l'exploitation des véhicules, en particulier une zone d'activité, par exemple pour réaliser notamment du gardiennage virtuel (« geofencing » en anglais).
  • Au sujet de l'identité du chauffeur, l'information peut etre récupérée par le système embarqué lorsque celui est connecté au chrono tachygraphe du véhicule.
  • Concernant le gardiennage virtuel, les données, à condition d'être au préalable renseignées par l'utilisateur peuvent être automatiquement détectées en temps réel par le système embarqué. Par exemple,le dispositif peut automatiquement contrôler si la position GPS au moment de la détection d un plein correspond bien à l'emplacement d'une pompe à essence. Cela correspond à une combinaison d'information.
  • Un tel tableau de bord permet de suivre les consommations plus ou moins détaillées en fonction du chauffeur, en fonction du site d'exploitation ou encore en fonction du véhicule.
  • Il est alors possible d'établir des moyennes de consommation et d'établir également des statistiques sur l'impact environnemental de l'exploitation, notamment en calculant les émissions de CO2 réelles résultats de l'exploitation.
  • Avantageusement, on a vu que l'outil de contrôle 20 comprend une interface utilisateur 23 pour acquérir des données externes fournies par un utilisateur de l'outil de contrôle 20.
  • Typiquement, l'outil de contrôle 20 sera alors avantageusement renseigné sur la quantité de carburant introduite dans chaque réservoir, en fonction des factures de carburant.
  • En comparant alors la quantité de carburant ainsi saisie avec une augmentation de carburant correspondant à l'heure et à la date du remplissage correspondant à la facture, il est possible, grâce à l'invention, de comparer les quantités de carburant automatiquement au sein de l'outil de contrôle 20.
  • Dans ce cas, l'outil de contrôle 20 sera en mesure, de manière automatique et autonome, de fournir une alerte pour signaler une incohérence entre les deux quantités, le cas échéant. Un vol à la cuve sera alors suspecté.
  • En outre, comme l'outil de contrôle 20 dispose des lignes de données LD/H telles que reçues et mémorisées au sein de l'outil de contrôle, il est possible de réaliser un certain nombre de calculs, dont des ratios entre le temps de moteur allumé à véhicule arrêté et le temps de moteur allumé à véhicule en mouvement. Ces ratios donnent accès à un pourcentage de consommation pouvant être économisée. Cependant, l'invention permet de connaître le lieu, la date et l'heure des surconsommations dues à un moteur allumé véhicule à l'arrêt. Cela permet de corriger les comportements des chauffeurs et de réduire la surconsommation due à un maintien du moteur allumé à l'arrêt.
  • Il est aussi possible de faire toute sorte de calculs statistiques, comme des consommations moyennes aux 100 Kms, des consommations en volume, des consommations moyennes à l'heure à moteur allumé.
  • Il est également possible d'exclure ou d'inclure les parties de carburant volées, puisque l'invention permet de les identifier et de les quantifier, pour calculer le coût réel du poste carburant au sein d'une exploitation ou encore pour calculer l'impact réel en émission de carbone de l'exploitation.
  • On remarque ici que l'appareil peut avoir une fonction de travail annexe au fonctionnement de son moteur nécessitant le fonctionnement du moteur pour être activée. Le boîtier comprend alors des moyens pour déterminer le statut en fonctionnement de cette fonction de travail annexe, les données de statut en fonctionnement du moteur étant incluses dans la ligne de données pour être traitées par le module de traitement de données. Les temps durant lesquels la fonction de travail est activée sont alors exclus des temps moteur en marche véhicule à l'arrêt improductifs. La connaissance du statut en fonctionnement de la fonction de travail est typiquement déterminer à partir de l'activation ou non d'une prise de force portée par l'appareil.
  • L'outil de contrôle 20 permet aussi de réunir les données par groupe. Par exemple, l'ensemble des véhicules exploités sur un site pourra être regroupé de manière à calculer une consommation moyenne du site et pouvoir comparer les exploitations sur divers sites. Des comparaisons entre les camions peuvent être également réalisés ou encore des comparaisons entre les conducteurs.
  • L'outil de contrôle 20 selon l'invention, en combinaison avec le boîtier embarqué 10 selon l'invention, permet donc de faire du reporting sur le passé d'une exploitation ainsi que du reporting sur l'exploitation actuelle, c'est-à-dire au présent de l'exploitation, puisqu'elle rend possible l'émission d'alertes en temps réel vers l'outil de contrôle 20. En effet, il est envisagé selon l'invention que l'outil de contrôle 20 soit connecté par voie non filaire au boîtier embarqué 10 pour, par exemple, que le boîtier 10 puisse transmettre des alertes AL en temps réel vers l'outil de contrôle 20.
  • En revanche, il est aussi souhaitable que le boîtier embarqué 10 puisse être connecté par voie filaire à l'outil de contrôle 20 pour faire le transfert des lignes de données. En effet, une voie filaire est plus adaptée à la quantité de données alors transférées du boîtier 10 à l'outil de contrôle 20. Par exemple, une connexion RS232 pourra être utilisée.
  • En outre, il peut être envisagé de sécuriser les communications entre le boîtier 10 et l'outil de contrôle 20 par mot de passe.
  • Il est aussi envisagé de préprogrammer le système électronique de surveillance, de manière à ce qu'il détecte d'éventuelles manipulations sur le boîtier embarqué 10 visant à empêcher son fonctionnement : déconnexion d'un capteur etc. Une alarme spécifique, préférentiellement envoyée en temps réel vers l'outil de contrôle 20, est alors avantageusement associée à une telle détection. De tels moyens pour empêcher le piratage des boîtiers embarqués sont connus de l'homme du métier et peuvent être implémentés au sein du système électronique selon l'invention.
  • L'outil de contrôle 20 sera également avantageusement capable d'afficher, sur son dispositif d'affichage, des cartes montrant le trajet du véhicule ainsi que les lieux des remplissages de réservoir et, éventuellement, les endroits auxquels une chute du niveau de carburant a été observée.
  • L'invention permet d'avoir une vision précise détaillée des consommations de carburant et ainsi de réduire des consommations irrégulières et improductives. L'invention permet donc globalement de réduire les consommations de carburant et de renforcer la rentabilité et la compétitivité des entreprises. En outre, l'invention permet une meilleure gestion globale par la mise en place de tableaux de bord de suivi divers.
  • Des engagements dans des démarches structurantes peuvent être engagés par les entreprises de transport routier grâce à l'invention et générer ainsi une source supplémentaire de mobilisation et de motivation de l'ensemble du personnel.

Claims (20)

  1. Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de CO2 réelles pour un appareil en mouvement ou à l'arrêt avec exclusion ou pas de vols de carburant comprenant un boîtier embarqué (10) sur un appareil (1) incluant au moins un moteur (11), un réservoir (12) et un circuit électrique d'alimentation (13), et un outil de contrôle sédentaire (2) auquel le boîtier embarqué (10) est apte à être connecté par voie filaire ou non,
    - le boîtier embarqué (10) comprend :
    - au moins un connecteur (101) pour la connexion à au moins un capteur spécifique (14) de niveau de carburant capable de prendre des mesures quantitatives de niveau du carburant entre une paroi haute et une paroi basse du réservoir (12) et pour la réception, par le boîtier (10), de données de niveau de carburant en provenance de ce capteur (14), le capteur spécifique (14) étant étalonné préalablement à la mise en service du système électronique de telle façon que chaque valeur de sortie du capteur (14) est associé de manière bijective à une position du niveau de carburant entre la paroi haute et la paroi basse du réservoir (12) et à un volume précis de carburant restant dans le réservoir quel que soit le niveau de carburant entre la paroi haute et la paroi basse,
    - au moins une horloge (103) apte à fournir des données d'horodatage ;
    - au moins un récepteur (105) pour recevoir des données de géolocalisation et ;
    - au moins une mémoire (106) pour enregistrer des lignes de données (LD/H) successives comprenant les données de niveau de carburant, les données d'horodatage et les données de géolocalisation à un instant donné avec une périodicité comprise entre 1 et 240 secondes ;
    - le boîtier embarqué (10) est adapté pour s'alimenter auprès du circuit d'alimentation électrique (13) de l'appareil (1) lorsque l'appareil (1) fonctionne et pour s'alimenter, lorsque l'appareil (1) ne fonctionne pas, auprès d'une batterie autonome (15), apte à se recharger lorsque l'appareil (1) fonctionne ;
    - le boîtier embarqué (10) comprend en outre un module de traitement de données (104) capable de détecter une chute de niveau de carburant à position géographique constante à partir des lignes de données (LD/H) successives enregistrées et de communiquer, lorsqu'une chute de carburant à position géographique constante, et donc pour un appareil à l'arrêt,est détectée, une alerte (AL) à l'outil de contrôle (2) en temps réel ou en différé lorsque le boîtier (10) est connecté à l'outil de contrôle (2), le module de traitement de données (104) étant également apte à communiquer des lignes de données (LD/H) à l'outil de contrôle (2) ;
    - l'outil de contrôle (2) est apte à être connecté au boîtier embarqué (10) par voie filaire ou non et comprend au moins une mémoire (20) pour enregistrer les alertes (AL) et les lignes de données (LD/H) communiquées par le boîtier embarqué (10), une unité de traitement de données (21) et un écran (22) pour afficher les alertes (AL) et les données communiquées par le boîtier embarqué (10),
    - le boîtier (10) comprend en outre des moyens pour détecter le statut en fonctionnement ou non du moteur (11) de l'appareil (1), les données de statut en fonctionnement du moteur étant incluses dans la ligne de données (LD/H) pour être traitées par le module de traitement de données (104) de manière à inclure les données de statut de fonctionnement du moteur (11) dans l'alerte communiquée à l'outil de contrôle (2) ;
    - l'outil de contrôle (2) déterminant ainsi les temps moteur allumé appareil à l'arrêt et les temps moteur allumé appareil en mouvement.
  2. Système électronique de surveillance selon la revendication 1, caractérisé en ce que les moyens pour détecter le statut en fonctionnement du moteur comprennent une connexion à un capteur placé au niveau de la borne d'excitation d'un alternateur du circuit électrique d'alimentation de l'appareil.
  3. Système électronique de surveillance selon la revendication 1, caractérisé en ce que les moyens pour détecter le statut en fonctionnement du moteur comprennent une connexion sur une prise carrossier donnant l'information moteur tournant ou une connexion à la batterie pour réaliser une mesure de la différence de tension aux bornes de la batterie principale, le module de traitement de données connaissant préalablement la différence de tension observée entre une position de clef de contact sur ON et la tension observée avec le moteur allumé.
  4. Système électronique selon la revendication 1, caractérisé en ce que le module de traitement de données (104) du boîtier (10) est capable de détecter une hausse de niveau de carburant à position géographique constante caractéristique de la réalisation d'un remplissage du réservoir (12) à partir des lignes de données successives enregistrées et de communiquer, lorsqu'une hausse de carburant à position géographique constante est détectée, en temps réel ou en différé, un signal spécifique à l'outil de contrôle (2) pour signaler la présence d'un remplissage.
  5. Système électronique selon la revendication 4, caractérisé en ce que l'outil de contrôle (2) comprend en outre une interface (23) de saisie de données pour permettre à un utilisateur de saisir des données externes relatives aux remplissages du réservoir (12), l'unité de traitement de données (21) étant adaptée pour recevoir ces données externes saisies, pour détecter des incohérences entre les données externes saisies par l'utilisateur et les signaux spécifiques aux remplissages communiqués par le boîtier embarqué (10).
  6. Système électronique selon l'une des revendications précédentes, caractérisé en ce que la périodicité d'enregistrement des lignes de données (LD/H) est comprise entre 60 et 120 secondes.
  7. Système électronique selon la revendication 6, caractérisé en ce que la périodicité est comprise entre 85 et 95 secondes.
  8. Système électronique selon l'une des revendications précédentes, caractérisé en ce que le boîtier (10) comprend en outre un connecteur pour être connecté à au moins un détecteur de position de clé de contact (16) et en ce que les données issues de ce détecteur (16) sont incluses dans la ligne de données (LD/H) et sont traitées par le module de traitement de données (104) de manière à inclure les données de position de clé de contact dans l'alerte communiquée à l'outil de contrôle (2).
  9. Système électronique selon l'une des revendications précédentes, caractérisé en ce que le boîtier (10) comprend un module d'étalonnage du capteur de niveau de carburant choisi parmi les capteurs du type ultrasonore, les capteurs utilisant un flotteur, l'étalonnage associant automatiquement de manière bijective, préalablement à la mise en service du système électronique, une valeur de sortie du capteur (14) à chaque position du niveau de carburant entre la paroi haute et la paroi basse du réservoir (12) et à un volume précis de carburant restant dans le réservoir.
  10. Système électronique selon l'une des revendications précédentes, caractérisé en ce que l'unité de traitement de données (21) de l'outil de contrôle (2) est adaptée pour calculer une consommation réelle de l'appareil (1) à partir des lignes de données enregistrées.
  11. Système électronique selon l'une des revendications précédentes, caractérisé en ce que l'unité de traitement de données (21) de l'outil de contrôle (2) est adaptée pour calculer une émission de dioxyde de carbone effectuée par l'appareil (1).
  12. Système électronique de surveillance selon l'une des revendications précédentes, caractérisé en ce que, l'appareil ayant une fonction de travail annexe au fonctionnement de son moteur, le boîtier comprend des moyens pour déterminer le statut en fonctionnement de cette fonction de travail annexe, les données de statut en fonctionnement de la fonction de travail annexe étant incluses dans la ligne de données (LD/H), l'outil de contrôle (2) déterminant ainsi les temps moteur allumé appareil à l'arrêt en travail et les temps moteur allumé appareil à l'arrêt hors travail.
  13. Système électronique de surveillance selon l'une des revendications précédentes, caractérisé en ce que le capteur spécifique (14) présente un corps (141) longitudinal, destiné à être placé verticalement dans le réservoir et réglable dans sa longueur pour pouvoir s'adapter à diverses tailles de réservoir, un bras de levier (142) muni à son extrémité d'un flotteur (143), le bras de levier (142) étant articulé autour d'un axe (144) placé sur l'extrémité basse du corps (141), la position du flotteur (143) correspondant à une mesure analogique de résistance mesurée sur un potentiomètre ou ohmmètre (145) placé sous le trajet du bras de levier (142) à proximité de l'axe (145) du capteur, la valeur de la résistance du potentiomètre (145) est alors variable en fonction de la position du bras de levier (142) qui est due à la flottabilité du flotteur (143) au niveau de la surface de carburant, la position du flotteur (143) étant alors repérée en fonction de la valeur sortante du potentiomètre (145) entre deux valeurs extrémales, connues préalablement, correspondant au réservoir plein et au réservoir vide, à la suite de l'étalonnage où on associe à la valeur sortante du potentiomètre un volume total en litres présents en réservoir.
  14. Système électronique de surveillance selon l'une des revendications précédentes, caractérisé en ce que la longueur du bras de levier (142) est modifiable en fonction de l'endroit où sont fixés le flotteur (143) et l'axe de fixation (144) sur le corps (141), l'installation du capteur comprenant deux étapes une étape de réglage de la longueur L du corps (141) de manière à ce qu'elle soit égale à 50 % du diamètre du réservoir quand celui-ci est cylindrique ou 50 % de la hauteur du réservoir quand celui-ci est cubique, carré ou rectangulaire, une étape de réglage de la position du flotteur (143) sur le bras de levier (142) de manière à ce que, quand le bras (142) du flotteur (143) est en position du réservoir plein, la paroi supérieure du flotteur (143) soit à la hauteur de la paroi haute du réservoir et de manière à ce que, pour la position basse du flotteur (143), c'est-à-dire la position en rotation la plus basse du bras (142), le flotteur 143 touche la paroi basse du réservoir (12).
  15. Boîtier (10) destiné à être embarqué sur un appareil (1) comprenant au moins un réservoir (12), un moteur (11) et un circuit électrique d'alimentation (13), et apte à être connecté par voie filaire ou non à un outil de contrôle (2) sédentaire pour la réalisation d'un système électronique selon l'une des revendications précédentes,
    comprenant
    - au moins un connecteur (101) pour la connexion à au moins un capteur spécifique (14) de niveau de carburant capable de prendre des mesures quantitatives de niveau du carburant entre une paroi haute et une paroi basse du réservoir (12) et pour la réception, par le boîtier (10), de données de niveau de carburant en provenance de ce capteur (14), le capteur spécifique (14) étant étalonné préalablement à la mise en service du système électronique de telle façon que chaque valeur de sortie du capteur (14) est associé de manière bijective à une position du niveau de carburant entre la paroi haute et la paroi basse du réservoir (12) et à un volume précis de carburant restant dans le réservoir quel que soit le niveau de carburant entre la paroi haute et la paroi basse,
    - au moins une horloge (103) apte à fournir des données d'horodatage ;
    - au moins un récepteur (105) pour recevoir des données de géolocalisation et ;
    - au moins une mémoire (106) pour enregistrer des lignes de données (LD/H) successives comprenant chacune les données de niveau de carburant, les données d'horodatage et les données de géolocalisation à un instant donné avec une périodicité comprise entre 1 et 240 secondes ;
    - le boîtier embarqué (10) est adapté pour s'alimenter auprès du circuit d'alimentation électrique (13) de l'appareil (1) lorsque l'appareil (1) fonctionne et pour s'alimenter, lorsque l'appareil (1) ne fonctionne pas, auprès d'une batterie autonome (15), apte à se recharger lorsque l'appareil (1) fonctionne ;
    - le boîtier embarqué (10) comprend en outre un module de traitement de données (104) capable de détecter une chute de niveau de carburant à position géographique constante à partir des lignes de données (LD/H) successives enregistrées et de communiquer, lorsqu'une chute de carburant à position géographique constante, et donc pour un appareil à l'arrêt, est détectée, une alerte (AL) à l'outil de contrôle (2) en temps réel ou en différé lorsque le boîtier (10) est connecté à l'outil de contrôle (2), le module de traitement de données (104) étant également apte à communiquer des lignes de données (LD/H) à l'outil de contrôle (2),
    - le boîtier (10) comprend en outre des moyens pour détecter le statut en fonctionnement ou non du moteur (11) de l'appareil (1), les données de statut en fonctionnement étant incluses dans la ligne de données (LD/H) pour être traitées par le module de traitement de données (104) de manière à inclure les données de statut de fonctionnement du moteur (11) dans l'alerte communiquée à l'outil de contrôle (2).
  16. Outil de contrôle (2) sédentaire connecté par voie filaire ou non à un boîtier embarqué (10) selon la revendication 15, comprenant au moins une mémoire (106) pour enregistrer les alertes (AL) et les lignes de données (LD/H) communiquées par le boîtier embarqué (10) à partir desquelles il accède aux temps moteur allumé à l'arrêt et aux temps moteur allumé en mouvement, un écran (22) pour afficher les alertes (AL) et les données communiquées par le boîtier embarqué (10).
  17. Procédé de surveillance destiné à être installé concomitamment au sein d'un boîtier embarqué (10) sur un appareil (1) incluant au moins un moteur (11), un réservoir (12) et un circuit électrique d'alimentation (13), et au sein d'un outil de contrôle (2) sédentaire auquel le boîtier embarqué (10) est apte à être connecté par voie filaire ou non pour la réalisation d'un système électronique selon l'une des revendications 1 à 14,
    comprenant les étapes suivantes :
    - pour le boîtier embarqué (10) :
    - étalonnage d'au moins un capteur spécifique (14) préalablement à la mise en service du système électronique de telle façon que chaque valeur de sortie du capteur (14) est associé de manière bijective à une position du niveau de carburant entre la paroi haute et la paroi basse du réservoir (12) et à un volume précis de carburant restant dans le réservoir quel que soit le niveau de carburant entre la paroi haute et la paroi basse,
    - une étape de lecture (EM1) d'une horloge (103) ;
    - une étape de connexion, via au moins un connecteur (101) du boîtier (10), au capteur spécifique (14) de niveau de carburant capable de prendre des mesures quantitatives de niveau de carburant entre une paroi haute et une paroi basse du réservoir (12) et de réception (EM2), par le boîtier (10), de données de niveau de carburant en provenance de ce capteur (14),
    - une étape de réception (EM3) par le boîtier (10) de données de géolocalisation ;
    - une étape de détection du statut en fonctionnement ou non du moteur (11) de l'appareil (1),
    - une étape d'enregistrement (EM4), dans une mémoire (106) du boîtier (10), de lignes de données (LD/H) successives comprenant les données de niveau de carburant, les données d'horodatage fournies par l'horloge du boîtier, les données issues du capteur de statut en fonctionnement ou non du moteur et les données de géolocalisation à un instant donné avec une périodicité comprise entre 1 et 240 secondes,
    - une étape de sélection (EA1) d'alimentation (EA4) sur un critère de fonctionnement du circuit électrique de l'appareil (1), permettant au boîtier (10) de s'alimenter (EA2) auprès du circuit d'alimentation électrique (13) de l'appareil (1) lorsque l'appareil (1) fonctionne et de s'alimenter (EA3), lorsque l'appareil (1) ne fonctionne pas, d'auprès d'une batterie autonome (15), apte à se recharger lorsque l'appareil (1) fonctionne ;
    - une étape de détection (EM5), au sein du boîtier (10), de chute de niveau de carburant à position géographique constante, et donc pour un appareil à l'arrêt, par traitement des données de lignes de données (LD/H) successives enregistrées ;
    - une étape de communication, par le boîtier (10), d'une alerte (AL) à l'outil de contrôle (2) en temps réel ou en différé lorsque le boîtier (10) est connecté à l'outil de contrôle (2) et qu'une chute de niveau à position géographique constante a été détectée,
    - une étape de communication, par le boîtier (10), de lignes de données (LD/H) incluant les données de statut de fonctionnement du moteur (11) à l'outil de contrôle (2) ;
    - pour l'outil de contrôle (2),
    - une étape de connexion (FM0) au boîtier embarqué (10) par voie filaire ou non ;
    - une étape d'enregistrement (FM1), dans une mémoire (20) de l'outil de contrôle (2), des alertes (AL) et des lignes de données (LD/H) communiquées par le boîtier embarqué (10) ;
    - une étape de détermination des temps moteur allumé appareil à l'arrêt et des temps moteur allumé appareil en mouvement ;
    - une étape d'affichage (FM2) des alertes (AL) et des données communiquées par le boîtier embarqué (10).
  18. Procédé selon la revendication 17 caractérisé en ce que les dites étapes sont déterminées par des instructions d'un programme d'ordinateur exécuté par un micro processeur au sein dudit boîtier embarqué ou dudit outil de contrôle.
  19. Produit programme d'ordinateur comportant des instructions pour l'exécution des étapes du procédé selon la revendication 18.
  20. Support d'enregistrement lisible par un ordinateur sur lequel est enregistré un produit programme d'ordinateur selon la revendication 19.
EP10785149.5A 2009-10-21 2010-10-20 Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant Active EP2502209B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RS20170355A RS55869B1 (sr) 2009-10-21 2010-10-20 Elektronski sistem za nadzor koji omogućava proračun stvarne potrošnje goriva i emisije co2 za uređaj u pokretu, kada je zaustavljen, kada radi, uz isključivanje ili bez isključivanja krađe goriva
PL10785149T PL2502209T3 (pl) 2009-10-21 2010-10-20 Elektroniczny system monitorowania umożliwiający obliczanie rzeczywistego zużycia paliwa i rzeczywistej emisji co2 przez urządzenie będące w ruchu, zatrzymane lub pracujące, z uwzględnieniem lub bez uwzględnienia kradzieży paliwa
SI201031430A SI2502209T1 (sl) 2009-10-21 2010-10-20 Elektronski nadzorni sistem, ki omogoča izračun dejanske porabe goriva in emisij CO2 za premikajoče, ustavljeno ali delujoče vozilo s preprečevanjem kraje goriva ali brez njega
HRP20170516TT HRP20170516T1 (hr) 2009-10-21 2017-03-30 Elektronički nadzorni sustav koji omogućava izračun stvarne potrošnje goriva i emisija co2 za pokretne, zaustavljene ili uređaje u radu, sa ili bez uređaja za sprječavanje krađe goriva

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957388A FR2951573B1 (fr) 2009-10-21 2009-10-21 Systeme electronique de surveillance
PCT/FR2010/052238 WO2011048333A1 (fr) 2009-10-21 2010-10-20 Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant.

Publications (2)

Publication Number Publication Date
EP2502209A1 EP2502209A1 (fr) 2012-09-26
EP2502209B1 true EP2502209B1 (fr) 2017-01-11

Family

ID=42315660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10785149.5A Active EP2502209B1 (fr) 2009-10-21 2010-10-20 Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant

Country Status (16)

Country Link
US (1) US8600653B2 (fr)
EP (1) EP2502209B1 (fr)
BR (1) BR112012009494B1 (fr)
CA (1) CA2777255C (fr)
CY (1) CY1118755T1 (fr)
DK (1) DK2502209T3 (fr)
ES (1) ES2618627T3 (fr)
FR (1) FR2951573B1 (fr)
HR (1) HRP20170516T1 (fr)
HU (1) HUE031608T2 (fr)
LT (1) LT2502209T (fr)
PL (1) PL2502209T3 (fr)
PT (1) PT2502209T (fr)
RS (1) RS55869B1 (fr)
SI (1) SI2502209T1 (fr)
WO (1) WO2011048333A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061710A1 (de) * 2008-12-12 2010-06-17 Continental Automotive Gmbh Verfahren zum Betreiben einer Sensorvorrichtung und Sensorvorrichtung
IL200631A0 (en) * 2009-08-30 2010-05-17 Aharoni Peleg A system for preventing and detecting fuel theft
EP2528043A1 (fr) * 2011-05-23 2012-11-28 Nxp B.V. Détection de fraude avec ravitaillement en carburant d'un véhicule motorisé
DE102013205821B4 (de) * 2012-04-25 2023-06-15 Ford Global Technologies, Llc Kraftstofffördermodul mit Kraftstofffilter
KR101920236B1 (ko) * 2012-06-19 2018-11-20 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
WO2014085755A1 (fr) * 2012-11-30 2014-06-05 Thermo King Corporation Procédé d'économie de batterie basée sur la température dans un dispositif de capteur sans fil
WO2014085752A1 (fr) * 2012-11-30 2014-06-05 Thermo King Corporation Procédé de mesure de niveau de carburant alimentée par batterie
CN105405263A (zh) * 2014-09-15 2016-03-16 李颖 基于卫星定位的车辆油量监测系统
US9269205B1 (en) 2014-10-01 2016-02-23 Honeywell International Inc. Aircraft environmental impact measurement system
CN104952119A (zh) * 2015-06-18 2015-09-30 安徽森力汽车电子有限公司 单机商用车行驶记录仪油量管理系统
US20180087948A1 (en) * 2016-09-23 2018-03-29 Rivigo Services Private Limited Apparatus and method to detect fuel pilferages and fuel fillings
JP2018205209A (ja) * 2017-06-07 2018-12-27 愛三工業株式会社 燃料残量検出装置と燃料供給モジュールの製造方法
US20200090425A1 (en) * 2018-09-18 2020-03-19 Cambridge Mobile Telematics Inc. Using vehicle electrical system monitored values
US11047714B2 (en) 2019-05-23 2021-06-29 Worthington Cylinders Corporation Methods and systems for a wireless monitoring system for a tank
USD934987S1 (en) 2020-01-07 2021-11-02 Worthington Cylinders Corporation Lid for a tank
USD936177S1 (en) 2020-01-07 2021-11-16 Worthington Cylinders Corporation Lid for a tank

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2925131A1 (de) * 1979-06-22 1981-01-08 Daimler Benz Ag Einrichtung zum anzeigen von betriebs- und rechenwerten
US6240365B1 (en) * 1997-01-21 2001-05-29 Frank E. Bunn Automated vehicle tracking and service provision system
US20010018628A1 (en) 1997-03-27 2001-08-30 Mentor Heavy Vehicle Systems, Lcc System for monitoring vehicle efficiency and vehicle and driver perfomance
GB9812251D0 (en) * 1998-06-09 1998-08-05 Frankland Graeme M Anti siphon/fuel loss alert
EP1546024A1 (fr) * 2002-07-16 2005-06-29 Johannes Hermanus Potgieter Systeme et procede de detection de vol de carburant
FR2871741A1 (fr) * 2004-06-21 2005-12-23 Sofide Soc En Commandite Par A Systeme de suivi des operations de remplissage d'un reservoir et de son niveau a tout instant, a partir d'un systeme d'information controle, entre un vehicule et un centre de surveillance -option 2-
ITBO20040462A1 (it) * 2004-07-23 2004-10-23 Raffaelli Marcello Sistema di controllo dei consumi per apparati utilizzanti motori endotermici
FR2884951A1 (fr) * 2005-04-20 2006-10-27 Bernard Fontaine Co2 metre, ou dispositif embarque de mesure et de regulation des emissions de dioxyde de carbone(co2) generees par la combustion de carburants dans les vehicules equipes de moteur thermique
FR2902219B1 (fr) 2006-06-07 2008-09-12 Erla Technologies Sarl Dispositif de gestion du carburant d'un vehicule capable de communiquer avec une borne receptrice equipee pour delivrer du carburant
WO2008146307A2 (fr) * 2007-05-29 2008-12-04 Pricol Limited Alerte de vol de carburant dans des automobiles utilisant la télémétrie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HRP20170516T1 (hr) 2017-06-02
RS55869B1 (sr) 2017-08-31
US20120232777A1 (en) 2012-09-13
CY1118755T1 (el) 2017-07-12
HUE031608T2 (hu) 2017-07-28
PL2502209T3 (pl) 2017-08-31
LT2502209T (lt) 2017-04-25
ES2618627T3 (es) 2017-06-21
US8600653B2 (en) 2013-12-03
DK2502209T3 (en) 2017-04-10
FR2951573A1 (fr) 2011-04-22
BR112012009494B1 (pt) 2021-01-12
WO2011048333A1 (fr) 2011-04-28
FR2951573B1 (fr) 2012-04-27
CA2777255A1 (fr) 2011-04-28
BR112012009494A2 (pt) 2016-05-03
CA2777255C (fr) 2017-11-07
EP2502209A1 (fr) 2012-09-26
PT2502209T (pt) 2017-04-21
SI2502209T1 (sl) 2017-05-31

Similar Documents

Publication Publication Date Title
EP2502209B1 (fr) Système électronique de surveillance permettant un calcul de consommations de carburant et d'émissions de co2 réelles pour un appareil en mouvement, à l'arrêt, en travail, avec exclusion ou pas de vols de carburant
US9092822B2 (en) System, method and apparatus for tracking parking behavior of a vehicle
FR2936631A1 (fr) Procede et dispositif d'authentification de donnees transmises relatives a l'usage d'un vehicule et/ou au comportement de son conducteur
CA2594551A1 (fr) Bicyclette, procede de gestion d'une flotte de bicyclettes et systeme de gestion d'une telle flotte
AU2020333471B2 (en) Estimating fuel economy
US11810053B2 (en) Methods and systems for detecting delivery trip events and improving delivery driver safety
WO2020201243A1 (fr) Procédé de mise à jour d'une carte routière à partir d'un réseau de contributeurs
FR2871912A1 (fr) Systeme de suivi des operations de remplissage d'un reservoir, et de son niveau, a partir d'un systeme d'information controle, entre des vehicules et un centre de surveillance
FR3034067B1 (fr) Procede et dispositif d'assistance de conduite
WO2010091528A1 (fr) Procede et dispositif d'identification et de reperage d'un evenement survenant sur un site d'un objet fixe ou mobile
FR3009261A1 (fr) Procede d'assistance d'aide a la conduite, procede de generation d'un indicateur de trajet, equipement d'aide a la conduite, systeme associe
FR2992059A1 (fr) Procede et dispositif pour determiner l'autonomie d'un vehicule automobile
EP2761603A1 (fr) Procédé et system de sécurisation d'un véhicule proposé a la location, et installation de location de véhicules mettant en oeuvre un tel system ou un tel procédé
FR2929027A1 (fr) Systeme de suivi de la consommation en carburant d'un vehicule,basee sur la gestion controlee de donnees techniques,entre des vehicules et un centre de surveillance.
EP0925567B1 (fr) Procede de localisation d'un appel d'urgence
JP7364438B2 (ja) 速度データ取得装置、サービス提供システム及び速度データ取得方法
EP2624221A1 (fr) Kit de sécurité pour véhicule automobile destiné à être partagé par plusieurs utilisateurs et système de gestion d'un fonctionnement d'un véhicule doté d'un tel kit
FR2871740A1 (fr) Systeme de suivi des operations de remplissage d'un reservoir et de son niveau a tout instant, a partir d'un systeme d'information controle entre des vehicules et un centre de surveillance -option 1-
EP4276778A1 (fr) Compteur d'activité comprenant un module électronique possédant une fixation magnétique avec un véhicule
EP3690458A1 (fr) Procede de suivi de temps d'utilisation d'un groupe electrogene, dispositif autonome, procede de suivi de la maintenance, et systeme correspondants
FR2871741A1 (fr) Systeme de suivi des operations de remplissage d'un reservoir et de son niveau a tout instant, a partir d'un systeme d'information controle, entre un vehicule et un centre de surveillance -option 2-
FR3082636A1 (fr) Assistance a la pose et la depose d'elements de consignation electrique
FR2893546A1 (fr) Systeme de suivi et de controle de la consommation de carburant d'un vehicule, a partir d'un systeme d'information controle, entre des vehicules et un centre de surveillance
EP3591351A1 (fr) Procede d'estimation d'une quantite de carburant reellement ajoutee lors d'un plein dans un reservoir de vehicule
FR2871742A1 (fr) Systeme de suivi des operations de remplissage d'un reservoir, et de son niveau a tout instant, a partir d'un systeme d'information controle, entre des vehicules et un centre de surveillance -option 3-

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ELKAIM, ERIC

Inventor name: HEINRY, SYLVAIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150714

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861898

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010039566

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20170516

Country of ref document: HR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170404

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2502209

Country of ref document: PT

Date of ref document: 20170421

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170407

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E013568

Country of ref document: EE

Effective date: 20170317

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170111

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20170516

Country of ref document: HR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2618627

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170621

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E031608

Country of ref document: HU

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20170400829

Country of ref document: GR

Effective date: 20170804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 23934

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010039566

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171012

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170516

Country of ref document: HR

Payment date: 20190930

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 861898

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170111

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170516

Country of ref document: HR

Payment date: 20200925

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170516

Country of ref document: HR

Payment date: 20210927

Year of fee payment: 12

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170516

Country of ref document: HR

Payment date: 20221019

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010039566

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20221019

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170516

Country of ref document: HR

Payment date: 20231016

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231027

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231027

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231013

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 14

Ref country code: GR

Payment date: 20231020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20231019

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20231013

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231012

Year of fee payment: 14

Ref country code: SM

Payment date: 20231027

Year of fee payment: 14

Ref country code: SI

Payment date: 20231013

Year of fee payment: 14

Ref country code: SE

Payment date: 20231018

Year of fee payment: 14

Ref country code: RS

Payment date: 20231013

Year of fee payment: 14

Ref country code: RO

Payment date: 20231020

Year of fee payment: 14

Ref country code: PT

Payment date: 20231018

Year of fee payment: 14

Ref country code: NO

Payment date: 20231020

Year of fee payment: 14

Ref country code: MT

Payment date: 20231019

Year of fee payment: 14

Ref country code: LV

Payment date: 20231025

Year of fee payment: 14

Ref country code: LT

Payment date: 20231012

Year of fee payment: 14

Ref country code: IT

Payment date: 20231019

Year of fee payment: 14

Ref country code: IE

Payment date: 20231019

Year of fee payment: 14

Ref country code: HU

Payment date: 20231024

Year of fee payment: 14

Ref country code: HR

Payment date: 20231016

Year of fee payment: 14

Ref country code: FR

Payment date: 20231016

Year of fee payment: 14

Ref country code: FI

Payment date: 20231020

Year of fee payment: 14

Ref country code: EE

Payment date: 20231020

Year of fee payment: 14

Ref country code: DK

Payment date: 20231019

Year of fee payment: 14

Ref country code: DE

Payment date: 20231107

Year of fee payment: 14

Ref country code: CZ

Payment date: 20231013

Year of fee payment: 14

Ref country code: CY

Payment date: 20231017

Year of fee payment: 14

Ref country code: CH

Payment date: 20231128

Year of fee payment: 14

Ref country code: BG

Payment date: 20231018

Year of fee payment: 14

Ref country code: AT

Payment date: 20231025

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231017

Year of fee payment: 14

Ref country code: BE

Payment date: 20231027

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20231018

Year of fee payment: 14