WO2019184641A1 - 一种薄膜封装方法、薄膜封装结构、显示装置 - Google Patents

一种薄膜封装方法、薄膜封装结构、显示装置 Download PDF

Info

Publication number
WO2019184641A1
WO2019184641A1 PCT/CN2019/076152 CN2019076152W WO2019184641A1 WO 2019184641 A1 WO2019184641 A1 WO 2019184641A1 CN 2019076152 W CN2019076152 W CN 2019076152W WO 2019184641 A1 WO2019184641 A1 WO 2019184641A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
material layer
barrier
substrate
mask
Prior art date
Application number
PCT/CN2019/076152
Other languages
English (en)
French (fr)
Inventor
孙韬
张嵩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2019535773A priority Critical patent/JP7286541B2/ja
Priority to KR1020197018831A priority patent/KR102272883B1/ko
Priority to US16/474,718 priority patent/US11627689B2/en
Priority to EP19731864.5A priority patent/EP3780133A4/en
Publication of WO2019184641A1 publication Critical patent/WO2019184641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of thin film packaging, and in particular to a thin film packaging method, a thin film packaging structure, and a display device.
  • Organic light-emitting diodes have the advantages of being thin, transparent, surface-emitting, self-illuminating, flexible and bendable, and are widely used in various fields such as lighting and display.
  • the manufacturing process of the flexible organic light emitting diode is different from the manufacturing process of the conventional organic light emitting diode device in that the flexible substrate process is added and the packaging process is changed.
  • a thin film encapsulation method is generally employed for the packaging of flexible organic light-emitting devices.
  • the thin film encapsulation technology uses a mask to pattern the encapsulation film by vacuum coating.
  • the present disclosure provides a thin film encapsulation structure, including: a first barrier layer covering a packaged structure on a substrate; an organic layer on a side of the first barrier layer away from the substrate, the packaged structure is in the An orthographic projection on the substrate is within a range of orthographic projection of the organic layer on the substrate; a second barrier layer covering the organic layer; and a mask on a surface of the second barrier layer away from the substrate a film layer, an orthogonal projection of the mask layer, the second barrier layer, and the first barrier layer on the substrate substantially coincident, and an etch rate of the mask layer material is less than the second barrier layer The etch rate of the material.
  • the material of the mask layer is a metal oxide.
  • the material of the mask layer includes at least one of aluminum oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, antimony oxide, and zirconium oxide, and/or
  • the material of the first barrier layer comprises at least one of silicon nitride, silicon oxide, silicon oxynitride
  • the material of the second barrier layer comprises silicon nitride, silicon oxide, silicon oxynitride At least one of them.
  • the thickness of the mask layer is smaller than the thickness of the second barrier layer.
  • the mask layer has a thickness of not more than 100 nm, and the first barrier layer and the second barrier layer have a thickness in a range of 0.1 to 1 ⁇ m.
  • a thickness of a sidewall of the second barrier layer attached to a side of the organic layer is not less than a thickness of the second barrier layer at the mask layer and The thickness of the portion between the organic layers.
  • a thin film encapsulation structure in which an orthographic projection of the organic layer on the substrate is within an orthographic projection of the first barrier layer on the substrate.
  • a thin film encapsulation structure in which an orthographic projection of the first barrier layer on the substrate is within an orthographic projection of the organic layer on the substrate.
  • the material of the organic layer is a resin-based organic material.
  • At least one embodiment of the present disclosure provides a thin film encapsulation method, including: providing a substrate, the substrate including at least one functional area, the functional area is provided with a structure to be packaged; forming a first barrier material layer, the first Forming a layer of barrier material covering the structure to be packaged; forming an organic layer within the functional area, and an orthographic projection of the structure to be packaged on the substrate is within an orthographic projection of the organic layer on the substrate Forming a second barrier material layer, the second barrier material layer coating the organic layer; forming a mask material layer within the functional region, the orthographic projection of the mask material layer on the substrate The second barrier material layer is within an orthographic projection range on the substrate, and the orthographic projection of the organic layer on the substrate is within an orthographic projection of the mask material layer on the substrate.
  • the thickness of the mask material layer is smaller than the thickness of the second barrier material layer; the second barrier material layer is etched by using the mask material layer as a mask, and the mask material layer is simultaneously etched , They are formed and the mask layer a second barrier layer, wherein etching rate of the mask material layer is less than the second etch rate of the barrier layer material.
  • an orthographic projection of the organic layer on the substrate is within a range of orthographic projection of the first barrier material layer on the substrate;
  • the method also includes etching the first barrier material layer, wherein the mask material layer has an etch rate that is less than an etch rate of the first barrier material layer.
  • an orthographic projection of the first barrier material layer on the substrate is within a range of orthographic projection of the organic layer on the substrate.
  • an etch rate of the first barrier material layer and the second barrier material layer is more than eight times an etch rate of the mask material layer.
  • the thickness of the mask material layer is not less than one eighth of the sum of the thicknesses of the first barrier material layer and the second barrier material layer.
  • the thickness of the mask layer is completed. Not more than 100 nm.
  • an orthographic projection of the mask material layer on the substrate beyond an orthographic projection of the organic layer on the substrate is an annular region, The width of the annular region is greater than the thickness of the second barrier material layer.
  • the layer for forming a mask material adopts an atomic layer deposition mask method.
  • a method of forming a first barrier material layer and a second barrier material layer by plasma enhanced chemical vapor deposition, the first barrier material layer and a second barrier material is between 0.1 and 1 ⁇ m.
  • a thin film encapsulation method provided by at least one embodiment of the present disclosure employs an inductively coupled plasma process in the etching.
  • the inside of the mask frame is disposed.
  • the opening exposes the entire substrate.
  • At least one embodiment of the present disclosure provides a display device including the thin film encapsulation structure or a thin film encapsulation structure formed by the thin film encapsulation method, wherein the to-be-packaged structure or the packaged structure includes a light-emitting structure and control Circuit.
  • FIG. 1 is a schematic diagram of a PECVD mask used for film formation of a barrier layer in a related art thin film packaging technology
  • FIG. 2 is a side view of the PECVD mask of FIG. 1 taken along the A-A' direction and a side view of the barrier layer formed by the PECVD mask and a package structure;
  • FIG. 3 is a schematic view of a substrate and a structure to be packaged before being packaged
  • FIG. 4 is a flowchart of a method of packaging a thin film according to an embodiment of the present disclosure
  • FIGS. 5A-5G are schematic diagrams showing a package structure formed in each stage of a thin film encapsulation method according to an embodiment of the present disclosure, wherein FIG. 5G is a top view of the mask layer and the organic layer in FIG. 5F;
  • FIG. 6 is a top plan view of a mask for forming a mask layer in an embodiment of the present disclosure
  • FIG. 7 is a top plan view of a mask for forming a first barrier layer or a second barrier layer in an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a thin film encapsulation method in a flow before etching according to an embodiment of the present disclosure
  • 9A-9C are schematic diagrams of several possible structures of a thin film package structure according to an embodiment of the present disclosure.
  • the flexible organic light-emitting device When the flexible organic light-emitting device is thin-film encapsulated by means of vacuum coating, there is a gap between the mask and the film-forming substrate, and inevitably there is a shadow phenomenon, that is, the formed film extends close to the edge of the opening of the mask. Below the mask, the border is extended, which is not conducive to achieving a narrow border.
  • a package film therein is usually patterned by a mask method.
  • Fig. 1 is a front view of a mask
  • Fig. 2 is a cross-sectional view of the mask 101 of Fig. 1 taken along the A-A' direction. 2 also shows a side view of a thin film encapsulation structure formed by a masking process consisting of a first barrier layer 203, an organic layer 204 and a second barrier layer 205 forming a package to be packaged 202.
  • the reason for the occurrence of the shadow phenomenon during the film formation process by the mask method will be described below by taking the second barrier layer 205 as an example.
  • the mask 101 is stretched through the frame 103 in the drawing.
  • a plurality of openings 102 are provided on the entire mask, the openings 102 corresponding to the target film formation regions 206 of the film layer 205.
  • film forming conditions are not provided (for example, the electric field is shielded by the mask, and the reaction gas cannot form a plasma state), and thus cannot A film layer is formed.
  • the reaction gas having the film forming condition can be directed to the mask.
  • a gap is formed between the gap between the substrate 101 and the substrate 201 to form a film having a certain thickness in the slit.
  • the edge portion of the second barrier layer 205 formed by the mask has a gradually thinned portion 207 which is gradually thinned, which is a shadow phenomenon. Therefore, the actual film formation area is larger than the target film formation area, and the thinned area 207 is located in the non-display area, and in order to avoid cracks in the film layer during the substrate cutting process, the cutting path needs to avoid the thinned area. Therefore, the tapered region 207 causes an increase in the area of the non-display area, which is disadvantageous for achieving a narrow bezel.
  • At least one embodiment of the present disclosure provides a thin film encapsulation method, including: providing a substrate, the substrate including at least one functional area, where the functional area specifically refers to a path that cannot be cut when the thin film package is completed and the substrate is cut. The area that passes through (because it contains all the structures that implement the product's functionality).
  • An orthographic projection on the substrate is within a range of orthographic projection of the organic layer on the substrate; forming a second barrier material layer, the second barrier material layer coating the organic layer; in the functional area Forming a layer of masking material, the orthographic projection of the layer of masking material on the substrate within an orthographic projection of the second layer of barrier material on the substrate, the organic layer being on the substrate
  • An orthographic projection is within a range of orthographic projection of the mask material layer on the substrate, the thickness of the mask material layer being less than a thickness of the second barrier material layer; engraving the second barrier material layer The etch wherein the etch rate of the mask material layer is less than the etch rate of the second barrier material layer.
  • At least one embodiment of the present disclosure provides a thin film encapsulation structure including: a first barrier layer covering a packaged structure on a substrate; an organic layer on a side of the first barrier layer away from the substrate, the An orthographic projection of the package structure on the substrate is within a range of orthographic projection of the organic layer on the substrate; a second barrier layer covering the organic layer; and a side of the second barrier layer away from the substrate a mask layer, the second barrier layer, the first barrier layer and the mask layer substantially coincide with an orthographic projection on the substrate, the mask layer having a thickness smaller than that of the second barrier layer thickness.
  • At least one embodiment of the present disclosure provides a display device including the thin film encapsulation structure formed by the thin film encapsulation method or the thin film encapsulation structure, wherein the to-be-packaged structure or the packaged structure includes a light-emitting structure and a control circuit .
  • the thin film encapsulation method, the thin film encapsulation structure, and the display device of the present disclosure will be described below through several specific embodiments.
  • the embodiment provides a thin film encapsulation method for encapsulating a structure to be packaged on a substrate, wherein the structure to be packaged generally includes a material sensitive to water and oxygen, and the structure to be packaged may be a display and illumination device.
  • the organic light emitting diode array including the organic semiconductor material may also be a thin film solar cell made of an organic semiconductor material, or may be an array of photosensitive cells made of an organic semiconductor material used in an infrared detector and a camera.
  • the substrate usually includes a plurality of repeated functional areas, each of which corresponds to form a product. There is a cutting zone between the functional areas, and the cutting path passes through the cutting zone when the substrate is cut.
  • each functional area includes a display substrate structure required for a display panel.
  • a plurality of functional regions on one substrate are usually processed simultaneously, for example, including film formation, photolithography, etching, cleaning, and the like. Then, all the functional areas on the whole substrate are packaged, and then one substrate is divided into a plurality of display substrates by laser cutting or mechanical cutting, and then a subsequent module process is performed to finally form a display panel.
  • the substrate in the present disclosure may include a plurality of functional regions.
  • the substrate may also include only one functional area.
  • the substrate may only produce one display panel.
  • the structure to be packaged 302 is formed in a functional area 310 of the substrate 301.
  • the structure to be packaged 302 may specifically include a thin film transistor, a wire and an organic light emitting diode, and a film layer for separating the structures, for example, including Passivation layer, planarization layer, interlayer dielectric layer, pixel defining layer, and the like.
  • FIG. 4 is a flowchart of a thin film encapsulation method in an example of the embodiment, and the method includes steps S101-S105.
  • a first barrier material layer 3030 is formed.
  • the barrier material layer has a dense structure and has a good blocking effect on active molecules such as water molecules and oxygen molecules.
  • active molecules such as water molecules and oxygen molecules.
  • the first barrier material layer 3030 needs to be coated, ie completely covered, with the structure to be packaged 302.
  • the first barrier material layer 3030 cannot be too thin, and in order to ensure a certain degree of curvature and flexibility of the package film, and also to reduce the overall thickness of the display device, the first barrier material layer 3030 cannot be too Thick, generally required to have a thickness between 0.1um and 1um.
  • the first barrier material layer 3030 may be formed by a plasma enhanced chemical vapor deposition (PECVD) process, that is, by placing a substrate to be processed into a film forming chamber, introducing a reaction gas, and increasing the plasma of the reaction gas.
  • PECVD plasma enhanced chemical vapor deposition
  • the activity, under specific reaction conditions, chemical reaction between the reaction gases, and the reaction product is deposited on the surface of the substrate to be processed, thereby forming a first barrier material layer 3030 covering the substrate 302 to be packaged on the substrate.
  • the thickness of the first barrier material layer 3030 can be controlled by adjusting the reaction time.
  • an organic layer 304 is formed. Its function is: due to the poor flexibility of the barrier layer, it is easy to crack during the use of the product, and water oxygen can penetrate into the structure to be packaged 302 through these cracks, thereby causing the package to fail. Therefore, it is necessary to form an organic layer 304 on the surface of the first barrier material layer 3030.
  • the organic layer has good flexibility. When the organic layer and the barrier material layer are attached to each other, the stress in the barrier material layer can be mediated and released. Thereby preventing cracking of the barrier material layer.
  • a second barrier material layer 3050 is formed. Because the organic layer 304 has an affinity for water oxygen, water oxygen can diffuse along the organic layer and further penetrate the structure to be packaged 302 through cracks on the first barrier material layer 3030. Therefore, it is necessary to further provide a second barrier material layer 3050 over the organic layer 304, and the second barrier material layer 3050 completely covers the organic layer 304 to prevent it from coming into contact with water.
  • the second barrier material layer 3005 can be formed in the same manner as the first barrier material layer 3030.
  • the thickness of the second barrier material layer 3050 is preferably between 0.1 um and 1 um for the same reason as the first barrier material layer 3050.
  • the film formation range of the organic layer 304 should also be limited as follows: 1) the organic layer 304 cannot exceed the range of the functional region 310, otherwise, when the substrate is cut, it straddles the adjacent function. The organic layer 304 between the regions will be exposed after dicing to contact with water oxygen; 2) the orthographic projection of the package structure 302 on the substrate 301 should be within the range of the orthographic projection of the organic layer 304 on the substrate 301, Thus, a three-layer structure of a barrier material layer-organic layer-barrier material layer is present over the structure to be packaged 302 to ensure efficient packaging of each structure to be packaged 302.
  • the orthographic projection of the organic layer 304 on the substrate 301 is within the range of the orthographic projection of the first barrier material layer 3030 on the substrate 301, that is, the range of the first barrier material layer 3030 is greater than that of the organic layer 304.
  • the range is larger, as shown in Figure 5C. If the organic layer exceeds the range of the barrier material layer, a portion of the organic layer (for example, a portion of the organic layer 304) is directly contacted to the substrate 301, and the contact gap with the substrate is easily invaded by water oxygen, as shown in FIG. 5D, and thus Conducive to the barrier to water and oxygen.
  • the range of the organic layer limits the minimum achievable range of the finally formed display panel (because the cutting path cannot be in the range of the organic layer), or the lower limit of the width of the display panel frame, thus making the organic layer range Less than the range of the first barrier material layer 3030, it is advantageous to minimize the frame.
  • the organic layer 304 may be formed by inkjet printing, vacuum evaporation, or screen printing.
  • the inkjet printing method can define a region where the organic layer is formed by adjusting the path of the nozzle
  • a vacuum evaporation method uses a mask to define a region formed by the organic layer
  • a screen printing method uses a screen plate to define a region of the organic layer. Both of them can have a specific pattern at the same time as the organic layer is formed, without first forming a whole layer of film, and then patterning by coating, photolithography and development, thereby saving process steps and avoiding the lithography development process involved.
  • the chemical reagents cause damage to the package structure.
  • a mask material layer 3060 is formed within the functional region 310, and the orthographic projection of the mask material layer on the substrate 301 is within the orthographic projection of the second barrier material layer 3050 on the substrate 301.
  • the orthographic projection of the organic layer 304 on the substrate 301 is within the orthographic projection of the mask material layer 3060 on the substrate 301, and the thickness of the mask material layer 3060 is less than the thickness of the second barrier material layer 3050.
  • the layer forming the mask material may adopt an atomic layer deposition method (ALD).
  • ALD atomic layer deposition method
  • the first barrier material layer 3030 and the second barrier material are Layer 3050 is etched such that first barrier material layer 3030 and second barrier material layer 3050 outside of the orthographic projection of masking material layer 3060 on substrate 301 are etched away.
  • the etch rate of the mask material layer is both less than the etch rate of the first barrier material layer and less than the etch rate of the second barrier material layer.
  • the mask material layer 3060 is utilized in the present disclosure as a mask for etching the first barrier material layer 3030 and the second barrier material layer 3050. Therefore, the etching rate of the mask material layer 3060 is required to be smaller than the first barrier material. The etch rate of layer 3030 and second barrier material layer 3050.
  • the mask material layer 3060 is formed by ALD, and its structure is relatively dense and is not easily etched.
  • the first barrier material layer 3030 and the second barrier material layer 3050 are formed by PECVD, and the structure is relatively loose, so that it is more easily etched away by the etching solution.
  • the etching rate of the silicon oxide film prepared by the PECVD method can be more than four times faster than that of the silicon oxide film prepared by the ALD method, and even the etching rate of the metal oxide film prepared by the ALD method. More than 10 times faster.
  • the mask material layer 3060 can be directly patterned by an ALD mask method.
  • the mask 402 is stretched through the frame 403, and an opening 401 is provided on the mask, and the opening 401 is provided.
  • the reactive precursor can be from the edge position of the mask opening 401 to the mask 402 and The gap between the second barrier material layers 3050 invades a distance to form a film of a certain thickness in the gap.
  • the penetration distance of the precursor increases, the thickness of the film becomes thinner and thinner and eventually becomes zero.
  • the thickness of the mask material layer 3060 is less than the thickness of the second barrier material layer 3050, since the thickness and width of the tapered region are generally It is positively correlated with the thickness of the formed film layer, so that the length and thickness of the tapered region of the mask material layer 3060 are both smaller than the length and thickness of the tapered region of the second barrier material layer 3050, and thus have little effect on the bezel.
  • the mask material layer 3060 is etched at a very low rate, there is still a certain etch rate. Because the edge is thinner, the tapered region may be etched away, so the mask material layer 3060 will be reduced in size after etching, further reducing the impact on the bezel.
  • the range of the masking material layer 3060 needs to be larger than the range of the organic layer 304, otherwise the organic layer 304 may be exposed during the etching of the first barrier material layer 3030 and the second barrier material layer 3050, rendering the package ineffective.
  • the mask material layer should be in the range of the second barrier material layer and the first barrier material layer, otherwise the mask material layer does not function as the patterned second barrier material layer 3050 and the first barrier material layer 3030 The role.
  • the cutting path can be closer to the structure to be packaged, thereby reducing the area of the non-display area to make the frame narrower.
  • the thickness of the mask material layer 3060 should be less than the thickness of the second barrier material layer, except that in order to reduce the influence of the tapered regions generated when the ALD mask method is employed, the overly thick mask layer is increased. Membrane time, reducing yield.
  • the mask material layer 3060 outside the tapered region is not completely Etching away to avoid exposing the protected second barrier material layer 3050, the mask material layer 3060 should be provided with at least a certain thickness, which should be based on the first barrier material layer 3030 and the second barrier material layer 3050 The ratio of the etch rate to the etch rate of the mask material layer 3060 is determined.
  • the thickness of the mask material layer 3060 is not less than the first barrier material.
  • One-eighth of the sum of the thickness of the layer 3030 and the second barrier material layer 3050 is sufficient. If the ratio of the etch rate of the first barrier material layer 3030 and the second barrier material layer 3050 to the etch rate of the mask material layer 3060 is further reduced, it is necessary to increase the thickness of the mask material layer 3060. As mentioned earlier, this will increase the film formation time and reduce the yield.
  • the etching rate of the first barrier material layer 3030 and the second barrier material layer 3050 is much larger than the etching rate of the mask material layer 3060, or the mask material layer 3060 does not substantially react with the etching medium,
  • the film material layer can be disposed much smaller than the thickness of the barrier material layer, thereby saving film formation time, increasing yield, and reducing the range of the thinned region of the mask material layer, thereby making it more advantageous to achieve a narrow bezel.
  • the remaining thickness of the mask material layer 3060 is not more than 100 nm. Since the excessively thick mask material layer has a reduced bendability, cracks easily occur during the bending of the package structure.
  • the mask material layer 3060 remaining after the etching can also improve the barrier property of the thin film encapsulation structure, and further prevent water oxygen from intruding into the package structure 302.
  • etching of the first barrier material layer 3030 and the second barrier material layer 3050 since there is an etch rate in all directions, it is possible to have the second barrier material layer 3050 below the edge of the mask material layer 3060. Over-etching causes the mask material layer to hang off or expose the organic layer 304.
  • a directional etching method such as an inductively coupled plasma (ICP) process may be employed, and the etching medium may be oriented in the thickness direction of the second barrier material layer 3030 by adjusting a suitable electric field and gas pressure. The etch rate is much higher than the etch rate in the direction parallel to the second barrier material layer 3050.
  • ICP inductively coupled plasma
  • first barrier layer 303 and the second barrier layer 305 are patterned by the mask material layer, no layer may be formed in forming the first barrier material layer 3030 and the second barrier material layer 3050.
  • the patterning process that is, it is set to cover the entire substrate. Strictly speaking, the edge portion of the substrate may have a portion of the uncovered region due to process limitations.
  • the first barrier material layer 3030 and the second barrier material layer 3050 are disposed to cover the entire substrate.
  • the dicing area between the entire functional area 310 and the functional area 310 that is, the partial area that does not exclude the edge of the substrate may not be covered by the first barrier material layer 3030 and the second barrier material layer 3050.
  • the first barrier material layer 3030 and/or the second barrier material layer 3050 may be formed by an open mask method.
  • the opening 502 inside the mask frame 501 exposes the entire substrate without the need to provide an opening corresponding to each functional area. This can reduce the process difficulty of mask fabrication.
  • the thin film encapsulation structure is not limited to the three-layer structure of the barrier material layer-organic layer-barrier material layer, as shown in FIG. 8, it may also be a barrier material layer-organic layer-barrier material layer-organic layer-barrier material.
  • a step of forming the organic layer 316 and the barrier material layer 3150 alternately paired may be further included between the step S101 of forming the first barrier material layer 3030 and the step S102 of forming the organic layer 304, the organic layer being The barrier layer of the paired material is coated.
  • the method in which the organic layer and the barrier material layer are formed is as described above, and will not be described herein.
  • step S105 when the orthographic projection of the organic layer on the substrate exceeds the range of the orthographic projection of the first barrier material layer on the substrate, as shown in FIG. 5D, that is, when organic When the layer covers the first barrier material layer, only the second barrier material layer needs to be etched. Accordingly, only the etch rate of the mask material layer is required to be smaller than the etch rate of the second barrier material layer. can.
  • the barrier material is not required.
  • the layer and each of the barrier material layers on the side of the barrier material layer adjacent to the side of the structure to be packaged are etched, and accordingly, the etch rate of the mask material layer is not required to be less than the etch rate of the barrier material layers.
  • the orthographic projection of all the organic layers on the substrate is within the range of the orthographic projection of the first barrier material layer on the substrate, as shown in FIG.
  • the foregoing etching step further includes Each of the barrier material layers other than the first barrier material layer and the second barrier material layer is etched such that the barrier material layer outside the orthographic projection range of the mask material layer 3060 on the substrate 301 is etched away.
  • the cutting path can be closer to the structure to be packaged 302, thereby reducing the area of the non-display area to make the frame narrower.
  • the thin film encapsulation structure specifically includes: a first barrier layer 603 covering the packaged structure 602 on the substrate 601; and an organic layer 604 located on a side of the first barrier layer 603 away from the substrate, the package structure
  • the orthographic projection of 602 on the substrate 601 is within the range of the orthographic projection of the organic layer on the substrate; the second barrier layer 605 covering the organic layer 604; and the mask layer on the side of the second barrier layer 605 away from the substrate 601 606, the orthographic projection of the mask layer 606 on the substrate 601 surrounds the second barrier layer 605, the first barrier layer 603 and the organic layer 604 are orthographically projected on the substrate 601, and the thickness of the mask layer 606 is smaller than that of the second barrier layer 605. thickness.
  • the first barrier layer 603 is completely covered by the package structure 602, and the barrier layer structure is dense, and has a good blocking effect on active molecules such as water vapor molecules and oxygen molecules.
  • the first barrier layer 603 is required to be covered by the package structure 602, i.e., completely covered.
  • the first barrier layer 603 cannot be too thin, and in order to ensure a certain degree of curvature and flexibility of the package film, and also to reduce the overall thickness of the display device, the first barrier layer 603 cannot be too thick.
  • the thickness thereof is set to be in the range of 0.1 um to 1 um.
  • the barrier layer is less flexible, cracks easily occur during use of the product, and water oxygen can invade the packaged structure 602 through these cracks, thereby failing the package. Therefore, it is necessary to provide an organic layer 604 on the side of the first barrier layer 603 away from the substrate 601.
  • the organic layer has good flexibility. When the organic layer and the barrier layer are attached to each other, the stress in the barrier layer can be mediated and released. To prevent cracking of the barrier layer.
  • the organic layer has an affinity for water oxygen, water oxygen can diffuse along the organic layer 604 and further invade the encapsulated structure 602 through cracks on the barrier layer. Therefore, it is necessary to provide a second barrier layer 605 to completely cover the organic layer 604 to prevent it from being contacted by water and oxygen. For the same reason as the first barrier layer 603, preferably, the thickness of the second barrier layer 605 is set to be in the range of 0.1 um to 1 um.
  • the orthographic projection of the packaged structure on the substrate is within the range of the orthographic projection of the organic layer on the substrate, such that a barrier layer-organic layer-barrier layer stack structure exists over the packaged structure 602.
  • the orthographic projection of the organic layer on the substrate 601 is within the range of the orthographic projection of the first barrier layer 603 on the substrate 601, that is, the range of the first barrier layer 603 is more organic than The range of layer 604 is larger. If the organic layer exceeds the range of the barrier layer, a part of the organic layer (for example, a part of the organic layer 604) is directly contacted on the substrate 601, and the contact gap with the substrate is easily invaded by water oxygen, as shown in FIG. 9B, affecting the packaging effect. .
  • the range of the organic layer limits the minimum achievable range of the finally formed display panel (because the cutting path cannot be in the range of the organic layer), or the lower limit of the width of the display panel frame, thus making the organic layer range Less than the range of the first barrier layer 603 is advantageous for minimizing the frame.
  • the mask layer 606 on the side of the second barrier layer 605 away from the substrate 601 serves as a mask during the preparation of the thin film encapsulation structure for patterning the first barrier layer 603 and the second barrier layer 605.
  • the portion of the first barrier layer 603 and the second barrier layer 605 that is not covered by the mask layer 606 is etched, and therefore, the orthographic projection of the second barrier layer 605 and the first barrier layer 603 on the substrate 601 is at the mask.
  • Layer 606 is within the orthographic projection range on substrate 601.
  • the mask can be masked.
  • the first barrier layer 603 and the second barrier layer 605 under the film layer 606 are not overetched, so that the first barrier layer 603 can be realized, and the orthographic projection of the second barrier layer 605 and the mask layer 606 on the substrate 601 coincides. This will ensure that the organic layer is not exposed due to over-etching. Thereby improving the reliability of the film package.
  • the thickness of the mask layer 606 should be smaller than the thickness of the second barrier layer 605 for the following reasons: 1) The mask layer 606 formed by the mask method is affected by the shadow phenomenon, and the edges thereof also have a tapered region, thereby increasing the width of the bezel. When the mask layer 606 is too thick, the width of the tapered region is increased, which is disadvantageous for narrowing the frame; 2) the excessively thick mask layer increases the film formation time and reduces the yield; 3) the overly thick mask layer can be bent The property is degraded, and it is easy to cause cracks during the bending of the package structure. Preferably, the thickness of the mask layer 606 does not exceed 100 nm.
  • the thickness 614 of the sidewall of the second barrier layer 605 attached to the side of the organic layer 604 is not less than the thickness of the portion of the second barrier layer 605 between the mask layer 606 and the organic layer 605. 615, to ensure the barrier to water and oxygen, to prevent water oxygen from invading the organic layer from the side.
  • the material of the mask layer 606 includes at least one of aluminum oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, antimony oxide, and zirconium oxide.
  • the first barrier layer 603 includes at least one of silicon nitride, silicon oxide, and silicon oxynitride
  • the material of the second barrier layer 605 includes at least one of silicon nitride, silicon oxide, and silicon oxynitride.
  • Materials such as aluminum oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, cerium oxide, and zirconium oxide are generally more difficult to etch than materials such as silicon nitride, silicon oxide, and silicon oxynitride.
  • the material of the organic layer 604 is an epoxy resin organic material. These materials have good flexibility and light transmission. Thereby, the buffering stress can be exerted to prevent the first barrier layer 603 or the second barrier layer 605 from being cracked. At the same time, good light transmittance allows the thin film package structure to be used in devices such as solar cells and display panels.
  • the mask layer 606 has a thickness of no greater than 100 nm. Since the excessively thick mask layer has a reduced bendability, cracks easily occur during the bending of the package structure.
  • the thin film encapsulation structure is not limited to the three-layer structure of the barrier layer-organic layer-barrier layer, as shown in FIG. 9C, and may also be a five-layer structure of the barrier layer-organic layer-barrier layer-organic layer-barrier layer. And even more layers to enhance the effect of the package.
  • an organic layer and a barrier layer formed alternately with each other may be included between the first barrier layer 603 and the organic layer 604, and the organic layer is covered by the barrier layer disposed in pair with the layer to ensure the organic layer Will not be exposed, resulting in erosion by water and oxygen.
  • the orthographic projection of the organic layer 604 on the substrate exceeds the range of the orthographic projection of the first barrier layer 603 on the substrate 601, as shown in FIG. 9B, that is, when the organic layer covers the first barrier layer At this time, only the second barrier layer needs to be etched, so the mask layer is only used to pattern the second barrier layer. Since the first barrier layer is covered by the organic layer and the organic layer is covered by the second barrier layer, the orthographic projection of the first barrier layer on the substrate is naturally within the range of the orthographic projection of the mask layer on the substrate.
  • the barrier layer and the The barrier layer is etched adjacent to each of the barrier layers on one side of the package structure. Since the mask layer patterns each of the barrier layers on the side of the organic layer away from the packaged structure, the orthographic projection of the respective barrier layers on the side of the organic layer away from the packaged structure is naturally described. The mask layer is within the range of orthographic projections on the substrate. And because the organic layer coats the barrier layer adjacent to one side of the structure to be packaged, the positive projection of the barrier layer and the barrier layers on the side of the barrier layer adjacent to the structure to be packaged on the substrate is natural.
  • the mask layer is also used
  • Each of the barrier layers other than the first barrier layer and the second barrier layer is patterned such that the barrier layer outside the orthographic projection range of the mask layer on the substrate is etched away. Therefore, the orthographic projection of each of the barrier layers other than the first barrier layer and the second barrier layer on the substrate 601 is also within the orthographic projection of the mask layer 606 on the substrate 601.
  • the cutting path can be closer to the packaged structure 602, thereby reducing the area of the non-display area to make the frame narrower.
  • the embodiment provides a display device, including a substrate, a light emitting structure, a control circuit, and a thin film packaging structure or a thin film packaging structure formed by the thin film packaging method.
  • the light emitting structure may be an organic light emitting diode or a quantum dot light emitting diode.
  • the control circuit can be made of an organic material or an inorganic material.
  • the thin film encapsulation structure or the thin film encapsulation structure formed by the thin film encapsulation method can prevent the material of the light emitting structure or the control circuit from changing in a water oxygen environment, thereby degrading the yield and life of the display device. .
  • the thin film encapsulation structure or the thin film encapsulation structure formed by the thin film encapsulation method solves the problem that the edge of the thin film encapsulation structure is too wide and the bezel is too wide due to the shadow phenomenon.
  • the display device may specifically be any product or component having a display function, such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc. Make a limit.
  • a display function such as a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种薄膜封装结构,包括包覆位于基板上的被封装结构的第一阻隔层;位于所述第一阻隔层上的有机层;包覆所述有机层的第二阻隔层;位于所述第二阻隔层上的掩膜层,所述第二阻隔层、所述第一阻隔层和所述掩膜层在所述基板上的正投影大致重合,所述掩膜层材料的刻蚀速率小于所述第二阻隔层材料的刻蚀速率。

Description

一种薄膜封装方法、薄膜封装结构、显示装置
相关申请的交叉引用
本申请要求于2018年3月29日提交的申请号为201810272554.5,发明名称为“一种薄膜封装方法、薄膜封装结构、显示装置”的中国专利的优先权,该申请在此以引文方式整体并入本文。
技术领域
本公开涉及薄膜封装领域,尤其涉及一种薄膜封装方法、薄膜封装结构、显示装置。
背景技术
有机发光二极管具有轻薄、透明、面发光、自发光、柔性可弯曲等优点,广泛用于照明以及显示等各个领域。柔性有机发光二极管的制备工艺与传统有机发光二极管器件的制备工艺相比,区别在于增加了柔性基板工艺,同时改变了封装工艺。对于柔性有机发光器件的封装一般采用薄膜封装(Thin film encapsulation)的方法。随着消费者需求和市场产品的更新换代,窄边框的柔性器件需求日益强烈。为适应需求,封装技术也需要开发窄边框技术。薄膜封装技术由于采用真空镀膜的方式,利用掩膜板进行封装薄膜的图形化。
发明内容
本公开提供一种薄膜封装结构,包括:包覆位于基板上的被封装结构的第一阻隔层;位于所述第一阻隔层远离所述基板一侧的有机层,所述被封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内;包覆所述有机层的第二阻隔层;位于所述第二阻隔层远离所述基板一侧表面上的掩膜层,所述掩膜层、所述第二阻隔层和所述第一阻隔层在所述基板上的正投影大致重合,所述掩膜层材料的刻蚀速率小于所述第二阻隔层材料的刻蚀速率。
例如,本公开至少一实施例提供的薄膜封装结构,所述掩膜层的材料为 金属氧化物。
例如,本公开至少一实施例提供的薄膜封装结构,所述掩膜层的材料包括氧化铝、氧化锌、氧化铟、氧化锡、氧化镓、氧化铪、氧化锆中的至少一种,和/或,所述第一阻隔层的材料包括氮化硅、氧化硅、氮氧化硅中的至少一种,和/或,所述第二阻隔层的材料包括氮化硅、氧化硅、氮氧化硅中的至少一种。
例如,本公开至少一实施例提供的薄膜封装结构,所述掩膜层的厚度小于所述第二阻隔层的厚度。
例如,本公开至少一实施例提供的薄膜封装结构,所述掩膜层的厚度不大于100nm,所述第一阻隔层和第二阻隔层的厚度在0.1-1μm范围内。
例如,本公开至少一实施例提供的薄膜封装结构,贴附于所述有机层侧面的所述第二阻隔层侧壁的厚度不小于所述第二阻隔层位于所述掩膜层和所述有机层之间部分的厚度。
例如,本公开至少一实施例提供的薄膜封装结构,所述有机层在所述基板上的正投影在所述第一阻隔层在所述基板上的正投影的范围内。
例如,本公开至少一实施例提供的薄膜封装结构,所述第一阻隔层在所述基板上的正投影在所述有机层在所述基板上的正投影的范围内。
例如,本公开至少一实施例提供的薄膜封装结构,所述有机层的材料为树脂类有机材料。
本公开至少一实施例提供一种薄膜封装方法,包括:提供一基板,所述基板包括至少一个功能区域,所述功能区域范围内设置有待封装结构;形成第一阻隔材料层,所述第一阻隔材料层包覆所述待封装结构;在所述功能区域范围内形成一有机层,所述待封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内;形成第二阻隔材料层,所述第二阻隔材料层包覆所述有机层;在所述功能区域范围内形成掩膜材料层,所述掩膜材料层在所述基板上的正投影在所述第二阻隔材料层在所述基板上的正投影范围内,所述有机层在所述基板上的正投影在所述掩膜材料层在所述基板上的正投影的范围内,所述掩膜材料层的厚度小于所述第二阻隔材料层的厚度;以所述掩膜材料层作为掩膜对所述第二阻隔材料层进行刻蚀,所述掩膜材料层同时被刻蚀,以分别形成第二阻隔层和掩膜层,其中所述掩膜材料层的刻蚀速率小于所述第二阻隔材料层的刻蚀速率。
例如,本公开至少一实施例提供的薄膜封装方法,所述有机层在所述基板上的正投影在所述第一阻隔材料层在所述基板上的正投影的范围内;所述薄膜封装方法还包括对所述第一阻隔材料层进行刻蚀,其中所述掩膜材料层的刻蚀速率小于所述第一阻隔材料层的刻蚀速率。
例如,本公开至少一实施例提供的薄膜封装方法,所述第一阻隔材料层在所述基板上的正投影在所述有机层在所述基板上的正投影的范围内。
例如,本公开至少一实施例提供的薄膜封装方法,所述第一阻隔材料层和所述第二阻隔材料层的刻蚀速率为所述掩膜材料层的刻蚀速率的八倍以上,所述掩膜材料层的厚度不小于第一阻隔材料层和第二阻隔材料层厚度之和的八分之一。
例如,本公开至少一实施例提供的薄膜封装方法,对所述第一阻隔材料层,所述第二阻隔材料层和所述掩膜材料层进行刻蚀完成后,所述掩膜层的厚度不大于100nm。
例如,本公开至少一实施例提供的薄膜封装方法,所述掩膜材料层在所述基板上的正投影超出所述有机层在所述基板上的正投影的部分为一个环形区域,所述环形区域的宽度大于所述第二阻隔材料层的厚度。
例如,本公开至少一实施例提供的薄膜封装方法,所述形成掩膜材料层采用原子层沉积掩膜法。
例如,本公开至少一实施例提供的薄膜封装方法,形成所述第一阻隔材料层和第二阻隔材料层采用等离子体增强化学气相沉积的方法,所述第一阻隔材料层和第二阻隔材料层的厚度在0.1-1μm。
例如,本公开至少一实施例提供的薄膜封装方法,在所述刻蚀中采用电感耦合等离子体工艺。
例如,本公开至少一实施例提供的薄膜封装方法,在形成所述第一阻隔材料层和/或第二阻隔材料层时,在等离子体增强化学气相沉积过程中,设置掩膜板框架内部的开口使其暴露出整个基板。
本公开至少一实施例提供一种显示装置,包括所述的薄膜封装结构或由所述的薄膜封装方法形成的薄膜封装结构,其中所述待封装结构或所述被封装结构包括发光结构和控制电路。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为相关技术的薄膜封装技术中阻隔层成膜所用的PECVD mask示意图;
图2为图1中PECVD mask沿A-A’方向的侧视图以及利用PECVD mask形成的阻隔层的侧视图以及封装结构示意图;
图3为进行封装之前的基板及待封装结构的示意图;
图4为本公开一实施例提供的薄膜封装方法的流程图;
图5A-5G为本公开一实施例提供的薄膜封装方法流程中各阶段形成的封装结构示意图,其中图5G为图5F中掩膜层和有机层的俯视图;
图6为本公开一实施例中用于形成掩膜层的掩膜板的俯视图;
图7为本公开一实施例中用于形成第一阻隔层或第二阻隔层的掩膜板的俯视图;
图8为本公开一实施例提供的薄膜封装方法流程中在进行刻蚀之前的结构示意图;
图9A-9C为本公开一实施例提供的薄膜封装结构的几种可能的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械 的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。本公开使用的术语“包覆”是指覆盖被包覆物的所有裸露表面,而不是仅仅覆盖其最大表面。
当采用真空镀膜的方式对柔性有机发光器件进行薄膜封装时,掩膜板和成膜基板之间存在空隙,不可避免地存在遮挡(shadow)现象,即形成的薄膜延伸至靠近掩膜板开口边缘处的掩膜板的下方,延长了边框范围,不利于实现窄边框。
如前所述,有机发光二极管进行薄膜封装的工艺中通常借助掩膜法对其中的封装薄膜进行图案化。例如,图1为掩膜板的正视图,图2示出了图1掩膜板101沿A-A’方向的剖面图。图2还示出了利用掩膜法形成的薄膜封装结构的侧视图,所述薄膜封装结构由第一阻隔层203,有机层204和第二阻隔层205组成,形成对待封装结构202的封装。下面以形成第二阻隔层205为例,说明在掩膜法成膜过程中shadow现象出现的原因。图中掩膜板101通过框架103进行张网。在整张掩膜板上设置多个开口102,开口102对应膜层205的目标成膜区域206。在理想情况下,只有开口102对应区域才能形成膜层,而在被掩膜板101覆盖的区域,不具备成膜条件(例如电场被掩膜板屏蔽,反应气体无法形成等离子态),因此不能形成膜层。然而在实际情况下,因为掩膜板101和成膜基底(此处为基板201)之间存在缝隙,在靠近掩膜板开口102的边缘位置,具有成膜条件的反应气体可以向掩膜板101和基板201之间的缝隙里侵入一段距离,从而在缝隙里形成具有一定厚度的膜层,随着气体侵入距离的增加,其膜层厚度越来越薄并最终变为零。因此通过掩膜板形成的第二阻隔层205的边缘部分具有逐渐变薄的一段渐薄区207,此即shadow现象。因此,实际成膜区域大于目标成膜区域,渐薄区207位于非显示区中,而且在基板切割过程中,为避免在膜层中产生裂纹,切割路径需要避开渐薄区。所以渐薄区207导致非显示区面积增大,不利于实现窄边框。
本公开至少一实施例提供一种薄膜封装方法,包括:提供一基板,所述基板包括至少一个功能区域,所述功能区域具体是指完成薄膜封装并对基板进行切割时,一个不能被切割路径穿过的区域(因为该区域包含有实现产品功能的全部结构)。所述功能区域范围内设置有待封装结构;形成第一阻隔 材料层,所述第一阻隔材料层包覆所述待封装结构;在所述功能区域范围内形成一有机层,所述待封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内;形成第二阻隔材料层,所述第二阻隔材料层包覆所述有机层;在所述功能区域范围内形成掩膜材料层,所述掩膜材料层在所述基板上的正投影在所述第二阻隔材料层在所述基板上的正投影范围内,所述有机层在所述基板上的正投影在所述掩膜材料层在所述基板上的正投影的范围内,所述掩膜材料层的厚度小于所述第二阻隔材料层的厚度;对所述第二阻隔材料层进行刻蚀,其中所述掩膜材料层的刻蚀速率小于所述第二阻隔材料层的刻蚀速率。
本公开至少一实施例提供一种薄膜封装结构,包括:包覆位于基板上的被封装结构的第一阻隔层;位于所述第一阻隔层远离所述基板一侧的有机层,所述被封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内;包覆所述有机层的第二阻隔层;位于所述第二阻隔层远离所述基板一侧的掩膜层,所述第二阻隔层、所述第一阻隔层和所述掩膜层在所述基板上的正投影大致重合,所述掩膜层的厚度小于所述第二阻隔层的厚度。
本公开至少一实施例提供一种显示装置,包括所述的薄膜封装方法形成的薄膜封装结构或所述的薄膜封装结构,其中所述待封装结构或所述被封装结构包括发光结构和控制电路。
下面通过几个具体的实施例对本公开的薄膜封装方法,薄膜封装结构,显示装置进行说明。
实施例一
本实施例提供一种薄膜封装方法,用于对基板上的待封装结构进行封装,其中所述待封装结构一般包含有对水氧比较敏感的材料,所述待封装结构可以是显示和照明装置中包含有机半导体材料的有机发光二极管阵列,也可以是由有机半导体材料制成的薄膜太阳能电池,还可以是红外线探测器和照相机中使用的由有机半导体材料制成的感光单元阵列。在上述产品的制造过程中,基板上通常包括多个重复的功能区域,每一个功能区域对应形成一个产品。功能区域之间具有切割区,在切割基板时,切割路径穿过切割区。例如对于显示面板,每一个功能区域内包括一块显示面板所需要的显示基板结构。为了节约成本,提高产率,通常对一个基板上的多个功能区域同时进行加工处理,例如包括成膜,光刻,刻蚀,清洗等步骤。之后对整块基板上 的全部功能区域进行封装,再通过激光切割或机械切割等方式将一块基板分割成多个显示基板,之后进行后续的模组工艺,最终形成显示面板。
本公开中的基板可以包括多个功能区域。当然此基板上也可以只包括一个功能区域,换言之,此基板可以只产出一块显示面板。
如图3所示,待封装结构302形成在基板301的一个功能区域310内,待封装结构302具体可以包括薄膜晶体管,导线和有机发光二极管,以及用于实现隔离各结构的膜层,例如包括钝化层,平坦化层,层间介质层,像素界定层等。
在形成待封装结构302之后,采用本实施例的薄膜封装方法对待封装结构进行封装,例如,图4为本实施例的一个示例中薄膜封装方法的流程图,该方法包括步骤S101-S105。
步骤S101:
如图5A所示,形成第一阻隔材料层3030。阻隔材料层结构致密,对水分子和氧气分子等活性分子具有很好的阻挡作用。为了防止水汽分子和氧气分子接触到待封装结构,需要使第一阻隔材料层3030将待封装结构302包覆,即完全覆盖。为了保证封装薄膜的阻隔性,第一阻隔材料层3030不能过薄,同时为了保证封装薄膜具有一定的弯曲度和柔韧性,也为了减小显示器件的整体厚度,第一阻隔材料层3030不能太厚,一般要求其厚度在0.1um~1um之间。
第一阻隔材料层3030可以通过等离子体增强化学气相沉积法(PECVD)工艺形成,即通过将待加工基板放入成膜腔室中,通入反应气体,并对反应气体进行等离子化处理增加其活性,在特定的反应条件下,反应气体之间进行化学反应,其反应产物沉积在待加工基板的表面,从而形成一层包覆基板上待封装结构302的第一阻隔材料层3030。通过调节反应时间可以控制第一阻隔材料层3030的厚度。
步骤S102:
如图5B所示,形成有机层304。其作用是:由于阻隔层柔韧性较差,容易在产品使用过程中出现裂纹,而水氧可以通过这些裂纹渗入待封装结构302,使封装失效。因此需要在第一阻隔材料层3030表面形成一有机层304,该有机层具有良好的柔韧性,当有机层与阻隔材料层相互贴附时,可以对阻隔材料层中的应力进行疏导和释放,从而防止阻隔材料层开裂。
步骤S103:
如图5C所示,形成第二阻隔材料层3050。因为有机层304对水氧具有亲附性,水氧可以沿着有机层进行扩散,并进一步通过第一阻隔材料层3030上的裂纹渗入待封装结构302。所以需要在有机层304上方进一步设置第二阻隔材料层3050,第二阻隔材料层3050将有机层304完全覆盖以防止其与水氧接触。第二阻隔材料层3005可以采用与形成第一阻隔材料层3030相同的方法形成。基于和第一阻隔材料层3050同样的原因,第二阻隔材料层3050的厚度,优选地,在0.1um~1um之间。
应当说明的是,对有机层304的成膜范围还应该做出如下限制:1)有机层304不能超出所述功能区域310的范围,否则,在对基板进行切割时,横跨于相邻功能区域之间的有机层304会在切割后暴露出来,从而和水氧发生接触;2)待封装结构302在基板301上的正投影应该在有机层304在基板301上的正投影的范围内,从而在待封装结构302各处上方都存在阻隔材料层-有机层-阻隔材料层的三层叠层结构,以保证对每一处待封装结构302都进行有效的封装。
可选的,有机层304在所述基板301上的正投影在第一阻隔材料层3030在基板301上的正投影的范围内,也就是说第一阻隔材料层3030的范围比有机层304的范围更大,如图5C所示。如果有机层超出阻隔材料层的范围,将有一部分有机层(例如有机层304的一部分)直接接触到基板301上,其和基板的接触间隙容易被水氧侵入,如图5D所示,因此不利于对水氧的阻隔。另一方面,本发明中,有机层的范围限制了最终形成的显示面板尺寸最小可达到的范围(因为切割路径不能在有机层范围内),或者显示面板边框宽度的下限,因此使有机层范围小于第一阻隔材料层3030的范围,有利于使边框尽量减小。
为了将有机层304限制在特定范围内,可以采用喷墨打印,真空蒸镀或者丝网印刷的方法形成有机层304。其中喷墨打印方法通过调节喷嘴的路径,可以限定有机层形成的区域,真空蒸镀法利用掩模板限定有机层形成的区域,丝网印刷法利用丝网印版限定有机层的区域,这些方法均可以在有机层形成的同时即具有特定的图案,而无需先形成一整层薄膜,再通过涂胶,光刻,显影进行图形化,节约了工艺步骤,同时可以避免光刻显影过程中涉及的化学试剂对待封装结构造成破坏。
步骤S104:
如图5E所示,在所述功能区域310范围内形成掩膜材料层3060,所述掩膜材料层在基板301上的正投影在第二阻隔材料层3050在基板301上的正投影范围内,有机层304在基板301上的正投影在掩膜材料层3060在基板301上的正投影范围内,掩膜材料层3060的厚度小于第二阻隔材料层3050的厚度。
其中,所述形成掩膜材料层可以采用原子层沉积法(ALD)。
步骤S105:
当有机层304在所述基板301上的正投影在第一阻隔材料层3030在基板301上的正投影的范围内时,如图5F所示,对第一阻隔材料层3030和第二阻隔材料层3050进行刻蚀,使得掩膜材料层3060在基板301上的正投影范围以外的第一阻隔材料层3030和第二阻隔材料层3050被刻蚀掉。从而在切割基板时,切割路径可以更为靠近待封装结构302,从而减小非显示区域的面积以使边框更窄。其中所述掩膜材料层的刻蚀速率既小于所述第一阻隔材料层刻蚀速率,也小于所述第二阻隔材料层刻蚀速率。
可见,本公开中利用了掩膜材料层3060作为刻蚀第一阻隔材料层3030和第二阻隔材料层3050的掩膜,因此,需要设置掩膜材料层3060的刻蚀速率小于第一阻隔材料层3030和第二阻隔材料层3050的刻蚀速率。一般来说掩膜材料层3060采用ALD形成,其结构比较致密,不容易被刻蚀。而第一阻隔材料层3030,第二阻隔材料层3050采用PECVD形成,其结构相对疏松,所以更容易被刻蚀液刻蚀掉。例如,对于采用PECVD方法制备的氧化硅薄膜的刻蚀速率可以比采用ALD方法制备的氧化硅薄膜的刻蚀速率快四倍以上,甚至,比采用ALD方法制备的金属氧化物薄膜的刻蚀速率快10倍以上。
为了节省工艺步骤,优选地,掩膜材料层3060可以通过ALD掩膜法直接形成图案,如图6所示,掩膜板402通过框架403张网,在掩膜板上设置开口401,开口401对应形成掩膜材料层3060的目标成膜区域。同样地,因为掩膜板402和成膜基底(此处为第二阻隔材料层3050)之间具有缝隙,具有反应活性的前驱体可以从掩膜板开口401的边缘位置向掩膜板402和第二阻隔材料层3050之间的缝隙里侵入一段距离,从而在缝隙里形成一定厚度的膜层,然而随着前驱体渗入距离的增加,其膜层厚度越来越薄并最终变 为零。因此通过掩膜板形成的掩膜材料层3060图案的边缘也存在渐薄区。但是,与利用掩膜法形成的第二阻隔材料层3050不同的是,此处设置掩膜材料层3060的厚度小于所述第二阻隔材料层3050的厚度,由于渐薄区的厚度和宽度通常与所形成的膜层的厚度正相关,从而掩膜材料层3060渐薄区的长度和厚度都小于第二阻隔材料层3050的渐薄区的长度和厚度,因此对边框影响很小。
此外,可以理解的是,虽然掩膜材料层3060刻蚀的速率非常小,但是仍然有一定的刻蚀速率。因为其边缘厚度较薄,该渐薄区可能被刻蚀掉,所以刻蚀之后掩膜材料层3060的范围会缩小,进一步降低了对边框的影响。
掩膜材料层3060的范围需要比有机层304的范围大,否则在刻蚀第一阻隔材料层3030和第二阻隔材料层3050的过程中会使有机层304暴露出来,使封装失效。显然地,应该使掩膜材料层的范围在第二阻隔材料层和第一阻隔材料层的范围内,否则掩膜材料层起不到图形化第二阻隔材料层3050和第一阻隔材料层3030的作用。
通过在第二阻隔材料层上形成图案化的掩膜层,将掩膜材料层作为刻蚀第二阻隔层的掩膜,刻蚀掉掩膜材料层在基板上的正投影范围以外的第二阻隔材料层,在切割基板时,切割路径可以更为靠近待封装结构,从而减小非显示区域的面积以使边框更窄。解决了利用传统方法进行第二阻隔材料层图案化时因为遮挡现象存在渐薄区,导致边框过宽的问题,有利于实现显示装置的窄边框。
如图5E-5G所示,掩膜材料层3060在基板301上的正投影313超出有机层304在基板301上的正投影312的部分为一个环形区域。优选地,设置所述环形区域的宽度311不小于所述第二阻隔材料层3050的厚度,从而可以使第二阻隔材料层3050被刻蚀后,贴附于有机层304侧面的第二阻隔材料层305侧壁的厚度314不小于第二阻隔材料层3050的厚度317,以确保对水氧的阻隔性,防止水氧从侧面侵入有机层。
掩膜材料层3060的厚度应该小于第二阻隔材料层的厚度,除了为了减小当采用ALD掩膜法时产生的渐薄区对边框的影响以外,还因为过厚的掩膜层会增加成膜时间,降低产率。
为了保证掩膜材料层3060在基板301上的正投影范围以外的第二阻隔材料层3050和第一阻隔材料层3030被刻蚀掉后,渐薄区以外的掩膜材料层 3060不会被完全刻蚀掉,从而避免暴露出被保护的第二阻隔材料层3050,应该设置掩膜材料层3060至少具有一定厚度,所述最小厚度应该根据第一阻隔材料层3030和第二阻隔材料层3050的刻蚀速率与掩膜材料层3060的刻蚀速率的比例确定。优选地,当第一阻隔材料层3030和第二阻隔材料层3050的刻蚀速率为掩膜材料层3060的刻蚀速率的八倍以上时,掩膜材料层3060的厚度不小于第一阻隔材料层3030和第二阻隔材料层3050厚度之和的八分之一即可满足要求。如果第一阻隔材料层3030和第二阻隔材料层3050的刻蚀速率与掩膜材料层3060的刻蚀速率之比值进一步降低,则需要提高掩膜材料层3060的厚度。如前所述,这将增加成膜时间,降低产率。进一步优选地,第一阻隔材料层3030和第二阻隔材料层3050的刻蚀速率远大于掩膜材料层3060的刻蚀速率,或者掩膜材料层3060基本不与刻蚀媒介反应时,则掩膜材料层可以设置得远小于阻隔材料层的厚度,从而节约成膜时间,提高产率,并且减小掩膜材料层渐薄区的范围,从而更加有利于实现窄边框。
对第一阻隔材料层3030,第二阻隔材料层3050进行刻蚀完成后,掩膜材料层3060剩余的厚度不大于100nm。因为过厚的掩膜材料层可弯曲性下降,容易在封装结构弯曲的过程中出现裂纹。
值得注意的是,刻蚀后剩余的掩膜材料层3060还可以提高薄膜封装结构的阻隔性,进一步防止水氧侵入待封装结构302。
在刻蚀第一阻隔材料层3030和第二阻隔材料层3050的过程中,因为在各个方向上都存在刻蚀速率,这样有可能在掩膜材料层3060边缘下方发生第二阻隔材料层3050的过刻,导致掩膜材料层悬空脱落,或者暴露出有机层304。为了防止此问题的出现,可以采用具有方向性的刻蚀方法,例如电感耦合等离子体(ICP)工艺,通过调整合适的电场、气压可以使刻蚀媒介沿第二阻隔材料层3030厚度方向上的刻蚀速率远高于在沿平行于第二阻隔材料层3050方向上的刻蚀速率。
应当说明的是,因为第一阻隔层303和第二阻隔层305通过掩膜材料层来进行图案化,所以在形成第一阻隔材料层3030和第二阻隔材料层3050膜层时可以不进行任何图案化处理,即设置其覆盖整个基板,严格地讲,基板边缘部分因为工艺的限制可能存在一部分未被覆盖的区域,此处设置第一阻隔材料层3030和第二阻隔材料层3050覆盖整个基板上的全部功能区域310和功能区域310之间的切割区,即不排除基板边缘的部分区域可能未被第一 阻隔材料层3030和第二阻隔材料层3050所覆盖。
具体的,如图7所示,可以通过开放式掩膜法形成第一阻隔材料层3030,和/或,第二阻隔材料层3050。例如在PECVD过程中,掩膜板框架501内部的开口502暴露出整个基板,而无需设置对应于每一个功能区域的开口。这样可以减小掩膜板制作的工艺难度。
应当说明的是,薄膜封装结构不限于阻隔材料层-有机层-阻隔材料层的三层结构,如图8所示,也可以是阻隔材料层-有机层-阻隔材料层-有机层-阻隔材料层的五层结构,甚至更多层,以增强封装的效果。换言之,在形成第一阻隔材料层3030的步骤S101和形成有机层304的步骤S102之间还可以包括形成交替配对设置的有机层316和阻隔材料层3150的步骤,所述有机层被所述与其配对设置的阻隔材料层包覆。其中形成所述有机层和阻隔材料层的方法如前所述,在此不再赘述。
需要指出的,在步骤S105中,当有机层在所述基板上的正投影超出所述第一阻隔材料层在所述基板上的正投影的范围时,如图5D所示,也就是当有机层包覆第一阻隔材料层时,只需要对第二阻隔材料层进行刻蚀,相应地,只需要所述掩膜材料层的刻蚀速率小于所述第二阻隔材料层的刻蚀速率即可。
对于多于一个有机层和多于两个阻隔材料层交替叠层设置的情况,当存在一有机层将其靠近待封装结构一侧相邻的阻隔材料层包覆时,则无需对该阻隔材料层和位于该阻隔材料层靠近待封装结构一侧的各阻隔材料层进行刻蚀,相应地,不需要所述掩膜材料层的刻蚀速率小于这些阻隔材料层的刻蚀速率。而当所有的有机层在所述基板上的正投影都在所述第一阻隔材料层在所述基板上的正投影的范围内时,如图8所示,则前述的刻蚀步骤还包括对第一阻隔材料层和第二阻隔材料层以外的各阻隔材料层进行刻蚀,使得位于掩膜材料层3060在基板301上的正投影范围以外的阻隔材料层被刻蚀掉。从而在切割基板时,切割路径可以更为靠近待封装结构302,从而减小非显示区域的面积以使边框更窄。
最后,需要设置各有机层在基板上的正投影位于掩膜材料层在基板上的正投影的范围之内,从而使有机层在各阻隔材料层被刻蚀后不被暴露出来,而破坏封装效果。
实施例二
本实施例提供一种薄膜封装结构,用于对基板上的被封装结构进行封装。例如图9A所示,所述薄膜封装结构具体包括:包覆位于基板601上的被封装结构602的第一阻隔层603;位于第一阻隔层603远离基板一侧的有机层604,被封装结构602在基板601上的正投影在所述有机层在基板上的正投影的范围内;包覆有机层604的第二阻隔层605;位于第二阻隔层605远离基板601一侧的掩膜层606,掩膜层606在基板601上的正投影包围第二阻隔层605,第一阻隔层603和有机层604在基板601上的正投影,掩膜层606的厚度小于第二阻隔层605的厚度。
其中第一阻隔层603将被封装结构602完全覆盖,阻隔层结构致密,对水汽分子和氧气分子等活性分子具有很好的阻挡作用。为了防止水汽分子和氧气分子接触到被封装结构602,需要使第一阻隔层603将被封装结构602包覆,即完全覆盖。为了保证封装薄膜的阻隔性,第一阻隔层603不能过薄,同时为了保证封装薄膜具有一定的弯曲度和柔韧性,也为了减小显示器件的整体厚度,第一阻隔层603不能太厚,优选地,其厚度设置为在0.1um~1um范围内。
由于阻隔层柔韧性较差,容易在产品使用过程中出现裂纹,而水氧可以通过这些裂纹侵入被封装结构602,使封装失效。因此需要在位于第一阻隔层603远离基板601一侧设置有机层604,该有机层的具有良好的柔韧性,当有机层与阻隔层相互贴附时,可以对阻隔层中应力进行疏导和释放,从而防止阻隔层开裂。
因为有机层对水氧具有亲附性,水氧可以沿着有机层604进行扩散,并且进一步通过阻隔层上的裂纹侵入被封装结构602。所以需要设置第二阻隔层605将有机层604完全覆盖以防止其被水氧接触。基于和第一阻隔层603同样的原因,优选地,第二阻隔层605的厚度设置为在0.1um~1um范围内。
被封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内,从而在被封装结构602各处上方都存在阻隔层-有机层-阻隔层的叠层结构,以保证对每一处被封装结构602都进行有效的封装。
可选的,如图9A所示,有机层在所述基板601上的正投影在第一阻隔层603在基板601上的正投影的范围内,也就是说第一阻隔层603的范围比有机层604的范围更大。如果有机层超出阻隔层的范围,将有一部分有机层 (例如有机层604的一部分)直接接触到基板601上,其和基板的接触间隙容易被水氧侵入,如图9B所示,影响封装效果。另一方面,本发明中,有机层的范围限制了最终形成的显示面板尺寸最小可达到的范围(因为切割路径不能在有机层范围内),或者显示面板边框宽度的下限,因此使有机层范围小于第一阻隔层603的范围,有利于使边框尽量减小。
位于第二阻隔层605远离基板601一侧的掩膜层606在薄膜封装结构制备过程中作为掩膜,用于将第一阻隔层603和第二阻隔层605图形化。第一阻隔层603和第二阻隔层605未被掩膜层606覆盖的部分会被刻蚀,因此,第二阻隔层605和第一阻隔层603在基板601上的正投影在所述掩膜层606在基板601上的正投影范围内。
当采用具有良好方向性的刻蚀方法对第一阻隔层603和第二阻隔层605进行刻蚀,即刻蚀媒介在平行于第二阻隔层605的平面上刻蚀速率为零时,能够使掩膜层606下方的第一阻隔层603和第二阻隔层605不发生过刻,从而可以实现第一阻隔层603,第二阻隔层605和掩膜层606在基板601上的正投影重合。这样可以保证不会因为过刻造成有机层的暴露。从而提高薄膜封装的信赖性。
掩膜层606的厚度应该小于第二阻隔层605的厚度,原因如下:1)通过掩膜法形成的掩膜层606受shadow现象影响,其边缘也存在渐薄区,因此会增加边框宽度。当掩膜层606过厚时,渐薄区宽度会增加,不利于窄化边框;2)过厚的掩膜层会增加成膜时间,降低产率;3)过厚的掩膜层可弯曲性下降,容易在封装结构弯曲的过程中出现裂纹。优选地,掩膜层606的厚度不超过100nm。
如图9A所示,优选地,贴附于有机层604侧面的第二阻隔层605侧壁的厚度614不小于所述第二阻隔层605位于掩膜层606和有机层605之间部分的厚度615,以确保对水氧的阻隔性,防止水氧从侧面侵入有机层。
可选地,在所述的薄膜封装结构中,掩膜层606的材料包括氧化铝、氧化锌、氧化铟、氧化锡、氧化镓、氧化铪、氧化锆中的至少一种。第一阻隔层603包括氮化硅、氧化硅、氮氧化硅中的至少一种,和/或,第二阻隔层605的材料包括氮化硅、氧化硅、氮氧化硅中的至少一种。氧化铝、氧化锌、氧化铟、氧化锡、氧化镓、氧化铪、氧化锆等材料通常比氮化硅、氧化硅、氮氧化硅等材料更难刻蚀。
可选地,在所述的薄膜封装结构中,有机层604的材料为环氧树脂类有机材料。此类材料具有良好的柔韧性和透光率。从而可以起到缓冲应力的作用,防止第一阻隔层603或第二阻隔层605开裂。同时良好的透光率使所述薄膜封装结构可以用在太阳能电池和显示面板等装置中。
可选地,掩膜层606厚度不大于100nm。因为过厚的掩膜层可弯曲性下降,容易在封装结构弯曲的过程中出现裂纹。
应当说明的是,薄膜封装结构不限于阻隔层-有机层-阻隔层的三层结构,如图9C所示,也可以是阻隔层-有机层-阻隔层-有机层-阻隔层的五层结构,甚至更多层,以增强封装的效果。换言之,在第一阻隔层603和有机层604之间还可以包括形成交替配对设置的有机层和阻隔层,所述有机层被所述与其配对设置的阻隔层包覆,以保证所述有机层不会暴露出来,导致被水氧侵蚀。
需要指出的,当有机层604在所述基板上的正投影超出第一阻隔层603在基板601上的正投影的范围时,如图9B所示,也就是当有机层包覆第一阻隔层时,只需要对第二阻隔层进行刻蚀,因此掩膜层只用来对第二阻隔层进行图形化。因为第一阻隔层被有机层包覆,有机层被第二阻隔层包覆,所以第一阻隔层在所述基板上的正投影自然在掩膜层在基板上的正投影的范围内。
对于多于一个有机层和多于两个阻隔层交替叠层设置的情况,当存在一有机层将其靠近被封装结构一侧相邻的阻隔层包覆时,则无需对该阻隔层和位于该阻隔层靠近被封装结构一侧的各阻隔层进行刻蚀。因为掩膜层对位于该有机层远离被封装结构一侧的各阻隔层进行了图形化,所以位于该有机层远离被封装结构一侧的各阻隔层在所述基板上的正投影自然所述掩膜层在所述基板上的正投影的范围内。又因为该有机层将其靠近待封装结构一侧相邻的阻隔层包覆,所以,该阻隔层和位于该阻隔层靠近待封装结构一侧的各阻隔层在所述基板上的正投影自然在所述掩膜层在所述基板上的正投影的范围内。而当所有的有机层在所述基板上的正投影都在所述第一阻隔层在所述基板上的正投影的范围内时,如图9C所示,则所述掩膜层还用来对第一阻隔层和第二阻隔层以外的各阻隔层进行图形化,使得位于掩膜层在基板上的正投影范围以外的阻隔层被刻蚀掉。因此,第一阻隔层和第二阻隔层以外的各阻隔层在基板601上的正投影也在掩膜层606在基板601上的正投影范 围内。从而在切割基板时,切割路径可以更为靠近被封装结构602,从而减小非显示区域的面积以使边框更窄。
实施例三
本实施例提供一种显示装置,包括基板,发光结构,控制电路,还包括所述的薄膜封装结构或采用所述的薄膜封装方法形成的薄膜封装结构。其中所述的发光结构可以是有机发光二极管,也可以是量子点发光二极管。所述控制电路可以采用有机材料或者无机材料制成。所述薄膜封装结构或所述的薄膜封装方法形成的薄膜封装结构可以防止所述发光结构或所述控制电路的材料在水氧环境下发生性质改变,从而劣化所述显示装置的良率和寿命。所述薄膜封装结构或所述的薄膜封装方法形成的薄膜封装结构解决了因shadow现象造成的薄膜封装结构边缘渐薄区过宽,而导致边框过宽的问题。
所述显示装置具体可以为液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本实施例对此不做限定。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种薄膜封装结构,包括:
    包覆位于基板上的被封装结构的第一阻隔层;
    位于所述第一阻隔层远离所述基板一侧的有机层,所述被封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内;
    包覆所述有机层的第二阻隔层;
    位于所述第二阻隔层远离所述基板一侧表面上的掩膜层,所述掩膜层、所述第二阻隔层和所述第一阻隔层在所述基板上的正投影大致重合,所述掩膜层材料的刻蚀速率小于所述第二阻隔层材料的刻蚀速率。
  2. 根据权利要求1所述的薄膜封装结构,其中,所述掩膜层的材料为金属氧化物。
  3. 根据权利要求2所述的薄膜封装结构,其中,所述掩膜层的材料包括氧化铝、氧化锌、氧化铟、氧化锡、氧化镓、氧化铪、氧化锆中的至少一种,和/或,所述第一阻隔层的材料包括氮化硅、氧化硅、氮氧化硅中的至少一种,和/或,所述第二阻隔层的材料包括氮化硅、氧化硅、氮氧化硅中的至少一种
  4. 根据权利要求3所述的薄膜封装结构,其中,所述掩膜层的厚度小于所述第二阻隔层的厚度。
  5. 根据权利要求4所述的薄膜封装结构,其中,所述掩膜层的厚度不大于100nm,所述第一阻隔层和第二阻隔层的厚度在约0.1-1μm范围内。
  6. 根据权利要求5所述的薄膜封装结构,其中,贴附于所述有机层侧面的所述第二阻隔层侧壁的厚度不小于所述第二阻隔层位于所述掩膜层和所述有机层之间部分的厚度。
  7. 根据权利要求6所述的薄膜封装结构,其中,所述有机层在所述基板上的正投影在所述第一阻隔层在所述基板上的正投影的范围内。
  8. 根据权利要求6所述的薄膜封装结构,其中,所述第一阻隔层在所述基板上的正投影在所述有机层在所述基板上的正投影的范围内。
  9. 根据权利要求7或8所述的薄膜封装结构,其中,所述有机层的材料为树脂类有机材料。
  10. 一种薄膜封装方法,包括:
    提供基板,所述基板包括至少一个功能区域,所述功能区域范围内设置 有待封装结构;
    形成第一阻隔材料层,所述第一阻隔材料层包覆所述待封装结构;
    在所述功能区域范围内形成有机层,所述待封装结构在所述基板上的正投影在所述有机层在基板上的正投影的范围内;
    形成第二阻隔材料层,所述第二阻隔材料层包覆所述有机层;
    在所述功能区域范围内的第二阻隔材料层上形成掩膜材料层,所述掩膜材料层在所述基板上的正投影在所述第二阻隔材料层在所述基板上的正投影范围内,所述有机层在所述基板上的正投影在所述掩膜材料层在所述基板上的正投影的范围内,所述掩膜材料层的厚度小于所述第二阻隔材料层的厚度;
    以所述掩膜材料层作为掩膜对所述第二阻隔材料层进行刻蚀,所述掩膜材料层同时被刻蚀,以分别形成第二阻隔层和掩膜层,其中所述掩膜材料层的刻蚀速率小于所述第二阻隔材料层的刻蚀速率。
  11. 根据权利要求10所述的薄膜封装方法,其中,在所述功能区域范围内形成有机层的步骤包括形成所述有机层使其在所述基板上的正投影在所述第一阻隔材料层在所述基板上的正投影的范围内;
    所述薄膜封装方法还包括对所述第一阻隔材料层进行刻蚀,其中所述掩膜材料层的刻蚀速率小于所述第一阻隔材料层的刻蚀速率。
  12. 根据权利要求10所述的薄膜封装方法,其中,在所述功能区域范围内形成有机层的步骤包括形成所述有机层使得所述第一阻隔材料层在所述基板上的正投影在所述有机层在所述基板上的正投影的范围内。
  13. 根据权利要求11或12所述的薄膜封装方法,其中,所述第一阻隔材料层和所述第二阻隔材料层的刻蚀速率为所述掩膜材料层的刻蚀速率的八倍以上,所述掩膜材料层的厚度不小于第一阻隔材料层和第二阻隔材料层厚度之和的八分之一。
  14. 根据权利要求13所述的薄膜封装方法,其中,对所述第一阻隔材料层,所述第二阻隔材料层和所述掩膜材料层进行刻蚀完成后,形成的所述掩膜层的厚度不大于100nm。
  15. 根据权利要求14所述的薄膜封装方法,其中,在所述功能区域范围内的第二阻隔材料层上形成掩膜材料层的步骤包括形成所述掩膜材料层使其在所述基板上的正投影超出所述有机层在所述基板上的正投影的部分为 一个环形区域,所述环形区域的宽度大于所述第二阻隔材料层的厚度。
  16. 根据权利要求15所述的薄膜封装方法,其中,在所述功能区域范围内的第二阻隔材料层上形成掩膜材料层包括采用原子层沉积掩膜法形成掩膜材料层。
  17. 根据权利要求16所述的薄膜封装方法,其中,形成所述第一阻隔材料层和第二阻隔材料层采用等离子体增强化学气相沉积的方法,所述第一阻隔材料层和第二阻隔材料层的厚度在约0.1-1μm范围内。
  18. 根据权利要求17所述的薄膜封装方法,其中,在所述第一阻隔材料层和第二阻隔材料层的刻蚀中采用电感耦合等离子体工艺。
  19. 根据权利要求17所述的薄膜封装方法,其中,在形成所述第一阻隔材料层和/或第二阻隔材料层时,在等离子体增强化学气相沉积过程中,设置掩膜板框架内部的开口使其暴露出整个基板。
  20. 一种显示装置,包括权利要求1-9任一所述的薄膜封装结构或采用权利要求10-19任一所述的薄膜封装方法形成的薄膜封装结构,其中所述待封装结构或所述被封装结构包括发光结构和控制电路。
PCT/CN2019/076152 2018-03-29 2019-02-26 一种薄膜封装方法、薄膜封装结构、显示装置 WO2019184641A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019535773A JP7286541B2 (ja) 2018-03-29 2019-02-26 薄膜封止方法、薄膜封止構造、表示装置
KR1020197018831A KR102272883B1 (ko) 2018-03-29 2019-02-26 박막들을 캡슐화하는 방법 및 구조물, 디스플레이 디바이스
US16/474,718 US11627689B2 (en) 2018-03-29 2019-02-26 Method and structure for encapsulating thin films, display device
EP19731864.5A EP3780133A4 (en) 2018-03-29 2019-02-26 THIN FILM ENCAPSULATION METHOD, THIN FILM ENCAPSULATION STRUCTURE AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810272554.5A CN110323350B (zh) 2018-03-29 2018-03-29 一种薄膜封装方法、薄膜封装结构、显示装置
CN201810272554.5 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019184641A1 true WO2019184641A1 (zh) 2019-10-03

Family

ID=68060869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076152 WO2019184641A1 (zh) 2018-03-29 2019-02-26 一种薄膜封装方法、薄膜封装结构、显示装置

Country Status (6)

Country Link
US (1) US11627689B2 (zh)
EP (1) EP3780133A4 (zh)
JP (1) JP7286541B2 (zh)
KR (1) KR102272883B1 (zh)
CN (1) CN110323350B (zh)
WO (1) WO2019184641A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797356B (zh) * 2019-11-28 2022-04-01 厦门天马微电子有限公司 一种阵列基板及显示装置
US11302896B2 (en) * 2019-12-17 2022-04-12 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and manufacturing method thereof, and display device
KR20210079898A (ko) * 2019-12-20 2021-06-30 엘지디스플레이 주식회사 표시장치
JP7442419B2 (ja) * 2020-10-29 2024-03-04 東京エレクトロン株式会社 有機elパネルの製造方法
US20220293884A1 (en) * 2021-03-15 2022-09-15 SDK New Materials, Inc. Encapsulated Electronic Device with Improved Protective Barrier Layer and Method of Manufacture Thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271618A1 (en) * 2016-03-18 2017-09-21 Japan Display Inc. Method of manufacturing display device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020155B2 (ja) 1998-06-12 2000-03-15 東京大学長 針状ダイヤモンド配列構造体の作製方法
JP4092914B2 (ja) 2001-01-26 2008-05-28 セイコーエプソン株式会社 マスクの製造方法、有機エレクトロルミネッセンス装置の製造方法
US6949389B2 (en) * 2002-05-02 2005-09-27 Osram Opto Semiconductors Gmbh Encapsulation for organic light emitting diodes devices
JP2005142369A (ja) 2003-11-06 2005-06-02 Renesas Technology Corp 半導体装置の製造方法
US20050248270A1 (en) * 2004-05-05 2005-11-10 Eastman Kodak Company Encapsulating OLED devices
KR102381391B1 (ko) * 2015-04-16 2022-03-31 삼성디스플레이 주식회사 표시 장치
JP5281309B2 (ja) * 2008-03-28 2013-09-04 東京エレクトロン株式会社 プラズマエッチング装置及びプラズマエッチング方法及びコンピュータ読み取り可能な記憶媒体
US9281207B2 (en) * 2011-02-28 2016-03-08 Inpria Corporation Solution processible hardmasks for high resolution lithography
FR2977720A1 (fr) * 2011-07-08 2013-01-11 Commissariat Energie Atomique Dispositif optoelectronique organique et son procede d'encapsulation.
KR101951223B1 (ko) * 2012-10-26 2019-02-25 삼성디스플레이 주식회사 표시장치 및 그 제조방법
KR101502206B1 (ko) 2012-11-20 2015-03-12 삼성디스플레이 주식회사 발광효율이 향상된 유기발광 표시장치
JP6515537B2 (ja) 2014-04-08 2019-05-22 セイコーエプソン株式会社 有機el装置の製造方法、有機el装置、電子機器
CN104900681B (zh) * 2015-06-09 2019-02-05 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
KR102486876B1 (ko) 2015-07-07 2023-01-11 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
CN105514298B (zh) * 2015-12-31 2018-12-18 固安翌光科技有限公司 一种薄膜封装结构及薄膜封装方法
CN106711184B (zh) * 2017-03-14 2020-01-31 上海天马微电子有限公司 显示面板制作方法、显示面板及显示装置
KR102320938B1 (ko) * 2017-03-20 2021-11-03 삼성디스플레이 주식회사 표시 장치
CN107331799B (zh) * 2017-08-11 2018-10-19 京东方科技集团股份有限公司 Oled显示面板、母板及测试其切割区域和对其切割的方法
CN107845737B (zh) * 2017-11-01 2020-04-03 上海天马微电子有限公司 一种显示面板及其制作方法、以及显示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271618A1 (en) * 2016-03-18 2017-09-21 Japan Display Inc. Method of manufacturing display device

Also Published As

Publication number Publication date
EP3780133A1 (en) 2021-02-17
KR102272883B1 (ko) 2021-07-05
US11627689B2 (en) 2023-04-11
JP2021516766A (ja) 2021-07-08
CN110323350A (zh) 2019-10-11
KR20190114962A (ko) 2019-10-10
US20210336204A1 (en) 2021-10-28
JP7286541B2 (ja) 2023-06-05
CN110323350B (zh) 2021-01-29
EP3780133A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2019184641A1 (zh) 一种薄膜封装方法、薄膜封装结构、显示装置
CN110061043B (zh) 一种显示装置及其制作方法
CN111128010B (zh) 显示面板及其制造方法及显示装置
US20190252641A1 (en) Oled encapsulation structure, display device and method for manufacturing oled encapsulation structure
CN108091675B (zh) 显示基板及其制作方法
WO2018086191A1 (zh) Oled显示器及其制作方法
JP2024026201A (ja) 表示基板及び表示装置
EP3249687B1 (en) Manufacturing method of a display panel
TWI625984B (zh) 顯示裝置及其製造方法
WO2021022594A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
WO2019051920A1 (zh) Oled显示面板的封装方法
US20190103418A1 (en) Array substrate and method for manufacturing thereof, and display device
US20230209974A1 (en) Manufacturing method for display panel, display panel, and display device
US11404665B2 (en) Encapsulation method of display panel, display panel, and display device
WO2021031420A1 (zh) 触控面板及其制作方法
WO2018196403A1 (zh) 阵列基板及其制作方法、显示装置
US20210408172A1 (en) Display panel and display device
CN108376749B (zh) 一种显示面板的封装方法、显示面板及显示装置
US11335738B2 (en) Display device and method of manufacturing the same
WO2022179185A1 (zh) 一种可拉伸显示基板及其制造方法
US20190081277A1 (en) Oled display panel packaging method
KR20170077371A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2022068428A1 (zh) 一种显示基板及其制造方法、显示装置
US20240155919A1 (en) Manufacturing method of oled display pane and oled display panel
US12038660B2 (en) Array substrate and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197018831

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019535773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020197018831

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19731864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019731864

Country of ref document: EP

Effective date: 20201029