WO2019184478A1 - 一种减少通道串扰的光发射组件及其制造方法 - Google Patents

一种减少通道串扰的光发射组件及其制造方法 Download PDF

Info

Publication number
WO2019184478A1
WO2019184478A1 PCT/CN2018/123307 CN2018123307W WO2019184478A1 WO 2019184478 A1 WO2019184478 A1 WO 2019184478A1 CN 2018123307 W CN2018123307 W CN 2018123307W WO 2019184478 A1 WO2019184478 A1 WO 2019184478A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
component
laser chip
reflection
reflection component
Prior art date
Application number
PCT/CN2018/123307
Other languages
English (en)
French (fr)
Inventor
段启金
徐红春
刘成刚
宋小平
梅雪
杨智
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Publication of WO2019184478A1 publication Critical patent/WO2019184478A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4225Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements by a direct measurement of the degree of coupling, e.g. the amount of light power coupled to the fibre or the opto-electronic element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4237Welding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring

Definitions

  • the present invention relates to the field of optical component technologies, and in particular, to a light emitting component that reduces channel crosstalk and a method of fabricating the same.
  • This optical device package generally uses a multiplexer module for wavelength multiplexing, and the optical path inevitably produces reflection through the multiplexer module.
  • Light, reflected light returned to the laser source, can cause laser instability and affect the performance of the light-emitting component.
  • FIG. 1 A typical technical solution of the existing light-emitting component is as shown in FIG. 1 , including a backlight monitoring detector array 1 a - 1 b , a laser chip array 2 a - 2 d , a collimating lens 3 , a multiplexer module 4 , and one of the paths 2 a is taken as an example for description.
  • the laser chip 2a is shaped by the collimator lens 3, it is incident on the multiplexer module 4 in parallel light, and reflected light R1 and R2 are generated in the medium interface S1 and S2, so as to avoid returning the reflected light to the 2a laser.
  • the chip, the dielectric surfaces S1, S2 are generally set to an inclination angle of 8 degrees, although not directly return to the original light-emitting chip, but the reflected light R1, R2 will be transmitted back to the resonant cavity of the adjacent channel laser chip 2b, which will reduce the laser chip 2b Performance, while the reflected light R1, R2 is transmitted back to other channel backlight monitoring detectors 1b, 1c, 1d, which will affect the monitoring accuracy.
  • the other paths 2b, 2c, and 2d can be similarly inferred, that is, the reflected light causes the laser chips 2a to 2d to cross each other, and the backlight monitoring chips 1a to 1b cross each other, thereby finally reducing the stability of the entire light emitting component.
  • an optical isolator is added between the multiplexer module 4 and the collimating lens assembly 3 to prevent the reflected light from passing through, and the crosstalk problem caused by the reflected light can be completely solved, but each channel needs to be optically added. Isolators are costly.
  • the technical problem to be solved by the embodiments of the present invention is that the existing feasible solution is as shown in FIG. 2, and an optical isolator is added between the multiplexer module 4 and the collimating lens assembly 3 to prevent the reflected light from passing through, and the crosstalk caused by the reflected light can be completely solved.
  • the present invention provides a light emitting component for reducing channel crosstalk, comprising backlight monitoring detector arrays 1a-1b, laser chip arrays 2a-2d, collimating lens 3, multiplexer module 4, and anti-reflection component 6,
  • the backlight monitoring detector arrays 1a to 1b, the laser chip arrays 2a to 2d, the collimating lens 3 and the multiplexing module 4 are arranged in a cascade manner according to a preset optical path, and the anti-reflection unit 6 is disposed in the collimating lens 3 Between the combined wave module 4 and the specific:
  • the light-reducing apertures 6a-6d are disposed on the anti-reflection component 6, and the light-passing apertures 6a-6d correspond to the light-emitting optical paths of the laser chip arrays 2a-2d for transmitting optical signals emitted by the laser chip 2.
  • the surface of the anti-reflection member 6 and the light-passing holes 6a to 6d are processed to have an inner diameter of black for absorbing reflected light.
  • the anti-reflection component 6 is made of ceramic, glass or metal.
  • the inner diameter hollow section of the anti-reflection component 6 is: a structure that gradually decreases from the middle to the side ports; wherein the size of the ports on both sides of the anti-reflection component 6 is set according to the thickness of the laser beam emitted by the laser chip. .
  • the laser chip arrays 2a to 2d, the collimator lens 3 and the anti-reflection assembly 6 are disposed on the upper surface of the thermal layer holder 8, and the bottom of the heat sink holder 8 is fixed at the temperature disposed at the bottom of the tube casing 9.
  • the control assembly 10 is wherein the anti-reflection assembly 6 is secured to the thermal layer support 8 using glue or solder.
  • the multiplexer module 4 is supported by the spacer 11, the spacer 11 is fixed in the package 8 with solder or glue, and the multiplexer module 4 is fixed on the spacer 11 by using ultraviolet curing adhesive or heat curing adhesive.
  • the present invention also provides a light emitting component for reducing channel crosstalk, comprising a backlight monitoring detector array 1a to 1b, a laser chip array 2a to 2d, a collimating lens 3, a multiplexing module 4, and an anti-reflection component 6.
  • the backlight monitoring detector arrays 1a to 1b, the laser chip arrays 2a to 2d and the multiplexing module 4 are arranged in a cascade manner according to a preset optical path, and the anti-reflection component 6 is disposed in the laser chip arrays 2a to 2d and the combined wave.
  • modules 4 specific:
  • the light-reducing apertures 6a-6d are disposed on the anti-reflection component 6, and the light-passing apertures 6a-6d correspond to the light-emitting openings of the laser chip arrays 2a to 2d for transmitting optical signals emitted by the laser chip 2;
  • a predetermined position of each of the light-passing holes 6a-6d of the anti-reflection component 6 is provided with a lens groove 61, and the collimating lens 3 is fixed in the lens groove 61;
  • the surface treatment of the anti-reflection member 6 and the light-passing holes 6a to 6d have an inner diameter of black for absorbing reflected light.
  • the inner diameter hollow section of the anti-reflection component 6 is: a structure that gradually decreases from the middle to the side ports; wherein the size of the ports on both sides of the anti-reflection component 6 is set according to the thickness of the laser beam emitted by the laser chip. .
  • the laser chip arrays 2a to 2d and the anti-reflection assembly 6 are disposed on the upper surface of the thermal layer support 8, and the bottom of the heat sink support 8 is fixed on the temperature control assembly 10 disposed at the bottom of the package 9.
  • the anti-reflection component 6 is fixed on the thermal layer support 8 using glue or solder.
  • the present invention also provides a method of fabricating a light-emitting component for reducing channel crosstalk, the method for manufacturing the light-emitting component for reducing channel crosstalk according to the first aspect or the second aspect, the method include:
  • the IC pad 16, the temperature control component 10, and the spacer 11 are fixed in the package 9 with glue or solder;
  • the anti-reflection unit 6 is placed so that the optical signal passes through the anti-reflection unit 6 without loss.
  • the coupling focus lens 12, the lens holder 13 and the optical fiber assembly 14 are adjusted so that the light output power reaches a predetermined requirement and is fixed by a laser welding process.
  • the doubling module 4 is cured by using an ultraviolet curing adhesive or a heat curing adhesive, and specifically includes:
  • Temporary lenses and optical fibers are placed at the position of the focusing lens 12 and the optical fiber assembly 14.
  • the lens type and the optical fiber assembly are positioned in the same manner as the focal lens 12 and the optical fiber assembly 14.
  • the four optical powers of the optical fiber output are monitored. Maximize and then cure with UV curable or heat curable.
  • the present invention is correct.
  • the invention can effectively reduce the channel crosstalk problem by adding a simple anti-reflection component, which can not only reduce the crosstalk between the transmitting chips, but also reduce the crosstalk between the backlight monitoring chips, thereby improving the performance of the entire light emitting component.
  • the anti-reflection component has lower cost, simple installation, less product cost increase, and the product is competitive.
  • FIG. 1 is a schematic structural diagram of a conventional light emitting component according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a light reflection component reduction reflection solution in the prior art according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a light emitting component for reducing channel crosstalk according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of an anti-reflection component according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another anti-reflection component according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the structure of a modified anti-reflection assembly according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a reflected light path in a structure of an improved anti-reflection assembly according to an embodiment of the present invention.
  • FIG. 8 is a front view showing a structure of a light emitting component for reducing channel crosstalk according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another light emitting component for reducing channel crosstalk according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of an improved anti-reflection assembly according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a reflected optical path in a structure of an improved anti-reflection assembly according to an embodiment of the present invention.
  • FIG. 12 is a front view showing another structure of a light emitting component for reducing channel crosstalk according to an embodiment of the present invention.
  • Structural composition 1a ⁇ 1d - backlight monitoring chip array; 2a ⁇ 2d - laser chip array; 3- collimating lens array; 4-to-wave module; 6 - anti-reflection component; 6a ⁇ 6d - light transmission hole; Driver IC chip; 8-heat sink bracket; 9-shell; 10-temperature control component; 11-shield; 12-focus lens; 13-lens bracket; 14-fiber component; 15-glass spacer; 16-IC Pad.
  • Embodiments of the present invention provide a light emitting component for reducing channel crosstalk.
  • the backlight monitoring probe arrays 1a to 1b, the laser chip arrays 2a to 2d, the collimating lens 3, the multiplexing module 4, and the subtraction are provided.
  • the reflection assembly 6, the backlight monitoring detector arrays 1a to 1b, the laser chip arrays 2a to 2d, the collimator lens 3 and the multiplexing module 4 are arranged in a cascade manner according to a preset optical path, and the anti-reflection component 6 is disposed in the Between the collimating lens 3 and the multiplexer module 4, specific:
  • the light-reducing apertures 6a-6d are disposed on the anti-reflection component 6, and the light-passing apertures 6a-6d correspond to the light-emitting optical paths of the laser chip arrays 2a-2d for transmitting optical signals emitted by the laser chip 2.
  • the surface of the anti-reflection member 6 and the light-passing holes 6a to 6d are processed to have an inner diameter of black for absorbing reflected light. It is used to prevent the reflected light from being transmitted back to the laser chips 2a to 2d and the backlight monitoring chips 1a to 1d, thereby achieving the effect of reducing mutual crosstalk between channels.
  • the embodiment of the invention can effectively reduce the channel crosstalk problem by adding a simple anti-reflection component, which can not only reduce the crosstalk between the transmitting chips, but also reduce the crosstalk between the backlight monitoring chips, thereby improving the performance of the entire light emitting component.
  • the anti-reflection component has lower cost, simple installation, less product cost increase, and the product is competitive.
  • the anti-reflection component 6 is usually made of ceramic, glass or metal. As shown in FIGS. 4 and 5, the light-passing holes of the anti-reflection member 6 can be formed into a cylindrical shape or a rectangular parallelepiped shape.
  • the absorption efficiency of the anti-reflection component 6 on the side of the multiplexer module 4 can be further improved by improving the shape of the light-passing aperture structure, as shown in FIG. 6 .
  • a schematic cross-sectional view of a light-passing aperture in the anti-reflection component 6 is shown.
  • the hollow-section of the inner diameter of the anti-reflection component 6 is: a structure that gradually decreases from the middle to the ports on both sides, such as the hollow in the middle region in FIG.
  • the cross-sectional diameter R1 is larger in the parameter value than the hollow cross-sectional diameter D2 on the side closer to the inlet/outlet port; wherein the size of the ports on both sides of the anti-reflection unit 6 is set according to the thickness of the laser beam emitted from the laser chip.
  • the structure shown in FIG. 6 can ensure that one or more reflections inside can be achieved through the inner surface of the light-passing hole when the reflected light enters the light-passing hole.
  • the light absorbing process achieves a more efficient absorption of the reflected light.
  • FIG. 7 a schematic diagram of an internal surface absorption effect by a reflected light based on the light-passing aperture structure of FIG. 6 according to the embodiment of the present invention, in order to express the excellent reflective characteristics of the improved structure proposed by the embodiment of the present invention, Three emission points are labeled in Figure 7, and in practice the effective absorption of reflected light is typically achieved at the second reflection point.
  • the laser chip arrays 2a to 2d, the collimator lens 3 and the anti-reflection unit 6 are disposed on the upper surface of the thermal layer holder 8, and the bottom of the heat sink holder 8 is fixed to the tube case 9.
  • the anti-reflection assembly 6 is secured to the thermal layer support 8 using glue or solder.
  • the multiplexer module 4 is supported by the spacer 11 and the spacer 11 is fixed in the package 8 by solder or glue.
  • the multiplexer module 4 is fixed on the spacer 11 by using ultraviolet curing adhesive or heat curing adhesive, and the emitted light after the multiplexed wave is
  • the focusing lens 12 is condensed into the fiber optic assembly 14, the focusing lens 12 is bonded to the lens holder 13 by glue or laser welding, and the fiber assembly 14 and the lens holder 13 are fixed by laser welding.
  • the gasket 11 is usually made of glass, ceramic or metal material.
  • the embodiment of the present invention further provides a light emitting component for reducing channel crosstalk.
  • the backlight monitoring detector arrays 1a to 1b, the laser chip arrays 2a to 2d, and the collimating lens 3 are combined.
  • the module 4 and the anti-reflection component 6, the backlight monitoring detector arrays 1a to 1b, the laser chip arrays 2a to 2d and the multiplexing module 4 are arranged in a cascade manner according to a preset optical path, and the anti-reflection component 6 is disposed in the laser Between the chip arrays 2a to 2d and the multiplexer module 4, specific:
  • the light-reducing apertures 6a-6d are disposed on the anti-reflection component 6, and the light-passing apertures 6a-6d correspond to the light-emitting openings of the laser chip arrays 2a to 2d for transmitting optical signals emitted by the laser chip 2;
  • a predetermined position of each of the light-passing holes 6a-6d of the anti-reflection component 6 is provided with a lens groove 61, and the collimating lens 3 is fixed in the lens groove 61; in the specific implementation process, in addition to the above
  • the predetermined position of each of the light-passing holes 6a-6d of the anti-reflection component 6 is provided with a lens groove 61 to complete the fixing of the collimator lens 3.
  • the collimating lens may be directly adhered to the anti-reflection component 6. The way of the optical port is fixed, and will not be described here.
  • the surface treatment of the anti-reflection member 6 and the light-passing holes 6a to 6d have an inner diameter of black for absorbing reflected light.
  • the reflected light is prevented from being transmitted back to the laser chips 2a to 2d and the backlight monitoring chips 1a to 1d, thereby achieving the effect of reducing mutual crosstalk between the channels.
  • the embodiment of the invention can effectively reduce the channel crosstalk problem by adding a simple anti-reflection component, which can not only reduce the crosstalk between the transmitting chips, but also reduce the crosstalk between the backlight monitoring chips, thereby improving the performance of the entire light emitting component.
  • the anti-reflection component has lower cost, simple installation, less product cost increase, and the product is competitive.
  • the coupling tightness between the anti-reflection component and the original light-emitting component is further improved, and the collimating lens is integrated on the anti-reflection component, thereby being further reduced.
  • the volume of the entire launch component is further improved.
  • the light-passing holes of the anti-reflection member 6 can be formed into a cylindrical shape or a rectangular parallelepiped shape as described in Embodiment 1. There is a preferred implementation in combination with the embodiment of the present invention.
  • the absorption efficiency of the anti-reflection component 6 on the side of the multiplexer module 4 can be further improved by improving the shape of the light-passing aperture structure, as shown in FIG. 11 .
  • a schematic cross-sectional view of a light-passing aperture in the anti-reflection component 6 is shown.
  • the hollow-section of the inner diameter of the anti-reflection component 6 is: a structure that gradually decreases from the middle to the ports on both sides; wherein the two sides of the anti-reflection component 6
  • the port size is set according to the thickness of the laser beam emitted by the laser chip.
  • the laser chip arrays 2a to 2d and the anti-reflection assembly 6 are disposed on the upper surface of the thermal layer holder 8, and the bottom of the heat sink holder 8 is fixed on the temperature control unit 10 disposed at the bottom of the tube casing 9, wherein The anti-reflection component 6 is fixed to the thermal layer support 8 using glue or solder.
  • Embodiment 3 of the present invention further provides a method of manufacturing a light-emitting component that reduces channel crosstalk. As shown in FIG. 13, the manufacturing method is used to process the light-emitting component for reducing channel crosstalk described in Embodiment 1 and Embodiment 2, and the method includes:
  • step 201 the IC pad 16, the temperature control component 10, and the spacer 11 are fixed in the package 9 with glue or solder.
  • the IC pad 16 is fixed on the package by using eutectic solder or thermal paste to support the driving IC 7 and conduct heat generated by the driving chip 7 to the package 9. To avoid the operating temperature of the driving IC 7 exceeding the standard, the IC pad 16 Generally, a high thermal conductivity aluminum nitride ceramic or a tungsten copper metal material is used.
  • step 202 the driver IC chip, the heat sink holder 8 and the laser chip arrays 2a to 2d are placed and fixed using glue or solder.
  • a laser driving IC chip 7 is placed, and is fixed on the IC pad 16 by using eutectic solder or thermal conductive glue, and the external input signal is used to drive the laser chip 2 after being shaped by the driving IC chip 7.
  • the driving IC 7 chip and the laser chip 2 are not more than 1 mm apart, and the high-frequency transmission loss is small, and each channel can be used for transmission above 28 Gbps.
  • the backlight monitoring chip arrays 1a to 1d are pasted on the driving IC chip 7 with an insulating paste, and correspond to the array of the laser chips 2a to 2d for monitoring the backward light output power of the laser chip 2, because the laser chip 2 is working before and after.
  • the light output ratio is constant, so the change in forward light output power can be indirectly monitored.
  • the temperature control component 10 is fixed on the shell 9 by using eutectic solder or thermal paste, and the heat sink bracket 8 is placed thereon, and the laser chip 2, the glass spacer 15, the collimator lens 3 and the anti-reflection are sequentially placed on the heat sink bracket 8
  • the component 6, the heat sink bracket 8 is used for supporting the heat generated by the above components and the conductive laser chip 2, generally adopting a high heat conduction aluminum nitride ceramic or a tungsten copper metal material, and the temperature control component 10 is used for controlling the operating temperature of the laser chip 2.
  • the glass gasket is fixed on the heat sink bracket 8 with a glue for supporting the collimator lens 3.
  • the collimator lens 3 is fixed on the glass spacer 15 by using ultraviolet curing glue or thermosetting glue for shaping the outgoing light of the laser chip 2. For parallel light.
  • step 203 the multiplexer module 4 is placed and cured using a UV curable adhesive or a thermosetting adhesive.
  • step 204 the collimating lens 3 is placed and cured using a UV curable gel or a thermosetting gel.
  • the specific solution of the step 204 is to place the beam monitoring device on the focusing lens 12 and the optical fiber assembly 14.
  • the detected outgoing light is parallel light, and then the ultraviolet light is used. Curing adhesive or heat curing adhesive cures.
  • the specific solution of the step 204 is to cure the collimating lens 3 in the lens groove 61 of the anti-reflection component 6 using a UV curable adhesive or a thermosetting adhesive.
  • step 205 corresponding to the positions of the laser chip arrays 2a to 2d and the collimator lens 3, the anti-reflection component 6 is placed so that the optical signal passes through the anti-reflection component 6 without loss.
  • the anti-reflection member 6 is fixed on the thermal layer holder 8 using glue or solder, between the collimator lens 3 and the multiplexer module 4.
  • the anti-reflection element 6 has light-passing holes 6a to 6d corresponding to the array of the laser chips 2a to 2d for transmitting the optical signal emitted from the laser chip 2.
  • the step 205 is specifically implemented as a placement beam monitoring device on the focusing lens 12 and the optical fiber assembly 14.
  • the position of the collimating lens 3 is adjusted, so that the detected outgoing light is Parallel light is then applied to the anti-reflective component 6 using a UV curable adhesive or a heat curable adhesive.
  • step 206 the coupling focus lens 12, the lens holder 13 and the fiber optic assembly 14 are adjusted such that the light output power reaches a predetermined requirement and is fixed using a laser welding process.
  • the reflected light R1/R2 is transmitted and blocked by the anti-reflection component 6, and the anti-reflection component 6 is made of ceramic, glass or metal.
  • the surface treatment is black, which can absorb and block the reflection light, prevent the reflected light from being transmitted back to the laser chips 2a to 2d and the backlight monitoring chips 1a to 1d, thereby reducing the mutual crosstalk between the channels.
  • the placement of the multiplexer module 4 is cured by using a UV-curable adhesive or a heat-curing adhesive, and there is a specific implementation content, which specifically includes:
  • Temporary lenses and optical fibers are placed at the position of the focusing lens 12 and the optical fiber assembly 14.
  • the lens type and the optical fiber assembly are positioned in the same manner as the focal lens 12 and the optical fiber assembly 14.
  • the four optical powers of the optical fiber output are monitored. Maximize and then cure with UV curable or heat curable.
  • the placement of the multiplexer module 4 is cured by using a UV-curable adhesive or a heat-curing adhesive, and there is a specific implementation content, which specifically includes:
  • Temporary lenses and optical fibers are placed at the position of the focusing lens 12 and the optical fiber assembly 14.
  • the lens type and the optical fiber assembly are positioned in the same manner as the focal lens 12 and the optical fiber assembly 14.
  • the four optical powers of the optical fiber output are monitored. Maximize and then cure with UV curable or heat curable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

用于光组件技术领域,一种减少通道串扰的光发射组件及其制造方法。其中组件包括背光监控探测器阵列(1a-1d),激光器芯片阵列(2a-2d),准直透镜(3),合波模块(4)和减反射组件(6),探测器阵列(1a-1d),激光器芯片阵列(2a-2d),准直透镜(3)和合波模块(4)按照预设光路以级联方式设置,减反射组件(6)设置在准直透镜(3)和合波模块(4)之间,减反射组件(6)上设置有通光孔(6a-6d),通光孔(6a-6d)与激光器芯片阵列(2a-2d)的出光光路相对应,用于透过激光器芯片发出的光信号;减反射组件(6)表面和通光孔(6a-6d)内径处理成黑色,用于吸收反射光。通过增加一个简单的减反射组件(6)可以有效减少通道串扰的问题,不仅可以减少发射芯片之间的串扰,也可以减少背光监控芯片间的串扰,从而提高整个光发射组件的性能。

Description

一种减少通道串扰的光发射组件及其制造方法 【技术领域】
本发明涉及光组件技术领域,特别是涉及一种减少通道串扰的光发射组件及其制造方法。
【背景技术】
现代光通信系统中,多路光信号复用的光发射器件应用越来越多,这种光器件封装普通采用了合波模块进行波长复用,光路经过合波模块中不可避免的产生了反射光,反射光返回至激光器光源中,会导致激光器工作不稳定性,影响光发射组件的工作性能。
现有光发射组件的技术方案典型图示如图1,包括背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3,合波模块4,用其中一路2a为例说明,激光器芯片2a出射光经过准直透镜3整形后,以平行光入射到合波模块4,在经过介质分界面S1、S2中会产生反射光R1、R2,为避免反射光原路返回给2a激光器芯片,介质面S1、S2一般设置为8度倾斜角,虽不会直接返回到原发光芯片,但是反射光R1、R2会回传到相邻通道激光器芯片2b谐振腔,会降低激光器芯片2b性能,同时反射光R1、R2回传到其它通道背光监控探测器1b、1c、1d中,会影响监控准确性。同理其它路2b、2c、2d也可类似推理,即反射光会导致激光器芯片2a~2d间相互串扰、背光监控芯片1a~1b间相互串扰,最终降低整个光发射组件的稳定性。
现有可行的解决方案如图2,在合波模块4与准直透镜组件3中间增加光学隔离器,阻止反射光通过,可以完全解决反射光导致的串扰问题,但是每路通道均需增加光学隔离器,成本较高。
鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明实施例要解决的技术问题是现有可行的解决方案如图2,在合波模块4与准直透镜组件3中间增加光学隔离器,阻止反射光通过,可以完全解决反射光导致的串扰问题,但是每路通道均需增加光学隔离器,成本较高。
本发明实施例采用如下技术方案:
第一方面,本发明提供了一种减少通道串扰的光发射组件,包括背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3,合波模块4和减反射组件6,所述背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3和合波模块4按照预设光路以级联方式设置,所述减反射组件6设置在所述准直透镜3和合波模块4之间,具体的:
所述减反射组件6上设置有通光孔6a~6d,所述通光孔6a~6d与激光器芯片阵列2a~2d的出光光路相对应,用于透过激光器芯片2发出的光信号;
所述减反射组件6表面和通光孔6a~6d内径处理成黑色,用于吸收反射光。
优选的,所述减反射组件6为陶瓷、玻璃或金属材质。
优选的,所述减反射组件6内径中空截面表现为:从中间向两侧端口逐渐减小的结构;其中,所述减反射组件6两侧端口大小根据激光器芯片发出的激光束粗细而设定。
优选的,所述激光器芯片阵列2a~2d,准直透镜3和减反射组件6被设置在热层支架8的上表面,所述热沉支架8的底部固定在设置在管壳9底部的温控组件10上,其中,所述减反射组件6使用胶或焊料固定于热层支架8上面。
优选的,合波模块4由垫片11支撑,垫片11用焊料或胶固定于管壳8内,合波模块4使用紫外固化胶或热固化胶固定于垫片11上。
第二方面,本发明还提供了一种减少通道串扰的光发射组件,包括背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3,合波模块4和减反射组件6,所述背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d和合波模块4按照预设光路以级联方式设置,所述减反射组件6设置在所述激光器芯片阵列2a~2d和合波模块4之间,具体的:
所述减反射组件6上设置有通光孔6a~6d,所述通光孔6a~6d与激光器芯片阵列2a~2d的出光口相对应,用于透过激光器芯片2发出的光信号;
所述减反射组件6的各通光孔6a~6d的预设位置设置有透镜槽61,所述准直透镜3固定在所述透镜槽61中;
所述减反射组件6表面处理和通光孔6a~6d内径为黑色,用于吸收反射光。
优选的,所述减反射组件6内径中空截面表现为:从中间向两侧端口逐渐减小的结构;其中,所述减反射组件6两侧端口大小根据激光器芯片发出的激光束粗细而设定。
优选的,所述激光器芯片阵列2a~2d和减反射组件6被设置在热层支架8的上表面,所述热沉支架8的底部固定在设置在管壳9底部的温控组件10上,其中,所述减反射组件6使用胶或焊料固定于热层支架8上面。
第三方面,本发明还提供了一种减少通道串扰的光发射组件的制造方法,所述制造方法用于加工制造如第一方面或者第二方面所述的减少通道串扰的光发射组件,方法包括:
将IC垫块16、温控组件10、垫片11用胶或焊料固定于管壳9内;
放置驱动IC芯片、热沉支架8及激光器芯片阵列2a~2d,使用胶或焊料固定;
放置合波模块4,使用紫外固化胶或热固化胶固化;
放置准直透镜3,使用紫外固化胶或热固化胶固化;
对应激光器芯片阵列2a~2d及准直透镜3位置,放置减反射组件6,使光信号无损耗通过减反射组件6。
调整耦合聚焦透镜12、透镜支架13和光纤组件14,使出光功率达到预定要求,使用激光焊工艺固定。
优选的,所述放置合波模块4,使用紫外固化胶或热固化胶固化,具体包括:
在聚焦透镜12及光纤组件14位置放置临时的透镜及光纤,透镜类型和光纤组件位置与焦透镜12及光纤组件14相同,通过调整合波4位置,使监测到光纤输出的4路光功率均达到最大,然后使用紫外固化胶或热固化胶固化。
与现有技术相比,本发明实施例的有益效果在于:本发明对。
本发明通过增加一个简单的减反射组件可以有效减少通道串扰的问题,不仅可以减少发射芯片之间的串扰,也可以减少背光监控芯片间的串扰,从而提高整个光发射组件的性能。相比较现有技术,减反射组件成本较低,安装简单,产品成本增加较少,产品具备竞争力。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种现有光发射组件的结构示意图;
图2是本发明实施例提供的现有技术中一种光发射组件减少反射解决方案的结构示意图;
图3是本发明实施例提供的一种减少通道串扰的光发射组件结构示意图;
图4是本发明实施例提供的一种减反射组件结构示意图;
图5是本发明实施例提供的另一种减反射组件结构示意图;
图6是本发明实施例提供的一种改进型的减反射组件结构剖视图;
图7是本发明实施例提供的一种改进型的减反射组件结构中反射光路示意图;
图8是本发明实施例提供的一种减少通道串扰的光发射组件结构主视图;
图9是本发明实施例提供的另一种减少通道串扰的光发射组件结构示意图;
图10是本发明实施例提供的一种改进型减反射组件结构示意图;
图11是本发明实施例提供的一种改进型减反射组件结构中反射光路示意图;
图12是本发明实施例提供的另一种减少通道串扰的光发射组件结构主视图;
结构组成:1a~1d-背光监控芯片阵列;2a~2d-激光器芯片阵列;3-准直透镜阵列;4-合波模块;6-减反射组件;6a~6d-光透过孔;7-驱动IC芯片;8-热 沉支架;9-管壳;10-温控组件;11-垫片;12-聚焦透镜;13-透镜支架;14-光纤组件;15-玻璃垫片;16-IC垫块。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
本发明实施例提供了一种减少通道串扰的光发射组件,如图3所示,包括背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3,合波模块4和减反射组件6,所述背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3和合波模块4按照预设光路以级联方式设置,所述减反射组件6设置在所述准直透镜3和合波模块4之间,具体的:
所述减反射组件6上设置有通光孔6a~6d,所述通光孔6a~6d与激光器芯片阵列2a~2d的出光光路相对应,用于透过激光器芯片2发出的光信号;
所述减反射组件6表面和通光孔6a~6d内径处理成黑色,用于吸收反射光。用于阻止反射光回传到激光器芯片2a~2d和背光监控芯片1a~1d内,达到减少通道间相互串扰的效果。
本发明实施例通过增加一个简单的减反射组件可以有效减少通道串扰的问题,不仅可以减少发射芯片之间的串扰,也可以减少背光监控芯片间的串扰,从而提高整个光发射组件的性能。相比较现有技术,减反射组件成本较低,安装简单,产品成本增加较少,产品具备竞争力。
在本发明实施例中,所述减反射组件6通常为陶瓷、玻璃或金属材质。如图4和图5所示,所述减反射组件6的通光孔可以制作成圆柱形或者长方体形。
结合本发明实施例还存在一种优选的实现方案,可以进一步的通过改进通光孔结构形状来提高所述减反射组件6对于合波模块4侧反射回来光的吸收效率,具体的如图6所示为减反射组件6中某一通光孔的截面示意图,所述减反射组件6内径中空截面表现为:从中间向两侧端口逐渐减小的结构,例如图6中位于靠中间区域的中空截面直径R1相比较靠近进/出光口侧的中空截面直径D2在参数值上更大;其中,所述减反射组件6两侧端口大小根据激光器芯片发出的激光束粗细而设定。如图6所示的结构,能够保证在有反射光进入到所述通光孔中时,能够通过通光孔内表面的倾斜角度,实现在内部的一次或者多次反射,并经由内表面的吸光处理达到对反射光的更高效的吸收。如图7所述,为本发明实施例基于图6所述通光孔结构,以一条反射光所做的内部表面吸收效果示意图,为了表现本发明实施例所提出的改进结构的优良反射特性,在图7中标注了3个发射点,而实际情况中通常在第2个反射点便能实现反射光的有效吸收。
如图8所示,所述激光器芯片阵列2a~2d,准直透镜3和减反射组件6被设置在热层支架8的上表面,所述热沉支架8的底部固定在设置在管壳9底部的温控组件10上,其中,所述减反射组件6使用胶或焊料固定于热层支架8上面。
合波模块4由垫片11支撑,垫片11用焊料或胶固定于管壳8内,合波模块4使用紫外固化胶或热固化胶固定于垫片11上,合波后的出射光由聚焦透镜12汇聚入光纤组件14,聚焦透镜12通过胶或激光焊接与透镜支架13上,光纤组件14与透镜支架13采用激光焊固定。其中,垫片11通常使用玻璃、陶瓷或金属材料。
实施例2:
本发明实施例还提供了一种减少通道串扰的光发射组件,如图9和图10所示,包括背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d,准直透镜3,合波模块4和减反射组件6,所述背光监控探测器阵列1a~1b,激光器芯片阵列2a~2d 和合波模块4按照预设光路以级联方式设置,所述减反射组件6设置在所述激光器芯片阵列2a~2d和合波模块4之间,具体的:
所述减反射组件6上设置有通光孔6a~6d,所述通光孔6a~6d与激光器芯片阵列2a~2d的出光口相对应,用于透过激光器芯片2发出的光信号;
所述减反射组件6的各通光孔6a~6d的预设位置设置有透镜槽61,所述准直透镜3固定在所述透镜槽61中;在具体实现过程中,除了可以采用上述在减反射组件6的各通光孔6a~6d的预设位置设置有透镜槽61来完成准直透镜3的固定外,还可以采用直接将准直透镜胶粘在所述减反射组件6的入光口的方式完成固定,在此不再赘述。
所述减反射组件6表面处理和通光孔6a~6d内径为黑色,用于吸收反射光。阻止反射光回传到激光器芯片2a~2d和背光监控芯片1a~1d内,达到减少通道间相互串扰的效果。
本发明实施例通过增加一个简单的减反射组件可以有效减少通道串扰的问题,不仅可以减少发射芯片之间的串扰,也可以减少背光监控芯片间的串扰,从而提高整个光发射组件的性能。相比较现有技术,减反射组件成本较低,安装简单,产品成本增加较少,产品具备竞争力。相比较实施例1而言,在本发明实施例中,进一步提高了减反射组件与原有光发射组件之间的耦合紧密度,将准直透镜整合到了减反射组件上,因此能够进一步的降低整个发射组件的体积。
如图10所示,所述减反射组件6的通光孔可以参照实施例1中所述的制作成圆柱形或者长方体形。结合本发明实施例还存在一种优选的实现方案,可以进一步的通过改进通光孔结构形状来提高所述减反射组件6对于合波模块4侧反射回来光的吸收效率,具体的如图11所示为减反射组件6中某一通光孔的截面示意图,所述减反射组件6内径中空截面表现为:从中间向两侧端口逐渐减小的结构;其中,所述减反射组件6两侧端口大小根据激光器芯片发出的激光束粗细而设定。
在本发明实施例中,如图12所示(仅以柱状通光孔为例,其同样适用于本 发明实施例所提出的如图11所示的改进型通光孔,在此不再赘述),所述激光器芯片阵列2a~2d和减反射组件6被设置在热层支架8的上表面,所述热沉支架8的底部固定在设置在管壳9底部的温控组件10上,其中,所述减反射组件6使用胶或焊料固定于热层支架8上面。
实施例3:
在提供了如实施例1和实施例2所述的一种减少通道串扰的光发射组件后,本发明实施例3还提供了一种减少通道串扰的光发射组件的制造方法。如图13所示,所述制造方法用于加工制造实施例1和实施例2所述的减少通道串扰的光发射组件,方法包括:
在步骤201中,将IC垫块16、温控组件10、垫片11用胶或焊料固定于管壳9内。
IC垫块16使用共晶焊料或导热胶固定于管壳上,用于支撑驱动IC 7并传导驱动芯片7产生的热量到管壳9上,为避免驱动IC 7工作温度超标,IC垫块16一般选用高热传导的氮化铝陶瓷或钨铜金属材料。
在步骤202中,放置驱动IC芯片、热沉支架8及激光器芯片阵列2a~2d,使用胶或焊料固定。
其中,在管壳9内,放置有激光器驱动IC芯片7,使用共晶焊料或导热胶固定于IC垫块16上面,外部输入信号经过驱动IC芯片7整形后,用于驱动激光器芯片2工作,驱动IC 7芯片与激光器芯片2距离不超过1mm,高频传输损耗较少,每个通道可用于28Gbps速率以上传输。
其中,背光监控芯片阵列1a~1d用绝缘胶粘贴于驱动IC芯片7上面,与激光器芯片2a~2d阵列相对应,用于监控激光器芯片2的后向出光功率,由于激光器芯片2工作中前后出光比恒定,所以可以间接监控前向出光功率的变化。
其中,温控组件10使用共晶焊料或导热胶固定于管壳9上,上面放置热沉支架8,热沉支架8上面依次放置激光器芯片2、玻璃垫片15、准直透镜3和减反射组件6,热沉支架8用于支撑上述零部件及传导激光器芯片2产生的热量,一般选用高热传导的氮化铝陶瓷或钨铜金属材料,温控组件10用于控制激光器 芯片2的工作温度。玻璃垫片用胶固定于热沉支架8上面用于支撑准直透镜3,准直透镜3使用紫外固化胶或热固化胶固定于玻璃垫片15上,用于将激光器芯片2的出射光整形为平行光。
在步骤203中,放置合波模块4,使用紫外固化胶或热固化胶固化。
在步骤204中,放置准直透镜3,使用紫外固化胶或热固化胶固化。
对于实施例1来说,所述步骤204的具体方案是在聚焦透镜12及光纤组件14的放置光束监控设备,通过调整准直透镜3位置,使监测到的出射光为平行光,然后使用紫外固化胶或热固化胶固化。
对于实施例2来说,所述步骤204的具体方案是在减反射组件6的透镜槽61中使用紫外固化胶或热固化胶固化所述准直透镜3。
在步骤205中,对应激光器芯片阵列2a~2d及准直透镜3位置,放置减反射组件6,使光信号无损耗通过减反射组件6。
对于实施例1来说,减反射组件6使用胶或焊料固定于热层支架8上面,位于准直透镜3与合波模块4之间。减反射组件6具有6a~6d的通光孔,与激光器芯片2a~2d阵列相对应,用于透过激光器芯片2发出的光信号。
对于实施例2来说,所述步骤205具体实现为在聚焦透镜12及光纤组件14的放置光束监控设备,通过调整减反射组件6位置来调整准直透镜3位置,使监测到的出射光为平行光,然后使用紫外固化胶或热固化胶固化所述减反射组件6。
在步骤206中,调整耦合聚焦透镜12、透镜支架13和光纤组件14,使出光功率达到预定要求,使用激光焊工艺固定。
如图3所示,出射光线L1经过6a~6d光透过孔进入合波模块4后,反射光R1/R2传输中,由减反射组件6阻挡,减反射组件6为陶瓷、玻璃或金属材质,表面处理为黑色,可吸收及阻挡反射光传播,阻止反射光回传到激光器芯片2a~2d和背光监控芯片1a~1d内,达到减少通道间相互串扰的效果。
结合本发明实施例,对于步骤203中实现的,所述放置合波模块4,使用紫外固化胶或热固化胶固化,存在一种具体的实现内容,具体包括:
在聚焦透镜12及光纤组件14位置放置临时的透镜及光纤,透镜类型和光纤组件位置与焦透镜12及光纤组件14相同,通过调整合波4位置,使监测到光纤输出的4路光功率均达到最大,然后使用紫外固化胶或热固化胶固化。
结合本发明实施例,对于步骤203中实现的,所述放置合波模块4,使用紫外固化胶或热固化胶固化,存在一种具体的实现内容,具体包括:
在聚焦透镜12及光纤组件14位置放置临时的透镜及光纤,透镜类型和光纤组件位置与焦透镜12及光纤组件14相同,通过调整合波4位置,使监测到光纤输出的4路光功率均达到最大,然后使用紫外固化胶或热固化胶固化。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种减少通道串扰的光发射组件,其特征在于,包括背光监控探测器阵列(1a~1b),激光器芯片阵列(2a~2d),准直透镜(3),合波模块(4)和减反射组件(6),所述背光监控探测器阵列(1a~1b),激光器芯片阵列(2a~2d),准直透镜(3)和合波模块(4)按照预设光路以级联方式设置,所述减反射组件(6)设置在所述准直透镜(3)和合波模块(4)之间,具体的:
    所述减反射组件(6)上设置有通光孔(6a~6d),所述通光孔(6a~6d)与激光器芯片阵列(2a~2d)的出光光路相对应,用于透过激光器芯片(2)发出的光信号;
    所述减反射组件(6)表面和通光孔(6a~6d)内径处理成黑色,用于吸收反射光。
  2. 根据权利要求1所述的减少通道串扰的光发射组件,其特征在于,所述减反射组件(6)为陶瓷、玻璃或金属材质。
  3. 根据权利要求1所述的减少通道串扰的光发射组件,其特征在于,所述减反射组件(6)内径中空截面表现为:从中间向两侧端口逐渐减小的结构;其中,所述减反射组件(6)两侧端口大小根据激光器芯片发出的激光束粗细而设定。
  4. 根据权利要求1所述的减少通道串扰的光发射组件,其特征在于,所述激光器芯片阵列(2a~2d),准直透镜(3)和减反射组件(6)被设置在热层支架(8)的上表面,所述热沉支架(8)的底部固定在设置在管壳(9)底部的温控组件(10)上,其中,所述减反射组件(6)使用胶或焊料固定于热层支架(8)上面。
  5. 根据权利要求1所述的减少通道串扰的光发射组件,其特征在于,合波 模块(4)由垫片(11)支撑,垫片(11)用焊料或胶固定于管壳(8)内,合波模块(4)使用紫外固化胶或热固化胶固定于垫片(11)上。
  6. 一种减少通道串扰的光发射组件,其特征在于,包括背光监控探测器阵列(1a~1b),激光器芯片阵列(2a~2d),准直透镜(3),合波模块(4)和减反射组件(6),所述背光监控探测器阵列(1a~1b),激光器芯片阵列(2a~2d)和合波模块(4)按照预设光路以级联方式设置,所述减反射组件(6)设置在所述激光器芯片阵列(2a~2d)和合波模块(4)之间,具体的:
    所述减反射组件(6)上设置有通光孔(6a~6d),所述通光孔(6a~6d)与激光器芯片阵列(2a~2d)的出光口相对应,用于透过激光器芯片(2)发出的光信号;
    所述减反射组件(6)的各通光孔(6a~6d)的预设位置设置有透镜槽(61),所述准直透镜(3)固定在所述透镜槽(61)中;
    所述减反射组件(6)表面处理和通光孔(6a~6d)内径为黑色,用于吸收反射光。
  7. 根据权利要求6所述的减少通道串扰的光发射组件,其特征在于,所述减反射组件(6)内径中空截面表现为:从中间向两侧端口逐渐减小的结构;其中,所述减反射组件(6)两侧端口大小根据激光器芯片发出的激光束粗细而设定。
  8. 根据权利要求6所述的减少通道串扰的光发射组件,其特征在于,所述激光器芯片阵列(2a~2d)和减反射组件(6)被设置在热层支架(8)的上表面,所述热沉支架(8)的底部固定在设置在管壳(9)底部的温控组件(10)上,其中,所述减反射组件(6)使用胶或焊料固定于热层支架(8)上面。
  9. 一种减少通道串扰的光发射组件的制造方法,其特征在于,所述制造方 法用于加工制造如权利要求1-8任一所述的减少通道串扰的光发射组件,方法包括:
    将IC垫块(16)、温控组件(10)、垫片(11)用胶或焊料固定于管壳(9)内;
    放置驱动IC芯片、热沉支架(8)及激光器芯片阵列(2a~2d),使用胶或焊料固定;
    放置合波模块(4),使用紫外固化胶或热固化胶固化;
    放置准直透镜(3),使用紫外固化胶或热固化胶固化;
    对应激光器芯片阵列(2a~2d)及准直透镜(3)位置,放置减反射组件(6),使光信号无损耗通过减反射组件(6)。
    调整耦合聚焦透镜(12)、透镜支架(13)和光纤组件(14),使出光功率达到预定要求,使用激光焊工艺固定。
  10. 根据权利要求9所述的减少通道串扰的光发射组件的制造方法,其特征在于,所述放置合波模块(4),使用紫外固化胶或热固化胶固化,具体包括:
    在聚焦透镜(12)及光纤组件(14)位置放置临时的透镜及光纤,透镜类型和光纤组件位置与焦透镜(12)及光纤组件(14)相同,通过调整合波(4)位置,使监测到光纤输出的(4)路光功率均达到最大,然后使用紫外固化胶或热固化胶固化。
PCT/CN2018/123307 2018-03-28 2018-12-25 一种减少通道串扰的光发射组件及其制造方法 WO2019184478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810266464.5 2018-03-28
CN201810266464.5A CN108490552A (zh) 2018-03-28 2018-03-28 一种减少通道串扰的光发射组件及其制造方法

Publications (1)

Publication Number Publication Date
WO2019184478A1 true WO2019184478A1 (zh) 2019-10-03

Family

ID=63316999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123307 WO2019184478A1 (zh) 2018-03-28 2018-12-25 一种减少通道串扰的光发射组件及其制造方法

Country Status (2)

Country Link
CN (1) CN108490552A (zh)
WO (1) WO2019184478A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490552A (zh) * 2018-03-28 2018-09-04 武汉电信器件有限公司 一种减少通道串扰的光发射组件及其制造方法
CN109491026A (zh) * 2018-12-28 2019-03-19 东莞光智通讯科技有限公司 多通道光发射器件及光通信装置
CN109814214A (zh) * 2019-04-11 2019-05-28 武汉英飞光创科技有限公司 一种光学器件及准直光束定位系统
CN110133816B (zh) * 2019-05-22 2023-12-01 广东瑞谷光网通信股份有限公司 PLC Mux与透镜间耦合固定的夹具、方法、电子设备、计算机可读存储介质
CN110530056B (zh) * 2019-08-20 2021-05-18 武汉联特科技股份有限公司 多通道并行发射光器件及半导体致冷器
US11561345B2 (en) * 2020-02-14 2023-01-24 Google Llc Apertures for reduced dynamic crosstalk and stray light control
CN111580228B (zh) * 2020-04-24 2022-11-01 武汉光迅科技股份有限公司 一种用于射频光传输的多通道光发射装置和制作方法
CN113433619B (zh) * 2021-06-11 2023-09-29 武汉联特科技股份有限公司 光隔离器及其制备方法、光模块
CN113281861B (zh) * 2021-07-14 2021-10-26 武汉联特科技股份有限公司 光发射组件和光路耦合方法
CN114280735A (zh) * 2021-12-28 2022-04-05 广东海信宽带科技有限公司 一种光模块
CN114325971A (zh) * 2022-01-13 2022-04-12 深圳市易飞扬通信技术有限公司 光发射组件的封装方法及光发射组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240517A (ja) * 1987-03-27 1988-10-06 Fujitsu Ltd 光アイソレ−タ
JP2000165329A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Ind Co Ltd 光伝送装置
CN103567631A (zh) * 2013-11-15 2014-02-12 深圳市大族激光科技股份有限公司 光学隔离系统及光学隔离器
CN105044933A (zh) * 2015-08-06 2015-11-11 深圳市创鑫激光股份有限公司 一种光隔离器、激光输出头及激光器
CN204947313U (zh) * 2015-08-24 2016-01-06 宁波环球广电科技有限公司 多通道阵列光纤激光器
CN105527677A (zh) * 2016-02-02 2016-04-27 深圳市创鑫激光股份有限公司 一种制作光隔离器的方法以及光隔离器
CN108490552A (zh) * 2018-03-28 2018-09-04 武汉电信器件有限公司 一种减少通道串扰的光发射组件及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201859237U (zh) * 2010-09-29 2011-06-08 成都德浩科技有限公司 Cwdm单模sc tosa专用隔离器
CN104570236B (zh) * 2014-11-27 2017-01-25 武汉电信器件有限公司 高速蝶形封装光发射器组件
CN105824085A (zh) * 2016-04-26 2016-08-03 中国科学院半导体研究所 带有隔离器的多路集成光发射模块结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240517A (ja) * 1987-03-27 1988-10-06 Fujitsu Ltd 光アイソレ−タ
JP2000165329A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Ind Co Ltd 光伝送装置
CN103567631A (zh) * 2013-11-15 2014-02-12 深圳市大族激光科技股份有限公司 光学隔离系统及光学隔离器
CN105044933A (zh) * 2015-08-06 2015-11-11 深圳市创鑫激光股份有限公司 一种光隔离器、激光输出头及激光器
CN204947313U (zh) * 2015-08-24 2016-01-06 宁波环球广电科技有限公司 多通道阵列光纤激光器
CN105527677A (zh) * 2016-02-02 2016-04-27 深圳市创鑫激光股份有限公司 一种制作光隔离器的方法以及光隔离器
CN108490552A (zh) * 2018-03-28 2018-09-04 武汉电信器件有限公司 一种减少通道串扰的光发射组件及其制造方法

Also Published As

Publication number Publication date
CN108490552A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019184478A1 (zh) 一种减少通道串扰的光发射组件及其制造方法
JP6147341B2 (ja) 半導体レーザモジュール
US6804436B2 (en) Eye-safe optical fiber transmitter unit
US11307376B2 (en) Optical module
JP7480609B2 (ja) 光モジュール及び光モジュールの製造方法
US20090279830A1 (en) Optical gate array device
WO2013099340A1 (ja) レーザモジュール及びその製造方法
EP3807571A1 (en) Illumination system with high intensity output mechanism and method of operation thereof
CA2959363C (en) Optical fiber device
JP2010185980A (ja) 高出力用光部品
WO2023077903A1 (zh) 一种光模块
CN116794766A (zh) 光电集成模块及其制备方法
JP7516351B2 (ja) 光学部品および半導体レーザモジュール
WO2020196562A1 (ja) 光ファイバにおける端部構造および半導体レーザモジュール
KR20200070577A (ko) 광섬유 지지 장치 및 이를 포함하는 레이저 장치
CN215297759U (zh) 一种基于集成光学芯片封装的隔离器装配结构
JPH104672A (ja) 光トリガサイリスタ
CN221175050U (zh) 一种高功率组合器件
US7223026B1 (en) Solder-free packaging for integrated fiber optics device
WO2006030578A1 (ja) 集積光部品とその製造方法、及び光通信装置
CN215728932U (zh) 一种光学器件
US9077142B2 (en) Air-cooled laser device
JPH1090561A (ja) 多チャンネル光モジュール
CN117092838A (zh) 一种高功率组合器件及其装配方法
CN114325971A (zh) 光发射组件的封装方法及光发射组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912801

Country of ref document: EP

Kind code of ref document: A1