WO2019184446A1 - 光波导元件及其控制方法、背光模组和显示装置 - Google Patents

光波导元件及其控制方法、背光模组和显示装置 Download PDF

Info

Publication number
WO2019184446A1
WO2019184446A1 PCT/CN2018/120342 CN2018120342W WO2019184446A1 WO 2019184446 A1 WO2019184446 A1 WO 2019184446A1 CN 2018120342 W CN2018120342 W CN 2018120342W WO 2019184446 A1 WO2019184446 A1 WO 2019184446A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
mirror
incident
light incident
Prior art date
Application number
PCT/CN2018/120342
Other languages
English (en)
French (fr)
Inventor
董瑞君
张�浩
王晨如
陈丽莉
张雪冰
刘亚丽
苗俊杰
栗可
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/473,142 priority Critical patent/US11391882B2/en
Publication of WO2019184446A1 publication Critical patent/WO2019184446A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror

Definitions

  • Embodiments of the present disclosure relate to the field of display technologies, and in particular, to an optical waveguide component and a control method thereof, a backlight module, and a display device.
  • the display device generally includes a backlight module and a display panel.
  • the backlight module is configured to provide a required light source to the display panel to implement normal display of the display device.
  • Embodiments of the present disclosure provide an optical waveguide component, a control method thereof, a backlight module, and a display device.
  • an optical waveguide component comprising:
  • a mirror array located in the chamber, is configured to control to reflect at least a portion of the light incident on the mirror array out of the exit surface or to be totally reflected on the light exit surface.
  • the mirror array includes a plurality of reflective assemblies arranged in an array, each reflective assembly including a deflectable mirror configured to be incident thereon in a first state At least part of the light reflection is derived from the light exiting surface.
  • the mirror reflects at least a portion of the light incident thereon and having an incident angle less than a predetermined angle to the light exit surface.
  • the mirror is further configured to continue to be totally reflected on the illuminating surface by at least a portion of the light incident thereon in the second state.
  • the mirror of each of the mirror assemblies is configured to be tilted relative to the light exiting surface in the first state and parallel to the light exiting surface in the second state.
  • each of the reflective components further includes: a connector coupled to each of the mirrors, configured to control a deflection angle of the mirror; and a control circuit coupled to the connector, configured to The connector inputs a mirror deflection signal.
  • a minimum distance between the mirror array and the light incident surface is set such that light incident into the chamber from the light incident surface is incident on the light after being totally totally reflected Mirror array.
  • the optical waveguide component further includes: a bottom disposed opposite the light exiting surface; a medium filled in the chamber; and a package surface disposed opposite the light incident surface and configured for implantation The hole of the medium.
  • the light incident surface is a slope surface, and the slope surface is inclined with respect to the bottom portion such that an angle between the light incident surface and the light exit surface is an obtuse angle.
  • the optical waveguide component further includes a first connecting surface, wherein the light incident surface extends beyond the light emitting surface, and the first connecting surface extends to the light incident surface and beyond the light emitting surface One end of the light emitting surface is connected to the light emitting surface, so that the light incident surface, the first connecting surface, the light emitting surface, the bottom portion and the encapsulating surface are enclosed as the closed chamber.
  • the first joining face is coated with a light absorbing material toward a side of the chamber.
  • the light incident surface is directly connected to the light emitting surface and the bottom portion, respectively, such that the light incident surface, the light exit surface, the bottom portion and the package surface are enclosed as a closed portion. Said chamber.
  • the medium is a liquid medium configured to allow the light incident from the light incident surface to propagate in the liquid medium and at least a portion of the light is totally reflected, the mirror The array is located in the liquid medium.
  • the material of the light exiting surface has a refractive index greater than a refractive index of the liquid medium and a difference of less than 0.3.
  • the material of the illuminating surface has a refractive index equal to the refractive index of the liquid medium.
  • a backlight module including:
  • the light source is disposed opposite to the light incident surface of the optical waveguide element.
  • the backlight module further includes a collimating element disposed between the light source and the optical waveguide element, wherein the collimating element is configured to convert light emitted by the light source into collimated light, And the collimated light is incident on the light incident surface of the optical waveguide element.
  • a display device including the foregoing backlight module is provided.
  • a method of controlling an optical waveguide element as described above comprising:
  • a mirror in the array of mirrors is controlled to reflect at least a portion of the light incident on the array of mirrors out of the exit surface or to be totally reflected on the exit surface.
  • the controlling the mirror in the mirror array comprises: deflecting the mirror to tilt the mirror relative to the light exiting surface, and causing incidence on the mirror The totally reflected light is reflected and is directed out of the light exiting surface.
  • the controlling the mirror in the mirror array comprises: deflecting the mirror such that the mirror is parallel to the light exiting surface, and causing the incident on the mirror The totally reflected light continues to be totally reflected by the light exit surface.
  • FIG. 1 is a schematic structural view of an optical waveguide component of an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of another optical waveguide component of an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural view of still another optical waveguide component of an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing an optical waveguide element in an embodiment of the present disclosure for improving the collimation of emitted light
  • FIG. 5 is a schematic structural view showing a mirror assembly in a first state in an embodiment of the present disclosure
  • FIG. 6 is a schematic structural view showing a mirror assembly in a second state in an embodiment of the present disclosure
  • FIG. 7 is a top plan view of a backlight module of an embodiment of the present disclosure.
  • FIG. 8 is a flow chart showing a method of controlling an optical waveguide element according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural view of a package surface of an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 11 shows a top view of the backlight module of FIG.
  • the backlight module In the HDR (High Dynamic Range) backlight module, a plurality of LEDs (Light Emitting Diodes) are densely arranged under the display panel, and the brightness of the backlight can be dynamically adjusted to achieve a larger brightness adjustment range. Contrast. However, since the light emitted by the LED has an emission range of about 120 light, in the backlight module of the above structure, the problem that the emitted light rays cross each other occurs between the LEDs of different zones.
  • LEDs Light Emitting Diodes
  • FIG. 1 there is shown a schematic structural view of an optical waveguide element of an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an optical waveguide component, including: a chamber 10; a light incident surface 11 and a light exit surface 12, and light incident from the light incident surface 11 propagates in the chamber 10 and is totally reflected; And a mirror array 14 located in the chamber 10, configured to control to reflect at least a portion of the light incident on the mirror array 14 to the light exit surface or to be totally reflected on the light exit surface 12 .
  • the mirror array in the optical waveguide element, a part of the light totally reflected onto the mirror array can be led out of the light surface, or a light can be totally reflected on the light exit surface.
  • the collimation of the light emitted from the light surface is improved, and the crosstalk problem between adjacent partitions of the backlight module is effectively solved, and the utility model can be applied to products such as anti-peep and directional backlight modules.
  • the mirror array includes a plurality of reflective assemblies arranged in an array, each reflective assembly including a deflectable mirror configured to be incident thereon in a first state At least part of the light reflection is derived from the light exiting surface.
  • mirror array 14 includes a plurality of reflective assemblies arranged in an array, each reflective assembly including a deflectable mirror 141.
  • the mirror 141 In the first state (eg, the mirror 141 is inclined relative to the light exit surface 12), the mirror 141 reflects at least a portion of the light incident thereon to the light exit surface 12.
  • the mirror In the embodiment of the present disclosure, the mirror is a flat type. In other embodiments, the mirror may be in other forms, such as a triangular pyramid or the like.
  • the angle of deflection of the mirror mentioned in the present disclosure and the angle between it and the light-emitting surface refer to the angle of deflection of the reflecting surface of the mirror, and the angle between the reflecting surface of the mirror and the light-emitting surface.
  • the present disclosure does not limit the specific form of the support structure of the mirror.
  • the mirror is further configured to continue to be totally reflected on the illuminating surface by at least a portion of the light incident thereon in the second state.
  • the mirror 141 in the second state (for example, the mirror 141 and the light exit surface 12 are parallel to each other), the mirror 141 continues to be totally reflected on at least a portion of the light incident thereon.
  • the mirror in the first state, reflects at least a portion of the light incident thereon and having an incident angle less than a predetermined angle to the light exit surface. In at least some embodiments, in the second state, the mirror continues to totally reflect at least a portion of the light incident thereon and having an incident angle greater than a predetermined angle on the light exit surface.
  • the term “incident angle” refers to light incident into the chamber 10 of the optical waveguide element, which is incident on the incident angle of the mirror 141.
  • the term “preset angle” refers to a critical angle at which the light totally reflected to the mirror 141 can be reflected from the light exit surface 12 after being reflected on the mirror 141, and the angle is collimated with the light emitted from the light exit surface 12.
  • the incident angle of the light totally reflected to the mirror 141 is less than the preset angle, the light can be emitted from the light exit surface after being reflected on the mirror 141; when the angle of incidence of the light totally reflected to the mirror 141 is greater than When the angle is set, the light is not reflected from the light exit surface after being reflected by the mirror 141, and the total reflection in the chamber of the optical waveguide element is continued.
  • each of the reflective components further includes: a connector coupled to each of the mirrors, configured to control a deflection angle of the mirror; and a control circuit coupled to the connector, configured to The connector inputs a mirror deflection signal.
  • the optical waveguide component further includes: a bottom disposed opposite the light exiting surface; a medium filled in the chamber; and a package surface disposed opposite the light incident surface and configured for implantation The hole of the medium.
  • the mirror array 14 includes a plurality of mirror assemblies arranged in an array disposed on the bottom 13 of the chamber 10.
  • the mirror assembly includes a mirror 141, a connector 142, and a control circuit 143.
  • the mirror 141 is disposed between the control circuit 143 and the top of the optical waveguide element, and the control circuit 143 is coupled to the mirror 141 via the connector 142; the control circuit 143 is configured to control the mirror 141 by controlling the movement of the connector 142. Deflection.
  • the connecting member 142 is not only the vertical portion in FIG. 5, but the connecting structure between the mirror 141 and the control circuit 143 belongs to the connecting member 142.
  • the mirror 141 when the mirror assembly is in an open state, the mirror 141 is deflected to a specified tilt position to direct light that is totally reflected onto the mirror assembly with an incident angle less than a predetermined angle to exit the light surface 12.
  • the mirror 141 and the light exit surface 12 when the mirror assembly is in the closed state, the mirror 141 and the light exit surface 12 are parallel to each other, and the light totally reflected onto the mirror assembly continues to be totally reflected in the optical waveguide element.
  • the preset angle is related to the angle ⁇ , the deflection angle of the mirror, and the angle of the required outgoing light, which is not limited in the embodiment of the present disclosure.
  • the mirror assembly at the corresponding position can be controlled to be turned on or off according to actual needs.
  • One mirror assembly corresponds to one pixel, and when all the mirror assemblies are all open, a surface light source can be provided.
  • the optical waveguide component has a hollow structure, that is, has a chamber 10, and the light incident surface 11 of the optical waveguide component is a sloped surface which makes the light incident surface 11 and the light exiting surface 12 of the optical waveguide component obtuse.
  • the optical waveguide component further includes a mirror array 14 located within the chamber 10 and located in the region of the bottom 13 of the optical waveguide component away from the ramp 11.
  • the mirror array 14 is configured to direct light that is totally reflected onto the mirror array 14 with an angle of incidence less than a predetermined angle to exit the light surface 12.
  • the optical waveguide element further includes a liquid medium 15 filled in the chamber 10, the liquid medium 15 allowing the light incident from the light incident surface to propagate in the liquid medium and at least a portion of the light being totally reflected.
  • the mirror array 14 is located in the liquid medium 15.
  • the bottom portion 13 and the light-emitting surface 12 of the optical waveguide element are disposed in parallel with each other, and the angle ⁇ between the light-incident surface 11 and the light-emitting surface 12 is an obtuse angle.
  • the light-incident surface 11 and the light-emitting surface 12 are not directly connected.
  • the angle ⁇ between the light-incident surface 11 and the light-emitting surface 12 toward the bottom side is ⁇ . It is an obtuse angle.
  • the minimum distance between the mirror array 14 and the region where the inclined surface 11 is located is d, and the minimum distance is set such that the light incident from the light incident surface 11 into the chamber 10 is incident on the chamber after multiple times of total reflection Mirror array 14.
  • the light incident surface 11 extends beyond the light exit surface 12
  • the optical waveguide component further includes a first connecting surface 16
  • the first connecting surface 16 extends with the light incident surface 11 and extends beyond the light emitting surface.
  • One end of 12 and the light exit surface 12 are connected such that the optical waveguide element forms a closed structure, that is, the light incident surface 11, the first connection surface 16, the light exit surface 12, the bottom portion 13 and the package surface 17
  • the chamber 10 is enclosed.
  • the angle ⁇ formed by the first connecting surface 16 and the light-emitting surface 12 is an obtuse angle
  • the angle ⁇ formed by the light-incident surface 11 is an acute angle.
  • the angle ⁇ is greater than 90° and less than 180°
  • the included angle ⁇ is greater than 0° and less than 90°.
  • the light incident surface 11 extends in the direction of the light exit surface 12 such that in the vertical direction (ie, perpendicular to the vertical direction of the bottom portion 13), the height of one end of the light incident surface 11 extending is higher than the height of the light exit surface 12.
  • the angle ⁇ formed by the first connecting surface 16 and the light-emitting surface 12 is set to an obtuse angle, and the light-incident surface 11 can be enlarged.
  • the area, that is, the light-in area of the light source is increased.
  • the angle ⁇ and the angle ⁇ are located on different sides of the optical waveguide component, and the angle ⁇ refers to an external angle between the first connection surface 16 and the light-emitting surface 12, which is located outside the optical waveguide component, and the angle ⁇ refers to the The inner angle between a connecting surface 16 and the light incident surface 11 is located inside the optical waveguide element.
  • the side of the first connecting face 16 facing the liquid medium 15 is coated with a light absorbing material, and by coating the light absorbing material on the first connecting face 16, the incident of a large viewing angle incident on the first connecting face 16 can be incident.
  • the light is absorbed to prevent incident light of a large viewing angle from entering the optical waveguide component, causing interference to the actually required light.
  • FIG. 2 a schematic structural view of another optical waveguide element of an embodiment of the present disclosure is shown.
  • the light incident surface 11 is a slope surface, and the slope surface is inclined with respect to the bottom portion 13 such that an angle ⁇ formed between the light incident surface 11 and the light exit surface 12 is an obtuse angle, and light is
  • the angle ⁇ formed by the bottom portion 13 of the waveguide element is an acute angle.
  • the angle ⁇ is greater than 90° and less than 180°, and the included angle ⁇ is greater than 0° and less than 90°.
  • the angle between the light incident surface 11 and the light exit surface 12 is set to an acute angle, and since the light incident surface 11 is a slope, when the light emitted by the light source is from When the light incident surface 11 is incident into the optical waveguide element, part of the incident light rays can be totally reflected in the optical waveguide element.
  • the angle ⁇ refers to the inner angle between the light incident surface 11 and the light exit surface 12, which is located inside the optical waveguide element
  • the angle ⁇ refers to the inner clamp between the light incident surface 11 and the bottom portion 13 of the optical waveguide element.
  • the corner is also located inside the optical waveguide element.
  • the optical waveguide component shown in FIG. 2 is different from the optical waveguide component shown in FIG. 1 in that the light incident surface 11 and the light exiting surface 12 in FIG. 1 are connected by a first connecting surface 16, and the light incident surface 11 in FIG. Connected to the light exit surface 12, the first connection surface 16 is not provided.
  • the area of the light-incident surface shown in FIG. 1 is larger than the area of the light-incident surface shown in FIG. 2, and the optical waveguide element shown in FIG. Increase the light incident area of the light source.
  • the side opposite to the light incident surface 11 is the package surface 17, and the package surface 17 is located on the side of the mirror array 14 away from the light incident surface 11.
  • the surface of the package surface 17 is provided with a hole 170.
  • the optical waveguide element is packaged through the package surface 17 and packaged through the package surface 17
  • the upper hole 170 is injected into the liquid medium 15, and after the injection is completed, the hole 170 is sealed to ensure the sealing property of the optical waveguide element.
  • FIG. 3 a schematic structural view of still another optical waveguide element of an embodiment of the present disclosure is shown.
  • the optical waveguide component further includes a second connection surface 18, and the second connection surface 18 extends to an end of the light incident surface 11 near the bottom portion 13 of the optical waveguide component, and is respectively associated with the light incident surface 11 and the optical waveguide.
  • the element bottoms 13 are connected such that the optical waveguide elements form a closed structure, that is, the light incident surface 11, the light exit surface 12, the bottom portion 13 and the package surface 17 are enclosed as closed chambers.
  • the second connection surface 18 can be disposed perpendicular to the bottom of the optical waveguide element. For example, the inner angle between the second connecting surface 18 and the light incident surface 11 is an obtuse angle.
  • the light incident surface 11 has a first end and a second end. In the vertical direction, the distance between the first end and the bottom portion 13 of the optical waveguide element is greater than the distance between the second end and the bottom portion 13 of the optical waveguide element, as shown in FIG.
  • the first end of the light incident surface 11 is connected to the first connecting surface 16, and the second connecting surface 18 extends to the second end of the light incident surface 11 and is connected to the second end of the light incident surface 11.
  • FIG. 4 there is shown a schematic diagram of an optical waveguide component in an embodiment of the present disclosure that increases the collimation of the exiting light.
  • the refractive index of the medium outside the optical waveguide element is n 1
  • the refractive index of the liquid medium in the optical waveguide element is n 2 .
  • the first incident angle of the light N incident on the light incident surface 11 of the optical waveguide element is A for the light N emitted downward from the light source 21, and the light N is entered according to the calculation formula of the refractive index.
  • the angle of refraction B on the smooth surface 11 arcsin (n 1 sinA / n 2 ).
  • 14 is a distance d between the area where the light incident surface 11 is located, and filters the light having a large first incident angle A, and only the light having a small first incident angle A is totally reflected in the optical waveguide element, thereby improving The degree of collimation of light entering the optical waveguide component.
  • the incident angle F of the light incident on the mirror array 14 is F- ⁇ -E, passing through the mirror in the optical waveguide element.
  • the array 14 adjusts the light exiting direction.
  • the deflection angle E of the mirror array 14 is generally greater than 0 and less than 12°, and the direction of the light exiting is adjusted by the mirror array 14 in the optical waveguide element, thereby improving the collimation of the light emitted from the optical waveguide element.
  • the preset distance d is controlled such that the light incident on the optical waveguide component continuously re-reflects within the preset distance d, and the light propagates in the direction of the mirror array 14 within the preset distance d, so that the light can be
  • the entire optical waveguide component is distributed so that light can be received across the entire array of mirrors 14.
  • the first incident angle A>10.1° no total reflection occurs in the optical waveguide component, and some of the light refracts the optical waveguide component.
  • a distance d most of the light refracts the optical waveguide component, and only the light having the first incident angle A ⁇ 10.1° in the optical waveguide component is totally reflected to the mirror array 14; when the first incident angle A is 10.1°, The second incident angle ⁇ is 38.68°.
  • the first incident angle A is 0°
  • the second incident angle ⁇ is 45°.
  • the second incident angle ⁇ ranges from 38.68° to 45°, if the reflection
  • the incident angle F of the light incident on the mirror array 14 ranges from 33.68° to 40°
  • the exit angle G of the light ranges from 28.68° to 35°.
  • the exit angle is smaller than the critical angle C, and is smaller than the light exit range of 120° in the prior art, which can improve the collimation of the emitted light.
  • the first incident angle of the light M incident on the light incident surface 11 of the optical waveguide element is A, and the refractive angle after the refraction is B, the light M is incident on the bottom 13 of the optical waveguide element.
  • the second incident angle ⁇ ⁇ + B.
  • the light entering the optical waveguide element can achieve total reflection, but when the light source 21 When the angle of the emitted light M is larger, that is, the larger the first incident angle incident on the light incident surface 11 is, the larger the second incident angle of the light M incident on the bottom portion 13 of the optical waveguide element is, the light M is totally reflected to The larger the incident angle of the mirror array 14, even if the mirror array 14 is opened, and the mirror array 14 is reflected onto the light exit surface 12, the total reflection is not destroyed, and the light M continues to be totally reflected in the optical waveguide element; Only when the angle of the light M emitted by the light source 21 is small, the light M is totally reflected onto the mirror array 14.
  • the light M When the mirror array 14 is opened, the light M can be led out to the light surface 12, and the light M can be led out to the light exit surface 12.
  • the angle ⁇ in FIG. 4 is equal to the angle ⁇ in FIG. 2, and may be unequal.
  • the collimation of the light emitted from the optical waveguide element is increased, the overlap between the outgoing light on the left side and the outgoing light on the right side is greatly reduced for the adjacent two regions, and the crosstalk between the outgoing light rays can be reduced.
  • the top of the optical waveguide component (light exit surface 12) has the same index of refraction as the bottom portion 13 of the optical waveguide component.
  • the refractive index of the top portion 12 of the optical waveguide element is greater than or equal to the refractive index of the liquid medium 15, and the difference is less than 0.3.
  • the difference between the refractive index of the top portion 12 of the optical waveguide element and the refractive index of the liquid medium 15 is zero, and when the refractive index of the top portion 12 of the optical waveguide element is greater than the refractive index of the liquid medium 15, the refractive index of the top portion 12 of the optical waveguide element is
  • the difference in refractive index of the liquid medium 15 should be less than 0.3, and the smaller the difference between the refractive index of the top portion 12 of the optical waveguide element and the refractive index of the liquid medium 15, the effective refraction between the liquid medium and the top portion 12 of the optical waveguide element can be effectively prevented. , affecting the angle of light of the light.
  • the liquid medium may have a refractive index of 1.45 to 1.7. Further, for example, a liquid medium having a refractive index of more than 1.7 may be used. The more common liquid medium 15 has a refractive index of 1.5 to 1.6.
  • the mirror 141 When the mirror assembly is in the open or closed state, the mirror 141 needs to be deflected and the medium within the optical waveguide element 10 allows the mirror assembly to deflect in the medium. Therefore, the medium is not a solid medium, and the refractive index of the ordinary gaseous medium is not required due to the refractive index requirement of the medium, and therefore, the medium is a liquid medium.
  • mirror array 14 may also be referred to as a DMD (Digital Micromirror Device) array.
  • the DMD is an integrated micro-electromechanical superstructure circuit unit, which is fabricated by using a COMS (Complementary Metal Oxide Semiconductor) SRAM (Static Random Access Memory) memory cell.
  • the DMD superstructure is fabricated from a complete CMOS memory circuit and then through the use of a mask layer to create an upper layer structure in which an aluminum metal layer and a hardened photoresist layer are alternately arranged.
  • the aluminum metal layer includes an address electrode, a hinge, and a hinge.
  • a yoke and a mirror, the hardened photoresist layer acts as a sacrificial layer to form two air gaps.
  • the aluminum metal is sputter deposited and plasma etched, and the sacrificial layer is plasma-ashed to create an air gap between the layers.
  • a portion of the light incident from the light incident surface is totally reflected in the optical waveguide element by filling the optical waveguide element with the liquid medium, and the mirror array is disposed at the bottom of the optical waveguide element, and the mirror is provided
  • the array is far away from the area where the light entrance surface is located, and the light that is totally reflected to the mirror array with an incident angle smaller than a preset angle is derived from the light surface.
  • part of the light incident from the light incident surface is totally reflected in the optical waveguide element, and part of the large angle of view light emitted by the light source is refracted out of the optical waveguide component.
  • the mirror array emits light that is totally reflected onto the mirror array with an incident angle smaller than a preset angle, and the light whose incident angle is greater than the preset angle continues to be totally reflected in the optical waveguide element, thereby improving the light emitted from the light emitting surface.
  • the degree of collimation can effectively solve the crosstalk problem between adjacent partitions of the backlight module, and can be applied to products such as anti-peep and directional backlight modules.
  • the embodiment of the present disclosure further provides a backlight module including a light source 21 and the above-mentioned optical waveguide component, and the light source 21 is disposed opposite to the light incident surface 11 of the optical waveguide component.
  • the light source 21 is disposed in a relatively parallel manner with the light incident surface 11.
  • the optical waveguide component reference may be made to the description of the previous embodiment, and the details of the embodiments of the present disclosure are not described herein.
  • FIG. 7 a top view of a backlight module of an embodiment of the present disclosure is shown.
  • the light source 21 includes a plurality of LEDs, and each of the LEDs emits white light.
  • each of the LEDs emits white light.
  • total reflection occurs at a predetermined distance between the mirror array 14 and the region where the light incident surface is located, and is totally reflected onto the mirror array 14.
  • the mirror array 14 is turned on, light that is totally reflected onto the mirror array 14 with an incident angle smaller than a predetermined angle is led out of the smooth surface 12.
  • the mirror array 14 is closed, light rays that are totally reflected onto the mirror array 14 with an incident angle greater than or equal to a predetermined angle continue to be totally reflected on the light exit surface 12.
  • the backlight module further includes a collimating element 33 disposed between the light source 31 and the optical waveguide element 32.
  • Mirror array 35 includes a plurality of mirror assemblies 34. For the specific structure of the mirror assembly 34, refer to the description of the previous embodiment, and details are not described herein again.
  • the collimating element is a convex lens
  • the collimating element may also be a concave lens or a concave mirror.
  • the backlight module includes a light source and an optical waveguide element, and a portion of the light incident from the light incident surface is totally reflected in the optical waveguide element by filling the liquid waveguide element with the liquid medium, passing through the bottom of the optical waveguide element.
  • the mirror array is arranged, and the mirror array is away from the area where the light incident surface is located, and the light that is totally reflected to the mirror array with an incident angle smaller than a preset angle is derived from the light surface.
  • part of the light incident from the light incident surface is totally reflected in the optical waveguide element, and part of the large angle of view light emitted by the light source is refracted out of the optical waveguide component.
  • the mirror array emits light that is totally reflected onto the mirror array with an incident angle smaller than a preset angle, and the light whose incident angle is greater than the preset angle continues to be totally reflected in the optical waveguide element, thereby improving the light emitted from the light emitting surface.
  • the degree of collimation can effectively solve the crosstalk problem between adjacent partitions of the backlight module, and can be applied to products such as anti-peep and directional backlight modules.
  • the embodiment of the present disclosure further provides a display device including the above backlight module.
  • the embodiment of the present disclosure further provides a control method of any of the foregoing optical waveguide components, including:
  • a mirror in the array of mirrors is controlled to reflect at least a portion of the light incident on the array of mirrors out of the exit surface or to be totally reflected on the exit surface.
  • controlling the mirrors in the array of mirrors comprises:
  • the mirror is deflected to tilt the mirror relative to the light exiting surface, and the totally reflected light incident on the mirror is reflected and directed out of the light exiting surface.
  • controlling the mirrors in the array of mirrors comprises:
  • the mirror is deflected such that the mirror is parallel to the illuminating surface and the totally reflected light incident on the mirror continues to be totally reflected by the illuminating surface.
  • FIG. 8 a flowchart of a method of controlling an optical waveguide element according to an embodiment of the present disclosure is shown, the control method including:
  • Step 801 controlling the first mirror component in the mirror array to be opened, so that light rays totally reflected to the first mirror component with an incident angle smaller than a preset angle are derived from the light emitting surface of the optical waveguide component.
  • Step 802 controlling the second mirror assembly in the mirror array to be closed to continue to totally reflect the light totally reflected onto the second mirror assembly within the optical waveguide element.
  • the mirror array 14 includes a plurality of mirror assemblies arranged in an array.
  • the mirror assembly includes a mirror 141, a connector 142, and a control circuit 143.
  • the mirror assembly in the mirror array 14 can be divided into Two types include a first mirror assembly and a second mirror assembly.
  • one pixel corresponds to one mirror assembly.
  • the external system inputs a corresponding control signal to the control circuit, and the control circuit opens the first mirror component in the mirror array 14 according to the control signal, as shown in FIG. 5, when the first reflection
  • the mirror assembly is opened, the mirror deflects to a specified tilt position, and the light exiting surface 12 of the optical waveguide element is totally reflected to the first mirror assembly with an incident angle smaller than a predetermined angle.
  • control circuit when the corresponding pixel does not require light, the control circuit also controls the second mirror assembly in the mirror array 14 to be turned off according to the control signal, as shown in FIG. 6, when the second mirror assembly is closed, the mirror and the light are emitted.
  • the faces 12 are parallel to each other and the light totally reflected onto the second mirror assembly continues to be totally reflected within the optical waveguide element.
  • the first mirror assembly and the second mirror assembly are determined according to whether the pixel at the corresponding position requires light, and when the pixel at the corresponding position requires light, the mirror assembly at the position is the first mirror assembly. When the pixel at the corresponding location does not require light, then the mirror assembly at that location is the second mirror assembly. It should be noted that the execution of step 801 and step 802 is not sequential, and can be performed simultaneously.
  • the first mirror assembly in the mirror array is controlled to open, so that the light incident on the first mirror assembly having an incident angle smaller than a predetermined angle is derived from the light exit surface of the optical waveguide component.
  • the second mirror assembly in the array of control mirrors is closed to continue to totally reflect the light totally reflected onto the second mirror assembly within the optical waveguide element.
  • part of the light incident from the light incident surface is totally reflected in the optical waveguide element, and part of the large angle of view light emitted by the light source is refracted out of the optical waveguide component.
  • the mirror array emits light that is totally reflected onto the mirror array with an incident angle smaller than a preset angle, and the light whose incident angle is greater than the preset angle continues to be totally reflected in the optical waveguide element, thereby improving the light emitted from the light emitting surface.
  • the degree of collimation can effectively solve the crosstalk problem between adjacent partitions of the backlight module, and can be applied to products such as anti-peep and directional backlight modules.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光波导元件及其控制方法、背光模组和显示装置。所述光波导元件包括:腔室(10);入光面(11)和出光面(12),从所述入光面(11)入射的光线在所述腔室(10)中传播并且被全反射;和反射镜阵列(14),位于所述腔室(10)中,配置为受控将入射到所述反射镜阵列(14)上的至少部分光线反射导出所述出光面(12)或在所述出光面(12)上继续被全反射。上述光波导元件有效解决了背光模组相邻分区之间的串扰问题。

Description

光波导元件及其控制方法、背光模组和显示装置
相关申请的交叉引用
本申请基于并且要求于2018年3月30日递交的、名称为“一种侧入式导光板及其控制方法、背光模组及显示装置”的中国专利申请第201810276475.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及显示技术领域,特别是涉及一种光波导元件及其控制方法、背光模组和显示装置。
背景技术
显示装置通常包括背光模组和显示面板等结构,在显示装置中,背光模组用于向显示面板提供需要的光源,以实现显示装置的正常显示。
发明内容
本公开实施例提供一种光波导元件及其控制方法、背光模组和显示装置。
根据本公开的第一方面,提供一种光波导元件,包括:
腔室;
入光面和出光面,从所述入光面入射的光线在所述腔室中传播并且被全反射;和
反射镜阵列,位于所述腔室中,配置为受控将入射到所述反射镜阵列上的至少部分光线反射导出所述出光面或在所述出光面上继续被全反射。
至少一些实施例中,所述反射镜阵列包括呈阵列排布的多个反射组件,每个反射组件包括可偏转的反射镜,所述反射镜配置为在第一状态下将入射到其上的至少部分光线反射导出所述出光面。
至少一些实施例中,所述反射镜将入射至其上的且入射角小于预设角度的至少部分光线反射导出所述出光面。
至少一些实施例中,所述反射镜还配置为在第二状态下将入射到其上的至少部分光线在所述出光面上继续被全反射。
至少一些实施例中,每个所述反射镜组件的反射镜配置为在所述第一状态下相对于所述出光面倾斜,以及在所述第二状态下与所述出光面平行。
至少一些实施例中,每个反射组件还包括:与每个反射镜相连接的连接件,配置为控制所述反射镜的偏转角度;以及控制电路,与所述连接件耦接,配置为向所述连接件输入反射镜偏转信号。
至少一些实施例中,所述反射镜阵列与所述入光面之间的最小距离设置成使从所述入光面入射到所述腔室中的光线经多次全反射后入射到所述反射镜阵列。
至少一些实施例中,光波导元件还包括:底部,与所述出光面相对设置;介质,填充在所述腔室中;和封装面,与所述入光面相对设置并且配有用于注入所述介质的孔。
至少一些实施例中,所述入光面为坡面,所述坡面相对于所述底部为倾斜,使得所述入光面和所述出光面之间的夹角呈钝角。
至少一些实施例中,光波导元件还包括第一连接面,其中所述入光面延伸且超出所述出光面,所述第一连接面分别与所述入光面延伸且超出所述出光面的一端及所述出光面相连,使得所述入光面、所述第一连接面、所述出光面、所述底部和所述封装面围设成封闭的所述腔室。
至少一些实施例中,所述第一连接面朝向所述腔室的一侧涂覆有光吸收材料。
至少一些实施例中,所述入光面分别与所述出光面及所述底部直接连接,使得所述入光面、所述出光面、所述底部和所述封装面围设成封闭的所述腔室。
至少一些实施例中,所述介质为液态介质,所述液态介质配置为允许从所述入光面入射的所述光线在所述液态介质中传播并且至少部分光线被全反射,所述反射镜阵列位于所述液态介质中。
至少一些实施例中,所述出光面的材料的折射率大于所述液态介质的折射率,且差值小于0.3。
至少一些实施例中,所述出光面的材料的折射率等于所述液态介质的折 射率。
根据本公开的第二方面,提供一种背光模组,包括:
光源;和
前述的光波导元件,所述光源与所述光波导元件的所述入光面相对设置。
至少一些实施例中,背光模组还包括设置在所述光源与所述光波导元件之间的准直元件,其中所述准直元件配置为将所述光源发出的光转化为准直光,并且所述准直光入射至所述光波导元件的所述入光面。
根据本公开的第三方面,提供一种包括前述背光模组的显示装置。
根据本公开的第四方面,提供一种前述的光波导元件的控制方法,包括:
控制所述反射镜阵列中的反射镜以将入射到所述反射镜阵列上的至少部分光线反射导出所述出光面或在所述出光面上继续被全反射。
至少一些实施例中,所述控制所述反射镜阵列中的反射镜包括:偏转所述反射镜以使所述反射镜相对于所述出光面倾斜,并且使入射到所述反射镜上的所述全反射的光线被反射并且被导出所述出光面。
至少一些实施例中,所述控制所述反射镜阵列中的反射镜包括:偏转所述反射镜以使所述反射镜平行于所述出光面,并且使入射到所述反射镜上的所述全反射的光线继续被所述出光面全反射。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1示出了本公开实施例的一种光波导元件的结构示意图;
图2示出了本公开实施例的另一种光波导元件的结构示意图;
图3示出了本公开实施例的再一种光波导元件的结构示意图;
图4示出了本公开实施例中的光波导元件提高出射光线准直度的原理图;
图5示出了本公开实施例中的反射镜组件处于第一状态的结构示意图;
图6示出了本公开实施例中的反射镜组件处于第二状态的结构示意图;
图7示出了本公开实施例的背光模组的俯视图;
图8示出了本公开实施例的一种光波导元件的控制方法的流程图;
图9示出了本公开实施例的封装面的结构示意图;
图10示出了本公开实施例的背光模组的结构示意图;
图11示出了图10的背光模组的俯视图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
HDR(High Dynamic Range,高动态范围)背光模组中,在显示面板下方密集排列多个LED(Light Emitting Diode,发光二极管),由于背光亮度可以动态调节,实现更大的亮度调节范围,从而提升对比度。然而,由于LED发出的光线的出射范围为120光左右,上述结构的背光模组中,不同分区的LED之间会产生出射光线相互串扰的问题。
参照图1,示出了本公开实施例的一种光波导元件的结构示意图。
本公开实施例提供了一种光波导元件,包括:腔室10;入光面11和出光面12,从所述入光面11入射的光线在所述腔室10中传播并且被全反射;和反射镜阵列14,位于所述腔室10中,配置为受控将入射到所述反射镜阵 列14上的至少部分光线反射导出所述出光面或在所述出光面12上继续被全反射。
上述实施例中,通过在光波导元件中设置反射镜阵列,从而可以将全反射至反射镜阵列上的一部分光线导出出光面,或者使一部光线继续在出光面上全反射。这样,提高出光面出射的光线的准直度,有效解决背光模组相邻分区之间的串扰问题,同时可适用于防窥、定向背光模组等产品中。
至少一些实施例中,所述反射镜阵列包括呈阵列排布的多个反射组件,每个反射组件包括可偏转的反射镜,所述反射镜配置为在第一状态下将入射到其上的至少部分光线反射导出所述出光面。
例如,如图4和图5所示,反射镜阵列14包括呈阵列排布的多个反射组件,每个反射组件包括可偏转的反射镜141。在第一状态下(例如反射镜141相对于出光面12呈倾斜),反射镜141将入射到其上的至少部分光线反射导出所述出光面12。本公开实施例中,反射镜为平面型,在其他实施例中,反射镜的形式还可以是其他结构,例如三棱锥形等。本公开中提到的反射镜的偏转角度以及其与出光面之间的夹角均指的是反射镜的反射面的偏转角度,以及反射镜的反射面与出光面之间的夹角。本公开对该反射镜的支撑结构的具体形式不做限定。
至少一些实施例中,所述反射镜还配置为在第二状态下将入射到其上的至少部分光线在所述出光面上继续被全反射。例如,如图3所示,在第二状态下(例如反射镜141与出光面12彼此平行),反射镜141将入射到其上的至少部分光线在所述出光面上继续被全反射。
至少一些实施例中,在第一状态下,所述反射镜将入射至其上的且入射角小于预设角度的至少部分光线反射导出所述出光面。至少一些实施例中,在第二状态下,所述反射镜将入射至其上的且入射角大于预设角度的至少部分光线在所述出光面上继续全反射。
此处,术语“入射角”指的是进入光波导元件的腔室10中的光线,其入射至反射镜141上的入射角。术语“预设角度”指的是全反射至反射镜141上的光线在反射镜141上反射后是否可以从出光面12出射出去的临界角度,该角度与出光面12出射的光线的准直度相关。当全反射至反射镜141上的光线的入射角度小于预设角度时,该光线在反射镜141上反射后可以从出光面 出射出去;当全反射至反射镜141上的光线的入射角度大于预设角度时,该光线在反射镜141上反射后不可以从出光面出射出去,会继续在光波导元件的腔室中进行全反射。
至少一些实施例中,每个反射组件还包括:与每个反射镜相连接的连接件,配置为控制所述反射镜的偏转角度;以及控制电路,与所述连接件耦接,配置为向所述连接件输入反射镜偏转信号。
至少一些实施例中,光波导元件还包括:底部,与所述出光面相对设置;介质,填充在所述腔室中;和封装面,与所述入光面相对设置并且配有用于注入所述介质的孔。
如图4所示,反射镜阵列14包括多个呈阵列排布的反射镜组件,设置在腔室10的底部13上。例如,如图5所示,反射镜组件包括反射镜141、连接件142和控制电路143。反射镜141设置在控制电路143与光波导元件顶部之间,且控制电路143与反射镜141通过连接件142耦接;控制电路143,被配置为通过控制连接件142的运动以控制反射镜141的偏转。
需要说明的是,连接件142不仅仅只是图5中的竖直部分,在反射镜141与控制电路143之间的连接结构均属于连接件142。
例如,如图5所示,当反射镜组件为开启状态时,反射镜141偏转至指定倾斜位置,以将全反射至反射镜组件上的入射角小于预设角度的光线导出出光面12。例如,如图6所示,当反射镜组件为关闭状态时,反射镜141与出光面12相互平行,全反射至反射镜组件上的光线在光波导元件内继续进行全反射。预设角度与角度θ、反射镜偏转角度、要求的出射光线的角度相关,本公开实施例对此不做限制。
可根据实际需求,控制对应位置处的反射镜组件打开或关闭,一个反射镜组件对应一个像素,当所有的反射镜组件全部打开时,可提供面光源。
例如,如图1所示,光波导元件为空心结构,即具有腔室10,光波导元件的入光面11为斜面,斜面使得光波导元件的入光面11和出光面12呈钝角。光波导元件还包括位于腔室10内且位于光波导元件底部13远离斜面11所在区域的反射镜阵列14。反射镜阵列14被配置为将全反射至反射镜阵列14上的入射角小于预设角度的光线导出出光面12。光波导元件还包括填充于腔室 10内的液态介质15,液态介质15允许从所述入光面入射的所述光线在所述液态介质中传播并且至少部分光线被全反射。所述反射镜阵列14位于所述液态介质15中。
例如,光波导元件的底部13和出光面12相互平行设置,入光面11与出光面12之间的夹角γ为钝角。如图1所示,入光面11与出光面12未直接相连,假设出光面12水平延长至与入光面11相连,则入光面11与出光面12之间朝向底部侧的夹角γ为钝角。反射镜阵列14与斜面11所在区域之间的最小距离为d,该最小距离设置成使从所述入光面11入射到所述腔室10中的光线经多次全反射后入射到所述反射镜阵列14。
例如,图1所示的光波导元件中,入光面11延伸且超出出光面12,光波导元件还包括第一连接面16,第一连接面16分别与入光面11延伸且超出出光面12的一端及出光面12相连,使得光波导元件形成封闭结构,即,所述入光面11、所述第一连接面16、所述出光面12、所述底部13和所述封装面17围设成封闭的所述腔室10。例如,第一连接面16与出光面12形成的夹角α为钝角,与入光面11形成的夹角β为锐角。例如,夹角α大于90°且小于180°,夹角β大于0°且小于90°。
例如,入光面11向出光面12的方向延伸,使得在竖直方向上(即,垂直于底部13的竖直方向),入光面11延伸的一端的高度高于出光面12的高度。
例如,通过将第一连接面16与出光面12形成的夹角α设置成钝角,将第一连接面16与入光面11形成的夹角β设置为钝角,可增大入光面11的面积,即增大光源的入光面积。例如,夹角α与夹角β位于光波导元件的不同侧,夹角α指的是第一连接面16与出光面12的外夹角,位于光波导元件外侧,夹角β指的是第一连接面16与入光面11之间的内夹角,位于光波导元件内侧。
例如,第一连接面16朝向液态介质15的一侧涂覆有光吸收材料,通过在第一连接面16上涂覆光吸收材料,可将入射至第一连接面16上的大视角的入射光吸收掉,防止大视角的入射光进入光波导元件内,对实际需求的光线造成干扰。
参照图2,示出了本公开实施例的另一种光波导元件的结构示意图。
图2所示的光波导元件中,入光面11为坡面,所述坡面相对于所述底部13为倾斜,使得入光面11与出光面12形成的夹角γ为钝角,与光波导元件底部13形成的夹角ζ为锐角,例如,夹角γ大于90°且小于180°,夹角ζ大于0°且小于90°。
通过将入光面11与出光面12之间的夹角设置成钝角,将入光面11与光波导元件底部的夹角设置成锐角,由于入光面11为斜面,当光源发出的光线从入光面11入射至光波导元件内时,部分入射光线可在光波导元件内发生全反射。例如,夹角γ指的是入光面11与出光面12之间的内夹角,位于光波导元件内侧,夹角ζ指的是入光面11与光波导元件底部13之间的内夹角,也位于光波导元件内侧。
图2所示的光波导元件与图1所示的光波导元件的区别在于,图1中入光面11与出光面12之间通过第一连接面16相连,图2中入光面11直接与出光面12相连,没有设置第一连接面16。例如,当出光面12与光波导元件底部13之间的间距相同时,图1所示的入光面的面积大于图2所示的入光面的面积,图1所示的光波导元件可增大光源的入光面积。
例如,如图1和图2所示,在光波导元件中,与入光面11相对的一侧为封装面17,封装面17位于反射镜阵列14远离入光面11的一侧。
如图9所示,封装面17的表面上设置有孔170,当在光波导元件底部13上设置好反射镜阵列14后,通过封装面17将光波导元件进行封装,封装后通过封装面17上的孔170注入液态介质15,注入完成后,将孔170密封,保证光波导元件的密封性。
参照图3,示出了本公开实施例的再一种光波导元件的结构示意图。
图3所示的光波导元件中,光波导元件还包括第二连接面18,第二连接面18延伸至入光面11靠近光波导元件底部13的一端,且分别与入光面11和光波导元件底部13相连,使得光波导元件形成封闭结构,即所述入光面11、所述出光面12、所述底部13和所述封装面17围设成封闭的所述腔室。第二连接面18可与光波导元件底部垂直设置。例如,第二连接面18与入光面11之间的内夹角为钝角。
例如,入光面11具有第一端和第二端,在竖直方向上,第一端与光波导元件底部13的距离大于第二端与光波导元件底部13的距离,如图3所示,入光面11的第一端与所述第一连接面16相连,第二连接面18延伸至入光面11的第二端,并与入光面11的第二端相连。
参照图4,示出了本公开实施例中的光波导元件提高出射光线准直度的原理图。
以图3所示的光波导元件为例,说明本公开实施例中的光波导元件提高出射光线准直度的原理:
光波导元件外的介质的折射率为n 1,光波导元件内的液态介质的折射率为n 2,根据全反射原理可得知,光波导元件内全反射的临界角度为C=arcsin(n 1/n 2)。
以光源21的中心为基准,针对光源21向下出射的光线N,光线N入射到光波导元件的入光面11上的第一入射角为A,根据折射率的计算公式,光线N在入光面11上的折射角B=arcsin(n 1sinA/n 2)。
光波导元件底部13与入光面11之间的夹角为θ,则光线N入射至光波导元件底部13上的第二入射角μ=θ-B=θ-arcsin(n 1sinA/n 2)。
当μ<C时,即θ-arcsin(n 1sinA/n 2)<arcsin(n 1/n 2)时,不能发生全反射,部分光线会折射出光波导元件;当μ≥C时,可在光波导元件内发生全反射。
光线N入射至入光面11上的第一入射角A越大时,第二入射角μ越小,当第一入射角A越小时,第二入射角μ越大,则可通过反射镜阵列14与入光面11所在区域之间的距离d,将第一入射角A较大的光线进行过滤,仅保留第一入射角A较小的光线在光波导元件内进行全反射,则可提高进入光波导元件内的光线的准直度。
如果光线N可以在光波导元件内发生全反射,反射镜阵列14的偏转角度为E,则入射至反射镜阵列14上的光线的入射角F=μ-E,通过光波导元件内的反射镜阵列14进行出光方向的调节,当反射镜阵列14将光线N导出出光面12时,光线的出射角度G=F-E=μ-2E。其中,反射镜阵列14的偏转角度E一般大于0且小于12°,通过光波导元件内的反射镜阵列14进行出光方 向的调节,进而提高光波导元件出射的光线的准直度。
此外,根据实际的需求,控制预设距离d,使得入射至光波导元件的光线在预设距离d内不断发生全反射,光线在预设距离d内向反射镜阵列14的方向传播,使得光线能遍布整个光波导元件,以便整个反射镜阵列14上都能接收到光线。
例如,θ=45°,n 1=1,n 2=1.6,则当第一入射角A>10.1°时,不会在光波导元件内发生全反射,部分光线会折射出光波导元件,经过预设距离d,大部分光线折射出光波导元件,则在光波导元件内只有第一入射角A≤10.1°的光线会全反射至反射镜阵列14;当第一入射角A为10.1°时,第二入射角μ为38.68°,当第一入射角A为0°时,第二入射角μ为45°,因此,对于光线N,第二入射角μ的范围为38.68°至45°,若反射镜阵列14的偏转角度E为5°时,则入射至反射镜阵列14上的光线的入射角F的范围为33.68°至40°,光线的出射角度G的范围为28.68°至35°,光线的出射角度小于临界角度C,也小于现有技术中的光线出射范围120°,可提高出射光线的准直度。
针对光源21向上出射的光线M,光线M射到光波导元件的入光面11上的第一入射角为A,发生折射后的折射角为B,则光线M入射至光波导元件底部13上的第二入射角μ=θ+B。当θ=45°,n 1=1,n 2=1.6时,无论入射至入光面11上的第一入射角为多少,进入光波导元件中的光线均能实现全反射,但当光源21发出的光线M的角度越大时,即入射至入光面11上的第一入射角越大时,光线M入射光波导元件底部13上的第二入射角越大,则光线M全反射至反射镜阵列14的入射角越大,即使反射镜阵列14打开,被反射镜阵列14反射至出光面12上时,全反射依然没有被破坏,光线M会在光波导元件内继续进行全反射;只有当光源21发出的光线M的角度较小时,光线M全反射至反射镜阵列14上,反射镜阵列14打开时可将光线M会导出出光面12,可导出至出光面12的光线M的出射角度小于临界角度C;若反射镜阵列14的偏转角度E为5°,由于光线M的出射角度G=θ+B-2E,则光线M的出射角度G的范围为35°至38.68°,小于现有技术中的光线出射范围120°,可提高光波导元件出射的光线的准直度。
例如,图4中的角度θ与图2中的角度ζ相等,也可以不等。
当光波导元件出射的光线准直度提高,针对相邻的两个区域,左侧的出射光线和右侧的出射光线之间的重叠现象大大减少,则可降低出射光线之间的串扰。
至少一些实施例中,光波导元件顶部(出光面12)与光波导元件底部13的折射率相同。至少一些实施例中,光波导元件顶部12的折射率大于或等于液态介质15的折射率,且差值小于0.3。例如,光波导元件顶部12的折射率与液态介质15的折射率的差值为0,当光波导元件顶部12的折射率大于液态介质15的折射率时,光波导元件顶部12的折射率与液态介质15的折射率差值应小于0.3,光波导元件顶部12的折射率与液态介质15的折射率的差值越小,则可有效防止液态介质与光波导元件顶部12之间再次发生折射,影响光线的出光角度。
例如,液态介质的折射率可以为1.45至1.7,再例如,还可以采用折射率大于1.7的液态介质,较为常见的液态介质15的折射率为1.5至1.6。
反射镜组件在打开或关闭状态时,反射镜141需要进行偏转,光波导元件10内的介质允许反射镜组件在介质中进行偏转。因此,该介质不是固态介质,且由于介质的折射率要求,普通的气态介质的折射率达不到要求,因此,该介质为液态介质。
例如,反射镜阵列14也可称为DMD(Digital Micromirror Device,数字微镜器件)阵列。DMD是一种整合的微机电上层结构电路单元,利用COMS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)SRAM(Static Random Access Memory,静态随机存储器)记忆晶胞所制成。DMD上层结构的制造是从完整CMOS内存电路开始,再透过光罩层的使用,制造出铝金属层和硬化光阻层交替的上层结构,铝金属层包括地址电极、绞链(hinge)、轭(yoke)和反射镜,硬化光阻层做为牺牲层(sacrificiallayer),用来形成两个空气间隙。铝金属经过溅镀沉积及等离子蚀刻处理,牺牲层则经过等离子去灰(plasma—ashed)处理,制造出层间的空气间隙。
在本公开实施例中,通过在光波导元件内填充液态介质,使得从入光面入射的部分光线在光波导元件内发生全反射,通过在光波导元件的底部设置反射镜阵列,且反射镜阵列远离入光面所在区域,将全反射至反射镜阵列上 的入射角小于预设角度的光线导出出光面。在反射镜阵列与入光面之间,由于液态介质的存在,从入光面入射的部分光线会在光波导元件内发生全反射,将光源发出的部分大视角的光线折射出光波导元件,通过反射镜阵列将全反射至反射镜阵列上的入射角小于预设角度的光线导出出光面,而入射角大于预设角度的光线继续在光波导元件内进行全反射,提高出光面出射的光线的准直度,有效解决背光模组相邻分区之间的串扰问题,同时可适用于防窥、定向背光模组等产品中。
本公开实施例还提供了一种背光模组,包括光源21和上述的光波导元件,光源21与光波导元件的入光面11相对设置。
例如,光源21与入光面11相对平行设置,关于光波导元件的描述可以参照前面实施例的描述,本公开实施例对此不再赘述。
参照图7,示出了本公开实施例的背光模组的俯视图。
例如,光源21包括多个LED,且每个LED发出的光线均为白光。当各个LED发出的光线进入光波导元件内时,在反射镜阵列14与入光面所在区域之间的预设距离处发生全反射,并全反射至反射镜阵列14上。当反射镜阵列14打开时,将全反射至反射镜阵列14上的入射角小于预设角度的光线导出出光面12。当当反射镜阵列14关闭时,将全反射至反射镜阵列14上的入射角大于或等于预设角度的光线继续在出光面12上全反射。
如图10和11所示,至少一些实施例中,背光模组还包括设置在光源31与光波导元件32之间的准直元件33。
光源31发出的发散光线进入到准直元件33中,准直元件33可将光源31发出的发散光线转化为平行光,对光源31发出的发散光线进行准直,准直后的光线再入射至光波导元件32中的入光面。反射镜阵列35包括多个反射镜组件34。关于反射镜组件34的具体结构可参见前面实施例的描述,此处不再赘述。
例如,准直元件为凸透镜,准直元件还可以为凹透镜或凹面镜。
在上述实施例中,背光模组包括光源和光波导元件,通过在光波导元件内填充液态介质,使得从入光面入射的部分光线在光波导元件内发生全反射, 通过在光波导元件的底部设置反射镜阵列,且反射镜阵列远离入光面所在区域,将全反射至反射镜阵列上的入射角小于预设角度的光线导出出光面。在反射镜阵列与入光面之间,由于液态介质的存在,从入光面入射的部分光线会在光波导元件内发生全反射,将光源发出的部分大视角的光线折射出光波导元件,通过反射镜阵列将全反射至反射镜阵列上的入射角小于预设角度的光线导出出光面,而入射角大于预设角度的光线继续在光波导元件内进行全反射,提高出光面出射的光线的准直度,有效解决背光模组相邻分区之间的串扰问题,同时可适用于防窥、定向背光模组等产品中。
本公开实施例还提供了一种显示装置,包括上述的背光模组。
本公开实施例还提供了一种任一前述光波导元件的控制方法,包括:
控制所述反射镜阵列中的反射镜以将入射到所述反射镜阵列上的至少部分光线反射导出所述出光面或在所述出光面上继续被全反射。
至少一些实施例中,所述控制所述反射镜阵列中的反射镜包括:
偏转所述反射镜以使所述反射镜相对于所述出光面倾斜,并且使入射到所述反射镜上的所述全反射的光线被反射并且被导出所述出光面。
至少一些实施例中,所述控制所述反射镜阵列中的反射镜包括:
偏转所述反射镜以使所述反射镜平行于所述出光面,并且使入射到所述反射镜上的所述全反射的光线继续被所述出光面全反射。
参照图8,示出了本公开实施例的一种光波导元件的控制方法的流程图,该控制方法包括:
步骤801,控制所述反射镜阵列中的第一反射镜组件打开,以将全反射至所述第一反射镜组件上的入射角小于预设角度的光线导出所述光波导元件中的出光面。
步骤802,控制所述反射镜阵列中的第二反射镜组件关闭,以将全反射至所述第二反射镜组件上的光线在所述光波导元件内继续进行全反射。
例如,反射镜阵列14包括多个呈阵列排布的反射镜组件,反射镜组件包括反射镜141、连接件142和控制电路143,根据实际需求,反射镜阵列14中的反射镜组件可划分为两种,包括第一反射镜组件和第二反射镜组件。
例如,一个像素对应一个反射镜组件。例如,当对应像素需要提供光线 时,外部系统向控制电路输入对应的控制信号,控制电路根据控制信号将反射镜阵列14中的第一反射镜组件打开,如图5所示,当第一反射镜组件打开时,反射镜偏会转至指定倾斜位置,将全反射至第一反射镜组件上的入射角小于预设角度的光线导出光波导元件中的出光面12。
例如,当对应的像素不需要光线时,控制电路还根据控制信号控制反射镜阵列14中的第二反射镜组件关闭,如图6所示,当第二反射镜组件关闭时,反射镜与出光面12相互平行,全反射至第二反射镜组件上的光线在光波导元件内继续进行全反射。
例如,第一反射镜组件和第二反射镜组件根据对应位置处的像素是否需要光线来决定,当对应位置处的像素需要光线时,则该位置处的反射镜组件为第一反射镜组件,对应位置处的像素不需要光线时,则该位置处的反射镜组件为第二反射镜组件。需要说明的是,步骤801和步骤802的执行没有先后顺序,可同时进行。
在本公开实施例中,通过控制反射镜阵列中的第一反射镜组件打开,以将全反射至第一反射镜组件上的入射角小于预设角度的光线导出光波导元件中的出光面,控制反射镜阵列中的第二反射镜组件关闭,以将全反射至第二反射镜组件上的光线在光波导元件内继续进行全反射。在反射镜阵列与入光面之间,由于液态介质的存在,从入光面入射的部分光线会在光波导元件内发生全反射,将光源发出的部分大视角的光线折射出光波导元件,通过反射镜阵列将全反射至反射镜阵列上的入射角小于预设角度的光线导出出光面,而入射角大于预设角度的光线继续在光波导元件内进行全反射,提高出光面出射的光线的准直度,有效解决背光模组相邻分区之间的串扰问题,同时可适用于防窥、定向背光模组等产品中。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种光波导元件,包括:
    腔室;
    入光面和出光面,从所述入光面入射的光线在所述腔室中传播并且被全反射;和
    反射镜阵列,位于所述腔室中,配置为受控将入射到所述反射镜阵列上的至少部分光线反射导出所述出光面或在所述出光面上继续被全反射。
  2. 根据权利要求1所述的光波导元件,其中所述反射镜阵列包括呈阵列排布的多个反射组件,每个反射组件包括可偏转的反射镜,所述反射镜配置为在第一状态下将入射到其上的至少部分光线反射导出所述出光面。
  3. 根据权利要求2所述的光波导元件,其中所述反射镜将入射至其上的且入射角小于预设角度的至少部分光线反射导出所述出光面。
  4. 根据权利要求2或3所述的光波导元件,其中所述反射镜还配置为在第二状态下将入射到其上的至少部分光线在所述出光面上继续被全反射。
  5. 根据权利要求4所述的光波导元件,其中每个所述反射镜组件的反射镜配置为在所述第一状态下相对于所述出光面倾斜,以及在所述第二状态下与所述出光面平行。
  6. 根据权利要求2至5任一项所述的光波导元件,其中每个反射组件还包括:
    与每个反射镜相连接的连接件,配置为控制所述反射镜的偏转角度;以及
    控制电路,与所述连接件耦接,配置为向所述连接件输入反射镜偏转信号。
  7. 根据权利要求1至6任一项所述的光波导元件,其中所述反射镜阵列与所述入光面之间的最小距离设置成使从所述入光面入射到所述腔室中的光线经多次全反射后入射到所述反射镜阵列。
  8. 根据权利要求1至7任一项所述的光波导元件,还包括:
    底部,与所述出光面相对设置;
    介质,填充在所述腔室中;和
    封装面,与所述入光面相对设置并且配有用于注入所述介质的孔。
  9. 根据权利要求8所述的光波导元件,其中所述入光面为坡面,所述坡面相对于所述底部为倾斜,使得所述入光面和所述出光面之间的夹角呈钝角。
  10. 根据权利要求8所述的光波导元件,还包括第一连接面,其中所述入光面延伸且超出所述出光面,所述第一连接面分别与所述入光面延伸且超出所述出光面的一端及所述出光面相连,使得所述入光面、所述第一连接面、所述出光面、所述底部和所述封装面围设成封闭的所述腔室。
  11. 根据权利要求8所述的光波导元件,其中所述入光面分别与所述出光面及所述底部直接连接,使得所述入光面、所述出光面、所述底部和所述封装面围设成封闭的所述腔室。
  12. 根据权利要求8所述的光波导元件,其中所述介质为液态介质,所述液态介质配置为允许从所述入光面入射的所述光线在所述液态介质中传播并且至少部分光线被全反射,所述反射镜阵列位于所述液态介质中。
  13. 根据权利要求12所述的光波导元件,其中所述出光面的材料的折射率大于所述液态介质的折射率,且差值小于0.3。
  14. 根据权利要求12所述的光波导元件,其中所述出光面的材料的折射率等于所述液态介质的折射率。
  15. 一种背光模组,包括:
    光源;和
    如权利要求1至14任一项所述的光波导元件,所述光源与所述光波导元件的所述入光面相对设置。
  16. 根据权利要求15所述的背光模组,还包括设置在所述光源与所述光波导元件之间的准直元件,其中所述准直元件配置为将所述光源发出的光转化为准直光,并且所述准直光入射至所述光波导元件的所述入光面。
  17. 一种显示装置,包括权利要求15或16所述的背光模组。
  18. 一种权利要求1至14任一项所述的光波导元件的控制方法,包括:
    控制所述反射镜阵列中的反射镜以将入射到所述反射镜阵列上的至少部分光线反射导出所述出光面或在所述出光面上继续被全反射。
  19. 根据权利要求18所述的控制方法,其中所述控制所述反射镜阵列中的反射镜包括:
    偏转所述反射镜以使所述反射镜相对于所述出光面倾斜,并且使入射到所述反射镜上的所述全反射的光线被反射并且被导出所述出光面。
  20. 根据权利要求18所述的控制方法,其中所述控制所述反射镜阵列中的反射镜包括:
    偏转所述反射镜以使所述反射镜平行于所述出光面,并且使入射到所述反射镜上的所述全反射的光线继续被所述出光面全反射。
PCT/CN2018/120342 2018-03-30 2018-12-11 光波导元件及其控制方法、背光模组和显示装置 WO2019184446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,142 US11391882B2 (en) 2018-03-30 2018-12-11 Optical waveguide element and control method thereof, backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810276475.1A CN108287390B (zh) 2018-03-30 2018-03-30 一种侧入式导光板及其控制方法、背光模组及显示装置
CN201810276475.1 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019184446A1 true WO2019184446A1 (zh) 2019-10-03

Family

ID=62833742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120342 WO2019184446A1 (zh) 2018-03-30 2018-12-11 光波导元件及其控制方法、背光模组和显示装置

Country Status (3)

Country Link
US (1) US11391882B2 (zh)
CN (1) CN108287390B (zh)
WO (1) WO2019184446A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287390B (zh) 2018-03-30 2019-08-30 京东方科技集团股份有限公司 一种侧入式导光板及其控制方法、背光模组及显示装置
CN113219718B (zh) * 2021-04-21 2022-04-19 惠科股份有限公司 显示面板的背光模组和显示装置
CN114509844B (zh) * 2022-04-21 2022-06-21 联钢精密科技(中国)有限公司 一种具有渐变延伸功能的导光装置
CN114815298A (zh) * 2022-04-28 2022-07-29 浙江大学 一种用于裸眼三维显示的波导型高均匀度定向背光系统
CN115509046B (zh) * 2022-09-29 2024-07-02 厦门天马微电子有限公司 背光模组、显示面板及其控制方法、显示装置
CN115980909B (zh) * 2023-03-22 2023-07-18 惠科股份有限公司 发光组件及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220344A (ja) * 1995-02-15 1996-08-30 Fujitsu Ltd 平面光源及び非発光型表示装置
CN101424768A (zh) * 2007-11-02 2009-05-06 北京京东方光电科技有限公司 导光板、背光源及液晶显示器
CN102062334A (zh) * 2006-10-09 2011-05-18 皇家飞利浦电子股份有限公司 灯以及灯的使用
CN104503016A (zh) * 2014-12-01 2015-04-08 深圳市华星光电技术有限公司 导光板及其制作方法
CN205227050U (zh) * 2015-11-30 2016-05-11 Tcl海外电子(惠州)有限公司 背光模组及显示器
CN108287390A (zh) * 2018-03-30 2018-07-17 京东方科技集团股份有限公司 一种侧入式导光板及其控制方法、背光模组及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543958A (en) * 1994-12-21 1996-08-06 Motorola Integrated electro-optic package for reflective spatial light modulators
US6972882B2 (en) * 2002-04-30 2005-12-06 Hewlett-Packard Development Company, L.P. Micro-mirror device with light angle amplification
JP2008209779A (ja) * 2007-02-27 2008-09-11 Casio Comput Co Ltd 液晶表示装置
CN101852362B (zh) * 2009-03-30 2013-02-13 北京京东方光电科技有限公司 背光模组及其驱动方法和液晶显示器
US20140140091A1 (en) * 2012-11-20 2014-05-22 Sergiy Victorovich Vasylyev Waveguide illumination system
US9470834B2 (en) 2014-12-01 2016-10-18 Shenzhen China Star Optoelectronics Technology Co., Ltd Light guide plate and manufacturing method thereof
CN105911737B (zh) * 2016-06-15 2020-03-03 京东方科技集团股份有限公司 一种背光源、显示装置及其控制方法
CN108627974A (zh) * 2017-03-15 2018-10-09 松下知识产权经营株式会社 光扫描系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220344A (ja) * 1995-02-15 1996-08-30 Fujitsu Ltd 平面光源及び非発光型表示装置
CN102062334A (zh) * 2006-10-09 2011-05-18 皇家飞利浦电子股份有限公司 灯以及灯的使用
CN101424768A (zh) * 2007-11-02 2009-05-06 北京京东方光电科技有限公司 导光板、背光源及液晶显示器
CN104503016A (zh) * 2014-12-01 2015-04-08 深圳市华星光电技术有限公司 导光板及其制作方法
CN205227050U (zh) * 2015-11-30 2016-05-11 Tcl海外电子(惠州)有限公司 背光模组及显示器
CN108287390A (zh) * 2018-03-30 2018-07-17 京东方科技集团股份有限公司 一种侧入式导光板及其控制方法、背光模组及显示装置

Also Published As

Publication number Publication date
CN108287390B (zh) 2019-08-30
US20210356646A1 (en) 2021-11-18
US11391882B2 (en) 2022-07-19
CN108287390A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2019184446A1 (zh) 光波导元件及其控制方法、背光模组和显示装置
KR100660721B1 (ko) 측면 발광용 렌즈 및 그를 이용한 발광 소자
KR102257061B1 (ko) 다중빔 회절 격자-기반의 컬러 백라이트
KR20190059337A (ko) 표시 장치
CN111323982B (zh) 防窥膜、背光源和显示装置
WO2019085629A1 (zh) 液晶显示装置及其背光模组
US20080239203A1 (en) Spatial light modulator display
TWI487983B (zh) 光學膜及使用光學膜之背光模組
KR20080077363A (ko) 향상된 휘도 및 콘트라스트를 갖는 반사형 디스플레이
US20090002987A1 (en) Collimation Arrangement and Illumination System and Display Device Using the Same
WO2004049059A1 (ja) 透過型スクリーンおよび投写型表示装置
JP2000250032A (ja) 面光源装置
KR100846804B1 (ko) 광 시스템
US9116266B2 (en) Light-emitting element and display device using the same
JP2019032404A (ja) 空中映像表示装置
US20100038663A1 (en) Led light recycling for luminance enhancement and angular narrowing
US10281655B2 (en) Field inversion waveguide using micro-prism array
WO2019010980A1 (zh) 背光模组及其控制方法、显示装置
CN114755752B (zh) 背光模组
TW202141135A (zh) 前光模組與具有前光模組的顯示裝置
KR102464027B1 (ko) 발광 장치, 그 장치를 포함하는 백 라이트 유닛, 및 그 유닛을 포함하는 디스플레이 장치
WO2022085503A1 (ja) 空中表示装置
KR102008281B1 (ko) 광속 제어 부재, 발광 장치 및 표시 장치
WO2023201699A1 (zh) 显示基板及显示装置
JP2023119885A (ja) 照明装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912489

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18912489

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18912489

Country of ref document: EP

Kind code of ref document: A1