WO2019184104A1 - 一种耐热磁畴细化型取向硅钢及其制造方法 - Google Patents

一种耐热磁畴细化型取向硅钢及其制造方法 Download PDF

Info

Publication number
WO2019184104A1
WO2019184104A1 PCT/CN2018/092008 CN2018092008W WO2019184104A1 WO 2019184104 A1 WO2019184104 A1 WO 2019184104A1 CN 2018092008 W CN2018092008 W CN 2018092008W WO 2019184104 A1 WO2019184104 A1 WO 2019184104A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
heat
oriented silicon
magnetic domain
resistant magnetic
Prior art date
Application number
PCT/CN2018/092008
Other languages
English (en)
French (fr)
Inventor
储双杰
赵自鹏
杨勇杰
马长松
吴美洪
吉亚明
马爱华
谢伟勇
刘海
郭建国
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68058725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019184104(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US17/041,323 priority Critical patent/US11633809B2/en
Priority to JP2020550770A priority patent/JP7231642B2/ja
Priority to CA3096747A priority patent/CA3096747A1/en
Priority to EP18912118.9A priority patent/EP3760745A4/en
Priority to RU2020134761A priority patent/RU2757364C1/ru
Priority to KR1020207028461A priority patent/KR102430884B1/ko
Priority to BR112020020018-2A priority patent/BR112020020018B1/pt
Priority to MX2020010165A priority patent/MX2020010165A/es
Publication of WO2019184104A1 publication Critical patent/WO2019184104A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Definitions

  • the invention relates to an oriented silicon steel and a manufacturing method thereof, in particular to a magnetic domain refining oriented silicon steel and a manufacturing method thereof.
  • Transformers are the basic components in power transmission systems.
  • the core is usually made of laminated or wound silicon.
  • the core loss is often referred to as iron loss.
  • iron loss As the global energy and environmental issues become more and more prominent, the demand for energy saving and consumption reduction is increasing worldwide, and reducing the iron loss of oriented silicon steel is of great significance to the national economy and social environmental protection.
  • Refining the magnetic domain that is, reducing the magnetic domain width
  • the scoring on the surface of the oriented silicon steel can refine the magnetic domain, thereby reducing the iron loss.
  • the method of refining the magnetic domain is divided into two categories: one is the heat-resistant scoring refinement magnetic domain, mainly by laser, plasma beam, electron beam, etc. in the oriented silicon steel.
  • the surface forms a linear thermal stress region at a certain interval, so that sub-magnetic domains appear around the region, thereby reducing the magnetic domain width and achieving the purpose of reducing iron loss.
  • the magnetic domain refining effect of such a method disappears after the stress relief annealing disappears with the thermal stress at the nick, and the iron loss returns to the original level, so it can only be used for the manufacture of laminated core transformers without stress relief annealing;
  • One type is heat-resistant scoring to refine the magnetic domain, mainly through mechanical, electrochemical corrosion, laser beam, etc., forming a linear strain zone on the surface of the oriented silicon steel, redistributing its internal energy, reducing the magnetic domain width, thereby reducing iron damage.
  • the oriented silicon steel produced by such a method does not recover from iron loss after stress relief annealing, and thus can be applied to the manufacture of a wound core transformer requiring stress relief annealing. Since the wound core transformer makes full use of the superiority of the oriented silicon steel to the magnetic properties, it has obvious advantages in terms of loss and noise compared to the laminated core transformer, and thus is gradually favored by the market.
  • the manner in which the heat-resistant nicks refine the magnetic domains is generally electrochemical, mechanical, and laser.
  • the heat-resistant scoring technology realized by electrochemical method has a complicated process, a certain degree of chemical contamination, and the groove shape and depth controllability formed are poor, and it is difficult to obtain an oriented silicon steel sheet with stable and uniform magnetic properties.
  • the heat-resistant nicking technology realized by the mechanical pressure method has extremely high requirements on the toothed roller of the mechanical device, and the high hardness of the magnesium silicate underlayer on the surface of the oriented silicon steel causes the toothed roller to wear quickly, thereby making the cost of large-scale nicking high.
  • the groove is formed by laser scanning multiple times, and the repeated positioning accuracy is high, and the production of the pipeline is difficult.
  • One of the objects of the present invention is to provide a heat-resistant magnetic domain refining oriented silicon steel in which the shape of the notched groove of the oriented silicon steel is in a controlled state, and the molten deposit at the side thereof is obviously controlled, thereby being refined.
  • the magnetic domain reduces iron loss and does not deteriorate iron loss after stress relief annealing, and is widely used in the field of manufacturing of wound core transformers.
  • the present invention provides a heat-resistant magnetic domain refining oriented silicon steel having a single-sided surface or a double-sided surface having a plurality of mutually parallel grooves formed by scoring, wherein each groove Both of them extend in the width direction of the heat-resistant magnetic domain refining-oriented silicon steel, and the plurality of mutually parallel grooves are evenly distributed in the rolling direction of the heat-resistant magnetic domain refining-oriented silicon steel.
  • each of the grooves extending in the width direction of the heat resistant magnetic domain refining oriented silicon steel is composed of a plurality of heat resistant magnetic domains.
  • the sub-trench extending in the width direction of the refined oriented silicon steel is spliced.
  • the cross-sectional shape of each sub-groove in the width direction of the heat-resistant magnetic domain refining-oriented silicon steel is an inverted trapezoid.
  • the length of the trapezoidal long side is L t
  • the projection length of the trapezoidal oblique side in the width direction of the heat resistant magnetic domain refinement oriented silicon steel is l e .
  • l e has a value range of not more than 8 mm.
  • the inventors of the present invention have found that the magnetic domain refining effect is obtained when the projection length l e of the trapezoidal oblique side in the width direction of the heat-resistant magnetic domain refinement oriented silicon steel exceeds 8 mm. Insufficient, the iron loss of the heat-resistant magnetic domain refining oriented silicon steel is not significantly reduced. Therefore, in the present invention, the range of the projection length l e of the trapezoidal oblique side in the width direction of the heat resistant magnetic domain refining type oriented silicon steel is limited to not more than 8 mm. Preferably, the range of l e is limited to not more than 4 mm. In the preferred embodiment, the heat-resistant magnetic domain refinement oriented silicon steel has low loss and high magnetic permeability.
  • the height m of the trapezoid is 5 to 60 ⁇ m.
  • the inventors of the present invention have found through research that when the height m of the trapezoid is less than 5 ⁇ m, the magnetic domain refining effect is insufficient, and the iron loss of the heat-resistant magnetic domain refinement oriented silicon steel is not significantly reduced;
  • the height m of the trapezoid exceeds 60 ⁇ m, the magnetic flux leakage at the groove is severe, and the magnetic permeability of the heat-resistant magnetic domain refinement oriented silicon steel is lowered. Therefore, the present invention limits the range of the height m of the trapezoid to 5 ⁇ m to 60 ⁇ m.
  • the height m of the trapezoid is limited to be between 10 ⁇ m and 45 ⁇ m.
  • the heat-resistant magnetic domain refinement oriented silicon steel has a low loss and a high magnetic permeability.
  • the adjacent two sub-grooves are closely connected to each other or overlap each other or mutually There is a lateral spacing between them.
  • l b when the adjacent two sub-grooves have a lateral spacing l b between each other, l b does not exceed 10 mm.
  • the inventors of the present invention have found through research that the lateral spacing l b of the adjacent two sub-trenchs has a significant influence on the magnetic properties of the heat-resistant magnetic domain refinement oriented silicon steel.
  • the present invention limits the lateral spacing l b of the adjacent two sub-grooves to each other to no more than 10 mm.
  • the length L t of the trapezoidal long side and the oblique side of the trapezoid are in the width direction of the heat resistant magnetic domain refining oriented silicon steel
  • the projection length l e and the lateral spacing l b also satisfy:
  • the inventor of the present invention discovered through research that when it is within 0.20, the obtained heat-resistant magnetic domain refining type oriented silicon steel damage improvement rate is high, and it is 6% or more. When it exceeds 0.2, the effect of refining the magnetic domain is not remarkable, and the iron loss improvement rate is low.
  • the length l c of the overlap formed by the overlap does not exceed 1.5. l e .
  • the inventors of the present invention have found through research that when the length l c of the overlapping section formed by the overlap exceeds the oblique side of the trapezoid in the width direction of the heat-resistant magnetic domain refinement oriented silicon steel When the length l e is 1.5 times, the magnetic permeability of the heat-resistant magnetic domain refinement oriented silicon steel is significantly lowered. Therefore, the present invention limits the length l c of the overlap formed by the overlap to the oblique side of the trapezoid.
  • the projection length l e of the thermal magnetic domain refinement oriented silicon steel in the width direction is 1.5 times.
  • the distance d between adjacent grooves is 2 to 10 mm.
  • the inventors of the present invention have found through research that when the spacing d between adjacent trenches is less than 2 mm, the trenches are too dense, the magnetic flux leakage effect of the trench is remarkable, and the magnetic permeability drops by more than 0.2T. Above; when the spacing d between adjacent trenches is greater than 10 mm, the magnetic domain refinement effect is not significant and the iron loss is high. Therefore, the present invention limits the spacing d between adjacent grooves to 2-10 mm.
  • the spacing d between adjacent trenches is 2-10 mm, and several sub-grooves spliced into the same trench are in heat-resistant magnetic
  • the domain refinement oriented silicon steel has a misalignment pitch d 0 in the rolling direction, and d 0 does not exceed 0.4 d.
  • the inventors of the present invention have found through research that a plurality of sub-grooves spliced into the same groove have a misalignment distance d 0 in the rolling direction of the heat-resistant magnetic domain refinement oriented silicon steel.
  • the ratio of the spacing d between adjacent grooves is 0.4 or more, that is, when d 0 exceeds 0.4 d, the magnetostriction of the heat-resistant magnetic domain refinement oriented silicon steel causes the noise to rise significantly to 60 dBA or more, and when d When 0 is less than 0.4d, the magnetostrictive noise of the heat-resistant magnetic domain refinement oriented silicon steel is remarkably lowered.
  • the scoring method includes at least one of laser scoring, electrochemical scoring, tooth roll scoring, and high-pressure water beam scoring. .
  • the scoring method is a laser scoring.
  • another object of the present invention is to provide a method for producing the above-described heat-resistant magnetic domain refining oriented silicon steel, which effectively reduces thermal diffusion deposits formed by laser ablation by rational design of a laser beam, and The problem of inaccurate positioning of the laser repeatedly scanning is avoided, thereby effectively refining the magnetic domain, reducing the iron loss, and preventing the iron loss of the heat-resistant magnetic domain refinement oriented silicon steel from being deteriorated after stress relief annealing.
  • the present invention provides a method for producing a heat resistant magnetic domain refining oriented silicon steel, comprising the steps of: laser scoring on one side or both sides of a heat resistant magnetic domain refining oriented silicon steel The surface forms the trench, and the laser-scored laser beam is split by the beam splitter into a plurality of beamlets that form a plurality of the sub-grooves that are spliced into the same trench.
  • a plurality of beam beams are formed after passing through the beam splitter, and the plurality of beam beams are focused on the surface of the steel sheet to form a group of light spots arranged in parallel, thereby forming a splicing.
  • a plurality of said sub-grooves of the same groove After the laser beam passes through the beam splitter, the energy density of the sub-beam spot is reduced, and there is a certain energy gap between the spots.
  • the temperature rise of a single point on the surface of the oriented silicon steel exhibits a dual characteristic of transient cooling and rapid accumulation, thus overcoming the tradition.
  • the long-spot marking method has the problem of heat fusion and deformation due to the continuous accumulation of heat, so that the groove shape of the heat-resistant magnetic domain refinement oriented silicon steel according to the present invention is in a controlled state, melting at the side thereof. Deposits can be clearly controlled.
  • the sub-beams are moved in a lattice manner on the surface of the oriented silicon steel, and the sub-spots formed may be arranged in a single column or in multiple columns, and the shape may be circular or elliptical.
  • the cross-sectional shape of the sub-trench in the width direction of the heat-resistant magnetic domain refining-oriented silicon steel may be an inverted trapezoid.
  • the laser generating pump source used for the laser scoring is at least one selected from the group consisting of a CO 2 laser, a solid laser, and a fiber laser.
  • the single-pulse instantaneous peak power density of the sub-spot formed on the surface of the heat-resistant magnetic domain refinement oriented silicon steel of the single sub-beam is 5.0 ⁇ 10 5 W/mm. 2 -5.0 ⁇ 10 11 W/mm 2 .
  • the inventors of the present invention have found that the single-pulse instantaneous peak power density of the sub-spot formed by the single sub-beam on the surface of the heat-resistant magnetic domain refinement oriented silicon steel after the laser beam passes through the spectroscope When it is 5.0 ⁇ 10 5 W/mm 2 or more, the magnetic domains of the oriented silicon steel can be refined, the iron loss is reduced, and obvious deposits are not formed on both sides of the notch groove, thereby avoiding a decrease in the lamination factor. .
  • the surface of the oriented silicon steel does not reach the melting or vaporization temperature during laser scanning, and the local micro-peel of the peel-off oriented silicon steel cannot be effectively ablated.
  • the material of the region is such that it is impossible to form the trenches required for refining the magnetic domains.
  • the inventors of the present invention limited the single-pulse instantaneous peak power density of the sub-spot formed by the single sub-beam on the surface of the heat-resistant magnetic domain refinement oriented silicon steel to 5.0 ⁇ 10 5 W/mm 2 - 5.0 ⁇ 10 11 W/mm. 2 .
  • the ratio of the single pulse instantaneous maximum peak power density to the minimum peak power density of the sub-spot does not exceed 20.
  • the inventors of the present invention have found through research that when the single-pulse instantaneous peak power density difference of the sub-spot is too large, that is, the ratio of the single-pulse instantaneous maximum peak power density to the minimum peak power density of the sub-spot exceeds At 20 o'clock, the efficiency of the formation of grooves by ablation is significantly reduced, the loss of iron loss is not obvious, and certain deposits appear on both sides of the groove. Therefore, the inventors of the present invention limited the ratio of the single pulse instantaneous maximum peak power density to the minimum peak power density of the sub-spot to not more than 20.
  • the ratio of the diameter of the sub-spot to the center of focus of the sub-spot is in the range of 0.1 to 0.8.
  • the inventors of the present invention have found through research that the size and spacing of the sub-spots have a significant influence on the magnetic properties of the oriented silicon steel. This is because when the sub-spot is too large and the spacing is too small, the energy superposition effect of the sub-spot ablation is obvious, and the surface material of the oriented silicon steel is melted to generate a melt, thereby causing a decrease in the lamination coefficient; conversely, when the sub-spot is too small When the spacing is too large, the ablated portion formed by the sub-spot ablation of the oriented silicon steel needs to pass a long gap time to receive the energy of the next sub-spot, and the temperature of the ablated portion is significantly lowered, and the orientation cannot be The surface of the micro-region of the silicon steel is peeled off, and the magnetic domain refinement cannot be achieved to reduce the iron loss.
  • the inventor of the present invention found through trial and error that the ratio of the spacing between the diameter of the sub-spot to the focal center of the sub-spot is less than 0.1, and the rate of iron loss is limited. Above 0.8, the lamination coefficient decreases significantly, ranging from 0.1 to 0.8. In the inner case, the iron loss of the oriented silicon steel is significantly reduced and the lamination coefficient is high. Therefore, the inventors of the present invention limited the ratio of the diameter of the sub-spot to the interval between the focus centers of the sub-spots in the range of 0.1 to 0.8.
  • the total length of the plurality of sub-spots formed on the surface of the heat-resistant magnetic domain refining-oriented silicon steel in the laser scanning direction is not more than 20 mm.
  • the inventors of the present invention have found through research that when the total length of several sub-spots formed on the surface of the heat-resistant magnetic domain refinement oriented silicon steel in the laser scanning direction exceeds 20 mm, The projection length l e of the trapezoidal oblique edge in the width direction of the heat-resistant magnetic domain refining oriented silicon steel exceeds 8 mm, the magnetic domain refining effect is limited, and the iron loss decreases little. Therefore, the inventors of the present invention limited the total length of the plurality of sub-spots formed on the surface of the heat-resistant magnetic domain refining-oriented silicon steel in the laser scanning direction to not more than 20 mm.
  • the laser scoring step is performed before or after the decarburization annealing step of the heat resistant magnetic domain refining oriented silicon steel, or the hot drawing of the heat resistant magnetic domain refining oriented silicon steel Perform before or after the flattening annealing step.
  • the shape of the notch groove of the heat-resistant magnetic domain refining oriented silicon steel according to the present invention is in a controllable state, and the molten deposit at the edge thereof is obviously controlled, thereby refining the magnetic domain, reducing the iron loss, and eliminating The iron loss does not deteriorate after stress annealing.
  • FIG. 1 is a schematic view showing the structure of a trench of a heat resistant magnetic domain refining oriented silicon steel according to the present invention in some embodiments.
  • FIG. 2 is a schematic structural view of any one of the sub-trench of the heat-resistant magnetic domain refining oriented silicon steel according to the present invention in some embodiments.
  • FIG. 4 is a schematic view showing laser scoring at a viewing angle in the method for producing heat-resistant magnetic domain refining oriented silicon steel according to the present invention.
  • Fig. 5 is a schematic view showing laser scoring in another perspective of the method for producing a heat-resistant magnetic domain refining oriented silicon steel according to the present invention.
  • Fig. 6 is a view showing the shape and arrangement of sub-spots formed by sub-beams in some embodiments of the method for producing heat-resistant magnetic domain refining oriented silicon steel according to the present invention.
  • Fig. 9 is a view showing the shape and arrangement of sub-spots formed by sub-beams in some embodiments of the method for producing heat-resistant magnetic domain refining oriented silicon steel according to the present invention.
  • Fig. 10 is a view showing the shape and arrangement of sub-spots formed by sub-beams in still another embodiment of the method for producing heat-resistant magnetic domain refining oriented silicon steel according to the present invention.
  • each of the grooves 1 of the heat-resistant magnetic domain refining oriented silicon steel in the present technical solution extends in the width direction A thereof, and the plurality of mutually parallel grooves 2 are in the rolling direction. B is evenly distributed.
  • the width direction A is perpendicular to the rolling direction B of the heat resistant magnetic domain refining oriented silicon steel of Example 1.
  • Each of the grooves 1 is formed by splicing a plurality of sub-grooves 2 extending in the width direction A.
  • the adjacent two sub-grooves 2 overlap each other or have a lateral spacing l b between each other, and the overlapping sections formed by overlapping each other have a length l c .
  • the spacing between the adjacent two grooves 1 is d, and the sub-grooves 2 have a misalignment distance d 0 in the rolling direction B.
  • the cross-sectional shape of any one of the sub-grooves 2 of the heat-resistant magnetic domain refining oriented silicon steel of the first embodiment in the width direction A is an inverted trapezoid, and the length of the trapezoidal long side is L t , the oblique length of the trapezoid in the width direction A is l e , and the height of the trapezoid is m.
  • the laser-marked laser beam 3 The beam splitter 4 is divided into a plurality of beam sub-beams 5, which are scanned along the width direction A of the heat-resistant magnetic domain refinement oriented silicon steel of Embodiment 1 to form a plurality of sub-grooves 2 spliced into the same groove 1.
  • 6, 7, 8, 9, and 10 are different kinds of lasers. In this embodiment, they may be CO 2 lasers, solid lasers, fiber lasers, and the like.
  • FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10 and FIG. 11 respectively show the sub-beam formed by the method of manufacturing the heat-resistant magnetic domain refining oriented silicon steel according to the present invention.
  • the shape and arrangement of the spots can be seen as a single row of circular spots, a single row of elliptical spots, two columns of circular spots, two columns of elliptical spots and two columns of elliptical spots. It should be noted that these spot shapes and arrangements are merely exemplary and schematic, and are not intended to limit the technical solution.
  • Table 1 lists the characteristics of the grooves of the heat-resistant magnetic domain refining oriented silicon steel of Examples 1-22 and Comparative Examples 1-10.
  • the oriented silicon steel is subjected to iron making, steel making, continuous casting, hot rolling, and then cold rolled to a final thickness of 0.23 mm;
  • Table 2 lists the specific process parameters of the step (4) in the method for producing the heat-resistant magnetic domain refining oriented silicon steel of Examples 1-22 and Comparative Examples 1-10.
  • the heat-resistant magnetic domain refining oriented silicon steels of Examples 1-22 and Comparative Examples 1-10 were tested for magnetic permeability (B 8 ) and iron loss (P 17/50 ) before and after laser scoring, specifically
  • the Epstein method was used to test the magnetic flux density of oriented silicon steel under the excitation magnetic field of 800 A/m, and the value of B 8 was obtained.
  • the unit was T.
  • the Epstein method was used to test the magnetization density of oriented silicon steel at a magnetic excitation density of 1.7 T under an alternating current excitation field of 50 Hz.
  • the invalid energy consumed, the P 17/50 value is obtained in W/kg, and the test results are listed in Table 3.
  • Examples 1-22 have good iron loss and magnetic permeability, and the improvement rate of iron loss after laser scoring is higher than 6% before scoring.
  • the height m of the trapezoid of Comparative Example 1 is not within the scope of the present invention, and the iron loss improvement rate is less than 6%.
  • Comparative Example 4 two adjacent sub groove lateral spacing between each other and l b Comparative Example 5 trapezoidal oblique projection length l e in the width direction of the heat-type grain oriented silicon steel magnetic domain refining is not within the scope of the present invention Therefore, the improvement rate of the score iron loss is poor.
  • Comparative Example 6 The length L t of the trapezoidal long side, the lateral spacing l b between adjacent two sub-trench and the oblique length of the trapezoid in the width direction of the heat-resistant magnetic domain refining oriented silicon steel l e The range of the formula of the present invention is not satisfied, and thus an oriented silicon steel sheet in which iron loss is remarkably improved cannot be obtained.
  • Comparative Example 9 because the spacing d between adjacent grooves is too small, which is beyond the lower limit of the range required by the present invention, although the iron loss improving effect is remarkable, the magnetic inductance B 8 is remarkably lowered; and the groove 10 adjacent to the comparative example 10 The pitch d between the two exceeds the upper limit of the range required by the present invention, and the iron loss improvement rate is low, and an oriented silicon steel sheet having good magnetic properties cannot be obtained.
  • Table 4 lists the characteristic parameters of the grooves of the heat-resistant magnetic domain refining oriented silicon steel of Examples 23-37 and Comparative Examples 11-15.
  • Example 23 28 80 4 3 0.09 0.2 2 0.2 0.10 Example 24 25 80 4 3 0.09 0.2 2 0.4 0.20 Example 25 twenty four 80 4 3 0.09 0.1 2 0.8 0.40 Example 26 27 80 4 3 0.09 0.1 4 0.5 0.13 Example 27 twenty four 80 4 3 0.09 0.2 4 1 0.25 Example 28 27 80 4 3 0.09 0.2 4 1.6 0.40 Example 29 26 80 4 3 0.09 0.0 6 1 0.17 Example 30 27 80 4 3 0.09 0.1 6 2 0.33 Example 31 twenty four 80 4 3 0.09 0.1 6 2.4 0.40 Example 32 twenty four 80 4 3 0.09 0.1 8 1 0.13 Example 33 25 80 4 3 0.09 0.2 8 2 0.25 Example 34 25 80 4 3 0.09 0.1 8 3.2 0.40 Example 35 28 80 4 3 0.09 0.0 10 1 0.10 Example 36 25 80 4 3 0.09 0.1 10 2 0.20 Example 37 27 80 4 3 0.09 0.2 10 4 0.40 Comparative Example 11 twenty four 80 4 3 0.09 0.0 10 1 0.10 Example 36 25 80 4 3 0.09 0.1 10 2 0.20 Example 37
  • Table 5 lists the specific process parameters of the step (2) in the method for producing the heat-resistant magnetic domain refining oriented silicon steel of Examples 23-37 and Comparative Examples 11-15.
  • Table 7 lists the characteristic parameters of the grooves of the heat-resistant magnetic domain refining oriented silicon steels of Examples 38 to 54 and Comparative Examples 16 to 21.
  • the oriented silicon steel is subjected to iron making, steel making, hot rolling, and then cold rolled to 0.226 mm;
  • An insulating coating is applied to the surface thereof and subjected to final annealing to form a silicon steel sheet.
  • the single pulse instantaneous peak power density of the comparative 16 and 17 sub-spots is not within the scope of the present invention, and the silicon steel sheet P 17/50 of Comparative Example 16 is significantly inferior, and the lamination coefficient of Comparative Example 17 is significantly decreased;
  • the ratio of the maximum value of the single pulse instantaneous peak power density of the comparative example 18 sub-spot to the minimum value is not within the scope of the present invention, the magnetic properties are poor, and the lamination coefficient is also poor;
  • the ratio of the proportion of sub-intervals between the focusing spot diameter of the center of the sub-spot is not defined within the scope of the present invention, the proportion of poor 17/50 P 19, P 20 17/50 and comparative laminate Poor coefficient;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种耐热磁畴细化型取向硅钢,其单面表面或双面表面具有采用刻痕方式形成的若干相互平行的沟槽,其中每根沟槽均在耐热磁畴细化型取向硅钢的宽度方向上延伸,该若干相互平行的沟槽沿耐热磁畴细化型取向硅钢的轧制方向均布。每根在耐热磁畴细化型取向硅钢的宽度方向上延伸的沟槽均由若干个在耐热磁畴细化型取向硅钢的宽度方向上延伸的子沟槽拼接而成。该耐热磁畴细化型取向硅钢的制造方法,包括步骤:采用激光刻痕的方式在耐热磁畴细化型取向硅钢的单面表面或双面表面形成沟槽,激光刻痕的激光束被分光器分成若干束子光束,该若干束子光束形成拼接成同一根沟槽的若干个所述子沟槽。

Description

一种耐热磁畴细化型取向硅钢及其制造方法 技术领域
本发明涉及一种取向硅钢及其制造方法,尤其涉及一种磁畴细化型取向硅钢及其制造方法。
背景技术
变压器是电力传输系统中的基本组成部件,其铁芯通常由取向硅钢层叠或卷绕制成,铁芯损耗通常简称为铁损。由于全球能源环境问题日益突出,节能降耗需求在世界范围内不断增长,降低取向硅钢的铁损对国民经济和社会环境保护具有重大意义。
细化磁畴,即减小磁畴宽度,可有效降低反常涡流损耗,是降低取向硅钢铁损的重要方法。现有技术中,在取向硅钢表面实施刻痕可以使磁畴细化,从而降低铁损。根据刻痕的效果的不同,将刻痕细化磁畴的方法分为两大类:一类是不耐热刻痕细化磁畴,主要通过激光、等离子束、电子束等方式在取向硅钢表面以一定间距形成线状热应力区,使该区域周围出现亚磁畴,从而减小磁畴宽度,达到降低铁损的目的。此类方法的磁畴细化效果经过消除应力退火后随刻痕处热应力消除而消失,铁损回复到原来水平,因此只能用于不经消除应力退火的叠片铁芯变压器制造;另一类是耐热刻痕细化磁畴,主要通过机械、电化学腐蚀、激光束等,在取向硅钢表面形成线状应变区,使其内部能量重新分配,减小磁畴宽度,从而降低铁损。此类方法制造的取向硅钢经过消除应力退火后铁损不发生回复,因此能够应用于需消除应力退火的卷绕铁芯变压器的制造。由于卷绕铁芯变压器充分利用了取向硅钢轧向磁性能的优异性,在损耗和噪音方面相比于叠片铁芯变压器均有明显优势,因此逐渐受到市场的青睐。
现有技术中,耐热刻痕细化磁畴的方式通常有电化学方式、机械方式和激光方式。然而,通过电化学方式实现的耐热刻痕技术,工序复杂,存在一定程度化学污染,且形成的沟槽形状、深度可控性较差,不易获得磁性能稳定均匀的取向硅钢片。通过机械压力方式实现的耐热刻痕技术对机械装置的齿辊要求 极高,且取向硅钢表面硅酸镁底层硬度高会导致齿辊磨损很快,从而使大批量刻痕成本高。通过激光多次扫描的方式形成刻槽,重复定位精度要求高,流水线生产面临困难。通过激光热熔融方式形成沟槽或重熔区,容易在沟槽边缘及其附近产生火山口状凸起和飞溅物,导致硅钢片叠片系数下降,且制成的变压器在服役过程中有片间导通的风险。
基于此,希望获得一种耐热磁畴细化型取向硅钢,该取向硅钢的刻痕沟槽形貌处于可控状态,其边部的熔融堆积物得到明显控制,从而细化磁畴,降低铁损,且经过消除应力退火后铁损不发生劣化,广泛适用于卷绕铁芯变压器的制造等领域。
发明内容
本发明的目的之一在于提供一种耐热磁畴细化型取向硅钢,该种取向硅钢的刻痕沟槽形貌处于可控状态,其边部的熔融堆积物得到明显控制,从而细化磁畴,降低铁损,且经过消除应力退火后铁损不发生劣化,广泛适用于卷绕铁芯变压器的制造等领域。
为了实现上述目的,本发明提供了一种耐热磁畴细化型取向硅钢,其单面表面或双面表面具有采用刻痕方式形成的若干根相互平行的沟槽,其中每一根沟槽均在耐热磁畴细化型取向硅钢的宽度方向上延伸,该若干根相互平行的沟槽沿耐热磁畴细化型取向硅钢的轧制方向均布。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,每一根在耐热磁畴细化型取向硅钢的宽度方向上延伸的沟槽均由若干个在耐热磁畴细化型取向硅钢的宽度方向上延伸的子沟槽拼接而成。
更进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,每一个子沟槽在耐热磁畴细化型取向硅钢的宽度方向上的横截面形状为倒置的梯形,所述梯形长边的长度为L t,所述梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度为l e
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,l e的取值范围为不超过8mm。
在本发明所述的技术方案中,本案发明人通过研究发现,当梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e超过8mm时,磁畴细化 效果不足,耐热磁畴细化型取向硅钢的铁损降低不明显。因此,本发明将梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e的取值范围限定在不超过8mm。优选地,将l e取值范围限定在不超过4mm,在此优选的技术方案中,耐热磁畴细化型取向硅钢铁损低且导磁率高。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,所述梯形的高度m为5-60μm。
在本发明所述的技术方案中,本案发明人通过研究发现,当梯形的高度m小于5μm时,磁畴细化效果不足,耐热磁畴细化型取向硅钢的铁损降低不明显;当梯形的高度m超过60μm时,沟槽处漏磁严重,耐热磁畴细化型取向硅钢的导磁率下降。因此,本发明将梯形的高度m的取值范围限定在5μm~60μm。优选地,将梯形的高度m限定在10μm~45μm之间,在此优选的技术方案中,耐热磁畴细化型取向硅钢铁损低且导磁率高。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,在拼接成同一根沟槽的若干个子沟槽中,相邻的两个子沟槽彼此紧密衔接或者相互搭接或者相互之间具有横向间距。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,当相邻的两个子沟槽彼此之间具有横向间距l b时,l b不超过10mm。
在本发明所述的技术方案中,本案发明人通过研究发现,相邻的两个子沟槽彼此之间具有的横向间距l b对耐热磁畴细化型取向硅钢的磁性能有显著影响。横向间距l b超过10mm时,会导致细化磁畴效果不明显,铁损偏高。因此,本发明将相邻的两个子沟槽彼此之间具有的横向间距l b限定在不超过10mm。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,所述梯形长边的长度L t、所述梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e以及横向间距l b还满足:
Figure PCTCN2018092008-appb-000001
在本发明所述的技术方案中,本案发明人通过研究发现,当
Figure PCTCN2018092008-appb-000002
在0.20以内时,所获得的耐热磁畴细化型取向硅钢铁损改善率高,达到6%以上。
Figure PCTCN2018092008-appb-000003
超过0.2时,细化磁畴的效果不明显,铁损改善率低。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,当相邻的两个子 沟槽彼此之间相互搭接时,搭接形成的交叠段的长度l c不超过1.5l e
在本发明所述的技术方案中,本案发明人通过研究发现,当搭接形成的交叠段的长度l c超过梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e的1.5倍时,会造成耐热磁畴细化型取向硅钢的导磁率显著下降,因此本发明将搭接形成的交叠段的长度l c限定在不超过梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e的1.5倍。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,相邻的沟槽之间的间距d为2-10mm。
在本发明所述的技术方案中,本案发明人通过研究发现,当相邻的沟槽之间的间距d小于2mm时,沟槽过于密集,沟槽漏磁效应显著,导磁率下降超过0.2T以上;当相邻的沟槽之间的间距d大于10mm时,磁畴细化效应不明显,铁损较高。因此,本发明将相邻的沟槽之间的间距d限定在2-10mm。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,相邻的沟槽之间的间距d为2-10mm,拼接成同一根沟槽的若干个子沟槽在耐热磁畴细化型取向硅钢的轧制方向上具有错位间距d 0,d 0不超过0.4d。
在本发明所述的技术方案中,本案发明人通过研究发现,当拼接成同一根沟槽的若干个子沟槽在耐热磁畴细化型取向硅钢的轧制方向上具有错位间距d 0与相邻的沟槽之间的间距d的比值在0.4以上时,即d 0超过0.4d时,耐热磁畴细化型取向硅钢的磁致伸缩导致噪音显著升高至60dBA以上,而当d 0小于0.4d时,耐热磁畴细化型取向硅钢的磁致伸缩噪音显著下降。因此,本发明将拼接成同一根沟槽的若干个子沟槽在耐热磁畴细化型取向硅钢的轧制方向上具有的错位间距d 0限定在不超过0.4d。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,所述刻痕方式包括激光刻痕、电化学刻痕、齿辊刻痕和高压水束刻痕的至少其中之一。
进一步地,在本发明所述的耐热磁畴细化型取向硅钢中,所述刻痕方式为激光刻痕。
相应地,本发明的另一目的在于提供一种上述耐热磁畴细化型取向硅钢的制造方法,该方法通过对激光光束的合理设计,有效减少激光烧蚀形成的热扩散堆积物,并且避免激光多次反复扫描的定位不准确问题,从而有效细化磁畴,降低铁损,且使得耐热磁畴细化型取向硅钢经过消除应力退火后铁损不发生劣 化。
为了实现上述目的,本发明提供了一种耐热磁畴细化型取向硅钢的制造方法,包括步骤:采用激光刻痕的方式在耐热磁畴细化型取向硅钢的单面表面或双面表面形成所述沟槽,激光刻痕的激光束被分光器分成若干束子光束,该若干束子光束形成拼接成同一根沟槽的若干个所述子沟槽。
在发明所述的制造方法中,激光刻痕的激光束从激光器中发出后,经过分光器后形成若干束子光束,该若干束子光束在钢板表面聚焦后形成平行排列的一组光斑,从而形成拼接成同一根沟槽的若干个所述子沟槽。激光束经过分光器后,子光束光斑能量密度降低,且光斑之间存在一定的能量间隙区,取向硅钢表面上单点的温度升高呈现出短暂降温并快速积累的双重特点,从而克服了传统长光斑刻痕方式因热量持续累积而出现热熔融及变形的问题,从而使得本发明所述的耐热磁畴细化型取向硅钢的沟槽形貌处于可控状态,在其边部的熔融堆积物可以得到明显控制。
需要说明的是,在一些实施方式中,子光束在取向硅钢表面以点阵方式移动,所形成的子光斑排列方式可以是单列或者多列,其形状可以说圆形或者椭圆形。此外,子光束在取向硅钢表面形成拼接成同一根沟槽的若干个子沟槽时,可以使子沟槽在耐热磁畴细化型取向硅钢的宽度方向上的横截面形状为倒置的梯形。
进一步地,在本发明所述的制造方法中,激光刻痕采用的激光发生泵源选自CO 2激光器、固体激光器、光纤激光器的至少其中之一。
更进一步地,在本发明所述的制造方法中,单个所述子光束在耐热磁畴细化型取向硅钢的表面形成的子光斑的单脉冲瞬时峰值功率密度为5.0×10 5W/mm 2-5.0×10 11W/mm 2
在本发明所述的制造方法中,本案发明人通过研究发现,激光束经过分光器后,单个子光束在耐热磁畴细化型取向硅钢的表面形成的子光斑的单脉冲瞬时峰值功率密度在5.0×10 5W/mm 2以上时,可使取向硅钢的磁畴得以细化,铁损降低,同时不会在刻痕沟槽两侧形成明显的堆积物,从而可以避免叠片系数下降。这是因为,子光斑的单脉冲瞬时峰值功率密度在5.0×10 5W/mm 2以下时,激光扫描时取向硅钢表面达不到熔融或气化温度,不能有效烧蚀剥离取向硅钢的局部微区材料,从而无法形成细化磁畴所需要的沟槽。但是当子光斑的单脉 冲瞬时峰值功率密度过高,超过5.0×10 11W/mm 2时,过高的瞬时能量则会造成取向硅钢表面温升过高,从而,一方面过多的热量会向周围扩散使取向硅钢发生热变形,另一方面熔融或气化的物质会在沟槽附近形成堆积,极大降低取向硅钢的叠片系数,且易使通过取向硅钢层叠形成的变压器铁芯在使用中导通,增大变压器服役过程中的击穿风险。因此,本案发明人将单个子光束在耐热磁畴细化型取向硅钢的表面形成的子光斑的单脉冲瞬时峰值功率密度限定在5.0×10 5W/mm 2-5.0×10 11W/mm 2
进一步地,在本发明所述的制造方法中,所述子光斑的单脉冲瞬时最大峰值功率密度与最小峰值功率密度的比值不超过20。
在本发明所述的制造方法中,本案发明人通过研究发现,当子光斑的单脉冲瞬时峰值功率密度差异过大,即子光斑的单脉冲瞬时最大峰值功率密度与最小峰值功率密度的比值超过20时,刻痕烧蚀形成沟槽的效率显著降低,铁损下降不明显,且沟槽两侧有一定的堆积物出现。因此,本案发明人将子光斑的单脉冲瞬时最大峰值功率密度与最小峰值功率密度的比值限定在不超过20。
进一步地,在本发明所述的制造方法中,所述子光斑的直径与子光斑的聚焦中心之间间隔的比值在0.1~0.8范围内。
在本发明所述的制造方法中,本案发明人通过研究发现,子光斑大小和间距对取向硅钢的磁性能有明显影响。这是因为,当子光斑过大而其间距过小时,子光斑烧蚀的能量叠加作用明显,取向硅钢表面材料熔化而产生熔融物,从而导致叠片系数降低;反之,当子光斑过小而其间距过大时,子光斑烧蚀取向硅钢后形成的被烧蚀部分需要经过较长的间隙时间才能接收到下一个子光斑的能量,此时被烧蚀部分的温度显著降低,不能对取向硅钢表面微区材料形成剥离,无法实现磁畴细化降低铁损。本案发明人通过反复试验发现,子光斑的直径与子光斑的聚焦中心之间间隔的比值低于0.1,则铁损下降率有限,高于0.8,则叠片系数下降明显,在0.1~0.8范围内时,取向硅钢的铁损下降明显且叠片系数较高。因此,本案发明人将子光斑的直径与子光斑的聚焦中心之间间隔的比值限定在0.1~0.8范围内。
进一步地,在本发明所述的制造方法中,所述若干束子光束在耐热磁畴细化型取向硅钢的表面形成的若干子光斑在激光扫描方向上的总长度不大于20mm。
在本发明所述的制造方法中,本案发明人通过研究发现,当若干束子光束在耐热磁畴细化型取向硅钢的表面形成的若干子光斑在激光扫描方向上的总长度超过20mm时,梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e超过8mm,磁畴细化作用有限,铁损下降幅度较小。因此,本案发明人将若干束子光束在耐热磁畴细化型取向硅钢的表面形成的若干子光斑在激光扫描方向上的总长度限定在不大于20mm。
进一步地,在本发明所述的制造方法中,激光刻痕步骤在耐热磁畴细化型取向硅钢的脱碳退火步骤之前或之后,或者在耐热磁畴细化型取向硅钢的热拉伸平整退火步骤之前或之后进行。
本发明所述的耐热磁畴细化型取向硅钢及其制造方法与现有技术相比具有如下有益效果:
本发明所述的耐热磁畴细化型取向硅钢的刻痕沟槽形貌处于可控状态,其边部的熔融堆积物得到明显控制,从而细化磁畴,降低铁损,且经过消除应力退火后铁损不发生劣化。
本发明所述的耐热磁畴细化型取向硅钢的制造方法通过对激光光束的合理设计,有效减少激光烧蚀形成的热扩散堆积物,并且避免激光多次反复扫描的定位不准确问题,从而有效细化磁畴,降低铁损,且使得耐热磁畴细化型取向硅钢经过消除应力退火后铁损不发生劣化,效率高,成本低,广泛适用于卷绕铁芯变压器的制造等领域。
附图说明
图1为本发明所述的耐热磁畴细化型取向硅钢的沟槽在某些实施方式下的结构示意图。
图2为本发明所述的耐热磁畴细化型取向硅钢的任意一个子沟槽在某些实施方式下的结构示意图。
图3为本发明所述的耐热磁畴细化型取向硅钢的制造方法中的激光分光示意图。
图4为本发明所述的耐热磁畴细化型取向硅钢的制造方法中在一种视角下的激光刻痕示意图。
图5为本发明所述的耐热磁畴细化型取向硅钢的制造方法中在另一种视角 下的激光刻痕示意图。
图6示意了本发明所述的耐热磁畴细化型取向硅钢的制造方法中的某些实施方式下,子光束所形成的子光斑形状及排列方式。
图7示意了本发明所述的耐热磁畴细化型取向硅钢的制造方法中的另一些实施方式下,子光束所形成的子光斑形状及排列方式。
图8示意了本发明所述的耐热磁畴细化型取向硅钢的制造方法中的又一些实施方式下,子光束所形成的子光斑形状及排列方式。
图9示意了本发明所述的耐热磁畴细化型取向硅钢的制造方法中的一些实施方式下,子光束所形成的子光斑形状及排列方式。
图10示意了本发明所述的耐热磁畴细化型取向硅钢的制造方法中的另外一些实施方式下,子光束所形成的子光斑形状及排列方式。
图11示意了本发明所述的耐热磁畴细化型取向硅钢的制造方法中的又另外一些实施方式下,子光束所形成的子光斑形状及排列方式。
具体实施方式
下面将结合附图说明和具体的实施例对本发明所述的耐热磁畴细化型取向硅钢及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
由图1可以看出,本技术方案中的耐热磁畴细化型取向硅钢的每一根沟槽1均在其宽度方向A上延伸,该若干根相互平行的沟槽2沿轧制方向B均布。宽度方向A与实施例1的耐热磁畴细化型取向硅钢的轧制方向B垂直。每一根沟槽1均由若干个在宽度方向A上延伸的子沟槽2拼接而成。相邻的两个子沟槽2彼此相互搭接或者相互之间具有横向间距l b,相互搭接形成的交叠段的长度为l c。相邻的两个沟槽1之间的间距为d,子沟槽2在轧制方向B上具有错位间距d 0
进一步参考图2,可以看出,实施例1的耐热磁畴细化型取向硅钢的任意一个子沟槽2在其宽度方向A上的横截面形状为倒置的梯形,梯形长边的长度为L t,梯形的斜边在其宽度方向A上的投影长度为l e,梯形的高度为m。
由图3、图4和图5可以看出,并在必要时结合图1和图2,在实施例1的耐热磁畴细化型取向硅钢的制造方法中,激光刻痕的激光束3被分光器4分 成若干束子光束5,该若干束子光束5沿着实施例1的耐热磁畴细化型取向硅钢的宽度方向A进行扫描形成拼接成同一根沟槽1的若干个子沟槽2。6、7、8、9、10为不同种类的激光器,在本实施例中,可以是CO 2激光器、固体激光器、光纤激光器等。
图6、图7、图8、图9、图10和图11分别显示了本发明所述的耐热磁畴细化型取向硅钢的制造方法在各种实施方式下的子光束所形成的子光斑形状及排列方式,可以看出其分别为单列圆形光斑、单列椭圆形光斑、2列圆形光斑、2列椭圆形光斑和2列椭圆形光斑。需要说明的是,这些光斑形状和排列方式仅是举例和示意性的,并不作为对本技术方案的限制。
下面,本技术方案将采用具体的实施例数据进一步描述本案的技术方案并证明本案的有益效果:
实施例1-22及对比例1-10
表1列出了实施例1-22和对比例1-10的耐热磁畴细化型取向硅钢的沟槽的特1征参数。
表1.
Figure PCTCN2018092008-appb-000004
Figure PCTCN2018092008-appb-000005
其中,
Figure PCTCN2018092008-appb-000006
实施例1-22和对比例1-10的耐热磁畴细化型取向硅钢采用以下步骤制得:
(1)将取向硅钢经过炼铁、炼钢、连铸、热轧工艺,再经过一次冷轧轧至最终厚度0.23mm;
(2)经过850℃的脱碳退火工艺,形成表面氧化层后在其表面涂覆MgO隔离剂,卷制成钢卷;
(3)在1200℃高温退火条件下保持20小时,然后在其表面涂覆绝缘涂层并进行最终退火形成取向硅钢板;
(4)在取向硅钢板单面实施激光刻痕(激光刻痕的具体工艺参数列于表2中)。
表2列出了实施例1-22和对比例1-10的耐热磁畴细化型取向硅钢的制造方法中步骤(4)的具体工艺参数。
表2.
Figure PCTCN2018092008-appb-000007
Figure PCTCN2018092008-appb-000008
对实施例1-22和对比例1-10的耐热磁畴细化型取向硅钢在激光刻痕前、后进行导磁性能(B 8)和铁损(P 17/50)测试,具体是用Epstein法测试取向硅钢在800A/m的激励磁场下的磁通密度,得到B 8值,单位为T;用Epstein法测试取向硅钢在50Hz的交流励磁场下的磁通密度达到1.7T时磁化所消耗的无效电能,得到P 17/50值,单位为W/kg,测试结果列于表3中。
表3.
Figure PCTCN2018092008-appb-000009
Figure PCTCN2018092008-appb-000010
由表3可以看出,实施例1-22均有较好的铁损、导磁性能,激光刻痕后铁损相对于刻痕前改善率均高于6%。
对比例1梯形的高度m不在本发明要求范围内,其铁损改善率低于6%。
对比例2、3虽然刻痕铁损改善率较高,但由于梯形的高度m过大,超过本发明范围,导致磁感B 8显著降低。
对比例4相邻的两个子沟槽彼此之间的横向间距l b和对比例5梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e均不在本发明范围内,因此其刻痕铁损改善率较差。
对比例6梯形长边的长度L t、相邻的两个子沟槽彼此之间的横向间距l b及梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e不满足本发明的公式范围,因此不能得到铁损显著改善的取向硅钢板。
对比例7、8由于相邻的两个子沟槽彼此之间相互搭接形成的交叠段的长度l c超出本发明范围要求,因此不能得到铁损改善率显著的取向硅钢板。
对比例9由于相邻的沟槽之间的间距d过小,超出本发明要求范围下限,虽然铁损改善效果明显,但其磁感B 8显著降低;而对比例10相邻的沟槽之间的间距d超过本发明要求范围上限,铁损改善率低,不能得到磁性能良好的取向硅钢板。
实施例23-37及对比例11-15
表4列出了实施例23-37及对比例11-15的耐热磁畴细化型取向硅钢的沟槽的特征参数。
表4.
  m L t l b l e σ l c d d 0 d 0/d
  (μm) (mm) (mm) (mm)   (mm) (mm) (mm)  
实施例23 28 80 4 3 0.09 0.2 2 0.2 0.10
实施例24 25 80 4 3 0.09 0.2 2 0.4 0.20
实施例25 24 80 4 3 0.09 0.1 2 0.8 0.40
实施例26 27 80 4 3 0.09 0.1 4 0.5 0.13
实施例27 24 80 4 3 0.09 0.2 4 1 0.25
实施例28 27 80 4 3 0.09 0.2 4 1.6 0.40
实施例29 26 80 4 3 0.09 0.0 6 1 0.17
实施例30 27 80 4 3 0.09 0.1 6 2 0.33
实施例31 24 80 4 3 0.09 0.1 6 2.4 0.40
实施例32 24 80 4 3 0.09 0.1 8 1 0.13
实施例33 25 80 4 3 0.09 0.2 8 2 0.25
实施例34 25 80 4 3 0.09 0.1 8 3.2 0.40
实施例35 28 80 4 3 0.09 0.0 10 1 0.10
实施例36 25 80 4 3 0.09 0.1 10 2 0.20
实施例37 27 80 4 3 0.09 0.2 10 4 0.40
对比例11 24 80 4 3 0.09 0.1 2 0.9 0.45
对比例12 26 80 4 3 0.09 0.0 4 1.7 0.43
对比例13 24 80 4 3 0.09 0.2 6 2.5 0.42
对比例14 25 80 4 3 0.09 0.2 8 3.3 0.41
对比例15 28 80 4 3 0.09 0.2 10 4.1 0.41
其中,
实施例23-37和对比例11-15的耐热磁畴细化型取向硅钢采用以下步骤制得:
(1)将取向硅钢经过炼铁、炼钢、热轧工艺,再经过一次冷轧轧至0.26mm;
(2)在冷轧板两面实施激光刻痕(激光刻痕具体工艺参数列于表5中);
(3)将刻痕后的冷轧板经过850℃脱碳退火,形成表面氧化层后在其表面涂覆MgO隔离剂,卷制成钢卷;
(4)在1200℃高温退火条件下保持20小时,然后在其表面涂覆绝缘涂层并进行最终退火形成硅钢板。
表5列出了实施例23-37和对比例11-15的耐热磁畴细化型取向硅钢的制造方法中步骤(2)的具体工艺参数。
表5.
Figure PCTCN2018092008-appb-000012
Figure PCTCN2018092008-appb-000013
对实施例23-37和对比例11-15的耐热磁畴细化型取向硅钢进行导磁性能(B 8)和铁损(P 17/50)测试,具体是用Epstein法测试取向硅钢在800A/m的激励磁场下的磁通密度,得到B 8值,单位为T;用Epstein法测试取向硅钢在50Hz的交流励磁场下的磁通密度达到1.7T时磁化所消耗的无效电能,得到P 17/50值,单位为W/kg。并采用SST100×500单片法测试实施例23-37和对比例11-15的耐热磁畴细化型取向硅钢的交流磁致伸缩所致噪音AWV 17/50值,单位为dBA。测试结果列于表6中。
表6.
Figure PCTCN2018092008-appb-000014
由表6可以看出,实施例23-37和对比例11-15的铁损P 17/50和导磁性B 8值均良好,但对比例11-15因为d 0/d值不在本发明限定范围内,导致其交流磁致伸缩所致噪音明显偏大。
实施例38-54及对比例16-21
表7列出了实施例38-54及对比例16-21的耐热磁畴细化型取向硅钢的沟槽的特征参数。
表7.
Figure PCTCN2018092008-appb-000015
其中,
Figure PCTCN2018092008-appb-000016
实施例38-54和对比例16-21的耐热磁畴细化型取向硅钢采用以下步骤制得:
(1)将取向硅钢经过炼铁、炼钢、热轧工艺,再经过一次冷轧轧至0.226mm;
(2)经过脱碳退火,并在钢板表面涂覆MgO隔离剂并烘干,再卷制成钢卷;
(3)在1200℃高温退火条件下保持20小时,清洗掉表面未反应的残余MgO,得到冷轧板;
(4)在冷轧板单面实施激光刻痕,具体工艺参数列于表8中;
(5)在其表面涂覆绝缘涂层并进行最终退火形成硅钢板。
表8列出了实施例38-54和对比例16-21的耐热磁畴细化型取向硅钢的制造方法中步骤(4)的具体工艺参数。
表8.
Figure PCTCN2018092008-appb-000017
对实施例38-54和对比例16-21的耐热磁畴细化型取向硅钢进行导磁性能(B 8)和铁损(P 17/50)测试,具体是用Epstein法测试取向硅钢在800A/m的激励磁场下的磁通密度,得到B 8值,单位为T;用Epstein法测试取向硅钢在50Hz的交流励磁场下的磁通密度达到1.7T时磁化所消耗的无效电能,得到P 17/50值,单位为W/kg。并采用《GB/T19289-2003电工钢片(带)的密度、电阻率和叠装系数的测量方法》测定实施例38-54和对比例16-21的耐热磁畴细化型取向硅钢的叠片系数。测试结果列于表9中。
表9.
Figure PCTCN2018092008-appb-000018
由表9可以看出,本案实施例38~54的P 17/50与B 8值均较好。
对比例16、17子光斑的单脉冲瞬时峰值功率密度不在本发明限定范围内,对比例16的硅钢板P 17/50明显较差,对比例17的叠片系数显著下降;
对比例18子光斑的单脉冲瞬时峰值功率密度最大值与最小值的比值不在本发明限定范围内,磁性能较差,叠片系数也较差;
对比例19、20的子光斑的直径与子光斑的聚焦中心之间间隔的比值不在本发明限定范围内,对比例19的P 17/50较差,对比例20的P 17/50及叠片系数较差;
对比例21的若干子光斑在激光扫描方向上的总长度不在本发明限定范围内,其P 17/50值较差。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (20)

  1. 一种耐热磁畴细化型取向硅钢,其特征在于,其单面表面或双面表面具有采用刻痕方式形成的若干根相互平行的沟槽,其中每一根沟槽均在耐热磁畴细化型取向硅钢的宽度方向上延伸,该若干根相互平行的沟槽沿耐热磁畴细化型取向硅钢的轧制方向均布。
  2. 如权利要求1所述的耐热磁畴细化型取向硅钢,其特征在于,每一根在耐热磁畴细化型取向硅钢的宽度方向上延伸的沟槽均由若干个在耐热磁畴细化型取向硅钢的宽度方向上延伸的子沟槽拼接而成。
  3. 如权利要求2所述的耐热磁畴细化型取向硅钢,其特征在于,每一个子沟槽在耐热磁畴细化型取向硅钢的宽度方向上的横截面形状为倒置的梯形,所述梯形长边的长度为L t,所述梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度为l e
  4. 如权利要求3所述的耐热磁畴细化型取向硅钢,其特征在于,l e的取值范围为不超过8mm。
  5. 如权利要求3所述的耐热磁畴细化型取向硅钢,其特征在于,所述梯形的高度m为5-60μm。
  6. 如权利要求3所述的耐热磁畴细化型取向硅钢,其特征在于,在拼接成同一根沟槽的若干个子沟槽中,相邻的两个子沟槽彼此紧密衔接或者相互搭接或者相互之间具有横向间距。
  7. 如权利要求6所述的耐热磁畴细化型取向硅钢,其特征在于,当相邻的两个子沟槽彼此之间具有横向间距l b时,l b不超过10mm。
  8. 如权利要求7所述的耐热磁畴细化型取向硅钢,其特征在于,所述梯形长边的长度L t、所述梯形的斜边在耐热磁畴细化型取向硅钢的宽度方向上的投影长度l e以及横向间距l b还满足:
    Figure PCTCN2018092008-appb-100001
  9. 如权利要求6所述的耐热磁畴细化型取向硅钢,其特征在于,当相邻的两个子沟槽彼此之间相互搭接时,搭接形成的交叠段的长度l c不超过1.5l e
  10. 如权利要求1所述的耐热磁畴细化型取向硅钢,其特征在于,相邻的沟槽之间的间距d为2-10mm。
  11. 如权利要求2所述的耐热磁畴细化型取向硅钢,其特征在于,相邻的沟槽之间的间距d为2-10mm,拼接成同一根沟槽的若干个子沟槽在耐热磁畴细化型取向硅钢的轧制方向上具有错位间距d 0,d 0不超过0.4d。
  12. 如权利要求1所述的耐热磁畴细化型取向硅钢,其特征在于,所述刻痕方式包括激光刻痕、电化学刻痕、齿辊刻痕和高压水束刻痕的至少其中之一。
  13. 如权利要求2-11中任意一项所述的耐热磁畴细化型取向硅钢,其特征在于,所述刻痕方式为激光刻痕。
  14. 如权利要求13所述的耐热磁畴细化型取向硅钢的制造方法,其特征在于,包括步骤:采用激光刻痕的方式在耐热磁畴细化型取向硅钢的单面表面或双面表面形成所述沟槽,激光刻痕的激光束被分光器分成若干束子光束,该若干束子光束形成拼接成同一根沟槽的若干个所述子沟槽。
  15. 如权利要求14所述的制造方法,其特征在于,激光刻痕采用的激光发生泵源选自CO 2激光器、固体激光器、光纤激光器的至少其中之一。
  16. 如权利要求14所述的制造方法,其特征在于,单个所述子光束在耐热磁畴细化型取向硅钢的表面形成的子光斑的单脉冲瞬时峰值功率密度为5.0×10 5W/mm 2-5.0×10 11W/mm 2
  17. 如权利要求16所述的制造方法,其特征在于,所述子光斑的单脉冲瞬时最大峰值功率密度与最小峰值功率密度的比值不超过20。
  18. 如权利要求16所述的制造方法,其特征在于,所述子光斑的直径与子光斑的聚焦中心之间间隔的比值在0.1~0.8范围内。
  19. 如权利要求14所述的制造方法,其特征在于,所述若干束子光束在耐热磁畴细化型取向硅钢的表面形成的若干子光斑在激光扫描方向上的总长度不大于20mm。
  20. 如权利要求14所述的制造方法,其特征在于,激光刻痕步骤在耐热磁畴细化型取向硅钢的脱碳退火步骤之前或之后,或者在耐热磁畴细化型取向硅钢的热拉伸平整退火步骤之前或之后进行。
PCT/CN2018/092008 2018-03-30 2018-06-20 一种耐热磁畴细化型取向硅钢及其制造方法 WO2019184104A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/041,323 US11633809B2 (en) 2018-03-30 2018-06-20 Grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
JP2020550770A JP7231642B2 (ja) 2018-03-30 2018-06-20 耐熱磁区細分化型方向性珪素鋼及びその製造方法
CA3096747A CA3096747A1 (en) 2018-03-30 2018-06-20 A grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
EP18912118.9A EP3760745A4 (en) 2018-03-30 2018-06-20 HEAT-RESISTANT MAGNETIC-DOMAIN REFINED ORIENTED GRAIN SILICON STEEL AND ASSOCIATED MANUFACTURING PROCESS
RU2020134761A RU2757364C1 (ru) 2018-03-30 2018-06-20 Текстурированная кремнистая сталь, имеющая жаростойкий магнитный домен, и способ ее изготовления
KR1020207028461A KR102430884B1 (ko) 2018-03-30 2018-06-20 내열성 자기 도메인을 갖는 그레인-방향성 실리콘 스틸 및 그 제조방법
BR112020020018-2A BR112020020018B1 (pt) 2018-03-30 2018-06-20 Aço-silício de grão orientado tendo domínio magnético resistente ao calor e método de fabricação deste
MX2020010165A MX2020010165A (es) 2018-03-30 2018-06-20 Un acero al silicio de grano orientado que tiene un dominio magnetico resistente al calor y metodo de fabricacion del mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810303841.8 2018-03-30
CN201810303841.8A CN110323044B (zh) 2018-03-30 2018-03-30 一种耐热磁畴细化型取向硅钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2019184104A1 true WO2019184104A1 (zh) 2019-10-03

Family

ID=68058725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092008 WO2019184104A1 (zh) 2018-03-30 2018-06-20 一种耐热磁畴细化型取向硅钢及其制造方法

Country Status (10)

Country Link
US (1) US11633809B2 (zh)
EP (1) EP3760745A4 (zh)
JP (1) JP7231642B2 (zh)
KR (1) KR102430884B1 (zh)
CN (1) CN110323044B (zh)
BR (1) BR112020020018B1 (zh)
CA (1) CA3096747A1 (zh)
MX (1) MX2020010165A (zh)
RU (1) RU2757364C1 (zh)
WO (1) WO2019184104A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410525B (zh) * 2020-11-18 2022-03-08 无锡普天铁心股份有限公司 一种低铁损取向硅钢磁畴细化装置
BR112023019084A2 (pt) * 2021-03-26 2023-10-17 Nippon Steel Corp Chapa de aço elétrico de grão orientado, e, método para fabricar a chapa de aço elétrico de grão orientado
CN115851004B (zh) * 2021-09-24 2023-12-12 宝山钢铁股份有限公司 一种耐热刻痕型取向硅钢涂层用涂液、取向硅钢板及其制造方法
CN114561512B (zh) * 2022-01-26 2024-04-05 武汉钢铁有限公司 用激光刻痕脱碳板以改善取向硅钢片磁致伸缩的方法
CN117415448A (zh) * 2022-07-11 2024-01-19 宝山钢铁股份有限公司 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板
EP4382241A1 (en) 2022-12-09 2024-06-12 Institut Polytechnique Unilasalle Process for manufacturing an electrical steel and electrical steel
KR20240098885A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 방향성 전기강판 및 그의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013373A (en) * 1988-03-25 1991-05-07 Armco, Inc. Method for treating electrical steel by electroetching and electrical steel having permanent domain refinement
JPH07220913A (ja) * 1994-02-04 1995-08-18 Nippon Steel Corp 磁気特性の優れた電磁鋼板
CN101946017A (zh) * 2008-02-19 2011-01-12 新日本制铁株式会社 低铁损单向性电磁钢板及其制造方法
CN101979676A (zh) * 2010-11-26 2011-02-23 武汉钢铁(集团)公司 通过激光刻痕改善取向硅钢磁性能的方法
CN102941413A (zh) * 2012-11-23 2013-02-27 武汉钢铁(集团)公司 一种取向硅钢多次激光刻槽降低铁损的方法
CN107502723A (zh) * 2017-09-15 2017-12-22 武汉钢铁有限公司 通过激光双面刻痕降低取向硅钢铁损的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826999Y2 (ja) * 1980-02-21 1983-06-11 新日本製鐵株式会社 電磁鋼板の磁気特性改善装置
US4963199A (en) * 1988-10-14 1990-10-16 Abb Power T&D Company, Inc. Drilling of steel sheet
WO1997024466A1 (fr) 1995-12-27 1997-07-10 Nippon Steel Corporation Tole d'acier magnetique ayant d'excellentes proprietes magnetiques, et son procede de fabrication
CN104099458B (zh) * 2010-09-09 2016-05-11 新日铁住金株式会社 方向性电磁钢板的制造方法
KR101998934B1 (ko) * 2011-06-01 2019-07-10 닛폰세이테츠 가부시키가이샤 방향성 전자기 강판의 제조 장치 및 방향성 전자기 강판의 제조 방법
PL3025797T3 (pl) * 2013-07-24 2018-09-28 Posco Blacha ze stali elektrotechnicznej o zorientowanym ziarnie i sposób jej wytwarzania
US9863808B2 (en) * 2014-01-08 2018-01-09 Asahi Kasei Microdevices Corporation Output-current detection chip for diode sensors, and diode sensor device
KR101711853B1 (ko) 2014-12-24 2017-03-03 주식회사 포스코 강판 표면 홈 형성 방법 및 그 장치
CN107208223B (zh) * 2015-04-20 2019-01-01 新日铁住金株式会社 方向性电磁钢板
EP3287532B1 (en) 2015-04-20 2023-03-08 Nippon Steel Corporation Grain-oriented electrical steel sheet
KR102010166B1 (ko) * 2015-04-20 2019-08-12 닛폰세이테츠 가부시키가이샤 방향성 전자기 강판
CN106282512B (zh) * 2015-05-11 2018-03-30 宝山钢铁股份有限公司 低噪音变压器用取向硅钢片制造方法
KR101659350B1 (ko) 2016-02-11 2016-09-23 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP6838321B2 (ja) 2016-09-01 2021-03-03 日本製鉄株式会社 方向性電磁鋼板の製造方法、及び方向性電磁鋼板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013373A (en) * 1988-03-25 1991-05-07 Armco, Inc. Method for treating electrical steel by electroetching and electrical steel having permanent domain refinement
JPH07220913A (ja) * 1994-02-04 1995-08-18 Nippon Steel Corp 磁気特性の優れた電磁鋼板
CN101946017A (zh) * 2008-02-19 2011-01-12 新日本制铁株式会社 低铁损单向性电磁钢板及其制造方法
CN101979676A (zh) * 2010-11-26 2011-02-23 武汉钢铁(集团)公司 通过激光刻痕改善取向硅钢磁性能的方法
CN102941413A (zh) * 2012-11-23 2013-02-27 武汉钢铁(集团)公司 一种取向硅钢多次激光刻槽降低铁损的方法
CN107502723A (zh) * 2017-09-15 2017-12-22 武汉钢铁有限公司 通过激光双面刻痕降低取向硅钢铁损的方法

Also Published As

Publication number Publication date
JP2021516725A (ja) 2021-07-08
KR20200125704A (ko) 2020-11-04
RU2757364C1 (ru) 2021-10-14
US20210023659A1 (en) 2021-01-28
EP3760745A1 (en) 2021-01-06
CN110323044B (zh) 2021-02-19
BR112020020018B1 (pt) 2023-05-16
CA3096747A1 (en) 2019-10-03
US11633809B2 (en) 2023-04-25
MX2020010165A (es) 2020-10-22
KR102430884B1 (ko) 2022-08-09
CN110323044A (zh) 2019-10-11
JP7231642B2 (ja) 2023-03-01
BR112020020018A2 (pt) 2021-01-05
EP3760745A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2019184104A1 (zh) 一种耐热磁畴细化型取向硅钢及其制造方法
KR102316204B1 (ko) 응력-완화 어닐링에 강한 레이저-에칭된 입자-방향성 실리콘강 및 그 제조방법
RU2746618C1 (ru) Способ получения стойкой при отжиге для снятия напряжений, текстурированной кремнистой стали с низкими потерями в железе
KR102320039B1 (ko) 낮은 코어 손실을 갖는 방향성 규소강 및 이의 제조 방법
JP4782248B1 (ja) 方向性電磁鋼板及びその製造方法
WO2011125672A1 (ja) 方向性電磁鋼板及びその製造方法
CN106282512A (zh) 低噪音变压器用取向硅钢片制造方法
JP6838321B2 (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
CN114829638A (zh) 取向电工钢板及其磁畴细化方法
WO2024012439A1 (zh) 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板
CN117672655A (zh) 一种铁损性能均匀良好的取向硅钢板及其激光刻痕方法
JP2005120405A (ja) 積層型鉄心用の方向性電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3096747

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020550770

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207028461

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018912118

Country of ref document: EP

Effective date: 20201002

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020020018

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020020018

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200929