WO2019182194A1 - 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치 - Google Patents

발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치 Download PDF

Info

Publication number
WO2019182194A1
WO2019182194A1 PCT/KR2018/006296 KR2018006296W WO2019182194A1 WO 2019182194 A1 WO2019182194 A1 WO 2019182194A1 KR 2018006296 W KR2018006296 W KR 2018006296W WO 2019182194 A1 WO2019182194 A1 WO 2019182194A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
ultra
white light
light emitting
emitting device
Prior art date
Application number
PCT/KR2018/006296
Other languages
English (en)
French (fr)
Inventor
안종욱
배정빈
심재곤
Original Assignee
주식회사 올릭스
안종욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 올릭스, 안종욱 filed Critical 주식회사 올릭스
Priority to JP2018558135A priority Critical patent/JP6854831B2/ja
Priority to EP18804220.4A priority patent/EP3567644A4/en
Priority to US16/098,224 priority patent/US11127888B2/en
Publication of WO2019182194A1 publication Critical patent/WO2019182194A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an ultra high color white light emitting device that controls an emission spectrum and a lighting device including the same, and more particularly, to an ultra high color white light emitting device having a smooth emission spectrum distribution and a different color temperature throughout visible light. Relates to a lighting device.
  • a phosphor can be applied to the surface of the semiconductor light emitting element to obtain a light separate from the blue light peculiar to a semiconductor, that is, white light.
  • a nitride wide gap semiconductor based on GaN is used and emits blue light around 460 nm. This light has a narrow half width of light emission, which is called a blue spike.
  • the blue spike of 450-460nm may damage the retina of the human eye, and may deteriorate the pigment of the oil painting, which is a research to remove as much as possible. It's coming out.
  • Such white LED lamps are widely used as illumination sources of art museums and museums for the purpose of providing natural light.
  • the purple excitation white LED is attracting attention, and high color rendering is required in the future.
  • the blue excitation white LED there is a possibility to replace the blue excitation white LED.
  • the violet-excited white LED device manufactured so far has a drawback that strong peaks of blue light emission, green light emission, and red light emission appear in the emission spectrum distribution and thus the spectrum distribution is not flat.
  • the emission spectrum of the phosphor it is possible to further improve and improve the light quality.
  • by developing a phosphor coating technology for generating white light it is possible to develop a white LED lighting light source having characteristics beyond the discharge light source performance of conventional fluorescent lamps and halogen lamps.
  • the present invention optimally controls the emission spectrum by the combination of various phosphor materials constituting the white light to satisfy Ra of 98 or more and less than 100, and to provide smooth emission spectrum distribution over the entire visible light.
  • An object of the present invention is to provide an ultra-high color white light emitting device having a different color temperature and an illumination device including the same.
  • the present invention is distributed in a semiconductor LED chip that emits light in the purple wavelength region having an emission peak of 380nm or more and 430nm or less and in a transparent resin layer excited and emitted by the excitation wavelength of the purple LED chip.
  • the phosphor layer is the first phosphor having an emission peak at 450 ⁇ 470nm, the second phosphor having an emission peak at 510 ⁇ 550nm, the emission peak at 550 ⁇ 590nm And a third phosphor having a light emission peak at 630 to 660 nm, and a fifth phosphor having a light emission peak at 660 to 730 nm, wherein the ultra high color white light emitting device has an average color rendering index (Ra) of 98 or more. Less than 100, R9 (red) and R12 (blue) of the special color rendering index Ri are each 94 or more and less than 100, and the luminous efficiency is 80 lm / W or more.
  • the weight ratio of the first phosphor, the second phosphor, the third phosphor, the fourth phosphor, and the fifth phosphor may be 7.3 to 24.0: 1.0: 0.4 to 10: 4.6 to 14.0: 0.2 to 0.6.
  • the ultra high color white light emitting device has a color temperature Tc with respect to an intensity ratio of red emission intensity R of 630 nm and blue emission intensity B of 455 nm in the emission spectrum of each color temperature of 2700K to 6500K. ) Can be satisfied (modified throughout the specification to be identical).
  • Tc (K) 3700 (B / R) +1800
  • the emission spectrum of the ultra-high white light emitting device is continuously connected in the visible light wavelength range of 430nm to 630nm, and may have a straight or flat spectral distribution.
  • the ultra-high white light emitting device has a light emission spectrum in the color temperature range of 4500K or higher is continuously connected in the visible light wavelength range of 430nm to 630nm, the decrease ratio of the spectrum according to the increase of the wavelength is less than 10%, the average color rendering index (Ra ) May be 98-100.
  • the ultra-high color white light emitting device has a light emission spectrum in the color temperature range of less than 4500K continuously connected in the visible wavelength range of 430nm ⁇ 630nm, the increase rate of the spectrum according to the increase of the wavelength is less than 50%, the average color rendering index (Ra ) May be 98-100.
  • the present invention also provides a white light emitting module comprising the ultra-high color white light emitting device.
  • the white light emitting module may include two or more ultra-high color white light emitting devices having different color temperatures.
  • the ultra-high color white light emitting device optimally controls the emission spectrum to satisfy Ra of 98 or more and less than 100, and has a smooth emission spectrum distribution over the entire visible light, and thus emits light of high quality at a wide range of color temperatures. It can be used in the field of illumination that requires strong color reproducibility and color fidelity.
  • a solid line is a spectrum according to an embodiment 2537K of the present invention
  • a dotted line is a light emission spectrum of a halogen lamp for museum lighting.
  • FIG. 2 is a graph showing a spectrum at a color temperature 3028K as a light emission spectrum according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a spectrum at a color temperature 4477K as a light emission spectrum according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a spectrum at a color temperature 5097K as a light emission spectrum according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a spectrum at a color temperature 5400K as a light emission spectrum according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a spectrum at a color temperature 6500K as a light emission spectrum according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the color temperature Tc and the average color rendering index Ra for the intensity ratio of 455 nm blue light emission intensity B and 630 nm red light emission intensity R according to an embodiment of the present invention. to be.
  • FIG. 8 is a spectrum showing a spectrum according to an embodiment of the present invention, and is a graph showing an approximately flat spectrum of 630 nm at a wavelength of 430 nm.
  • the present invention provides an ultra-high color rendering method comprising a semiconductor LED chip emitting light in a violet wavelength region having an emission peak of 380 nm or more and 430 nm or less and a phosphor layer distributed in a transparent resin layer excited and emitted by an excitation wavelength of the violet LED chip.
  • the phosphor layer is a first phosphor having an emission peak at 450 to 470 nm, a second phosphor having an emission peak at 510 to 550 nm, a third phosphor having an emission peak at 550 to 590 nm, and a 630 to 660 nm A fourth phosphor having an emission peak at and a fifth phosphor having an emission peak at 660 to 730 nm.
  • the semiconductor LED chip preferably uses a GaN-based semiconductor LED chip as an excitation chip having a light emission half width of 30 nm having a center wavelength at 405 nm.
  • the semiconductor LED chip may have an emission peak at 380 nm or more and 430 nm or less, and the external quantum efficiency is preferably 50% or more. If the extubation peak is out of the above range, it cannot have a center wavelength at 405 nm, which makes it difficult to emit white light, and when the quantum efficiency is less than 50%, the light emission efficiency is lowered.
  • the light emitting LED may further include various structures (electrode structure, reflective structure, flip-chip structure inverted up and down, etc.) for extracting more light generated from the light emitting layer to the outside.
  • the light emitting element of the present invention is excited by the light emission from the semiconductor LED chip, and is composed of five kinds of phosphors which are wavelength-converted into the blue, green, yellow, red, and deep red regions, respectively, and preferably contain the following phosphors.
  • the first phosphor it is preferable to use a blue phosphor which can be excited in a wavelength range of 380 to 430 nm, has an emission peak at 450 to 470 nm, preferably 460 nm, and has a weight median diameter of 15 to 20 ⁇ m. .
  • the second phosphor it is preferable to use a green phosphor which can be excited in a wavelength range of 380 to 430 nm, has an emission peak at 510 to 550 nm, preferably 520 nm, and has a weight median diameter of 20 to 25 ⁇ m. .
  • the yellow phosphor it is preferable to use a yellow phosphor that can be excited in a wavelength range of 380 to 430 nm, has an emission peak at 550 to 590 nm, preferably 580 nm, and has a weight median diameter of 15 to 20 ⁇ m. .
  • the fourth phosphor it is preferable to use a red phosphor that can be excited in a wavelength range of 380 to 430 nm, has an emission peak at 630 to 660 nm, preferably 630 nm, and has a weight median diameter of 15 to 20 ⁇ m. .
  • a deep red phosphor that can be excited in a wavelength range of 380 to 430 nm, has an emission peak at 660 to 730 nm, preferably 660 nm, and has a deep red phosphor having a weight median diameter of 15 to 20 ⁇ m. desirable.
  • the amount of the phosphor used in the light emitting device of the present invention may be appropriately selected and used to satisfy the light emitting device of the present invention, but the first phosphor, the second phosphor, the third phosphor, the fourth phosphor, and the The weight ratio of the five phosphors may be 7.3 to 24.0: 1.0: 0.4 to 10: 4.6 to 14.0: 0.2 to 0.6. If the phosphor is out of the ratio, sufficient light emission characteristics cannot be obtained.
  • the light emitting part of the light emitting element of this invention contains the said fluorescent substance and transparent resin which is a sealing material. That is, as the encapsulating material, it is preferable to use a transparent resin having sufficient transmittance and durability against excitation light (peak wavelength 380 to 430 nm) from the semiconductor LED element, and more preferably, a silicone resin can be used as the encapsulating material. have.
  • the amount of the phosphor contained in the light emitting part is preferably 4% to 70% by weight based on the total weight of the light emitting part.
  • the weight of the light emitting part means the sum of the total weight of the phosphor contained in the light emitting part, the weight of the silicone resin as the encapsulant, and the weight of the additive material such as silica powder (SiO 2) added as necessary.
  • the ultra high color white light emitting device may have an average color rendering index (Ra) of 98 or more and less than 100, R9 (red) and R12 (blue) of the special color rendering index (Ri) of 94 or more and less than 100, respectively.
  • RGB average color rendering index
  • R9 (red) and R12 (blue) of the special color rendering index (Ri) of 94 or more and less than 100 respectively.
  • the luminous efficiency of the white light emitting device may be 80lm / W or more. When the luminous efficiency is less than 80lm / W, the amount of power required for light emission is increased, the heat generated by the light emission is severe, and the commerciality is deteriorated.
  • the ultra high color white light emitting device has a color temperature Tc with respect to an intensity ratio of red emission intensity R of 630 nm and blue emission intensity B of 455 nm in the emission spectrum of each color temperature of 2700K to 6500K. ) Can be satisfied.
  • Tc (K) 3700 (B / R) +1800
  • the ratio of B / R is linear with Tc. Therefore, it can be a guideline for determining the appropriate phosphor ratio of ultra-high white light device according to the emission intensity of Blue and Red, and to obtain accurate color temperature and optical characteristics. It can have the effect of reducing the cost and time required. In addition, it is difficult to implement a purple-excited ultra-high-color white LED outside the formula.
  • the emission spectrum of the ultra-high white light emitting device is continuously connected in the visible light wavelength range of 430nm to 630nm, and may have a straight or flat spectral distribution.
  • the visible tube wavelength region of 430 nm to 630 nm when discontinuously connected or having a straight or flat spectral distribution does not have the ultra high color rendering required by the present invention.
  • the analysis according to each color temperature is as follows.
  • the ultra high color white light emitting device has a light emission spectrum in the color temperature range of 4500 K or more continuously connected in the visible light wavelength range of 430 nm to 630 nm, and the increase and decrease ratio of the spectrum according to the increase of the wavelength is less than 10% (see FIGS. 3 to 6).
  • the average color rendering index Ra may be 98 to 100. If the spectral increase / decrease ratio exceeds 10%, the average color rendering index decreases to less than 98 in the color temperature range of 4500K or more, and thus does not exhibit the desired ultrahigh color rendering.
  • the ultra high color white light emitting device is a light emission spectrum in the color temperature range of less than 4500K is continuously connected in the visible wavelength range of 430nm ⁇ 630nm, the increase rate of the spectrum according to the increase of the wavelength is less than 50% (see Figs. 1-2).
  • the average color rendering index Ra may be 98 to 100. If the spectral increase rate is 50% or more according to the wavelength, the average color rendering index decreases to less than 98 in the color temperature range of less than 4500K, and thus does not exhibit the desired ultrahigh color rendering.
  • the present invention also provides a white light emitting module comprising the ultra-high color white light emitting device.
  • the white light emitting module may include two or more ultra-high color white light emitting devices having different color temperatures.
  • two or more ultra-high color white light emitting devices having different color temperatures are mixed as described above, a white LED capable of emitting white light at a wider color temperature can be manufactured.
  • White devices were manufactured and evaluated using the following materials as semiconductor LED chips, phosphor materials, and sealing materials.
  • an InGaN / GaN multiple quantum well structure having a peak wavelength of 405 nm and a half width of 30 nm was used as the light emitting layer.
  • the outline is a rectangle of 520 ⁇ mx 390 ⁇ m.
  • Silica powder (SiO 2) was used as a silicone resin and a sedimentation inhibitor.
  • the following phosphor material was used.
  • Red phosphor CaAlSi (ON) 2 : Eu
  • the purple LED having the InGaN / GaN multi-quantum well structure was mounted on a lead frame package in which electrode wiring was carried out, and the five kinds of phosphors were encapsulated using the phosphor-containing composition dispersed in the silicone resin according to each compounding ratio.
  • the phosphor mixed solution was directly applied on the purple LED chip without a gap using a dispenser.
  • the emission spectrum was measured at room temperature under a forward current application condition of 20 to 65 mA.
  • OPI-100 manufactured by Optoelectronic Precision Co., Ltd. WITHLIGHT, South Korea
  • Table 1 shows the values giving optimum conditions in the practice of the present invention.
  • five kinds of mixing ratios were determined in advance to measure the photoluminescence (PL) spectrum of the phosphor mixture, and the spectrum was designed to fit in FIG. 7.
  • Color temperature (2737K, 3028K. 4477K, 5393K, 6488K) of Table 1 and Table 2 is a correlated color temperature, and color temperature corresponds to 2700K, 3000K, 44500K, 5400K, and 6500K, respectively.
  • Color temperature (K) Chromaticity coordinate values Compounding ratio of the phosphor (wt%) x y Blue phosphor Green phosphor Yellow phosphor Red phosphor Deep red phosphor 2737 0.468 0.430 24.0 1.0 1.0 14.0 0.6 3028 0.436 0.404 7.3 1.0 0.4 4.7 0.2 4477 0.362 0.368 12.3 1.0 1.0 5.0 0.3 5097 0.343 0.352 14.3 1.0 1.0 5.2 0.3 5393 0.335 0.348 13.2 1.0 1.0 4.6 0.3 6488 0.313 0.329 17.2 1.0 1.0 5.6 0.2
  • the spectrum (solid line) according to the present invention shows a spectrum almost identical to that of a halogen lamp for museum lighting (red dotted line) in the visible light region (430-630 nm) of a color temperature of 2700K.
  • the amount of generation is considerably reduced to minimize the optical damage of the artwork.
  • Fig. 7 the relationship between the intensity ratio of the 455 nm blue emission intensity (B) / 630 nm red emission intensity (R) and the color temperature is shown. Moreover, the average color rendering index (Ra) value was also shown. The average Ra was 98.5 within the color temperature range in which the experiment was conducted. According to FIG. 7, it was confirmed that the white light emitting device of the present invention satisfies Equation 1 below.
  • Tc 3700 (B / R) +1800
  • the violet light component which is a relatively 405 nm excitation light
  • the red emission intensity becomes weaker.
  • the green phosphor formulation so as not to be stronger than the intensity of red light emission and so that no peak appears.
  • the weight of the blue phosphor was adjusted so that the ratio of blue emission intensity at 455 nm and violet emission intensity at 405 nm did not exceed three.
  • the emission spectrum of the white LED having the characteristics of FIGS. 1 to 6, at most color temperatures, it exhibits a flat spectral shape in a longer wavelength region than about 450 nm. It should be noted that the spectrum continues smoothly over 480 to 500 nm, and it is not necessary to intentionally add a bluish green phosphor.
  • FIG. 1 is similar to the spectral spectrum of a halogen lamp as described above, and the light emission intensity increases linearly and flatly. Over 3028K to 5097K, irregularities appearing as finely blue, green and red peaks appear, but by 5393K, these peaks are hardly visible.
  • the spectral shape which shows super high color rendering property it turns out that it is desirable not to show the peak of each fluorescent substance. In other words, it has an approximately smooth emission spectrum shape over a wavelength of 430 nm to 630 nm.
  • 1 is the approximate characteristic of spectral shape at color temperature lower than 4500K ⁇ 5500K
  • 2 is the approximate characteristic of spectral shape at color temperature when 4500K ⁇ 5500K
  • 3 is the spectrum by color temperature higher than 4500K ⁇ 5500K. Approximate characteristics of the shape are shown.
  • the color rendering was measured using an OPI-100 measuring instrument manufactured by Optoelectronic Precision Co., Ltd. (WITHLIGHT, Korea).
  • the measurement of color fidelity index (Rf) and color gamut index (Rg) was measured using the LPEN apparatus by ASENSETEK (Taiwan).
  • Table 2 below shows the values of Ra, R9, R11, R12, R15, Rf and Rg for each color temperature.
  • Table 3 shows the values of Ra (1 to 8) and Ri (9 to 15) at 2737K.
  • Table 4 shows the values of Ra (1 to 8) and Ri (9 to 15) at 3028K.
  • Table 5 shows the values of Ra (1 to 8) and Ri (9 to 15) at 4477K.
  • Table 6 shows the values of Ra (1 to 8) and Ri (9 to 15) at 5097K.
  • Table 7 shows the values of Ra (1 to 8) and Ri (9 to 15) at 5393K.
  • Table 8 shows the values of Ra (1 to 8) and Ri (9 to 15) at 6488K.
  • the five kinds of phosphor weight ratios are optimally combined as shown in Table 1, and the appropriate amounts of the blue phosphor and the deep red phosphor are respectively adjusted, so that the color values shown in Tables 3 to 8 can be obtained.
  • Rf represents the average value of the fidelity of light for a color palette of 99 colors, with a maximum of 100.
  • Rg represents a color gamut average value, and is equal to 100 if it is the same as that of the reference light.
  • the color fidelity index (Rf) and color gamut index (Rg) of 3028K, 5097K, and 6488K are shown in Table 2.
  • Rf which shows the similarity of the color irradiated with the white LED light source of this invention and the reference light source was 96, 97, and 98, respectively. As Ra increases, Rf also increases, indicating a proportional relationship.
  • the color gamut indices (Rg) of 3028K, 5097K, and 6488K were all 100, which was in full agreement with the reference light source.
  • the color gamut index indicates the change in saturation of the color irradiated by the white LED light source of the present invention. 100 is the perfect saturation. If it is greater than 100, the color saturation is high, resulting in a red color. In particular, color gamut is related to visual color, but theoretically, the closer to 100, the better the light quality.
  • Ra is close to 99
  • Rf exceeds 96
  • Rg is 100 in all color temperature ranges.
  • the white LED light emitting device having the above characteristics can be said to be an ultra-high color white LED that satisfies all the conditions mentioned in the claims.
  • the ultra-high color white LED element and the lighting device of the present invention in which all the values of Ri have high chromaticity, are advantageous in the field of color evaluation and medical lighting where high precision of color evaluation is required.
  • the white LED elements having the respective color temperatures created by the present invention it is possible to design an ultra-high-color white LED light source having a color temperature of more various chromaticity coordinates (x, y).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 가시광 전역에 걸쳐 매끄러운 발광 스펙트럼 분포를 가지며 각각의 서로 다른 색온도에 있어서 높은 색 충실 지수와 색역 지수를 가지는 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치에 관한 것이다. 본 발명은 380nm 이상430nm 이하에 발광 피크를 가지는 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 초고연색 백색 발광 소자에 있어서, 상기 형광체 층은, 450~470nm에 발광 피크를 가지는 제1 형광체, 510~550nm에 발광 피크를 가지는 제2 형광체, 550~590nm에 발광 피크를 가지는 제3 형광체, 630~660nm에 발광 피크를 가지는 제4 형광체, 및 660~730nm에 발광 피크를 가지는 제5 형광체를 포함하는 것을 특징으로 하는 Ra가 98 이상 100 미만인 초고연색 백색 발광 소자를 제공한다.

Description

발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치
본 발명은 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치에 관한 것으로서, 더욱 상세하게는 가시광 전역에 걸쳐 매끄러운 발광 스펙트럼 분포를 가지며 색온도가 서로 다른 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치에 관한 것이다.
반도체 발광 소자인 청색LED의 경우, 형광체를 이 반도체 발광 소자 표면에 도포해서 반도체에 특유한 청색광과는 별개의 빛, 즉 백색인 빛을 얻을 수 있다. 통상적인 LED 조명 장치에서는 GaN을 베이스로 한 질화물 와이드갭 반도체가 사용되며 460nm를 중심으로 한 청색의 빛을 낸다. 이 빛은 발광 반치폭이 좁으며, 이를 청색 스파이크라고 부른다. 특히 450-460nm의 청색 스파이크는 인간의 눈에 있는 망막에 손상을 줄 위험성이 있으며, 또한 미술품인 유화의 색소를 열화시킬 수 있어, 가능한 한 제거하는 연구가 계속되고 있으며, 이에 따른 제품들이 시장에 출시되고 있다. 이러한 백색 LED 램프는 자연광을 제공할 목적으로 미술관, 박물관의 조명 광원으로 널리 보급되어 있다.
지금까지, 백색광을 얻는 방법은 다양하게 고안되어, 1990년 후반에 우선 청색LED 칩과 황색 형광체의 조합이 최초로 실용화되고, 다음으로 연색성을 높일 목적으로 청색LED 칩과 녹색 형광체와 적색 형광체의 조합이 실용화되었다. 2000년대 초반에 자색LED 칩을 이용한 청색 형광체, 녹색 형광체, 적색 형광체의 발광을 이용한 빛의 3원색 혼합에 의한 형광체 여기 방식에 따른 고연색 백색LED 조명이 개발되었다. 이 백색LED의 특징은, 여기광 자신이 백색광을 구성하지 않는 점이 청색LED 여기의 경우와 근본적으로 상이하다. 따라서, 각종 형광체의 가시 발광의 배광 특성이 램버시안 배광에 따라 백색광을 합성하므로 AAA 고연색 형광 램프의 발광 특성에 근접한다.
또한, 사용 가능한 형광체의 종류도 다종 다양하여 빛의 질을 개선시킬 수 있는 가능성을 감추고 있다. 다라서, 장차 색 재현성, 색 충실성이 엄격히 요구되는 색 평가용 조명 분야로의 응용이 기대된다.
현재, 청색LED 칩으로 여기한 백색LED 소자에 있어서도 고연색성이 달성되어 있으나, 근본적으로380~450nm의 가시광이 결여되어 있는 것과, 여기광인 청색 스파이크가 나타나 스펙트럼 분포가 평탄하지 않다는 결점을 가지고 있다. 또한, 여기광이 그대로 백색광을 구성하는 요소가 되기 때문에, 광 특성에 현저한 고전류, 고온 의존성이 발생하여 색온도 변화가 일어나기 쉽다. 이에 비해, 자색LED 칩을 사용하여 백색광을 발생시키는 방법은, 형광체에서의 발광만으로 백색광을 구성할 수 있다는 점에서 우수하다. 최근, 자색 여기에 대한 봉지재로서 내구성이 있는 실리콘 수지와 고효율 각종 형광체가 개발된 점, 및 자색LED 칩의 효율이 개선된 점으로 인해 자색 여기 백색LED가 주목을 받고 있으며, 장차 고연색성이 요구되는 일반 조명 분야에 있어서도 지금까지의 청색 여기 백색LED를 대체할 가능성이 있다.
그러나, 지금까지 제조된 자색 여기 백색LED 소자로는 발광 스펙트럼 분포에 있어서 청색 발광, 녹색 발광, 적색 발광의 강한 피크가 나타나서 스펙트럼 분포가 평탄하지 않다는 결점이 있었다. 하지만 형광체에서의 발광 스펙트럼을 최적으로 제어하는 것으로 인해 한층 빛의 질을 개선, 향상시키는 것이 가능해질 가능성이 있다. 특히 백색광을 생성하는 형광체 코팅 기술을 개발함으로 인해 기존의 형광 램프 및 할로겐 램프 등의 방전 광원 성능 이상의 특성을 가지는 백색LED 조명 광원을 개발 가능하다.
한편, 최근 들어 반도체LED 칩의 여기에 의한 형광체 파장 변환형 백색LED에 대한 광질 특성 평가에 있어서, 기존의15색 지수(평균 연색 평가수: Ra와 특수 연색 평가수: Ri)를 평가하는 것만으로는 불충분하다는 지적이 있어왔으며, 현재 미국에서는99색을 평가하는 새로운 기준(TM-30-15)로서 색 충실도 지수(Rf)와 색역 지수(Rg)가 평가 항목으로 추가되었다.
따라서, 평균 연색 평가수(Ra)가98 이상100 미만, 특수 연색 평가수(Ri)가94 이상100 미만인 초고연색 백색LED 소자를 모든 색온도 범위에서 달성 가능한 최적의 형광체 코팅법이 필요한 실정이다. 그러기 위해서는 복수의 형광체 재료의 코팅에 관한 제조법을 확립함에 따라 백색LED 소자의 발광 스펙트럼을 계통적으로 제어하여 소망하는 목적에 부합하는 발광 스펙트럼 분포 곡선을 작성해야 할 필요가 있다. 즉, 각종 형광체의 발광 스펙트럼을 제어하여 최적의 초고연색 백색LED 조명 광원을 제조하는 방법이 필요로 하고 있다.
전술한 문제를 해결하기 위하여, 본 발명은 백색광을 구성하는 다종의 형광체 재료의 조합에 의해 발광 스펙트럼을 최적으로 제어하여 Ra를 98 이상100 미만을 만족함과 더불어, 가시광 전역에 걸쳐 매끄러운 발광 스펙트럼 분포를 가지며 색온도가 서로 다른 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치의 제공을 목적으로 한다.
상술한 문제를 해결하기 위해, 본 발명은 380nm 이상430nm 이하에 발광 피크를 가지는 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 초고연색 백색 발광 소자에 있어서,상기 형광체 층은, 450~470nm에 발광 피크를 가지는 제1 형광체, 510~550nm에 발광 피크를 가지는 제2 형광체, 550~590nm에 발광 피크를 가지는 제3 형광체, 630~660nm에 발광 피크를 가지는 제4 형광체, 및 660~730nm에 발광 피크를 가지는 제5 형광체을 포함하며, 상기 초고연색 백색 발광소자는, 평균 연색 평가수(Ra)가 98 이상 100 미만, 특수 연색 평가수(Ri)의 R9(적색)와 R12(청색)이 각가 94 이상 100 미만이며, 발광 효율은 80lm/W 이상인 것을 특징으로 한다.
상기 제1형광체, 제2형광체, 제3형광체, 제4형광체 및 제5형광체의 중량비는 7.3~24.0 : 1.0 : 0.4~10 : 4.6~14.0 : 0.2~0.6일 수 있다.
상기 초고연색 백색 발광 소자는 2700K~6500K의 각 색온도의 발광 스펙트럼에서 630nm의 적색 발광 강도(R)과 455nm의 청색 발광 강도(B)의 강도 비에 대한 색온도(Tc)가, 하기의 (식 1)을 만족할 수 있다.(명세서 전반의 표현이 동일하도록 수정하였습니다)
(식 1)
Tc(K)=3700(B/R)+1800
상기 초고연색 백색 발광 소자의 발광스펙트럼은 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되며, 직선 또는 평탄한 스펙트럼 분포를 가질 수 있다.
상기 초고연색 백색 발광 소자는 4500K이상 색온도 영역에서의 발광스펙트럼이 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되고, 파장의 증가에 따른 스펙트럼의 감소비율이 10%미만이며, 평균연색 평가수(Ra)가 98~100일 수 있다.
상기 초고연색 백색 발광 소자는 4500K미만 색온도 영역에서의 발광스펙트럼이 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되고, 파장의 증가에 따른 스펙트럼의 증가비율이 50%미만이며, 평균연색 평가수(Ra)가 98~100일 수 있다.
본 발명은 또한 상기 초고연색 백색 발광 소자를 포함하는 백색 발광 모듈을 제공한다.
상기 백색 발광 모듈은 서로 다른 색온도를 가지는 2개 이상의 초고연색 백색 발광 소자를 포함할 수 있다.
본 발명에 의한 초고연색 백색 발광 소자는 발광 스펙트럼을 최적으로 제어하여 Ra를 98 이상100 미만을 만족함과 더불어, 가시광 전역에 걸쳐 매끄러운 발광 스펙트럼 분포를 가짐에 따라, 광범위에 걸친 색온도에 있어서 높은 질의 발광을 수행할 수 있으며, 이에 따라 색 재현성 및 색충실도가 강하게 요구되는 조명분야에 사용가능하다.
도 1은 본 발명의 일 실시예에 의한 발광 스펙트럼으로, 실선은 본 발명의 실시예(2537K)에 의한 스팩트럼, 점선은 미술관 조명용 할로겐 램프의 발광스펙트럼이다.
도 2는 본 발명의 일 실시예에 의한 발광스펙트럼으로 색온도 3028K에서의 스펙트럼을 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 의한 발광스펙트럼으로 색온도 4477K에서의 스펙트럼을 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 의한 발광스펙트럼으로 색온도 5097K에서의 스펙트럼을 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 의한 발광스펙트럼으로 색온도 5400K에서의 스펙트럼을 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 의한 발광스펙트럼으로 색온도 6500K에서의 스펙트럼을 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 의한 455nm 청색 발광 강도(B)와 630nm 적색 발광 강도(R)의 강도비에 대한 색온도(Tc)의 관계 및 평균연색 평가수(Ra)를 각각 도시한 그래프이다.
도 8은 본 발명의 일 실시예에 의한 스팩트럼을 나타낸 것으로, 파장430nm에서 630nm의 스펙트럼을 근사적으로 평탄하게 나타낸 그래프이다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 380nm 이상430nm 이하에 발광 피크를 가지는 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 초고연색 백색 발광 소자에 있어서, 상기 형광체 층은, 450~470nm에 발광 피크를 가지는 제1 형광체, 510~550nm에 발광 피크를 가지는 제2 형광체, 550~590nm에 발광 피크를 가지는 제3 형광체, 630~660nm에 발광 피크를 가지는 제4 형광체, 및 660~730nm에 발광 피크를 가지는 제5 형광체을 포함하는 것을 특징으로 하는 초고연색 백색 발광 소자에 관한 것이다.
상기 반도체 LED칩은 405nm에 중심 파장을 가지는 발광 반치폭30nm의 여기용 칩으로서 GaN 계 반도체LED 칩을 사용하는 것이 바람직하다. 이때 상기 반도체 LED칩은 380nm 이상430nm 이하에 발광 피크를 가질 수 있으며, 외부 양자 효율이50% 이상인 것이 바람직하다. 발관피크가 상기 범위를 벗어나는 경우 405nm에 중심 파장을 가질 수 없어 백색의 발광이 어려우며, 양자효율이 50%미만인 경우 발광효율이 떨어지게 된다. 또한 상기 발광 LED의 경우 발광층에서 발생한 빛을 보다 많이 외부로 추출하기 위한 다양한 구조(전극 구조, 반사 구조, 상하를 역전시킨 플립칩 구조 등)를 추가로 포함할 수 있다.
본 발명의 발광 소자는, 상기 반도체LED 칩에서의 발광으로 여기되어, 각각 청색, 녹색, 황색, 적색, 심적색 영역으로 파장 변환되는 5종류의 형광체로, 이하의 형광체를 함유하는 것이 바람직하다.
제1형광체로서 청색 형광체로는, 380~430nm의 파장 범위에서 여기 가능하고, 450~470nm, 바람직하게는 460nm에 발광 피크를 가지며, 중량 메디안 지름이 15~20μm인 청색 형광체를 사용하는 것이 바람직하다.
제2형광체로서 녹색 형광체로는, 380~430nm의 파장 범위에서 여기 가능하며, 510~550nm, 바람직하게는 520nm에 발광 피크를 가지며, 중량 메디안 지름이 20~25μm인 녹색 형광체를 사용하는 것이 바람직하다.
제3형광체로서 황색 형광체로는, 380~430nm의 파장 범위에서 여기 가능하며, 550~590nm, 바람직하게는 580nm에 발광 피크를 가지며, 중량 메디안 지름이 15~20μm인 황색 형광체를 사용하는 것이 바람직하다.
제4형광체로서 적색 형광체로는, 380~430nm의 파장 범위에서 여기 가능하며, 630~660nm, 바람직하게는 630nm에 발광 피크를 가지며, 중량 메디안 지름이 15~20μm인 적색 형광체를 사용하는 것이 바람직하다.
제5형광체로서 심적색 형광체로는, 380~430nm의 파장 범위에서 여기 가능하며, 660~730nm, 바람직하게는 660nm에 발광 피크를 가지며, 중량 메디안 지름이 15~20μm인 심적색 형광체를 사용하는 것이 바람직하다.
또한, 본 발명의 발광 소자에 사용되는 형광체의 양은, 본 발명의 발광 소자를 만족시키기 위해 적절히 선택하여 사용하는 것이 가능하나, 상기 제1형광체, 제2형광체, 제3형광체, 제4형광체 및 제5형광체의 중량비는 7.3~24.0 : 1.0 : 0.4~10 : 4.6~14.0 : 0.2~0.6일 수 있다. 상기 형광체가 상기 비율을 벗어나는 경우 충분한 발광특성을 얻을 수 없다.
본 발명의 발광 소자의 발광부는, 상기 형광체와 봉지재인 투명 수지를 함유하는 것이다. 즉, 봉지재로는, 반도체LED 소자로부터의 여기광(피크 파장380~430nm)에 대해 충분한 투과성과 내구성을 가지는 투명 수지를 사용하는 것이 바람직하며, 더욱 바람직하게는 봉지재로서 실리콘 수지를 사용할 수 있다.
상기 발광부에 포함된 형광체의 양은, 발광부의 총 중량에 대해 4중량%~70 중량%인 것이 바람직하다. 여기에서, 발광부의 중량이란, 발광부에 포함되는 형광체의 총 중량, 봉지재인 실리콘 수지 중량, 필요에 따라 첨가되는 실리카 파우더(SiO2) 등의 첨가재 중량의 총합을 의미한다.
상기 초고연색 백색 발광 소자는 평균 연색 평가수(Ra)가 98 이상 100 미만, 특수 연색 평가수(Ri)의 R9(적색), R12(청색)가 각각94 이상100 미만일 수 있다. 상기 각각의 연색 평가수가 상기범위를 달성하지 못한 경우 연색성이 떨어져 원하는 백색이 나오지 않을 수 있다. 또한 상기 백색 발광소자의 발광 효율은 80lm/W 이상일 수 있다. 발광효율이 80lm/W미만인 경우 발광에 필요한 전력량이 높아지며, 발광에 따른 발열이 심해져 상품성이 떨어지게 된다.
상기 초고연색 백색 발광 소자는 2700K~6500K의 각 색온도의 발광 스펙트럼에서 630nm의 적색 발광 강도(R)과 455nm의 청색 발광 강도(B)의 강도 비에 대한 색온도(Tc)가, 하기의 (식 1)을 만족할 수 있다.
(식 1)
Tc(K)=3700(B/R)+1800
따라서 B/R의 비는 Tc와 선형을 이루고 있으며, 이에 따라 Blue 와 Red 의 발광 강도 조절에 따른 초고연색 백색 소자의 적정 형광체 비율을 결정 하는데 가이드라인이 될 수 있으며, 정확한 색온도 및 광 특성을 얻는데 소요되는 비용 및 시간을 절감하는 효과를 가질 수 있다. 또한 해당 산출식 을 벗어나서는 자색 여기 초고연색 백색 LED를 구현하기 어렵다고 판단 된다.
상기 초고연색 백색 발광 소자의 발광스펙트럼은 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되며, 직선 또는 평탄한 스펙트럼 분포를 가질 수 있다. 가시관 파장영역인 430nm~630nm에서 불연속적으로 연결되거나 직선 또는 평탄한 스펙트럼 분포를 가지는 못하는 경우 본원발명에서 요구하고 있는 초고연색성을 가지지 못하게 된다. 또한 이를 각 색온도에 따라 분석해보면 하기와 같다.
상기 초고연색 백색 발광 소자는 4500K이상 색온도 영역에서의 발광스펙트럼이 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되고, 파장의 증가에 따른 스펙트럼의 증감비율이 10%미만(도 3~6참조)이며, 평균연색 평가수(Ra)가 98~100일 수 있다. 파장에 따른 스펙트럼 증감비율이 10%를 초과하는 경우 4500K이상 색온도 영역에서 평균연색 평가수가 98미만으로 감소하게 되어 원하는 초고연색성을 나타내지 못하게 된다.
상기 초고연색 백색 발광 소자는 4500K미만 색온도 영역에서의 발광스펙트럼이 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되고, 파장의 증가에 따른 스펙트럼의 증가비율이 50%미만(도 1~2 참조)이며, 평균연색 평가수(Ra)가 98~100일 수 있다. 파장에 따른 스펙트럼 증가비율이 50% 이상인 경우 4500K미만 색온도 영역에서 평균연색 평가수가 98미만으로 감소하게 되어 원하는 초고연색성을 나타내지 못하게 된다.
본 발명은 또한 상기 초고연색 백색 발광 소자를 포함하는 백색 발광 모듈을 제공한다.
상기 백색 발광 모듈은 서로 다른 색온도를 가지는 2개 이상의 초고연색 백색 발광 소자를 포함할 수 있다. 상기와 같이 서로 다른 색온도를 가지는 2개 이상의 초고연색 백색 발광 소자를 혼합하여 발광하는 경우 한층 광범위에 걸친 색온도에서 백색을 발산할 수 있는 백색 LED를 제조가능하다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.
실시예
반도체 LED칩, 형광체 재료, 봉지재로서 하기의 재료를 사용하여 백색 소자를 제조하고 평가하였다.
(1) 반도체 LED칩
반도체LED 칩으로는, 피크 파장405nm, 반치폭30nm인 InGaN/GaN 다중 양자 우물 구조를 발광층으로 하는 것을 사용하였다. 외형은 520μmx390μm의 장방형이다.
(2) 봉지재
실리콘 수지와 침강방지제로서 실리카 파우더(SiO2)를 사용하였다.
(3) 형광체
형광체로서 하기의 형광체 재료를 사용하였다.
청색 형광체: (Sr,Br)10(PO4)6Cl2:Eu
녹색 형광체: SiAlON:EU
황색 형광체: (Ba,Sr)Si2(O,Cl)2N2:Eu
적색 형광체: CaAlSi(ON)2:Eu
심적색 형광체: CaAlSiN2:Eu
상기 InGaN/GaN 다중 양자 우물 구조를 가지는 자색LED를 전극 배선을 실시한 LEAD FRAME 패키지 위에 실장하여, 상기 5종류의 형광체를 각각의 배합비에 따라, 상기 실리콘 수지 중에 분산시킨 형광체 함유 조성물을 사용해 봉지하였다. 형광체 혼합액은, 디스펜서를 사용하여 자색 LED 칩 상에 직접 빈틈없이 도포하였다.
실험예
발광 스펙트럼 측정은, 20~65mA의 순방향 전류 인가 조건하에, 실온에서 측정하였다.측정 장치는, 광전자정밀㈜(WITHLIGHT, 한국)제OPI-100을 사용 하였다.
표1은, 본 발명의 실시에 있어서 최적의 조건을 부여하는 값을 나타낸다. 형광체를 반도체LED 칩 위에 코팅하기 전에, 미리5종류의 혼합 비율을 결정하여 형광체 혼합체의 photoluminescence(PL) 스펙트럼을 측정하고, 도 7에 맞도록 스펙트럼을 설계하였다. 표 1과 표 2의 색온도(2737K, 3028K. 4477K, 5393K, 6488K)는 상관색온도로, 각각 색온도가 2700K, 3000K, 44500K, 5400K, 6500K에 대응된다.
색 온 도(K) 색도 좌표 값 형광체의 배합비(wt%)
x y 청색 형광체 녹색 형광체 황색 형광체 적색 형광체 심적색형광체
2737 0.468 0.430 24.0 1.0 1.0 14.0 0.6
3028 0.436 0.404 7.3 1.0 0.4 4.7 0.2
4477 0.362 0.368 12.3 1.0 1.0 5.0 0.3
5097 0.343 0.352 14.3 1.0 1.0 5.2 0.3
5393 0.335 0.348 13.2 1.0 1.0 4.6 0.3
6488 0.313 0.329 17.2 1.0 1.0 5.6 0.2
도 1에 나타난 바와 같이 본 발명에 의한 스펙트럼(실선)은 색온도 2700K의 가시광선영역(430~630nm)에서 미술관 조명용 할로겐 램프에 의한 스펙트럼(붉은 점선)과 거의 동일한 스펙트럼을 나타내고 있으며, 적외선 및 자외선의 발생량이 현저하게 감소되어 미술품의 광손상을 최소화 할 수 있다.
또한 도 2~6에는 각각 색온도 3028K, 4477K, 5097K, 5393K 및 6488K에서의 스펙트럼을 도시하였다. 도 2에 나타난 바와 같이 색온도 4500K미만에서는 파장의 증가에 따른 스펙트럼의 증가비율이 50%미만으로 나타나고 있으며, 청색광의 피크도 낮게 나타나는 것을 확인할 수 있었다. 또한 도 3~6에 나타난 바와 같이, 색온도 4500K이상에서는 파장의 증가에 따른 스펙트럼의 증감비율이 10%미만으로 나타나고 있는 것을 확인할 수 있었다.
도 7에, 455nm 청색 발광 강도(B)/630nm 적색 발광 강도(R)의 강도비와 색온도의 관계를 표시하였다. 또한, 평균 연색 평가수(Ra) 값도 표시하였다. 실험을 실시한 색온도 범위 내에서Ra의 평균은98.5였다. 이러한 도 7에 따라 본 발명의 백색 발광 소자는 하기의 식 1을 만족하는 것을 확인할 수 있었다.
[식 1]
Tc=3700(B/R)+1800
<발광 스펙트럼 강도>
도 1~6에 나타난 바와 같이, 색온도가 증가함에 따라, 상대적으로405nm의 여기광인 자색광 성분이 강해지고, 적색 발광 강도가 약해진다. 한 편, 녹색 발광에 관해서는, 적색 발광의 강도보다 강해지지 않도록, 또한 피크가 출현하지 않도록 녹색 형광체 배합을 조정하는 것이 중요하다. 그리고, 455nm에서의 청색 발광 강도와 405nm의 자색 발광 강도비는 3을 넘지 않도록 청색 형광체의 중량을 조정하였다. 도 7에 나타낸 바와 같이, 455nm의 청색 발광 강도(B)와630nm의 적색 발광(R)의 강도비는, 색온도(Tc)에 대해 비례 관계가 있음을 알 수 있다. 이 사실은, 초고연색 백색LED 소자를 얻기 위해 매우 중요한 관계로, 이 방정식(Tc=3700(B/R)+1800)은 적절한 색온도 조정을 위해 각각의 형광체 비율을 설정하는 데에 있어서의 기준이 된다.
<발광 스펙트럼 형상>
도 1~6의 특성을 가지는 백색LED의 발광 스펙트럼에서 그 형상에 대해 살펴보면, 대부분의 색온도에서, 약450nm보다 장파장 영역에 있어서 평탄한 스펙트럼 형상을 나타낸다. 주목해야 할 점은, 480~500nm에 걸쳐 스펙트럼이 매끄럽게 이어지고 있으며, 고의적으로 청녹색 형광체를 첨가할 필요는 없음을 알 수 있다.
초고연색성을 얻기 위한 조건은, 스펙트럼이 전체적으로 평탄한 것이 중요하다. 우선, 도 1은, 상기한 바와 같이 할로겐 램프의 분광 스펙트럼과 유사하며, 직선적으로 평탄하게 발광 강도가 증가한다. 3028K에서 5097K에 걸쳐서는, 미세하게 청색, 녹색, 적색의 피크처럼 보이는 요철은 나타나지만, 5393K에 이르러서는, 이러한 피크는 거의 볼 수 없게 된다.
따라서, 초고연색성을 나타내는 스펙트럼 형상을 설계하는 데에 있어서, 각 형광체의 피크가 출현하지 않도록 하는 것이 바람직함을 알 수 있다. 즉, 파장 430nm에서 630nm에 걸쳐 근사적으로 매끄러운 발광 스펙트럼 형상을 가지는 것이다.
도 8은 이상의 결과를 토대로 초고연색 백색 발광 소자를 설계하는 지침을 제공한다. 즉, 4500K~5500K에서는 거의 평탄한 스펙트럼 형상을 보이며, 4500K~5500K 이하의 색온도에서는 우측으로 높아지는 경사를 가지고, 직선적으로 강도가 증가한다. 이 경사각 α는, +26도(0<α<+26o)이다(증가율 약50%미만). 한편, 4500K~5500K 보다 높은 색온도에서는 경사각 β가 미세하게 우측으로 낮아지는 경향을 가진다. 이 각도는-3도(-3o<β<0)이다(변화율 10%미만). 이 그림에서 ①은 4500K~5500K보다 낮은 색온도일 때의 스펙트럼 형상의 근사 특성, ②는 4500K~5500K일 때의 색온도에서의 스펙트럼 형상의 근사 특성, 그리고 ③은 4500K~5500K보다 높을 때의 색온도 별 스펙트럼 형상의 근사 특성을 나타낸다.
<발광 효율>
상기 실시예와 같이 5종류의 형광체를 혼합하기 때문에, 다단(cascade) 여기에 따른 발광 여기 에너지 손실이 예상됨에도 불구하고, 발광 효율은 65mA일 때, 최대 110lm/W의 값을 얻을 수 있었다. 이것은, 많은 실험을 통해 복수의 형광체 간의 상관 관계에 따른 최적 비율과 최적의 형광체 조합 설계가 가능해졌기 때문이다.
연색성에 관한 측정은 광전자정밀㈜(WITHLIGHT, 한국)제 OPI-100 측정기를 사용하여 실측하였다. 또한, 색 충실도 지수(Rf)와 색역 지수(Rg)의 측정은 ASENSETEK(대만)제 LP Pro 장치를 사용하여 실측하였다.
하기의 표 2에, 각 색온도 별Ra, R9, R11, R12, R15, Rf와Rg 값을 표시하였다.
CCT(K) Ra R9 R11 R12 R15 Rf Rg
2737 98 95 95 99 98
3028 98 91 96 96 99 96 100
4477 99 94 100 98 100
5097 99 98 97 97 98 97 100
5393 99 96 98 97 99
6488 98 98 98 98 98 98 100
표3에 2737K일 때의 Ra(1에서8까지)와 Ri(9에서15까지)의 값을 표시하였다.
Ra R1 R2 R3 R4 R5 R6 R7 R8
98.0 99 99 98 97 98 98 97 98
R9 R10 R11 R12 R13 R14 R15
95 99 95 99 98 98 98
표 4에 3028K일 때의Ra(1에서8까지)와 Ri(9에서15까지)의 값을 표시하였다.
Ra R1 R2 R3 R4 R5 R6 R7 R8
98.3 98.8 99.0 98.8 98.2 98.6 96.8 97.6 95.6
R9 R10 R11 R12 R13 R14 R15
91.3 99.2 96.3 95.5 98.6 98.4 98.6
표 5에 4477K일 때의 Ra(1에서8까지)와 Ri(9에서15까지)의 값을 표시하였다.
Ra R1 R2 R3 R4 R5 R6 R7 R8
99.3 100 100 98 100 100 99 99 98
R9 R10 R11 R12 R13 R14 R15
94 98 100 98 99 98 100
표 6에 5097K일 때의 Ra(1에서8까지)와 Ri(9에서15까지)의 값을 표시하였다.
Ra R1 R2 R3 R4 R5 R6 R7 R8
98.5 98 99 99 98 98 98 99 99
R9 R10 R11 R12 R13 R14 R15
98 99 97 97 98 99 98
표 7에 5393K일 때의 Ra(1에서8까지)와 Ri(9에서15까지)의 값을 표시하였다.
Ra R1 R2 R3 R4 R5 R6 R7 R8
99.1 99 99 99 98 99 98 99 99
R9 R10 R11 R12 R13 R14 R15
96 99 98 97 99 99 99
표 8에 6488K일 때의 Ra(1에서8까지)와 Ri(9에서15까지)의 값을 표시하였다.
Ra R1 R2 R3 R4 R5 R6 R7 R8
98.3 98 99 99 98 98 97 99 98
R9 R10 R11 R12 R13 R14 R15
98 98 98 98 98 99 98
전술한 바와 같이, 5종류의 형광체 중량 비를 표1에 표시한 것과 같이 최적으로 조합하고, 또한 청색 형광체와 심적색 형광체의 적정량을 각각 조정함으로 인해, 모든 색온도에 있어서 표 3~8에 표시한 것과 같은 매우 높은 Ra와 Ri 수치를 달성할 수 있었다. 특히, 4477K에 있어서는, R9=94를 제외하면, 그 외의 수치는 지금까지 보고된 적이 없는 상당히 높은 수치를 나타내었다.
상기 초고연색 백색 발광 소자에 대해, 색 충실도 지수(Rf)와 색역 지수(Rg)를 측정하여 이 수치들을 고찰하였다. Rf는 99색의 색상표에 대한 빛의 충실도 평균 값을 나타내며, 최대는100이다. Rg는 색역 평균 값을 나타내며, 기준광의 색역과 동일하면100으로 한다.
3028K, 5097K, 6488K의 색 충실도 지수(Rf)와 색역 지수(Rg)는 표2의 결과를 나타내었다.
본 발명의 백색LED 광원과 참고 광원에 의해 조사된 색의 유사도를 나타내는Rf는, 각각96, 97, 98이 되었다. Ra가 높아지면Rf도 높아져 비례 관계에 있는 것으로 나타났다.
3028K, 5097K, 6488K의 색역 지수(Rg)는, 전부100으로, 참고 광원과 완전히 일치하였다. 색역 지수는, 본 발명의 백색LED 광원에 의해 조사되는 색의 포화도 변화를 나타낸다. 100은 포화도가 완전히 일치하는 것이다. 100보다 크면 색 포화도가 높아 붉은 색을 띠게 된다. 특히, 색역은 시각적인 색감과도 관계되지만, 이론적으로는100에 가까울수록 빛의 질이 좋아지게 된다.
특히 본 발명에서는, 제1 형광체인 청색 형광체 함유량을 조정하고, 제5 형광체인 심적색 형광체를 적정량 추가함에 따라, 모든 색온도 범위에서Ra가99에 가깝게, Rf도96을 넘으며, Rg는100인 뛰어난 초고연색 백색LED 조명 소자를 실현하였다.
이상과 같은 특성을 가지는 백색LED 발광 소자는, 청구항에 언급한 조건을 모두 만족하는 초고연색 백색LED라고 할 수 있다. 특히, Ri의 모든 값이 높은 고채도 특성을 가지는 본 발명의 초고연색 백색LED 소자 및 조명 장치는, 색 평가의 높은 정밀도가 요구되는 색채 평가, 의료 조명 분야에서 유익하다. 본 발명으로 작제된 각 색온도를 가지는 백색LED 소자의 조합에 의해, 한층 다양한 색도 좌표(x, y)의 색온도를 가지는 초고연색 백색LED 광원을 설계할 수 있게 된다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (8)

  1. 380nm 이상430nm 이하에 발광 피크를 가지는 자색 파장 영역의 빛을 방출하는 반도체LED 칩 및 상기 자색LED 칩의 여기 파장에 의해 여기되어 발광하는 투명 수지 층에 분포된 형광체 층을 포함하는 초고연색 백색 발광 소자에 있어서,
    상기 형광체 층은,
    450~470nm에 발광 피크를 가지는 제1 형광체,
    510~550nm에 발광 피크를 가지는 제2 형광체,
    550~590nm에 발광 피크를 가지는 제3 형광체,
    630~660nm에 발광 피크를 가지는 제4 형광체, 및
    660~730nm에 발광 피크를 가지는 제5 형광체을 포함하며,
    상기 초고연색 백색 발광소자는, 평균 연색 평가수(Ra)가 98 이상 100 미만, 특수 연색 평가수(Ri)의 R9(적색)와 R12(청색)이 각가 94 이상 100 미만이며, 발광 효율은 80lm/W 이상인 것을 특징으로 하는 초고연색 백색 발광 소자.
  2. 제1항에 있어서,
    상기 제1형광체, 제2형광체, 제3형광체, 제4형광체 및 제5형광체의 중량비는 7.3~24.0 : 1.0 : 0.4~10 : 4.6~14.0 : 0.2~0.6인 것을 특징으로 하는 초고연색 백색 발광 소자.
  3. 제1항에 있어서,
    상기 초고연색 백색 발광 소자는 2700K~6500K의 각 색온도의 발광 스펙트럼에서 630nm의 적색 발광 강도(R)과 455nm의 청색 발광 강도(B)의 강도 비에 대한 색온도(Tc)가, 하기의 (식 1)을 만족하는 것을 특징으로 하는 초고연색 백색 발광 소자.
    (식 1)
    Tc(K)=3700(B/R)+1800
  4. 제1항에 있어서,
    상기 초고연색 백색 발광 소자의 발광스펙트럼은 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되며, 직선 또는 평탄한 스펙트럼 분포를 가지는 것을 특징으로 하는 초고연색 백색 발광 소자.
  5. 제1항에 있어서,
    상기 초고연색 백색 발광 소자는 4500K이상 색온도 영역에서의 발광스펙트럼이 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되고, 파장의 증가에 따른 스펙트럼의 감소비율이 10%미만이며, 평균연색 평가수(Ra)가 98~100인 것을 특징으로 하는 초고연색 백색 발광 소자.
  6. 제1항에 있어서,
    상기 초고연색 백색 발광 소자는 4500K미만 색온도 영역에서의 발광스펙트럼이 가시광 파장영역인 430nm~630nm에서 연속적으로 연결되고, 파장의 증가에 따른 스펙트럼의 증가비율이 50%미만이며, 평균연색 평가수(Ra)가 98~100인 것을 특징으로 하는 초고연색 백색 발광 소자.
  7. 제1항 에서 제6항까지의 초고연색 백색 발광 소자를 포함하는 백색 발광 모듈.
  8. 제 7항에 있어서,
    상기 백색 발광 모듈은 서로 다른 색온도를 가지는 2개 이상의 초고연색 백색 발광 소자를 포함하는 것을 특징으로 하는 백색 발광 모듈.
PCT/KR2018/006296 2018-03-21 2018-06-01 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치 WO2019182194A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018558135A JP6854831B2 (ja) 2018-03-21 2018-06-01 発光スペクトルを制御した超高演色白色発光素子及びこれを用いた照明装置
EP18804220.4A EP3567644A4 (en) 2018-03-21 2018-06-01 WHITE ELECTROLUMINESCENT ELEMENT WITH ULTRA-HIGH COLOR RENDERING WITH CONTROLLED EMISSION SPECTRUM, AND LIGHTING DEVICE INCLUDING IT
US16/098,224 US11127888B2 (en) 2018-03-21 2018-06-01 Ultra-high color rendering white light-emitting device with controlled emission spectrum and lighting device containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0032625 2018-03-21
KR1020180032625A KR101990475B1 (ko) 2018-03-21 2018-03-21 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치

Publications (1)

Publication Number Publication Date
WO2019182194A1 true WO2019182194A1 (ko) 2019-09-26

Family

ID=67104320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006296 WO2019182194A1 (ko) 2018-03-21 2018-06-01 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치

Country Status (5)

Country Link
US (1) US11127888B2 (ko)
EP (1) EP3567644A4 (ko)
JP (1) JP6854831B2 (ko)
KR (1) KR101990475B1 (ko)
WO (1) WO2019182194A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054083A (zh) * 2019-12-27 2021-06-29 英特美光电(苏州)有限公司 一种5000k超高显光谱荧光粉

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102121266B1 (ko) * 2019-07-26 2020-06-26 주식회사 올릭스 근적외 성분을 포함하는 고연색 백색 발광 소자
KR102516843B1 (ko) * 2019-08-22 2023-03-30 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 광학장치
KR102408688B1 (ko) * 2020-09-14 2022-06-16 (주)올릭스 파장 가변 초광대역 근적외 발광 장치
CN112602490B (zh) * 2020-12-31 2022-11-01 陕西电子信息集团光电科技有限公司 一种适用于无花果生长的led植物照明补光系统
KR102339912B1 (ko) * 2021-05-31 2021-12-17 유스테크 유한책임회사 가시광-근적외선 경계 부근까지 태양광 유사 스펙트럼을 갖는 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110085206A (ko) * 2010-01-19 2011-07-27 일진반도체 주식회사 백색 발광장치 및 이의 제조방법
JP2012056970A (ja) * 2009-08-26 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
KR20170068728A (ko) * 2015-12-10 2017-06-20 주식회사 올릭스 양자점 물질을 적용한 미술관 및 박물관용 led 소자 및 모듈
KR20170112164A (ko) * 2016-03-31 2017-10-12 주식회사 올릭스 스마트 기기로 제어 가능한 박물관 및 미술관용 led 조명 시스템
KR20170134241A (ko) * 2016-05-26 2017-12-06 니치아 카가쿠 고교 가부시키가이샤 발광 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1644985A4 (en) * 2003-06-24 2006-10-18 Gelcore Llc FULL SPECTRUM FLUID MIXTURES FOR WHITE GENERATION WITH LED CHIPS
JP5200067B2 (ja) 2009-07-13 2013-05-15 三菱電機株式会社 発光装置
JP2011054365A (ja) 2009-08-31 2011-03-17 Kokuyo Co Ltd 照明器具
EP2479811B1 (en) * 2009-09-17 2017-07-12 Kabushiki Kaisha Toshiba White-light emitting lamp and white-light led lighting device using same
WO2011111334A1 (ja) 2010-03-11 2011-09-15 株式会社 東芝 発光装置
JP5672985B2 (ja) * 2010-11-04 2015-02-18 三菱化学株式会社 半導体白色発光装置
JP5462211B2 (ja) * 2011-03-16 2014-04-02 株式会社東芝 白色発光装置
US9605815B2 (en) * 2011-11-07 2017-03-28 Kabushiki Kaisha Toshiba White light source and white light source system including the same
TWI578573B (zh) * 2013-01-28 2017-04-11 Harvatek Corp A plurality of blue light emitting diodes in white light
KR101706600B1 (ko) * 2014-06-13 2017-02-16 지엘비텍 주식회사 고연색성 백색 발광 소자
KR101651342B1 (ko) * 2014-12-03 2016-08-26 주식회사 올릭스 미술 조명용 스펙트럼 특성을 만족하는 발광 다이오드 소자 및 모듈
CN109155347B (zh) * 2016-05-20 2021-05-07 株式会社东芝 白色光源
EP3249703B1 (en) * 2016-05-26 2021-08-04 Nichia Corporation Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056970A (ja) * 2009-08-26 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
KR20110085206A (ko) * 2010-01-19 2011-07-27 일진반도체 주식회사 백색 발광장치 및 이의 제조방법
KR20170068728A (ko) * 2015-12-10 2017-06-20 주식회사 올릭스 양자점 물질을 적용한 미술관 및 박물관용 led 소자 및 모듈
KR20170112164A (ko) * 2016-03-31 2017-10-12 주식회사 올릭스 스마트 기기로 제어 가능한 박물관 및 미술관용 led 조명 시스템
KR20170134241A (ko) * 2016-05-26 2017-12-06 니치아 카가쿠 고교 가부시키가이샤 발광 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054083A (zh) * 2019-12-27 2021-06-29 英特美光电(苏州)有限公司 一种5000k超高显光谱荧光粉

Also Published As

Publication number Publication date
EP3567644A4 (en) 2020-12-23
KR101990475B1 (ko) 2019-06-19
US20200357962A1 (en) 2020-11-12
JP6854831B2 (ja) 2021-04-07
JP2020515025A (ja) 2020-05-21
US11127888B2 (en) 2021-09-21
EP3567644A1 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2019182194A1 (ko) 발광 스펙트럼을 제어한 초고연색 백색 발광 소자 및 이를 포함하는 조명 장치
US11480308B2 (en) Full spectrum white light emitting devices
WO2015050317A1 (ko) 고연색성 백색 발광 소자
KR101455595B1 (ko) 형광 조성물 및 이를 이용한 백색광 발광 장치
CN109370593B (zh) 一种荧光体混合物及其发光装置
WO2013015597A2 (ko) 백색 led 장치
WO2020055119A1 (ko) 발광 장치
CN101872825A (zh) 制备低色温高显色性大功率白光led的新方法
TWI595803B (zh) 白光照明系統
KR102130817B1 (ko) 고연색성 백색 발광 소자
CN116504768A (zh) 高显色、光谱连续的白光led封装体及发光装置
WO2017043851A1 (ko) 발광 장치
KR101059119B1 (ko) 고연색성의 백색 발광 다이오드
WO2017099273A1 (ko) 양자점 물질을 적용한 미술관 및 박물관용 led 소자 및 모듈
KR20150143916A (ko) 고연색성 백색 발광 소자
WO2017082557A1 (ko) 황색 발광 형광체 및 이를 이용한 발광 장치
WO2020220689A1 (zh) 一种健康照明的发光系统、灯条和灯具
WO2016036054A1 (ko) 혼합광 생성장치
KR20200024604A (ko) 박물관 조명용 스펙트럼 제어 led 소자 및 조명장치
TW201338218A (zh) 光源模組
WO2024058548A1 (ko) 발광 소자 및 그것을 갖는 조명 기구
KR101855391B1 (ko) 고연색성 백색 발광 소자
KR20150143377A (ko) 고연색성 백색 발광 소자
TWI529976B (zh) 發光裝置
TWI578578B (zh) 發光裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558135

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018804220

Country of ref document: EP

Effective date: 20190108

NENP Non-entry into the national phase

Ref country code: DE