WO2019182008A1 - 2-アミノフェノール類の測定方法 - Google Patents

2-アミノフェノール類の測定方法 Download PDF

Info

Publication number
WO2019182008A1
WO2019182008A1 PCT/JP2019/011687 JP2019011687W WO2019182008A1 WO 2019182008 A1 WO2019182008 A1 WO 2019182008A1 JP 2019011687 W JP2019011687 W JP 2019011687W WO 2019182008 A1 WO2019182008 A1 WO 2019182008A1
Authority
WO
WIPO (PCT)
Prior art keywords
aminophenols
measuring
aminophenol
measurement
precursor
Prior art date
Application number
PCT/JP2019/011687
Other languages
English (en)
French (fr)
Inventor
宮本 浩士
史直 小林
Original Assignee
池田食研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池田食研株式会社 filed Critical 池田食研株式会社
Priority to JP2020507870A priority Critical patent/JP7330516B2/ja
Publication of WO2019182008A1 publication Critical patent/WO2019182008A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Definitions

  • the present invention relates to a measuring method and measuring kit for 2-aminophenols using an enzyme.
  • the tryptophan metabolites 3-hydroxykynurenine and 3-hydroxyanthranilic acid are both known as 2-aminophenols, and L-kynurenine and anthranilic acid are known as precursor substances. Since these substances have a low blood concentration of about several tens of nM to several ⁇ M, it is considered that measurement by an enzymatic method is difficult, and analysis by an HPLC / MS method is common (for example, Non-Patent Document 1, 2).
  • IDO inhibitors indoleamine-2,3-dioxygenase inhibitors
  • TDO inhibitors tryptophan-2,3-dioxygenase inhibitors
  • Kynurenine-degrading enzyme preparations, etc. are being developed
  • KMO inhibitors kynurenine-3-monooxygenase inhibitors
  • IDO inhibitors and TDO inhibitors as anticancer agents are also expected to be used in combination with immune checkpoint inhibitors such as anti-PD-1 antibodies. Doing is also discussed. As a result, there is a need for a method capable of easily and highly sensitively measuring 2-aminophenols and their precursors, for example, for drug development work such as screening for the above-mentioned inhibitors, or as a companion diagnostic agent when using the drug. It was done.
  • An object of the present invention is to provide a high-sensitivity measurement method for enabling measurement of 2-aminophenols and precursors thereof in a sample, and a measurement kit including these measurement reagents.
  • the present inventors examined a method for measuring 2-aminophenols using an enzyme.
  • an oxidizing agent, a reducing substance and a mediator to act on 2-aminophenols
  • the reducing substances are reduced depending on the concentration of 2-aminophenols, and the concentration of 2-aminophenols is reduced.
  • the oxidant and reactive oxygen species increase.
  • a method for quantifying 2-aminophenols in a simple, accurate and sensitive manner has been found. Invented. It has also been found that the same measurement is possible even if it is a precursor of 2-aminophenols, in combination with the reaction leading to 2-aminophenols.
  • the present invention provides the following [1] to [11].
  • [1] Measure at least one of the reduction amount of the reduction material, the increase amount of the oxidation material, and the increase amount of the active oxygen species by causing an oxidizing agent, a reduction material, and a mediator to act on 2-aminophenols.
  • a method for measuring 2-aminophenols comprising step (A).
  • [2] The method for measuring 2-aminophenols according to [1] above, wherein the oxidizing agent is an oxidase acting on a phenol compound.
  • any one of [1] to [6] above comprising the step (B) of converting a precursor of 2-aminophenols into 2-aminophenols before or simultaneously with step (A) The measuring method of 2-aminophenol as described.
  • the precursor of 2-aminophenols is L-kynurenine, the step of converting L-kynurenine into 3-hydroxykynurenine by kynurenine monooxygenase, or the precursor of 2-aminophenols is anthranilic acid,
  • the method for measuring 2-aminophenols according to [7] above, comprising a step of converting anthranilic acid to 3-hydroxyanthranilic acid by anthranilic acid monooxygenase.
  • a 2-aminophenol precursor measurement kit comprising a conversion reagent for converting a precursor of 2-aminophenol into 2-aminophenol, and the measurement reagent according to [9].
  • 2-aminophenols and / or precursors thereof can be quantified simply, accurately and with high sensitivity.
  • L-kynurenine which is a precursor of 3-hydroxykynurenine
  • the absorbance per 1 ⁇ M of L-kynurenine The change is about 0.006 [abs] when a cell having an optical path length of 1 cm is used, whereas in the method of the present invention, the absorbance change at 340 nm per 1 ⁇ M of L-kynurenine is at least 0.1 [abs].
  • L-kynurenine Since it is extremely large and can be measured with high sensitivity, low concentration L-kynurenine can be measured. This method can be measured by absorptiometry and can use a widely used biochemical automatic analyzer, so it is suitable for measuring a large number of samples and can also be used in clinical examinations.
  • substrate 2-aminophenol (2-AP), 3-hydroxyanthranilic acid (OH-AA) or 3-hydroxykynurenine (OH-Kyn) at various concentrations, NADH as reducing substance, diaphorase as mediator, POD as oxidizing agent
  • L-kynurenine (L-Kyn) 3-hydroxykynurenine (OH-Kyn) or its precursor L-kynurenine (L-Kyn) as a substrate, NADH as a reducing substance, diaphorase as a mediator, POD as an oxidizing agent, and NADH as a reducing substance
  • L-kynurenine (L-Kyn) which is a precursor of 3-hydroxykynurenine, as a substrate, NADH as a reducing substance, diaphorase as a mediator, and POD as an oxidizing agent, the amount of reduction of NADH, a reducing substance, is measured.
  • the figure which measured the precursor of 2-aminophenol in FIG. Using L-kynurenine (L-Kyn) as a precursor of 3-hydroxykynurenine as a substrate, NADH as a reducing substance, diaphorase as a mediator, and bilirubin oxidase as an oxidizing agent, the amount of reduction of NADH as a reducing substance is measured. The figure which measured the precursor of 2-aminophenol by this.
  • L-kynurenine a precursor of 3-hydroxykynurenine, as a substrate, NADH as a reducing substance, diaphorase as a mediator, and laccase as an oxidizing agent
  • the amount of reduction of NADH, a reducing substance is measured.
  • the figure which measured the precursor of 2-aminophenol in FIG. By using 3-hydroxyanthranilic acid (OH-AA) as a substrate, NADH as a reducing substance, diaphorase as a mediator, and POD as an oxidizing agent, the amount of increase in the oxidizing substance NAD + is measured, thereby obtaining 2-aminophenol The figure which measured the kind.
  • 3-hydroxyanthranilic acid OH-AA
  • NADH as a reducing substance
  • diaphorase as a mediator
  • POD as an oxidizing agent
  • the amount of quinone-type dye produced is measured as the amount of active oxygen species increased in each reaction time The figure which measured 2-aminophenol by doing.
  • 3-hydroxykynurenine OH-Kyn
  • dithiothreitol as a reducing substance and mediator, and measuring the increase in oxidized dithiothreitol with and without laccase as an oxidant The figure which measured 2-aminophenol by doing.
  • the present invention when the oxidizing agent, the reducing substance, and the mediator are allowed to act on the 2-aminophenols that are substrates, the reduction of the reducing substance, the increase of the oxidizing substance, and the increase of the active oxygen species are recognized.
  • the present invention relates to a method for measuring 2-aminophenol, characterized in that at least one of a decrease amount, an increase amount of an oxidizing substance, and an increase amount of active oxygen species is measured.
  • the order of addition of the oxidizing agent, the reducing substance and the mediator is not particularly specified as long as 2-aminophenols can be measured with high sensitivity, and a mixture thereof can be added simultaneously.
  • sample (substrate) used in the method of the present invention is not particularly limited as long as it is a sample containing 2-aminophenols or a precursor thereof.
  • a biological sample of mammals including humans, for example, blood (serum, plasma) Saliva, urine, cerebrospinal fluid and the like.
  • blood is generally used for clinical diagnostic purposes, but when blood is used as a sample, serum, plasma, or deproteinized blood is preferably used. If it is a non-invasive test, saliva and urine can be used as samples.
  • the 2-aminophenol in the present invention is not particularly limited as long as it is a compound having a 2-aminophenol structure represented by CAS No. 95-55-6 (an amino group in the ortho position as viewed from the hydroxy group of phenol).
  • any substituent may be bonded to any other position, but when it has a substituent, it is preferably located in the ortho position as viewed from the amino group or hydroxy group.
  • the substituent include, but are not particularly limited to, a carboxyl group, a C2-6 acyl group, a 2-amino-2-carboxyethylcarbonyl group, a nitro group, a hydroxy group, and a halogen atom.
  • 2-aminophenol o-aminophenol
  • 3-hydroxykynurenine 3-hydroxy-DL-kynurenine, 3-hydroxy-L-kynurenine or 3-hydroxy-D-kynurenine
  • 3-hydroxyanthranilic acid (2 -Amino-3-hydroxybenzoic acid)
  • 2-aminocresol 2-aminonitrophenol, 2-aminochlorophenol, 2-amino-3-hydroxyacetophenone, and the like are listed as 2-aminophenols.
  • the precursor of 2-aminophenols in the present invention represents a compound that can be converted into the 2-aminophenols by performing some kind of chemical reaction, and is not particularly limited as long as it is within the range.
  • kynurenine DL-kynurenine, D-kynurenine, L-kynurenine
  • anthranilic acid 2-aminophenol phosphate, 2-aminophenol glucoside and the like can be mentioned as precursors of 2-aminophenols.
  • a pretreatment step is performed in order to remove or reduce at least one substance such as a contaminating reducing substance, a contaminating protein, a metal ion, and other substances that may interfere with the measurement and its influence by a known method.
  • a pretreatment step using a reagent for the treatment may be included.
  • the contaminant reducing substance include bilirubin, ascorbic acid, uric acid and the like.
  • Examples include pretreatment using bilirubin oxidase for reducing bilirubin, ascorbate oxidase for reducing ascorbic acid, and uricase for reducing uric acid.
  • treatment with hydrogen peroxide or peroxidase can also be performed.
  • the usage-amount of enzyme, reaction pH, and temperature can be suitably set based on the optimal pH and temperature of each enzyme.
  • the amount of the enzyme used is, for example, 0.1 to 1000 U / mL, preferably 0.5 to 100 U / mL, in the pretreatment solution.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is, for example, 5.0 to 11.0, preferably 5.5 to 10.5, and more preferably 6.0 to 10.0.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes.
  • Contaminating protein can be reduced by a known method using a deproteinizing agent such as perchloric acid or trichloroacetic acid. After the reduction treatment, it can be used as a sample by neutralizing with potassium carbonate or the like. It should be noted that it is possible to reduce contaminant reducing substances such as bilirubin and hemoglobin by the protein removal treatment.
  • a deproteinizing agent such as perchloric acid or trichloroacetic acid. After the reduction treatment, it can be used as a sample by neutralizing with potassium carbonate or the like. It should be noted that it is possible to reduce contaminant reducing substances such as bilirubin and hemoglobin by the protein removal treatment.
  • Metal ions can be reduced with a metal chelating agent, for example.
  • the metal chelating agent is not particularly limited, but EDTA (ethylenediaminetetraacetic acid), bicine (N, N-bis (2-hydroxyethyl) glycine), DTPA (diethylenetriaminepentaacetic acid), CyDTA (trans-1,2-diaminocyclohexane- N, N, N, N-tetraacetic acid) and the like are preferably used.
  • concentration of a metal chelating agent can be suitably set in the range which does not affect this measurement, it is 10 mM or less, for example, Preferably it is 2 mM or less. Magnesium ions and the like can be reduced by adding phosphoric acid.
  • the liquid subjected to the above pretreatment may be used for measurement immediately after the pretreatment, or may be used after storage in refrigeration or freezing.
  • the oxidizing agent used in the present invention is capable of oxidizing 2-aminophenols.
  • the oxidizing agent is not particularly limited as long as it can perform high-sensitivity measurement of 2-aminophenols. Examples thereof include oxidoreductases, preferably oxidases, and more preferably oxidases that act on phenolic compounds. It is.
  • peroxidase EC number 1.11.1.X
  • laccase EC number 1.10.3.2
  • bilirubin oxidase EC number 1.3.3.5
  • aminophenol oxidase EC Number 1.10.3.4
  • catechol oxidase EC number 1.10.3.1
  • tyrosinase EC number 1.14.18.1
  • myeloperoxidase EC number 1.11.2.2
  • 3-hydroxyanthranilate oxidase EC number 1.10.3.5
  • ferrooxidase EC number 1.6.1.3.1
  • phenol-2-monooxygenase EC number 1.14.13.7 or 1.14.14.20
  • Glyxazone synthase EC number 1.10.3.15
  • 2-aminophenol 1,6-dioxygenase EC Issue 1.13.11.74
  • 2- amino-5-chlorophenol 1,6-dioxygenase EC number 1.13.11.76
  • peroxidase, laccase, bilirubin oxidase or aminophenol oxidase is preferable, and peroxidase, laccase or bilirubin oxidase is particularly preferable.
  • These oxidases that act on phenolic compounds can be used alone or in combination, and can also be used in combination with other enzymes. Concentrations of oxidases such as peroxidase, laccase or bilirubin oxidase are not observed in systems that do not contain 2-aminophenols, with little reduction in reducing substances and increase in oxidizing substances and reactive oxygen species.
  • the concentration is not limited as long as the concentration of the reducing substance, the oxidizing substance, and the active oxygen species are increased, but preferably 0.001 to 1,000 U / mL, more preferably 0.01. ⁇ 100 U / mL.
  • the reaction pH, temperature and time can be appropriately set according to conditions suitable for each enzyme.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is, for example, 4.5 to 10.5, preferably 5.0 to 10.0, and more preferably 5.5 to 9.5.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 45 minutes, more preferably 1 to 30 minutes.
  • the reducing substance used in the present invention is not particularly limited as long as 2-aminophenols can be measured with high sensitivity, but at least one of NADH and NADPH is preferable, and derivatives thereof are also included.
  • NADH or a NADPH derivative can be used to improve the stability of NADH or NADPH, increase the molar extinction coefficient, or the like.
  • known ones such as NADH or NADPH derivatives disclosed in JP2012-224638A can be used.
  • the concentration of the reducing substance can be appropriately set within a range that does not affect the measurement, but is preferably 0.01 mM or more, and more preferably 0.05 mM or more.
  • dithiothreitol, ascorbic acid, and the like can be used as a reducing substance that also functions as a mediator.
  • the mediator (electron carrier) used in the present invention is not particularly limited as long as it can measure 2-aminophenols with high sensitivity.
  • at least one of NADH and NADPH as a reducing substance, or their Diaphorase is preferred when a derivative is used.
  • the amount used is preferably 0.01 U / mL or more, more preferably 0.1 U / mL or more, in the reaction solution.
  • the type of diaphorase is not limited as long as it reacts with a reducing substance. For example, EC number 1.6.5. X, EC number 1.6.99.1, EC number 1.6.99.3, EC number 1.8.1.4, and the like can be used.
  • the reaction temperature, reaction pH, and reaction time can be appropriately set based on the optimum pH and temperature of the enzyme and the like.
  • the reaction temperature is, for example, 15 to 50 ° C., preferably 20 to 45 ° C., more preferably 25 to 40 ° C.
  • the reaction pH is not particularly limited, but when diaphorase is used, the pH is preferably 4.5 to 10.5, more preferably 5.0 to 10.0, and still more preferably 5.5 to 9.5.
  • the reaction time is, for example, 1 to 60 minutes, preferably 1 to 40 minutes, more preferably 1 to 30 minutes. The sensitivity obtained is considered to increase as the amount of enzyme used increases and as the reaction time increases.
  • the measurement of the reducing substance can be performed, for example, by measuring a change amount (decrease amount) of at least one of NADH, NADPH, and derivatives thereof.
  • the measurement method include measuring absorbance at 340 nm when measuring at least one change amount of NADH and NADPH.
  • the amount of change in at least one derivative of NADH and NADPH it is possible to easily measure the reduction in the concentration of the reducing substance by measuring the absorbance of each derivative at the optimum wavelength.
  • at least one of thio-NADH and thio-NADPH it is possible to measure absorbance at around 400 nm. Further, when ascorbic acid is used as a reducing substance, the absorbance can be measured in the vicinity of 265 nm.
  • Other methods include a method of measuring the absorbance by reacting NADHs with a redox coloring reagent such as formazan dye in the presence of a mediator after reaction for a certain period of time, or an oxidase acting on NADHs such as NADH It is also possible to calculate the remaining reducing substance concentration by a method of measuring hydrogen peroxide obtained by the action of oxidase or the like by the method described in the method for measuring reactive oxygen species described below. In addition, a known fluorescence method, electrochemical measurement, and the like are possible. Moreover, the reagent for a reducing substance measurement which contains each said component suitably can also be prepared.
  • These measuring means are not particularly limited, and examples thereof include absorbance measurement using a spectrophotometer (for example, V-660 manufactured by JASCO Corporation).
  • the concentration of the reducing substance when the concentration of the reducing substance is too high, it can be measured by appropriately diluting it so that it falls within the measurement range of the spectrophotometer.
  • the oxidizing substance to be measured in the present invention is not particularly limited as long as it can measure 2-aminophenols with high sensitivity.
  • the concentration of 2-aminophenols is not limited. depending on, NAD + is increased is an oxidizing substance, when using the NADPH as a reducing agent, depending on the concentration of 2-aminophenols, an oxidant NADP + is increased. Therefore, the concentration of 2-aminophenols can be measured by measuring the concentration of at least one of those oxidizing substances.
  • a method for measuring the concentration of an oxidizing substance such as NAD + and NADP + may be a known technique.
  • the oxidizing substance is at least one of NAD + and NADP + , for example, a known document (Chem Commun (Camb). According to 2013, 49 (98): 11500-2), a method of reacting acetophenone, 2-acetylbenzofuran, etc., and measuring the resulting fluorescent substance by a fluorescence method can be mentioned.
  • NADH or NADPH produced by a reaction with a dehydrogenase using NAD + or NADP + as a coenzyme can be measured by absorbance at 340 nm or the like.
  • hydrogen peroxide obtained by reacting ethanol, alcohol dehydrogenase and aldehyde oxidase, or by reacting lactic acid, lactate dehydrogenase and pyruvate oxidase is used to measure the reactive oxygen species described later. It is also possible to measure by the method described in.
  • a reagent for measuring an oxidant containing the above-mentioned components as appropriate can be prepared.
  • hydrogen peroxide is generated by a method such as superoxide dismutase acting on the produced reactive oxygen species, and then Trinder reagent (phenol / aminoantipyrine system), new Trinder reagent (aniline / aminoantipyrine system), luminol reagent And the like, and measuring by absorbance or chemiluminescence.
  • Trinder reagent phenol / aminoantipyrine system
  • new Trinder reagent aniline / aminoantipyrine system
  • luminol reagent And the like and measuring by absorbance or chemiluminescence.
  • a reagent for measuring active oxygen species that appropriately contains the above-described components can also be prepared.
  • spectrophotometer In the measurement with a spectrophotometer, it is preferable to select appropriately from the rate method and the endpoint method.
  • spectrophotometers used for measurement include commercial products sold by various companies such as JASCO, Hitachi High-Technologies, Shimadzu Corporation.
  • Using a spectrophotometer it is possible to measure the concentration of 2-aminophenols by measuring at least one of the reduction amount of the reducing substance, the increase amount of the oxidizing substance, and the increase amount of the reactive oxygen species. .
  • the concentration of 2-aminophenols such as 2-aminophenol, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid, or the precursors of 2-aminophenols such as L-kynurenine and anthranilic acid are determined by the optical path length.
  • a 1 cm cell it can be measured with a high sensitivity of 0.1 [abs] or more per 1 ⁇ M, more preferably 0.2 [abs] or more, and still more preferably 0.5 [abs] or more. It can be measured with sensitivity.
  • the present invention may include a step (B) of converting a precursor of 2-aminophenols into 2-aminophenols before or simultaneously with the step (A).
  • the precursor of the 2-aminophenol can also be measured.
  • an enzyme reaction or the like is preferably used.
  • the precursor of 2-aminophenols is L-kynurenine, it can be converted to 3-hydroxykynurenine by acting at least one of NADH and NADPH and kynurenine monooxygenase to give a hydroxy group.
  • 2-aminophenols When the precursor of 2-aminophenols is anthranilic acid, tetrahydrofolate and anthranilic acid monooxygenase can be allowed to act to give a hydroxy group and be converted to 3-hydroxyanthranilic acid.
  • the precursor of 2-aminophenol is 2-aminophenol phosphate (having a phosphate group bonded to the hydroxy group of 2-aminophenol)
  • the phosphate group is removed by the action of phosphatase.
  • 2-aminophenol glucoside a saccharide bonded to a hydroxy group
  • it can be converted to 2-aminophenol by the action of amylase or glycosidase.
  • the phosphatase activity in the sample and if 2-aminophenol glucoside is used, the amylase activity and glycosidase activity in the sample are determined from the amount of 2-aminophenol produced. It is also possible to measure (in other words, various enzyme activities can be measured depending on the type of 2-aminophenol precursor). Moreover, the precursor conversion reagent which contains said each component suitably can also be prepared. In addition, in order to remove or reduce the influence of the substance which interferes with the measurement in a sample, the method of implementing the measurement which included the process (B), and the measurement which does not include, respectively, and evaluating with the difference is also possible.
  • Optional component In the method for measuring 2-aminophenols of the present invention, other optional components known to those skilled in the art may be appropriately contained to enhance the stability of the reagent components such as the enzyme.
  • the optional component is not particularly limited as long as it does not affect the measurement.
  • bovine serum albumin (BSA) ovalbumin
  • saccharides sugar alcohols
  • carboxyl group-containing compounds antioxidants
  • surfactants enzyme activities
  • Amino acids and buffering agents that do not adversely affect
  • the stabilizer and other substances can be added.
  • the present invention provides a reagent for measuring 2-aminophenols and a measurement kit including an oxidizing agent, a reducing substance and a mediator.
  • the reagent or kit is a reagent or kit for use in the above-mentioned 2-aminophenol measurement, and preferably further includes various components necessary for the measurement. For example, at least one of a buffer having a buffering ability at a target pH, a pretreatment process reagent, a reducing substance measuring reagent, an oxidizing substance measuring reagent, and a reactive oxygen species measuring reagent can be included. It is also possible to add the above-mentioned optional components and buffering agents as stabilizers.
  • a combination of a reagent for converting a precursor, such as an enzyme, which can be converted from a precursor to 2-aminophenol, and the reagent for measuring 2-aminophenol is combined.
  • a precursor measurement kit for 2-aminophenols can be provided.
  • the composition of the reagent and kit for measuring kynurenine of the present invention is a state of a composition dissolved in a solution (for example, a buffer) suitable for storage or measurement of kynurenine, or a lyophilized state (for example, (Powder) is desirable.
  • Example 1 (Confirmation of the effects of the presence of oxidizing agents and mediators in the measurement of 2-aminophenols) Using 3-hydroxyanthranilic acid (OH-AA) as 2-aminophenol, peroxidase (POD) (manufactured by Fujifilm Wako Pure Chemical Industries) as an oxidizing agent, NADH as a reducing substance, and diaphorase (manufactured by Nipro) as a mediator 2-aminophenols were measured by measuring the amount of decrease in NADH.
  • OH-AA 3-hydroxyanthranilic acid
  • POD peroxidase
  • NADH as a reducing substance
  • diaphorase manufactured by Nipro
  • the measured values were converted so that the optical path length was 1 cm.
  • the absorbance of the corresponding control is subtracted from the absorbance of wells 1 to 4 to which OH-AA has been added, and the absolute value thereof is shown in FIG. 1 as ⁇ Abs340.
  • ⁇ Abs340 In well 4 containing both POD and diaphorase, a large ⁇ Abs340 was exhibited by the addition of OH-AA.
  • Example 2 Measurement of 2-aminophenols by measuring the reduction of reducing substances
  • 2-aminophenols as 2-aminophenol (2-AP), 3-hydroxyanthranilic acid (OH-AA) or 3-hydroxykynurenine (OH-Kyn)
  • POD as an oxidizing agent
  • NADH as a reducing substance
  • mediator By using diaphorase, 2-aminophenols were measured by measuring a decrease amount of NADH as a reducing substance.
  • ⁇ Abs340 increases in a concentration-dependent manner as the concentration of 2-aminophenols increases.
  • ⁇ Abs340 at a substrate concentration of 1 ⁇ M is a high value of about 0.1 to 0.3 [abs], and it is possible to measure 2-aminophenols with high sensitivity by measuring the amount of reduction of the reducing substance.
  • ⁇ Abs340 at a substrate concentration of 1 ⁇ M is a high value of about 0.1 to 0.3 [abs], and it is possible to measure 2-aminophenols with high sensitivity by measuring the amount of reduction of the reducing substance.
  • Example 3 Measurement of 2-aminophenol precursor 1 Using 3-hydroxykynurenine (OH-Kyn) as 2-aminophenols or L-kynurenine (L-Kyn) as a precursor of 2-aminophenols, measuring the reduction of NADH as a reducing substance Then, 2-aminophenols or precursors of 2-aminophenol were measured. POD was used as an oxidizing agent, NADH as a reducing substance, and diaphorase as a mediator.
  • OH-Kyn 3-hydroxykynurenine
  • L-Kyn L-kynurenine
  • the measurement using OH-Kyn was carried out by changing the final concentration of OH-Kyn to 0.25 ⁇ M, 0.5 ⁇ M or 1 ⁇ M among the measurement conditions of Example 2, and further the reaction time at 37 ° C. after addition of POD and diaphorase. Was changed to 20 minutes. Absorbance at 340 nm was measured 10 minutes and 20 minutes after the start of the reaction, and each ⁇ Abs 340 was calculated according to the method of Example 2.
  • L-Kyn was measured in a 3 mL quartz cell (optical path length 1 cm) with ultrapure water 800 ⁇ L, 1 M Tris-HCl buffer (pH 8.0) 200 ⁇ L, 1 mM NADH 200 ⁇ L, 2.5 ⁇ M, 5 ⁇ M, or 10 ⁇ M L-Kyn 200 ⁇ L (respectively, L-Kyn final concentration 0.25 ⁇ M, 0.5 ⁇ M or 1 ⁇ M) and 200 ⁇ L of 1 U / mL kynurenine monooxygenase (in-house prepared, derived from Myxococcus stipitatus (SEQ ID NO: 1)) were added and heated at 37 ° C. for 10 minutes.
  • 1 U / mL kynurenine monooxygenase in-house prepared, derived from Myxococcus stipitatus (SEQ ID NO: 1)
  • the ⁇ Abs 340 10 minutes and 20 minutes after the start of the reaction at each OH-Kyn concentration or L-Kyn concentration was calculated according to the method of Example 2.
  • the values of ⁇ Abs340 for each final concentration of OH-Kyn or each final concentration of L-Kyn are plotted and shown in FIG.
  • Example 4 (Measurement of 2-aminophenol precursor 2)
  • L-kynurenine (L-Kyn) which is a precursor of 2-aminophenol
  • the measurement was carried out by changing the pH at the time of measurement and the type and concentration of the reagent used from the measurement in Example 3.
  • L-Kyn was measured in a 3 mL quartz cell (optical path length: 1 cm) with 1 ⁇ M, 2 ⁇ M, 3 ⁇ M, 4 ⁇ M or 5 ⁇ M L-Kyn 100 ⁇ L (L-Kyn final concentrations of 0.048 ⁇ M, 0.095 ⁇ M, 0.14 ⁇ M, respectively) 0.19 ⁇ M or 0.24 ⁇ M) was added, 1,600 ⁇ L of 325 ⁇ M NADH / 2 mM CHES buffer (pH 9.0) was added, and the mixture was heated at 37 ° C. for 5 minutes.
  • 1M buffer (potassium phosphate buffer (pH 6.0, 7.0) or Tris-HCl buffer (pH 8.0)) 100 ⁇ L, 26 U / mL kynurenine monooxygenase 100 ⁇ L, 26 U / mL POD 100 ⁇ L and 260 U / mL diaphorase 400 ⁇ L of a liquid obtained by premixing 100 ⁇ L and 100 ⁇ L of ultrapure water was added, and the reaction was started at 37 ° C. Absorbance at 340 nm was measured with a spectrophotometer (V-660, manufactured by JASCO Corporation) 5 minutes after the start of the reaction. A sample using ultrapure water instead of L-Kyn was used as a control.
  • V-660 spectrophotometer
  • Each ⁇ Abs 340 at 5 minutes after the start of the reaction at each L-Kyn concentration in the final reaction solution was calculated for each pH according to the method of Example 2.
  • the values of ⁇ Abs340 for each final concentration of L-Kyn are plotted and shown in FIG.
  • the measurement method for L-Kyn is the same as in Example 4. However, as the buffer during the reaction, 100 ⁇ L of (i) 1M potassium phosphate buffer (pH 7.0) or (ii) 100 ⁇ L of 1M potassium phosphate buffer (pH 6.0) was used. Further, as a oxidizing agent, (i) 78 U / mL bilirubin oxidase 100 ⁇ L or (ii) 50 LAMU / g laccase 100 ⁇ L was used instead of 26 U / mL POD 100 ⁇ L.
  • the calculation method of ⁇ Abs340 is the same as that in the fourth embodiment. The value of ⁇ Abs340 for each final concentration of L-Kyn is plotted, and the result of (i) is shown in FIG. 5 and the result of (ii) is shown in FIG.
  • ⁇ Abs 340 increased in a concentration-dependent manner as the L-Kyn concentration increased.
  • ⁇ Abs340 at L-Kyn 0.095 ⁇ M after reaction for 5 minutes is (i) about 0.11 [abs] and (ii) about 0.09 [abs], ie about 1 [abs] per 1 ⁇ M.
  • the values were as high as before and after, and it was confirmed that high-sensitivity measurement was possible in the same manner as in Example 4 even when different oxidizing agents were used.
  • Example 6 Measurement of 3-hydroxyanthranilic acid by measuring increased amount of oxidized substances
  • 2-hydroxyanthranilic acid (OH-AA) as the 2-aminophenol
  • NAD + the amount of increase in the oxidizing substance NAD + was measured to measure the 2-aminophenol.
  • POD was used as an oxidizing agent
  • NADH as a reducing substance
  • diaphorase as a mediator.
  • the values of ⁇ Abs340 for each final concentration of OH-AA are plotted and shown in FIG.
  • the final concentration of OH-AA was 0.125 to 0.5 ⁇ M, which is the concentration after the last addition of 5 ⁇ L of ultrapure water.
  • ⁇ Abs340 increased in a concentration-dependent manner, and ⁇ Abs340 at OH-AA 0.5 ⁇ M was about 0.1 [abs]. Therefore, it was confirmed that the highly sensitive measurement of 2-aminophenols was possible by measuring the increased amount of the oxidizing substance (NAD + ).
  • Example 7 Measurement of 3-hydroxyanthranilic acid by measuring increase of reactive oxygen species
  • 3-hydroxyanthranilic acid (OH-AA) as the 2-aminophenol
  • POD was used as an oxidizing agent
  • NADH as a reducing substance
  • diaphorase as a mediator
  • the absorbance at 500 nm of the control (OH-AA 0 ⁇ M) was subtracted from the absorbance at 500 nm of the final concentrations of OH-AA of 1 ⁇ M, 2 ⁇ M, and 4 ⁇ M, and the absolute value was taken as ⁇ Abs500.
  • the value of ⁇ Abs500 for each final concentration of OH-AA is plotted and shown in FIG.
  • ⁇ Abs500 increased in a concentration-dependent manner as the OH-AA concentration increased. Therefore, it was confirmed that high-sensitivity measurement of 2-aminophenols was possible by measuring the increased amount of active oxygen species.
  • Example 8 Measurement of 2-aminophenols using dithiothreitol
  • dithiothreitol as a reducing substance and mediator
  • 3-hydroxykynurenine (OH-Kyn) as 2-aminophenols
  • Phenols were measured.
  • the laccase of Example 5 was used as an oxidizing agent.
  • ⁇ Abs283 increased in a concentration-dependent manner as the OH-Kyn concentration increased. Therefore, it was confirmed that 2-aminophenols can be measured with high sensitivity even in a system using dithiothreitol. In the case where laccase, which is an oxidizing agent, was not added, almost no increase in ⁇ Abs283 was observed.
  • This measurement kit was composed of liquids A and B and was mixed in an equal amount immediately before the measurement. To this mixture, the same amount of a sample containing 3-hydroxykynurenine (OH-Kyn) of unknown concentration or ultrapure water (control) as 2-aminophenol was mixed and reacted at 37 ° C. Thereafter, the amount of NADH as a reducing substance was measured at 340 nm. The measured value of the control was subtracted from the measured value of the sample to calculate ⁇ Abs340. By applying the calculated value to a calibration curve created using a known concentration of OH-Kyn, the concentration of OH-Kyn in the sample could be calculated. Therefore, it was confirmed that 2-aminophenols could be quantified using the kit. In addition, by adding kynurenine monooxygenase to liquid B, it was possible to measure L-kynurenine, which is a precursor of 2-aminophenols, in the same manner.
  • kynurenine monooxygenase to liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、試料中の2-アミノフェノール類やその前駆体の測定を可能とするための高感度測定方法、及びそれらの測定用試薬を含む測定キットを提供することを課題とする。 2-アミノフェノール類に、酸化剤、還元物質及びメディエーターを作用させることで、還元物質の減少量、酸化物質の増加量及び活性酸素種の増加量のうちの少なくとも1つを測定する工程(A)を含む、2-アミノフェノール類の測定方法。

Description

2-アミノフェノール類の測定方法
 本発明は、酵素を用いた2-アミノフェノール類の測定方法及び測定キット等に関する。
 トリプトファン代謝産物である3-ヒドロキシキヌレニンや3-ヒドロキシアントラニル酸は、ともに2-アミノフェノール類として知られており、またその前駆体物質としてL-キヌレニンやアントラニル酸が知られている。これらの物質は血中濃度が数10nM~数μM程度と低いことから、酵素法による測定は困難と考えられており、HPLC/MS法による分析が一般的である(例えば、非特許文献1、2)。
 しかしながら、例えば、がん患者のL-キヌレニン濃度を低下させるための医薬品としてインドールアミン-2,3-ジオキシゲナーゼ阻害剤(IDO阻害剤)、トリプトファン-2,3-ジオキシゲナーゼ阻害剤(TDO阻害剤)、キヌレニン分解酵素製剤等の開発が進められており、またアルツハイマー病やハンチントン病患者の3-ヒドロキシキヌレニン濃度を低下させるための医薬品としてキヌレニン-3-モノオキシゲナーゼ阻害剤(KMO阻害剤)等が開発中であるという状況において、上記2-アミノフェノール類やその前駆体のバイオマーカーとしての意義が注目されている。抗がん剤としてのIDO阻害剤やTDO阻害剤は、抗PD-1抗体等の免疫チェックポイント阻害剤との併用も想定されており、投薬前の検査等で使用可能な患者を適切に選定することも議論されている。その結果、例えば、上記阻害剤のスクリーニング等の医薬品開発業務のため、又はその医薬品を使用する場合におけるコンパニオン診断薬として、2-アミノフェノール類やその前駆体を簡便に高感度測定できる方法が求められていた。
Journal of Chromatography B, 877 (2009)603-609 Agric.Biol.Chem,55(1991)143-148
 本発明は、試料中の2-アミノフェノール類やその前駆体の測定を可能とするための高感度測定方法、及びそれらの測定用試薬を含む測定キットを提供することを課題とする。
 そこで、本発明者らは、酵素を用いた2-アミノフェノール類の測定法について検討した。その結果、2-アミノフェノール類に、酸化剤、還元物質及びメディエーターを作用させることで、2-アミノフェノール類の濃度に依存して、還元物質が減少するとともに、2-アミノフェノール類の濃度に依存して、酸化物質及び活性酸素種が増加することが分かった。これら還元物質の減少量、酸化物質の増加量及び活性酸素種の増加量のうち少なくとも1つを測定することで、簡便、正確かつ高感度に2-アミノフェノール類を定量できる方法を見出し、本発明に至った。また2-アミノフェノール類の前駆体であっても、そこから2-アミノフェノール類に至る反応と組み合わせることによって同様の測定が可能であることも見出した。
 すなわち、本発明は、以下の[1]~[11]を提供するものである。
[1]2-アミノフェノール類に、酸化剤、還元物質及びメディエーターを作用させることで、還元物質の減少量、酸化物質の増加量及び活性酸素種の増加量のうちの少なくとも1つを測定する工程(A)を含む、2-アミノフェノール類の測定方法。
[2]酸化剤がフェノール系化合物に作用する酸化酵素である、前項[1]に記載の2-アミノフェノール類の測定方法。
[3]還元物質がNADH及びNADPHからなる群より選択される少なくとも1つであり、メディエーターがジアホラーゼである、前項[1]又は[2]に記載の2-アミノフェノール類の測定方法。
[4]酸化物質が、NADHの酸化物質であるNAD、及びNADPHの酸化物質であるNADPからなる群より選択される少なくとも1つである、前項[1]~[3]の何れか1項に記載の2-アミノフェノール類の測定方法。
[5]活性酸素種が、ヒドロキシルラジカル、スーパーオキシドアニオン及び過酸化水素からなる群より選択される少なくとも1つである、前項[1]~[4]の何れか1項に記載の2-アミノフェノール類の測定方法。
[6]2-アミノフェノール類が、2-アミノフェノール、3-ヒドロキシキヌレニン及び3-ヒドロキシアントラニル酸からなる群より選択される少なくとも1つである、前項[1]~[5]の何れか1項に記載の2-アミノフェノール類の測定方法。
[7]工程(A)の前又は同時に、2-アミノフェノール類の前駆体を2-アミノフェノール類に変換する工程(B)を含む、前項[1]~[6]の何れか1項に記載の2-アミノフェノール類の測定方法。
[8]2-アミノフェノール類の前駆体がL-キヌレニンであり、L-キヌレニンをキヌレニンモノオキシゲナーゼにより3-ヒドロキシキヌレニンに変換する工程、又は2-アミノフェノール類の前駆体がアントラニル酸であり、アントラニル酸をアントラニル酸モノオキシゲナーゼにより3-ヒドロキシアントラニル酸に変換する工程を含む、前項[7]に記載の2-アミノフェノール類の測定方法。
[9]酸化剤、還元物質及びメディエーターを含む、前項[1]~[8]の何れか1項に記載の測定方法に使用するための2-アミノフェノール類測定用試薬。
[10]酸化剤、還元物質及びメディエーターを含む、前項[1]~[8]の何れか1項に記載の測定方法に使用するための2-アミノフェノール類測定キット。
[11]2-アミノフェノール類の前駆体を2-アミノフェノール類に変換する変換用試薬と、[9]記載の測定用試薬とを含む、2-アミノフェノール類の前駆体測定キット。
 本発明によって、簡便、正確かつ高感度に2-アミノフェノール類及び/又はその前駆体を定量することができる。例えば、3-ヒドロキシキヌレニンの前駆体であるL-キヌレニンに、NADHとキヌレニンモノオキシゲナーゼを作用させ、NADHの酸化に伴う340nmの吸光度変化を測定する公知の方法の場合、L-キヌレニン1μMあたりの吸光度変化は、光路長1cmのセルを使用した場合、0.006[abs]程度であるのに対し、本発明の方法においては、L-キヌレニン1μMあたり340nmの吸光度変化は少なくとも0.1[abs]と極めて大きく、高感度に測定可能なことから、低濃度のL-キヌレニン測定が可能になる。該方法は、吸光光度法による測定が可能で、広く普及している生化学自動分析装置を使用できるため、多試料の測定に適しており、さらに臨床検査の現場でも利用可能である。
基質として3-ヒドロキシアントラニル酸(OH-AA)、還元物質としてNADHを用いた2-アミノフェノール類の測定において、メディエーターとしてのジアホラーゼ及び酸化剤としてのペルオキシダーゼ(POD)の影響を示した図。 基質として、各濃度の2-アミノフェノール(2-AP)、3-ヒドロキシアントラニル酸(OH-AA)又は3-ヒドロキシキヌレニン(OH-Kyn)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてPODを使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類を測定した図。 基質として3-ヒドロキシキヌレニン(OH-Kyn)又はその前駆体であるL-キヌレニン(L-Kyn)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてPODを使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類又は2-アミノフェノールの前駆体を測定した図。 基質として3-ヒドロキシキヌレニンの前駆体であるL-キヌレニン(L-Kyn)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてPODを使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類の前駆体を測定した図。 基質として3-ヒドロキシキヌレニンの前駆体であるL-キヌレニン(L-Kyn)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてビリルビンオキシダーゼを使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類の前駆体を測定した図。 基質として3-ヒドロキシキヌレニンの前駆体であるL-キヌレニン(L-Kyn)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてラッカーゼを使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類の前駆体を測定した図。 基質として3-ヒドロキシアントラニル酸(OH-AA)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてPODを使用して、酸化物質であるNADの増加量を測定することで、2-アミノフェノール類を測定した図。 基質として3-ヒドロキシアントラニル酸(OH-AA)、還元物質としてNADH、メディエーターとしてジアホラーゼ、酸化剤としてPODを使用して、各反応時間における活性酸素種の増加量としてキノン型色素の生成量を測定することで、2-アミノフェノール類を測定した図。 基質として3-ヒドロキシキヌレニン(OH-Kyn)、還元物質及びメディエーターとしてジチオトレイトールを使用し、酸化剤としてラッカーゼを使用した場合と使用しなかった場合において、酸化型ジチオトレイトールの増加量を測定することで、2-アミノフェノール類を測定した図。
 本発明は、基質である2-アミノフェノール類に酸化剤、還元物質及びメディエーターを作用させることで、還元物質の減少、酸化物質の増加、及び活性酸素種の増加が認められるので、それら還元物質の減少量、酸化物質の増加量及び活性酸素種の増加量のうちの少なくとも1つを測定することを特徴とする、2-アミノフェノール類の測定方法に関する。
 酸化剤、還元物質及びメディエーターの添加順序は、2-アミノフェノール類の高感度測定が可能であれば、特に指定はなく、それらの混合物を同時に添加することも可能である。
(2-アミノフェノール類又はその前駆体を含む試料)
 本発明の方法で用いられる試料(基質)は、2-アミノフェノール類やその前駆体を含む試料であれば特に限定されず、例えばヒトを含む哺乳類の生体試料、例えば、血液(血清、血漿)、唾液、尿、脳脊髄液等が挙げられる。これらのうち、臨床診断目的には血液の使用が一般的であるが、血液を試料とする場合、血清、血漿又は除蛋白した血液を用いるのが好ましい。非侵襲検査であれば、唾液、尿を試料として利用することが可能である。
 本発明における、2-アミノフェノール類とは、CAS番号95-55-6で示される2-アミノフェノールの構造を有する化合物であれば特に限定されない(フェノールのヒドロキシ基から見てオルト位にアミノ基を置換基として有していれば、それ以外の位置にはいかなる置換基が結合してもよいが、置換基を有する場合、アミノ基又はヒドロキシ基から見てオルト位に位置するのが好ましい。置換基としては、例えばカルボキシル基、C2~6アシル基、2-アミノ-2-カルボキシエチルカルボニル基、ニトロ基、ヒドロキシ基、ハロゲン原子等が挙げられるが、特に限定されない。)。例えば、2-アミノフェノール(o-アミノフェノール)、3-ヒドロキシキヌレニン(3-ヒドロキシ-DL-キヌレニン、3-ヒドロキシ-L-キヌレニン又は3-ヒドロキシ-D-キヌレニン)、3-ヒドロキシアントラニル酸(2-アミノ-3-ヒドロキシ安息香酸)、2-アミノクレゾール、2-アミノニトロフェノール、2-アミノクロロフェノール、2-アミノ-3-ヒドロキシアセトフェノン等が2-アミノフェノール類として挙げられる。
 本発明における、2-アミノフェノール類の前駆体とは、何らかの化学反応を行うことで、前記2-アミノフェノール類に変換される化合物を表し、その範囲内であれば特に限定されない。例えば、キヌレニン(DL-キヌレニン、D-キヌレニン、L-キヌレニン)、アントラニル酸、2-アミノフェノールリン酸、2-アミノフェノールグルコシド等が2-アミノフェノール類の前駆体として挙げられる。
(前処理工程)
 生体試料の測定では、測定に支障となる可能性のある夾雑還元物質、夾雑蛋白質、金属イオン及びその他物質等の少なくとも1つの物質やその影響を公知の方法で除去又は低減するため、前処理工程用試薬を用いた、前処理工程を含んでもよい。夾雑還元物質としては例えば、ビリルビン、アスコルビン酸、尿酸等が挙げられる。ビリルビンの低減のためにビリルビンオキシダーゼ、アスコルビン酸の低減のためにアスコルビン酸オキシダーゼ、尿酸の低減のためにウリカーゼ等の酵素をそれぞれ使用した前処理が挙げられる。さらに、過酸化水素やペルオキシダーゼによる処理も行うことができる。これら前処理工程に使用する酵素及び物質がその後の測定に影響を及ぼす可能性がある場合は、阻害剤、分解酵素等を加えることでその影響を軽減することができる。なお、酵素の使用量、反応pH及び温度は、それぞれの酵素の至適pH及び温度を踏まえて、適宜設定することができる。酵素の使用量は、前処理液中の濃度が例えば0.1~1000U/mL、好ましくは0.5~100U/mLである。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、例えば5.0~11.0、好ましくは5.5~10.5、より好ましくは6.0~10.0である。反応時間は、例えば1~60分、好ましくは1~40分間である。
 夾雑蛋白質は例えば、過塩素酸、トリクロロ酢酸等の除蛋白剤を用いた公知の方法で低減することができる。低減処理後、炭酸カリウム等を用いて中和することで、試料として使用することができる。なお、除蛋白剤処理によって、ビリルビン、ヘモグロビン等の夾雑還元物質の低減も可能である。
 金属イオンは例えば、金属キレート剤で低減することができる。金属キレート剤は特に限定されないが、EDTA(エチレンジアミン四酢酸)、ビシン(N,N-ビス(2-ヒドロキシエチル)グリシン)、DTPA(ジエチレントリアミンペンタ酢酸)、CyDTA(トランス-1,2-ジアミノシクロヘキサン-N,N,N,N-四酢酸)等が好適に用いられる。なお、金属キレート剤の使用濃度は、本測定に影響を及ぼさない範囲で適宜設定することができるが、例えば10mM以下、好ましくは2mM以下である。またマグネシウムイオン等は、リン酸を添加することで低減することも可能である。
 上述の前処理を施した液については、前処理後直ぐに測定に使用してもよく、冷蔵又は冷凍で保管後に使用してもよい。
(工程(A))
 (酸化剤)
 本発明で使用する酸化剤は、2-アミノフェノール類を酸化することができるものである。この酸化剤は、2-アミノフェノール類の高感度測定が可能なものであれば特に限定されないが、例えば酸化還元酵素が挙げられ、好ましくは酸化酵素、より好ましくはフェノール系化合物に作用する酸化酵素である。具体的には、ペルオキシダーゼ(EC番号1.11.1.X)、ラッカーゼ(EC番号1.10.3.2)、ビリルビンオキシダーゼ(EC番号1.3.3.5)、アミノフェノールオキシダーゼ(EC番号1.10.3.4)、カテコールオキシダーゼ(EC番号1.10.3.1)、チロシナーゼ(EC番号1.14.18.1)、ミエロペルオキシダーゼ(EC番号1.11.2.2)、3-ヒドロキシアントラニル酸オキシダーゼ(EC番号1.10.3.5)、フェロオキシダーゼ(EC番号1.16.3.1)、フェノール-2-モノオキシゲナーゼ(EC番号1.14.13.7又は1.14.14.20)、グリキサゾンシンターゼ(EC番号1.10.3.15)、2-アミノフェノール1,6-ジオキシゲナーゼ(EC番号1.13.11.74)、2-アミノ-5-クロロフェノール1,6-ジオキシゲナーゼ(EC番号1.13.11.76)等が例示される。その中で好ましいのはペルオキシダーゼ、ラッカーゼ、ビリルビンオキシダーゼ又はアミノフェノールオキシダーゼであり、特にペルオキシダーゼ、ラッカーゼ又はビリルビンオキシダーゼが好ましい。これらフェノール系化合物に作用する酸化酵素は、単独又は組み合わせて使用することもでき、その他の酵素と組み合わせて使用することもできる。酸化酵素、例えばペルオキシダーゼ、ラッカーゼ又はビリルビンオキシダーゼの濃度は、2-アミノフェノール類を含まない系では、還元物質の減少、酸化物質及び活性酸素種の増加が殆ど認められず、2-アミノフェノール類を含む系では、還元物質の減少、酸化物質及び活性酸素種の増加が認められる濃度であれば、その範囲は限定されないが、好ましくは0.001~1,000U/mL、より好ましくは0.01~100U/mLである。反応pH、温度及び時間は、それぞれの酵素に適した条件に合わせて適宜設定することができる。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、例えば4.5~10.5、好ましくは5.0~10.0、より好ましくは5.5~9.5である。反応時間は、例えば1~60分、好ましくは1~45分、より好ましくは1~30分である。なお、上記反応において、増大した活性酸素種の影響が認められる場合は、カタラーゼやスーパーオキシドディスムターゼ等の酵素を併用することで、その影響を低減することも可能である。
(還元物質)
 本発明で使用する還元物質としては、2-アミノフェノール類の高感度測定が可能なものであれば特に限定されないが、NADH及びNADPHの少なくとも1つが好ましく、それらの誘導体等も挙げられる。NADH又はNADPHの誘導体とは、NADHやNADPHの安定性向上、モル吸光係数の上昇等のために使用することができる。例えば、特開2012-224638公報で示されるNADH又はNADPH誘導体等、公知のものを使用することができる。還元物質の濃度としては、本測定に影響を及ぼさない範囲で適宜設定することができるが、例えば0.01mM以上が好ましく、より好ましくは0.05mM以上である。その他、メディエーターとしての機能も有している還元物質として、ジチオトレイトールやアスコルビン酸等も使用可能である。
(メディエーター)
 本発明で使用するメディエーター(電子伝達体)としては、2-アミノフェノール類の高感度測定が可能なものであれば特に限定されないが、例えば還元物質としてNADH及びNADPHの少なくとも1つ、又はそれらの誘導体を使用する場合はジアホラーゼが好ましい。ジアホラーゼを使用する場合、使用量としては反応液における濃度が0.01U/mL以上が好ましく、0.1U/mL以上がより好ましい。ジアホラーゼは、還元物質と反応するものであればその種類は限定されないが、例えば、EC番号1.6.5.X、EC番号1.6.99.1、EC番号1.6.99.3、EC番号1.8.1.4等に分類されるものを使用することができる。
 反応温度、反応pH及び反応時間は、酵素等の至適pH及び温度を踏まえて適宜設定することができる。反応温度は、例えば15~50℃、好ましくは20~45℃、より好ましくは25~40℃である。反応pHは、特に限定されないが、ジアホラーゼを使用する場合は、pH4.5~10.5が好ましく、pH5.0~10.0がより好ましく、pH5.5~9.5が更に好ましい。反応時間は、例えば1~60分間、好ましくは1~40分間、より好ましくは1~30分間である。得られる感度は、使用する酵素量を増やすほど、また反応時間を長くするほど高くなると考えられる。
(還元物質の測定法)
 還元物質の測定は、例えば、NADH、NADPH及びそれらの誘導体のうちの少なくとも1つの変化量(減少量)の測定によって行うことができる。該測定方法としては、例えば、NADH及びNADPHの少なくとも1つの変化量を測定する場合は、340nmでの吸光度測定が挙げられる。NADH及びNADPHの少なくとも1つの誘導体の変化量を測定する場合は、それぞれの誘導体において最適な波長で吸光度を測定することで、簡単に還元物質濃度の減少を測定することが可能である。チオNADH及びチオNADPHの少なくとも1つを使用した場合は、400nm近傍での吸光度測定が可能である。また還元物質としてアスコルビン酸を使用した場合は、265nm近傍での吸光度測定が可能である。
 その他の手法としては、一定時間反応後に、NADH類に対し、ホルマザン色素等の酸化還元系発色試薬をメディエーター存在下で反応させて吸光度を測定する方法、又はNADH類に作用する酸化酵素、例えばNADHオキシダーゼ等を作用させて得られた過酸化水素を、後述の活性酸素種の測定法に記載の手法で測定する方法で、残存する還元物質濃度を算出することも可能である。その他、公知の蛍光法や電気化学的な測定等も可能である。また前記の各成分を適宜含有する還元物質測定用試薬を調製することもできる。
 これらの測定手段は特に限定されないが、例えば分光光度計(例えば、日本分光製のV-660)を用いた吸光度測定が挙げられる。
 なお、還元物質の濃度が高すぎる場合は、分光光度計の測定範囲内になるように適宜希釈して測定することも可能である。
(酸化物質の測定法)
 本発明で測定する酸化物質としては、2-アミノフェノール類の高感度測定が可能なものであれば特に限定されないが、例えば、還元物質としてNADHを使用する場合は、2-アミノフェノール類の濃度に依存して、酸化物質であるNADが増加し、還元物質としてNADPHを使用する場合は、2-アミノフェノール類の濃度に依存して、酸化物質であるNADPが増加する。したがって、それらの酸化物質の少なくとも1つの濃度を測定することで、2-アミノフェノール類の濃度の測定が可能である。NAD、NADP等の酸化物質の濃度の測定方法は、公知の手法であってもよく、酸化物質がNAD及びNADPの少なくとも1つの場合は、例えば公知文献(Chem Commun (Camb). 2013, 49 (98):11500-2)に従い、アセトフェノン、2-アセチルベンゾフラン等を反応させ、生じた蛍光物質を蛍光法で測定する方法が挙げられる。
 又は、NAD又はNADPを補酵素とする酵素と組み合わせて、産生する酸化物質の濃度を公知の手法で測定することも可能である。例えば、NAD又はNADPを補酵素とする脱水素酵素による反応で産生したNADHやNADPHを340nmの吸光度等で測定することも可能である。この場合は、脱水素酵素を添加する前に公知の酸処理等を行うことで、残存するNADH及びNADPHの少なくとも1つの分解や酵素失活を行うのが望ましい。更に、エタノール、アルコール脱水素酵素及びアルデヒド酸化酵素を作用させること、又は乳酸、乳酸脱水素酵素及びピルビン酸酸化酵素を作用させることによって得られた過酸化水素を、後述の活性酸素種の測定法に記載の手法で測定することも可能である。また前記の各成分を適宜含有する酸化物質測定用試薬を調製することもできる。
 なお、還元物質としてはジチオトレイトールを使用する場合は、本反応で得られた酸化物質である酸化型ジチオトレイトールを283nm近傍の吸光度で測定する方法も可能である。
(活性酸素種の測定法)
 本発明の2-アミノフェノール類の測定方法においては、酸化剤、還元物質及びメディエーター添加後、そのまま又は前述の酵素反応等を追加することで、ヒドロキシルラジカル、スーパーオキシドアニオン又は過酸化水素に代表される活性酸素種を生じさせることもできるので、これら活性酸素種を公知の手法で測定してもよい。例えば、産生した活性酸素種にスーパーオキシドディスムターゼを作用させる等の手法で過酸化水素を発生してから、トリンダー試薬(フェノール/アミノアンチピリン系)、新トリンダー試薬(アニリン/アミノアンチピリン系)、ルミノール試薬等を使用し、吸光度や化学発光により測定するという方法が挙げられる。また前記の各成分を適宜含有する活性酸素種測定用試薬を調製することもできる。
(分光光度計による測定)
 分光光度計による測定では、レート法及びエンドポイント法から適宜選択することが好ましい。測定に用いられる分光光度計としては、日本分光、日立ハイテクノロジーズ、島津製作所等各社から販売されている市販品が挙げられる。分光光度計を用いて、還元物質の減少量、酸化物質の増加量及び活性酸素種の増加量のうちの少なくとも1つを測定することで、2-アミノフェノール類の濃度の測定が可能である。例えば、2-アミノフェノール類である2-アミノフェノール、3-ヒドロキシキヌレニン、3-ヒドロキシアントラニル酸等、又は2-アミノフェノール類の前駆体であるL-キヌレニン、アントラニル酸等の濃度は、光路長1cmのセルを使用した場合、1μMあたり好ましくは0.1[abs]以上の高感度で測定可能で、より好ましくは0.2[abs]以上、更に好ましくは0.5[abs]以上の高感度で測定可能である。
(工程(B))
 (2-アミノフェノール類の前駆体の変換)
 本発明においては、前記工程(A)の前又は同時に、2-アミノフェノール類の前駆体を2-アミノフェノール類に変換する工程(B)を含んでいてもよい。変換後の2-アミノフェノール類を測定することで、2-アミノフェノール類の前駆体の測定も可能である。該変換工程としては、酵素反応等が好適に用いられる。例えば、2-アミノフェノール類の前駆体がL-キヌレニンである場合、NADH及びNADPHの少なくとも1つとキヌレニンモノオキシゲナーゼとを作用させてヒドロキシ基を付与し、3-ヒドロキシキヌレニンに変換することができる。2-アミノフェノール類の前駆体がアントラニル酸である場合、テトラヒドロ葉酸及びアントラニル酸モノオキシゲナーゼを作用させてヒドロキシ基を付与し、3-ヒドロキシアントラニル酸に変換することができる。2-アミノフェノール類の前駆体が2-アミノフェノールリン酸(2-アミノフェノール類のヒドロキシ基にリン酸基が結合したもの)の場合は、ホスファターゼを作用させてリン酸基を除去することによって、2-アミノフェノールに変換することができる。また2-アミノフェノール類の前駆体が2-アミノフェノールグルコシド(ヒドロキシ基に糖類が結合したもの)である場合は、アミラーゼやグリコシダーゼを作用させることによって、2-アミノフェノールに変換することができる。すなわち、2-アミノフェノールリン酸を使用すれば、試料中のホスファターゼ活性を、また2-アミノフェノールグルコシドを使用すれば、試料中のアミラーゼ活性やグリコシダーゼ活性を、産生した2-アミノフェノール量からそれぞれ測定することもできる(言い換えれば、2-アミノフェノール類の前駆体の種類によって様々な酵素活性の測定ができるということになる。)。また前記の各成分を適宜含有する前駆体変換用試薬を調製することもできる。なお、試料中の測定に支障をきたす物質の影響を除去又は低減するために、工程(B)を入れた測定と入れない測定をそれぞれ実施し、その差をもって評価するという手法も可能である。
(任意成分)
 本発明の2-アミノフェノール類の測定方法においては、当業者に公知の、他の任意成分を適宜含有させ、前記酵素等試薬成分の安定性を高めてもよい。任意成分は測定に影響のない成分であれば特に限定されないが、例えば、牛血清アルブミン(BSA)、卵白アルブミン、糖類、糖アルコール類、カルボキシル基含有化合物、酸化防止剤、界面活性剤、酵素活性に悪影響を与えないアミノ酸類、緩衝剤等が挙げられる。また酸化剤やメディエーターの反応性向上、反応特異性、試薬の乾燥性及び/又は溶解性等を向上又は改善する目的で、前記安定化剤やその他物質を配合することも可能である。
(試薬及びキット)
 本発明は、酸化剤、還元物質及びメディエーターを含む、2-アミノフェノール類測定用試薬及び測定キットを提供する。該試薬又はキットは、前記の2-アミノフェノール測定に使用するための試薬又はキットであり、測定に必要な各種成分をさらに含むことが好ましい。例えば、目的のpHにおいて緩衝能を有する緩衝剤、前処理工程用試薬、還元物質測定用試薬、酸化物質測定用試薬及び活性酸素種測定用試薬のうちの少なくとも1つを含むことができる。安定化剤として前述の任意成分や緩衝剤を添加することも可能である。2-アミノフェノール類の前駆体を測定する場合は、前駆体から2-アミノフェノール類へ変換可能な、例えば酵素等の前駆体変換用試薬と、前記2-アミノフェノール類測定用試薬とを組み合わせれば、2-アミノフェノール類の前駆体測定キットを提供できる。なお、本発明のキヌレニン測定用の試薬及びキットの組成物は、保存又はキヌレニンの測定に適した溶液(例えば、緩衝液)中に溶解した組成物の状態、又は凍結乾燥された状態(例えば、粉末)であるのが望ましい。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。
[実施例1]
(2-アミノフェノール類の測定における酸化剤とメディエーターの有無の影響確認)
 2-アミノフェノール類として3-ヒドロキシアントラニル酸(OH-AA)、酸化剤としてペルオキシダーゼ(POD)(富士フイルム和光純薬製)、還元物質としてNADH、及びメディエーターとしてジアホラーゼ(ニプロ製)を使用して、NADHの減少量を測定することで、2-アミノフェノール類を測定した。
 96穴マイクロプレートのウェル1~4に、1M トリス塩酸緩衝液(pH8.0)20μL、1mM NADH20μL、超純水100μL及び40μM OH-AA20μLを、各々添加し、37℃で5分間加温した。なお、前記OH-AAの代わりに超純水を添加したウェル5~8をコントロールとした。
 OH-AAを添加した各ウェルにおいて、ウェル1及び5には超純水40μLを、ウェル2及び6には10U/mL POD20μLと超純水20μLを、ウェル3及び7には超純水20μLと5U/mLジアホラーゼ20μLを、又はウェル4及び8には10U/mL POD20μLと5U/mLジアホラーゼ20μLをそれぞれ添加し、反応を開始した。37℃で12分間反応させた後、340nmの吸光度をプレートリーダー(SpectraMax Plus384、モレキュラーデバイス社製)で測定した。測定値は光路長が1cmとなるように換算した。OH-AAを添加したウェル1~4の吸光度から対応するコントロールの吸光度を減算し、その絶対値をΔAbs340として図1に示す。POD、ジアホラーゼをともに含むウェル4においては、OH-AAの添加により大きなΔAbs340を示した。
 なお、2-アミノフェノール類として2-アミノフェノール、3-ヒドロキシキヌレニンを選択した場合も同様の傾向を示した。
[実施例2]
(還元物質の減少量測定による2-アミノフェノール類の測定)
 2-アミノフェノール類として2-アミノフェノール(2-AP)、3-ヒドロキシアントラニル酸(OH-AA)又は3-ヒドロキシキヌレニン(OH-Kyn)、酸化剤としてPOD、還元物質としてNADH、及びメディエーターとしてジアホラーゼを使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類を測定した。
 3mL容石英セル(光路長1cm)に超純水1,000μL、1Mトリス塩酸緩衝液(pH8.0)200μL、1mM NADH200μL、10μM、20μM又は40μMの2-APを200μL(それぞれ、2-AP終濃度1μM、2μM、4μM)添加し、37℃で5分間加温した。その後、10U/mL PODを200μL及び10U/mL ジアホラーゼを200μL添加し、反応を開始した。37℃で10分間反応させた後、340nmの吸光度を分光光度計(V-560、日本分光製)で測定した。同様に2-APの代わりにOH-AA又はOH-Kynを使用した測定もそれぞれ実施した。なお、前記2-APの代わりに超純水を添加したサンプルをコントロールとした。
 各2-アミノフェノール類の終濃度1μM、2μM及び4μMの340nmの吸光度からコントロール(各2-アミノフェノール類0μM)の340nmの吸光度を減算し、その絶対値をΔAbs340とした。各2-アミノフェノール類の終濃度に対するΔAbs340の値をプロットし、図2に示す。
 図2に示すように、2-アミノフェノール類として、2-AP、OH-AA又はOH-Kynを使用した何れの場合も、2-アミノフェノール類の濃度が増すにつれ濃度依存的にΔAbs340が増大していた。基質濃度1μMにおけるΔAbs340は約0.1~0.3[abs]と高い値を示しており、還元物質の減少量を測定することで、2-アミノフェノール類の高感度測定が可能であることが確認できた。
[実施例3]
(2-アミノフェノールの前駆体の測定1)
 2-アミノフェノール類として3-ヒドロキシキヌレニン(OH-Kyn)又は2-アミノフェノール類の前駆体としてL-キヌレニン(L-Kyn)を使用して、還元物質であるNADHの減少量を測定することで、2-アミノフェノール類又は2-アミノフェノールの前駆体を測定した。尚、酸化剤としてPOD、還元物質としてNADH及びメディエーターとしてジアホラーゼを使用した。
 OH-Kynを用いた測定は、実施例2の測定条件のうち、OH-Kynの終濃度を0.25μM、0.5μM又は1μMに変更し、さらにPOD及びジアホラーゼ添加後の37℃における反応時間を20分間に変更した。反応開始10分後及び20分後の340nmの吸光度をそれぞれ測定し、それぞれのΔAbs340を実施例2の手法に従い算出した。
 L-Kynの測定は3mL容石英セル(光路長1cm)に超純水800μL、1M トリス塩酸緩衝液(pH8.0)200μL、1mM NADH200μL、2.5μM、5μM又は10μMのL-Kyn200μL(それぞれ、L-Kyn終濃度0.25μM、0.5μM又は1μM)、及び1U/mLキヌレニンモノオキシゲナーゼ200μL(自社調製、Myxococcus stipitatus由来(配列番号1))を添加し、37℃で10分間加温した。その後、10U/mL POD200μL及び10U/mL ジアホラーゼ200μLを添加し、37℃で反応を開始した。反応開始10分後及び20分後の、340nmの吸光度を分光光度計(V-560、日本分光製)で測定した。尚、L-Kynの代わりに超純水を使用したサンプルをコントロールとした。さらに、キヌレニンモノオキシゲナーゼの代わりに超純水を使用した測定も実施した。
 各OH-Kyn濃度又はL-Kyn濃度における反応開始10分後及び20分後のそれぞれのΔAbs340を、実施例2の手法に従い算出した。OH-Kynの各終濃度又はL-Kynの各終濃度に対するΔAbs340の値をそれぞれプロットし、図3に示す。
 図3に示すように、OH-Kyn、L-Kynの何れを使用した場合も、OH-Kyn又はL-Kynの濃度が増すにつれ濃度依存的にΔAbs340が増大していた。さらに、反応時間が10分間の場合に比べ、20分間の方が、より高い濃度まで直線性が認められた。また2-アミノフェノール類であるOH-Kynの測定結果と、OH-Kynの前駆体であるL-KynをキヌレニンモノオキシゲナーゼでOH-Kynに変換処理した場合の結果が合致しており、2-アミノフェノールの前駆体であっても適切な変換処理工程を経ることで、2-アミノフェノールの前駆体を測定できることが判明した。なお、L-Kyn測定の際に、キヌレニンモノオキシゲナーゼを加えなかった場合、L-Kyn濃度によらずΔAbs340はほぼ0であった。
 本測定においては、20分間反応後のOH-Kyn又はL-Kyn1μMにおけるΔAbs340は約0.5[abs]と高い値を示しており、高感度測定が可能であることが確認できた。
[実施例4]
(2-アミノフェノールの前駆体の測定2)
 2-アミノフェノールの前駆体であるL-キヌレニン(L-Kyn)の測定において、実施例3の測定から測定時のpHや使用する試薬の種類や濃度を変えた測定を実施した。
 L-Kynの測定は3mL容石英セル(光路長1cm)に、1μM、2μM、3μM、4μM又は5μMのL-Kyn100μL(それぞれ、L-Kyn終濃度0.048μM、0.095μM、0.14μM、0.19μM又は0.24μM)を添加後、325μM NADH/2mM CHES緩衝液(pH9.0)を1,600μL添加し、37℃で5分間加温した。その後、1M 緩衝液(リン酸カリウム緩衝液(pH6.0、7.0)又はトリス塩酸緩衝液(pH8.0))100μL、26U/mLキヌレニンモノオキシゲナーゼ100μL、26U/mL POD100μL及び260U/mLジアホラーゼ100μL、超純水100μLをプレミックスして取得した液400μLを添加し、37℃で反応を開始した。反応開始5分後の、340nmの吸光度を分光光度計(V-660、日本分光製)で測定した。なお、L-Kynの代わりに超純水を使用したサンプルをコントロールとした。
 最終的な反応液中の各L-Kyn濃度における反応開始5分後のそれぞれのΔAbs340を、実施例2の手法に従い、pH毎に算出した。L-Kynの各終濃度に対するΔAbs340の値をそれぞれプロットし、図4に示す。
 図4に示すように、今回の試験範囲であるpH6.0~8.0においては、L-Kynの濃度が増すにつれ濃度依存的にΔAbs340が増大していた。なお、pHが低くなると感度上昇するものの、L-キヌレニン終濃度が高くなるにつれてΔAbs340の値が頭打ちになる傾向であった。
 本測定においては、5分間反応後のL-Kyn0.095μMにおけるΔAbs340は約0.1~0.2[abs]、すなわち1μMあたりでは約1~2[abs]と高い値を示しており、種々のpHにおいて、実施例3と比べて更に高感度な測定が可能であることが確認できた。
[実施例5]
(2-アミノフェノールの前駆体の測定3)
 2-アミノフェノールの前駆体であるL-Kynの測定に関し、酸化剤としてPODではなく、(i)ビリルビンオキシダーゼ(ニプロ製)又は(ii)ラッカーゼ(Aspergillus由来、シグマアルドリッチ製)を使用した測定をそれぞれ実施した。
 L-Kynの測定方法は、実施例4と同じである。但し、反応中の緩衝液としては、(i)1Mリン酸カリウム緩衝液(pH7.0)100μL又は(ii)1Mリン酸カリウム緩衝液(pH6.0)100μLを使用した。また酸化剤として26U/mL POD100μLの代わりに、(i)78U/mLビリルビンオキシダーゼ100μL又は(ii)50LAMU/gラッカーゼ100μLを使用した。ΔAbs340の算出方法は実施例4と同じである。L-Kynの各終濃度に対するΔAbs340の値をそれぞれプロットし、(i)の結果を図5に、(ii)の結果を図6にそれぞれ示す。
 図5及び図6に示すように、L-Kynの濃度が増すにつれ濃度依存的にΔAbs340が増大していた。
 本測定においては、5分間反応後のL-Kyn0.095μMにおけるΔAbs340は、(i)約0.11[abs]及び(ii)約0.09[abs]、すなわち1μMあたりでは約1[abs]前後と高い値を示しており、酸化剤を別のものにしても、実施例4と同様に、高感度測定が可能であることが確認できた。
[実施例6]
(酸化物質の増加量測定による3-ヒドロキシアントラニル酸の測定)
 2-アミノフェノール類として3-ヒドロキシアントラニル酸(OH-AA)を使用して、酸化物質であるNADの増加量を測定することで、2-アミノフェノール類を測定した。なお、酸化剤としてPOD、還元物質としてNADH及びメディエーターとしてジアホラーゼを使用した。
 1.5mL容チューブに1Mトリス塩酸緩衝液(pH8.0)20μL、1mM NADH40μL、超純水80μL、2.5μM、5μM又は10μMのOH-AA20μLをそれぞれ添加し、37℃で5分間加温した。その後、10U/mL POD20μL及び10U/mLジアホラーゼ20μLを添加し、37℃で10分間反応させた。なお、OH-AAの代わりに超純水使用したサンプルをコントロールとした。
 反応後、各チューブに1M塩酸20μLを加え、50℃で30分間加温することで未反応NADHを分解した。その後、1M NaOH20μL及び1Mトリス塩酸緩衝液(pH8.0)60μLを加え中和した。
 中和後、各チューブから75μLずつを96穴マイクロウェルプレートに入れ、340nmの吸光度を測定して、該測定値をブランク値とした。各ウェルに10U/mLアルコールデヒドロゲナーゼ(和光純薬工業製)10μL、40%エタノール10μL及び超純水5μLを添加し、室温で5分間静置した。5分後の340nmの吸光度をプレートリーダーで測定した。測定値は光路長が1cmになるように換算した。各測定値から、対応するブランク値を減算した(測定値A)。さらに各OH-AA濃度の各測定値Aから、コントロール(OH-AA 0μM)の測定値Aを減算し、ΔAbs340を算出した。
 OH-AAの各終濃度に対するΔAbs340の値をプロットし、図7に示す。なお、OH-AA終濃度は、最後の超純水5μL添加後の濃度である0.125~0.5μMとした。図7に示すように、OH-AAの濃度が増すにつれ濃度依存的にΔAbs340が増大しており、OH-AA0.5μMにおけるΔAbs340は約0.1[abs]であった。よって、酸化物質(NAD)の増加量を測定することで、2-アミノフェノール類の高感度測定が可能であることが確認できた。
[実施例7]
(活性酸素種の増加量測定による3-ヒドロキシアントラニル酸の測定)
 2-アミノフェノール類として、3-ヒドロキシアントラニル酸(OH-AA)を使用して、活性酸素種であるスーパーオキシドアニオン及び過酸化水素の増加量としてキノン型色素の生成量を500nmで測定することによって、2-アミノフェノール類を測定した。なお、酸化剤としてPOD、還元物質としてNADH及びメディエーターとしてジアホラーゼを使用した。
 3mL容石英セル(光路長1cm)に超純水400μL、1Mトリス塩酸緩衝液(pH8.0)200μL、1mM NADH200μLを添加した。さらに、トリンダー試薬である10mM 4-アミノアンチピリン200μL及び100mMフェノール200μLを添加し、10μM、20μM又は40μMのOH-AAを200μL(それぞれ、OH-AA終濃度1μM、2μM、4μM)添加して、37℃で5分間加温した。その後、10U/mL PODを200μL、10U/mL ジアホラーゼ200μL及び300U/mLスーパーオキシドディスムターゼ(ナカライテスク製)200μLを添加し、37℃で反応を開始した。反応開始30分後及び60分後の500nmの吸光度を分光光度計(V-660、日本分光製)で測定し、キノン型色素の生成量を測定することで、活性酸素種の増加量を測定した。なお、OH-AAの代わりに超純水を使用したサンプルをコントロールとした。
 OH-AAの終濃度1μM、2μM、4μMの500nmの吸光度からコントロール(OH-AA 0μM)の500nmの吸光度を減算し、その絶対値をΔAbs500とした。OH-AAの各終濃度に対するΔAbs500の値をプロットし、図8に示す。
 図8に示すように、OH-AAの濃度が増すにつれ濃度依存的にΔAbs500が増大していた。よって、活性酸素種の増加量を測定することで2-アミノフェノール類の高感度測定が可能であることが確認できた。
[実施例8]
(ジチオトレイトールを使用した2-アミノフェノール類の測定)
 還元物質及びメディエーターとしてジチオトレイトール、2-アミノフェノール類として3-ヒドロキシキヌレニン(OH-Kyn)を使用して、酸化物質である酸化型ジチオトレイトールの増加量を測定することで、2-アミノフェノール類を測定した。なお、酸化剤として実施例5のラッカーゼを使用した。
 96穴マイクロプレートのウェル2~4に、超純水120μL、1Mリン酸カリウム緩衝液(pH7.0)20μL、10μM、20μM又は40μMのOH-Kynを20μL(それぞれ、OH-Kyn終濃度1μM、2μM、4μM)、10LAMU/gラッカーゼ20μLを各々添加し、25℃で5分間加温した。なお、前記OH-Kynの代わりに超純水を添加したウェル1をコントロールとし、併せて別ウェルにてラッカーゼの代わりに超純水を添加する試験も実施した。
 OH-Kynを添加した各ウェルに、5mMジチオトレイトールを20μL添加し、25℃60分間静置した。経時的に283nmの吸光度をプレートリーダー(SpectraMax Plus384、モレキュラーデバイス社製)で測定した。測定値は光路長が1cmとなるように換算した。60分後におけるOH-Kynを添加したウェル2~4の吸光度から対応するコントロール(ウェル1)の吸光度を減算し、その絶対値をΔAbs283として図9に示した。
 図9に示したように、OH-Kynの濃度が増すにつれ濃度依存的にΔAbs283が増大していた。よって、ジチオトレイトールを使用した系でも、2-アミノフェノール類の高感度測定が可能であることが確認できた。なお、酸化剤であるラッカーゼ未添加の場合は、ΔAbs283の上昇はほとんど認められなかった。
[実施例9]
(2-アミノフェノール類の測定キット)
 以下の組成からなる2-アミノフェノール類の測定キットを調製した。
Figure JPOXMLDOC01-appb-T000001
 本測定キットは、液A及びBからなり、測定直前に等量混合するものとした。本混合液に対し、2-アミノフェノール類として、濃度未知の3-ヒドロキシキヌレニン(OH-Kyn)を含む試料又は超純水(コントロール)を同量混合し、37℃で反応させた。その後、還元物質であるNADHの量を340nmで測定した。試料の測定値からコントロールの測定値を減算し、ΔAbs340を算出した。算出した値を、既知濃度のOH-Kynを使用して作成した検量線に当てはめることで、試料中のOH-Kynの濃度を算出できた。よって、該キットを用いて、2-アミノフェノール類の定量が可能であることが確認できた。なお、液Bにキヌレニンモノオキシゲナーゼも配合しておくことで、2-アミノフェノール類の前駆体であるL-キヌレニンの測定も同様に可能であった。

Claims (11)

  1.  2-アミノフェノール類に、酸化剤、還元物質及びメディエーターを作用させることで、還元物質の減少量、酸化物質の増加量及び活性酸素種の増加量のうちの少なくとも1つを測定する工程(A)を含む、2-アミノフェノール類の測定方法。
  2.  酸化剤がフェノール系化合物に作用する酸化酵素である、請求項1に記載の2-アミノフェノール類の測定方法。
  3.  還元物質がNADH及びNADPHからなる群より選択される少なくとも1つであり、メディエーターがジアホラーゼである、請求項1又は2に記載の2-アミノフェノール類の測定方法。
  4.  酸化物質が、NADHの酸化物質であるNAD、及びNADPHの酸化物質であるNADPからなる群より選択される少なくとも1つである、請求項1~3の何れか1項に記載の2-アミノフェノール類の測定方法。
  5.  活性酸素種が、ヒドロキシルラジカル、スーパーオキシドアニオン及び過酸化水素からなる群より選択される少なくとも1つである、請求項1~4の何れか1項に記載の2-アミノフェノール類の測定方法。
  6.  2-アミノフェノール類が、2-アミノフェノール、3-ヒドロキシキヌレニン、及び3-ヒドロキシアントラニル酸からなる群より選択される少なくとも1つである、請求項1~5の何れか1項に記載の2-アミノフェノール類の測定方法。
  7.  工程(A)の前又は同時に、2-アミノフェノール類の前駆体を2-アミノフェノール類に変換する工程(B)を含む、請求項1~6の何れか1項に記載の2-アミノフェノール類の測定方法。
  8.  2-アミノフェノール類の前駆体がL-キヌレニンであり、L-キヌレニンをキヌレニンモノオキシゲナーゼにより3-ヒドロキシキヌレニンに変換する工程、又は2-アミノフェノール類の前駆体がアントラニル酸であり、アントラニル酸をアントラニル酸モノオキシゲナーゼにより3-ヒドロキシアントラニル酸に変換する工程を含む、請求項7に記載の2-アミノフェノール類の測定方法。
  9.  酸化剤、還元物質及びメディエーターを含む、請求項1~8の何れか1項に記載の測定方法に使用するための2-アミノフェノール類測定用試薬。
  10.  酸化剤、還元物質及びメディエーターを含む、請求項1~8の何れか1項に記載の測定方法に使用するための2-アミノフェノール類測定キット。
  11.  2-アミノフェノール類の前駆体を2-アミノフェノール類に変換する変換用試薬と、請求項9記載の測定用試薬とを含む、2-アミノフェノール類の前駆体測定キット。
     
PCT/JP2019/011687 2018-03-21 2019-03-20 2-アミノフェノール類の測定方法 WO2019182008A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507870A JP7330516B2 (ja) 2018-03-21 2019-03-20 2-アミノフェノール類の測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-074219 2018-03-21
JP2018074219 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019182008A1 true WO2019182008A1 (ja) 2019-09-26

Family

ID=67986490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011687 WO2019182008A1 (ja) 2018-03-21 2019-03-20 2-アミノフェノール類の測定方法

Country Status (2)

Country Link
JP (1) JP7330516B2 (ja)
WO (1) WO2019182008A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196601A (ja) * 1991-11-19 1993-08-06 Wako Pure Chem Ind Ltd 新規な電気化学的測定法
JP2003194801A (ja) * 2001-12-26 2003-07-09 Univ Hiroshima p−アミノフェノール誘導体の検出方法および検出キット
JP2011521622A (ja) * 2008-04-28 2011-07-28 ジェンザイム・コーポレーション アセトアミノフェンのアッセイ
JP2017063786A (ja) * 2015-09-29 2017-04-06 池田食研株式会社 L−キヌレニンの測定方法及び測定キット
WO2018056431A1 (ja) * 2016-09-26 2018-03-29 池田食研株式会社 L-キヌレニンの測定方法及び測定キット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196601A (ja) * 1991-11-19 1993-08-06 Wako Pure Chem Ind Ltd 新規な電気化学的測定法
JP2003194801A (ja) * 2001-12-26 2003-07-09 Univ Hiroshima p−アミノフェノール誘導体の検出方法および検出キット
JP2011521622A (ja) * 2008-04-28 2011-07-28 ジェンザイム・コーポレーション アセトアミノフェンのアッセイ
JP2017063786A (ja) * 2015-09-29 2017-04-06 池田食研株式会社 L−キヌレニンの測定方法及び測定キット
WO2018056431A1 (ja) * 2016-09-26 2018-03-29 池田食研株式会社 L-キヌレニンの測定方法及び測定キット

Also Published As

Publication number Publication date
JP7330516B2 (ja) 2023-08-22
JPWO2019182008A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
KR920001449B1 (ko) 효소적산화에 의한 검체의 비색적 측정방법 및 시약
JP6913956B2 (ja) L−キヌレニンの測定方法及び測定キット
US6008006A (en) Determination of glycated proteins
JPWO2006013921A1 (ja) プロテアーゼ反応促進剤及び/又は色素の安定化剤を含む試薬
JP6446875B2 (ja) 生体成分の測定方法および測定用組成物
JP6435605B2 (ja) 生体成分の測定方法および測定用組成物
JP6272283B2 (ja) 血液試料中の物質の測定法
JPWO2002027331A1 (ja) 酸化還元反応を用いた測定方法
JP2016019498A (ja) 生体成分の測定方法および測定用組成物
US20070026523A1 (en) Method for stabilizing leuco dye
Tarasek et al. Mechanisms of interference of p-diphenols with the Trinder reaction
JP6459268B2 (ja) 生体成分の測定方法および測定用組成物
JP2017063786A (ja) L−キヌレニンの測定方法及び測定キット
JP2009072136A (ja) 還元系色素を用いた安定な測定方法、およびその試薬
JP2796150B2 (ja) フルクトサミンの測定方法
EP0100217B1 (en) Process for quantitative determination of substrate treated with oxidase
WO2019182008A1 (ja) 2-アミノフェノール類の測定方法
US11384381B2 (en) Reaction accelerating agent
GB2213261A (en) Assay of salicylates or reduced pyridine nucleatides
US4695539A (en) Process for quantitative determination of substrate treated with oxidase
Naka et al. A highly sensitive enzymatic assay for d-and total serine detection using d-serine dehydratase from Saccharomyces cerevisiae
CS227331B2 (en) Method of glycerol determination
JPH03164198A (ja) 成分の分析法
JP7234923B2 (ja) 測定対象物質を補酵素として測定する物質測定方法
US4695540A (en) Quantitative determination of substrate treated with oxidase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770758

Country of ref document: EP

Kind code of ref document: A1