WO2019181803A1 - 微小粒子計測装置 - Google Patents

微小粒子計測装置 Download PDF

Info

Publication number
WO2019181803A1
WO2019181803A1 PCT/JP2019/010936 JP2019010936W WO2019181803A1 WO 2019181803 A1 WO2019181803 A1 WO 2019181803A1 JP 2019010936 W JP2019010936 W JP 2019010936W WO 2019181803 A1 WO2019181803 A1 WO 2019181803A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation container
imaging unit
observation
container
support base
Prior art date
Application number
PCT/JP2019/010936
Other languages
English (en)
French (fr)
Inventor
彰紀 木村
麻子 本村
杉山 陽子
菅沼 寛
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020507763A priority Critical patent/JP7272348B2/ja
Priority to CN201980020011.7A priority patent/CN111868504A/zh
Priority to EP19772371.1A priority patent/EP3770580A4/en
Publication of WO2019181803A1 publication Critical patent/WO2019181803A1/ja
Priority to US17/023,566 priority patent/US11768146B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/144Imaging characterised by its optical setup
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0378Shapes

Definitions

  • the present disclosure relates to a microparticle measurement apparatus.
  • Patent Documents 1 and 2 Various methods for obtaining an image of a microparticle such as a cell and evaluating the three-dimensional shape of the microparticle have been studied (for example, Patent Documents 1 and 2).
  • the fine particle measurement device of the present disclosure is A long observation container having a groove extending in a predetermined direction and containing a liquid sample containing fine particles therein is accommodated in the groove, so that the extending direction of the groove is the longitudinal direction of the observation container A support for supporting the observation container so that An imaging unit that images fine particles in the observation container supported by the support table at a position where the support table does not enter the field of view; Have
  • FIG. 1 is a schematic configuration diagram of a state in which an observation container is arranged in the microparticle measurement device of the present disclosure.
  • FIG. 2 is a diagram illustrating a specific configuration example of a support base in the microparticle measurement device of the present disclosure, in which (A) region is an example in which a cylindrical observation container is placed, and (B) region is a rectangular tube shape. This is an example in which an observation container is placed.
  • 3A and 3B are diagrams for explaining the arrangement of the imaging unit with respect to the cylindrical observation container.
  • FIG. 3A shows the case of the cylindrical observation container
  • FIG. 3B shows the case of the rectangular observation container.
  • FIG. 4A is a diagram illustrating the arrangement of the observation container and the light source unit and the imaging unit in the microparticle measurement device of the present disclosure.
  • FIG. 4B is a diagram illustrating another arrangement of the observation container and the light source unit and the imaging unit in the microparticle measurement device of the present disclosure.
  • FIG. 4C is a diagram illustrating still another arrangement of the observation container and the light source unit and the imaging unit in the microparticle measurement device of the present disclosure.
  • 5A and 5B are diagrams for explaining a holding jig in the microparticle measurement apparatus of the present disclosure, in which FIG. 5A shows an example in which a cylindrical observation container is pressed, and FIG. An example is shown.
  • FIGS. 6A and 6B are diagrams for explaining a modification of the holding jig.
  • FIG. 6A shows a state where the observation container is not pressed
  • FIG. 6B shows a state where the observation container is pressed
  • FIG. 7 is a diagram for explaining a further modification of the holding jig, in which (A) the region does not hold the observation container, and (B) the region holds the observation container.
  • FIG. 8A is a diagram illustrating the positional relationship between the support base and the pressing jig.
  • FIG. 8B is a diagram illustrating the positional relationship between the support base and the pressing jig.
  • FIG. 8C is a diagram illustrating the positional relationship between the support base and the pressing jig.
  • FIG. 9 is a diagram for explaining an application example of the fine particle measuring apparatus.
  • FIG. 9 is a diagram for explaining an application example of the fine particle measuring apparatus.
  • FIG. 10A is a perspective view showing a modified example of the observation container together with the support base.
  • FIG. 10B is a conceptual diagram illustrating an example of a cross section of the observation container in FIG. 10A and the arrangement of the imaging unit.
  • FIG. 11A is a diagram illustrating a moving mechanism.
  • FIG. 11B is a diagram illustrating the moving mechanism.
  • FIG. 12 is a diagram illustrating a modification of the support base.
  • FIG. 13A is a perspective view in a state where the lid of the microparticle measurement device of the present disclosure is closed.
  • FIG. 13B is a perspective view of the microparticle measurement apparatus according to the present disclosure in a state where a lid is opened.
  • FIG. 14 is a perspective view of another example of the microparticle measurement apparatus of the present disclosure.
  • the fine particle measuring apparatus of the present disclosure (1) has a groove extending in a predetermined direction, and an elongated observation container in which a liquid sample containing fine particles is accommodated is accommodated in the groove.
  • the support table does not enter the field of view of the support table that supports the observation container so that the direction of the groove extending in the longitudinal direction of the observation container, and the microparticles in the observation container supported by the support table.
  • An imaging unit that images at a position.
  • the observation container can be supported so that the extending direction of the groove becomes the longitudinal direction of the observation container by accommodating the observation container in the groove of the support base.
  • the imaging unit is configured to capture the microparticles at a position where the support base does not enter the field of view, the microparticles can be captured in a state where the observation container is appropriately supported. It becomes possible to image with higher accuracy.
  • the groove of the support base may be V-shaped.
  • the observation container By making the groove V-shaped, the observation container can be accommodated in the groove and supported suitably regardless of the shape of the bottom of the observation container.
  • the image forming apparatus may further include a moving mechanism that moves the support base, the observation container, or the imaging unit.
  • the field of view by the imaging unit can be easily changed, and the imaging of the microparticles in the observation container can be performed more easily.
  • It can further have a light source part which irradiates light with respect to the said observation container.
  • the fluorescence emitted from the microparticles can be imaged with respect to the light from the light source unit, so that information related to the microparticles can be obtained more widely by imaging with the imaging unit. .
  • the support base and the imaging unit may further include an exterior installed inside.
  • the microparticle measuring device can be easily moved, and thus versatility is enhanced.
  • It may further have a transport means for transporting the exterior.
  • FIG. 1 is a schematic configuration diagram of a state in which an observation container is arranged in a microparticle measurement apparatus according to an embodiment of the present disclosure.
  • the microparticle measurement apparatus 1 is an apparatus that performs measurement related to microparticles dispersed in a sample.
  • the target in which the microparticles and the microparticles are dispersed is not particularly limited, but may be a liquid, for example.
  • the microparticles are cells
  • the liquid in which the microparticles are dispersed is an aqueous solution or water that is compatible with cells such as a cell culture medium or physiological saline. be able to.
  • the target cells include spheroids, eggs, and mini-organs.
  • the sample is a liquid sample and the microparticles are dispersed in the liquid will be described.
  • the sample only needs to include the microparticles to be imaged, and the liquid It is not limited to the structure distributed in.
  • the microparticle measurement apparatus 1 when a liquid sample containing microparticles that are the object 2 stays in the measurement observation container 10, the measurement light is transmitted to the object 2 in the observation container 10.
  • the light from the object 2 obtained by irradiating the object 2 is detected to obtain a transmission image, and measurement / analysis and the like related to the object 2 are performed based on the transmission image.
  • the microparticle measurement apparatus 1 includes a support base 20 that supports the observation container 10, a light source unit 30, an imaging unit 40, and an analysis unit 50.
  • the transmitted light from the target object 2 the diffuse reflection light, fluorescence, etc. resulting from the light source part 30 (or light from another light source) are mentioned. That is, the method of optical measurement of the object 2 by the light source unit 30 and the imaging unit 40 is not particularly limited.
  • the observation container 10 is a container in which a liquid sample containing microparticles is stored when measurement related to the microparticles is performed. Moreover, the support stand 20 supports the observation container 10 on a measurement stand, for example. A specific configuration example of the observation container 10 and the support base 20 is shown in FIG.
  • the observation container 10 (10A, 10B) can be formed in a cylindrical shape with both ends opened, for example.
  • a cylindrical observation container 10A is shown in FIG. 2A.
  • a rectangular tube-like observation container 10 ⁇ / b> B is shown in the region (B) of FIG. 2 in the region (B) of FIG. 2.
  • such a cylindrical observation container 10 has culture bags 100A and 100B connected to both ends, and includes microparticles that are the object 2 from one culture bag 100A to the other culture bag 100B. The liquid sample can be observed while moving.
  • the cross-sectional shape may be a rectangle or a square. That is, it can be made into the shape which has a right-angled corner
  • the three-dimensional shape of the object 2 can be suitably measured by devising the arrangement of the imaging unit 40 and the like.
  • the size of the observation container 10 is not particularly limited, but is appropriately set according to the arrangement of the light source unit 30 and the imaging unit 40, the size of the microparticles that are the object 2, and the like.
  • the material of the observation container 10 is not particularly limited, and for example, glass, PC resin, PS resin, or the like can be used.
  • At least a region of the observation container 10 through which light incident on the imaging unit 40 passes, that is, a region arranged in the imaging region of the observation container 10 by the imaging unit 40 may be transparent to the measurement light. is necessary.
  • positioned in the imaging region by the imaging part 40 among the observation containers 10 can be made into the aspect by which the thickness (thickness) of the observation container 10 is made uniform.
  • the thickness of the observation container 10 When the thickness of the observation container 10 is not uniform, the light from the imaging region is refracted and enters the imaging unit 40, and thus there is a possibility that an image of the object 2 whose shape is distorted in the imaging unit 40 may be acquired.
  • the unit 40 can take an image.
  • the support base 20 supports the cylindrical observation container 10 in a predetermined direction. Therefore, the support base 20 has the base part 21, and the container support part 22 in which the groove
  • the base part 21 can be plate-shaped, for example.
  • the container support part 22 is comprised on the one main surface of the base part 21, and is comprised by the plate-shaped member extended upwards from the said main surface. And it can manufacture by processing an edge part so that the groove
  • the length of the groove F (the thickness of the container support portion 22) can be set to about 0.5 mm to 50 mm, for example.
  • the angle formed by the two surfaces constituting the V-shape can be about 60 ° to 120 °.
  • the observation container 10B having a right-angled corner can be suitably held.
  • the shape of the groove F is not limited to the above V shape. Further, the shape of the groove F can be appropriately changed based on the shape or size of the observation container 10 accommodated in the groove F.
  • the light source unit 30 irradiates a predetermined region (for example, near the center) of the observation container 10 with measurement light.
  • a halogen lamp, an LED, or the like can be used as the light source of the light source unit 30 .
  • the light source unit 30 may have a function of modulating the intensity.
  • the light source unit 30 may be arranged corresponding to the imaging unit 40 to irradiate the observation container 10. By setting it as such an arrangement
  • the imaging unit 40 is arranged in a state where the support base 20 does not enter the field of view. By setting it as such a structure, the imaging part 40 can suitably image the target object 2 in the observation container 10, avoiding interference of the support stand 20. FIG.
  • visible light or near-infrared light can be used as measurement light emitted by the light source unit 30 for observation of transmitted light or diffusely reflected light.
  • Visible light or near-infrared light is light included in the wavelength band (band A) having a wavelength range of 400 nm to 2000 nm.
  • light included in a wavelength band (band B) of 300 nm to 800 nm used for excitation of fluorescence can also be used as measurement light irradiated by the light source unit 30 for observation of fluorescence.
  • the light included in the band A and the light included in the band B may be combined into measurement light.
  • the imaging unit 40 has a function of receiving the light transmitted through the object 2 by the measurement light emitted from the light source unit 30 and detecting the intensity thereof. That is, the imaging unit 40 is provided at a position facing the light source unit 30 with the observation container 10 interposed therebetween.
  • the imaging unit 40 includes a detector in which a plurality of pixels are two-dimensionally arranged, and converts light received by the pixels into intensity information. The detection result in the imaging unit 40 is sent to the analysis unit 50.
  • the imaging unit 40 may be configured to detect only the intensity of light of a specific wavelength that can distinguish the object 2 from other components, for example.
  • the imaging unit 40 may be configured to detect a spectral spectrum including intensity values for a plurality of wavelengths.
  • a spectral spectrum is a series of data in which intensity values at arbitrary wavelengths are extracted from spectral information and paired with corresponding wavelengths.
  • the detector of the imaging unit 40 for example, a CMOS, CCD, InGaAs detector, or an MCT detector made of mercury, cadmium, and tellurium can be used.
  • the imaging unit 40 is configured to detect a spectral spectrum
  • the imaging unit 40 further includes a spectroscope having a function of splitting incident light for each wavelength in the previous stage of the detector.
  • a spectroscope for example, a wavelength selection filter, an interference optical system, a diffraction grating, or a prism can be used.
  • the imaging unit 40 may be a hyperspectral sensor that acquires a hyperspectral image.
  • a hyperspectral image is an image in which one pixel is composed of N pieces of wavelength data, and includes spectral information composed of intensity data corresponding to a plurality of wavelengths for each pixel. That is, a hyperspectral image has a three-dimensional configuration that combines two-dimensional elements as an image and elements as spectral data because of the feature that each pixel constituting the image has intensity data of multiple wavelengths. It is data.
  • the hyperspectral image refers to an image composed of pixels having intensity data in at least four wavelength bands per pixel.
  • the imaging unit 40 acquires the spectral spectrum after separating the light from the object 2 has been described.
  • the configuration when the imaging unit 40 acquires the spectral spectrum is not limited to the above.
  • the wavelength of light emitted from the light source unit 30 may be variable.
  • the analysis unit 50 obtains an imaging result related to the target object 2 sent from the imaging unit 40 and performs arithmetic processing or the like, thereby performing image display / recording of the target object 2 and measurement or analysis related to these images.
  • FIG. For example, when the object 2 is a cell, the diameter of the imaged object 2 may be calculated, and the distribution, histogram, and the like may be displayed.
  • region of FIG. 3 has shown the example of arrangement
  • the observation container 10 ⁇ / b> A on the support base 20 is shown, but the support base 20 is disposed at a position that does not enter the field of view of the imaging unit 40. This also applies to the region (B) in FIG.
  • the arrangement of the imaging unit 40 is not particularly limited, and the observation container 10A can be arranged at a position where imaging of the object 2 is suitably performed. Therefore, as shown to the (A) area
  • the imaging unit 40 may be arranged at a position where the optical axis of light that passes through the wall surface of the observation container 10A and enters the imaging unit 40 is orthogonal to the wall surface of the container. By setting it as such a structure, it can prevent that the imaging part 40 light-receives the reflected light, refractive light, etc. in the wall surface of a container.
  • a configuration in which a plurality of imaging units 40 are provided may be employed.
  • the plurality of imaging units 40 can be arranged at positions where the optical axes are orthogonal to each other with the object 2 as the center.
  • the shape of the microparticles that are the object 2 can be suitably imaged by the imaging units 40A and 40B.
  • the imaging units 40A and 40B can be configured to simultaneously image the same imaging target.
  • the one imaging target (object 2) in observation container 10A can be grasped
  • imaging the same imaging object at the same time means that the position of the field of view by the imaging units 40A and 40B when viewed along the longitudinal direction of the observation container 10 is the same, and at a certain point in the observation container 10. It means imaging at the same time as the staying object 2.
  • the imaging unit 40 is disposed at a position where the optical axis of light that passes through the wall surface of the observation container 10B and enters the imaging unit 40 is orthogonal to the wall surface of the container. can do.
  • the imaging unit 40 can be arranged so as to face a flat wall surface included in the rectangular tube-shaped observation container 10B.
  • the imaging units 40C and 40D can be arranged so as to face each other with the rectangular tube-shaped observation container 10B interposed therebetween, as shown in the region (B) of FIG.
  • the imaging units 40C and 40D are configured to simultaneously capture the same imaging target, the entire image of the object in the observation container 10B can be captured by the imaging units 40C and 40D. It becomes.
  • FIG. 4A, 4B, and 4C show examples of arrangement of the light source unit 30 and the imaging unit 40.
  • FIG. 4A Although the case where the light source unit 30 and the imaging unit 40 face each other with the observation container 10 interposed therebetween has been described in FIG. 1, the positional relationship between the light source unit 30 and the imaging unit 40 can be changed as appropriate.
  • a half mirror 60 is provided, and light from the light source unit 30 is reflected by the half mirror 60 to irradiate the object 2, and light from the object 2 causes the half mirror 60 to be irradiated. The light is transmitted and incident on the imaging unit 40. In this manner, a configuration using an optical element or the like that changes the path of light may be used.
  • three image pickup units 40 (40E to 40G) are provided for one light source unit 30.
  • the imaging unit 40F is disposed to face the light source unit 30 with the observation container 10 (target object 2) interposed therebetween.
  • the imaging units 40E and 40G are arranged at positions where the optical axis of light incident on each imaging unit is 90 ° with respect to the optical axis of light directed from the light source unit 30 to the object 2.
  • the imaging unit 40 has a specific wavelength at the front stage of each imaging unit 40.
  • the filter 70 that restricts light a filter that blocks light of a specific wavelength including excitation light may be provided. Even when the fluorescence from the object 2 is not observed, a filter that blocks light of a specific wavelength may be provided as the filter 70.
  • two imaging units 40 (40H to 40I) are provided for one light source unit 30.
  • the two imaging units 40H and 40I are arranged at positions where the optical axes of the light incident on the respective imaging units are 60 ° with respect to the optical axis of the light directed from the light source unit 30 to the object 2. Therefore, the imaging units 40H and 40I can capture the fluorescence when the reflected light from the object 2 or the object 2 emits fluorescence.
  • a filter 70 that restricts the wavelength of light incident on the imaging unit 40 is disposed in front of each imaging unit 40.
  • the number of the light source units 30 and the imaging units 40 may be different from each other as described above. Further, the transmission wavelengths by the filters 70 provided in the previous stage of the plurality of imaging units 40 may be different from each other.
  • FIG. 5 shows an example of the holding jig 80.
  • the pressing jig 80 includes a pressing part 81 having a pressing surface 81 a that presses against the observation container 10, and a holding part 82 that is held when the user of the pressing jig 80 handles the pressing part 81.
  • FIG. 5A shows a state in which the rectangular tube-shaped observation container 10B is accommodated in the groove F of the support base 20, and is supported by the observation container 10B from above with a pressing jig 80.
  • FIG. 5B shows a state in which the cylindrical observation container 10A is accommodated in the groove F of the support base 20, and is supported by the observation container 10B from above with a pressing jig 80.
  • FIG. 10 the movement of the observation container 10 on the groove F can be regulated by supporting the observation container 10 from above by the holding jig 80.
  • the holding jig 80 can enhance the support function of the observation container 10 by changing its shape.
  • the pressing portion 81 is connected to the holding portion 82 via a spring 83.
  • the pressing portion 81 of the pressing jig 80 ⁇ / b> A is connected to the holding portion 82 via a spring 83.
  • the pressing portion 81 of the pressing jig 80 ⁇ / b> A is moved upward via the holding portion 82 and the spring 83.
  • the force from the holding portion 82 can be gently propagated to the holding portion 81 as compared with the case where the holding portion 82 is directly pressed and supported by the holding portion 82.
  • the observation container 10 rotates, it is possible to prevent the force from the holding portion 82 from acting in the direction in which the observation container 10 is moved from the support base 20.
  • the pressing jig 80B shown in FIG. In this case, when shifting from the state where the observation container 10 shown in the area (A) of FIG. 7 is not pressed down to the state where the observation container 10 shown in the area (B) of FIG. 7 is pressed (supported).
  • the movement of the observation container 10 can be suitably restricted.
  • the longitudinal direction of the observation container 10 that is, the extending direction of the groove F of the support base 20
  • the holding jig 80 ⁇ / b> B is used so that the extending direction is the same.
  • FIG. 8A, 8B, and 8C are diagrams illustrating examples of the positional relationship between the support base 20 and the pressing jig 80.
  • FIG. 8A shows a state where the support base 20 and the pressing jig 80 are arranged to face each other with the observation container 10 interposed therebetween.
  • FIG. 8B the two support bases 20 support the central side in the longitudinal direction of the observation container 10, whereas the two pressing jigs 80 support the longitudinal end side of the observation container 10. It shows the state. Further, in FIG.
  • the two support bases 20 support the end portion side in the longitudinal direction of the observation container 10, whereas one pressing jig 80 supports the vicinity of the center in the longitudinal direction of the observation container 10. It shows the state.
  • the number and positional relationship of the support base 20 and the pressing jig 80 can be changed as appropriate.
  • both the support base 20 and the holding jig 80 can be provided at positions that do not fall within the field of view of the imaging unit 40. Therefore, when the pressing jig 80 is arranged near the center of the observation container 10 as shown in FIG. 8C, the imaging unit 40 includes, for example, the support base 20 and the pressing jig along the longitudinal direction of the observation container 10. 80.
  • FIG. 9 An application example of the fine particle measuring apparatus described above will be described with reference to FIG.
  • the culture bag is connected to the observation container 10 placed in the fine particle measuring device 1 as in FIG.
  • the culture bag 100A is connected to one end (upstream side), but two culture bags 100B and 100C are connected to the other end (downstream side).
  • the difference is that the flow path to the culture bag 100 ⁇ / b> B and the branching section 110 to which the flow path is connected to the culture bag 100 ⁇ / b> C are connected downstream of the observation container 10.
  • the image of the object 2 is imaged by the imaging unit 40, and the object 2 is captured by the analysis unit 50. Perform such analysis. And based on the result, the valve
  • the object 2 can be selected using the analysis result obtained by the fine particle measurement apparatus 1.
  • the target object 2 exceeding a predetermined diameter can be moved to the culture bag 100B, and the other target objects 2 can be moved to the culture bag 100C.
  • how the object 2 is selected using the analysis result can be changed as appropriate.
  • the structure of the branch part 110 for selecting fine particles can be changed as appropriate.
  • observation container 10 is cylindrical and the culture bags 100A, 100B, etc. are connected to both ends.
  • the observation container is a concave container and contains a liquid sample therein. It may be a structure.
  • the observation container may be provided with a plurality of recesses so that the objects 2 are individually accommodated.
  • FIG. 10A is a perspective view showing an observation container 10C according to a modification together with a support base.
  • the observation container 10C has a structure in which the plurality of recesses 11 are independent.
  • the observation container 10C is a long columnar member, and a plurality of concave portions 11 are formed near the center.
  • a region where the concave portion 11 is not formed can be supported by the support base 20.
  • FIG. 10B is a conceptual diagram illustrating an example of a cross section of the observation container 10C and the arrangement of the imaging unit, and illustrates an example in which the concave portion 11 is configured by bottom walls 12A and 12B formed of two plate-like members.
  • the angle formed by the two bottom walls 12A and 12B is not particularly limited, but can be 90 ° or about ⁇ 30 ° thereof.
  • observation container 10 ⁇ / b> C may have a configuration in which one recess 11 extending in the longitudinal direction is provided in the same manner as the observation container 10 instead of the plurality of recesses 11.
  • shape of the bottom wall of the observation container 10 can be changed as appropriate.
  • the observation container 10C or the imaging unit 40 on the support base 20 is moved along the extending direction (longitudinal direction) of the observation container 10C, thereby entering the field of view of the imaging unit 40. It can be set as the aspect which changes an object (the recessed part in which the target object 2 was accommodated).
  • the microparticle measurement apparatus 1 can be configured to include a movement mechanism that moves the observation container 10C or a movement mechanism that moves the imaging unit 40.
  • the observation container 10C itself may be moved, or the support table 20 and the observation container 10C may be moved simultaneously by making the support table 20 movable. .
  • the microparticle measurement apparatus 1 may have a moving mechanism that moves the observation container 10D or a moving mechanism that moves the imaging unit 40. Note that even when the observation container 10D is formed of a cylindrical member, a configuration having a moving mechanism can be adopted.
  • one observation container 10 is supported by two support bases 20
  • the number and shape of the support bases 20 that support the observation container 10 can be changed as appropriate.
  • one observation container 10 may be supported by three or more support bases 20.
  • one observation container 10 (here, the observation container 10 ⁇ / b> D is shown) may be supported by one support base 20.
  • the support base 20A shown in FIG. 12 has a thickness (length along the extending direction of the observation container 10D) of the container support portion 22 of the support base 20A as compared with the support base 20 shown in FIGS. Is getting bigger.
  • channel F formed along this thickness direction can be ensured long, and observation container 10D can be stably supported using the groove
  • FIG. Therefore, the observation container 10 (10D) can be favorably supported even if the number of the support bases 20 is reduced.
  • the imaging unit 40 is disposed at a position where the support base 20 does not enter the visual field (for example, the end side of the observation container). Can do. By setting it as such a structure, the observation of the target object 2 can be performed suitably.
  • FIG. 13A is a perspective view of the fine particle measuring device 1A with the lid 92 closed
  • FIG. 13B is a perspective view of the fine particle measuring device 1A with the lid 92 open.
  • the fine particle measuring apparatus 1 ⁇ / b> A is configured such that the support 20, the light source unit 30, and the imaging unit 40 are installed in a carrying exterior 90.
  • the exterior 90 includes a main body portion 91 and a lid portion 92, and a handle 93 is attached as a transporting means for transporting the exterior 90 to the main body portion 91.
  • the observation container 10, the support base 20, the light source unit 30, and the imaging unit 40 are installed in the exterior 90 during transportation.
  • the lid 92 can be closed and carried using the handle 93 during transportation.
  • the lid 92 is opened as shown in FIG. 13B, and the observation container 10 is set on the support base 20 in the exterior 90 to perform measurement.
  • the support base 20, the light source unit 30, and the imaging unit 40 are installed inside the exterior 90, it becomes possible to transport and use the microparticle measurement device 1A to an arbitrary place.
  • the versatility of the fine particle measuring apparatus 1A is improved.
  • FIG. 14 it is good also as a structure which can convey 1 A of microparticles measuring apparatuses by providing the caster 94 with respect to the main-body part 91 instead of the handle 93 as a conveyance means.
  • the position where the caster 94 is provided can be changed as appropriate.
  • the observation container 10 is accommodated in the groove F of the support base 20 so that the extending direction of the groove F becomes the longitudinal direction. 10 can be supported.
  • the imaging unit 40 captures the microparticles at a position where the support base 20 does not enter the field of view, the microparticles can be captured in a state where the observation container 10 is appropriately supported. It becomes possible to image the shape of the above with higher accuracy.
  • the observation container 10 can be accommodated in the groove F and suitably supported regardless of the shape of the bottom of the observation container 10.
  • the movement of the observation container 10 on the support base 20 can be restricted, and imaging of fine particles can be performed more suitably.
  • the field of view by the imaging unit 40 can be easily changed, and imaging of fine particles in the observation container 10 can be performed more easily. It can be performed simply.
  • the light source unit 30 for example, it is possible to image fluorescence emitted from the microparticles with respect to the light from the light source unit 30, and thus more information on the microparticles can be obtained by imaging with the imaging unit 40. Can be widely obtained. Even when the light source unit 30 is not provided, for example, microparticles can be observed. However, by providing the light source unit 30, observation using light of a specific wavelength can be suitably performed. it can.
  • the support table 20, the light source unit 30, and the imaging unit 40 have the exterior 90 that is installed therein, so that the fine particle measurement device can be easily moved. Therefore, versatility increases.
  • the fine particle measuring device can be carried more easily.
  • the microparticle measurement apparatus 1 is not limited to the above embodiment.
  • the microparticle measurement device 1 instead of the configuration in which the microparticle measurement device 1 includes the observation container 10, the support base 20, the light source unit 30, the imaging unit 40, and the analysis unit 50 as in the above embodiment, for example, the microparticle measurement device 1 does not have a light source unit. It may be configured. Further, the light source unit or the imaging unit may be three or more. Further, the observation container 10 may not be included in the fine particle measurement device.
  • observation container 10 can be changed as appropriate.
  • the observation container 10 only needs to be able to retain the object 2 at least inside. Therefore, a configuration in which the liquid sample including the target object 2 is accommodated by an opening connected to the outside as in the observation containers 10A and 10B, or one or more as in the observation containers 10C and 10D. A configuration in which the recess 11 is provided may be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

所定の方向に延びる溝(F)を有し、内部に微小粒子を含む液体試料が収容された長尺状の観察容器(10)を当該溝Fに収容することで、溝(F)の延材方向が観察容器(10)の長手方向となるように観察容器(10)を支持する支持台(20)と、支持台(20)に支持された観察容器(10)内の微小粒子を、前記支持台が視野に入らない位置で撮像する撮像部(40)と、を有する。

Description

微小粒子計測装置
 本願は、2018年3月20日出願の日本特許出願第2018-052953号の優先権の利益を主張し、その内容は依拠され、全体として参照により本明細書に組み込まれる。
 本開示は、微小粒子計測装置に関する。
 細胞等の微小粒子の画像を取得して、微小粒子の立体形状に係る評価を行う方法が種々検討されている(例えば、特許文献1,2等)。
特表2014-517263号公報 特表2004-532405号公報
 本開示の微小粒子計測装置は、
所定の方向に延びる溝を有し、内部に微小粒子を含む液体試料が収容された長尺状の観察容器を当該溝に収容することで、前記溝の延材方向が前記観察容器の長手方向となるように前記観察容器を支持する支持台と、
 前記支持台に支持された前記観察容器内の微小粒子を、前記支持台が視野に入らない位置で撮像する撮像部と、
 を有する。
図1は、本開示の微小粒子計測装置に観察容器を配置した状態の概略構成図である。 図2は、本開示の微小粒子計測装置における支持台の具体的な構成例を示す図であり、(A)領域は円筒状の観察容器を載せた例、(B)領域は角筒状の観察容器を載せた例である。 図3は、円筒状の観察容器に対する撮像部の配置について説明する図であり、(A)領域は円筒状の観察容器の場合、(B)領域は角筒状の観察容器の場合である。 図4Aは、観察容器と、本開示の微小粒子計測装置における光源部および撮像部の配置について説明する図である。 図4Bは、観察容器と、本開示の微小粒子計測装置における光源部および撮像部の他の配置について説明する図である。 図4Cは、観察容器と、本開示の微小粒子計測装置における光源部および撮像部のさらに他の配置について説明する図である。 図5は、本開示の微小粒子計測装置における押さえ治具について説明する図であり、(A)領域は円筒状の観察容器を押さえた例、(B)領域は角筒状の観察容器を押さえた例を示す。 図6は、押さえ治具の変形例について説明する図であり、(A)領域は観察容器を押さえていない状態、(B)領域は観察容器を押さえた状態を示す。 図7は、押さえ治具のさらに変形例について説明する図であり、(A)領域は観察容器を押さえていない状態、(B)領域は観察容器を押さえた状態を示す。 図8Aは、支持台と押さえ治具との位置関係について説明する図である。 図8Bは、支持台と押さえ治具との位置関係について説明する図である。 図8Cは、支持台と押さえ治具との位置関係について説明する図である。 図9は、微小粒子計測装置の活用例について説明する図である。 図10Aは、観察容器の変形例を支持台と共に示す斜視図である。 図10Bは、図10Aの観察容器の断面の一例と撮像部の配置を示す概念図である。 図11Aは、移動機構について説明する図である。 図11Bは、移動機構について説明する図である。 図12は、支持台の変形例について説明する図である。 図13Aは、本開示の微小粒子計測装置の蓋部を閉めた状態における斜視図である。 図13Bは、本開示の微小粒子計測装置の蓋部を開けた状態における斜視図である。 図14は、本開示の微小粒子計測装置の他の例における斜視図である。
[本願発明の実施形態の説明]
 最初に本開示の微小粒子計測装置の実施態様を列記して説明する。
 本開示の微小粒子計測装置は、(1)所定の方向に延びる溝を有し、内部に微小粒子を含む液体試料が収容された長尺状の観察容器を当該溝に収容することで、前記溝の延材方向が前記観察容器の長手方向となるように前記観察容器を支持する支持台と、前記支持台に支持された前記観察容器内の微小粒子を、前記支持台が視野に入らない位置で撮像する撮像部と、を有する。
 上記の微小粒子計測装置によれば、観察容器を支持台の溝に収容することで、溝の延在方向が観察容器の長手方向になるように観察容器を支持することができる。この状態で、支持台が視野に入らない位置で撮像部が微小粒子を撮像する構成とすることで、観察容器を適切に支持した状態での微小粒子の撮像ができるため、微小粒子の形状をより精度よく撮像することが可能となる。
 (2)また、前記支持台の前記溝は、V形状であることができる。
 溝をV形状とすることで、観察容器の底部の形状によらず、観察容器を溝内に収容して好適に支持することができる。
 (3)また、前記支持台に支持された前記観察容器を押さえる押さえ治具をさらに有することができる。
 観察容器を押さえる押さえ治具をさらに有することで、支持台上の観察容器の移動を規制することができ、微小粒子の撮像をより好適に行うことができる。
 (4)前記支持台、前記観察容器、または、前記撮像部を移動させる移動機構をさらに有することができる。
 支持台、観察容器、または、撮像部を移動させる移動機構を有することで、撮像部による視野を容易に変更することができ、観察容器内の微小粒子の撮像をより簡便に行うことができる。
 (5)前記観察容器に対して光を照射する光源部をさらに有することができる。
 光源部を有することで、例えば、光源部からの光に対して微小粒子から発せられる蛍光の撮像を行うことができるため、撮像部での撮像によって微小粒子に係る情報をより広く得ることができる。
 (6)前記支持台および前記撮像部が内部に設置される外装をさらに有することができる。
 支持台および撮像部が内部に設置される外装を有することで、微小粒子計測装置を容易に移動させることが可能となるため、汎用性が高まる。
 (7)前記外装を運搬するための運搬手段をさらに有することができる。
 外装を運搬するための運搬手段を有している場合、より簡便に微小粒子計測装置の運搬ができる。
[本願発明の実施形態の詳細]
 本開示に係る微小粒子測定装置の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 近年、再生医療等の発展に伴って、培養バッグ等を用いて細胞を大量培養する手法が検討されている。したがって、培養バッグ等で培養された細胞等の微小粒子を計測する装置に係るニーズが高まっている。しかしながら、従来検討されている装置構成では、細胞の観察の際の焦点位置を適切に調整できない場合があった。
(微小粒子計測装置)
 図1は、本開示の一実施形態に係る微小粒子計測装置に観察容器を配置した状態の概略構成図である。図1に示すように、微小粒子計測装置1は、試料中に分散している微小粒子に係る計測を行う装置である。微小粒子及び微小粒子が分散している対象は特に限定されないが、例えば、液体とすることができる。液体試料中に微小粒子が分散している例としては、微小粒子が細胞であり、微小粒子が分散している液体は細胞用培地又は生理食塩水等の細胞が適合できる水溶液又は水等とすることができる。また、対象となる細胞としては、例えば、スフェロイド、卵、ミニ臓器等が挙げられる。なお、本実施形態では、試料が液体試料であって、微小粒子が液体中に分散している例について説明するが、試料は、撮像の対象となる微小粒子が含まれていればよく、液体中に分散された構成に限定されない。
 図1に示すように、微小粒子計測装置1では、対象物2である微小粒子を含む液体試料が計測用の観察容器10内に滞留する際に、測定光を観察容器10内の対象物2に対して照射することにより得られる対象物2からの光を検出して透過像を撮像し、その透過像に基づいて対象物2に係る計測・分析等を行う。このため、微小粒子計測装置1は、観察容器10を支持する支持台20、光源部30、撮像部40、及び分析部50を備える。なお、対象物2からの光としては、光源部30(または他の光源からの光)に起因する対象物2からの透過光、拡散反射光、蛍光等が挙げられる。すなわち、光源部30および撮像部40による対象物2の光学計測の手法は特に限定されない。
 観察容器10は、微小粒子に係る計測を行う際に微小粒子を含む液体試料が収容される容器である。また、支持台20は、例えば測定台上で観察容器10を支持する。観察容器10および支持台20の具体的な構成例を図2に示す。
 図2に示すように、観察容器10(10A,10B)は、例えば両端が開口した筒状とすることができる。図2の(A)領域では円筒状の観察容器10Aを示している。また、図2の(B)領域では、角筒状の観察容器10Bを示している。このような筒状の観察容器10は、図1に示すように、両端に培養バッグ100A,100Bを接続し、一方の培養バッグ100Aから他方の培養バッグ100Bへ対象物2である微小粒子を含む液体試料を移動させながら観察することができる。
 観察容器10が角筒状である場合、断面形状は、長方形又は正方形である態様とすることができる。すなわち、直角の角部を有する形状とすることができる。このような形状とすることで、撮像部40の配置等を工夫することで、対象物2の立体形状を好適に計測することができる。
 上記の観察容器10の大きさは特に限定されないが、光源部30及び撮像部40の配置、及び、対象物2である微小粒子の大きさ等に応じて適宜設定される。また、観察容器10の材質は特に限定されないが、例えば、ガラスやPC樹脂、PS樹脂等を用いることができる。観察容器10のうち少なくとも撮像部40に入射する光が通過する領域、すなわち、観察容器10のうち撮像部40による撮像領域に配置される領域は、測定光に対して透光性を有することが必要である。また、観察容器10のうち撮像部40による撮像領域に配置される領域は、観察容器10の厚さ(肉厚)が均一とされる態様とすることができる。観察容器10の厚さが均一でない場合、撮像領域からの光が屈折して撮像部40に入射するため、撮像部40において形状が歪んだ対象物2の像を取得する可能性がある。観察容器10の上記領域の厚さを均一とすることで、測定光又は対象物2からの光が観察容器10を通過の際の歪み等の影響を受けることが防がれた透過像を撮像部40が撮像することができる。
 支持台20は、筒状の観察容器10を所定の方向に支持する。そのため、支持台20は、土台部21と、一の方向に延びる溝Fが上面(土台部21側とは逆側)に形成された容器支持部22とを有する。土台部21は、例えば板状とすることができる。また、容器支持部22は、土台部21の一方の主面上に設けられて、当該主面から上方に延在する板状の部材により構成される。そして、容器支持部22を構成する板状の部材の厚さ方向に延びる溝Fが設けられるように端部を加工することで製造することができる。なお、図2の(A)領域及び(B)領域で示す支持台20は、溝Fとして観察容器10A,10Bを収容可能なV形状の溝(V溝)が設けられている。溝Fの長さ(容器支持部22の厚さ)は、例えば、0.5mm~50mm程度とすることができる。V形状の溝Fを設ける場合、V形状を構成する2つの面のなす角度は60°~120°程度とすることができる。溝Fにおける2つの面のなす角度を90°とした場合、直角の角部を有する観察容器10Bを好適に保持することができる。ただし、溝Fの形状は上記のV形状に限定されない。また、溝Fに収容する観察容器10の形状または大きさ等に基づいて溝Fの形状は適宜変更することができる。
 光源部30は、測定光を観察容器10の所定の領域(例えば、中央近傍)に対して照射する。光源部30の光源としては、ハロゲンランプ、LED等を用いることができる。また、光源部30は強度を変調する機能を有していてもよい。
 図1に示すように、光源部30は、撮像部40に対応して配置されて観察容器10を照射する構成とすることができる。このような配置とすることで、撮像部40による計測をより精度よく行うことができる。また、撮像部40は、支持台20が視野に入らない状態で配置される。このような構成とすることで、支持台20の干渉を回避しながら観察容器10内の対象物2の撮像を撮像部40が好適に行うことができる。
 なお、本実施形態において透過光または拡散反射光の観察のために光源部30が照射する測定光として、可視光または近赤外光を用いることができる。可視光または近赤外光とは、波長範囲が400nm~2000nmの波長帯域(帯域A)に含まれる光である。また、蛍光の観察のために光源部30が照射する測定光として、蛍光の励起に用いられる300nm~800nmの波長帯域(帯域B)に含まれる光を用いることもできる。また、帯域Aに含まれる光と帯域Bに含まれる光とを組み合わせて測定光としてもよい。
 撮像部40は、光源部30から照射される測定光が対象物2を透過した光を受光し、その強度を検出する機能を有する。すなわち、撮像部40は、観察容器10を挟んで光源部30と対向する位置に設けられる。撮像部40は、それぞれ複数の画素が2次元状に配置された検出器を有し、画素に受光する光を強度情報に変換する。撮像部40での検出結果は、分析部50へ送られる。
 撮像部40は、例えば、対象物2と他の成分とを区別することが可能な特定の波長の光の強度のみを検出する構成としてもよい。また、撮像部40において、複数の波長に対する強度値を含む分光スペクトルを検出する構成としてもよい。分光スペクトルとは、分光情報から任意の波長における強度値を抽出し、対応する波長と対にした一連のデータのことである。
 撮像部40の検出器としては、例えば、CMOS、CCD、InGaAs検出器、又は、水銀、カドミウム及びテルルからなるMCT検出器、等を用いることができる。また、撮像部40が分光スペクトルを検出する構成の場合、撮像部40は、検出器の前段に、それぞれ入射した光を波長毎に分光する機能を有する分光器をさらに含む。分光器としては、例えば、波長選択フィルタ、干渉光学系、回折格子、又はプリズムを用いることができる。
 また、撮像部40は、ハイパースペクトル画像を取得するハイパースペクトルセンサであってもよい。ハイパースペクトル画像とは、一画素がN個の波長データにより構成されている画像であり、画素毎にそれぞれ複数の波長に対応した強度データからなるスペクトル情報が含まれている。すなわち、ハイパースペクトル画像は、画像を構成する画素毎に、それぞれ複数波長の強度データを持つという特徴から、画像としての二次元的要素と、スペクトルデータとしての要素をあわせ持った三次元的構成のデータである。なお、本実施形態では、ハイパースペクトル画像とは、1画素あたり少なくとも4つの波長帯域における強度データを保有している画素によって構成された画像のことをいう。
 なお、上記では、撮像部40において、対象物2からの光を分光した上で分光スペクトルを取得する場合について説明したが、撮像部40において分光スペクトルを取得する場合の構成は上記に限定されない。例えば、光源部30から出射する光の波長が可変である構成としてもよい。
 分析部50は、撮像部40から送られる対象物2に係る撮像結果を取得し、演算処理等を行うことで、対象物2の画像表示・記録およびこれら画像に係る計測や分析等を行う機能を有する。また、分析部50における計測等の結果に基づいて、種々の計算等を行う構成としてもよい。例えば、対象物2が細胞である場合には、撮像した対象物2の直径を計算し、その分布やヒストグラムなどを表示する構成としてもよい。また、画像内に含まれる対象物2の個数を計数し、液体試料に含まれる対象物2の濃度を算出する構成としてもよい。
 次に、図3および図4A、図4B、図4Cを参照しながら、光源部30および撮像部40の配置について説明する。
 図3の(A)領域は、円筒状の観察容器10Aに対する撮像部40の配置例を示している。図3の(A)領域では、支持台20上の観察容器10Aを示しているが、支持台20は撮像部40の視野には入らない位置に配置されている。この点は図3の(B)領域も同様である。
 観察容器10Aが円筒状である場合、撮像部40の配置は特に限定されず、対象物2の撮像を好適に行う位置に配置することができる。したがって、図3の(A)領域に示すように、観察容器10Aおよび対象物2に対する撮像部40の配置は適宜変更することができる。ただし、観察容器10Aの壁面を通過して撮像部40に入射する光の光軸が容器の壁面に対して直交する位置に撮像部40が配置されている構成とすることができる。このような構成とすることで、容器の壁面での反射光や屈折光等を撮像部40が受光することを防ぐことができる。
 また、撮像部40を複数設ける構成としてもよい。その場合、複数の撮像部40は、図3の(A)領域の撮像部40A,40Bに示すように、対象物2を中心として光軸が互いに直交する位置に配置することができる。このような構成とした場合、対象物2である微小粒子の形状を撮像部40A,40Bにより好適に撮像することが可能となる。
 また、撮像部40A,40Bは、同一の撮像対象を同時に撮像する構成であることができる。このような構成とすることで、観察容器10A内の一の撮像対象(対象物2)を互いに異なる方向から把握することができる。対象物2は、液体試料の移動等に伴って回転したりすることが考えられる。したがって、撮像部40A,40Bは、観察容器10Aの特定の位置の撮像を行う構成とすることで、対象物2に係るより詳細な情報を取得することができる。なお、「同一の撮像対象を同時に撮像する」とは、観察容器10の長手方向に沿って見たときの撮像部40A,40Bによる視野の位置が同じであり、観察容器10中のある地点に滞在する対象物2と同時に撮像することをいう。
 図3の(B)領域は、角筒状の観察容器10Bの場合の撮像部40の配置例を示している。角筒状の観察容器10Bの場合、観察容器10Bの壁面を通過して撮像部40に入射する光の光軸が容器の壁面に対して直交する位置に撮像部40が配置されている構成とすることができる。このような構成とすることで、容器の壁面での反射光や屈折光等を撮像部40が受光することを防ぐことができる。具体的には、角筒状の観察容器10Bに含まれる平板状の壁面に対向するように撮像部40を配置することができる。
 また、複数の撮像部を設ける場合、図3の(B)領域に示すように、角筒状の観察容器10Bを挟んで対向するように撮像部40C,40Dを配置することができる。このような配置とし、且つ、撮像部40C,40Dが、同一の撮像対象を同時に撮像する構成とした場合、観察容器10B内の対象物の全体像を撮像部40C,40Dで撮像することが可能となる。
 図4A,図4B、図4Cは、光源部30と撮像部40との配置例を示している。図1では、光源部30と撮像部40とが観察容器10を挟んで対向する場合について説明したが、光源部30と撮像部40との位置関係は適宜変更することができる。例えば、図4Aに示す例では、ハーフミラー60を設けて、光源部30から光はハーフミラー60により反射させて対象物2に対して照射させるとともに、対象物2からの光はハーフミラー60を透過させて撮像部40に入射させる構成としている。このように、光の進路を変更させる光学素子等を利用した構成としてもよい。
 また、図4Bに示す例では、1つの光源部30に対して3つの撮像部40(40E~40G)が設けられている。3つの撮像部40のうち、撮像部40Fは、観察容器10(対象物2)を挟んで光源部30に対して対向配置されている。撮像部40E,40Gは、各撮像部に入射する光の光軸が光源部30から対象物2へ向けた光の光軸に対して90°となる位置に配置されている。対象物2が光源部30からの光(励起光)に対して蛍光を発し、撮像部40E~40Gにより蛍光を観察する場合には、各撮像部40の前段には撮像部40に特定波長の光を制限するフィルタ70として、励起光を含む特定波長の光を遮断するフィルタが設けられていてもよい。なお、対象物2からの蛍光を観察しない場合であっても、フィルタ70として特定波長の光を遮断するフィルタを設けてもよい。
 また、図4Cに示す例では、1つの光源部30に対して2つの撮像部40(40H~40I)が設けられている。2つの撮像部40H,40Iは、それぞれ各撮像部に入射する光の光軸が光源部30から対象物2へ向けた光の光軸に対して60°となる位置に配置されている。そのため、撮像部40H,40Iは、対象物2からの反射光、または、対象物2が蛍光を発する場合には、蛍光を撮像することができる。また、各撮像部40の前段には、撮像部40に入射する光の波長を制限するフィルタ70が配置されている。
 図4Bおよび図4Cに示すように、このように光源部30と撮像部40との数は互いに異なっていてもよい。また、複数の撮像部40の前段に設けられるフィルタ70による透過波長は互いに異なっていてもよい。
(観察容器の支持に係る変形例)
 次に、観察容器10を支持する構成に係る変形例について説明する。観察容器10は、上述したように溝Fを有する支持台20に収容されて支持されるが、支持台20上での観察容器10の移動を規制する手段として、押さえ治具を用いることができる。
 図5では押さえ治具80の例を示している。押さえ治具80は、観察容器10に対して押し当てる押さえ面81aを有する押さえ部81と、押さえ治具80の使用者が押さえ部81を取り扱う際に保持する保持部82と、を有する。
 図5の(A)領域では、角筒状の観察容器10Bを支持台20の溝Fに収容し、押さえ治具80で上方から観察容器10Bで支持した状態を示している。また、図5の(B)領域では、円筒状の観察容器10Aを支持台20の溝Fに収容し、押さえ治具80で上方から観察容器10Bで支持した状態を示している。いずれの例でも、押さえ治具80により観察容器10を上方から支持することで、溝F上での観察容器10の移動を規制することができる。
 さらに、押さえ治具80は、その形状を変更することで、観察容器10の支持機能を高めることができる。例えば、図6に示す押さえ治具80Aは、保持部82に対して押さえ部81がバネ83を介して接続されている。図6の(A)領域に示すように、観察容器10を押さえていない状態では、押さえ治具80Aの押さえ部81は、保持部82との間はバネ83を介して接続されている。一方、図6の(B)領域に示すように、観察容器10を押さえている(支持している)状態では、押さえ治具80Aの押さえ部81は、保持部82およびバネ83を介して上方から押圧して支持される。このような構成とすることで、保持部82により押さえ部81を直接押圧して支持する場合と比較して、保持部82からの力を緩やかに押さえ部81に対して伝搬させることができるため、例えば観察容器10が回転しまうことなどによって、保持部82からの力が観察容器10を支持台20から移動させる方向に働くことを防ぐことができる。
 図7に示す押さえ治具80Bは、押さえ部81の押さえ面81aに対して溝Gが形成されている。この場合、図7の(A)領域に示す観察容器10を押さえていない状態から、図7の(B)領域に示す観察容器10を押さえている(支持している)状態へ移行する際に、押さえ面10aの溝G内に観察容器10が収容されるようにすることで、観察容器10の移動を好適に規制することができる。なお、このように観察容器10の移動を規制するためには、観察容器10の長手方向(すなわち、支持台20の溝Fの延在方向)と、押さえ治具80Bの押さえ面81aにおける溝Gの延在方向が同じとなるように、押さえ治具80Bを使用する。
 なお、観察容器10の支持台20と押さえ治具80との位置関係は特に限定されない。図8A、図8B及び図8Cは、支持台20と押さえ治具80との位置関係の例を示す図である。図8Aでは、観察容器10を挟んで支持台20と押さえ治具80とが対向配置している状態を示している。また、図8Bでは、2つの支持台20が観察容器10の長手方向の中央側を支持しているのに対して、2つの押さえ治具80が観察容器10の長手方向の端部側を支持している状態を示している。また、図8Cでは、2つの支持台20が観察容器10の長手方向の端部側を支持しているのに対して、1つの押さえ治具80が観察容器10の長手方向の中央付近を支持している状態を示している。このように、支持台20および押さえ治具80の数および位置関係は適宜変更することができる。
 なお、支持台20および押さえ治具80のいずれも、撮像部40の視野に入らない位置に設ける態様とすることができる。したがって、図8Cに示すように押さえ治具80が観察容器10の中央付近に配置される場合には、撮像部40は、例えば、観察容器10の長手方向に沿って支持台20と押さえ治具80との間に配置することができる。
(微小粒子計測装置の活用例)
 上記で説明した微小粒子計測装置の活用例について、図9を参照しながら説明する。図9に示す例では、図1と同じく微小粒子計測装置1に置かれた観察容器10に対して培養バッグを接続している。ただし、図1の例を比較して、一方(上流側)の端部に培養バッグ100Aが接続されている点は同じだが、他方(下流側)の端部に2つの培養バッグ100B,100Cが接続されていて、観察容器10の後段に培養バッグ100Bへの流路および培養バッグ100Cへ流路が接続された分岐部110が接続されている点が相違する。
 図9に示す例では、培養バッグ100Aから観察容器10へ向けて対象物2を含む液体試料を移動させながら、撮像部40により対象物2の撮像を行い、分析部50により当該対象物2に係る分析を行う。そして、その結果に基づいて、分岐部110に設けられた弁111を制御して、対象物2を培養バッグ100Bおよび培養バッグ100Cのいずれかへ移動させている。
 図9に示す例のように、微小粒子計測装置1で得られた分析結果を利用して、対象物2を選別する構成とすることもできる。例えば、ある規定の直径を超える対象物2は培養バッグ100Bへ移動させ、それ以外の対象物2は培養バッグ100Cへ移動させることができる。なお、分析結果を利用して対象物2をどのように選別するかは適宜変更することができる。また、特定の条件を満たす対象物2のみを回収し、それ以外の対象物2は破棄する構成としてもよい。また、微小粒子を選別するための分岐部110の構成は適宜変更できる。
(観察容器の変形例)
 次に観察容器10の変形例について説明する。
 図1および図2等では、観察容器10が筒状であって両端に培養バッグ100A,100B等を接続する場合について説明したが、観察容器は凹型の容器であり、内部に液体試料を収容する構造であってもよい。また、観察容器には複数の凹部が設けられて、対象物2を個別に収容する構造とすることもできる。
 例えば、観察容器に複数の凹部を設ける構造としては、観察容器10を長尺の柱状の部材から構成し、その中央付近に複数の凹部を設けることが考えられる。このような形状の場合、観察容器のうち凹部が形成されていない領域(例えば、観察容器の端部)を支持台20により支持することができる。図10Aは、変形例に係る観察容器10Cを支持台と共に示す斜視図である。観察容器10Cは、上記したように複数の凹部11が独立した構造とされている。また、観察容器10Cは、長尺の柱状の部材であって、中央付近に複数の凹部11が形成されている。観察容器10Cでは、凹部11が形成されていない領域(例えば、観察容器10Cの端部)を支持台20により支持することができる。
 また、観察容器10に複数の凹部が設けられている場合に、その凹部は2つの板状の部材による2つの底壁を組み合わせた構成とすることで、角部を有する底面を構成してもよい。図10Bは、観察容器10Cの断面の一例と撮像部の配置を示す概念図であり、凹部11が、2つの板状の部材による底壁12A,12Bにより構成されている例を示している。2つの底壁12A,12Bのなす角は特に限定されないが、90°又はその±30°以内程度とすることができる。このような構成とした場合、2つの底壁12A,12Bを利用して、2つの撮像部40により対象物2である微小粒子の形状を立体的に把握するための像を好適に得ることができる。特に、底壁12A,12Bが互いに直交するように配置されると、対象物2である微小粒子の形状を撮像部により好適に撮像することが可能となる。
 また、観察容器10Cのように複数の凹部11を独立して設ける構成とした場合、例えば、対象物2を1つずつ互いに異なる凹部11に収容する構成とすることができる。このような構成とすることで、複数の対象物2を取り違えて観察することを防ぐことができるとともに、各対象物2の移動も規制されるため、対象物2に係る分析を好適に行うことができる。
 なお、観察容器10Cは、複数の凹部11が複数設けられていることに代えて、観察容器10と同様に長手方向に延びる1つの凹部11が設けられている構成としてもよい。また、観察容器10の底壁の形状は適宜変更することができる。
 上記で説明した観察容器10Cのように、筒状ではなく凹部11が設けられている場合、容器内の対象物2を観察する際には、撮像部40または観察容器10を移動させる必要がある。したがって、図11Aに示すように、支持台20上の観察容器10Cまたは撮像部40を、観察容器10Cの延在方向(長手方向)に沿って移動させることで、撮像部40の視野に入る対象物(対象物2が収容された凹部)を変更させる態様とすることができる。具体的には、微小粒子計測装置1は、観察容器10Cを移動させる移動機構、または、撮像部40を移動させる移動機構が設けられている態様とすることができる。なお、観察容器10Cを移動させる移動機構としては、観察容器10C自体を移動させてもよいし、支持台20を移動可能とすることで支持台20と観察容器10Cとを同時に移動させてもよい。
 また、図11Bに示すように、観察容器10Dに設けられた凹部が1つである場合でも、凹部が長手方向に延び複数の対象物が1つの凹部に収容されている場合には、図11Aの構成と同様に、微小粒子計測装置1が、観察容器10Dを移動させる移動機構、または、撮像部40を移動させる移動機構を有する態様とすることができる。なお、観察容器10Dが筒状の部材によって構成されていた場合でも、移動機構を有する構成とすることができる。
(支持台の変形例)
 上記実施形態では、1つの観察容器10を2つの支持台20で支持する例について説明したが、観察容器10を支持する支持台20の数および形状は適宜変更することができる。例えば、1つの観察容器10を3つ以上の支持台20で支持する構成としてもよい。また、図12に示すように、1つの観察容器10(ここでは観察容器10Dを示している)を1つの支持台20で支持する構成としてもよい。図12で示す支持台20Aは、図1,図2等で示した支持台20と比較して支持台20Aの容器支持部22の厚さ(観察容器10Dの延在方向に沿った長さ)が大きくなっている。このため、この厚さ方向に沿って形成される溝Fの長さを長く確保することができ、容器支持部22の溝Fを利用して観察容器10Dを安定して支持することができる。したがって、支持台20の数を少なくしても観察容器10(10D)を好適に支持することができる。なお、図12に示すように支持台20が観察容器10Dの中央付近に設けられる場合、撮像部40を支持台20が視野に入らない位置(例えば、観察容器の端部側)に配置することができる。このような構成とすることで、対象物2の観察を好適に行うことができる。
(微小粒子計測装置の変形例)
 図13A、図13B及び図14において、微小粒子計測装置の変形例を示す。図13Aは微小粒子計測装置1Aの蓋部92を閉めた状態における斜視図、図13Bは微小粒子計測装置1Aの蓋部92を開けた状態における斜視図である。微小粒子計測装置1Aは、支持台20、光源部30および撮像部40を、運搬用の外装90内に設置したものである。外装90は、本体部91および蓋部92を含み、本体部91に対して外装90を運搬するための運搬手段としてハンドル93が取り付けられる。微小粒子計測装置1Aは、運搬時は外装90内に観察容器10、支持台20、光源部30および撮像部40が設置されている。図13Aに示すように、運搬時は蓋部92を閉鎖し、ハンドル93を利用して持ち運ぶことができる。また、使用時には、図13Bに示すように蓋部92を開放して、観察容器10を外装90内の支持台20にセットして、計測を行う。このように、支持台20、光源部30および撮像部40が外装90の内部に設置される構成とすることで、任意の場所に微小粒子計測装置1Aを運搬して使用することが可能となり、微小粒子計測装置1Aの汎用性が高められる。
 なお、図14に示すように、運搬手段として、ハンドル93に代えて、本体部91に対してキャスター94を設けることで、微小粒子計測装置1Aを運搬可能な構成としてもよい。キャスター94を設ける位置は適宜変更することができる。
 以上のように、本実施形態に係る微小粒子計測装置1によれば、観察容器10を支持台20の溝Fに収容することで、溝Fの延材方向が長手方向になるように観察容器10を支持することができる。この状態で、支持台20が視野に入らない位置で撮像部40が微小粒子を撮像する構成とすることで、観察容器10を適切に支持した状態での微小粒子の撮像ができるため、微小粒子の形状をより精度よく撮像することが可能となる。
 支持台20の溝FをV形状とすることで、観察容器10の底部の形状によらず、観察容器10を溝F内に収容して好適に支持することができる。
 また、観察容器10を押さえる押さえ治具80をさらに有することで、支持台20上の観察容器10の移動を規制することができ、微小粒子の撮像をより好適に行うことができる。
 また、支持台20、観察容器10、または、撮像部40を移動させる移動機構を有することで、撮像部40による視野を容易に変更することができ、観察容器10内の微小粒子の撮像をより簡便に行うことができる。
 また、光源部30を有することで、例えば、光源部30からの光に対して微小粒子から発せられる蛍光の撮像を行うことができるため、撮像部40での撮像によって微小粒子に係る情報をより広く得ることができる。なお、光源部30を設けていない場合であっても、例えば微小粒子の観察を行うことができるが、光源部30を設けることで、特定の波長の光を利用した観察を好適に行うことができる。
 また、微小粒子計測装置1Aのように、支持台20、光源部30、および撮像部40が内部に設置される外装90を有することで、微小粒子計測装置を容易に移動させることが可能となるため、汎用性が高まる。
 さらに、外装90を運搬するための運搬手段を有している場合、より簡便に微小粒子計測装置の運搬ができる。
 なお、本開示に係る微小粒子計測装置1は上記実施形態に限定されない。例えば、上記実施形態のように微小粒子計測装置1が、観察容器10、支持台20、光源部30、撮像部40及び分析部50を備えている構成に代えて、例えば、光源部を有しない構成にしてもよい。また、光源部または撮像部を3以上にしてもよい。また、観察容器10は、微小粒子計測装置に含まれなくてもよい。
 また、観察容器10の形状は適宜変更することができる。観察容器10は、少なくとも内部に対象物2が滞留可能であればよい。したがって、観察容器10A,10Bのように、外部と接続された開口により、対象物2を含む液体試料が収容される構成であってもよいし、観察容器10C,10Dのように、1または複数の凹部11が設けられる構成であってもよい。
 1,1A…微小粒子計測装置、10…観察容器、11…凹部、20…支持台、30…光源部、40…撮像部、50…分析部、80…押さえ治具、90…外装。

Claims (7)

  1.  所定の方向に延びる溝を有し、内部に微小粒子を含む液体試料が収容された長尺状の観察容器を当該溝に収容することで、前記溝の延材方向が前記観察容器の長手方向となるように前記観察容器を支持する支持台と、
     前記支持台に支持された前記観察容器内の微小粒子を、前記支持台が視野に入らない位置で撮像する撮像部と、
     を有する、微小粒子計測装置。
  2.  前記支持台の前記溝は、V形状である、請求項1に記載の微小粒子計測装置。
  3.  前記支持台に支持された前記観察容器を押さえる押さえ治具をさらに有する、請求項1または請求項2に記載の微小粒子計測装置。
  4.  前記支持台、前記観察容器、または、前記撮像部を移動させる移動機構をさらに有する、請求項1から請求項3のいずれか一項に記載の微小粒子計測装置。
  5.  前記観察容器に対して光を照射する光源部をさらに有する、請求項1から請求項4のいずれか一項に記載の微小粒子計測装置。
  6.  前記支持台および前記撮像部が内部に設置される外装をさらに有する、請求項1から請求項5のいずれか一項に記載の微小粒子計測装置。
  7.  前記外装を運搬するための運搬手段をさらに有する、請求項6に記載の微小粒子計測装置。
PCT/JP2019/010936 2018-03-20 2019-03-15 微小粒子計測装置 WO2019181803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020507763A JP7272348B2 (ja) 2018-03-20 2019-03-15 微小粒子計測装置
CN201980020011.7A CN111868504A (zh) 2018-03-20 2019-03-15 微小粒子测量装置
EP19772371.1A EP3770580A4 (en) 2018-03-20 2019-03-15 FINE PARTICLE MEASUREMENT DEVICE
US17/023,566 US11768146B2 (en) 2018-03-20 2020-09-17 Fine particle measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018052953 2018-03-20
JP2018-052953 2018-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/023,566 Continuation US11768146B2 (en) 2018-03-20 2020-09-17 Fine particle measurement device

Publications (1)

Publication Number Publication Date
WO2019181803A1 true WO2019181803A1 (ja) 2019-09-26

Family

ID=67987316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010936 WO2019181803A1 (ja) 2018-03-20 2019-03-15 微小粒子計測装置

Country Status (5)

Country Link
US (1) US11768146B2 (ja)
EP (1) EP3770580A4 (ja)
JP (1) JP7272348B2 (ja)
CN (1) CN111868504A (ja)
WO (1) WO2019181803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629589B1 (ko) * 2023-10-23 2024-01-29 (주)엘로이랩 유동형 대상물에 대한 기계학습이 적용된 자동화된 품질 검사 및 이물 추출 시스템 및 기계학습을 이용한 자동화된 품질 검사 및 이물 추출 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023101477A1 (de) 2023-01-20 2024-07-25 Testo bioAnalytics GmbH Verfahren und Aufnahmeraum zur optischen Aufzeichnung von Mikropartikeln und Verwendung einer Bewegungskomponente zur Entfernung eines Abdeckelements vor einer Aufzeichnung
CN116183465B (zh) * 2023-04-23 2023-10-27 太原理工大学 矿井透水相似模拟实验装置及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735679A (ja) * 1993-07-23 1995-02-07 Rion Co Ltd 微粒子計
JPH1073528A (ja) * 1996-08-30 1998-03-17 Toa Medical Electronics Co Ltd 撮像機能付きフローサイトメータ
US6184990B1 (en) * 1999-12-22 2001-02-06 Beckman Coulter, Inc. Miniature multiple wavelength excitation and emission optical system and method for laser-induced fluorescence detectors in capillary electrophoresis
JP2001221736A (ja) * 2000-02-10 2001-08-17 Hamamatsu Photonics Kk 発光、吸光又は蛍光測定装置
JP2004532405A (ja) 2001-03-28 2004-10-21 ヴィジョンゲイト,インコーポレーテッド 光学的断層撮影法を使用して流動流中の微小対象物を画像化するための装置と方法
JP2009183469A (ja) * 2008-02-06 2009-08-20 Nippon Pulse Motor Co Ltd シリンダユニット
JP2009537826A (ja) * 2006-05-17 2009-10-29 ルミネックス・コーポレーション 蛍光標識された粒子を分析するチップ・ベースのフロー・サイトメータ型システム
JP2013255437A (ja) * 2012-06-11 2013-12-26 Yokogawa Electric Corp 細胞観察装置
JP2014517263A (ja) 2011-04-15 2014-07-17 コンスティテューション・メディカル・インコーポレイテッド 細胞の体積および成分の計測
JP2017044939A (ja) * 2015-08-28 2017-03-02 株式会社Screenホールディングス 光規制器具および撮像方法
JP2018052953A (ja) 2011-11-28 2018-04-05 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. インフルエンザウイルスワクチンおよびその使用
WO2018221430A1 (ja) * 2017-05-29 2018-12-06 住友電気工業株式会社 観察容器及び微小粒子計測装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074662A (en) * 1990-02-27 1991-12-24 Hoechst Celanese Corporation Sample holder for spectroscopic studies of optical film
JP3136574B2 (ja) * 1992-02-29 2001-02-19 株式会社島津製作所 微量液体試料の分光特性測定装置
US5998224A (en) * 1997-05-16 1999-12-07 Abbott Laboratories Magnetically assisted binding assays utilizing a magnetically responsive reagent
US6369893B1 (en) * 1998-05-19 2002-04-09 Cepheid Multi-channel optical detection system
JPH11295208A (ja) * 1998-04-13 1999-10-29 Sysmex Corp 粒子撮像装置
US6603535B1 (en) * 2002-08-30 2003-08-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stereo imaging velocimetry system and method
JP4234579B2 (ja) * 2003-12-19 2009-03-04 富士通株式会社 微小粒子の観察方法及び装置
US8211386B2 (en) * 2004-06-08 2012-07-03 Biokit, S.A. Tapered cuvette and method of collecting magnetic particles
CA2543521C (en) * 2005-04-13 2014-05-27 Frederick David King Particle imaging system with a varying flow rate
DE102007048409A1 (de) * 2007-10-09 2009-04-16 Carl Zeiss Microimaging Gmbh Verfahren zum Positionieren von biologischen Proben in einer mikroskopischen Anordnung
EP2450690A1 (en) * 2010-11-04 2012-05-09 Qiagen GmbH Vessel for Accurate Optical Measurements
DE102012108158B4 (de) * 2012-09-03 2016-03-17 Johann Wolfgang Goethe-Universität Kapillarzelle, Anordnung und Verfahren zur Aufnahme, zur Positionierung und zur Untersuchung einer mikroskopischen Probe
CN203487155U (zh) * 2013-06-21 2014-03-19 汉斯·葛根森 细胞分离和收集器
DE202013012338U1 (de) * 2013-07-10 2016-04-29 Carl Zeiss Microscopy Gmbh Anordnung zur Lichtblattmikroskopie
DE102013110093B3 (de) * 2013-09-13 2015-01-22 Johann Wolfgang Goethe-Universität Küvette für eine inverse Fluoreszenz-Untersuchung
WO2015133337A1 (ja) * 2014-03-07 2015-09-11 古河電気工業株式会社 スクリーニング装置およびスクリーニング方法
WO2016031486A1 (ja) * 2014-08-28 2016-03-03 シスメックス株式会社 粒子撮像装置および粒子撮像方法
JP2017215216A (ja) * 2016-05-31 2017-12-07 シスメックス株式会社 分析方法および分析装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735679A (ja) * 1993-07-23 1995-02-07 Rion Co Ltd 微粒子計
JPH1073528A (ja) * 1996-08-30 1998-03-17 Toa Medical Electronics Co Ltd 撮像機能付きフローサイトメータ
US6184990B1 (en) * 1999-12-22 2001-02-06 Beckman Coulter, Inc. Miniature multiple wavelength excitation and emission optical system and method for laser-induced fluorescence detectors in capillary electrophoresis
JP2001221736A (ja) * 2000-02-10 2001-08-17 Hamamatsu Photonics Kk 発光、吸光又は蛍光測定装置
JP2004532405A (ja) 2001-03-28 2004-10-21 ヴィジョンゲイト,インコーポレーテッド 光学的断層撮影法を使用して流動流中の微小対象物を画像化するための装置と方法
JP2009537826A (ja) * 2006-05-17 2009-10-29 ルミネックス・コーポレーション 蛍光標識された粒子を分析するチップ・ベースのフロー・サイトメータ型システム
JP2009183469A (ja) * 2008-02-06 2009-08-20 Nippon Pulse Motor Co Ltd シリンダユニット
JP2014517263A (ja) 2011-04-15 2014-07-17 コンスティテューション・メディカル・インコーポレイテッド 細胞の体積および成分の計測
JP2018052953A (ja) 2011-11-28 2018-04-05 ヤンセン ファッシンズ アンド プリベンション ベーフェーJanssen Vaccines & Prevention B.V. インフルエンザウイルスワクチンおよびその使用
JP2013255437A (ja) * 2012-06-11 2013-12-26 Yokogawa Electric Corp 細胞観察装置
JP2017044939A (ja) * 2015-08-28 2017-03-02 株式会社Screenホールディングス 光規制器具および撮像方法
WO2018221430A1 (ja) * 2017-05-29 2018-12-06 住友電気工業株式会社 観察容器及び微小粒子計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629589B1 (ko) * 2023-10-23 2024-01-29 (주)엘로이랩 유동형 대상물에 대한 기계학습이 적용된 자동화된 품질 검사 및 이물 추출 시스템 및 기계학습을 이용한 자동화된 품질 검사 및 이물 추출 방법

Also Published As

Publication number Publication date
US20210003494A1 (en) 2021-01-07
CN111868504A (zh) 2020-10-30
US11768146B2 (en) 2023-09-26
EP3770580A1 (en) 2021-01-27
EP3770580A4 (en) 2021-05-19
JPWO2019181803A1 (ja) 2021-04-08
JP7272348B2 (ja) 2023-05-12

Similar Documents

Publication Publication Date Title
CN107003230B (zh) 用于光学检查小体积的液体样品的设备和其比色杯
US11768146B2 (en) Fine particle measurement device
JP5381741B2 (ja) 光学的測定装置及び光学的測定方法
US20110204256A1 (en) High-speed cellular cross sectional imaging
JP2011511292A (ja) 近臨界反射分光測定のための方法、デバイス、及びキット
JP2016522880A5 (ja)
US10156520B2 (en) Array based sample characterization
US20180348127A1 (en) Method And System For Optical Measurements Of Contained Liquids Having A Free Surface
JP2017203637A (ja) 腫瘍細胞検出方法及び腫瘍細胞検出装置
US9417176B2 (en) Method and apparatus for detecting and registering properties of samples
WO2017212936A1 (ja) 微小粒子計測装置及び微小粒子の分析方法
US8368747B2 (en) Device for optical characterization
US11333596B2 (en) Observation container and microparticle measurement device
CN209215221U (zh) 荧光测定容器及荧光测定装置
ITRM20070371A1 (it) Citometro laser in flusso per la misura simultanea di taglia indice di rifrazione asfericita' e fluorescenza di particelle microscopiche in sospenzioni liquide o gassose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019772371

Country of ref document: EP

Effective date: 20201020