WO2019176956A1 - チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置 - Google Patents

チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置 Download PDF

Info

Publication number
WO2019176956A1
WO2019176956A1 PCT/JP2019/010073 JP2019010073W WO2019176956A1 WO 2019176956 A1 WO2019176956 A1 WO 2019176956A1 JP 2019010073 W JP2019010073 W JP 2019010073W WO 2019176956 A1 WO2019176956 A1 WO 2019176956A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
titanium oxide
electrode
film
water electrolysis
Prior art date
Application number
PCT/JP2019/010073
Other languages
English (en)
French (fr)
Inventor
陽祐 佐野
信一 大森
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019042773A external-priority patent/JP7092076B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP19766633.2A priority Critical patent/EP3767009A4/en
Priority to CN201980017686.6A priority patent/CN111918983B/zh
Priority to US16/979,002 priority patent/US20200407858A1/en
Publication of WO2019176956A1 publication Critical patent/WO2019176956A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • C25B11/0775Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the rutile type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a titanium base material excellent in conductivity and corrosion resistance, a method for producing the titanium base material, an electrode for water electrolysis comprising the titanium base material, and a water electrolysis apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2018-044659 filed in Japan on March 12, 2018, and Japanese Patent Application No. 2019-042773 filed in Japan on March 8, 2019, The contents are incorporated here.
  • a titanium base material made of titanium or a titanium alloy is used in applications requiring oxidation resistance (corrosion resistance), among current-carrying members such as electrodes, as shown in Patent Document 1, for example.
  • corrosion resistance corrosion resistance
  • severe corrosion such as high potential, presence of oxygen, strong acid atmosphere such as cathode electrode of polymer electrolyte fuel cell (PEFC), anode electrode of water electrolysis device, electrode material for lithium ion battery and lithium ion capacitor, etc.
  • PEFC polymer electrolyte fuel cell
  • anode electrode of water electrolysis device electrode material for lithium ion battery and lithium ion capacitor, etc.
  • the corrosion resistance is sufficient, and an insulating TiO 2 film is formed on the surface of the titanium base material during use, and the performance as a current-carrying member such as an electrode deteriorates. There was a problem.
  • Patent Document 2 proposes a method in which a noble metal film such as gold and platinum is formed on the surface of a base material made of aluminum, nickel or titanium, and the corrosion resistance is improved while ensuring conductivity.
  • Patent Document 3 proposes a titanium material in which an oxide film that does not show the X diffraction peak of TiO 2 is formed on the surface of titanium or a titanium alloy.
  • Patent Document 4 has a titanium oxide layer having an oxygen / titanium atomic concentration ratio (O / Ti) of 0.3 or more and 1.7 or less on the surface of a titanium material made of pure titanium or a titanium alloy.
  • an alloy layer containing at least one kind of noble metal selected from Au, Pt, and Pd is formed on the titanium oxide layer.
  • Patent Document 2 and Patent Document 4 when a noble metal film is formed, the cost is greatly increased and cannot be widely used. Further, the oxide film described in Patent Document 3 cannot be applied as a member used in a harsh environment because of insufficient conductivity and corrosion resistance.
  • Non-Patent Document 1 As a material excellent in electrical conductivity and corrosion resistance, there is a magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10).
  • This magnetic phase titanium oxide has the same corrosion resistance as TiO 2 and the same conductivity as graphite.
  • As conventional magnetic phase titanium oxide as shown in Non-Patent Document 1, for example, it is manufactured by a thermal reduction method in which TiO 2 is reduced at a high temperature, and a powder form is provided.
  • oxygen diffuses to the substrate side, the substrate itself is oxidized, and the properties such as conductivity deteriorate. Resulting in. For this reason, the titanium base material etc. which have the film of a magneto phase titanium oxide were not provided.
  • the present invention has been made in the background as described above, and is particularly excellent in conductivity and corrosion resistance, and can be used even in severe corrosive environments, a titanium substrate manufacturing method, and It aims at providing the electrode for water electrolysis and water electrolysis apparatus which consist of this titanium base material.
  • the titanium substrate of the present invention has a substrate body made of titanium or a titanium alloy, and a chemical formula Ti n O is formed on the surface of the substrate body.
  • a magnetic phase titanium oxide film made of magnetic phase titanium oxide represented by 2n-1 (4 ⁇ n ⁇ 10) is formed.
  • the surface of the base material body made of titanium or a titanium alloy has a magnetic phase oxidation made of the magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10). Since the titanium film is formed, it is particularly excellent in conductivity and corrosion resistance. Therefore, it can be used as a current-carrying member such as an electrode even under severe corrosive environments such as high potential, presence of oxygen, and strongly acidic atmosphere.
  • the magnetic phase titanium oxide film preferably contains at least one or both of Ti 4 O 7 and Ti 5 O 9 .
  • the magnetic phase titanium oxide film contains at least one or both of Ti 4 O 7 and Ti 5 O 9 which are particularly excellent in conductivity and corrosion resistance, a high potential, presence of oxygen, strong acid atmosphere It is particularly suitable as a current-carrying member used under severe corrosive environments such as
  • the film thickness of the said magnesium phase titanium oxide film shall be in the range of 0.1 micrometer or more and 30 micrometers or less.
  • the film thickness of the magnetic phase titanium oxide film is 0.1 ⁇ m or more, sufficient corrosion resistance can be ensured.
  • the film thickness of the magnetic phase titanium oxide film is 30 ⁇ m or less, sufficient conductivity as a titanium base material can be ensured.
  • the strength as an electrode is inadequate in the oxide electrode which does not use Ti base material but the whole electrode consists of a magneto phase titanium oxide.
  • the base material body is preferably a porous body having a porosity in the range of 30% to 97%.
  • the substrate body made of titanium or titanium alloy is a porous body, and its porosity is 30% or more, so the specific surface area is increased and the reaction on the surface of the titanium substrate is promoted. can do.
  • generated by reaction can be discharged
  • the porosity of the base body is 97% or less, the strength of the base body can be ensured.
  • membrane it is desirable for the said magnetophase oxidation Ti film
  • the specific surface area of the electrode is further improved, and it is possible to provide a wide reaction field for the electrode.
  • Method for producing a titanium substrate of the present invention is a method for producing a titanium substrate described above, the TiO 2 film formation step of forming a TiO 2 film on the surface of a substrate main body made of titanium or a titanium alloy, wherein A TiO 2 film formed on the surface of the substrate body is reduced by a microwave plasma reduction method, and a magnetic phase titanium oxide composed of a magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10).
  • a reduction treatment step for forming a film wherein the reduction treatment step is performed under conditions of a substrate temperature of 400 ° C. or less and a treatment time of 15 minutes or less.
  • the electrode for water electrolysis of the present invention is characterized by comprising the above-mentioned titanium substrate.
  • the electrode is composed of a titanium base material on which a magnetic phase titanium oxide film made of a magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10) is formed. Therefore, it is particularly excellent in conductivity and corrosion resistance, can suppress deterioration due to oxidation, and can greatly improve the service life. Moreover, since it is excellent in corrosion resistance, it can be used as a substitute for a noble metal electrode, and the electrode for water electrolysis can be constructed at low cost.
  • the electrolysis efficiency after 1200 cycles is 90% or more with respect to the initial value in a voltammetry test in which 1 cycle is held at 2.5 V for 1 minute and 1 minute at 0 V. It is preferable that In this case, in the voltammetry test simulating the start and stop of the water electrolysis apparatus, the electrolysis efficiency after 1200 cycles is maintained at 90% or more with respect to the initial value, so that deterioration of the water electrolysis electrode during use is ensured. It is restrained and it becomes possible to improve the service life reliably.
  • the water electrolysis apparatus of the present invention is characterized by including the above-described electrode for water electrolysis.
  • the electrode for water electrolysis having this structure, the electrode is composed of a titanium base material on which a magnetic phase titanium oxide film made of a magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10) is formed.
  • the electrode for water electrolysis is provided, deterioration due to oxidation of the electrode for water electrolysis during use can be suppressed, and it can be used stably for a long period of time.
  • it is not necessary to use a noble metal electrode and the manufacturing cost of the water electrolysis apparatus can be greatly reduced.
  • a titanium substrate that is particularly excellent in conductivity and corrosion resistance and can be used even in a severe corrosive environment, a method for producing the titanium substrate, and an electrode for water electrolysis comprising the titanium substrate, water electrolysis An apparatus can be provided.
  • FIG. 4A shows a substrate body preparation step S01
  • FIG. 4B shows a TiO 2 film forming step S02
  • FIG. 4C shows a reduction treatment step S03.
  • FIG. 4A shows a substrate body preparation step S01
  • FIG. 4B shows a TiO 2 film forming step S02
  • FIG. 4C shows a reduction treatment step S03.
  • FIG. 4A shows a substrate body preparation step S01
  • FIG. 4B shows a TiO 2 film forming step S02
  • FIG. 4C shows a reduction treatment step S03.
  • FIG. 4C shows a reduction treatment step S03.
  • the titanium substrate 10 is used as a current-carrying member such as a cathode electrode of a polymer electrolyte fuel cell (PEFC), an anode electrode of a water electrolysis device, an electrode material for a lithium ion battery or a lithium ion capacitor, for example. Is.
  • PEFC polymer electrolyte fuel cell
  • anode electrode of a water electrolysis device an electrode material for a lithium ion battery or a lithium ion capacitor, for example.
  • the titanium substrate 10 includes a substrate body 11 made of titanium or a titanium alloy, and a magnetic phase titanium oxide film 16 formed on the surface of the substrate body 11. And.
  • the base body 11 is a porous body, and has a skeleton part 12 having a three-dimensional network structure and a pore part 13 surrounded by the skeleton part 12. And.
  • the substrate body 11 has a porosity P in the range of 30% to 97%.
  • the base body 11 made of this porous body is composed of, for example, a titanium sintered body obtained by sintering a titanium sintering raw material containing titanium.
  • the pores 13 surrounded by the skeleton 12 communicate with each other and have a structure opened toward the outside of the base body 11.
  • a magnetic phase titanium oxide film 16 is formed on the surface of the base body 11.
  • the magnetic phase titanium oxide film 16 is composed of magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10).
  • the magnetic phase titanium oxide film 16 contains at least one or both of Ti 4 O 7 and Ti 5 O 9 .
  • the structure of the titanium oxide in the magnetic phase titanium oxide film 16 can be identified by an X-ray diffraction analysis (XRD) method.
  • XRD X-ray diffraction analysis
  • the XRD peaks of Ti 4 O 7 and Ti 5 O 9 in X-ray diffraction (XRD) are included, and the sum of the maximum peak intensities of the two is the other magnetic phase oxidation It is larger than the maximum peak intensity of Ti (6 ⁇ n ⁇ 10).
  • the film thickness t of the magnetic phase titanium oxide film 16 is appropriately set according to the required characteristics of the titanium base material 10.
  • the lower limit of the film thickness t of the magnetic phase titanium oxide film 16 is set to 0.1 ⁇ m or more.
  • the upper limit of the film thickness t of the magnetic phase titanium oxide film 16 is 30 ⁇ m or less.
  • the lower limit of the film thickness t of the magnetic phase titanium oxide film 16 is preferably 0.2 ⁇ m or more, and more preferably 0.3 ⁇ m or more.
  • the upper limit of the film thickness t of the magnetic phase titanium oxide film 16 is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the Magneli phase titanium oxide film 16 has a porous structure of nanometer or micrometer order in the film.
  • a porous titanium sintered body is prepared as the base body 11.
  • the base body 11 made of this porous titanium sintered body can be manufactured, for example, by the following steps.
  • a sintering raw material containing titanium is mixed with an organic binder, a foaming agent, a plasticizer, water and, if necessary, a surfactant to prepare a foamable slurry.
  • This foamable slurry is applied using a doctor blade (applicator) to form a sheet-like molded body.
  • This sheet-like molded body is heated and foamed to obtain a foamed molded body.
  • the base-material main body 11 which consists of a porous titanium sintered compact is produced.
  • TiO 2 film forming step S02 a TiO 2 film 26 is formed on the surface of the base body 11.
  • oxygen in order to suppress the diffusion of the substrate main body 11 side carried out at a temperature of 100 ° C. or less.
  • the lower limit value of the temperature condition is not limited, but the following plasma electrolytic oxidation treatment can be efficiently performed in the range up to 0 ° C.
  • the TiO 2 film 26 is formed by a plasma electrolytic oxidation method in which a higher voltage than normal anodic oxidation is applied to generate an arc discharge on the surface of the substrate to advance the oxidation.
  • plasma electrolytic oxidation treatment was performed in an aqueous solution bath of K 3 PO 4 , Na 3 PO 4 , K 4 P 2 O 7 , Na 2 P 2 O 7 or the like.
  • the film thickness t0 of the TiO 2 coating 26 is preferably in the range of 0.1 ⁇ m to 30 ⁇ m.
  • the TiO 2 film 26 is subjected to a reduction process using a plasma generated by irradiating a gas with a microwave (microwave plasma reduction process), as shown in FIG.
  • the two- film 26 is referred to as a magnetic-phase titanium oxide film 16 made of magnetic-phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10).
  • the substrate temperature is 400 ° C. or less and the treatment time is 15 minutes or less in order to prevent oxygen from diffusing to the base body 11 side.
  • the lower limit value of the substrate temperature can be 0 ° C., and the lower limit value of the treatment time can be 0.01 minutes.
  • the film thickness t 0 of the TiO 2 film 26 becomes the film thickness t of the magnetic phase titanium oxide film 16. Therefore, the film thickness t of the magnetic phase titanium oxide film 16 can be controlled by adjusting the film thickness t0 of the TiO 2 film 26 in the TiO 2 film forming step S02.
  • the surface of the base body 11 made of titanium or a titanium alloy is coated with the magnetic phase titanium oxide film 16 made of magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10).
  • the titanium base material 10 in which is formed is manufactured.
  • Electrode for water electrolysis and water electrolysis apparatus A schematic diagram of an electrode for water electrolysis and a water electrolysis apparatus according to this embodiment is shown in FIG. Note that the water electrolysis apparatus of the present embodiment is a solid polymer water splitting apparatus with high electrolysis efficiency and high hydrogen purity during production.
  • the water electrolysis apparatus 30 of the present embodiment includes an anode electrode 32 and a cathode electrode 33 that are arranged to face each other, and an ion permeable membrane 34 that is arranged between the anode electrode 32 and the cathode electrode 33.
  • the water electrolysis cell 31 is provided.
  • catalyst layers 35 and 36 are formed on both surfaces of the ion permeable membrane 34 (the contact surface with the anode electrode 32 and the contact surface with the cathode electrode 33), respectively.
  • the cathode electrode 33, the ion permeable membrane 34, and the catalyst layers 35 and 36 those used in a conventional general polymer electrolyte water electrolyzer can be applied.
  • the anode 32 described above is the electrode for water electrolysis according to this embodiment.
  • the anode electrode 32 (water electrolysis electrode) is composed of the titanium substrate 10 according to the present embodiment described above, and is formed on the surface of the substrate body 11 made of titanium or a titanium alloy and the surface of the substrate body 11.
  • the magnetic phase titanium oxide film 16 is provided.
  • the base body 11 is a porous body, and has a structure including a skeleton part 12 having a three-dimensional network structure and a pore part 13 surrounded by the skeleton part 12.
  • the electrolysis efficiency after 1200 cycles is initial in a voltammetry test in which 1 cycle is held at 2.5V for 1 minute and 1 minute at 0V. It is preferable that it is 90% or more with respect to a value.
  • water (H 2 O) is supplied from the anode electrode 32 side, and the anode electrode 32 and the cathode electrode 33 are energized. . Then, oxygen (O 2 ) generated by electrolysis of water is discharged from the anode electrode 32, and hydrogen (H 2 ) is discharged from the cathode electrode 33.
  • oxygen (O 2 ) generated by electrolysis of water is discharged from the anode electrode 32
  • hydrogen (H 2 ) is discharged from the cathode electrode 33.
  • the anode electrode 32 as described above, water (liquid) and oxygen (gas) are circulated. Therefore, in order to circulate these liquid and gas stably, the anode electrode 32 has a high porosity. Is preferred. Moreover, since the anode electrode 32 is exposed to oxygen, excellent corrosion resistance is required. For this reason, the electrode for water electrolysis which consists of the titanium base material 10 which is this embodiment is especially suitable as the anode electrode 32.
  • the surface of the substrate main body 11 made of titanium or a titanium alloy is represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10). Since the magnetic phase titanium oxide film 16 composed of the expressed magnetic phase titanium oxide is formed, it is particularly excellent in conductivity and corrosion resistance. Therefore, it can be used as a current-carrying member such as an electrode even under severe corrosive environments such as high potential, presence of oxygen, and strongly acidic atmosphere.
  • the magnetic phase titanium oxide film 16 contains at least one or both of Ti 4 O 7 and Ti 5 O 9 that are particularly excellent in conductivity and corrosion resistance as the magnetic phase titanium oxide. It is particularly suitable as a current-carrying member used in severe corrosive environments such as high potential, presence of oxygen, and strongly acidic atmosphere. Furthermore, in this embodiment, since the film thickness t of the magnetic phase titanium oxide film 16 is in the range of 0.1 ⁇ m or more and 30 ⁇ m or less, it is possible to improve the corrosion resistance and conductivity in a balanced manner.
  • the base body 11 made of titanium or a titanium alloy is a porous body, and the porosity P is 30% or more.
  • the reaction at the surface of 10 can be promoted.
  • generated by reaction can be discharged
  • the porosity P of the base body 11 that is a porous body is 97% or less, the strength of the base body 11 can be ensured.
  • the magnetic phase titanium oxide film 16 has a porous structure on the order of nanometers or micrometers, and the surface area of the electrode substrate can be further improved.
  • a substrate body preparation step S01 for preparing a substrate body 11 made of titanium or a titanium alloy, and a TiO 2 film 26 is formed on the surface of the substrate body 11.
  • TiO 2 film forming step S02 to be formed, and this TiO 2 film 26 is reduced by a microwave plasma reduction method, and consists of a magnetic phase titanium oxide represented by the chemical formula Ti n O 2n-1 (4 ⁇ n ⁇ 10).
  • a reduction treatment step S03 for forming the magnetic phase titanium oxide film 16 it is possible to produce a titanium substrate 10 that is particularly excellent in corrosion resistance and conductivity.
  • a TiO 2 film forming step S02 is carried out at 100 ° C. or less, the reduction treatment step S03, a substrate temperature of 400 ° C. or less, since the implemented in the following conditions: treatment time 15 minutes, the oxygen substrate body 11 side The diffusion can be suppressed, and the deterioration of the characteristics of the base body 11 can be suppressed. Furthermore, the film thickness t of the magnetic phase titanium oxide film 16 can be accurately controlled by adjusting the film thickness t0 of the TiO 2 film 26 to be formed in the TiO 2 film forming step S02.
  • the water electrolysis electrode (anode electrode 32) according to the present embodiment is composed of the above-described titanium base material 10, and thus is particularly excellent in conductivity and corrosion resistance, can suppress deterioration due to oxidation, and can be used. The service life can be greatly improved. Moreover, since it is excellent in corrosion resistance, it can be used as a substitute for a noble metal electrode, and the electrode for water electrolysis (anode electrode 32) can be constructed at low cost.
  • the electrolysis efficiency after 1200 cycles in the voltammetry test with 1 cycle held at 2.5V and 1 minute held at 0V is the initial value. If it is 90% or more, deterioration of the electrode for water electrolysis during use is reliably suppressed, and the service life can be reliably improved.
  • the electrode for water electrolysis composed of the above-described titanium base material 10 is used for the anode electrode 32, it is also used for water electrolysis even in a use environment exposed to oxygen gas. Deterioration due to oxidation of the electrode (anode electrode 32) can be suppressed, and the electrode can be used stably for a long time. Moreover, since it is excellent in corrosion resistance, it is not necessary to use a noble metal electrode, and the manufacturing cost of the water electrolysis apparatus 30 can be significantly reduced. Furthermore, since the titanium base material 10 is comprised with the porous body of the structure mentioned above, it becomes possible to distribute
  • the base body 11 has been described as a porous body in the present embodiment, the base body 11 is not limited to this and may be a base body 11 having a shape such as a plate, a wire, a rod, or a tube.
  • the base-material main body 11 demonstrated as what was comprised with the titanium sintered compact, it is not limited to this, A mesh board etc. may be used.
  • the magnetophase titanium oxide film has been described as containing at least one or both of Ti 4 O 7 and Ti 5 O 9.
  • the film thickness of the magnetic phase titanium oxide film has been described as being in the range of 0.1 ⁇ m or more and 30 ⁇ m or less, but the present invention is not limited to this, and the film of the magnetic phase titanium oxide film The thickness is preferably set as appropriate according to the required characteristics of the titanium substrate. Further, in the present embodiment, it has been described that the magnetic phase titanium oxide film has a porous structure, but the present invention is not limited to this.
  • the water electrolysis apparatus (water electrolysis cell) having the structure shown in FIG. 5 has been described as an example.
  • the present invention is not limited to this, and the water made of the titanium substrate according to this embodiment is used.
  • the water electrolysis apparatus (water electrolysis cell) of another structure may be sufficient.
  • Example 1 Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
  • the base body shown in Table 1 is prepared.
  • “titanium” is pure titanium having a purity of 99.9 mass% or more
  • “titanium alloy” is a titanium alloy of Ti—0.15 mass% Pd.
  • the dimensions of each prepared base material were 50 mm wide ⁇ 60 mm long ⁇ 0.3 mm thick.
  • a TiO 2 film is formed on the surface of the base body.
  • Plasma electrolytic oxidation treatment was performed in an aqueous solution of K 3 PO 4 .
  • a high-density carbon plate was used as the cathode, and the temperature was 100 ° C. or lower, the voltage was 450 V, and the time was 0 to 300 minutes.
  • the film thickness of the TiO 2 film was adjusted to the value shown in Table 1 by adjusting the time of the plasma electrolytic oxidation treatment.
  • the substrate main body on which the TiO 2 film was formed was placed in a microwave plasma reduction apparatus, and the inside of the apparatus was once depressurized to a vacuum (3.8 ⁇ 10 ⁇ 2 torr (5 Pa) or less). Thereafter, hydrogen gas was introduced into the apparatus, the pressure was set to 30 Pa, and 2.45 GHz microwaves were irradiated. The reduction time was 0.1 to 15 minutes. In Comparative Examples 1, 3, and 7, no reduction treatment was performed. In Comparative Examples 4 and 5, reduction treatment was performed by a thermal reduction method.
  • a titanium substrate in which a titanium oxide film (magnesium phase titanium oxide film in the present invention example) was formed on the surface of a substrate main body made of titanium or a titanium alloy was obtained.
  • a titanium oxide film magnesium phase titanium oxide film in the present invention example
  • the identification of the titanium oxide film, the thickness of the titanium oxide film, the conductivity, and the corrosion resistance were evaluated as follows.
  • Titanium oxide of the titanium oxide film was identified by X-ray diffraction analysis (XRD).
  • the acceleration voltage was 30 keV, and an 8 keV Cu Ka line was used for the measurement.
  • the presence or absence of Ti 4 O 7 and Ti 5 O 9 is any of the vicinity of 21 °, 26 °, and 30 ° (Ti 4 O 7 ), 22 °, 26 °, and 29 ° (Ti 5 O 9 ), respectively. It was confirmed by the presence or absence of a peak at.
  • the evaluation results are shown in Table 2.
  • FIG. 6 the XRD analysis result of this invention example 2 and the comparative example 1 is shown.
  • FIG. 7 shows a cross-sectional observation result (SEM image) of the titanium substrate of Example 1 of the present invention in which the substrate body is a plate material. Moreover, the cross-sectional observation result (SEM image) of the titanium base material of the example 11 of this invention which used the base-material main body as the porous body is shown in FIG.
  • Cyclic voltammetry measurement was performed in a 4 cm radius cell filled with 1 M sulfuric acid, using the prepared titanium substrate as a working electrode and a coiled Pt line as a counter electrode. The sweep was repeated between 0-2 V with respect to the Ag / AgCl electrode used as the reference electrode. Cyclic voltammetry was measured for 1000 cycles, and no change in the CV waveform was evaluated as “A (pass)”, and no change was observed as “B (impossible)”. The evaluation results are shown in Table 2.
  • Comparative Example 1 and Comparative Example 7 in which the microwave plasma reduction was not performed on the substrate main body after the plasma electrolytic oxidation, the magnetic phase titanium oxide film was not formed, and the conductivity was insufficient. For this reason, the corrosion resistance was not evaluated.
  • Comparative Example 2 in which the treatment time for plasma electrolytic oxidation was shortened to 1 second to reduce the thickness of the TiO 2 film, and then microwave plasma reduction was performed, no magnetic phase titanium oxide film was formed, and The thickness of the titanium oxide film was as thin as 0.01 ⁇ m, and the corrosion resistance was insufficient.
  • plasma electrolytic oxidation it is presumed that a TiO 2 film having a thickness of 0.1 ⁇ m or less could not be stably formed, and that a magnetic phase titanium oxide film was not sufficiently formed even by the subsequent microwave plasma reduction.
  • Comparative Example 3 which attempted to form a TiO 2 film by atmospheric oxidation, it was necessary to set the treatment temperature to a temperature exceeding 400 ° C. For this reason, oxygen diffused into the base body, and deterioration of the base body was observed. Therefore, the conductivity and corrosion resistance were not evaluated.
  • Comparative Examples 4 and 5 in which the thermal reduction in vacuum was performed on the substrate main body after plasma electrolytic oxidation, the thermal reduction treatment temperature had to be 800 ° C. or higher. For this reason, oxygen diffused into the base body, and deterioration of the base body was observed. Therefore, the conductivity and corrosion resistance were not evaluated.
  • Comparative Example 6 in which the microwave plasma reduction treatment was performed on the base body after plasma electrolytic oxidation under the conditions of a temperature of 650 ° C. and a treatment time of 30 minutes, the treatment temperature was high and the treatment time was long. Ti oxide could not be obtained. In addition, as in Comparative Examples 4 and 5, slight deterioration of the substrate due to oxygen diffusion into the Ti substrate body was also observed, so the evaluation of conductivity and corrosion resistance was not performed.
  • Example 1-11 of the present invention in which the magnetic phase titanium oxide film was formed was excellent in conductivity and corrosion resistance.
  • FIGS. 7 and 8 it was confirmed that in the titanium base materials of Invention Example 1 and Invention Example 11, the magnetic phase titanium oxide film has a porous structure.
  • FIG. 8 even when the base body is composed of a porous body, it was confirmed that the magnetic phase titanium oxide film was formed relatively uniformly on the surface of the base body. It was.
  • Example 2 Next, as shown in Table 3, a titanium base material on which a magnetic phase titanium oxide film was formed (Example 11 of the present invention) and a titanium oxide film (insulating titanium oxide film) that was not a magnetic phase titanium oxide film were formed.
  • the titanium base material (Comparative Example 7) was used as an anode electrode to form a solid polymer water electrolysis cell (area 4 cm ⁇ 4 cm) having the structure shown in FIG. It was.
  • Comparative Example 102 a titanium base material on which the titanium oxide film was not formed on the surface of the base body made of a porous body was used as the anode electrode.
  • This water electrolysis cell was subjected to a voltammetry test in which one cycle was held at 2.5 V for 1 minute and held at 0 V for 1 minute. The current density flowing through the cell by water electrolysis was measured. The test temperature was 80 ° C. The evaluation results are shown in Table 3.
  • Table 3 shows the ratio of the current density after each cycle to the initial value, with the current density at the 10th cycle as the initial value, and this initial value as the reference value (1.0).
  • Comparative Example 101 using a titanium substrate (Comparative Example 7) on which a titanium oxide film (insulating titanium oxide film) that is not a magnetic phase titanium oxide film was formed as an anode electrode the current density at the initial stage was 0. .1 A / cm 2 or less and very low. For this reason, no voltammetric test was performed.
  • the current density is 0.97, which is the initial value after 400 cycles, After 800 cycles, the initial value was 1.05, and after 1200 cycles, the initial value was 0.93. Even when the number of cycles increased, the initial value did not change significantly. This is presumably because deterioration due to oxidation of the anode electrode (titanium substrate) was suppressed.
  • the titanium substrate which is particularly excellent in conductivity and corrosion resistance, and can be used even in a severe corrosive environment, the titanium substrate manufacturing method, and the titanium substrate is used. It was confirmed that an electrode for water electrolysis and a water electrolysis device can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemically Coating (AREA)

Abstract

このチタン基材は、チタンまたはチタン合金からなる基材本体を有し、この基材本体の表面に、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜が形成されている。ここで、前記マグネリ相酸化チタン皮膜は、Ti及びTiの少なくも一方又は両方を含有することが好ましい。

Description

チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置
 本発明は、導電性及び耐食性に優れたチタン基材、チタン基材の製造方法、及び、このチタン基材からなる水電解用電極、水電解装置に関するものである。
 本願は、2018年3月12日に、日本に出願された特願2018-044659号、2019年3月8日に、日本に出願された特願2019-042773号に基づき優先権を主張し、その内容をここに援用する。
 チタンまたはチタン合金からなるチタン基材は、例えば特許文献1に示すように、電極等の通電部材の中でも、特に耐酸化性(耐食性)が要求される用途において用いられている。
 しかしながら、例えば、固体高分子形燃料電池(PEFC)のカソード電極、水電解装置のアノード電極、リチウムイオン電池やリチウムイオンキャパシタ向け電極材など、高電位、酸素存在、強酸性雰囲気等の過酷な腐食環境下で使用される場合には、耐食性が十分とは言えず、使用時にチタン基材の表面に絶縁性のTiO膜が形成されてしまい、電極等の通電部材としての性能が劣化するといった問題があった。
 このため、例えば特許文献2には、アルミニウム、ニッケル若しくはチタンからなる基材の表面に、金及び白金等の貴金属皮膜を形成し、導電性を確保したまま耐食性を向上させたものが提案されている。
 また、特許文献3には、チタンまたはチタン合金の表面に、TiOのX回折ピークが見られない酸化被膜を成膜したチタン材が提案されている。
 さらに、特許文献4には、純チタン若しくはチタン合金からなるチタン材の表面に、酸素とチタンの原子濃度比(O/Ti)が0.3以上1.7以下である酸化チタン層を有し、この酸化チタン層の上に、Au,Pt,Pdから選択される少なくとも1種の貴金属を含む合金層を形成したものが提案されている。
特開2003-226992号公報 特開2010-135316号公報 特許第5831670号公報 特開2010-236083号公報
Tsutomu Ioroi et; Stability of Corrosion-Resistant Magneli-Phase Ti4O7-Supported PEMFC Catalysts High Potentials,"Jornal of The Electorochemical Society",155(4)B321-B326(2008)
 ところで、特許文献2及び特許文献4に示すように、貴金属皮膜を形成した場合には、コストが非常に増加してしまい、広く使用することはできない。
 また、特許文献3に記載された酸化被膜においては、導電性及び耐食性が不十分なため、過酷な環境下で使用する部材として適用することはできない。
 ここで、導電性及び耐食性に優れた材料としては、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンが挙げられる。このマグネリ相酸化チタンにおいては、TiOと同等の耐食性を有するとともに、グラファイトと同等の導電性を有している。
 従来のマグネリ相酸化チタンとしては、例えば非特許文献1に示すように、TiOを高温で還元する熱還元法で製造されており、粉末形状のものが提供されている。
 しかしながら、チタンまたはチタン合金からなる基材の表面にTiOを形成して熱還元した場合には、酸素が基材側に拡散し、基材自体が酸化して、導電性等の特性が劣化してしまう。このため、マグネリ相酸化チタンの被膜を有するチタン基材等は提供されていなかった。
 本発明は、以上のような事情を背景としてなされたものであって、導電性及び耐食性に特に優れ、過酷な腐食環境下においても使用可能なチタン基材、チタン基材の製造方法、及び、このチタン基材からなる水電解用電極、水電解装置を提供することを目的としている。
 このような課題を解決して、前記目的を達成するために、本発明のチタン基材は、チタンまたはチタン合金からなる基材本体を有し、この基材本体の表面に、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜が形成されていることを特徴としている。
 この構成のチタン基材によれば、チタンまたはチタン合金からなる基材本体の表面に、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜が形成されているので、導電性及び耐食性に特に優れている。
 よって、高電位、酸素存在、強酸性雰囲気等の過酷な腐食環境下においても、電極等の通電部材として使用することができる。
 ここで、本発明のチタン基材においては、前記マグネリ相酸化チタン皮膜は、Ti及びTiの少なくも一方又は両方を含有することが好ましい。
 この場合、前記マグネリ相酸化チタン皮膜が、特に導電性及び耐食性に優れたTi及びTiの少なくも一方又は両方を含有しているので、高電位、酸素存在、強酸性雰囲気等の過酷な腐食環境下において使用される通電部材として特に適している。
 また、本発明のチタン基材においては、前記マグネリ相酸化チタン皮膜の膜厚が0.1μm以上30μm以下の範囲内とされていることが好ましい。
 この場合、前記マグネリ相酸化チタン皮膜の膜厚が0.1μm以上とされているので、十分な耐食性を確保することができる。
 一方、前記マグネリ相酸化チタン皮膜の膜厚が30μm以下とされているので、チタン基材として十分な導電性を確保することができる。
 また、Ti基材を用いず、電極全体がマグネリ相酸化チタンから成る酸化物電極では、電極としての強度が不十分である。
 さらに、本発明のチタン基材においては、前記基材本体は、気孔率が30%以上97%以下の範囲内とされた多孔質体とされていることが好ましい。
 この場合、チタンまたはチタン合金からなる基材本体が多孔質体とされており、その気孔率が30%以上とされているので、比表面積が大きくなり、チタン基材の表面での反応を促進することができる。また、反応によって生成したガスを効率的に排出することができる。
 一方、前記基材本体の気孔率が97%以下とされているので、基材本体の強度を確保することができる。
 また、本発明のチタン基材においては、前記マグネリ相酸化Ti皮膜がポーラス構造を有することが望ましい。
 この場合、電極の比表面積がさらに向上し、電極の反応場を広く提供することが可能となる。
 本発明のチタン基材の製造方法は、上述のチタン基材の製造方法であって、チタンまたはチタン合金からなる基材本体の表面にTiO皮膜を成膜するTiO皮膜形成工程と、前記基材本体の表面に形成されたTiO皮膜をマイクロ波プラズマ還元法によって還元し、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜とする還元処理工程と、を備えており、還元処理工程は、基板温度400℃以下、処理時間15分以下の条件で実施することを特徴としている。
 この構成のチタン基材の製造方法においては、チタンまたはチタン合金からなる基材本体の表面にTiO皮膜を成膜するTiO皮膜形成工程と、このTiO皮膜をマイクロ波プラズマ還元法によって還元してマグネリ相酸化チタン皮膜とする還元処理工程と、を備えているので、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜を有するチタン基材を製造することが可能となる。
 そして、還元処理工程を、基板温度400℃以下、処理時間15分以下の条件で実施しているので、酸素が基材本体側に拡散することを抑制でき、基材本体の特性の劣化を抑制することができる。
 さらに、TiO皮膜形成工程においてTiO皮膜の膜厚を調整することにより、マグネリ相酸化チタン皮膜の膜厚を制御することができる。
 本発明の水電解用電極は、上述のチタン基材からなることを特徴としている。
 この構成の水電解用電極によれば、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜が形成されたチタン基材で構成されているので、導電性及び耐食性に特に優れており、酸化による劣化を抑えることができ、使用寿命を大幅に向上させることができる。また、耐食性に優れているので、貴金属電極の代替として使用することができ、水電解用電極を低コストで構成することが可能となる。
 ここで、本発明の水電解用電極においては、2.5Vで1分保持及び0Vで1分保持を1サイクルとしたボルタンメトリー試験において、1200サイクル後の電解効率が初期値に対して90%以上であることが好ましい。
 この場合、水電解装置の起動停止を模したボルタンメトリー試験において、1200サイクル後の電解効率が初期値に対して90%以上に維持されているので、使用時における水電解用電極の劣化が確実に抑制されており、使用寿命を確実に向上させることが可能となる。
 本発明の水電解装置は、上述の水電解用電極を備えたことを特徴としている。
 この構成の水電解用電極によれば、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜が形成されたチタン基材で構成された水電解用電極を備えているので、使用時における水電解用電極の酸化による劣化を抑えることができ、長期間安定して使用することが可能となる。また、貴金属電極を用いる必要がなく、水電解装置の製造コストを大幅に削減することができる。
 本発明によれば、導電性及び耐食性に特に優れ、過酷な腐食環境下においても使用可能なチタン基材、チタン基材の製造方法、及び、このチタン基材からなる水電解用電極、水電解装置を提供することができる。
本発明の実施形態であるチタン基材の一例を示す説明図である。 図1に示すチタン基材の表層部分の拡大模式図である。 図1に示すチタン基材の製造方法の一例を示すフロー図である。 図1に示すチタン基材を製造する製造工程を示す説明図である。図4(a)は基材本体準備工程S01、図4(b)はTiO皮膜形成工程S02、図4(c)は還元処理工程S03を示す。 本発明の実施形態である水電解用電極を備えた水電解装置の概略説明図である。 実施例における本発明例2及び比較例1のXRD分析結果を示すグラフである。 実施例における本発明例1のチタン基材の断面観察結果を示すSEM画像である。 実施例における本発明例11のチタン基材の断面観察結果を示すSEM画像である。
 以下に、本発明の実施形態であるチタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置について、添付した図面を参照して説明する。
<チタン基材及びチタン基材の製造方法>
 本実施形態であるチタン基材10は、例えば、固体高分子形燃料電池(PEFC)のカソード電極、水電解装置のアノード電極、リチウムイオン電池やリチウムイオンキャパシタ向け電極材等の通電部材として使用されるものである。
 本実施形態であるチタン基材10は、図1及び図2に示すように、チタンまたはチタン合金からなる基材本体11と、この基材本体11の表面に形成されたマグネリ相酸化チタン皮膜16と、を備えている。
 本実施形態においては、基材本体11は、図1に示すように、多孔質体とされており、3次元網目構造とされた骨格部12と、この骨格部12に囲まれた気孔部13と、を備えている。
 この基材本体11は、その気孔率Pが30%以上97%以下の範囲内とされている。基材本体11の気孔率Pは、以下の式で算出される。
  P(%)=(1-(W/(V×D)))×100
   W:基材本体11の質量(g)
   V:基材本体11の体積(cm
   D:基材本体11を構成するチタンまたはチタン合金の真密度(g/cm
 なお、本実施形態においては、この多孔質体からなる基材本体11は、例えば、チタンを含むチタン焼結原料を焼結させたチタン焼結体で構成されている。
 また、骨格部12に囲まれた気孔部13は、互いに連通するとともに、基材本体11の外部に向けて開口した構造とされている。
 そして、図2に示すように、この基材本体11の表面に、マグネリ相酸化チタン皮膜16が形成されている。
 このマグネリ相酸化チタン皮膜16は、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンで構成されている。
 本実施形態においては、マグネリ相酸化チタン皮膜16は、Ti及びTiの少なくも一方又は両方を含有するものとされている。このマグネリ相酸化チタン皮膜16におけるチタン酸化物の構造については、X線回折分析(XRD)法によって同定することができる。
 なお、本実施形態のマグネリ相酸化チタン皮膜16においては、X線回折(XRD)におけるTi及びTiのXRDピークを含み、両者の最大ピーク強度の和が他のマグネリ相酸化Ti(6≦n≦10)の最大ピーク強度よりも大きい。
 ここで、マグネリ相酸化チタン皮膜16の膜厚tを薄くすると、耐食性が低下するが導電性が向上することになる。一方、マグネリ相酸化チタン皮膜16の膜厚tを厚くすると、耐食性が向上するが導電性が低下することになる。このため、マグネリ相酸化チタン皮膜16の膜厚tは、チタン基材10への要求特性に応じて適宜設定することが好ましい。
 本実施形態においては、耐食性を十分に向上させるために、マグネリ相酸化チタン皮膜16の膜厚tの下限を0.1μm以上としている。また、導電性を十分に向上させるために、マグネリ相酸化チタン皮膜16の膜厚tの上限を30μm以下としている。
 なお、耐食性をさらに向上させるためには、マグネリ相酸化チタン皮膜16の膜厚tの下限を0.2μm以上とすることが好ましく、0.3μm以上とすることがさらに好ましい。一方、導電性をさらに向上させるためには、マグネリ相酸化チタン皮膜16の膜厚tの上限を5μm以下とすることが好ましく、3μm以下とすることがさらに好ましい。
 また、本実施形態においては、マグネリ相酸化チタン皮膜16は、その膜内にナノメートル又はマイクロメートルオーダーのポーラス構造を有する。
 以下に、本実施形態であるチタン基材10の製造方法について、図3のフロー図及び図4の工程図等を参照して説明する。
(基材本体準備工程S01)
 まず、図4(a)で示す、チタン及びチタン合金からなる基材本体11を準備する。本実施形態では、基材本体11として、多孔質のチタン焼結体を準備する。
 この多孔質のチタン焼結体からなる基材本体11は、例えば、以下のような工程で製造することができる。チタンを含む焼結原料を、有機バインダー、発泡剤、可塑剤、水及び必要に応じて界面活性剤を混合して、発泡性スラリーを作製する。この発泡性スラリーを、ドクターブレード(塗布装置)を用いて塗布し、シート状の成形体を成形する。このシート状の成形体を加熱して発泡させて発泡成形体を得る。そして、これを脱脂した後で焼結する。これにより、多孔質のチタン焼結体からなる基材本体11が作製される。(例えば、特開2006-138005号公報、特開2003-082405号公参照)
(TiO皮膜形成工程S02)
 次に、図4(b)に示すように、基材本体11の表面に、TiO皮膜26を形成する。このTiO皮膜形成工程S02においては、酸素が基材本体11側に拡散することを抑制するために、100℃以下の温度条件で実施する。
 温度条件の下限値は限定されないが、0℃までの範囲で、以下のプラズマ電解酸化処理を効率よく行うことができる。
 本実施形態では、通常の陽極酸化よりも高電圧を印加し、基材表面にアーク放電を発生させ酸化を進める、プラズマ電解酸化法によってTiO皮膜26を成膜している。具体的には、KPO,NaPO,K,Na等の水溶液浴中で、プラズマ電解酸化処理を実施した。
 ここで、TiO皮膜26の膜厚t0は、0.1μm以上30μm以下の範囲内とすることが好ましい。
(還元処理工程S03)
 次に、TiO皮膜26に対して、ガスにマイクロ波を照射して生成したプラズマを用いて還元処理を行う(マイクロ波プラズマ還元処理)ことで、図4(c)に示すように、TiO皮膜26を、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜16とする。この還元処理工程S03においては、酸素が基材本体11側に拡散することを抑制するために、基板温度400℃以下、処理時間15分以下の条件で実施する。
 還元処理工程S03の基板温度の下限値は0℃、処理時間の下限値は0.01分とすることができる。
 なお、TiO皮膜26の全体を還元処理してマグネリ相酸化チタン皮膜16とすることにより、TiO皮膜26の膜厚t0が、マグネリ相酸化チタン皮膜16の膜厚tとなる。よって、TiO皮膜形成工程S02におけるTiO皮膜26の膜厚t0を調整することにより、マグネリ相酸化チタン皮膜16の膜厚tを制御することが可能となる。
 上述の製造方法により、チタンまたはチタン合金からなる基材本体11の表面に、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜16が形成されたチタン基材10が製造されることになる。
<水電解用電極及び水電解装置>
 本実施形態である水電解用電極及び水電解装置の概略図を図5に示す。なお、本実施形態の水電解装置は、電解効率及び生成時の水素純度が高い、固体高分子形水分解装置とされている。
 本実施形態の水電解装置30は、図5に示すように、対向配置されたアノード極32及びカソード極33と、これらアノード極32とカソード極33との間に配置されたイオン透過膜34と、を備えた水電解セル31を備えている。なお、イオン透過膜34の両面(アノード極32との接触面及びカソード極33との接触面)には、それぞれ触媒層35,36が形成されている。
 ここで、カソード極33、イオン透過膜34、触媒層35,36については、従来の一般的な固体高分子形水電解装置で使用されているものを適用することができる。
 そして、上述のアノード極32が、本実施形態である水電解用電極とされている。このアノード極32(水電解用電極)は、上述した本実施形態であるチタン基材10で構成されており、チタンまたはチタン合金からなる基材本体11と、この基材本体11の表面に形成されたマグネリ相酸化チタン皮膜16と、を備えている。また、基材本体11が、多孔質体とされており、3次元網目構造とされた骨格部12と、この骨格部12に囲まれた気孔部13と、を備えた構造とされている。
 ここで、本実施形態である水電解用電極(アノード極32)においては、2.5Vで1分保持及び0Vで1分保持を1サイクルとしたボルタンメトリー試験において、1200サイクル後の電解効率が初期値に対して90%以上であることが好ましい。
 上述の水電解装置30(水電解セル31)においては、図5に示すように、アノード極32側から水(HO)が供給されるとともに、アノード極32及びカソード極33に通電される。すると、水の電解によって生じた酸素(O)がアノード極32から排出され、水素(H)がカソード極33から排出されることになる。
 ここで、アノード極32においては、上述のように、水(液体)と酸素(気体)が流通することになるので、これら液体及び気体を安定して流通させるために、高い気孔率を有することが好ましい。また、アノード極32は酸素に晒されるため、優れた耐食性が求められる。このため、本実施形態であるチタン基材10からなる水電解用電極が、アノード極32として特に適している。
 以上のような構成とされた本実施形態であるチタン基材10によれば、チタンまたはチタン合金からなる基材本体11の表面に、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜16が形成されているので、導電性及び耐食性に特に優れている。
 よって、高電位、酸素存在、強酸性雰囲気等の過酷な腐食環境下においても、電極等の通電部材として使用することができる。
 また、本実施形態においては、マグネリ相酸化チタン皮膜16が、マグネリ相酸化チタンとして、特に導電性及び耐食性に優れたTi及びTiの少なくとも一方又は両方を含有しているので、高電位、酸素存在、強酸性雰囲気等の過酷な腐食環境下において使用される通電部材として特に適している。
 さらに、本実施形態においては、マグネリ相酸化チタン皮膜16の膜厚tが0.1μm以上30μm以下の範囲内とされているので、耐食性と導電性をバランス良く向上させることが可能となる。
 また、本実施形態においては、チタンまたはチタン合金からなる基材本体11が多孔質体とされており、その気孔率Pが30%以上とされているので、比表面積が大きくなり、チタン基材10の表面での反応を促進することができる。また、反応によって生成したガスを効率的に排出することができる。よって、電極部材として特に適している。
 一方、多孔質体とされた基材本体11の気孔率Pが97%以下とされているので、基材本体11の強度を確保することができる。
 また、本実施形態においては、マグネリ相酸化チタン皮膜16がナノメートル又はマイクロメートルオーダーのポーラス構造をなしており、電極基材の表面積をさらに向上させることが可能となる。
 本実施形態であるチタン基材10の製造方法においては、チタンまたはチタン合金からなる基材本体11を準備する基材本体準備工程S01と、この基材本体11の表面にTiO皮膜26を成膜するTiO皮膜形成工程S02と、このTiO皮膜26をマイクロ波プラズマ還元法によって還元して、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜16とする還元処理工程S03と、を備えているので、耐食性及び導電性に特に優れたチタン基材10を製造することが可能となる。
 そして、TiO皮膜形成工程S02を100℃以下で実施し、還元処理工程S03を、基板温度400℃以下、処理時間15分以下の条件で実施しているので、酸素が基材本体11側に拡散することを抑制でき、基材本体11の特性の劣化を抑制することができる。
 さらに、TiO皮膜形成工程S02において成膜するTiO皮膜26の膜厚t0を調整することにより、マグネリ相酸化チタン皮膜16の膜厚tを精度良く制御することができる。
 本実施形態である水電解用電極(アノード極32)においては、上述したチタン基材10で構成されているので、導電性及び耐食性に特に優れており、酸化による劣化を抑えることができ、使用寿命を大幅に向上させることができる。また、耐食性に優れているので、貴金属電極の代替として使用することができ、水電解用電極(アノード極32)を低コストで構成することができる。
 また、本実施形態の水電解用電極(アノード極32)において、2.5Vで1分保持及び0Vで1分保持を1サイクルとしたボルタンメトリー試験において、1200サイクル後の電解効率が初期値に対して90%以上である場合には、使用時における水電解用電極の劣化が確実に抑制されており、使用寿命を確実に向上させることが可能となる。
 本実施形態である水電解装置30においては、上述したチタン基材10で構成された水電解用電極をアノード極32に用いているので、酸素ガスに晒される使用環境下においても、水電解用電極(アノード極32)の酸化による劣化を抑えることができ、長期間安定して使用することが可能となる。また、耐食性に優れていることから、貴金属電極を用いる必要がなく、水電解装置30の製造コストを大幅に削減することができる。さらに、チタン基材10が上述した構造の多孔質体で構成されているので、水と酸素ガスを良好に流通させることが可能となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、基材本体11を多孔質体として説明したが、これに限定されることはなく、板、線、棒、管等の形状の基材本体11であってもよい。また、基材本体11がチタン焼結体で構成されたものとして説明したが、これに限定されることはなく、メッシュ板等を用いてもよい。
 また、本実施形態においては、マグネリ相酸化チタン皮膜は、Ti及びTiの少なくも一方又は両方を含有するものとして説明したが、これに限定されることはなく、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンで構成されていればよい。
 さらに、本実施形態においては、マグネリ相酸化チタン皮膜の膜厚を0.1μm以上30μm以下の範囲内としたもので説明したが、これに限定されることはなく、マグネリ相酸化チタン皮膜の膜厚は、チタン基材への要求特性に応じて適宜設定することが好ましい。
 また、本実施形態においては、マグネリ相酸化チタン皮膜は、ポーラス構造を有することと説明したが、これに限定されることはない。
 さらに、本実施形態では、図5に示す構造の水電解装置(水電解セル)を例に挙げて説明したが、これに限定されることはなく、本実施形態であるチタン基材からなる水電解用電極を備えていれば、その他の構造の水電解装置(水電解セル)であってもよい。
(実施例1)
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、表1に示す基材本体を準備する。なお、表1において「チタン」は純度99.9mass%以上の純チタンとし、「チタン合金」はTi-0.15mass%Pdのチタン合金とした。
 用意した各基材本体の寸法は、幅50mm×長さ60mm×厚さ0.3mmとした。
 次に、この基材本体の表面にTiO皮膜を成膜する。KPOの水溶液中で、プラズマ電解酸化処理を施した。陰極として高密度カーボン板を用いて、温度100℃以下、電圧450V、時間0~300分の条件で実施した。なお、プラズマ電解酸化処理の時間を調整することで、TiO皮膜の膜厚を表1に示す値とした。
 次に、TiO皮膜を成膜した基材本体を、マイクロ波プラズマ還元装置に装入し、装置内を一度真空(3.8×10-2torr(5Pa)以下)まで減圧した。その後、装置内に水素ガスを導入して圧力を30Paとし、2.45GHzのマイクロ波を照射した。還元時間が0.1~15分とした。
 なお、比較例1、3、及び7においては、還元処理を実施しなかった。また、比較例4、5においては、熱還元法によって還元処理を実施した。
 以上のようにして、チタンまたはチタン合金からなる基材本体の表面に、酸化チタン皮膜(本発明例では、マグネリ相酸化チタン皮膜)を成膜したチタン基材を得た。
 得られたチタン基材について、酸化チタン皮膜の同定、酸化チタン皮膜の厚さ、導電性、耐食性を、以下のように評価した。
(酸化チタン皮膜におけるチタン酸化物の同定)
 X線回折分析(XRD)法によって、酸化チタン皮膜のチタン酸化物を同定した。加速電圧を30keVとし、測定には8keVのCuのKa線を用いた。測定範囲は2θ=15°~35°とした。Ti及びTiの存在の有無については、それぞれ21°と26°と30°(Ti)、22°と26°と29°(Ti)付近のいずれかでのピークの有無で確認した。評価結果を表2に示す。また、図6に、本発明例2及び比較例1のXRD分析結果を示す。
(酸化チタン皮膜の厚さ)
 成膜後のサンプルを樹脂埋めし、酸化チタン皮膜の厚さ方向に対して垂直方向に切断して断面を露出させる。この断面をSEM観察し、倍率5000倍で観察したSEM画像内に写る酸化チタン皮膜層の端から端までを均等に5点取り、それぞれ厚みを算出した。そして、測定した5点の平均値から酸化チタン皮膜の厚みを求めた。
 基材本体を板材とした本発明例1のチタン基材の断面観察結果(SEM画像)を図7に示す。
 また、基材本体を多孔質体とした本発明例11のチタン基材の断面観察結果(SEM画像)を図8に示す。
(導電性)
 得られたチタン基材から、幅30mm×長さ40mm×厚さ0.3mmの短冊状とした試験片を作成し、4探針法で導電率を測定した。導電率の測定値が1S/cm以上のものを「A (合格)」、1S/cm未満のものを「B (不可)」と評価した。評価結果を表2に示す。
(耐食性)
 1Mの硫酸で満たした半径4cmのセル中において、作成したチタン基材を作用極とし、コイル状のPt線を対極として、サイクリックボルタンメトリー測定を行った。参照電極として用いたAg/AgCl電極に対して0-2Vの間で掃引を繰り返した。サイクリックボルタンメトリーを1000サイクル測定し、CVの波形に変化が見られなかったものを「A (合格)」、変化が認められたものを「B (不可)」と評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 プラズマ電解酸化後の基材本体にマイクロ波プラズマ還元を施さなかった比較例1及び比較例7においては、マグネリ相酸化チタン皮膜が形成されておらず、導電性が不十分であった。このため、耐食性については評価しなかった。
 プラズマ電解酸化の処理時間を1秒と短くしてTiO皮膜の厚みを薄くし、その後マイクロ波プラズマ還元を実施した比較例2においては、マグネリ相酸化チタン皮膜が形成されておらず、かつ、酸化チタン皮膜の厚みが0.01μmと薄くなり、耐食性が不十分であった。プラズマ電解酸化では、0.1μm以下のTiO皮膜を安定して成膜することができず、その後のマイクロ波プラズマ還元によってもマグネリ相酸化チタン皮膜が十分に形成されなかったためと推測される。
 大気酸化によってTiO皮膜の成膜を試みた比較例3においては、処理温度を、400℃を超える温度にする必要があった。このため、基材本体に酸素が拡散し、基材本体の劣化が認められた。よって、導電性、耐食性の評価を実施しなかった。
 プラズマ電解酸化後の基材本体に対して真空中での熱還元を実施した比較例4,5においては、熱還元の処理温度を800℃以上とする必要があった。このため、基材本体に酸素が拡散し、基材本体の劣化が認められた。よって、導電性、耐食性の評価を実施しなかった。
 プラズマ電解酸化後の基材本体にマイクロ波プラズマ還元処理を温度650℃、処理時間30分の条件で実施した比較例6においては、処理温度が高く、処理時間も長いため、目標とするマグネリ相酸化Tiを得ることができなかった。また、わずかながら、比較例4、5と同様に、Ti基材本体への酸素拡散による基材の劣化も認められたため、導電性、耐食性の評価を実施しなかった。
 これに対して、マグネリ相酸化チタン皮膜が形成された本発明例1-11においては、導電性、耐食性に優れていることが確認された。また、図7、8に示すように、本発明例1及び本発明例11のチタン基材においては、マグネリ相酸化チタン皮膜がポーラス構造を有していることが確認された。さらに、図8に示すように、基材本体が多孔質体で構成された場合であっても、マグネリ相酸化チタン皮膜が基材本体の表面に比較的均一に形成されていることが確認された。
(実施例2)
 次に、表3に示すように、マグネリ相酸化チタン皮膜が形成されたチタン基材(本発明例11)及びマグネリ相酸化チタン皮膜ではない酸化チタン皮膜(絶縁性の酸化チタン皮膜)が形成されたチタン基材(比較例7)を、それぞれアノード極として用いて、図5に示す構造の固体高分子形の水電解セル(面積4cm×4cm)を構成し、本発明例101及び比較例101とした。
 なお、比較例102では、多孔質体からなる基材本体の表面に酸化チタン皮膜を形成していないチタン基材をアノード極として用いた。
 この水電解セルに対して、2.5Vで1分保持及び0Vで1分保持を1サイクルとしたボルタンメトリー試験を実施した。水電解によりセルに流れた電流密度を測定した。なお、試験温度は80℃とした。評価結果を表3に示す。
 ここで、表3には、10サイクル目の電流密度を初期値とし、この初期値を基準値(1.0)とし、各サイクル後の電流密度の初期値に対する比率を示した。
Figure JPOXMLDOC01-appb-T000003
 マグネリ相酸化チタン皮膜ではない酸化チタン皮膜(絶縁性の酸化チタン皮膜)が形成されたチタン基材(比較例7)をアノード極として用いた比較例101においては、初期段階での電流密度が0.1A/cm以下と非常に低くなった。このため、ボルタンメトリー試験を実施しなかった。
 また、多孔質体からなる基材本体の表面に酸化チタン皮膜を形成していないチタン基材をアノード極として用いた比較例102においては、電流密度が400サイクル後で初期値の0.65となり、1200サイクル後では初期値の0.59となった。アノード極(チタン基材)が酸化して劣化したためと推測される。
 これに対して、マグネリ相酸化チタン皮膜が形成されたチタン基材(本発明例11)をアノード極として用いた本発明例101においては、電流密度が400サイクル後で初期値の0.97、800サイクル後で初期値の1.05、1200サイクル後では初期値の0.93となり、サイクル数が増加しても初期値から大きく変化しなかった。アノード極(チタン基材)の酸化による劣化が抑制されたためと推測される。
 以上の実験結果から、本発明例によれば、導電性及び耐食性に特に優れ、過酷な腐食環境下においても使用可能なチタン基材、チタン基材の製造方法、及び、このチタン基材からなる水電解用電極、水電解装置を提供可能であることが確認された。
10 チタン基材
11 基材本体
16 マグネリ相酸化チタン皮膜
26 TiO皮膜
30 水電解装置
32 アノード極(水電解用電極)

Claims (9)

  1.  チタンまたはチタン合金からなる基材本体を有し、
     この基材本体の表面に、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜が形成されていることを特徴とするチタン基材。
  2.  前記マグネリ相酸化チタン皮膜は、Ti及びTiの少なくも一方又は両方を含有することを特徴とする請求項1に記載のチタン基材。
  3.  前記マグネリ相酸化チタン皮膜の膜厚が0.1μm以上30μm以下の範囲内とされていることを特徴とする請求項1または請求項2に記載のチタン基材。
  4.  前記基材本体は、気孔率が30%以上97%以下の範囲内とされた多孔質体とされていることを特徴とする請求項1から請求項3のいずれか一項に記載のチタン基材。
  5.  前記マグネリ相酸化チタン皮膜は、ポーラス構造を有することを特徴とする請求項1から請求項4のいずれか一項に記載のチタン基材。
  6.  請求項1から請求項5のいずれか一項に記載のチタン基材の製造方法であって、
     チタンまたはチタン合金からなる基材本体の表面にTiO皮膜を成膜するTiO皮膜形成工程と、
     前記基材本体の表面に形成されたTiO皮膜をマイクロ波プラズマ還元法によって還元し、化学式Ti2n-1(4≦n≦10)で表されるマグネリ相酸化チタンからなるマグネリ相酸化チタン皮膜とする還元処理工程と、
     を備えており、
     還元処理工程は、基板温度400℃以下、処理時間15分以下の条件で実施することを特徴とするチタン基材の製造方法。
  7.  請求項1から請求項5のいずれか一項に記載のチタン基材からなることを特徴とする水電解用電極。
  8.  2.5Vで1分保持及び0Vで1分保持を1サイクルとしたボルタンメトリー試験において、1200サイクル後の電解効率が初期値に対して90%以上であることを特徴とする請求項7に記載の水電解用電極。
  9.  請求項7又は請求項8に記載の水電解用電極を備えたことを特徴とする水電解装置。
PCT/JP2019/010073 2018-03-12 2019-03-12 チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置 WO2019176956A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19766633.2A EP3767009A4 (en) 2018-03-12 2019-03-12 TITANIUM-BASED MATERIAL, PROCESS FOR THE PRODUCTION OF A TITANIUM-BASED MATERIAL, ELECTRODE FOR ELECTROLYSIS OF WATER AND DEVICE FOR ELECTROLYSIS OF WATER
CN201980017686.6A CN111918983B (zh) 2018-03-12 2019-03-12 钛基材、钛基材的制造方法及水电解用电极、水电解装置
US16/979,002 US20200407858A1 (en) 2018-03-12 2019-03-12 Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-044659 2018-03-12
JP2018044659 2018-03-12
JP2019-042773 2019-03-08
JP2019042773A JP7092076B2 (ja) 2018-03-12 2019-03-08 チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置

Publications (1)

Publication Number Publication Date
WO2019176956A1 true WO2019176956A1 (ja) 2019-09-19

Family

ID=67907817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010073 WO2019176956A1 (ja) 2018-03-12 2019-03-12 チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置

Country Status (2)

Country Link
JP (1) JP7227543B2 (ja)
WO (1) WO2019176956A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655151A (zh) * 2019-10-09 2020-01-07 江西省科学院应用物理研究所 一种钛基亚氧化钛多孔电极的制备方法
CN110745911A (zh) * 2019-11-03 2020-02-04 江西省科学院应用物理研究所 一种亚氧化钛电极的制备方法
CN110937664A (zh) * 2019-11-26 2020-03-31 江西省科学院应用物理研究所 一种钛基亚氧化钛电极的制备方法
WO2021119290A1 (en) * 2019-12-10 2021-06-17 Saint-Gobain Ceramics & Plastics, Inc. Monolithic porous body comprising magneli phase titanium oxide and method of making the porous body
WO2021187228A1 (ja) * 2020-03-16 2021-09-23 三菱マテリアル株式会社 スポンジ状チタンシート材、及び、水電解用電極、水電解装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831670B2 (ja) 1978-05-15 1983-07-07 シャープ株式会社 電子機器
JPH03252057A (ja) * 1990-02-20 1991-11-11 Ebonex Technol Inc 電気化学セル
JP2003082405A (ja) 2001-09-14 2003-03-19 Mitsubishi Materials Corp 延性に優れた多孔質金属およびその製造方法
JP2003226992A (ja) 2002-02-06 2003-08-15 Shinko Pantec Co Ltd 電解セル用給電体及び電解セル
US20050014066A1 (en) * 2003-06-19 2005-01-20 Takayuki Shimamune Electrode
JP2006138005A (ja) 2004-11-15 2006-06-01 Mitsubishi Materials Corp 圧縮強度に優れたチタンまたはチタン合金スポンジ状焼結体
JP2006527794A (ja) * 2003-06-19 2006-12-07 アクゾ ノーベル エヌ.ブイ. 電極
JP2010135316A (ja) 2008-11-10 2010-06-17 Equos Research Co Ltd 集電体及び電池
JP2010138023A (ja) * 2008-12-10 2010-06-24 Kyoto Univ 金属酸化物の還元方法
JP2010521590A (ja) * 2007-03-20 2010-06-24 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ 電気化学セルとその操作方法
JP2010236083A (ja) 2009-03-11 2010-10-21 Kobe Steel Ltd 電極用チタン材および電極用チタン材の表面処理方法
JP2012067336A (ja) * 2010-09-21 2012-04-05 Masaaki Arai 電解水の製造装置及びその製造方法
JP2016201300A (ja) * 2015-04-13 2016-12-01 トヨタ自動車株式会社 燃料電池用セパレータの製造方法及び燃料電池用セパレータ
JP2018044659A (ja) 2016-09-16 2018-03-22 株式会社タダノ 高所作業車用の増圧装置
JP2019042773A (ja) 2017-09-04 2019-03-22 昭和電工株式会社 アルミニウム鋳造材の製造方法および製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO141419C (no) * 1974-02-02 1980-03-05 Sigri Elektrographit Gmbh Elektrode for elektrokjemiske prosesser
JPH0774470B2 (ja) * 1990-03-20 1995-08-09 ダイソー株式会社 酸素発生用陽極の製法
JPH04154991A (ja) * 1990-10-16 1992-05-27 Nippon Alum Co Ltd チタン材への低次酸化チタン皮膜の形成方法
GB9601236D0 (en) * 1996-01-22 1996-03-20 Atraverda Ltd Conductive coating
US8802304B2 (en) * 2010-08-10 2014-08-12 Eos Energy Storage, Llc Bifunctional (rechargeable) air electrodes comprising a corrosion-resistant outer layer and conductive inner layer
JP5875035B2 (ja) * 2011-03-03 2016-03-02 学校法人中部大学 電極部材とその製造方法
ITMI20120873A1 (it) * 2012-05-21 2013-11-22 Industrie De Nora Spa Elettrodo per evoluzione di prodotti gassosi e metodo per il suo ottenimento
JP6805822B2 (ja) * 2016-12-28 2020-12-23 日本製鉄株式会社 チタン材、セパレータ、セル、および固体高分子形燃料電池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831670B2 (ja) 1978-05-15 1983-07-07 シャープ株式会社 電子機器
JPH03252057A (ja) * 1990-02-20 1991-11-11 Ebonex Technol Inc 電気化学セル
JP2003082405A (ja) 2001-09-14 2003-03-19 Mitsubishi Materials Corp 延性に優れた多孔質金属およびその製造方法
JP2003226992A (ja) 2002-02-06 2003-08-15 Shinko Pantec Co Ltd 電解セル用給電体及び電解セル
JP2006527794A (ja) * 2003-06-19 2006-12-07 アクゾ ノーベル エヌ.ブイ. 電極
US20050014066A1 (en) * 2003-06-19 2005-01-20 Takayuki Shimamune Electrode
JP2006138005A (ja) 2004-11-15 2006-06-01 Mitsubishi Materials Corp 圧縮強度に優れたチタンまたはチタン合金スポンジ状焼結体
JP2010521590A (ja) * 2007-03-20 2010-06-24 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ 電気化学セルとその操作方法
JP2010135316A (ja) 2008-11-10 2010-06-17 Equos Research Co Ltd 集電体及び電池
JP2010138023A (ja) * 2008-12-10 2010-06-24 Kyoto Univ 金属酸化物の還元方法
JP2010236083A (ja) 2009-03-11 2010-10-21 Kobe Steel Ltd 電極用チタン材および電極用チタン材の表面処理方法
JP2012067336A (ja) * 2010-09-21 2012-04-05 Masaaki Arai 電解水の製造装置及びその製造方法
JP2016201300A (ja) * 2015-04-13 2016-12-01 トヨタ自動車株式会社 燃料電池用セパレータの製造方法及び燃料電池用セパレータ
JP2018044659A (ja) 2016-09-16 2018-03-22 株式会社タダノ 高所作業車用の増圧装置
JP2019042773A (ja) 2017-09-04 2019-03-22 昭和電工株式会社 アルミニウム鋳造材の製造方法および製造装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655151A (zh) * 2019-10-09 2020-01-07 江西省科学院应用物理研究所 一种钛基亚氧化钛多孔电极的制备方法
CN110745911A (zh) * 2019-11-03 2020-02-04 江西省科学院应用物理研究所 一种亚氧化钛电极的制备方法
CN110937664A (zh) * 2019-11-26 2020-03-31 江西省科学院应用物理研究所 一种钛基亚氧化钛电极的制备方法
WO2021119290A1 (en) * 2019-12-10 2021-06-17 Saint-Gobain Ceramics & Plastics, Inc. Monolithic porous body comprising magneli phase titanium oxide and method of making the porous body
WO2021187228A1 (ja) * 2020-03-16 2021-09-23 三菱マテリアル株式会社 スポンジ状チタンシート材、及び、水電解用電極、水電解装置
JPWO2021187228A1 (ja) * 2020-03-16 2021-09-23
JP7424467B2 (ja) 2020-03-16 2024-01-30 三菱マテリアル株式会社 スポンジ状チタンシート材、及び、水電解用電極、水電解装置

Also Published As

Publication number Publication date
JP2022051582A (ja) 2022-03-31
JP7227543B2 (ja) 2023-02-22

Similar Documents

Publication Publication Date Title
JP7092076B2 (ja) チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置
WO2019176956A1 (ja) チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置
Detsi et al. Mesoporous Ni 60 Fe 30 Mn 10-alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts
Tao et al. Plasma-engineered MoS 2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction
Zhang et al. Hierarchical nanoporous copper architectures via 3D printing technique for highly efficient catalysts
US9608278B2 (en) Mixed metal oxide material of tin and titanium
US9446350B2 (en) Gas decomposition apparatus and method for decomposing gas
US20130122401A1 (en) ELECTRODES HAVING Pt NANOPARTICLES ON RuO2 NANOSKINS
Kim et al. Cu 3 P/PAN derived N-doped carbon catalyst with non-toxic synthesis for alkaline hydrogen evolution reaction
US20140305805A1 (en) Subnanometer catalytic clusters for water splitting, method for splitting water using subnanometer catalyst clusters
WO2019012948A1 (ja) 金属多孔体、固体酸化物型燃料電池及び金属多孔体の製造方法
Shao et al. Preparation and characterization of new anodes based on Ti mesh for direct methanol fuel cells
Ye et al. Temperature effect on electrochemical properties of Ti 4 O 7 electrodes prepared by spark plasma sintering
Kheirmand et al. Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Konno et al. Nanoporous manganese ferrite films by anodising electroplated Fe–Mn alloys for bifunctional oxygen electrodes
Paygozar et al. Enhancing hydrogen generation through urea electro-oxidation on a bimetallic and dual-anionic NiFeSP/NF nanostructured electrode
WO2021193857A1 (ja) チタン基材、チタン基材の製造方法、及び、水電解用電極、水電解装置
Wu et al. A nanotubular framework with customized conductivity and porosity for efficient oxidation and reduction of water
Schlicht et al. Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers
Zhou et al. Electrocatalytic Oxidation of Formic Acid at Pt Modified Electrodes: Substrate Effect of Unsintered Au Nano‐Structure
Zhao et al. Electrocatalytic evolution of oxygen on NiCu particles modifying conductive alumina/nano-carbon network composite electrode
WO2022210655A1 (ja) チタン基材、水電解用電極、および、固体高分子形水電解装置
Zhao et al. Electrocatalytic activity of the conductive alumina/ncn composite electrode by electro‐depositing nicu particles for methanol oxidation
Pourbeyram et al. Nanoporous molybdenum dioxide on pencil graphite electrode as high effective electrocatalyst for the hydrogen evolution reaction
KR20150066104A (ko) 양극산화법을 이용한 연료전지용 나노 다공성 멤브레인 지지체 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019766633

Country of ref document: EP

Effective date: 20201012