WO2019176692A1 - Roll of biaxially oriented release polyester film - Google Patents

Roll of biaxially oriented release polyester film Download PDF

Info

Publication number
WO2019176692A1
WO2019176692A1 PCT/JP2019/008899 JP2019008899W WO2019176692A1 WO 2019176692 A1 WO2019176692 A1 WO 2019176692A1 JP 2019008899 W JP2019008899 W JP 2019008899W WO 2019176692 A1 WO2019176692 A1 WO 2019176692A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
roll
thickness
polyester film
Prior art date
Application number
PCT/JP2019/008899
Other languages
French (fr)
Japanese (ja)
Inventor
高木順之
多持洋孝
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67907830&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019176692(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980018027.4A priority Critical patent/CN111868148A/en
Priority to KR1020207027933A priority patent/KR20200131262A/en
Priority to JP2019540108A priority patent/JP7169551B2/en
Publication of WO2019176692A1 publication Critical patent/WO2019176692A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a release biaxially oriented polyester film roll obtained by winding a release biaxially oriented polyester film excellent in film thickness uniformity during thin film slurry coating.
  • Biaxially oriented polyester films are used in various applications as industrial materials from the viewpoint of mechanical properties, thermal properties, stiffness, and cost. Particularly recently, as process papers related to electronic materials, release films for molding green sheets of multilayer ceramic capacitors, separators for liquid crystal polarizing plates, base materials for dry film resists, base materials for interlayer insulating resin release, etc. It is used for.
  • multilayer ceramic capacitors are becoming increasingly smaller and have higher capacities.
  • release films used in the production of multilayer ceramic capacitors the demand for polyester films with high smoothness, no defects in the film surface and inside, and excellent film flatness has continued to grow as green sheets become thinner. Yes.
  • monolithic ceramic capacitors mounted on automobiles is rapidly expanding due to the expansion of electric vehicle production, IoT (Internet of Things) of automobiles, and the mounting of automatic driving functions on automobiles.
  • IoT Internet of Things
  • the thickness of the slurry that is laminated on the film when it is used as a base material due to uneven thickness of the film and the planar characteristics of the film Is becoming more strictly managed.
  • the thickness unevenness of the film is known as a well-known technique in which a measurement is performed by measuring 15 m in the longitudinal direction and a measurement is performed by measuring a 1 m length every 5 mm. Yes. Further, as shown in Patent Document 2, unevenness in the intensity of light leaking from the polarizing plate in the crossed Nicol method for inspecting the polarizing plate becomes strong and obstructs the inspection, so that the unevenness in thickness needs to be within a predetermined range. . As shown in Patent Document 3, it is known that simultaneous biaxial stretching is carried out to enhance the plane orientation.
  • Miniaturization is achieved by reducing the size of the electrode.
  • the increase in capacity is achieved by reducing the thickness of the green sheet, and the increase in reliability is achieved by improving the dimensional accuracy in the width, length, and thickness directions when electrodes and green sheets are provided.
  • the uniformity of the coating thickness at the time of slurry coating is to minimize the distortion and misalignment of the electrode pattern because each electrode area is fine in the step of performing electrode printing later.
  • requirement regarding minimization of the thickness nonuniformity with respect to a film has become severe.
  • the thickness of the base film over the entire roll length is likely to contribute to the process of applying the slurry thin film while constantly monitoring the slurry thickness and correcting the tilt of the die. Is known.
  • this invention makes it a subject to reduce the thickness nonuniformity of the film over the full length of a roll especially when it is used as a support body at the time of green sheet molding.
  • the present inventors have wound a biaxially oriented polyester film for release having excellent slurry dimensional stability in the longitudinal, width and thickness directions by optimizing the film properties.
  • the obtained biaxially oriented polyester film roll for mold release was found, and the present invention was achieved. That is, the present invention is a biaxially oriented polyester for mold release having a film width of 400 mm or more and a variation ⁇ value ( ⁇ MD ) of 0.15 ⁇ m or less with respect to the average value of the thickness measured continuously in the film longitudinal direction of 10,000 m.
  • ⁇ MD variation ⁇ value
  • the present invention it is possible to reduce the thickness variation at the time of green sheet molding, and to wind up the biaxially oriented polyester film for mold release optimized for the coating property of the ceramic slurry at the time of ultra-thin green sheet molding.
  • a biaxially oriented polyester film roll for mold release can be provided.
  • the biaxially oriented polyester film roll for mold release of the present invention is obtained by winding a biaxially oriented polyester film for mold release (hereinafter sometimes simply referred to as a biaxially oriented polyester film) around a core material such as a core.
  • a biaxially oriented polyester film refers to a state in which an unstretched (unoriented) film is stretched in a two-dimensional direction by a conventional method, and indicates a biaxially oriented pattern by wide-angle X-ray diffraction.
  • sequential biaxial stretching or simultaneous biaxial stretching can be employed.
  • sequential biaxial stretching the process of stretching in the longitudinal direction (longitudinal) and the width direction (transverse) can be performed once in the length-width direction, or twice in the length-width-length-width direction. You can also
  • the polyester in the biaxially oriented polyester film of the present invention is a polyester having dibasic acid and glycol as constituent components, and the aromatic dibasic acid is terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, diphenylsulfone.
  • Dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl ketone dicarboxylic acid, phenylindane dicarboxylic acid, sodium sulfoisophthalic acid, dibromoterephthalic acid and the like can be used.
  • alicyclic dibasic acid oxalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dimer acid and the like can be used.
  • glycol ethylene glycol, propylene glycol, tetramethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol and the like can be used as the aliphatic diol, and naphthalenediol, 2,2-bis (4-hydroxydiphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, hydroquinone, etc. can be used.
  • Cyclohexanedimethanol, cyclohexanediol and the like can be used as the alicyclic diol.
  • the polyester can be produced by a known method, and the intrinsic viscosity preferably has a lower limit of 0.5 and an upper limit of 0.8. More preferably, the lower limit is 0.55 and the upper limit is 0.70.
  • ⁇ sp (solution viscosity / solvent viscosity) ⁇ 1
  • C is the dissolved polymer mass per 100 ml of solvent (g / 100 ml, usually 1.2)
  • K is the Huggins constant (assuming 0.343). is there.
  • the solution viscosity and solvent viscosity are measured using an Ostwald viscometer. The unit is indicated by [dl / g].
  • the biaxially oriented polyester film of the present invention may be a single layer film or a laminated structure of two or more layers.
  • it consists of a polyester A layer and a polyester B layer.
  • it consists of a polyester A layer, a polyester B layer and a polyester C layer, or a polyester A layer, a polyester B layer and a polyester A layer. It becomes the laminated film which becomes.
  • the recovered raw material of the edge part generated in the film forming process can be used by mixing recycled raw materials for other film forming processes in a timely manner, and it is possible to reduce the consumption of petroleum resources and to obtain cost merit. This is the most preferred embodiment.
  • the biaxially oriented polyester film of the present invention contains a recovered raw material and / or a recycled raw material in the C layer. Therefore, the C layer is preferably the thickest layer in the layer configuration.
  • the melting specific resistance of the raw material contained in the A layer is preferably 1.0 ⁇ 10 6 ⁇ ⁇ cm or more and 1.0 ⁇ 10 8 ⁇ ⁇ cm or less, and more preferably 5.0. ⁇ 10 8 ⁇ ⁇ cm or less is preferable. It is also preferred that the raw material having such a melt specific resistance value is a polyester resin.
  • the A layer is preferably a layer constituting a surface whose SRa (A) described later is 1 nm or more and less than 15 nm.
  • the aspect which has the characteristic regarding the raw material composition and thickness of C layer mentioned above, the characteristic regarding the raw material of A layer, and the characteristic regarding a surface shape is also preferable.
  • the surface of the two layers constituting the surface layer of the two or more layers that is, the surface of the polyester A layer and the polyester B layer, the surface smoothness and handling such as conveyance and winding.
  • the center line roughness SRa (A) of one film surface is 1 nm or more and less than 15 nm
  • the center line roughness SRa (B) of the other film surface is 20 nm or more and 40 nm or less.
  • SRa (A) When SRa (A) is less than 1 nm, peeling may be difficult in a peeling step after a release layer is laminated on the surface and a ceramic slurry is laminated thereon. On the other hand, when SRa (A) is 15 nm or more, the surface state of the slurry is deteriorated and the thickness is uneven, and as a result, the characteristics of the capacitor are likely to vary. When SRa (B) is less than 20 nm, blocking is likely to occur during winding after the release layer is applied or winding after applying the ceramic slurry, and charging may occur when it is fed out.
  • the center line roughness SRa (A) of one film surface is more preferably 2 nm or more and less than 12 nm, and the center line roughness SRa (B) of the other film surface is more preferably. Is 25 nm or more and 35 nm or less.
  • the thickness of the biaxially oriented polyester film of the present invention is preferably 12 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more. Moreover, it is preferable that it is 188 micrometers or less, More preferably, it is 50 micrometers or less, More preferably, it is 40 micrometers or less. When the thickness is less than 12 ⁇ m, there is no support for holding the ceramic slurry, and the ceramic slurry cannot be supported in the application of the ceramic slurry, and uniform drying cannot be performed in the subsequent process, and thermal wrinkle is not sufficiently suppressed. It may become.
  • a preferable range of the thickness is 12 ⁇ m or more and 188 ⁇ m or less, more preferably 20 ⁇ m or more and 50 ⁇ m or less, and further preferably 25 ⁇ m or more and 40 ⁇ m or less.
  • the biaxially oriented polyester film of the present invention may contain particles.
  • the volume average particle size of the particles contained at this time is preferably 1.3 ⁇ m or less. If the volume average particle diameter of the particles exceeds 1.3 ⁇ m, there is a high chance that voids, that is, voids, are generated at the interface between the particles and the polymer at the time of stretching.
  • the thickness variation may increase.
  • the ultra-thin green sheet in the present invention refers to a sheet having a thickness of less than 1 ⁇ m.
  • the particles used in the present invention are inorganic particles such as spherical silica, agglomerated silica, calcium carbonate, aluminum oxide, barium titanate, and titanium oxide, crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin particles, and crosslinked styrene-acrylic resin.
  • Organic particles such as particles, crosslinked polyester particles, polyimide particles, and melamine resin particles can be used. In addition to the role of forming protrusions on the film surface, these particles can also serve as a core material for forming voids, so it is desirable to select the type of particles together with the particle diameter.
  • organic particles having high particle elasticity are used.
  • the organic particles are particularly preferably organic particles selected from crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin particles, crosslinked styrene-acrylic resin particles, and crosslinked polyester particles.
  • organic particles selected from crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin particles, crosslinked styrene-acrylic resin particles, and crosslinked polyester particles.
  • spherical silica and aluminum oxide are particularly preferable.
  • the particle shape and particle size distribution are preferably uniform, and in particular, the particle shape is preferably close to a sphere.
  • V is the particle volume ( ⁇ m 3 )
  • Dm is the maximum diameter ( ⁇ m) on the projection plane of the particles.
  • cross-linked polystyrene resin particles, cross-linked silicone resin particles, and cross-linked acrylic resin particles synthesized by an emulsion polymerization method and the like can be suitably used.
  • cross-linked polystyrene particles, cross-linked silicone, and spherical silica have a volume shape factor. It is close to a true sphere, and the particle size distribution is extremely uniform, which is preferable from the viewpoint of uniformly forming film surface protrusions.
  • the biaxially oriented polyester film of the present invention has a film width of 400 mm or more and a variation ⁇ value ( ⁇ MD ) of 0.15 ⁇ m or less with respect to the average value of thicknesses measured continuously in the film longitudinal direction of 10,000 m.
  • the biaxially oriented polyester film of the present invention has a film width of 400 mm or more and a variation ⁇ value ( ⁇ MD ) of 0.15 ⁇ m or less with respect to the average value of thicknesses measured continuously in the film longitudinal direction of 10,000 m.
  • the thickness continuously measured in the film longitudinal direction of 10,000 m here is the thickness when the film is continuously measured in a non-contact manner.
  • the film width and the length in the longitudinal direction represent the dimensions of the support necessary for manufacturing the multilayer ceramic capacitor in a certain lot. That is, it has been found that the green sheet moldability can be improved by suppressing variations in thickness within these dimensions.
  • the ⁇ MD value is sometimes referred to as uneven film thickness in the longitudinal direction.
  • the thickness of a conventional biaxially oriented polyester film is measured by scanning a non-contact thickness meter in the width direction while the film is being formed, or by collecting a sample taken about 20 m in the longitudinal direction from a film roll.
  • the thickness unevenness behavior that could not be confirmed in the past was found by continuously measuring in the longitudinal direction of 10,000 m as described above.
  • the present invention has the effects of reducing the uneven thickness of the slurry when applying the thin film ceramic slurry, reducing the variation in capacitance, and suppressing the probability of short circuit.
  • sigma MD is more than 0.15 [mu] m, the effect of uneven thickness of the slurry is increased above is reduced in the coating of thin ceramic slurry.
  • the center line roughness SRa (A) of one film surface is 1 nm or more and less than 15 nm
  • the center line roughness SRa (B) of the other film surface is 20 nm or more and 40 nm or less.
  • the biaxially oriented polyester film of the present invention can be subjected to mold release treatment on both surfaces in consideration of the balance between slurry coating thickness and handling properties, and can be planarized before mold release treatment. To reduce the roughness of the release layer surface.
  • inert particles are dispersed in a predetermined proportion in ethylene glycol which is a diol component, and this ethylene glycol slurry is added at an arbitrary stage before completion of polyester polymerization.
  • ethylene glycol which is a diol component
  • this ethylene glycol slurry is added at an arbitrary stage before completion of polyester polymerization.
  • a method in which a water slurry of particles is directly mixed with a predetermined polyester pellet, supplied to a vent type twin-screw kneading extruder, and kneaded into the polyester is also effective for the production of the present invention.
  • the thus prepared particle-containing master pellets and pellets substantially free of particles and the like are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder.
  • a uniaxial or biaxial extruder can be used as the extruder for producing the biaxially oriented polyester film of the present invention.
  • the vent type extruder which provided the vacuum drawing line in the extruder can also be used.
  • what is called a tandem extruder which shares the function which melt
  • a tandem extruder is preferable as a process for reducing unevenness in thickness because the polymer temperature at the time of high discharge can be stabilized, and as a result, the viscosity variation of the polymer can be reduced.
  • the polymer melted and extruded by the extruder is filtered through a filter.
  • a filter having a high collection efficiency that collects 95% or more of a foreign substance having a size of 3 ⁇ m or more On the other hand, if the collection efficiency of the filter is too high, the degree of pressure increase may increase. Therefore, a filter with a higher accuracy of collection efficiency that collects 95% or more of foreign matters less than 3 ⁇ m. Use may be an unfavorable embodiment in reducing thickness unevenness.
  • the sheet is extruded from a slit-shaped slit die and cooled and solidified on a casting roll to form an unstretched film.
  • lamination is performed in three layers using three extruders, a three-layer manifold or a merge block (for example, a merge block having a rectangular merge portion), and a sheet is extruded from a die.
  • the base of the base can be automatically adjusted with a heater.
  • the sheet extruded from the die is cooled by a casting roll to form an unstretched film.
  • a method of installing a static mixer and gear pump in the polymer flow channel is effective as a means for suppressing uneven thickness in the longitudinal direction in the present invention. Since the gear pump has a function of blocking pressure fluctuations in the extrusion process, it is necessary to uniformly control the thickness in the longitudinal direction. By making the rotational speed of the gear built in the gear pump constant, uneven thickness in the longitudinal direction is required. Can be kept small. In the present invention, it is also effective to control the rotation speed of the gear pump by feeding back the weight-converted thickness of the rolled up intermediate product. This is because the discharge decreases as the filter pressure increases, and the film thickness gradually decreases in the longitudinal direction.
  • the ⁇ MD value in order to control the ⁇ MD value, it was necessary to further improve the accuracy, so when evaluating the rotation accuracy of the casting roll, it was measured by a sensor installed on the ground on which the casting drum was installed, The difference between the maximum value and the minimum value of the uneven state when the distance from the sensor to the cast surface was measured for one round on the cast circumference was defined as a shake.
  • the numerical value is desirably within 50 ⁇ m, and further within 30 ⁇ m is a desirable form in order to improve the thickness unevenness ( ⁇ MD ) in the longitudinal direction in the present invention.
  • the unevenness of the cast circle around the cast circle is measured by installing a laser displacement meter on the floor where the casting device is installed, and measuring the distance between the casting roll and the measurement unit of the laser displacement meter. .
  • the unstretched film that has landed on the casting roll is brought into close contact with the cast using electrostatic force using a pinning device.
  • the pinning device applies electric charges from the electrostatic application wire to the casting roll over the entire width of the unstretched film, and causes the film and the casting roll to adhere to each other by static electricity to the interface between the casting roll and the film.
  • the distance from the electrostatic application wire to the film is equal over the entire width of the unstretched film.
  • the end of the unstretched film is adjusted so that the thickness of the end becomes thicker than the center in order to increase the gripping force of the clip when stretched by a transverse stretcher, but the end adhesion is poor and casting As a result of poor cooling efficiency due to the roll, crystallization at the end proceeds and may cause breakage.
  • a so-called edge pinning device that additionally attaches a pinning device only to the end is provided. By attaching, the end of the unstretched film is brought into close contact with the cast, and the uneven cooling of the edge part is also suppressed, so that vibration at the landing point of the cast can be suppressed, and desirable in order to improve the uneven thickness in the longitudinal direction.
  • edge pinning apparatus when applying an edge pinning apparatus to an unstretched film, if it implements from the location 5 mm or more away from the edge part edge part of an unstretched film, effective pinning can be performed. This is to prevent the leakage current from being abnormally discharged to the casting roll during the electrostatic application from the edge pinning device.
  • the processing width of edge pinning is adjusted in accordance with the edge thickness profile of the unstretched film, but setting the range to 20 mm or more and less than 100 mm can effectively mold the edge part.
  • the film that has been in close contact with the casting roll and cooled is peeled off from the casting roll using a pulling roll, and then led to the next stretching step.
  • the separation roll may be subjected to water for cooling the film, or may be driven.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
  • simultaneous biaxial stretching when vertical and horizontal stretching are performed simultaneously, the wind speed variation and the airflow flowing along the film (associated airflow) affect the longitudinal direction as well as the disturbance in the longitudinal direction. This is a form in which stretching is preferably applied.
  • the first stretching in the longitudinal direction is important for suppressing the occurrence of scratches and for suppressing uneven thickness in the longitudinal direction. It is 90 ° C or higher and 130 ° C or lower, preferably 100 ° C or higher and 120 ° C or lower.
  • the stretching temperature is lower than 90 ° C, the film is easily broken, and when the stretching temperature is higher than 130 ° C, the film surface is easily damaged by heat.
  • stretching is preferably performed in two or more stages, and the total magnification is 2.8 times to 5.0 times in the length direction, preferably 3.3 times.
  • the longitudinal stretching ratio is 4.0 times or less and 3.5 times or more and 5 times or less, preferably 4.0 times or more and 4.5 times or less in the width direction.
  • the stretching ratio in one stretching section is 3.0 times or less because an appropriate stretching tension can be secured. If the temperature and magnification range are out of the range, problems such as uneven stretching or film breakage are caused, and it is difficult to obtain a film characterized by the present invention.
  • the stretching process in the longitudinal direction is due to the contact between the film and the roll, and the film is likely to be damaged when the film slips due to the difference between the peripheral speed of the roll and the speed of the film. Therefore, a drive system in which the roll peripheral speed can be individually set for each roll is preferable.
  • the material of the transport roll is heated to a temperature higher than the glass transition point before stretching or transported to the stretching zone while maintaining the temperature below the glass transition point. Either heating or not is selected.
  • adhesiveness due to heating induces stretching unevenness.
  • a conveyance roll As a metal roll plated with hard chrome, it is preferable to set the conveyance temperature to less than 80 ° C. In this case, it is preferable to supplement the amount of heat using an infrared heater in the stretching step.
  • the surface roughness Ra of the stretching roll is 0.005 ⁇ m or more.
  • the thickness is preferably 1.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.6 ⁇ m or less.
  • Ra is larger than 1.0 ⁇ m, the unevenness of the roll surface during stretching is easily transferred to the film surface, and when it is smaller than 0.005 ⁇ m, the roll and the film background adhere to each other, and the film is easily damaged by heat.
  • it is effective to appropriately adjust the particle size of the abrasive and the number of polishings.
  • setting the longitudinal stretching ratio lower than the transverse stretching ratio is a preferable stretching condition in order to reduce the thickness unevenness in the longitudinal direction.
  • the unstretched film is transported to the stretching zone while being kept at a temperature lower than the glass transition point, but when heated at the time of stretching, the preheating zone transport roll was subjected to surface treatment with hard chromium or tungsten carbide. It is preferable to use a metal roll having a surface roughness Ra of 0.2 ⁇ m or more and 0.6 ⁇ m or less in order to suppress adhesion that causes heat wrinkles and uneven thickness in the longitudinal direction.
  • the uniaxially stretched film stretched in the longitudinal direction is heated to 90 ° C. or more and less than 120 ° C. with a transverse stretching machine, and then stretched in the width direction at 3 times or more and less than 6 times to obtain biaxial stretching (biaxial stretching) Orientation) film.
  • This horizontal stretching machine performs self-circulation for each room of the oven and blows warm air on the film to raise the temperature of the film and to perform stretching and heat setting.
  • air is preferably supplied and exhausted in the oven to replace the air.
  • the direction of the air flowing above and below the conveyed film is the same direction as the film flow direction.
  • the air flow inside the STN changes in a complex manner.
  • the flow of air between the chambers may change from, for example, a flow from upstream to downstream to a flow from downstream to upstream.
  • the air flow between the chambers may lead to uneven stretching of the film when the temperature of the air varies between the chambers. For this reason, regarding the conditions of the intake air amount and the exhaust air amount of the oven, the flow of air in the same direction can be induced by making the exhaust air amount larger than the air supply amount.
  • the biaxially oriented polyester film of the present invention may be further re-stretched once or more in each direction, or may be re-stretched simultaneously biaxially.
  • a method for suppressing the thickness unevenness in the longitudinal direction it is possible to relieve the bowing generated in the previous transverse stretching step in the longitudinal re-stretching step.
  • it may be heated at a temperature of 80 ° C. to 100 ° C. with a transport roll before re-longitudinal stretching in the longitudinal direction, or may be transported using an unheated roll.
  • you may pass through a re-longitudinal stretch process, without applying a draw ratio.
  • the heat treatment temperature can usually be an arbitrary temperature of 150 ° C. or higher and lower than 245 ° C., and the heat treatment time is preferably 1 second or longer and 60 seconds or shorter.
  • the heat treatment may be performed while relaxing the film in the longitudinal direction and / or the width direction. Further, after the heat treatment, it is preferable to relax at a temperature lower by 0 ° C. or more and 150 ° C. or less than the heat treatment temperature by 0% or more and 10% or less in the width direction.
  • the film after the heat treatment can be provided with, for example, an intermediate cooling zone or a cooling zone, and the dimensional change rate and flatness can be adjusted.
  • relaxation may be performed in the longitudinal direction and / or the transverse direction during the heat treatment or in the subsequent intermediate cooling zone or cooling zone.
  • the film after biaxial stretching is cooled in the conveying process, and then the edge is cut and wound to obtain an intermediate product.
  • the film thickness in the width direction is measured, the data is fed back and used to adjust the film thickness by adjusting the die thickness and the like, and foreign matter detection by the defect detector can be performed.
  • Thickness can be measured by ⁇ -rays, X-rays, or an optical interference method.
  • Measurement is a method of measuring the full width by traversing one measuring device in the width direction, a method of measuring the full thickness by traversing a plurality of measuring devices in the section divided in the width direction, When the range is wide, a plurality of measuring devices can be fixed in the width direction to measure the thickness of the entire width. Moreover, about the place to measure, it can also carry out offline using the measurement in the said conveyance process, or using the biaxially-oriented polyester film roll after slitting an intermediate product.
  • the intermediate product is slit into an appropriate width and length by a slitting process and wound around a core to obtain a roll of a biaxially oriented polyester film.
  • the core is a cylindrical winding core made of plastic or paper. Since it is preferable to use a core with little expansion and contraction due to temperature and humidity and little deformation due to winding pressure, it is preferable to use a plastic core. Furthermore, it is preferable to use a core in which a plastic is reinforced with glass fiber or carbon fiber. Moreover, when using paper for a core, intensity
  • the film cutting step in the slitting step is a step for removing an unnecessary portion of the intermediate product and obtaining a polyester film roll having a desired product width.
  • this cutting step 3 to 10 locations are simultaneously cut in the width direction of the intermediate product.
  • the method used for this cutting can be selected from a method of cutting by shearing the lower blade and the upper blade and a method of cutting in the air between the pass lines.
  • the film width is the width of the film after slitting by the slitting process, and a polyester film roll having a desired product width can be obtained by adjusting the cutting location in the cutting process described above in the width direction. .
  • the length of the film longitudinal direction in this invention is measured with the length measuring device installed on the arbitrary rolls of a slit process.
  • a polyester film roll in this invention.
  • the film Since the biaxially oriented polyester film roll for mold release obtained by the above-described method winds up a film with little thickness unevenness in the longitudinal direction, the film is used as a mold member for mold release applications, particularly for multilayer ceramic capacitors. Furthermore, it can be more preferably used as a molding member of a laminated ceramic capacitor for automobiles.
  • the mold release use in this invention refers to the use which uses the film obtained from the biaxially-oriented polyester film roll of this invention for a base material as a shaping
  • Examples of the member here include a green sheet in a multilayer ceramic capacitor, an interlayer insulating resin (electrical insulating resin) in a multilayer circuit board, and a polycarbonate (in this case, used in solution casting) in an optical member. Can be mentioned.
  • the measurement method and evaluation method relating to the present invention are as follows.
  • SRa value Film surface roughness Surface centerline roughness (SRa value) Measured using a three-dimensional fine surface shape measuring instrument (ET-350K manufactured by Kosaka Manufacturing Co., Ltd.), and obtained from the surface profile curve, according to JIS B0601 (1994), arithmetic average roughness (centerline roughness) SRa Find the value.
  • the measurement conditions are as follows. X direction measurement length: 0.5mm X direction feed rate: 0.1 mm / sec Y direction feed pitch: 5 ⁇ m Number of lines in Y direction: 40 Cutoff: 0.25mm Stylus pressure: 0.02mN Height (Z direction) magnification: 50,000 times
  • the X direction is measured in the width direction of the sample, and the Y direction is measured in the longitudinal direction of the sample.
  • polyester resin 150 g of polyester resin was put into a 50 ⁇ test tube substituted with pure water, and dried under reduced pressure at 180 ° C. for 3 hours. Then, it melted under nitrogen flow at 290 ° C. for 50 minutes, and the electrode was inserted into the molten polymer. The melt specific resistance was determined by calculating the resistance value from the amount of current when a voltage of 5,000 V was applied between the electrodes.
  • the electrodes were prepared such that a Teflon (registered trademark) spacer was sandwiched between two copper plates (22 cm 2 ) and the distance between the copper plates was 9 mm.
  • Example 1 Preparation of polyester pellets (Preparation of polyester A) Esterification reaction is conducted while distilling water at 255 ° C. with 86.5 parts by mass of terephthalic acid and 37.1 parts by mass of ethylene glycol. After completion of the esterification reaction, 0.02 part by weight of trimethyl phosphate, 0.06 part by weight of magnesium acetate, 0.01 part by weight of lithium acetate, and 0.0085 part by weight of antimony trioxide were added. A polycondensation reaction was carried out by heating up to 0 ° C. and a polyester pellet A having an intrinsic viscosity of 0.63 dl / g was obtained. As a result of measuring the melting specific resistance of this chip, it was 7.0 ⁇ 10 7 ⁇ ⁇ cm.
  • the spherical silica used in polyester B is obtained by adding a mixed solution consisting of ethanol, pure water, and aqueous ammonia as a basic catalyst to this mixed solution while stirring the mixed solution of ethanol and ethyl silicate.
  • the monodispersed silica particles obtained by stirring the reaction solution and conducting a hydrolysis reaction of ethyl silicate and a polycondensation reaction of the hydrolysis product, followed by stirring after the reaction.
  • a water slurry of divinylbenzene / styrene copolymer crosslinked particles having a Mohs hardness of 3 (crosslinking degree of 80%) is contained in the above-mentioned homopolyester pellets substantially free of particles using a vented biaxial kneader, and the volume Master pellets containing 1% by mass of divinylbenzene / styrene copolymer crosslinked particles having an average particle size of 0.3 ⁇ m and 0.8 ⁇ m with respect to the polyester were obtained (Polyester C and Polyester D), respectively.
  • polyester A After transesterification, 10 parts by mass of calcium carbonate and 90 parts by mass of ethylene glycol prepared by the carbon dioxide method (volume average particle size volume average particle size 1.1 ⁇ m, Mohs hardness 3) were wet pulverized. A calcium carbonate / ethylene glycol dispersion slurry was obtained. The volume average particle diameter of this calcium carbonate was 1.1 ⁇ m. On the other hand, 0.04 parts by mass of manganese acetate and 0.03 parts by mass of antimony trioxide are added to 100 parts by mass of dimethyl terephthalate and 64 parts by mass of ethylene glycol as a catalyst, and then a transesterification reaction is performed.
  • the recovered raw material A was obtained by collecting the film after producing the film having the following formulation and pelletizing it.
  • the ratio described below is represented by mass ratio (mass%) with respect to the mass of the whole film.
  • polyester pellets to be supplied to the extruders of the respective layers A, B and C were prepared at the following ratio.
  • the ratio described below is a mass ratio (unit: mass%) with respect to the polyester pellet which comprises each layer.
  • the raw materials for layer A and C are the raw materials after stirring, and the vents for layer A and layer C.
  • the raw material of the B layer was dried under reduced pressure at 160 ° C. for 8 hours and supplied to the single screw extruder for the B layer.
  • the B layer is melt extruded at 275 ° C. with a tandem extruder, filtered with a high-precision filter that collects 95% or more of foreign matters of 3 ⁇ m or more, and then merged and laminated with a rectangular heterogeneous three-layer merge block.
  • a three-layer stack consisting of A, layer B, and layer C was used.
  • the film is wound around a casting drum having a surface temperature of 25 ° C. and cooled and solidified by using an electrostatic application casting method in which electrostatic application is applied to the entire width of the unstretched film through a slit die maintained at 285 ° C. Got. At this time, the cast was aligned, and the deflection was 25 ⁇ m.
  • This uniaxially stretched film was stretched 4.0 times at 115 ° C. in the transverse direction in a stenter, then heat-set at 230 ° C., relaxed by 5% in the width direction, cooled in the conveying process, and then edged.
  • the product was wound up after cutting to obtain an intermediate product of a biaxially stretched film having a thickness of 31 ⁇ m.
  • air supply / exhaust from the outside of the oven was adjusted to allow air to flow in a certain direction.
  • This intermediate product was slit with a slitter to obtain a biaxially stretched film roll having a thickness of 31 ⁇ m.
  • the layer A was 6.5 ⁇ m
  • the layer B was 23.5 ⁇ m
  • the layer C was 1.0 ⁇ m.
  • Data was collected from the obtained products, and the results of characteristic evaluation are shown in Table 1.
  • the obtained ceramic slurry is coated on a release film with a die coater so that the thickness after drying is 0.5 ⁇ m, and dried, and the slurry thickness after drying is a non-contact method at the center of the coating. Was measured continuously. Thereafter, winding was performed to obtain a green sheet. At this time, the slurry thickness unevenness ⁇ value was evaluated. A value less than 0.13 was good, a value between 0.13 and less than 0.15 was acceptable, and a value exceeding 0.15 was regarded as defective. The slurry thickness unevenness in the embodiment of Example 1 was good in green sheet moldability. At this time, good is at a level where there is no practical problem.
  • Example 2 The procedure was the same as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed. The results obtained are shown in Table 1.
  • Example 5 The center value of the thickness was corrected by decreasing the rotational speed control of the gear pump in accordance with the increase of the polymer filter pressure.
  • the procedure was the same as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed. The results obtained are shown in Table 1.
  • Example 6 An edge pinning device was applied to the cast sheet. In the pinning, electrostatic application was performed in a range from 5 mm inside to 50 mm inside the unstretched sheet. Film formation was performed under the same conditions as in Example 1. The results obtained are shown in the table.
  • Example 1 The procedure was the same as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed. The results obtained are shown in Table 2. The slurry thickness unevenness was worse than that of Examples 1 to 4, and the evaluation was acceptable.
  • Example 3 The same operation as in Example 1 was performed except that the longitudinal draw ratio and the transverse draw ratio were changed to 4.5 times and 4.5 times, respectively. By increasing the magnification, but the purpose of flattening unevenness generated in step earlier, resulting sigma MD worsened. As a result of performing frequency analysis of thickness unevenness for ⁇ MD, a period of stretching unevenness that seems to be derived from longitudinal stretching was confirmed.
  • Comparative Example 6 Comparative Example 6
  • the edge pinning device was applied, but there was no improvement effect on the casting failure as seen in Comparative Example 5.
  • Example 7 In order to remove the oligomers in the oven by increasing the number of times of air ventilation in the heat setting zone, the other film forming conditions were the same as in Example 1 in which intake and exhaust were performed in each chamber of the heat setting zone. As a result, although the cycle was indefinite, the film thickness unevenness was deteriorated. The thickness of the slurry was uneven.
  • the biaxially oriented polyester film of the present invention is excellent in planar properties in the longitudinal direction, it can be suitably used for mold release applications. Particularly, since the in-plane expansion / contraction behavior is uniformed against the tension at the time of processing, it is particularly suitably used for a mold release application using a green sheet in a multilayer ceramic capacitor as a member.

Abstract

A biaxially oriented release polyester film characterized by having a width of 400 mm or greater and a thickness deviation σ (σMD) with respect to the average value, determined through a continuous measurement over 10,000 m in the machine direction of the film, of 0.15 μm or less. The release polyester film can give a less rigid support for green sheet forming and can reduce strain amounts during electrode printing. The release polyester film is optimal for ceramic-slurry application in forming thin green sheets.

Description

離型用二軸配向ポリエステルフィルムロールBiaxially oriented polyester film roll for mold release
 本発明は薄膜スラリー塗工時の膜厚の均一性に優れた離型用二軸配向ポリエステルフィルムを巻き取った離型用二軸配向ポリエステルフィルムロールに関する。 The present invention relates to a release biaxially oriented polyester film roll obtained by winding a release biaxially oriented polyester film excellent in film thickness uniformity during thin film slurry coating.
 二軸配向ポリエステルフィルムは、機械特性や熱特性、コシの強さやコストの観点から、工業材料用途として多様な用途にて用いられている。特に最近では、電子部材関連の工程紙として、積層セラミックコンデンサのグリーンシートを成型するための離型フィルムや、液晶偏光板のセパレータ、ドライフィルムレジスト用基材、層間絶縁樹脂離型用基材などに用いられている。 Biaxially oriented polyester films are used in various applications as industrial materials from the viewpoint of mechanical properties, thermal properties, stiffness, and cost. Particularly recently, as process papers related to electronic materials, release films for molding green sheets of multilayer ceramic capacitors, separators for liquid crystal polarizing plates, base materials for dry film resists, base materials for interlayer insulating resin release, etc. It is used for.
 昨今のスマートフォンの機能高度化や、スマートウォッチ、ウェアラブル機器の普及に伴い、積層セラミックコンデンサの小型高容量化が更に進んでいる。積層セラミックコンデンサの製造に用いる離型フィルムに関しては、グリーンシートの薄膜化に伴い、平滑性が高く、フィルム表面および内部に欠陥の無く、フィルムの平面性に優れたポリエステルフィルムの需要が伸び続けている。一方で、自動車に搭載される積層セラミックコンデンサは、電気自動車の生産量拡大、自動車のIoT(Internet Of Things)化や、自動車への自動運転機能の搭載により、需要が急速に拡大している。これら自動車用積層セラミックコンデンサに対しては、従来の要求より更に厳しく信頼性を求められている。特に、積層セラミックコンデンサの誘電体部品となるグリーンシートの成型においては、フィルムの厚みむらや、フィルムの平面特性に起因となって、フィルムを基材として使用する際に、上に積層するスラリー厚みの不均一さが、より厳しく管理されるようになっている。 】 With the recent advancement of smartphone functions and the spread of smart watches and wearable devices, multilayer ceramic capacitors are becoming increasingly smaller and have higher capacities. With regard to release films used in the production of multilayer ceramic capacitors, the demand for polyester films with high smoothness, no defects in the film surface and inside, and excellent film flatness has continued to grow as green sheets become thinner. Yes. On the other hand, the demand for monolithic ceramic capacitors mounted on automobiles is rapidly expanding due to the expansion of electric vehicle production, IoT (Internet of Things) of automobiles, and the mounting of automatic driving functions on automobiles. For these multilayer ceramic capacitors for automobiles, reliability is demanded more strictly than conventional requirements. In particular, in the molding of a green sheet that is a dielectric part of a multilayer ceramic capacitor, the thickness of the slurry that is laminated on the film when it is used as a base material due to uneven thickness of the film and the planar characteristics of the film Is becoming more strictly managed.
 フィルムの厚みむらは、特許文献1に示すように、長手方向に15mの測定を実施し判定することや、1m長を5mm毎に測定して判定する手法が公知の手法としてして知られている。また、特許文献2に示すように、偏光板を検査するクロスニコル法において偏光板から漏れる光の強度のむらが強くなり、検査の障害となることから、厚みむらを所定の範囲にする必要がある。特許文献3に示すように、同時二軸延伸を実施し、面配向を高めることで達成することが知られている。 As shown in Patent Document 1, the thickness unevenness of the film is known as a well-known technique in which a measurement is performed by measuring 15 m in the longitudinal direction and a measurement is performed by measuring a 1 m length every 5 mm. Yes. Further, as shown in Patent Document 2, unevenness in the intensity of light leaking from the polarizing plate in the crossed Nicol method for inspecting the polarizing plate becomes strong and obstructs the inspection, so that the unevenness in thickness needs to be within a predetermined range. . As shown in Patent Document 3, it is known that simultaneous biaxial stretching is carried out to enhance the plane orientation.
特開2008-246685号公報JP 2008-246665A 特開2017-007175号公報JP 2017-007175 A 特開2004-291240号公報JP 2004-291240 A
 近年のコンデンサに対する要求は、小型化、大容量化に加え、高信頼性化の傾向にある。小型化はすなわち電極の縮小化により達成される。大容量化はすなわちグリーンシートの薄膜化により、また、高信頼性化は、電極やグリーンシートを設ける際の、幅、長さ、厚み方向に対する寸法精度の向上により達成される。この中で、スラリー塗布時における、塗布厚みの均一性は、後に電極印刷を実施する工程において、一つ一つの電極面積が微細となっているため、電極パターンの歪みやズレを極小化することが、コンデンサの誘電率ばらつき、すなわちコンデンサの静電容量ばらつきを決定づける大きな要因の一つとして挙げられている。このため、フィルムに対する、厚みむらの極小化に関する要求が厳しくなっている。とくに、コンデンサ製造時において、スラリー厚みを常時監視し、ダイの傾きなどを修正しながらスラリーの薄膜塗布を実施する工程においては、ロール全長におけるベースフィルムの厚みむらが寄与する可能性が高いことが判明している。このため本発明においては、特にグリーンシート成型時の支持体として使用される際の、ロール全長にわたるフィルムの厚みむらを低減させることを課題とする。 Demand for capacitors in recent years tends to be high reliability in addition to miniaturization and large capacity. Miniaturization is achieved by reducing the size of the electrode. The increase in capacity is achieved by reducing the thickness of the green sheet, and the increase in reliability is achieved by improving the dimensional accuracy in the width, length, and thickness directions when electrodes and green sheets are provided. Among these, the uniformity of the coating thickness at the time of slurry coating is to minimize the distortion and misalignment of the electrode pattern because each electrode area is fine in the step of performing electrode printing later. However, it is cited as one of the major factors that determine the variation in the dielectric constant of the capacitor, that is, the variation in the capacitance of the capacitor. For this reason, the request | requirement regarding minimization of the thickness nonuniformity with respect to a film has become severe. In particular, when manufacturing capacitors, the thickness of the base film over the entire roll length is likely to contribute to the process of applying the slurry thin film while constantly monitoring the slurry thickness and correcting the tilt of the die. Is known. For this reason, in this invention, it makes it a subject to reduce the thickness nonuniformity of the film over the full length of a roll especially when it is used as a support body at the time of green sheet molding.
 本発明者らは、上記実情に鑑み鋭意検討した結果、フィルムの特性を最適化することで、長手、幅、厚み方向におけるスラリーの寸法安定性に優れた離型用二軸配向ポリエステルフィルムを巻き取った離型用二軸配向ポリエステルフィルムロールを見出し、本発明に至った。すなわち、本発明は、フィルム幅が400mm以上であり、フィルム長手方向10,000mを連続測定した厚みの平均値に対するばらつきσ値(σMD)が0.15μm以下である離型用二軸配向ポリエステルフィルムロールを特徴とする。 As a result of intensive studies in view of the above circumstances, the present inventors have wound a biaxially oriented polyester film for release having excellent slurry dimensional stability in the longitudinal, width and thickness directions by optimizing the film properties. The obtained biaxially oriented polyester film roll for mold release was found, and the present invention was achieved. That is, the present invention is a biaxially oriented polyester for mold release having a film width of 400 mm or more and a variation σ value (σ MD ) of 0.15 μm or less with respect to the average value of the thickness measured continuously in the film longitudinal direction of 10,000 m. Features a film roll.
 本発明によれば、グリーンシート成型時の厚みばらつきを低減させることができ、超薄膜グリーンシート成型時の、セラミックススラリーの塗工性に最適化した、離型用二軸配向ポリエステルフィルムを巻き取った離型用二軸配向ポリエステルフィルムロールを提供することができる。 According to the present invention, it is possible to reduce the thickness variation at the time of green sheet molding, and to wind up the biaxially oriented polyester film for mold release optimized for the coating property of the ceramic slurry at the time of ultra-thin green sheet molding. A biaxially oriented polyester film roll for mold release can be provided.
 以下、本発明についてさらに詳細に説明する。
 本発明の離型用二軸配向ポリエステルフィルムロールは、コア等の芯材に離型用二軸配向ポリエステルフィルム(以下、単に二軸配向ポリエステルフィルムということがある)が巻き取られたものである。ここで二軸配向とは、未延伸(未配向)フィルムを、常法により、二次元方向に延伸された状態を指し、広角X線回折で二軸配向のパターンを示すものを意味する。延伸は、逐次二軸延伸または同時二軸延伸のいずれの方法も採ることができる。逐次二軸延伸は、長手方向(縦)および幅方向(横)に延伸する工程を、縦-横の1回ずつ実施することもできるし、縦-横-縦-横など、2回ずつ実施することもできる。
Hereinafter, the present invention will be described in more detail.
The biaxially oriented polyester film roll for mold release of the present invention is obtained by winding a biaxially oriented polyester film for mold release (hereinafter sometimes simply referred to as a biaxially oriented polyester film) around a core material such as a core. . Here, the biaxial orientation refers to a state in which an unstretched (unoriented) film is stretched in a two-dimensional direction by a conventional method, and indicates a biaxially oriented pattern by wide-angle X-ray diffraction. For stretching, either sequential biaxial stretching or simultaneous biaxial stretching can be employed. In sequential biaxial stretching, the process of stretching in the longitudinal direction (longitudinal) and the width direction (transverse) can be performed once in the length-width direction, or twice in the length-width-length-width direction. You can also
 本発明の二軸配向ポリエステルフィルムにおけるポリエステルとは、二塩基酸とグリコールを構成成分とするポリエステルであり、芳香族二塩基酸としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸、ナトリウムスルホイソフタル酸、ジブロモテレフタル酸などを用いることができる。脂環族二塩基酸としては、シュウ酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸などを用いることができる。グリコールとしては、脂肪族ジオールとして、エチレングリコール、プロピレングリコール、テトラメチレングリコール、プロピレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ジエチレングリコールなどを用いることができ、芳香族ジオールとして、ナフタレンジオール、2,2ビス(4-ヒドロキシジフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ハイドロキノンなどを用いることができ、脂環族ジオールとしては、シクロヘキサンジメタノール、シクロヘキサンジオールなどを用いることができる。 The polyester in the biaxially oriented polyester film of the present invention is a polyester having dibasic acid and glycol as constituent components, and the aromatic dibasic acid is terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, diphenylsulfone. Dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl ketone dicarboxylic acid, phenylindane dicarboxylic acid, sodium sulfoisophthalic acid, dibromoterephthalic acid and the like can be used. As the alicyclic dibasic acid, oxalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dimer acid and the like can be used. As the glycol, ethylene glycol, propylene glycol, tetramethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol and the like can be used as the aliphatic diol, and naphthalenediol, 2,2-bis (4-hydroxydiphenyl) propane, 2,2-bis (4-hydroxyethoxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, hydroquinone, etc. can be used. As the alicyclic diol, Cyclohexanedimethanol, cyclohexanediol and the like can be used.
 上記ポリエステルは公知の方法で製造することができ、固有粘度は下限0.5、上限0.8のものを用いることが好ましい。さらに好ましくは下限0.55、上限0.70である。なお、固有粘度の測定は、オルトクロロフェノール中、25℃で測定した溶液粘度から、下式で計算した値を用いる。
 ηsp/C=[η]+K[η]・C
The polyester can be produced by a known method, and the intrinsic viscosity preferably has a lower limit of 0.5 and an upper limit of 0.8. More preferably, the lower limit is 0.55 and the upper limit is 0.70. In addition, the measurement of an intrinsic viscosity uses the value calculated by the following Formula from the solution viscosity measured at 25 degreeC in orthochlorophenol.
ηsp / C = [η] + K [η] 2 · C
 ここで、ηsp=(溶液粘度/溶媒粘度)-1であり、Cは、溶媒100mlあたりの溶解ポリマー質量(g/100ml、通常1.2)、Kはハギンス定数(0.343とする)である。また、溶液粘度、溶媒粘度はオストワルド粘度計を用いて測定する。単位は[dl/g]で示す。 Here, ηsp = (solution viscosity / solvent viscosity) −1, C is the dissolved polymer mass per 100 ml of solvent (g / 100 ml, usually 1.2), and K is the Huggins constant (assuming 0.343). is there. The solution viscosity and solvent viscosity are measured using an Ostwald viscometer. The unit is indicated by [dl / g].
 本発明の二軸配向ポリエステルフィルムは、単層フィルムであってもよく、2層以上の積層構成であってもよい。2層積層時は、ポリエステルA層およびポリエステルB層からなり、3層の場合は、ポリエステルA層およびポリエステルB層およびポリエステルC層あるいは、ポリエステルA層およびポリエステルB層およびポリエステルA層の3層からなる積層フィルムとなる。この際、表層を構成する層(積層部)に含有せしめる粒子量を制御することで、内層部にフィルム表面の特性に悪影響を与えない範囲で、製膜工程で発生するエッジ部分の回収原料、あるいは他の製膜工程のリサイクル原料などを適時混合して使用でき、石油資源の消費を減らすことが可能となるとともに、コストメリットを得ることが可能であるため、3層以上の層構成を有することが最も好ましい実施形態である。 The biaxially oriented polyester film of the present invention may be a single layer film or a laminated structure of two or more layers. When two layers are laminated, it consists of a polyester A layer and a polyester B layer. In the case of three layers, it consists of a polyester A layer, a polyester B layer and a polyester C layer, or a polyester A layer, a polyester B layer and a polyester A layer. It becomes the laminated film which becomes. In this case, by controlling the amount of particles to be included in the layer constituting the surface layer (lamination part), in the range that does not adversely affect the characteristics of the film surface on the inner layer part, the recovered raw material of the edge part generated in the film forming process, Alternatively, it can be used by mixing recycled raw materials for other film forming processes in a timely manner, and it is possible to reduce the consumption of petroleum resources and to obtain cost merit. This is the most preferred embodiment.
 また、本発明の二軸配向ポリエステルフィルムは、回収原料および/またはリサイクル原料をC層に含有することが好ましい。このことからC層は、層構成のうち最も厚みの厚い層であることが好ましい。また、A層(より平滑な層)に含有させる原料の溶融比抵抗は1.0×10Ω・cm以上1.0×10Ω・cm以下であることが好ましく、更には5.0×10Ω・cm以下が好ましい。このような溶融比抵抗値を有する原料がポリエステル樹脂であることも好ましい。A層としては、後述するSRa(A)が1nm以上15nm未満である表面を構成する層であることが好ましい。また、上記したC層の原料組成や厚みに関する特徴と、A層の原料に関する特徴や表面形状に関する特徴とを併せ持つ態様も好ましい。 Moreover, it is preferable that the biaxially oriented polyester film of the present invention contains a recovered raw material and / or a recycled raw material in the C layer. Therefore, the C layer is preferably the thickest layer in the layer configuration. The melting specific resistance of the raw material contained in the A layer (smooth layer) is preferably 1.0 × 10 6 Ω · cm or more and 1.0 × 10 8 Ω · cm or less, and more preferably 5.0. × 10 8 Ω · cm or less is preferable. It is also preferred that the raw material having such a melt specific resistance value is a polyester resin. The A layer is preferably a layer constituting a surface whose SRa (A) described later is 1 nm or more and less than 15 nm. Moreover, the aspect which has the characteristic regarding the raw material composition and thickness of C layer mentioned above, the characteristic regarding the raw material of A layer, and the characteristic regarding a surface shape is also preferable.
 本発明の二軸配向ポリエステルフィルムは、2層以上の構成のうち表層を構成する2層、すなわちポリエステルA層およびポリエステルB層の表面については、表面の平滑性と、搬送や巻き取りなどのハンドリング性を両立させるために、粗さが異なる構成が好ましい。すなわち、一方のフィルム表面の中心線粗さSRa(A)が1nm以上15nm未満であり、他方のフィルム表面の中心線粗さSRa(B)が20nm以上40nm以下であることが好ましい。SRa(A)が1nmを下回ると、該表面に離型層を積層し、その上にセラミックスラリーを積層した後の剥離工程で剥離が困難となることがある。また、SRa(A)が15nm以上になると、スラリーの表面状態が悪くなり厚みに斑が生じ、結果としてコンデンサの特性にバラツキが生じやすくなる。SRa(B)が20nmを下回ると、離型層塗布後の巻き取りや、セラミックスラリーを塗布後の巻き取りにてブロッキングが発生しやすくなり、繰り出した際に帯電が発生することがある。ポリエステルA層およびポリエステルB層の表面については、さらに好ましくは、一方のフィルム表面の中心線粗さSRa(A)が2nm以上12nm未満であり、他方のフィルム表面の中心線粗さSRa(B)が25nm以上35nm以下である。 In the biaxially oriented polyester film of the present invention, the surface of the two layers constituting the surface layer of the two or more layers, that is, the surface of the polyester A layer and the polyester B layer, the surface smoothness and handling such as conveyance and winding. In order to achieve both properties, a configuration with different roughness is preferable. That is, it is preferable that the center line roughness SRa (A) of one film surface is 1 nm or more and less than 15 nm, and the center line roughness SRa (B) of the other film surface is 20 nm or more and 40 nm or less. When SRa (A) is less than 1 nm, peeling may be difficult in a peeling step after a release layer is laminated on the surface and a ceramic slurry is laminated thereon. On the other hand, when SRa (A) is 15 nm or more, the surface state of the slurry is deteriorated and the thickness is uneven, and as a result, the characteristics of the capacitor are likely to vary. When SRa (B) is less than 20 nm, blocking is likely to occur during winding after the release layer is applied or winding after applying the ceramic slurry, and charging may occur when it is fed out. For the surfaces of the polyester A layer and the polyester B layer, the center line roughness SRa (A) of one film surface is more preferably 2 nm or more and less than 12 nm, and the center line roughness SRa (B) of the other film surface is more preferably. Is 25 nm or more and 35 nm or less.
 本発明の二軸配向ポリエステルフィルムの厚みは、12μm以上であることが好ましく、より好ましくは20μm以上、さらに好ましくは25μm以上である。また、188μm以下であることが好ましく、より好ましくは50μm以下、さらに好ましくは40μm以下である。厚みが12μmより薄くなると、セラミックススラリーを保持するための腰がなくなり、セラミックススラリーの塗布において、セラミックススラリーを支えられなくなり、後工程で均一な乾燥ができなくなることや、熱しわの抑制が不十分となる場合がある。厚みが188μmを超えると、熱しわに対する耐久性は格段に優れるものの、巻き長さが少なくなる分、セラミックスラリーを形成する基材としての単位面積あたりの単価が高くなる傾向にありまた、縦延伸における昇温や延伸が行いづらく、厚みむらを悪化させる要因となる。厚みの好ましい範囲は12μm以上188μm以下、より好ましくは20μm以上50μm以下、さらに好ましくは25μm以上40μm以下である。 The thickness of the biaxially oriented polyester film of the present invention is preferably 12 μm or more, more preferably 20 μm or more, and further preferably 25 μm or more. Moreover, it is preferable that it is 188 micrometers or less, More preferably, it is 50 micrometers or less, More preferably, it is 40 micrometers or less. When the thickness is less than 12 μm, there is no support for holding the ceramic slurry, and the ceramic slurry cannot be supported in the application of the ceramic slurry, and uniform drying cannot be performed in the subsequent process, and thermal wrinkle is not sufficiently suppressed. It may become. When the thickness exceeds 188 μm, the durability against thermal wrinkles is remarkably excellent, but the unit length per unit area as the base material for forming the ceramic slurry tends to increase as the winding length decreases. It is difficult to raise the temperature and stretch the film, which causes the thickness unevenness to deteriorate. A preferable range of the thickness is 12 μm or more and 188 μm or less, more preferably 20 μm or more and 50 μm or less, and further preferably 25 μm or more and 40 μm or less.
 本発明の二軸配向ポリエステルフィルムは、粒子を含有していてもよい。このとき含有する粒子の体積平均粒径は、1.3μm以下であることが好ましい。粒子の体積平均粒径が1.3μmを超えると、延伸時に粒子とポリマーとの界面に空隙、すなわちボイドが発生する機会が高くなるため、表面構造に凹凸のバラツキが生じることもあり、スラリーの厚みバラツキが大きくなる場合がある。なお、本発明における超薄膜グリーンシートとは、厚み1μm未満のものを指す。 The biaxially oriented polyester film of the present invention may contain particles. The volume average particle size of the particles contained at this time is preferably 1.3 μm or less. If the volume average particle diameter of the particles exceeds 1.3 μm, there is a high chance that voids, that is, voids, are generated at the interface between the particles and the polymer at the time of stretching. The thickness variation may increase. In addition, the ultra-thin green sheet in the present invention refers to a sheet having a thickness of less than 1 μm.
 本発明に用いる粒子は、球状シリカ、凝集シリカ、炭酸カルシウム、酸化アルミニウム、チタン酸バリウム、酸化チタン等の無機粒子、架橋ポリスチレン樹脂粒子、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレン-アクリル樹脂粒子、架橋ポリエステル粒子、ポリイミド粒子、メラミン樹脂粒子等の有機粒子を用いることができる。これら粒子は、フィルム表面に突起を形成する役割のほかに、ボイドを形成する核材にもなりうるため、粒子径とともに、その種類も選定することが望ましい。好ましくは粒子の弾性が高い有機粒子を用いる。有機粒子は、前述の有機粒子の内、架橋ポリスチレン樹脂粒子、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレン-アクリル樹脂粒子、架橋ポリエステル粒子より選ばれる有機粒子が特に好ましい。無機粒子においては、球状シリカ、酸化アルミニウムが特に好ましい。 The particles used in the present invention are inorganic particles such as spherical silica, agglomerated silica, calcium carbonate, aluminum oxide, barium titanate, and titanium oxide, crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin particles, and crosslinked styrene-acrylic resin. Organic particles such as particles, crosslinked polyester particles, polyimide particles, and melamine resin particles can be used. In addition to the role of forming protrusions on the film surface, these particles can also serve as a core material for forming voids, so it is desirable to select the type of particles together with the particle diameter. Preferably, organic particles having high particle elasticity are used. Among the organic particles described above, the organic particles are particularly preferably organic particles selected from crosslinked polystyrene resin particles, crosslinked silicone resin particles, crosslinked acrylic resin particles, crosslinked styrene-acrylic resin particles, and crosslinked polyester particles. In the inorganic particles, spherical silica and aluminum oxide are particularly preferable.
 粒子の形状・粒子径分布については均一なものが好ましく、とくに粒子形状は球形に近いものが好ましい。体積形状係数は好ましくはf=0.3~π/6であり、より好ましくはf=0.4~π/6である。体積形状係数fは、次式で表される。
 f=V/Dm
The particle shape and particle size distribution are preferably uniform, and in particular, the particle shape is preferably close to a sphere. The volume shape factor is preferably f = 0.3 to π / 6, more preferably f = 0.4 to π / 6. The volume shape factor f is expressed by the following equation.
f = V / Dm 3
 ここでVは粒子体積(μm)、Dmは粒子の投影面における最大径(μm)である。 Here, V is the particle volume (μm 3 ), and Dm is the maximum diameter (μm) on the projection plane of the particles.
 なお、体積形状係数fは粒子が球のとき、最大のπ/6(=0.52)をとる。また、必要に応じて濾過などを行うことにより、凝集粒子や粗大粒子などを除去することが好ましい。中でも、乳化重合法で等で合成された、架橋ポリスチレン樹脂粒子、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子が好適に使用できるが、とくに架橋ポリスチレン粒子、架橋シリコーン、さらに球状シリカなどは体積形状係数が真球に近く、粒径分布が極めて均一であり、均一にフィルム表面突起を形成する観点で好ましい。 The volume shape factor f takes the maximum π / 6 (= 0.52) when the particle is a sphere. Moreover, it is preferable to remove aggregated particles, coarse particles, and the like by performing filtration or the like as necessary. Among them, cross-linked polystyrene resin particles, cross-linked silicone resin particles, and cross-linked acrylic resin particles synthesized by an emulsion polymerization method and the like can be suitably used. Particularly, cross-linked polystyrene particles, cross-linked silicone, and spherical silica have a volume shape factor. It is close to a true sphere, and the particle size distribution is extremely uniform, which is preferable from the viewpoint of uniformly forming film surface protrusions.
 本発明の二軸配向ポリエステルフィルムは、フィルム幅が400mm以上であり、フィルム長手方向10,000mを連続測定した厚みの平均値に対するばらつきσ値(σMD)が0.15μm以下である。 The biaxially oriented polyester film of the present invention has a film width of 400 mm or more and a variation σ value (σ MD ) of 0.15 μm or less with respect to the average value of thicknesses measured continuously in the film longitudinal direction of 10,000 m.
 以下に順を追って説明する。
 本発明の二軸配向ポリエステルフィルムは、フィルム幅が400mm以上であり、フィルム長手方向10,000mを連続測定した厚みの平均値に対するばらつきσ値(σMD)が0.15μm以下である。ここでいうフィルム長手方向10,000mで連続測定した厚みとは、フィルムを連続的に非接触測定した際の厚みである。フィルム幅および長手方向の長さは、積層セラミックコンデンサを一定のロットで製造する際に必要な、支持体の寸法を表す。すなわち、グリーンシートの成型性は、この寸法内での厚みのばらつきを抑制することにより、良好にできることを見出した。また、以下において、σMD値のことを長手方向のフィルム厚みむらということがある。
This will be described below in order.
The biaxially oriented polyester film of the present invention has a film width of 400 mm or more and a variation σ value (σ MD ) of 0.15 μm or less with respect to the average value of thicknesses measured continuously in the film longitudinal direction of 10,000 m. The thickness continuously measured in the film longitudinal direction of 10,000 m here is the thickness when the film is continuously measured in a non-contact manner. The film width and the length in the longitudinal direction represent the dimensions of the support necessary for manufacturing the multilayer ceramic capacitor in a certain lot. That is, it has been found that the green sheet moldability can be improved by suppressing variations in thickness within these dimensions. In the following, the σ MD value is sometimes referred to as uneven film thickness in the longitudinal direction.
 従来二軸配向ポリエステルフィルムの厚みは、フィルムを製膜中に、非接触厚さ計を幅方向に走査させて測定するか、フィルムロールより長手方向に20m程度採取した試料を、接触式の厚さ計で測定していたが、本発明においては、上述したように長手方向10,000mで連続測定することにより、従来確認することのできなかった厚みむら挙動が判明した。この厚みむら挙動に対して、ばらつきを低減させることにより、薄膜セラミックスラリー塗布時のスラリー厚みむらを低減でき、静電容量のばらつきを低減し、またショートの確率を抑制できる効果を本発明は奏するものである。なお、σMDが0.15μmを超えると、薄膜セラミックスラリーの塗工においてスラリーの厚みむらが大きくなり上述の効果が低減する。 The thickness of a conventional biaxially oriented polyester film is measured by scanning a non-contact thickness meter in the width direction while the film is being formed, or by collecting a sample taken about 20 m in the longitudinal direction from a film roll. In the present invention, the thickness unevenness behavior that could not be confirmed in the past was found by continuously measuring in the longitudinal direction of 10,000 m as described above. By reducing the variation with respect to this uneven thickness behavior, the present invention has the effects of reducing the uneven thickness of the slurry when applying the thin film ceramic slurry, reducing the variation in capacitance, and suppressing the probability of short circuit. Is. Incidentally, sigma MD is more than 0.15 [mu] m, the effect of uneven thickness of the slurry is increased above is reduced in the coating of thin ceramic slurry.
 本発明の二軸配向ポリエステルフィルムは、一方のフィルム表面の中心線粗さSRa(A)が1nm以上15nm未満であり、他方のフィルム表面の中心線粗さSRa(B)が20nm以上40nm以下であることが好ましい。本発明の二軸配向ポリエステルフィルムは、スラリー塗工厚みとハンドリング性のバランスを勘案し、どちらの表面にも離型処理を施すことができるし、また、離型処理を行う前に平坦化処理を行い、離型層表面の粗度を低減することもできる。 In the biaxially oriented polyester film of the present invention, the center line roughness SRa (A) of one film surface is 1 nm or more and less than 15 nm, and the center line roughness SRa (B) of the other film surface is 20 nm or more and 40 nm or less. Preferably there is. The biaxially oriented polyester film of the present invention can be subjected to mold release treatment on both surfaces in consideration of the balance between slurry coating thickness and handling properties, and can be planarized before mold release treatment. To reduce the roughness of the release layer surface.
 次に本発明の二軸配向ポリエステルフィルムの製造方法について説明するが、本発明はかかる例に限定して解釈されるものではない。 Next, the method for producing the biaxially oriented polyester film of the present invention will be described, but the present invention is not construed as being limited to such examples.
 ポリエステルに不活性粒子を含有せしめる方法としては、例えばジオール成分であるエチレングリコールに不活性粒子を所定割合にてスラリーの形で分散せしめ、このエチレングリコールスラリーをポリエステル重合完結前の任意段階で添加する。ここで、粒子を添加する際には、例えば、粒子を合成時に得られる水ゾルやアルコールゾルを一旦乾燥させることなく添加すると粒子の分散性が良好であり、粗大突起の発生を抑制でき好ましい。また粒子の水スラリーを直接、所定のポリエステルペレットと混合し、ベント方式の二軸混練押出機に供給しポリエステルに練り込む方法も本発明の製造に有効である。 As an example of a method for incorporating inert particles into polyester, for example, inert particles are dispersed in a predetermined proportion in ethylene glycol which is a diol component, and this ethylene glycol slurry is added at an arbitrary stage before completion of polyester polymerization. . Here, when adding the particles, for example, it is preferable to add the water sol or alcohol sol obtained at the time of synthesis without drying once because the dispersibility of the particles is good and the generation of coarse protrusions can be suppressed. In addition, a method in which a water slurry of particles is directly mixed with a predetermined polyester pellet, supplied to a vent type twin-screw kneading extruder, and kneaded into the polyester is also effective for the production of the present invention.
 このようにして、準備した、粒子含有マスターペレットと粒子などを実質的に含有しないペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給する。本発明の二軸配向ポリエステルフィルムの製造における押出機は、一軸、二軸の押出機を用いることができる。また、ペレットの乾燥工程を省くために、押出機に真空引きラインを設けた、ベント式押出機を用いることもできる。また、最も押出量が多くなるC層には、ペレットを溶融する機能と、溶融したペレットを一定温度に保つ機能をそれぞれの押出機で分担する、いわゆるタンデム押出機を用いることができる。タンデム押出機は、高吐出時におけるポリマー温度を安定化させ、その結果ポリマーの粘度ばらつきを少なくすることができるため、厚みむらを低減させるプロセスとして好ましい。 The thus prepared particle-containing master pellets and pellets substantially free of particles and the like are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder. As the extruder for producing the biaxially oriented polyester film of the present invention, a uniaxial or biaxial extruder can be used. Moreover, in order to omit the drying process of a pellet, the vent type extruder which provided the vacuum drawing line in the extruder can also be used. Moreover, what is called a tandem extruder which shares the function which melt | dissolves a pellet, and the function which keeps the fuse | melted pellet at a constant temperature for each C layer can be used for the C layer where extrusion amount increases most. A tandem extruder is preferable as a process for reducing unevenness in thickness because the polymer temperature at the time of high discharge can be stabilized, and as a result, the viscosity variation of the polymer can be reduced.
 押出機で溶融して押出したポリマーは、フィルターにより濾過する。ごく小さな異物もフィルム中に入ると粗大突起欠陥となるため、フィルターには例えば3μm以上の異物を95%以上捕集する高精度の捕集効率のものを用いることが有効である。一方で、フィルターの捕集効率が高すぎると圧力上昇の度合いが高くなってしまうことがあるため、3μm未満の異物を95%以上捕集するような更なる高精度の捕集効率のフィルターの使用は、厚みむらの抑制において好ましくない実施形態であることがある。続いてスリット状のスリットダイからシート状に押し出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。たとえば3層積層の場合は、3台の押出機、3層のマニホールドまたは合流ブロック(例えば矩形合流部を有する合流ブロック)を用いて3層に積層し、口金からシートを押し出す。この際の口金は、口金の間隙をヒーターにより自動調整できることが望ましい。口金から押し出したシートは、キャスティングロールで冷却して未延伸フィルムを作る。この場合、背圧の安定化および厚み変動の抑制の観点からポリマー流路にスタティックミキサー、ギヤポンプを設置する方法は、本発明における長手方向の厚みむらを抑制する手段として有効である。ギヤポンプは、押出工程における圧力変動を遮断する機能があるため、長手方向厚みを均一に制御するために必要であり、ギヤポンプに内蔵されるギアの回転数を一定にすることにより長手方向の厚みむらを小さく押さえることができる。本発明においては、ギヤポンプの回転数を、巻き上がった中間製品の重量換算の厚みをフィードバックし制御することも有効である。フィルター圧力の上昇に伴い吐出が低下するため、フィルム厚みが長手方向に対して徐々に薄くなるためである。 The polymer melted and extruded by the extruder is filtered through a filter. When a very small foreign substance enters the film, it becomes a coarse protrusion defect. Therefore, it is effective to use a filter having a high collection efficiency that collects 95% or more of a foreign substance having a size of 3 μm or more. On the other hand, if the collection efficiency of the filter is too high, the degree of pressure increase may increase. Therefore, a filter with a higher accuracy of collection efficiency that collects 95% or more of foreign matters less than 3 μm. Use may be an unfavorable embodiment in reducing thickness unevenness. Subsequently, the sheet is extruded from a slit-shaped slit die and cooled and solidified on a casting roll to form an unstretched film. For example, in the case of three-layer lamination, lamination is performed in three layers using three extruders, a three-layer manifold or a merge block (for example, a merge block having a rectangular merge portion), and a sheet is extruded from a die. In this case, it is desirable that the base of the base can be automatically adjusted with a heater. The sheet extruded from the die is cooled by a casting roll to form an unstretched film. In this case, from the viewpoint of stabilization of back pressure and suppression of variation in thickness, a method of installing a static mixer and gear pump in the polymer flow channel is effective as a means for suppressing uneven thickness in the longitudinal direction in the present invention. Since the gear pump has a function of blocking pressure fluctuations in the extrusion process, it is necessary to uniformly control the thickness in the longitudinal direction. By making the rotational speed of the gear built in the gear pump constant, uneven thickness in the longitudinal direction is required. Can be kept small. In the present invention, it is also effective to control the rotation speed of the gear pump by feeding back the weight-converted thickness of the rolled up intermediate product. This is because the discharge decreases as the filter pressure increases, and the film thickness gradually decreases in the longitudinal direction.
 キャスティングロールの回転精度について、キャスティングロールの偏心などによる、キャスティグロール表面の速度変動や表面の凹凸が、長手方向の厚みむらに影響することがある。従来、キャスティングロール表面の速度変動が、長手方向の厚みむらに大きく影響するために、これを低減させるため、キャスティングロール端面の任意の円周上の箇所に、バランスウェイトを貼り付け、偏心のむらを抑制することは好ましい実施形態である。また、キャスティングドラムを回転させるためのモーターを2台とし、駆動とブレーキに機能を分けることなども、長手方向の厚みむらを抑制する上で好ましい実施形態である。本発明においては、σMD値を制御するために、さらなる精度の向上が必要となったため、キャスティングロールの回転精度を評価するにあたって、キャスティングドラムを設置している地面に設置したセンサーにより測定した、センサーからキャスト表面までの距離を、キャスト円周上にわたって1周分測定した際の、凹凸状態の最大値と最小値の差を振れとした。その数値は50μm以内であることが望ましく、更には30μm以内であることが、本発明における長手方向の厚みむら(σMD)を良好にするために望ましい形態である。この際のキャスト円周における凹凸の振れは、具体的には、キャスト装置を設置している床面にレーザー変位計を設置して、キャスティングロールとレーザー変位計の測定部との距離を計測する。 Regarding the rotation accuracy of the casting roll, speed fluctuations on the surface of the casting roll and surface irregularities due to the eccentricity of the casting roll may affect the thickness unevenness in the longitudinal direction. Conventionally, the speed fluctuation of the casting roll surface has a great influence on the thickness unevenness in the longitudinal direction.To reduce this, a balance weight is pasted on an arbitrary circumference of the end face of the casting roll to remove the unevenness of eccentricity. Suppressing is a preferred embodiment. In addition, it is a preferable embodiment in order to suppress the thickness unevenness in the longitudinal direction by using two motors for rotating the casting drum and dividing the function into driving and braking. In the present invention, in order to control the σ MD value, it was necessary to further improve the accuracy, so when evaluating the rotation accuracy of the casting roll, it was measured by a sensor installed on the ground on which the casting drum was installed, The difference between the maximum value and the minimum value of the uneven state when the distance from the sensor to the cast surface was measured for one round on the cast circumference was defined as a shake. The numerical value is desirably within 50 μm, and further within 30 μm is a desirable form in order to improve the thickness unevenness (σ MD ) in the longitudinal direction in the present invention. Specifically, the unevenness of the cast circle around the cast circle is measured by installing a laser displacement meter on the floor where the casting device is installed, and measuring the distance between the casting roll and the measurement unit of the laser displacement meter. .
 キャスティングロールに着地した未延伸フィルムは、ピニング装置を用い、静電気力を用いてキャストに密着させる。ピニング装置は、未延伸フィルム全幅にわたり静電印加ワイヤーからキャスティングロール上に電荷を付与して、キャスティングロールとフィルムとの界面への静電気により、フィルムとキャスティングロールを密着させる。この際、電荷の強度を幅方向に一定にするために、静電印加ワイヤーからフィルムの距離は、未延伸フィルム全幅に亘り等しいことが望ましい。また、キャスティングロールとフィルムとの密着性を適切な強度で保つために、静電印加の電流の強さを調整することが望ましい。 The unstretched film that has landed on the casting roll is brought into close contact with the cast using electrostatic force using a pinning device. The pinning device applies electric charges from the electrostatic application wire to the casting roll over the entire width of the unstretched film, and causes the film and the casting roll to adhere to each other by static electricity to the interface between the casting roll and the film. At this time, in order to make the electric charge intensity constant in the width direction, it is desirable that the distance from the electrostatic application wire to the film is equal over the entire width of the unstretched film. Further, in order to maintain the adhesion between the casting roll and the film at an appropriate strength, it is desirable to adjust the strength of the electrostatic application current.
 また、未延伸フィルム端部は、横延伸機により延伸する際のクリップの把持力を高めるために、中央より端部の厚みが厚くなるように調整するが、端部の密着性が悪く、キャスティングロールによる冷却効率が悪くなる結果、端部の結晶化が進み、破れの原因となることもあるため、全幅のピニング装置に加え、追加で端部のみにピニング装置を付ける、いわゆるエッジピニング装置を付けることで、未延伸フィルムの端部をキャストに密着させ、エッジ部分の冷却むらを抑制することも、キャストの着地点での振動を抑制でき、長手方向の厚みむらを良好にするために望ましい工程である。なお、エッジピニング装置を未延伸フィルムに適用する際には、未延伸フィルムのエッジ部分端部から5mm以上離した箇所から実施すると、効果的なピニングを行うことができる。これは、エッジピニング装置からの静電印加時に、漏れ電流がキャスティングロールに異常放電することを予防するためである。また、エッジピニングの処理幅は、未延伸フィルムのエッジ厚みプロファイルに合わせて調整するが、その範囲は20mm以上100mm未満に設定することが、効果的なエッジ部の成型を行うことができる。 In addition, the end of the unstretched film is adjusted so that the thickness of the end becomes thicker than the center in order to increase the gripping force of the clip when stretched by a transverse stretcher, but the end adhesion is poor and casting As a result of poor cooling efficiency due to the roll, crystallization at the end proceeds and may cause breakage.In addition to the full width pinning device, a so-called edge pinning device that additionally attaches a pinning device only to the end is provided. By attaching, the end of the unstretched film is brought into close contact with the cast, and the uneven cooling of the edge part is also suppressed, so that vibration at the landing point of the cast can be suppressed, and desirable in order to improve the uneven thickness in the longitudinal direction. It is a process. In addition, when applying an edge pinning apparatus to an unstretched film, if it implements from the location 5 mm or more away from the edge part edge part of an unstretched film, effective pinning can be performed. This is to prevent the leakage current from being abnormally discharged to the casting roll during the electrostatic application from the edge pinning device. The processing width of edge pinning is adjusted in accordance with the edge thickness profile of the unstretched film, but setting the range to 20 mm or more and less than 100 mm can effectively mold the edge part.
 キャスティングロールに密着し冷却したフィルムは、引き離しロールを用いて、キャスティングロールからフィルムを剥離させ、次の延伸工程に導く。この際の引き離しロールには、フィルム冷却のための通水を行ってもよいし、引き離しロールを駆動させてもよい。 The film that has been in close contact with the casting roll and cooled is peeled off from the casting roll using a pulling roll, and then led to the next stretching step. In this case, the separation roll may be subjected to water for cooling the film, or may be driven.
 延伸方法は同時二軸延伸であっても逐次二軸延伸であってもよい。同時二軸延伸においては、縦横の延伸を同時に実施する際、風速むらやフィルムに沿って流れる気流(随伴気流)が幅方向の延伸時に加え、長手方向にも外乱として影響するため、逐次二軸延伸が好ましく適用される形態である。 The stretching method may be simultaneous biaxial stretching or sequential biaxial stretching. In simultaneous biaxial stretching, when vertical and horizontal stretching are performed simultaneously, the wind speed variation and the airflow flowing along the film (associated airflow) affect the longitudinal direction as well as the disturbance in the longitudinal direction. This is a form in which stretching is preferably applied.
 本発明のポリエステルフィルムを逐次延伸を用いて製造する際において、最初の長手方向の延伸は、傷の発生を抑制する上および、長手方向の厚みむらを抑制する上で重要であり、延伸温度は90℃以上130℃以下、好ましくは100℃以上120℃以下である。延伸温度が90℃よりも低くなるとフィルムが破断しやすく、延伸温度が130℃よりも高くなるとフィルム表面が熱ダメージを受けやすくなる。また、延伸ムラ、及びキズを防止する観点からは延伸は2段階以上に分けて行うことが好ましく、トータル倍率は長さ方向に2.8倍以上5.0倍以下、好ましくは3.3倍以上4.0倍以下であり、幅方向に3.5倍以上5倍以下、好ましくは4.0倍以上4.5倍以下である。縦延伸倍率を先述の数値に設定する際には、延伸区間を複数設定して、延伸ロールとフィルムとの滑りが起こりにくい状態にすることが、滑りによる延伸張力の変動を抑制できるために望ましい。この際、1つの延伸区間での延伸倍率は3.0倍以下とするのが、適切な延伸張力を担保できるので好ましい。かかる温度、倍率範囲を外れると延伸ムラあるいはフィルム破断などの問題を引き起こし、本発明の特徴とするフィルムが得られにくい。 In producing the polyester film of the present invention using sequential stretching, the first stretching in the longitudinal direction is important for suppressing the occurrence of scratches and for suppressing uneven thickness in the longitudinal direction. It is 90 ° C or higher and 130 ° C or lower, preferably 100 ° C or higher and 120 ° C or lower. When the stretching temperature is lower than 90 ° C, the film is easily broken, and when the stretching temperature is higher than 130 ° C, the film surface is easily damaged by heat. Further, from the viewpoint of preventing stretching unevenness and scratches, stretching is preferably performed in two or more stages, and the total magnification is 2.8 times to 5.0 times in the length direction, preferably 3.3 times. It is 4.0 times or less and 3.5 times or more and 5 times or less, preferably 4.0 times or more and 4.5 times or less in the width direction. When setting the longitudinal stretching ratio to the above-mentioned numerical value, it is desirable to set a plurality of stretching sections so that slippage between the stretching roll and the film is less likely to occur due to suppression of fluctuations in stretching tension due to slipping. . At this time, it is preferable that the stretching ratio in one stretching section is 3.0 times or less because an appropriate stretching tension can be secured. If the temperature and magnification range are out of the range, problems such as uneven stretching or film breakage are caused, and it is difficult to obtain a film characterized by the present invention.
 逐次延伸において、長手方向の延伸過程は、フィルムとロールの接触し、ロールの周速とフィルムの速度差により、フィルムが滑った際に傷が発生しやすく、また、長手方向の厚みむらの要因ともなるため、ロール周速がロール毎に個別に設定できる駆動方式が好ましい。長手方向の延伸過程において、搬送ロールの材質は、延伸前に未延伸フィルムをガラス転移点以上に加熱するか、ガラス転移点未満の温度に保った状態で延伸ゾーンまで搬送し、延伸時に一挙に加熱するか、いずれかにより選択される。延伸前に未延伸フィルムをガラス転移点以上まで加熱する際は、加熱による粘着が延伸むらを誘発するため、これを防止するうえでは、非粘着性シリコーンロール、セラミックス、テフロン(登録商標)から選択することが好ましい。また、昇温過程における搬送ロールの温度は、材質と搬送温度の組み合わせにて選定することが好ましく、未延伸フィルムがガラス転移点を超えるまでに、加熱による粘着を抑制するためには、搬送ロールをハードクロムメッキした金属ロールとして、搬送温度を80℃未満に設定することが好ましい。この際には、延伸工程に赤外線ヒーターを用いて熱量を補完する事が好ましい。 In sequential stretching, the stretching process in the longitudinal direction is due to the contact between the film and the roll, and the film is likely to be damaged when the film slips due to the difference between the peripheral speed of the roll and the speed of the film. Therefore, a drive system in which the roll peripheral speed can be individually set for each roll is preferable. In the stretching process in the longitudinal direction, the material of the transport roll is heated to a temperature higher than the glass transition point before stretching or transported to the stretching zone while maintaining the temperature below the glass transition point. Either heating or not is selected. When heating an unstretched film to a temperature above the glass transition point before stretching, adhesiveness due to heating induces stretching unevenness. To prevent this, select from non-adhesive silicone rolls, ceramics, and Teflon (registered trademark). It is preferable to do. Moreover, it is preferable to select the temperature of the conveyance roll in a temperature rising process with the combination of a material and conveyance temperature, and in order to suppress adhesion by heating before an unstretched film exceeds a glass transition point, a conveyance roll As a metal roll plated with hard chrome, it is preferable to set the conveyance temperature to less than 80 ° C. In this case, it is preferable to supplement the amount of heat using an infrared heater in the stretching step.
 また、延伸ロールは最もフィルムに負荷がかかり、該プロセスで傷や長手方向の厚みむらの原因となる延伸むらが発生しやすい工程であるため、延伸ロールの表面粗さRaは、0.005μm以上1.0μm以下であることが好ましく、より好ましくは0.1μm以上0.6μm以下である。Raが1.0μmよりも大きいと延伸時ロール表面の凸凹がフィルム表面に転写しやすくなり、一方0.005μmよりも小さいとロールとフィルム地肌が粘着し、フィルムが熱ダメージを受けやすくなる。表面粗さを制御するためには研磨剤の粒度、研磨回数などを適宜調整することが有効である。 In addition, since the stretching roll is the process in which the film is most loaded, and stretching unevenness that causes scratches and uneven thickness in the longitudinal direction is likely to occur, the surface roughness Ra of the stretching roll is 0.005 μm or more. The thickness is preferably 1.0 μm or less, more preferably 0.1 μm or more and 0.6 μm or less. When Ra is larger than 1.0 μm, the unevenness of the roll surface during stretching is easily transferred to the film surface, and when it is smaller than 0.005 μm, the roll and the film background adhere to each other, and the film is easily damaged by heat. In order to control the surface roughness, it is effective to appropriately adjust the particle size of the abrasive and the number of polishings.
 逐次延伸において、縦延伸倍率を横延伸倍率より低く設定することが、長手方向の厚みむらを低減させるうえで、好ましい延伸条件である。 In the successive stretching, setting the longitudinal stretching ratio lower than the transverse stretching ratio is a preferable stretching condition in order to reduce the thickness unevenness in the longitudinal direction.
 次いで、未延伸フィルムをガラス転移点未満の温度に保った状態で延伸ゾーンまで搬送するが、延伸時に一挙に加熱する際、予熱ゾーンの搬送ロールは、ハードクロムやタングステンカーバイドで表面処理を行った、表面粗さRaが0.2μm以上0.6μm以下の金属ロールを使用するのが、熱しわや長手方向の厚みむらの原因となる粘着を抑制するうえで好ましい。 Next, the unstretched film is transported to the stretching zone while being kept at a temperature lower than the glass transition point, but when heated at the time of stretching, the preheating zone transport roll was subjected to surface treatment with hard chromium or tungsten carbide. It is preferable to use a metal roll having a surface roughness Ra of 0.2 μm or more and 0.6 μm or less in order to suppress adhesion that causes heat wrinkles and uneven thickness in the longitudinal direction.
 次に、かかる長手方向に延伸された一軸延伸フィルムを、横延伸機にて90℃以上120℃未満に加熱した後、3倍以上6倍未満で幅方向に延伸し、二軸延伸(二軸配向)フィルムとする。この横延伸機はオーブンの部屋ごとに自己循環を実施し温風をフィルムに吹き付けることで、フィルムを昇温させ、延伸や熱固定を実施する。その際、オーブン内で熱処理したフィルムより析出したオリゴマーが、冷却されオーブンに付着することを防止するため、オーブン内で給気・排気を実施し、空気を置換するとよい。このとき、オーブン内に給気した空気が循環エアーと合流する際に、空気の温度が外気に近いままであると合流後の空気に温度むらが発生し、長手方向および、幅方向の厚みむらを悪くすることがあるため、給気エアーは循環エアーと同じか、循環エアーを加熱する熱交換器の能力に見合った温度で加熱することが好ましい。 Next, the uniaxially stretched film stretched in the longitudinal direction is heated to 90 ° C. or more and less than 120 ° C. with a transverse stretching machine, and then stretched in the width direction at 3 times or more and less than 6 times to obtain biaxial stretching (biaxial stretching) Orientation) film. This horizontal stretching machine performs self-circulation for each room of the oven and blows warm air on the film to raise the temperature of the film and to perform stretching and heat setting. At that time, in order to prevent the oligomer precipitated from the film heat-treated in the oven from being cooled and adhering to the oven, air is preferably supplied and exhausted in the oven to replace the air. At this time, when the air supplied into the oven merges with the circulating air, if the temperature of the air remains close to the outside air, temperature unevenness occurs in the air after merging, and thickness unevenness in the longitudinal direction and width direction occurs. Therefore, it is preferable to heat the supplied air at the same temperature as the circulating air or at a temperature commensurate with the ability of the heat exchanger for heating the circulating air.
 また、オーブン内の給気・排気量を調節する上では、搬送されるフィルム上下を流れる空気の方向が、フィルムの流れ方向に対して同一の方向であることが好ましい。オーブンの各室においては、自己循環の空気に加え、上流からフィルム搬送方向と同一方向に流れる随伴気流、オーブン外で給気あるいは排気を行うことで、STN内部の空気の流れが複雑に変化する。この際に、室間の圧力差によって、室間での空気の流れが、例えば上流から下流への流れが、下流から上流の流れに変わることもある。室間の空気の流れは、空気の温度が室間で異なる場合には、フィルムの伸縮むらにつながることもある。このために、オーブンの吸気量・排気量の条件については、給気量より排気量を多くすることで、同一方向への空気の流れを誘導することができる。 Also, in adjusting the air supply / exhaust amount in the oven, it is preferable that the direction of the air flowing above and below the conveyed film is the same direction as the film flow direction. In each chamber of the oven, in addition to the self-circulating air, the accompanying airflow that flows in the same direction as the film transport direction from the upstream, and air supply or exhaust outside the oven, the air flow inside the STN changes in a complex manner. . At this time, due to the pressure difference between the chambers, the flow of air between the chambers may change from, for example, a flow from upstream to downstream to a flow from downstream to upstream. The air flow between the chambers may lead to uneven stretching of the film when the temperature of the air varies between the chambers. For this reason, regarding the conditions of the intake air amount and the exhaust air amount of the oven, the flow of air in the same direction can be induced by making the exhaust air amount larger than the air supply amount.
 本発明の二軸配向ポリエステルフィルムは、さらに、再延伸を各方向に対して1回以上行なってもよいし、同時二軸にて再延伸してもよい。長手方向の厚みむらを抑制する方法としては、長手方向の再延伸工程にて、前の横延伸工程で発生したボーイングの緩和を行うことが挙げられる。この際、長手方向の再縦延伸前の搬送ロールにて80℃~100℃の温度にて加熱してもよいし、加熱していないロールを用い搬送してもよい。更には、延伸倍率をかけずに再縦延伸工程を通過させてもよい。再縦延伸後には更に横延伸を実施し、延伸の後にフィルムの熱処理を行なうが、この熱処理はオーブン中、加熱されたロール上等、従来公知の任意の方法や位置で行なうことができる。熱処理温度は通常150℃以上245℃未満の任意の温度とすることができ、熱処理時間は、通常1秒間以上60秒間以下行なうことが好ましい。熱処理は、フィルムをその長手方向および/または幅方向に弛緩させつつ行なってもよい。また、熱処理後は熱処理温度より0℃以上150℃以下の低い温度で幅方向に0%以上10%以下で弛緩させるとよい。 The biaxially oriented polyester film of the present invention may be further re-stretched once or more in each direction, or may be re-stretched simultaneously biaxially. As a method for suppressing the thickness unevenness in the longitudinal direction, it is possible to relieve the bowing generated in the previous transverse stretching step in the longitudinal re-stretching step. At this time, it may be heated at a temperature of 80 ° C. to 100 ° C. with a transport roll before re-longitudinal stretching in the longitudinal direction, or may be transported using an unheated roll. Furthermore, you may pass through a re-longitudinal stretch process, without applying a draw ratio. After re-longitudinal stretching, lateral stretching is further performed, and the film is heat-treated after stretching. This heat treatment can be carried out in any conventionally known method or position such as in an oven or on a heated roll. The heat treatment temperature can usually be an arbitrary temperature of 150 ° C. or higher and lower than 245 ° C., and the heat treatment time is preferably 1 second or longer and 60 seconds or shorter. The heat treatment may be performed while relaxing the film in the longitudinal direction and / or the width direction. Further, after the heat treatment, it is preferable to relax at a temperature lower by 0 ° C. or more and 150 ° C. or less than the heat treatment temperature by 0% or more and 10% or less in the width direction.
 熱処理後のフィルムは、例えば中間冷却ゾーンや除冷ゾーンを設け、寸法変化率や平面性を調整することができる。また特に、特定の熱収縮性を付与するために、熱処理時あるいはその後の中間冷却ゾーンや除冷ゾーンにおいて、縦方向および/または横方向に弛緩してもよい。この際には、オーブン内部における幅方向の温度差は、5℃以内にコントロールすることが、幅方向の厚みむらを良好にする上で望ましい。 The film after the heat treatment can be provided with, for example, an intermediate cooling zone or a cooling zone, and the dimensional change rate and flatness can be adjusted. In particular, in order to impart specific heat shrinkability, relaxation may be performed in the longitudinal direction and / or the transverse direction during the heat treatment or in the subsequent intermediate cooling zone or cooling zone. In this case, it is desirable to control the temperature difference in the width direction within the oven within 5 ° C. in order to improve the thickness unevenness in the width direction.
 二軸延伸後のフィルムは、搬送工程にて冷却させた後、エッジを切断後巻取り、中間製品を得る。この搬送工程にて、幅方向のフィルム厚みを測定し、該データをフィードバックして用いてダイ厚みなどの調整によってフィルム厚みの調整を行い、また、欠点検出器による異物検知を行うことができる。厚みの測定においては、β線、X線、光干渉式にて行うことができる。測定は、1つの測定装置を幅方向に横行させて全幅の厚みを測定する方法や、複数の測定装置を、幅方向に分割した区間内で横行させて全幅の厚みを測定する方法や、測定範囲が広く取れる際には、測定装置を幅方向に複数固定させて全幅の厚みを測定することができる。また測定する場所については、上記搬送工程内での測定や、中間製品をスリットした後の、二軸配向ポリエステルフィルムロールを用いて、オフラインで実施することもできる。 The film after biaxial stretching is cooled in the conveying process, and then the edge is cut and wound to obtain an intermediate product. In this conveying step, the film thickness in the width direction is measured, the data is fed back and used to adjust the film thickness by adjusting the die thickness and the like, and foreign matter detection by the defect detector can be performed. Thickness can be measured by β-rays, X-rays, or an optical interference method. Measurement is a method of measuring the full width by traversing one measuring device in the width direction, a method of measuring the full thickness by traversing a plurality of measuring devices in the section divided in the width direction, When the range is wide, a plurality of measuring devices can be fixed in the width direction to measure the thickness of the entire width. Moreover, about the place to measure, it can also carry out offline using the measurement in the said conveyance process, or using the biaxially-oriented polyester film roll after slitting an intermediate product.
 中間製品はスリット工程により適切な幅・長さにスリットしてコアに巻き取り、二軸配向ポリエステルフィルムのロールが得られる。コアは、プラスティックあるいは紙からなる円筒形の巻き芯である。温湿度による伸縮が少なく、巻き取り圧力による変形の少ないコアを用いることが厚みむらに対しても好ましいことから、プラスティック製のものを用いることが好ましい。更には、プラスティックをガラス繊維や炭素繊維で強化したコアを用いることが好ましい。また、コアに紙を用いる際には、表面に樹脂を含浸させることにより強度を高めることもできる。スリット工程におけるフィルムの切断工程は、中間製品の不要部分を除去し、所望の製品幅を有するポリエステルフィルムロールを得るための工程である。この切断工程にて、中間製品の幅方向に対して3か所から10か所を同時に切断する。この切断に用いる方式は、下刃と上刃の剪断にて切断する方式や、パスライン間の空中で切断する切断の方式から選定できる。 The intermediate product is slit into an appropriate width and length by a slitting process and wound around a core to obtain a roll of a biaxially oriented polyester film. The core is a cylindrical winding core made of plastic or paper. Since it is preferable to use a core with little expansion and contraction due to temperature and humidity and little deformation due to winding pressure, it is preferable to use a plastic core. Furthermore, it is preferable to use a core in which a plastic is reinforced with glass fiber or carbon fiber. Moreover, when using paper for a core, intensity | strength can also be raised by making the surface impregnate resin. The film cutting step in the slitting step is a step for removing an unnecessary portion of the intermediate product and obtaining a polyester film roll having a desired product width. In this cutting step, 3 to 10 locations are simultaneously cut in the width direction of the intermediate product. The method used for this cutting can be selected from a method of cutting by shearing the lower blade and the upper blade and a method of cutting in the air between the pass lines.
 フィルム幅とは、当該スリット工程により、スリットした後のフィルムの幅であり、先述の切断工程における切断場所を幅方向で調節することにより、所望の製品幅を有するポリエステルフィルムロールを得ることができる。また、本発明におけるフィルム長手方向の長さは、スリット工程の任意のロール上に設置した測長器にて計測する。このように、中間製品を幅方向で切断し、コアに任意の長さにて巻き取ったものを、本発明ではポリエステルフィルムロールと称する。 The film width is the width of the film after slitting by the slitting process, and a polyester film roll having a desired product width can be obtained by adjusting the cutting location in the cutting process described above in the width direction. . Moreover, the length of the film longitudinal direction in this invention is measured with the length measuring device installed on the arbitrary rolls of a slit process. Thus, what cut | interrupted the intermediate product in the width direction and wound up by the core with arbitrary length is called a polyester film roll in this invention.
 上述の方法により得られた離型用二軸配向ポリエステルフィルムロールは、長手方向の厚みむらが少ないフィルムを巻き取っているため、同フィルムは離型用途、特には積層セラミックコンデンサの成型用部材として、更には自動車用積層セラミックコンデンサの成型用部材としてより好ましく用いることができる。なお、本発明における離型用途とは、本発明の二軸配向ポリエステルフィルムロールから得られるフィルムを成型用部材として基材に用い、部材を成型し、成型後の部材から剥離する用途を指す。ここでいうところの部材とは、積層セラミックコンデンサにおけるグリーンシートや、多層回路基板における、層間絶縁樹脂(電気絶縁樹脂)、光学関連部材におけるポリカーボネート(この際は溶液製膜において使用される)などが挙げられる。 Since the biaxially oriented polyester film roll for mold release obtained by the above-described method winds up a film with little thickness unevenness in the longitudinal direction, the film is used as a mold member for mold release applications, particularly for multilayer ceramic capacitors. Furthermore, it can be more preferably used as a molding member of a laminated ceramic capacitor for automobiles. In addition, the mold release use in this invention refers to the use which uses the film obtained from the biaxially-oriented polyester film roll of this invention for a base material as a shaping | molding member, shape | molds a member, and peels from the member after shaping | molding. Examples of the member here include a green sheet in a multilayer ceramic capacitor, an interlayer insulating resin (electrical insulating resin) in a multilayer circuit board, and a polycarbonate (in this case, used in solution casting) in an optical member. Can be mentioned.
 以下、実施例で本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
 本発明に関する測定方法、評価方法は次の通りである。 The measurement method and evaluation method relating to the present invention are as follows.
 (1)長手方向のフィルム厚みむら(σMD
 巻返し検査機に設置したキーエンス社製SI-T80を用いて、製品ロール幅方向中央部について、長手方向の厚みを10,000m測定した。巻返し速度は50m/min、サンプリング周期は20msec、この厚みデータを元に、平均値に対する偏差σを求め、これを長手方向のフィルム厚みむらとした。
(1) Film thickness unevenness in the longitudinal direction (σ MD )
Using SI-T80 manufactured by Keyence Corporation installed in a rewinding inspection machine, the thickness in the longitudinal direction was measured 10,000 m at the center in the product roll width direction. The winding speed was 50 m / min, the sampling period was 20 msec, and the deviation σ with respect to the average value was obtained based on the thickness data, and this was regarded as the film thickness unevenness in the longitudinal direction.
 (2)フィルム表面粗さ表面の中心線粗さ(SRa値)
 三次元微細表面形状測定器(小坂製作所製ET-350K)を用いて測定し、得られた表面のプロファイル曲線より、JIS・B0601(1994)に準じ、算術平均粗さ(中心線粗さ)SRa値を求める。測定条件は下記のとおりである。
 X方向測定長さ:0.5mm
 X方向送り速度:0.1mm/秒
 Y方向送りピッチ:5μm
 Y方向ライン数:40本
 カットオフ:0.25mm
 触針圧:0.02mN
 高さ(Z方向)拡大倍率:5万倍
(2) Film surface roughness Surface centerline roughness (SRa value)
Measured using a three-dimensional fine surface shape measuring instrument (ET-350K manufactured by Kosaka Manufacturing Co., Ltd.), and obtained from the surface profile curve, according to JIS B0601 (1994), arithmetic average roughness (centerline roughness) SRa Find the value. The measurement conditions are as follows.
X direction measurement length: 0.5mm
X direction feed rate: 0.1 mm / sec Y direction feed pitch: 5 μm
Number of lines in Y direction: 40 Cutoff: 0.25mm
Stylus pressure: 0.02mN
Height (Z direction) magnification: 50,000 times
なお、X方向はサンプルの幅方向、Y方向はサンプルの長手方向で測定する。 The X direction is measured in the width direction of the sample, and the Y direction is measured in the longitudinal direction of the sample.
 (3)ポリエステル樹脂の溶融比抵抗
 ポリエステル樹脂150gを純水置換した50φ試験管に入れ、180℃で3時間減圧乾燥した。その後、290℃、50分窒素流通下で溶融し、電極を溶融ポリマーに挿入した。電極間に5,000Vの電圧を加えたときの電流量から抵抗値を算出することで溶融比抵抗を求めた。なお電極は、銅板(22cm)2枚の間にテフロン(登録商標)のスペーサーを挟み、銅板間が9mmとなるように作成した。
(3) Melt specific resistance of polyester resin 150 g of polyester resin was put into a 50φ test tube substituted with pure water, and dried under reduced pressure at 180 ° C. for 3 hours. Then, it melted under nitrogen flow at 290 ° C. for 50 minutes, and the electrode was inserted into the molten polymer. The melt specific resistance was determined by calculating the resistance value from the amount of current when a voltage of 5,000 V was applied between the electrodes. The electrodes were prepared such that a Teflon (registered trademark) spacer was sandwiched between two copper plates (22 cm 2 ) and the distance between the copper plates was 9 mm.
 (実施例1)
 (1)ポリエステルペレットの作成
 (ポリエステルAの作成)
 テレフタル酸86.5質量部とエチレングリコール37.1質量部を255℃で、水を留出しながらエステル化反応を行う。エステル化反応終了後、トリメチルリン酸0.02質量部、酢酸マグネシウム0.06質量部、酢酸リチウム0.01質量部、三酸化アンチモン0.0085質量部を添加し、引き続いて、減圧下、290℃まで加熱、昇温して重縮合反応を行い、固有粘度0.63dl/gのポリエステルペレットAを得た。このチップの溶融比抵抗を測定した結果、7.0×10Ω・cmであった。
Example 1
(1) Preparation of polyester pellets (Preparation of polyester A)
Esterification reaction is conducted while distilling water at 255 ° C. with 86.5 parts by mass of terephthalic acid and 37.1 parts by mass of ethylene glycol. After completion of the esterification reaction, 0.02 part by weight of trimethyl phosphate, 0.06 part by weight of magnesium acetate, 0.01 part by weight of lithium acetate, and 0.0085 part by weight of antimony trioxide were added. A polycondensation reaction was carried out by heating up to 0 ° C. and a polyester pellet A having an intrinsic viscosity of 0.63 dl / g was obtained. As a result of measuring the melting specific resistance of this chip, it was 7.0 × 10 7 Ω · cm.
 (ポリエステルBの作成)
 上記と同様にポリエステルを製造するにあたり、エステル交換後、体積平均粒径0.2μm、体積形状係数f=0.51、モース硬度7の球状シリカを添加し、重縮合反応を行い、粒子をポリエステルに対し1質量%含有するシリカ含有マスターペレットを得た(ポリエステルB)。
(Creation of polyester B)
In producing the polyester in the same manner as described above, after transesterification, spherical silica having a volume average particle size of 0.2 μm, a volume shape factor f = 0.51, and a Mohs hardness of 7 is added, a polycondensation reaction is performed, and the particles are converted into polyester. A silica-containing master pellet containing 1% by mass was obtained (polyester B).
 なお、ポリエステルBで用いる球状シリカは、エタノールとエチルシリケートとの混合溶液を攪拌しながら、この混合溶液に、エタノール、純水、および塩基性触媒としてアンモニア水からなる混合溶液を添加し、得られた反応液を攪拌して、エチルシリケートの加水分解反応およびこの加水分解生成物の重縮合反応を行なった後に、反応後の攪拌を行い得られた単分散シリカ粒子である。 The spherical silica used in polyester B is obtained by adding a mixed solution consisting of ethanol, pure water, and aqueous ammonia as a basic catalyst to this mixed solution while stirring the mixed solution of ethanol and ethyl silicate. The monodispersed silica particles obtained by stirring the reaction solution and conducting a hydrolysis reaction of ethyl silicate and a polycondensation reaction of the hydrolysis product, followed by stirring after the reaction.
 (ポリエステルC、Dの作成)
 さらに別に、シード法によるジビニルベンゼン80質量%、エチルビニルベンゼン15質量%、スチレン5質量%からなるモノマーを吸着させる方法によって得た体積平均粒径0.3μm、体積形状係数f=0.51、モース硬度3のジビニルベンゼン/スチレン共重合架橋粒子(架橋度80%)の水スラリーを、上記の実質的に粒子を含有しないホモポリエステルペレットに、ベント式二軸混練機を用いて含有させ、体積平均粒径0.3μm、0.8μmのジビニルベンゼン/スチレン共重合架橋粒子をポリエステルに対し1質量%含有するマスターペレットをそれぞれ得た(ポリエステルC、ポリエステルD)。
(Creation of polyester C and D)
In addition, a volume average particle size of 0.3 μm obtained by a method of adsorbing a monomer comprising 80% by mass of divinylbenzene by a seed method, 15% by mass of ethylvinylbenzene, and 5% by mass of styrene, a volume shape factor f = 0.51, A water slurry of divinylbenzene / styrene copolymer crosslinked particles having a Mohs hardness of 3 (crosslinking degree of 80%) is contained in the above-mentioned homopolyester pellets substantially free of particles using a vented biaxial kneader, and the volume Master pellets containing 1% by mass of divinylbenzene / styrene copolymer crosslinked particles having an average particle size of 0.3 μm and 0.8 μm with respect to the polyester were obtained (Polyester C and Polyester D), respectively.
 (ポリエステルEの作成)
 ポリエステルAを製造するにあたりエステル交換後、炭酸ガス法にて作成した(体積平均粒径体積平均粒子径1.1μm、モース硬度3)の炭酸カルシウム10質量部とエチレングリコール90質量部を湿式粉砕し、炭酸カルシウム/エチレングリコール分散スラリーを得た。この炭酸カルシウムの体積平均粒子径は1.1μmであった。他方、ジメチルテレフタレート100質量部、エチレングリコール64質量部に触媒として酢酸マンガン0.04質量部、三酸化アンチモン0.03質量部を加えエステル交換反応を行い、その後反応生成物に、リン化合物としてトリメチルホスフェート0.04質量部を加え、さらにその後、先に調整したスラリー1質量部を加えて重縮合反応を行い、ポリエステルに対し1質量%の炭酸カルシウムを含有するマスターペレット(ポリエステルE)を得た。
(Creation of polyester E)
In the production of polyester A, after transesterification, 10 parts by mass of calcium carbonate and 90 parts by mass of ethylene glycol prepared by the carbon dioxide method (volume average particle size volume average particle size 1.1 μm, Mohs hardness 3) were wet pulverized. A calcium carbonate / ethylene glycol dispersion slurry was obtained. The volume average particle diameter of this calcium carbonate was 1.1 μm. On the other hand, 0.04 parts by mass of manganese acetate and 0.03 parts by mass of antimony trioxide are added to 100 parts by mass of dimethyl terephthalate and 64 parts by mass of ethylene glycol as a catalyst, and then a transesterification reaction is performed. 0.04 parts by mass of phosphate was added, and then 1 part by mass of the previously prepared slurry was added to perform a polycondensation reaction to obtain a master pellet (polyester E) containing 1% by mass of calcium carbonate relative to the polyester. .
 一方で、下記処方のフィルムを製造した後のフィルムを回収し、ペレット化したものを回収原料Aとした。なお以下に記載する比率は、フィルム全体の質量に対する質量比(質量%)で表す。
 ポリエステルA 93.4
 ポリエステルD: 0.6
 ポリエステルG: 6.0
On the other hand, the recovered raw material A was obtained by collecting the film after producing the film having the following formulation and pelletizing it. In addition, the ratio described below is represented by mass ratio (mass%) with respect to the mass of the whole film.
Polyester A 93.4
Polyester D: 0.6
Polyester G: 6.0
 (2)ポリエステルペレットの調合
 A層、B層、C層それぞれの層の押出機に供給するポリエステルペレットは、以下の比率にて調合した。なお以下に記載する比率は、おのおのの層を構成するポリエステルペレットに対する質量比(単位:質量%)である。
 A層
  ポリエステルA:87.5
  ポリエステルB:12.5
 B層
  ポリエステルA:60.0
  回収原料A  :40.0
 C層
  ポリエステルA:65.0
  ポリエステルC:30.0
  ポリエステルD: 5.0
(2) Preparation of polyester pellets The polyester pellets to be supplied to the extruders of the respective layers A, B and C were prepared at the following ratio. In addition, the ratio described below is a mass ratio (unit: mass%) with respect to the polyester pellet which comprises each layer.
A layer polyester A: 87.5
Polyester B: 12.5
B layer Polyester A: 60.0
Collected raw material A: 40.0
C layer polyester A: 65.0
Polyester C: 30.0
Polyester D: 5.0
 (3)二軸配向ポリエステルフィルムの製造
 先述の、各層について調合した原料を、ブレンダー内で攪拌した後、A層およびC層の原料は、攪拌後の原料を、A層およびC層用のベント付き二軸押出機に供給し、B層の原料は160℃で8時間減圧乾燥し、B層用の一軸押出機に供給した。なおB層はタンデム押出機にて275℃で溶融押出し、3μm以上の異物を95%以上捕集する高精度なフィルターにて濾過した後、矩形の異種3層用合流ブロックで合流積層し、層A、層B、層Cからなる3層積層とした。その後、285℃に保ったスリットダイを介し未延伸フィルムの全幅に対して静電印加を行う静電印加キャスト法を用いて、表面温度25℃のキャスティングドラムに巻き付け冷却固化して未延伸積層フィルムを得た。この際、キャストはアライメント調整を行い、振れは25μmであった。
(3) Production of Biaxially Oriented Polyester Film After stirring the raw materials prepared for each layer described above in a blender, the raw materials for layer A and C are the raw materials after stirring, and the vents for layer A and layer C. The raw material of the B layer was dried under reduced pressure at 160 ° C. for 8 hours and supplied to the single screw extruder for the B layer. The B layer is melt extruded at 275 ° C. with a tandem extruder, filtered with a high-precision filter that collects 95% or more of foreign matters of 3 μm or more, and then merged and laminated with a rectangular heterogeneous three-layer merge block. A three-layer stack consisting of A, layer B, and layer C was used. Thereafter, the film is wound around a casting drum having a surface temperature of 25 ° C. and cooled and solidified by using an electrostatic application casting method in which electrostatic application is applied to the entire width of the unstretched film through a slit die maintained at 285 ° C. Got. At this time, the cast was aligned, and the deflection was 25 μm.
 この未延伸積層フィルムに逐次延伸(長手方向、幅方向)を実施した。まず長手方向の延伸を実施し、105℃で搬送した後に、長手方向に120℃で3.8倍延伸して一軸延伸フィルムとした。 ¡Sequential stretching (longitudinal direction, width direction) was performed on this unstretched laminated film. First, the film was stretched in the longitudinal direction, conveyed at 105 ° C., and then stretched 3.8 times at 120 ° C. in the longitudinal direction to obtain a uniaxially stretched film.
 この一軸延伸フィルムをステンター内で横方向に115℃で4.0倍延伸し、続いて230℃で熱固定し、その際幅方向に5%弛緩し搬送工程にて冷却させた後、エッジを切断後に巻き取り、厚さ31μmの二軸延伸フィルムの中間製品を得た。ステンターのオーブンは、オーブン外からの給気・排気を調整して、一定方向に空気が流れるようにした。この中間製品をスリッターにてスリットし、厚さ31μmの二軸延伸フィルムのロールを得た。この二軸延伸フィルムの積層厚みを測定した結果、A層:6.5μm、B層:23.5μm、C層:1.0μmであった。得られた製品よりデータを採取し、その特性評価結果を表1に示した。 This uniaxially stretched film was stretched 4.0 times at 115 ° C. in the transverse direction in a stenter, then heat-set at 230 ° C., relaxed by 5% in the width direction, cooled in the conveying process, and then edged. The product was wound up after cutting to obtain an intermediate product of a biaxially stretched film having a thickness of 31 μm. In the oven of the stenter, air supply / exhaust from the outside of the oven was adjusted to allow air to flow in a certain direction. This intermediate product was slit with a slitter to obtain a biaxially stretched film roll having a thickness of 31 μm. As a result of measuring the lamination thickness of this biaxially stretched film, the layer A was 6.5 μm, the layer B was 23.5 μm, and the layer C was 1.0 μm. Data was collected from the obtained products, and the results of characteristic evaluation are shown in Table 1.
 (4)離型層の塗布
 次にこの二軸延伸フィルムのロールに、架橋プライマー層(東レ・ダウコーニング・シリコーン(株)製商品名BY24-846)を固形分1質量%に調整した塗布液を塗布/乾燥し、乾燥後の塗布厚みが0.1μmとなるようにグラビアコーターで塗布し、100℃で20秒乾燥硬化した。その後1時間以内に付加反応型シリコーン樹脂(東レ・ダウコーニング・シリコーン(株)製商品名LTC750A)100質量部、白金触媒(東レ・ダウコーニング・シリコーン(株)製商品名SRX212)2質量部を固形分5質量%に調整した塗布液を、乾燥後の塗布厚みが0.1μmとなるようにグラビアコートで塗布し、120℃で30秒乾燥硬化した後に巻き取り、離型フィルムを得た。
(4) Application of Release Layer Next, a coating solution in which a cross-linked primer layer (trade name BY24-846 manufactured by Toray Dow Corning Silicone Co., Ltd.) was adjusted to 1% by mass on the roll of this biaxially stretched film. Was applied with a gravure coater so that the coating thickness after drying was 0.1 μm, and dried and cured at 100 ° C. for 20 seconds. Within 1 hour, 100 parts by mass of an addition reaction type silicone resin (trade name LTC750A manufactured by Toray Dow Corning Silicone Co., Ltd.) and 2 parts by mass of a platinum catalyst (trade name SRX212 manufactured by Toray Dow Corning Silicone Co., Ltd.) The coating solution adjusted to a solid content of 5% by mass was applied by gravure coating so that the coating thickness after drying was 0.1 μm, dried and cured at 120 ° C. for 30 seconds, and wound up to obtain a release film.
 (5)グリーンシートの成型塗布
 チタン酸バリウム(富士チタン工業(株)製商品名HPBT-1)100質量部、ポリビニルブチラール(積水化学(株)製商品名BL-1)10質量部、フタル酸ジブチル5質量部とトルエン-エタノール(質量比30:30)60質量部に、数平均粒径2mmのガラスビーズを加え、ジェットミルにて20時間混合・分散させた後、濾過してペースト状のセラミックスラリーを調整した。得られたセラミックスラリーを、離型フィルムの上に乾燥後の厚みが0.5μmとなるように、ダイコーターにて塗布し乾燥させ、乾燥後のスラリー厚みを、塗布の中央部で非接触方式で連続測定した。その後巻き取り、グリーンシートを得た。この際、スラリー厚みむらσ値を評価し、0.13未満を良、0.13以上0.15未満を可、0.15を超えるものを不良とした。実施例1の実施形態におけるスラリー厚み斑はグリーンシートの成型性は良であった。この際、良が実用上問題ないレベルである。
(5) Molding application of green sheet 100 parts by weight of barium titanate (trade name HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.), 10 parts by weight of polyvinyl butyral (trade name BL-1 manufactured by Sekisui Chemical Co., Ltd.), phthalic acid Glass beads with a number average particle diameter of 2 mm are added to 5 parts by weight of dibutyl and 60 parts by weight of toluene-ethanol (mass ratio 30:30), mixed and dispersed in a jet mill for 20 hours, and then filtered to form a paste A ceramic slurry was prepared. The obtained ceramic slurry is coated on a release film with a die coater so that the thickness after drying is 0.5 μm, and dried, and the slurry thickness after drying is a non-contact method at the center of the coating. Was measured continuously. Thereafter, winding was performed to obtain a green sheet. At this time, the slurry thickness unevenness σ value was evaluated. A value less than 0.13 was good, a value between 0.13 and less than 0.15 was acceptable, and a value exceeding 0.15 was regarded as defective. The slurry thickness unevenness in the embodiment of Example 1 was good in green sheet moldability. At this time, good is at a level where there is no practical problem.
 (実施例2~4)
 延伸倍率や厚みの製膜条件を変えるほかは実施例1と同様に実施し、得られた結果を表1に示した。
(Examples 2 to 4)
The procedure was the same as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed. The results obtained are shown in Table 1.
 (実施例5)
 ギヤポンプの回転数制御を、ポリマーフィルター圧力の上昇に応じて低下させ厚みの中心値を補正した。延伸倍率や厚みの製膜条件を変えるほかは実施例1と同様に実施し、得られた結果を表1に示した。
(Example 5)
The center value of the thickness was corrected by decreasing the rotational speed control of the gear pump in accordance with the increase of the polymer filter pressure. The procedure was the same as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed. The results obtained are shown in Table 1.
 (実施例6)
 エッジピニング装置をキャストシートに適用した。ピニングは未延伸シートの5mm内側から50mm内側の範囲にて静電印加した。製膜条件は実施例1と同じ条件で製膜を実施した。得られた結果を表に示す。
(Example 6)
An edge pinning device was applied to the cast sheet. In the pinning, electrostatic application was performed in a range from 5 mm inside to 50 mm inside the unstretched sheet. Film formation was performed under the same conditions as in Example 1. The results obtained are shown in the table.
 (比較例1、2)
 延伸倍率や厚みの製膜条件を変えるほかは実施例1と同様に実施し、得られた結果を表2に示した。スラリー厚みむらは実施例1~4と比べ悪化し評価は可となった。
(Comparative Examples 1 and 2)
The procedure was the same as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed. The results obtained are shown in Table 2. The slurry thickness unevenness was worse than that of Examples 1 to 4, and the evaluation was acceptable.
 (比較例3)
 縦延伸倍率および横延伸倍率をそれぞれ4.5倍、4.5倍に変更した他は、実施例1と同様に実施した。倍率を高く設定することにより、工程以前で発生したむらを平坦化する目的としたが、結果としてσMDは悪化した。σMDは厚みむらの周波数解析を実施した結果、縦延伸由来と思われる延伸むらの周期が確認された。
(Comparative Example 3)
The same operation as in Example 1 was performed except that the longitudinal draw ratio and the transverse draw ratio were changed to 4.5 times and 4.5 times, respectively. By increasing the magnification, but the purpose of flattening unevenness generated in step earlier, resulting sigma MD worsened. As a result of performing frequency analysis of thickness unevenness for σ MD, a period of stretching unevenness that seems to be derived from longitudinal stretching was confirmed.
 (比較例4)
 キャストの振れは、冷却水の流路が劣化した結果、50μmとなった。このキャストにて、延伸倍率や厚みの製膜条件を変えるほかは実施例1と同様に実施し、得られた結果を表2に示した。スラリー厚みむらの評価は不良であった。
(Comparative Example 4)
Cast runout was 50 μm as a result of deterioration of the cooling water flow path. The casting was carried out in the same manner as in Example 1 except that the film forming conditions such as the draw ratio and thickness were changed, and the results obtained are shown in Table 2. The evaluation of the slurry thickness unevenness was poor.
 (比較例5)
 A層に含有させる原料に、溶融比抵抗が5.0×10のものを用いた。キャスト後のシートを反射光にて観察した結果、横段状の延伸むらがあった。長手方向のフィルム厚みむらσMDを測定時に、原データの波形にて周期性のある厚みむらが見られた。著しい厚みむらであったため、シリコーン塗布およびスラリー塗布は未実施とした。
(Comparative Example 5)
A material having a melt specific resistance of 5.0 × 10 8 was used as a raw material to be contained in the A layer. As a result of observing the cast sheet with reflected light, there was horizontal stepwise unevenness. When measuring the film thickness unevenness σ MD in the longitudinal direction, periodic thickness unevenness was observed in the waveform of the original data. Since the thickness was extremely uneven, silicone application and slurry application were not performed.
 (比較例6)
 比較例5の実施形態にて、エッジピニング装置を適用したが、比較例5で見られたようなキャスト不良についての改善効果は無かった。
(Comparative Example 6)
In the embodiment of Comparative Example 5, the edge pinning device was applied, but there was no improvement effect on the casting failure as seen in Comparative Example 5.
 (比較例7)
 熱固定ゾーンでの空気の換気回数を増やして、オーブン内のオリゴマーを除去するため、熱固定ゾーン各室に吸排気を行った、他の製膜条件は実施例1と同じとした。その結果周期は不定であるがフィルム厚みむらが悪化する状態が見られた。スラリーの厚みむらは可であった。
(Comparative Example 7)
In order to remove the oligomers in the oven by increasing the number of times of air ventilation in the heat setting zone, the other film forming conditions were the same as in Example 1 in which intake and exhaust were performed in each chamber of the heat setting zone. As a result, although the cycle was indefinite, the film thickness unevenness was deteriorated. The thickness of the slurry was uneven.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明の二軸配向ポリエステルフィルムは、長手方向に渡る平面特性に優れるため、離型用途に好適に用いることができる。特に、加工時の張力に対抗し、面内での伸縮挙動が均一化しているため、多層セラミックコンデンサにおけるグリーンシートを部材として用いる離型用途に特に好適に用いられる。
 
Since the biaxially oriented polyester film of the present invention is excellent in planar properties in the longitudinal direction, it can be suitably used for mold release applications. Particularly, since the in-plane expansion / contraction behavior is uniformed against the tension at the time of processing, it is particularly suitably used for a mold release application using a green sheet in a multilayer ceramic capacitor as a member.

Claims (6)

  1.  フィルム幅が400mm以上であり、フィルム長手方向10,000mを連続測定した厚みの平均値に対するばらつきσ値(σMD)が0.15μm以下であることを特徴とする離型用二軸配向ポリエステルフィルムロール。 A biaxially oriented polyester film for mold release having a film width of 400 mm or more and a variation σ value (σ MD ) of 0.15 μm or less with respect to the average value of thickness obtained by continuously measuring 10,000 m in the film longitudinal direction roll.
  2.  離型用二軸配向ポリエステルフィルムの一方のフィルム表面の中心線粗さSRa(A)が1nm以上15nm未満であり、他方のフィルム表面の中心線粗さSRa(B)が20nm以上40nm以下である、請求項1に記載の離型用二軸配向ポリエステルフィルムロール。 The center line roughness SRa (A) of one film surface of the biaxially oriented polyester film for release is 1 nm or more and less than 15 nm, and the center line roughness SRa (B) of the other film surface is 20 nm or more and 40 nm or less. The biaxially oriented polyester film roll for mold release according to claim 1.
  3.  離型用二軸配向ポリエステルフィルムが3層以上の層構成を有する、請求項1または2に記載の離型用二軸配向ポリエステルフィルムロール。 The biaxially oriented polyester film roll for release according to claim 1 or 2, wherein the biaxially oriented polyester film for release has a layer structure of three or more layers.
  4.  前記SRa(A)が1nm以上15nm未満であるフィルム表面を構成する層(A層)が、溶融比抵抗が1.0×10Ω・cm以上1.0×10Ω・cm以下のポリエステル樹脂を含有している、請求項2または3に記載の離型用二軸配向ポリエステルフィルムロール。 The layer (A layer) constituting the film surface where SRa (A) is 1 nm or more and less than 15 nm is a polyester having a melt specific resistance of 1.0 × 10 6 Ω · cm or more and 1.0 × 10 8 Ω · cm or less. The biaxially oriented polyester film roll for mold release according to claim 2 or 3, comprising a resin.
  5.  離型用二軸配向ポリエステルフィルムが積層セラミックコンデンサの成型用部材として用いられる、請求項1~4のいずれかに記載の離型用二軸配向ポリエステルフィルムロール。 The biaxially oriented polyester film roll for release according to any one of claims 1 to 4, wherein the biaxially oriented polyester film for release is used as a molding member for a multilayer ceramic capacitor.
  6.  離型用二軸配向ポリエステルフィルムが自動車用積層セラミックコンデンサの成型用部材として用いられる、請求項5に記載の離型用二軸配向ポリエステルフィルムロール。
     
    The biaxially oriented polyester film roll for mold release according to claim 5, wherein the biaxially oriented polyester film for mold release is used as a molding member of a laminated ceramic capacitor for automobiles.
PCT/JP2019/008899 2018-03-12 2019-03-06 Roll of biaxially oriented release polyester film WO2019176692A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980018027.4A CN111868148A (en) 2018-03-12 2019-03-06 Biaxially oriented polyester film roll for mold release
KR1020207027933A KR20200131262A (en) 2018-03-12 2019-03-06 Roll of biaxially oriented polyester film for release
JP2019540108A JP7169551B2 (en) 2018-03-12 2019-03-06 Biaxially oriented polyester film roll for release

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018043913 2018-03-12
JP2018-043913 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019176692A1 true WO2019176692A1 (en) 2019-09-19

Family

ID=67907830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008899 WO2019176692A1 (en) 2018-03-12 2019-03-06 Roll of biaxially oriented release polyester film

Country Status (5)

Country Link
JP (1) JP7169551B2 (en)
KR (1) KR20200131262A (en)
CN (1) CN111868148A (en)
TW (1) TWI823907B (en)
WO (1) WO2019176692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050297A (en) * 2019-09-26 2021-04-01 東レ株式会社 Polyester film roll

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022105328A (en) * 2020-12-31 2022-07-13 コーロン インダストリーズ インク Polyester release film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148537A (en) * 2002-10-28 2004-05-27 Toyobo Co Ltd Mold release film for manufacturing ceramic sheet
JP2010167771A (en) * 2008-12-22 2010-08-05 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate-based resin film and method of manufacturing the same
JP2014133373A (en) * 2013-01-11 2014-07-24 Toray Ind Inc Biaxially orientated polyester film for mold release and method of producing the same
JP2017217901A (en) * 2016-06-02 2017-12-14 東レ株式会社 Biaxially oriented polyester film for mold release and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678186B2 (en) * 2001-08-01 2005-08-03 東洋紡績株式会社 Heat-shrinkable polyester film roll
JP2004291240A (en) 2003-03-25 2004-10-21 Mitsubishi Polyester Film Copp Release film
JP2007287215A (en) * 2006-04-14 2007-11-01 Toray Ind Inc Support for magnetic recording medium and magnetic recording medium
JP5125176B2 (en) 2007-03-29 2013-01-23 東レ株式会社 Biaxially oriented polyester film for polarizing plate release film and method for producing the same
WO2014203702A1 (en) * 2013-06-18 2014-12-24 東レ株式会社 Biaxially-oriented laminated polyester film for mold release applications
JP6500629B2 (en) 2015-06-19 2019-04-17 東洋紡株式会社 Laminated film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148537A (en) * 2002-10-28 2004-05-27 Toyobo Co Ltd Mold release film for manufacturing ceramic sheet
JP2010167771A (en) * 2008-12-22 2010-08-05 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate-based resin film and method of manufacturing the same
JP2014133373A (en) * 2013-01-11 2014-07-24 Toray Ind Inc Biaxially orientated polyester film for mold release and method of producing the same
JP2017217901A (en) * 2016-06-02 2017-12-14 東レ株式会社 Biaxially oriented polyester film for mold release and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050297A (en) * 2019-09-26 2021-04-01 東レ株式会社 Polyester film roll
JP7388091B2 (en) 2019-09-26 2023-11-29 東レ株式会社 polyester film roll

Also Published As

Publication number Publication date
TWI823907B (en) 2023-12-01
KR20200131262A (en) 2020-11-23
JP7169551B2 (en) 2022-11-11
CN111868148A (en) 2020-10-30
JPWO2019176692A1 (en) 2021-01-14
TW201945446A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP6380104B2 (en) Biaxially oriented laminated polyester film for mold release
JP6171937B2 (en) Biaxially oriented polyester film for mold release
JP4923484B2 (en) Laminated polyethylene terephthalate film roll for mold release
JP6273717B2 (en) Release film for forming ceramic sheets
JP2018203818A (en) Biaxially oriented polyester film for mold release
JP2009215350A (en) Mold-releasing polyester film
JP2009233919A (en) Antistatic laminated polyester film for mold release
JP7172045B2 (en) Biaxially oriented polyester film roll for transfer material
JP7106849B2 (en) polyester film roll
JP7169551B2 (en) Biaxially oriented polyester film roll for release
JP7006112B2 (en) Biaxially oriented polyester film
JP2017217901A (en) Biaxially oriented polyester film for mold release and manufacturing method therefor
JP5915542B2 (en) Laminated polyester film and method for producing the same
JP7463665B2 (en) Polyester Film Roll
JP7388091B2 (en) polyester film roll
JP7415748B2 (en) Polyester film roll for ceramic green sheet support
WO2021033494A1 (en) Polyester film roll
JP7139745B2 (en) Biaxially oriented polyester film for release
JP2008239844A (en) Polyester film for mold release
JP2021055067A (en) Biaxially oriented polyester film roll for mold release
JP7129018B2 (en) Release polyester film
JP2008239843A (en) Polyester film for mold release
JP2023039921A (en) Biaxially oriented polyester film for demolding and biaxially oriented polyester film roll for demolding
JP2022052717A (en) Biaxially oriented laminated polyester film, release film and method for manufacturing biaxially oriented laminated polyester film
JP2004291240A (en) Release film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540108

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207027933

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19767320

Country of ref document: EP

Kind code of ref document: A1