WO2019176659A1 - ウレタン組成物 - Google Patents

ウレタン組成物 Download PDF

Info

Publication number
WO2019176659A1
WO2019176659A1 PCT/JP2019/008710 JP2019008710W WO2019176659A1 WO 2019176659 A1 WO2019176659 A1 WO 2019176659A1 JP 2019008710 W JP2019008710 W JP 2019008710W WO 2019176659 A1 WO2019176659 A1 WO 2019176659A1
Authority
WO
WIPO (PCT)
Prior art keywords
diene rubber
liquid diene
urethane composition
mass
compound
Prior art date
Application number
PCT/JP2019/008710
Other languages
English (en)
French (fr)
Inventor
恵 平田
陽介 上原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020506429A priority Critical patent/JPWO2019176659A1/ja
Publication of WO2019176659A1 publication Critical patent/WO2019176659A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a urethane composition.
  • Cured products made of urethane compositions have been used in various applications as soft members such as carpets, rollers, footwear bottoms, etc. because they are excellent in properties such as bending fatigue resistance and tear strength. .
  • a cured product made of a urethane composition does not necessarily have sufficient moldability, and mechanical properties such as wear resistance and tensile properties may not be sufficient.
  • a method of blending liquid polybutadiene into a urethane composition has been studied (for example, see Patent Documents 1 and 2).
  • the cured product of the urethane composition disclosed in Patent Documents 1 and 2 may not always have sufficient tensile properties and may not have sufficient wear resistance.
  • the present invention has been made in view of the above circumstances, and provides a urethane composition that is excellent in moldability and excellent in mechanical properties such as wear resistance and tensile properties of the resulting cured product.
  • the urethane composition containing a polyol compound, a specific isocyanate compound, and a liquid diene rubber under specific conditions has excellent moldability, wear resistance, tensile physical properties, and the like.
  • the inventors have found that a cured product having excellent mechanical properties can be obtained, and have completed the present invention.
  • the present invention relates to the following [1] to [7].
  • [1] 1 to 200 parts by mass of an isocyanate compound (B) having two or more isocyanate groups in one molecule with respect to 100 parts by mass of a polyol compound (A) having two or more hydroxy groups in one molecule; And a urethane composition containing 0.1 to 20 parts by mass of the liquid diene rubber (C), A urethane composition having an average dispersed particle diameter of a phase derived from the liquid diene rubber (C) dispersed in a cured product of the urethane composition of 100 ⁇ m or less.
  • a urethane composition capable of producing a cured product having excellent moldability and excellent mechanical properties such as wear resistance and tensile properties.
  • the urethane composition of the present invention comprises an isocyanate compound (B) having two or more isocyanate groups in one molecule with respect to 100 parts by mass of the polyol compound (A) having two or more hydroxy groups in one molecule. 1 to 200 parts by mass and 0.1 to 20 parts by mass of the liquid diene rubber (C) are contained.
  • Polyol compound (A) There is no restriction
  • polyol compound (A) examples include low-molecular polyhydric alcohols, polyether polyols, polyester polyols, other polyols, and mixtures thereof.
  • low molecular weight polyhydric alcohol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, neopentyl glycol, hexanediol, cyclohexanedimethanol, Examples include glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexanetriol, pentaerythritol; saccharides such as sorbitol;
  • the polyether polyol is obtained by adding at least one compound selected from alkylene oxide and styrene oxide to at least one compound selected from the above low-molecular polyhydric alcohols, aromatic diol compounds, amine compounds and alkanolamine compounds. And a method of ring-opening polymerization of cyclic ether monomers such as butylene oxide (tetramethylene oxide) and tetrahydrofuran.
  • cyclic ether monomers such as butylene oxide (tetramethylene oxide) and tetrahydrofuran.
  • aromatic diol compound examples include resorcin (m-dihydroxybenzene), xylylene glycol, 1,4-benzenedimethanol, styrene glycol; bisphenol A structure (4,4′-dihydroxydiphenylpropane), bisphenol F structure. And diol compounds having a bisphenol skeleton such as (4,4′-dihydroxydiphenylmethane), brominated bisphenol A structure, hydrogenated bisphenol A structure, bisphenol S structure, and bisphenol AF structure.
  • the amine compound examples include ethylene diamine and hexamethylene diamine.
  • alkanolamine compound examples include ethanolamine and propanolamine.
  • alkylene oxide examples of the alkylene oxide.
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, polypropylene triol, ethylene oxide / propylene oxide copolymer, polytetramethylene ether glycol, polytetraethylene glycol; sorbitol-based polyol; bisphenol A (4,4′-dihydroxy And polyether polyols obtained by adding alkylene oxide to (phenylpropane).
  • polyester polyols examples include condensed polyester polyols, lactone polyols, and polycarbonate polyols.
  • the condensed polyester polyol is, for example, a condensation reaction between at least one compound selected from the above low molecular polyhydric alcohol, the above aromatic diol compound, the above amine compound and the above alkanolamine compound, and a polybasic carboxylic acid. It is manufactured by.
  • polybasic carboxylic acid examples include glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, dimer acid, and pyromellitic acid.
  • low molecular carboxylic acids such as oligomeric acids, castor oil, and reaction products of castor oil and ethylene glycol (or propylene glycol).
  • the lactone-based polyol is, for example, one having a hydroxy group at both ends produced by ring-opening polymerization of a lactone.
  • lactone examples include ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, and the like.
  • polystyrene resin examples include acrylic polyols. It is a preferable embodiment that these polyols (A) include at least one polyol selected from low-molecular polyhydric alcohols and polyether polyols.
  • the weight average molecular weight of the polyol compound (A) is preferably 50 to 10,000, and more preferably 50 to 8,000. When the weight average molecular weight is within this range, the physical properties (for example, hardness, tensile strength, elongation at break) and viscosity of the prepolymer produced by the reaction with the isocyanate compound (B) described later are improved.
  • the weight average molecular weight of a polyol compound (A) is a weight average molecular weight of standard polystyrene conversion measured by gel permeation chromatography (GPC).
  • polyol compounds (A) may be used alone or in combination of two or more.
  • the isocyanate compound (B) used in the present invention is not particularly limited as long as it has two or more isocyanate groups in one molecule.
  • Examples of the isocyanate compound (B) include tolylene diisocyanate, diphenylmethane diisocyanate, 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, tolidine diisocyanate, 1,5-naphthalene diisocyanate, Aromatic polyisocyanates such as triphenylmethane triisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl; transcyclohexane-1,4-diisocyanate, isophorone di
  • These isocyanate compounds (B) may be used alone or in combination of two or more.
  • the isocyanate compound (B) used in the present invention includes an isocyanate group-terminated urethane prepolymer obtained by reacting the polyol compound (A) with the isocyanate compound.
  • the amount of isocyanate in the isocyanate group-terminated urethane prepolymer is preferably 5 to 30% by mass, more preferably 10 to 25% by mass.
  • the content of the isocyanate compound (B) with respect to 100 parts by mass of the polyol compound (A) is in the range of 1 to 200 parts by mass, preferably 1 to 150 parts by mass. More preferably, it is 100 parts by mass.
  • the polyol compound (A) and the isocyanate compound (B) react with each other at an appropriate quantitative ratio to obtain a cured product obtained from the reaction product of the urethane composition to be produced.
  • the physical properties for example, hardness, tensile strength, elongation at break) are improved.
  • the liquid diene rubber (C) used in the present invention is a liquid polymer and contains a conjugated diene unit as a monomer unit constituting the polymer.
  • Conjugated dienes include, for example, butadiene, isoprene; 2,3-dimethylbutadiene, 2-phenylbutadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-octadiene 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, and conjugated dienes (c1) other than butadiene and isoprene, such as chloroprene.
  • the conjugated diene unit contained in the liquid diene rubber (C) preferably contains a monomer unit of isoprene and / or butadiene.
  • the liquid diene rubber (C) is a preferred embodiment in which 50% by mass or more of all monomer units constituting the polymer is a monomer unit of isoprene and / or butadiene.
  • the total content of isoprene units and butadiene units is preferably 55 to 100% by mass, more preferably 60 to 100% by mass, based on all monomer units of the liquid diene rubber (C). More preferably, it is 100% by mass, that is, the liquid diene rubber (C) is substantially composed only of monomer units of isoprene and / or butadiene.
  • Examples of the monomer unit other than the isoprene unit and the butadiene unit that can be contained in the liquid diene rubber (C) include the conjugated diene (c1) unit and aromatic vinyl compound (c2) unit other than the aforementioned isoprene and butadiene. Etc.
  • aromatic vinyl compound (c2) examples include styrene, ⁇ -methyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propyl styrene, 4-t-butyl styrene, and 4-cyclohexyl styrene.
  • the content of monomer units other than butadiene units and isoprene units is 50% by mass or less, more preferably 45% by mass or less, and further preferably 40% by mass or less.
  • the vinyl aromatic compound (c2) unit is not more than the above range, it is possible to suppress an increase in the viscosity of the liquid diene rubber (C), and the handling becomes easy.
  • liquid diene rubber (C) since the abrasion resistance of the cured product of the urethane composition is further improved, a liquid isoprene homopolymer, a liquid butadiene homopolymer, a liquid isoprene / butadiene copolymer, a liquid Styrene / butadiene copolymer is preferred, liquid isoprene homopolymer, liquid butadiene homopolymer, and liquid isoprene / butadiene copolymer are more preferred, and liquid isoprene homopolymer and liquid butadiene homopolymer are more preferred.
  • liquid diene rubber (C) examples include a polymer obtained by polymerizing a conjugated diene and other monomers other than the conjugated diene, if necessary, by, for example, an emulsion polymerization method or a solution polymerization method. preferable.
  • emulsion polymerization method a known method or a method according to a known method can be applied.
  • a monomer containing a predetermined amount of conjugated diene is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator.
  • Examples of the emulsifier include long chain fatty acid salts having 10 or more carbon atoms and rosin acid salts.
  • Examples of the long chain fatty acid salts include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid, and the like.
  • water is usually used, and it may contain a water-soluble organic solvent such as methanol and ethanol as long as the stability during polymerization is not hindered.
  • radical polymerization initiator examples include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, and hydrogen peroxide.
  • a chain transfer agent may be used.
  • the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, ⁇ -terpinene, ⁇ -methylstyrene dimer, and the like.
  • the temperature of emulsion polymerization can be appropriately set depending on the type of radical polymerization initiator used and the like, but is usually in the range of 0 to 100 ° C., preferably in the range of 0 to 60 ° C.
  • the polymerization mode may be either continuous polymerization or batch polymerization.
  • the polymerization reaction can be stopped by adding a polymerization terminator.
  • the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine, and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
  • an antioxidant may be added as necessary.
  • a salt such as sodium chloride, calcium chloride, potassium chloride is used as a coagulant, and nitric acid, sulfuric acid, etc.
  • the liquid diene rubber (C) is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then the polymer is recovered by separating the dispersion solvent. Subsequently, after washing with water and dehydration, the liquid diene rubber (C) is obtained by drying.
  • a latex and an extending oil previously made into an emulsified dispersion may be mixed and recovered as an oil-extended liquid diene rubber (C).
  • a known method or a method according to a known method can be applied.
  • a Ziegler catalyst a metallocene catalyst, an anion-polymerizable active metal or an active metal compound in a solvent
  • a monomer containing a conjugated diene is polymerized in the presence of a polar compound as necessary.
  • the solvent examples include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Aromatic hydrocarbons such as toluene and xylene are exemplified.
  • aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane
  • benzene Aromatic hydrocarbons such as toluene and xylene are exemplified.
  • anion-polymerizable active metal examples include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium .
  • alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable.
  • an organic alkali metal compound As the active metal compound capable of anion polymerization, an organic alkali metal compound is preferable.
  • the organic alkali metal compound include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, dilithionaphthalene Polyfunctional organolithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like.
  • organic alkali metal compounds organic lithium compounds are preferable, and organic monolithium compounds are more preferable.
  • the amount of the organic alkali metal compound used can be appropriately set according to the melt viscosity, molecular weight, etc. of the liquid diene rubber (C), but is usually 0.01 to 100 parts by mass based on 100 parts by mass of all monomers including the conjugated diene. Used in an amount of 3 parts by weight.
  • the organic alkali metal compound can be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine and the like.
  • Polar compounds are usually used in anionic polymerization to adjust the microstructure of the conjugated diene moiety without deactivating the reaction.
  • Examples of polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran, and ethylene glycol diethyl ether; tertiary amines such as N, N, N ′, N′-tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds. Can be mentioned.
  • the polar compound is usually used in an amount of 0.01 to 1000 mol with respect to 1 mol of the organic alkali metal compound.
  • the temperature of solution polymerization is usually in the range of ⁇ 80 to 150 ° C., preferably in the range of 0 to 100 ° C., more preferably in the range of 10 to 90 ° C.
  • the polymerization mode may be either batch or continuous.
  • the polymerization reaction can be stopped by adding a polymerization terminator.
  • the polymerization terminator include alcohols such as methanol and isopropanol.
  • the obtained polymerization reaction liquid is poured into a poor solvent such as methanol to precipitate the liquid diene rubber (C), or the polymerization reaction liquid is washed with water, separated and dried to dry the liquid diene rubber ( C) can be isolated.
  • the solution polymerization method is preferable among the above methods.
  • the liquid diene rubber (C) may be a modified liquid diene rubber having a functional group introduced therein.
  • functional groups include amino groups, amide groups, imino groups, imidazole groups, urea groups, alkoxysilyl groups, hydroxyl groups, epoxy groups, ether groups, carboxyl groups, carbonyl groups, mercapto groups, isocyanate groups, nitrile groups, and anhydrous groups.
  • acid anhydride groups such as carboxylic acid groups, dicarboxylic acid monoester groups, and dicarboxylic acid monoamide groups.
  • a method for producing a modified liquid diene rubber for example, before adding a polymerization terminator, tin tetrachloride, dibutyltin chloride, tetrachlorosilane, dimethyldichlorosilane, dimethyldiethoxysilane, tetra Coupling agents such as methoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane and 2,4-tolylene diisocyanate, and 4,4′-bis (diethylamino)
  • a method of adding a polymerization terminal modifier such as benzophenone and N-vinylpyrrolidone, N-methylpyrrolidone, 4-dimethylaminobenzylideneaniline, dimethylimidazolidinone, or other modifiers described in JP2011-132298A Can be mentioned.
  • Examples of the unsaturated carboxylic acid include maleic acid, fumaric acid, itaconic acid, and (meth) acrylic acid.
  • unsaturated carboxylic acid derivative examples include unsaturated dicarboxylic anhydrides such as maleic anhydride and itaconic anhydride; unsaturated dicarboxylic acid monoesters such as maleic acid monoester, itaconic acid monoester, and fumaric acid monoester.
  • Esters (meth) acrylic esters such as glycidyl (meth) acrylate and hydroxyethyl (meth) acrylate, unsaturated dicarboxylic monoamides such as maleic monoamide, itaconic monoamide and fumaric monoamide; maleic imide and itaconic imide And unsaturated carboxylic acid imides.
  • the method for adding the modifying compound to the unmodified liquid diene rubber (C) is not particularly limited.
  • an unsaturated carboxylic acid or a derivative thereof is added to the liquid diene rubber, and a radical catalyst is added as necessary.
  • a method of heating in the presence or absence of an organic solvent can be employed.
  • the organic solvent used in the above method includes a hydrocarbon solvent and a halogenated hydrocarbon solvent.
  • hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.
  • radical catalyst used in the above method examples include di-s-butylperoxydicarbonate, t-amylperoxypivalate, t-amylperoxy-2-ethylhexanoate, and azobisisobutyronitrile. It is done. Among these radical catalysts, azobisisobutyronitrile is preferable.
  • an anti-aging agent may be added from the viewpoint of suppressing side reactions.
  • the modified liquid diene rubber is further obtained.
  • a modified liquid diene rubber having a dicarboxylic acid monoester group or a modified liquid diene rubber having a dicarboxylic acid monoamide group by reacting with alcohol, ammonia, or an amine, and producing the modified liquid diene rubber. It may be used as rubber (C).
  • the position where the functional group is introduced may be a terminal of the polymer or a side chain with respect to the polymer chain.
  • the said functional group can also be used 1 type or in combination of 2 or more types.
  • the modifying agent is preferably used in an amount of 0.01 to 50 parts by mass, preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the unmodified liquid diene rubber (C).
  • the amount of the modified compound added to the modified liquid diene rubber (C) can be calculated based on the acid value of the modified compound, and various analytical instruments such as infrared spectroscopy and nuclear magnetic resonance spectroscopy. It can also be obtained using.
  • the weight average molecular weight (Mw) of the liquid diene rubber (C) is preferably 2,000 to 120,000, more preferably 2,000 to 80,000, still more preferably 2,000 to 40,000, and 2,000. ⁇ 25,000 is more preferred, and 4,000 to 15,000 is particularly preferred.
  • Mw of the liquid diene rubber (C) is within the above range, the average dispersed particle size of the phase derived from the liquid diene rubber (C) dispersed in the cured product obtained from the urethane composition of the present invention is small. Become. Therefore, the physical properties (tensile strength, elongation at break, wear resistance) of the cured product obtained from the composition containing the reaction product of the urethane composition are improved.
  • Mw of the liquid diene rubber (C) is a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • two or more kinds of liquid diene rubbers (C) having different Mw may be used in combination.
  • the molecular weight distribution (Mw / Mn) of the liquid diene rubber (C) is preferably 1.0 to 10.0, more preferably 1.0 to 8.0, and still more preferably 1.0 to 5.0. It is more preferable that Mw / Mn is within the above range, since the dispersion of the viscosity of the obtained liquid diene rubber (C) is small.
  • the melt viscosity of the liquid diene rubber (C) measured at 38 ° C. is preferably from 0.1 to 4,000 Pa ⁇ s, more preferably from 0.1 to 2,000 Pa ⁇ s, and from 0.1 to 500 Pa ⁇ s. Is more preferable, and 0.1 to 200 Pa ⁇ s is even more preferable.
  • the melt viscosity of the liquid diene rubber (C) is within the above range, the average dispersed particle diameter of the phase derived from the liquid diene rubber (C) is dispersed in the cured product obtained from the urethane composition of the present invention. Becomes small, and the physical properties of the resulting cured product are improved. Moreover, the moldability of the urethane composition obtained improves.
  • the melt viscosity of the liquid diene rubber (C) is a value measured with a Brookfield viscometer at 38 ° C.
  • the glass transition temperature (Tg) of the liquid diene rubber (C) varies depending on the vinyl content and other monomer content, but is preferably ⁇ 150 to 50 ° C., more preferably ⁇ 130 to 50 ° C., and ⁇ 100 to 50 More preferably. Within the above range, it is possible to suppress an increase in viscosity, and handling becomes easy. Further, if the glass transition temperature (Tg) of the liquid diene rubber (C) is ⁇ 150 ° C. or higher, the tan ⁇ of the cured product obtained from the composition containing the reaction product of the urethane composition is improved in a wide temperature range. , Vibration damping is good.
  • the vinyl content of the liquid diene rubber (C) is preferably 99 mol% or less, more preferably 70 mol% or less, from the viewpoint of further improving the wear resistance of the resulting cured product.
  • the mol% or less is more preferable, and the 15 mol% or less is particularly preferable.
  • the “vinyl content” means a conjugated diene bonded by 1,2-bonds or 3,4-bonds in a total of 100 mol% of conjugated diene units contained in the liquid diene rubber (C). This means the total mol% of units (conjugated diene units bonded other than 1,4-bonds).
  • the vinyl content is determined based on the peak derived from a conjugated diene unit bonded by 1,2-bond or 3,4-bond and the conjugated diene unit bonded by 1,4-bond. It can be calculated from the area ratio of the peak derived.
  • the vinyl content of the liquid diene rubber (C) controls, for example, the type of solvent used when the liquid diene rubber (C) is produced, the polar compound used as necessary, the polymerization temperature, and the like. Thus, a desired value can be obtained.
  • the vinyl content of the liquid diene rubber (C) is preferably 15 mol% or more, more preferably 30 mol% or more from the viewpoint of further improving the tensile strength and elongation at break of the cured product obtained. Is more preferable, and 55 mol% or more is a more preferable embodiment.
  • the liquid diene rubber (C) may be used alone or in combination of two or more.
  • the content of the liquid diene rubber (C) with respect to 100 parts by mass of the polyol compound (A) is 0.1 to 20 parts by mass, preferably 0.1 to 15 parts by mass. More preferable is 10 parts by mass.
  • the properties of the cured product obtained from the composition containing the reaction product of the urethane composition tensile strength, elongation at break, wear resistance
  • the liquid diene rubber (C) is difficult to bleed out from the cured product.
  • the urethane composition of the present invention may contain a powder component containing a filler as long as the effects of the present invention are not impaired.
  • the powder component is not particularly limited as long as it contains a filler, and may contain only the filler.
  • an anti-aging agent for example, an antioxidant, a pigment (Dye), thixotropic agent, UV absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent, adhesion promoter, antistatic agent and other various additives.
  • an anti-aging agent for example, an antioxidant, a pigment (Dye), thixotropic agent, UV absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent, adhesion promoter, antistatic agent and other various additives.
  • an anti-aging agent for example, an antioxidant, a pigment (Dye), thixotropic agent, UV absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent,
  • organic or inorganic fillers of various shapes can be mentioned.
  • the filler include fumed silica, calcined silica, precipitated silica, ground silica, fused silica; diatomaceous earth; iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide; calcium carbonate, heavy calcium carbonate, precipitated Calcium carbonate (light calcium carbonate), colloidal calcium carbonate, magnesium carbonate, zinc carbonate; wax stone clay, kaolin clay, calcined clay; carbon black; treated with these fatty acids, treated with resin acid, treated with urethane compound, fatty acid ester Treated product; and the like.
  • antioxidants examples include hindered phenol compounds such as butylhydroxytoluene and butylhydroxyanisole; thioether compounds; phosphorus antioxidants, and the like.
  • the pigment examples include, for example, inorganic pigments such as titanium oxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate; azo pigment, phthalocyanine pigment, quinacridone pigment, quinacridone quinone Pigment, dioxazine pigment, anthrapyrimidine pigment, ansanthrone pigment, indanthrone pigment, flavanthrone pigment, perylene pigment, perinone pigment, diketopyrrolopyrrole pigment, quinonaphthalone pigment, anthraquinone pigment, thioindigo pigment, benzimidazolone pigment, isoindoline
  • organic pigments such as pigment and carbon black.
  • thixotropic agent examples include aerosil (manufactured by Nippon Aerosil Co., Ltd.), disparon (manufactured by Enomoto Kasei Co., Ltd.) and the like.
  • adhesion imparting agent examples include terpene resin, phenol resin, terpene-phenol resin, rosin resin, xylene resin, and the like.
  • Examples of the flame retardant include chloroalkyl phosphate, dimethyl / methylphosphonate, bromine / phosphorus compound, ammonium polyphosphate, neopentyl bromide-polyether, brominated polyether, and the like.
  • antistatic agent examples include quaternary ammonium salts; hydrophilic compounds such as polyglycols and ethylene oxide derivatives.
  • the content of the powder component with respect to 100 parts by mass of the polyol compound (A) is preferably 300 parts by mass or less, preferably 0 to 250 parts by mass, and more preferably 0 to 200 parts by mass.
  • the viscosity of the urethane composition becomes appropriate, and workability is improved.
  • the urethane composition of the present invention may contain a plasticizer as long as the effects of the present invention are not impaired.
  • the plasticizer include diisononyl adipate; diisononyl phthalate; dioctyl adipate, isodecyl succinate; diethylene glycol dibenzoate, pentaerythritol ester; butyl oleate, methyl acetylricinoleate; tricresyl phosphate, trioctyl phosphate;
  • examples thereof include propylene glycol polyester and adipene butylene glycol polyester.
  • diisononyl adipate and diisononyl phthalate are preferred because they are excellent in compatibility and advantageous in terms of cost.
  • plasticizers may be used alone or in combination of two or more.
  • the content of the plasticizer with respect to 100 parts by mass in total of the polyol compound (A) and the isocyanate compound (B) is preferably 20 to 80 parts by mass, and more preferably 30 to 70 parts by mass.
  • the urethane composition of the present invention mixes a polyol compound (A), an isocyanate compound (B), a liquid diene rubber (C), and components included as necessary (for example, powder components, other components, etc.). Can be produced.
  • a mixing device for example, roll, kneader, pressure kneader, Banbury mixer, horizontal mixer (eg, Laedige mixer), vertical mixer (eg, planetary mixer), extruder, universal agitator Machine.
  • a catalyst that accelerates the polymerization reaction of urethane may be added.
  • the catalyst is not particularly limited as long as it promotes the urethane polymerization reaction, and examples thereof include metal catalysts and amine catalysts.
  • metal catalysts include organometallic catalysts.
  • organometallic catalyst examples include dimethyltin dilaurate, dibutyltin dilaurate, dioctyltin laurate (DOTL), dioctyltin dilaurate, dibutyltin diacetate, and bismuth catalysts (for example, inorganic bismuth (Neostan U-made by Nitto Kasei)). 600, U-660) and the like.
  • amine catalyst examples include triethylenediamine, bis (dimethylaminoethyl) ether, di (N, N-dimethylaminoethyl) amine and the like.
  • the above catalysts may be used alone or in combination of two or more. Moreover, although it may be used only with a metal catalyst or only with an amine metal catalyst, you may use together a metal catalyst and an amine catalyst.
  • the blending amount is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the polyol compound (A) and the polyisocyanate compound (B) contained in the urethane composition. 0.001 to 5 parts by mass is more preferable.
  • the cured product can be directly produced by adding the catalyst to the obtained urethane composition.
  • the cured product is produced through the following mixing step, casting step and curing step.
  • each component of the urethane composition and a component added to produce a cured product are mixed.
  • the mixing method of each component and the order to mix are not restrict
  • the so-called prepolymer method of mixing may be mentioned.
  • the mixing method and mixing order of each component are not particularly limited.
  • a method of mixing all components at once a plurality of types (for example, two types) of components are mixed in advance. Examples include a method of mixing the remaining components.
  • the order of the components to be mixed and the combination of components to be mixed in advance are not particularly limited.
  • the mixing method and the mixing order of the respective components are not particularly limited.
  • a part of the polyol compound (A) and the isocyanate compound (B) are previously prepared.
  • the mixing temperature and time in the mixing step can be appropriately set according to the types of the polyol compound (A), the liquid diene rubber (C) and the components contained as necessary, but the mixing temperature is preferably about 20 to 110 ° C.
  • the mixing time is preferably 30 minutes to 2 hours.
  • the material of the mold includes metal, plastic, inorganic material, wood and the like.
  • the shape of the mold may be an appropriate shape so as to obtain a cured product having a desired shape. If necessary, a mold release agent can be applied in advance in the mold before casting the composition.
  • the liquid diene rubber (C) is appropriately used. By selecting, the same effect as the mold release agent may be shown.
  • the composition When the curing rate of the composition is relatively slow, the composition may be poured into a mold and then depressurized to further deaerate. At this time, when an open mold is used as the mold, it can be defoamed in a vacuum oven.
  • the defoaming temperature is preferably 20 to 100 ° C., more preferably 50 to 80 ° C. By performing defoaming at such a temperature, defoaming can be performed more efficiently. Depending on the temperature at which defoaming is performed, defoaming may be performed simultaneously with the curing step described later.
  • a cured product having a desired shape is obtained by a reaction between the hydroxyl group of the polyol compound (A) contained in the composition and the isocyanate group of the isocyanate compound (B).
  • the reaction between the hydroxyl group and the isocyanate group usually proceeds by a thermal reaction. Therefore, the urethane composition of the present invention is preferably thermosetting.
  • the thermal reaction may proceed only by a thermal reaction due to self-reaction heat, but the thermal reaction may proceed by positively heating in addition to the reaction heat. Heating can be performed by, for example, a hot air oven, an electric furnace, an infrared induction heating furnace, or the like.
  • the heating temperature is preferably 40 to 200 ° C, more preferably 60 to 160 ° C.
  • the heating time is preferably 0.5 to 30 hours, more preferably 1 to 25 hours.
  • the cured product thus obtained in the present invention is characterized in that the average dispersed particle size of the phase derived from the liquid diene system (C) is 100 ⁇ m or less.
  • the average dispersed particle size of the phase derived from the liquid diene system (C) in the cured product is in the above range, not only the wear resistance is excellent, but also the tensile properties such as tensile strength and elongation at break are excellent.
  • the average dispersed particle size of the phase derived from the liquid diene system (C) is usually 1 ⁇ m or more.
  • the average dispersed particle size of the phase derived from the liquid diene system (C) in the cured product is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 3 ⁇ m or more and 30 ⁇ m or less.
  • the average dispersed particle size of the phase derived from the liquid diene system (C) in the cured product is a liquid diene system (C) as seen in an observation image (photographed image) of a microscope (for example, an optical microscope, SEM, TEM, SPM).
  • Cured products obtained from the urethane composition of the present invention include various types such as carpets, casters, rollers, door seals, coatings, tires, wiper blades, steering wheels, gaskets, packings, belts, tubes, hoses, printing rolls, and shoe soles. Can be used for articles.
  • Production Example 1 Production of liquid diene rubber (1) A well-dried 5 L autoclave was purged with nitrogen, charged with 1150 g of hexane and 97.9 g of n-butyllithium (17% by mass hexane solution) and heated to 50 ° C. Thereafter, 1250 g of butadiene was successively added and polymerized for 1 hour while controlling the polymerization temperature to be 50 ° C. under stirring conditions. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the resulting polymer solution and stirred, and the polymer solution was washed with water. Stirring was terminated, and after confirming that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after completion of washing was vacuum dried at 70 ° C. for 24 hours to obtain a liquid diene rubber (1).
  • Production Example 2 Production of liquid diene rubber (2) A sufficiently dried 5 L autoclave was purged with nitrogen, charged with 1280 g of hexane and 66 g of sec-butyllithium (10.5 mass% cyclohexane solution), and the temperature was raised to 50 ° C. Thereafter, 1350 g of butadiene was successively added and polymerized for 1 hour while controlling the polymerization temperature to be 50 ° C. under stirring conditions. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the resulting polymer solution and stirred, and the polymer solution was washed with water. Stirring was terminated, and after confirming that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after completion of washing was vacuum dried at 70 ° C. for 24 hours to obtain a liquid diene rubber (2).
  • Production Example 3 Production of Liquid Diene Rubber (3) A 5L autoclave that had been sufficiently dried was purged with nitrogen, charged with 1100 g of hexane and 204 g of n-butyllithium (17% by mass hexane solution), heated to 50 ° C., Under stirring conditions, while controlling the polymerization temperature to be 50 ° C., 10 g of N, N, N ′, N′-tetramethylethylenediamine and 1300 g of butadiene were successively added and polymerized for 1 hour. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the resulting polymer solution and stirred, and the polymer solution was washed with water. Stirring was terminated, and after confirming that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after washing was vacuum dried at 70 ° C. for 24 hours to obtain a liquid diene rubber (3).
  • Production Example 4 Production of liquid diene rubber (4) A sufficiently dried 5 L autoclave was purged with nitrogen, charged with 1200 g of hexane and 212 g of sec-butyllithium (10.5 mass% cyclohexane solution), and the temperature was raised to 50 ° C. Thereafter, 2050 g of isoprene was sequentially added under polymerization conditions while controlling the polymerization temperature to be 70 ° C. under stirring conditions, and polymerized for 1 hour. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the resulting polymer solution and stirred, and the polymer solution was washed with water.
  • Production Example 5 Production of liquid diene rubber (5) A sufficiently dried 5 L autoclave was purged with nitrogen, charged with 1200 g of cyclohexane and 26.8 g of n-butyllithium (17% by mass hexane solution), and the temperature was raised to 70 ° C. Thereafter, 1620 g of butadiene was added and polymerized for 1 hour while controlling the polymerization temperature to be 70 ° C. under stirring conditions, and then 180 g of isoprene was added and polymerized for another hour. Thereafter, methanol was added to stop the polymerization reaction to obtain a polymer solution. Water was added to the resulting polymer solution and stirred, and the polymer solution was washed with water. Stirring was terminated, and after confirming that the polymer solution phase and the aqueous phase were separated, water was separated. The polymer solution after completion of washing was vacuum dried at 70 ° C. for 24 hours to obtain a liquid diene rubber (5).
  • Production Example 6 Production of liquid diene rubber (6) A well-dried 5 L autoclave was purged with nitrogen, charged with 1800 g of cyclohexane and 140 g of sec-butyllithium (10.5 mass% cyclohexane solution) and heated to 50 ° C. Thereafter, 9.6 g of N, N, N ′, N′-tetramethylethylenediamine and a previously prepared mixture of butadiene and styrene (960 g of butadiene and styrene are controlled while controlling the polymerization temperature to be 50 ° C. under stirring conditions. 1600 g was mixed successively and polymerized for 1 hour.
  • the measuring method and calculating method of each physical property of the liquid diene rubber obtained in the production example are as follows.
  • Mw Weight average molecular weight
  • C liquid diene rubber
  • the vinyl content was calculated from the area ratio between the peak of the double bond derived from the vinylated diene compound and the peak of the double bond derived from the non-vinylated diene compound in the obtained spectrum.
  • Glass transition temperature (Tg) 10 mg of liquid diene rubber (C) was collected in an aluminum pan, a thermogram was measured under a temperature increase rate of 10 ° C./min by differential scanning calorimetry (DSC), and the peak top value of DDSC was determined as the glass transition temperature. did.
  • melt viscosity at 38 ° C The melt viscosity of the liquid diene rubber (C) at 38 ° C. was measured with a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).
  • Examples 1 to 6 and Comparative Examples 1 to 3 A separable flask was charged with 100 parts by weight of a polyol compound (1) and 200 parts by weight of an isocyanate compound (B), heated to 80 ° C. with stirring, and then reacted in vacuum for 2 hours to give an isocyanate group-terminated urethane prepolymer ( B ′) was obtained. Next, according to the mixing ratio (parts by mass) described in Table 2 in another separable flask, the polyol compound (1), the polyol compound (2), and the liquid diene rubber were charged and stirred at 80 ° C. for 2 hours. The polyol compound (3) was charged and allowed to cool to 30 ° C.
  • the isocyanate group-terminated urethane prepolymer (B ′) prepared above was charged and stirred and mixed at 80 ° C. for 10 minutes in a vacuum to prepare a urethane composition.
  • the prepared urethane composition was poured into a mold heated to 50 ° C., left in a dryer (50 ° C.) for 2 hours, and then left at 80 ° C. for 15 hours to obtain a cured polyurethane elastomer.
  • the average dispersion particle size of the liquid diene rubber (C) dispersed in the obtained polyurethane elastomer cured product and the physical properties of the cured product are as follows. Based on the evaluation. The results are shown in Table 2.
  • a frozen section having a thickness of 150 nm was prepared using an ultramicrotome (EM FC7, manufactured by Leica). The obtained section was set in an optical microscope (BXFM component microscope, manufactured by Olympus) and observed and photographed at 400 times. From the photographed image, the major axis of the liquid diene rubber (C) particles dispersed as an island phase was determined. An average value of 100 particles (number average dispersed particle size) was determined as an average dispersed particle size as measured from a scale marker.
  • Examples 1 to 6 in which the average dispersed particle diameter of the phase derived from the liquid diene rubber (C) dispersed in the cured product obtained from the urethane composition is 100 ⁇ m or less, have the tensile strength. It can be seen that the cured product has excellent elongation at break and wear resistance. On the other hand, since Comparative Example 2 has a large average dispersed particle size of the phase derived from the liquid diene rubber (C), it has excellent wear resistance but is inferior in tensile strength and elongation at break. Comparative Example 3 is inferior in all of tensile strength, elongation at break, and wear resistance.
  • the cured product obtained from the urethane composition of the present invention is excellent not only in wear resistance but also in tensile properties. Therefore, it is useful for various applications, for example, belts, tubes, hoses, casters, rollers, packing, shoe soles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

成形性に優れ、得られる硬化物の耐摩耗性、引張物性等の機械物性に優れるウレタン組成物の提供。 1分子中に2個以上のヒドロキシ基を有するポリオール化合物(A)100質量部に対し、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(B)を1~200質量部、及び液状ジエン系ゴム(C)を0.1~20質量部含有するウレタン組成物で、該ウレタン組成物の硬化物中に分散する液状ジエン系ゴム(C)に由来する相の平均分散粒径が100μm以下となるウレタン組成物。

Description

ウレタン組成物
 本発明はウレタン組成物に関する。
 ウレタン組成物からなる硬化物(特にウレタン系エラストマー)は、耐屈曲疲労特性、引き裂き強度などの特性に優れることから、カーペット、ローラー、履物底等の軟質部材として種々の用途で使用されてきている。
 しかし、ウレタン組成物からなる硬化物は、成形性が必ずしも十分ではなく、また耐摩耗性、引張物性等の機械物性が十分ではない場合がある。
 これらを改善する手法として、液状ポリブタジエンをウレタン組成物に配合する方法が検討されている(例えば、特許文献1、2参照。)。
国際公開第2011/110485号 国際公開第97/01590号
 しかし、上記特許文献1、2に開示のウレタン組成物の硬化物であっても、引張物性が必ずしも十分ではない場合、また耐摩耗性が必ずしも十分ではない場合があった。
 本発明は、上記の実情に鑑みてなされたものであり、成形性に優れ、得られる硬化物の耐摩耗性、引張物性等の機械物性に優れるウレタン組成物を提供する。
 本発明者らが、鋭意検討を行った結果、ポリオール化合物、特定のイソシアネート化合物、及び液状ジエン系ゴムを特定の条件で含むウレタン組成物により、成形性に優れ、耐摩耗性、引張物性等の機械物性に優れる硬化物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下〔1〕~〔7〕に関する。
 〔1〕1分子中に2個以上のヒドロキシ基を有するポリオール化合物(A)100質量部に対し、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(B)を1~200質量部、及び液状ジエン系ゴム(C)を0.1~20質量部含有するウレタン組成物で、
該ウレタン組成物の硬化物中に分散する液状ジエン系ゴム(C)に由来する相の平均分散粒径が100μm以下となるウレタン組成物。
 〔2〕液状ジエン系ゴム(C)の38℃で測定した溶融粘度が、0.1~4,000Pa・sである、〔1〕に記載のウレタン組成物。
 〔3〕液状ジエン系ゴム(C)のガラス転移温度(Tg)が-150~50℃である、〔1〕又は〔2〕に記載のウレタン組成物。
 〔4〕液状ジエン系ゴム(C)が液状イソプレン単独重合体及び液状ブタジエン単独重合体からなる群より選ばれる少なくとも1つである、〔1〕~〔3〕のいずれかに記載のウレタン組成物。
 〔5〕液状ジエン系ゴム(C)のビニル含量が15モル%以上である、〔1〕~〔4〕のいずれかに記載のウレタン組成物。
 〔6〕熱硬化性である、〔1〕~〔5〕のいずれかに記載のウレタン組成物。
 〔7〕〔1〕~〔6〕のいずれかに記載のウレタン組成物の硬化物。
 本発明によれば、成形性に優れ、耐摩耗性、引張物性等の機械物性に優れる硬化物が作製できるウレタン組成物が得られる。
 本発明のウレタン組成物は、1分子中に2個以上のヒドロキシ基を有するポリオール化合物(A)100質量部に対して、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(B)を1~200質量部、及び液状ジエン系ゴム(C)を0.1~20質量部含有する。
 [ポリオール化合物(A)]
 本発明で用いるポリオール化合物(A)は、後述するイソシアネート化合物(B)と反応できる化合物である限り特に制限はない。
 ポリオール化合物(A)としては、低分子多価アルコール、ポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、これらの混合物などが挙げられる。
 低分子多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、ネオペンチルグリコール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパン、1,2,5-ヘキサントリオール、ペンタエリスリトール;ソルビトール等の糖類;などが挙げられる。
 ポリエーテルポリオールは、例えば、上記低分子多価アルコール、芳香族ジオール化合物、アミン化合物及びアルカノールアミン化合物から選ばれる少なくとも1種の化合物に、アルキレンオキサイド及びスチレンオキサイドから選ばれる少なくとも1種の化合物を付加する方法、ブチレンオキサイド(テトラメチレンオキサイド)、テトラヒドロフラン等の環状エーテル単量体を開環重合する方法などによって製造されたものである。
 上記芳香族ジオール化合物としては、例えば、レゾルシン(m-ジヒドロキシベンゼン)、キシリレングリコール、1,4-ベンゼンジメタノール、スチレングリコール;ビスフェノールA構造(4,4'-ジヒドロキシジフェニルプロパン)、ビスフェノールF構造(4,4'-ジヒドロキシジフェニルメタン)、臭素化ビスフェノールA構造、水添ビスフェノールA構造、ビスフェノールS構造、ビスフェノールAF構造等のビスフェノール骨格を有するジオール化合物などが挙げられる。上記アミン化合物としては、例えば、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。上記アルカノールアミン化合物としては、例えば、エタノールアミン、プロパノールアミンなどが挙げられる。上記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイドなどが挙げられる。
 ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、エチレンオキサイド/プロピレンオキサイド共重合体、ポリテトラメチレンエーテルグリコール、ポリテトラエチレングリコール;ソルビトール系ポリオール;ビスフェノールA(4,4'-ジヒドロキシフェニルプロパン)に、アルキレンオキサイドを付加させて得られるポリエーテルポリオールなどが挙げられる。
 ポリエステルポリオールとしては、例えば、縮合系ポリエステルポリオール、ラクトン系ポリオール、ポリカーボネートポリオール等が挙げられる。
 縮合系ポリエステルポリオールは、例えば、上記低分子多価アルコール、上記芳香族ジオール化合物、上記アミン化合部物及び上記アルカノールアミン化合物から選ばれる少なくとも1種の化合物と、多塩基性カルボン酸との縮合反応により製造されたものである。
 上記多塩基性カルボン酸としては、例えば、グルタル酸、アジピン酸、アゼライン酸、フマル酸、マレイン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、テレフタル酸、イソフタル酸、ダイマー酸、ピロメリット酸等の低分子カルボン酸、オリゴマー酸、ヒマシ油、ヒマシ油とエチレングリコール(又はプロピレングリコール)との反応生成物などのヒドロキシカルボン酸等が挙げられる。
 ラクトン系ポリオールは、例えば、ラクトンを開環重合することにより製造された両末端にヒドロキシ基を有するものである。上記ラクトンとしては、例えば、ε-カプロラクトン、α-メチル-ε-カプロラクトン、ε-メチル-ε-カプロラクトンなどが挙げられる。
 その他のポリオールとしては、アクリルポリオールなどが挙げられる。
 これらポリオール(A)として、低分子多価アルコール及びポリエーテルポリオールから選ばれる少なくとも1つのポリオールを含むことが好ましい一態様である。
 ポリオール化合物(A)の重量平均分子量は、50~10000が好ましく、50~8000がより好ましい。重量平均分子量がこの範囲であると、後述するイソシアネート化合物(B)との反応によって生成するプレポリマーの物性(例えば、硬度、引張強さ、切断時伸び)及び粘度が良好となる。なお、ポリオール化合物(A)の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定した標準ポリスチレン換算の重量平均分子量である。
 これらポリオール化合物(A)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 [イソシアネート化合物(B)]
 本発明で用いるイソシアネート化合物(B)は、1分子中に2個以上のイソシアネート基を有する限り特に制限はない。イソシアネート化合物(B)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリジンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアナートメチルなどの脂肪族ポリイソシアネート;トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等の脂環式ポリイソシアネート;これらイソシアネート化合物のカルボジイミド変性イソシアネート化合物、イソシアヌレート変性イソシアネート化合物;などが挙げられる。
 これらイソシアネート化合物(B)として、芳香族ポリイソシアネートを含む態様が好ましい一態様である。
 これらイソシアネート化合物(B)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明で用いるイソシアネート化合物(B)は前記ポリオール化合物(A)と前記イソシアネート化合物とを反応させることにより得られる、イソシアネート基末端ウレタンプレポリマーを含む。イソシアネート基末端ウレタンプレポリマー中のイソシアネート量は、好ましくは5~30質量%であり、より好ましくは10~25質量%である。
 本発明のウレタン組成物において、ポリオール化合物(A)100質量部に対するイソシアネート化合物(B)の含有量は、1~200質量部の範囲であり、1~150質量部であることが好ましく、1~100質量部であることがより好ましい。イソシアネート化合物(B)が上記範囲で含まれていることにより、ポリオール化合物(A)とイソシアネート化合物(B)が適切な量比で反応し、生成するウレタン組成物の反応生成物から得られる硬化物の物性(例えば、硬度、引張強さ、切断時伸び)が良好となる。
 [液状ジエン系ゴム(C)]
 本発明で用いる液状ジエン系ゴム(C)とは、液状の重合体でありその重合体を構成する単量体単位として共役ジエン単位を含む。共役ジエンとしては、例えば、ブタジエン、イソプレン;2,3-ジメチルブタジエン、2-フェニルブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ミルセン、及びクロロプレン等のブタジエン及びイソプレン以外の共役ジエン(c1)が挙げられる。液状ジエン系ゴム(C)に含まれる共役ジエン単位としては、イソプレン及び/又はブタジエンの単量体単位が含まれていることが好ましい。
 液状ジエン系ゴム(C)は、その重合体を構成する全単量体単位のうち、50質量%以上がイソプレン及び/又はブタジエンの単量体単位であることが好ましい一態様である。イソプレン単位及びブタジエン単位の合計含有量は、液状ジエン系ゴム(C)の全単量体単位に対して55~100質量%であることが好ましく、60~100質量%であることがより好ましく、100質量%、すなわち液状ジエン系ゴム(C)が実質的にイソプレン及び/又はブタジエンの単量体単位のみで構成されることがさらに好ましい。
 上記液状ジエン系ゴム(C)に含まれ得るイソプレン単位及びブタジエン単位以外の他の単量体単位としては、前述したイソプレン及びブタジエン以外の共役ジエン(c1)単位、芳香族ビニル化合物(c2)単位などが挙げられる。
 芳香族ビニル化合物(c2)としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-t-ブチルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、2,4,6-トリメチルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレン、ビニルアントラセン、N,N-ジエチル-4-アミノエチルスチレン、ビニルピリジン、4-メトキシスチレン、モノクロロスチレン、ジクロロスチレン、及びジビニルベンゼンなどが挙げられる。これら芳香族ビニル化合物の中では、スチレン、α-メチルスチレン、及び4-メチルスチレンが好ましい。
 上記液状ジエン系ゴム(C)における、ブタジエン単位及びイソプレン単位以外の他の単量体単位の含有量は、50質量%以下であり、45質量%以下がより好ましく、40質量%以下がさらに好ましい。例えば、ビニル芳香族化合物(c2)単位が上記範囲以下であると、液状ジエン系ゴム(C)の粘度が高くなるのを抑えることができ取り扱いが容易になる。
 上記液状ジエン系ゴム(C)としては、上記ウレタン組成物の硬化物の耐摩耗性がより向上することから、液状イソプレン単独重合体、液状ブタジエン単独重合体、液状イソプレン/ブタジエン共重合体、液状スチレン/ブタジエン共重合体が好ましく、液状イソプレン単独重合体、液状ブタジエン単独重合体、液状イソプレン/ブタジエン共重合体がより好ましく、液状イソプレン単独重合体、液状ブタジエン単独重合体がさらに好ましい。
 液状ジエン系ゴム(C)としては、共役ジエン及び必要に応じて含まれる共役ジエン以外の他の単量体を、例えば、乳化重合法、又は溶液重合法等により重合して得られる重合体が好ましい。
 上記乳化重合法としては、公知又は公知に準ずる方法を適用できる。例えば、所定量の共役ジエンを含む単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
 乳化剤としては、例えば炭素数10以上の長鎖脂肪酸塩及びロジン酸塩などが挙げられる。長鎖脂肪酸塩としては、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩などが挙げられる。
 分散剤としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノールなどの水溶性有機溶媒を含んでいてもよい。
 ラジカル重合開始剤としては、例えば過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
 得られる液状ジエン系ゴム(C)の分子量を調整するため、連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ-テルピネン、α-メチルスチレンダイマーなどが挙げられる。
 乳化重合の温度は、使用するラジカル重合開始剤の種類などにより適宜設定できるが、通常0~100℃の範囲、好ましくは0~60℃の範囲である。重合様式は、連続重合、回分重合のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
 重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、上記液状ジエン系ゴム(C)を凝固させた後、分散溶媒を分離することによって重合体を回収する。次いで水洗、及び脱水後、乾燥することで、上記液状ジエン系ゴム(C)が得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展した液状ジエン系ゴム(C)として回収してもよい。
 上記溶液重合法としては、公知又は公知に準ずる方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属又は活性金属化合物を使用して、必要に応じて極性化合物の存在下で、共役ジエンを含む単量体を重合する。
 溶媒としては、例えば、n-ブタン、n-ペンタン、イソペンタン、n-ヘキサン、n-ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。
 アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。
 アニオン重合可能な活性金属の中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
 アニオン重合可能な活性金属化合物としては、有機アルカリ金属化合物が好ましい。有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。これら有機アルカリ金属化合物の中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。
 有機アルカリ金属化合物の使用量は、液状ジエン系ゴム(C)の溶融粘度、分子量などに応じて適宜設定できるが、共役ジエンを含む全単量体100質量部に対して、通常0.01~3質量部の量で使用される。
 上記有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミンなどの第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
 極性化合物は、アニオン重合において、通常、反応を失活させず、共役ジエン部位のミクロ構造を調整するため用いられる。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;N,N,N',N'-テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物などが挙げられる。極性化合物は、有機アルカリ金属化合物1モルに対して、通常0.01~1000モルの量で使用される。
 溶液重合の温度は、通常-80~150℃の範囲、好ましくは0~100℃の範囲、より好ましくは10~90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
 重合反応は、重合停止剤の添加により停止できる。重合停止剤としては、例えば、メタノール、イソプロパノール等のアルコールが挙げられる。得られた重合反応液をメタノール等の貧溶媒に注いで、液状ジエン系ゴム(C)を析出させるか、重合反応液を水で洗浄し、分離後、乾燥することにより上記液状ジエン系ゴム(C)を単離できる。
 上記液状ジエン系ゴム(C)の製造方法としては、上記方法の中でも、溶液重合法が好ましい。
 液状ジエン系ゴム(C)は、官能基が導入された変性液状ジエン系ゴムであってもよい。官能基としては、例えばアミノ基、アミド基、イミノ基、イミダゾール基、ウレア基、アルコキシシリル基、水酸基、エポキシ基、エーテル基、カルボキシル基、カルボニル基、メルカプト基、イソシアネート基及び、ニトリル基、無水カルボン酸基などの酸無水物基、ジカルボン酸モノエステル基、及びジカルボン酸モノアミド基等酸無水物等が挙げられる。変性液状ジエン系ゴムの製造方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、ジブチル錫クロリド、テトラクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン及び2,4-トリレンジイソシアネート等のカップリング剤や、4,4'-ビス(ジエチルアミノ)ベンゾフェノン及びN-ビニルピロリドン、N-メチルピロリドン、4-ジメチルアミノベンジリデンアニリン、ジメチルイミダゾリジノン等の重合末端変性剤、又は特開2011-132298号公報に記載のその他の変性剤を添加する方法が挙げられる。また、単離後の未変性の液状ジエン系ゴムに不飽和カルボン酸及び/又は不飽和カルボン酸誘導体をグラフト化した変性液状ジエン系ゴムを用いることもできる。
 上記不飽和カルボン酸としては、マレイン酸、フマル酸、イタコン酸、(メタ)アクリル酸が挙げられる。
 また、上記不飽和カルボン酸誘導体としては、例えば、無水マレイン酸、無水イタコン酸などの不飽和ジカルボン酸無水物;マレイン酸モノエステル、イタコン酸モノエステル、フマル酸モノエステルなどの不飽和ジカルボン酸モノエステル;グリシジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートなどの(メタ)アクリル酸エステル、マレイン酸モノアミド、イタコン酸モノアミド、フマル酸モノアミドなどの不飽和ジカルボン酸モノアミド;マレイン酸イミド、イタコン酸イミドなどの不飽和カルボン酸イミドなどが挙げられる。
 変性化合物を、未変性の液状ジエン系ゴム(C)に付加させる方法は特に限定されず、例えば、液状ジエン系ゴム中に不飽和カルボン酸又はその誘導体、さらに必要に応じてラジカル触媒を加えて、有機溶媒の存在下又は非存在下に加熱する方法を採用することができる。
 上記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これら有機溶媒の中でも、n-ブタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒が好ましい。
 また、上記方法で使用されるラジカル触媒としては、ジ-s-ブチルペルオキシジカーボネート、t-アミルペルオキシピバレート、t-アミルペルオキシ-2-エチルヘキサノエート、アゾビスイソブチロニトリルなどが挙げられる。これらラジカル触媒の中でも、アゾビスイソブチロニトリルが好ましい。
 さらに、上記方法により変性化合物を付加する反応を行う時には、副反応を抑制する観点等から老化防止剤を添加してもよい。
 また、上記のように、無水不飽和カルボン酸を未変性の液状ジエン系ゴム(C)に付加して無水カルボン酸基を有する変性液状ジエン系ゴムを得た後に、さらにその変性液状ジエン系ゴムと、アルコール、アンモニア、あるいはアミンなどを反応させて、ジカルボン酸モノエステル基を有する変性液状ジエン系ゴム、又はジカルボン酸モノアミド基を有する変性液状ジエン系ゴムを製造して、これを変性液状ジエン系ゴム(C)として用いてもよい。
 この変性液状ジエン系ゴムにおいて、官能基が導入される位置については重合体の末端であってもよく、重合体鎖に対する側鎖であってもよい。また上記官能基は1種又は2種以上を組み合わせて用いることもできる。上記変性剤は、未変性の液状ジエン系ゴム(C)100質量部に対して0.01~50質量部、好ましくは0.01~20質量部の範囲で使用することが好ましい。なお、変性液状ジエン系ゴム(C)中に付加された変性化合物量は、変性化合物の酸価を基に算出することもできるし、赤外分光法、核磁気共鳴分光法等の各種分析機器を用いて求めることもできる。
 液状ジエン系ゴム(C)の重量平均分子量(Mw)は2,000~120,000が好ましく、2,000~80,000がより好ましく、2,000~40,000がさらに好ましく、2,000~25,000がよりさらに好ましく、4,000~15,000が特に好ましい。液状ジエン系ゴム(C)のMwが前記範囲内であると本発明のウレタン組成物から得られる硬化物中に分散する、液状ジエン系ゴム(C)に由来する相の平均分散粒径が小さくなる。そのため、ウレタン組成物の反応生成物を含む組成物から得られる硬化物の物性(引張強さ、切断時伸び、耐摩耗性)が良好になる。なお、本明細書において液状ジエン系ゴム(C)のMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定した標準ポリスチレン換算の重量平均分子量である。本発明においては、Mwが異なる2種以上の液状ジエン系ゴム(C)を組み合わせて用いてもよい。
 液状ジエン系ゴム(C)の分子量分布(Mw/Mn)は1.0~10.0が好ましく、1.0~8.0がより好ましく、1.0~5.0がさらに好ましい。Mw/Mnが前記範囲内であると、得られる液状ジエン系ゴム(C)の粘度のばらつきが小さく、より好ましい。
 上記液状ジエン系ゴム(C)の38℃で測定した溶融粘度は、0.1~4,000Pa・sが好ましく、0.1~2,000Pa・sがより好ましく、0.1~500Pa・sがさらに好ましく、0.1~200Pa・sがよりさらに好ましい。液状ジエン系ゴム(C)の溶融粘度が前記範囲内であると、本発明のウレタン組成物から得られる硬化物中に分散する、液状ジエン系ゴム(C)に由来する相の平均分散粒径が小さくなり、得られる硬化物の物性が良好になる。また得られるウレタン組成物の成形性が向上する。なお、本発明において液状ジエン系ゴム(C)の溶融粘度は、38℃においてブルックフィールド型粘度計により測定した値である。
 上記液状ジエン系ゴム(C)のガラス転移温度(Tg)は、ビニル含量や他のモノマー含量によって変化するが、-150~50℃が好ましく、-130~50℃がより好ましく、-100~50℃がさらに好ましい。前記範囲であると、粘度が高くなるのを抑えることができ、取り扱いが容易になる。また、液状ジエン系ゴム(C)のガラス転移温度(Tg)が-150℃以上であると、ウレタン組成物の反応生成物を含む組成物から得られる硬化物のtanδが幅広い温度領域において向上し、制振性が良好となる。
 上記液状ジエン系ゴム(C)のビニル含量は、得られる硬化物の耐摩耗性をより向上する点から、99モル%以下であることが好ましく、70モル%以下であることがより好ましく、30モル%以下がさらに好ましく、15モル%以下が特に好ましい。本発明において、「ビニル含量」とは、液状ジエン系ゴム(C)に含まれる共役ジエン単位の合計100モル%中、1,2-結合又は3,4-結合で結合をしている共役ジエン単位(1,4-結合以外で結合をしている共役ジエン単位)の合計モル%を意味する。ビニル含量は、1H-NMRを用いて1,2-結合又は3,4-結合で結合をしている共役ジエン単位由来のピークと1,4-結合で結合をしている共役ジエン単位に由来するピークの面積比から算出することができる。なお、液状ジエン系ゴム(C)のビニル含量は、例えば、液状ジエン系ゴム(C)を製造する際に使用する溶媒の種類、必要に応じて使用される極性化合物、重合温度などを制御することにより所望の値とすることができる。
 また上記液状ジエン系ゴム(C)のビニル含量は、得られる硬化物の引張強さ及び切断時伸びをより向上する点から、15モル%以上であることが好ましく、30モル%以上であることがより好ましく、55モル%以上がさらに好ましい一態様である。
 上記液状ジエン系ゴム(C)は、1種単独で用いられてもよく、2種以上を併用してもよい。
 本発明のウレタン組成物において、ポリオール化合物(A)100質量部に対する液状ジエン系ゴム(C)の含有量は、0.1~20質量部であり、0.1~15質量部が好ましく、1~10質量部がより好ましい。液状ジエン系ゴム(C)の含有量が上記範囲内であると、上記ウレタン組成物の反応生成物を含む組成物から得られる硬化物の物性(引張強さ、切断時伸び、耐摩耗性)が良好となり、また硬化物から液状ジエン系ゴム(C)がブリードアウトしにくい。
 [粉体成分]
 本発明のウレタン組成物は、本発明の効果を損なわない範囲で、充填剤を含有する粉体成分を含んでもよい。上記粉体成分は、充填剤を含有する成分であれば特に限定されず、該充填剤のみ含有するものであってもよく、該充填剤以外に、例えば、老化防止剤、酸化防止剤、顔料(染料)、揺変性付与剤、紫外線吸収剤、難燃剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、接着付与剤、帯電防止剤などの各種添加剤等を含有するものであってもよい。
 上記充填剤としては、各種形状の有機又は無機の充填剤などが挙げられる。充填材としては、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ;ケイソウ土;酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム;炭酸カルシウム、重質炭酸カルシウム、沈降性炭酸カルシウム(軽質炭酸カルシウム)、コロイダル炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛;ろう石クレー、カオリンクレー、焼成クレー;カーボンブラック;これらの脂肪酸処理物、樹脂酸処理物、ウレタン化合物処理物、脂肪酸エステル処理物;などが挙げられる。
 上記酸化防止剤としては、例えば、ブチルヒドロキシトルエン、ブチルヒドロキシアニソールなどのヒンダードフェノール系化合物;チオエーテル系化合物;リン系酸化防止剤などが挙げられる。
 上記顔料としては、例えば、酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩などの無機顔料;アゾ顔料、フタロシアニン顔料、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ペリノン顔料、ジケトピロロピロール顔料、キノナフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンズイミダゾロン顔料、イソインドリン顔料、カーボンブラックなどの有機顔料;などが挙げられる。
 上記揺変性付与剤としては、例えば、エアロジル(日本エアロジル社製)、ディスパロン(楠本化成社製)などが挙げられる。
 上記接着付与剤としては、例えば、テルペン樹脂、フェノール樹脂、テルペン-フェノール樹脂、ロジン樹脂、キシレン樹脂などが挙げられる。
 上記難燃剤としては、例えば、クロロアルキルホスフェート、ジメチル・メチルホスホネート、臭素・リン化合物、アンモニウムポリホスフェート、ネオペンチルブロマイド- ポリエーテル、臭素化ポリエーテルなどが挙げられる。
 上記帯電防止剤としては、例えば、第四級アンモニウム塩;ポリグリコール、エチレンオキサイド誘導体等の親水性化合物等が挙げられる。
 本発明のウレタン組成物において、ポリオール化合物(A)100質量部に対する粉体成分の含有量は、300質量部以下が好ましく、0~250質量部が好ましく、0~200質量部がより好ましい。粉体成分の含有量が上記範囲内であると、ウレタン組成物の粘度が適切となり、作業性が良好となる。
 [その他の成分]
 本発明のウレタン組成物には、本発明の効果を損なわない範囲で、可塑剤を含んでいてもよい。上記可塑剤としては、例えば、アジピン酸ジイソノニル;フタル酸ジイソノニル;アジピン酸ジオクチル、コハク酸イソデシル;ジエチレングリコールジベンゾエート、ペンタエリスリトールエステル;オレイン酸ブチル、アセチルリシノール酸メチル;リン酸トリクレジル、リン酸トリオクチル;アジピン酸プロピレングリコールポリエステル、アジピン酸ブチレングリコールポリエステルなどが挙げられる。
 これら可塑剤の中でも、相溶性に優れること、またコスト面でも有利であることから、アジピン酸ジイソノニル、フタル酸ジイソノニルが好ましい。
 これら可塑剤は1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
 本発明のウレタン組成物において、ポリオール化合物(A)及びイソシアネート化合物(B)の合計100質量部に対する可塑剤の含有量は、20~80質量部が好ましく、30~70質量部がより好ましい。
 本発明のウレタン組成物は、ポリオール化合物(A)、イソシアネート化合物(B)、液状ジエン系ゴム(C)及び、必要に応じて含まれる成分(例えば粉体成分、その他の成分など)を混合することにより作製できる。混合装置は特に制限はなく、例えば、ロール、ニーダー、加圧ニーダー、バンバリーミキサー、横型ミキサー(例えば、レーディゲミキサー等)、縦型ミキサー(例えば、プラネタリーミキサー等)、押出し機、万能かくはん機などが挙げられる。
 本発明のウレタン組成物から硬化物を作製させるためには、例えば、ウレタンの重合反応を促進する触媒を添加してもよい。かかる触媒としては、ウレタンの重合反応を促進する限り特に制限はないが、例えば、金属触媒、アミン触媒などが挙げられる。
 金属触媒としては、有機金属系触媒などが例示される。有機金属系触媒としては、例えば、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジオクチル錫ラウレート(DOTL)、ジオクチル錫ジラウレート、ジブチル錫ジアセテート、ビスマス系触媒(例えば、日東化成社製の無機ビスマス(ネオスタンU-600、U-660)等)等が挙げられる。
 アミン触媒としては、トリエチレンジアミン、ビス(ジメチルアミノエチル)エーテル、ジ(N,N-ジメチルアミノエチル)アミン等が挙げられる。
 上記触媒は1種単独で用いてもよく、2種以上混合して用いてもよい。また、金属触媒のみで用いても、あるいはアミン金属触媒のみで用いてもよいが、金属触媒とアミン触媒とを併用してもよい。
 上記触媒を用いる場合、その配合量は、ウレタン組成物に含まれるポリオール化合物(A)及びポリイソシアネート化合物(B)との合計100質量部に対して、0.001~10質量部が好ましく、0.001~5質量部がより好ましい。
 本発明のウレタン組成物から硬化物を作製する際には、得られたウレタン組成物に上記触媒を添加して、直接硬化物を作製することができる。
 本発明のウレタン組成物から硬化物を作成する際には、下記混合工程、注型工程及び硬化工程を経て製造されることが好ましい一態様である。
 [混合工程]
 この混合工程では、ウレタン組成物の各成分及び硬化物を製造するために加えられる成分を混合する工程である。ウレタン組成物及び硬化物を製造するため各成分の混合方法及び混合する順序は特に制限されない。例えば、ポリオール化合物(A)、イソシアネート化合物(B)、液状ジエン系ゴム(C)並びに必要に応じて含まれる粉体成分及びその他の成分をそのまま混合する、いわゆるワンショット法や、ポリオール化合物(A)とイソシアネート化合物(B)とを事前に反応させて合成した分子末端にイソシアネート基を有するウレタンプレポリマーと、液状ジエン系ゴム(C)並びに必要に応じて含まれる粉体成分及びその他の成分を混合する、いわゆるプレポリマー法等が挙げられる。
 上述したワンショット法の場合、各成分の混合方法及び混合する順序は特に制限されないが、例えば、一度にすべての成分を混合する方法、事前に複数の種類(例えば二種類)の成分を混合したものに、残りの成分を混合する方法などが挙げられる。事前に複数の種類の成分を混合する場合には、その混合する成分の順序、事前に混合する成分の組み合わせについては、特に制限はない。
 上述したプレポリマー法の場合、ウレタンプレポリマーが合成できる限り、各成分の混合方法及び混合する順序は特に制限されないが、例えば、ポリオール化合物(A)の一部とイソシアネート化合物(B)とを事前に反応させて分子末端にイソシアネート基を有するプレポリマーを合成し、ポリオール化合物(A)の残りと、液状ジエン系ゴム(C)並びに必要に応じて含まれる粉体成分及びその他の成分を混合したものに、プレポリマーを混合する方法等が挙げられる。プレポリマー合成の際に混合する成分及びその順序、並びにプレポリマーとその他の成分の混合する順序などは特に制限はない。
 混合工程における混合温度及び時間は、ポリオール化合物(A)、液状ジエン系ゴム(C)及び必要に応じて含まれる成分の種類に応じて適宜設定できるが、混合温度は20~110℃程度が好ましく、混合時間は30分~2時間であるのが好ましい。
 [注型工程]
 注型工程では、上記混合工程を経て得られた、ポリオール化合物(A)、イソシアネート化合物(B)、液状ジエン系ゴム(C)並びに必要に応じて含まれる粉体成分及びその他成分の組成物を、型内に注入する。
 前記型の材質としては、金属、プラスチック、無機物及び木材等が挙げられる。型の形状は、所望の形状の硬化物となるように適切な形状とすればよい。必要に応じて、型内には、組成物を注型する前に、あらかじめ離型剤を塗布しておくことができるが、本発明のウレタン組成物においては液状ジエン系ゴム(C)を適宜選定することで離型剤と同様の効果を示すこともある。
 また、組成物の硬化速度が比較的遅い場合は、組成物を型内に注入した後、減圧して、さらに脱泡してもよい。この際、型としてオープンモールドを用いる場合は、真空オーブン中で脱泡することもできる。
 前記脱泡時の温度は、20~100℃で行うことが好ましく、より好ましくは50~80℃である。このような温度で脱泡を行うことにより、より効率的に脱泡を行うことができる。脱泡を行う温度によっては、脱泡を後述する硬化工程と同時に行ってもよい。
 [硬化工程]
 この硬化工程において、上記組成物中に含まれるポリオール化合物(A)の持つ水酸基と、イソシアネート化合物(B)の持つイソシアネート基との反応により、所望の形状の硬化物が得られる。上記水酸基とイソシアネート基との反応は、通常、熱反応により進行する。したがって、本発明のウレタン組成物は好適には熱硬化性である。
 前記熱反応は、自己反応熱による熱反応のみにより進行させてもよいが、反応熱に加え積極的に加熱することにより熱反応を進行させてもよい。
 加熱は、例えば、熱風オーブン、電気炉、赤外線誘導加熱炉などにより行うことができる。
 前記加熱温度は、好ましくは40~200℃、より好ましくは60~160℃である。前記加熱時間は、好ましくは0.5~30時間、より好ましくは1~25時間である。
 本発明でこのようにして得られる硬化物では、上記液状ジエン系(C)に由来する相の平均分散粒径は、100μm以下となることに特徴がある。硬化物中の液状ジエン系(C)に由来する相の平均分散粒径が上記範囲にあることにより、耐摩耗性に優れるだけでなく、引張強さ、切断時伸び等の引張物性に優れる。なお液状ジエン系(C)に由来する相の平均分散粒径は、通常1μm以上である。より引張物性に優れる観点からは、硬化物中の液状ジエン系(C)に由来する相の平均分散粒径は1μm以上50μm以下であることが好ましく、3μm以上30μm以下であることがより好ましい。
 硬化物中の液状ジエン系(C)に由来する相の平均分散粒径は、顕微鏡(例えば、光学顕微鏡、SEM、TEM、SPM)の観察画像(撮影画像)で見られる液状ジエン系(C)に由来する相の100個の数平均分散粒子径である。
 本発明のウレタン組成物から得られる硬化物は、カーペット、キャスター、ローラー、ドアシール、コーティング、タイヤ、ワイパーブレード、ステアリングホイール、ガスケット、パッキン、ベルト、チューブ、ホース、印刷ロール、靴底等の種々の物品に用いることができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 本実施例及び比較例において使用した各成分は以下のとおりである。
<ポリオール化合物(A)>
 ポリオール化合物(1):ポリエーテルポリオール EL-510(旭硝子社製)
 ポリオール化合物(2):ポリエーテルポリオール EL-840(旭硝子社製)
 ポリオール化合物(3):低分子多価アルコール 1,4-ブタンジオール(東京化成工業社製)
<イソシアネート化合物(B)>
 ポリメリックMDI:芳香族ポリイソシアネート(ポリメチレンポリフェニレンポリイソシアネート) ルプラネートM20S(BASF INOAC ポリウレタン社製)
<液状ジエン系ゴム(C)>
 後述の製造例1~6で得られた液状ジエン系ゴム(1)~(6)
 製造例1:液状ジエン系ゴム(1)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1150g及びn-ブチルリチウム(17質量%ヘキサン溶液)97.9gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1250gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、液状ジエン系ゴム(1)を得た。
 製造例2:液状ジエン系ゴム(2)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1280g及びsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)66gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、ブタジエン1350gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、液状ジエン系ゴム(2)を得た。
 製造例3:液状ジエン系ゴム(3)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1100g及びn-ブチルリチウム(17質量%ヘキサン溶液)204gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、N,N,N',N'-テトラメチルエチレンジアミン10gと、ブタジエン1300gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、液状ジエン系ゴム(3)を得た。
 製造例4:液状ジエン系ゴム(4)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、ヘキサン1200g及びsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)212gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を70℃となるように制御しながら、イソプレン2050gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、液状ポリイソプレンを得た。得られた液状ポリイソプレン100質量部に無水マレイン酸5質量部とBHT(2,6-ジ-t-ブチル-4-メチルフェノール、本州化学工業株式会社製)0.1質量部を添加し、160℃で20時間反応させることにより液状ジエン系ゴム(4)を得た。
 製造例5:液状ジエン系ゴム(5)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1200g及びn-ブチルリチウム(17質量%ヘキサン溶液)26.8gを仕込み、70℃に昇温した後、撹拌条件下、重合温度を70℃となるように制御しながら、ブタジエン1620gを添加して1時間重合した後、続けてイソプレン180gを加えてさらに1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、液状ジエン系ゴム(5)を得た。
 製造例6:液状ジエン系ゴム(6)の製造
 十分に乾燥した5Lオートクレーブを窒素置換し、シクロヘキサン1800g及びsec-ブチルリチウム(10.5質量%シクロヘキサン溶液)140gを仕込み、50℃に昇温した後、撹拌条件下、重合温度を50℃となるように制御しながら、N,N,N',N'-テトラメチルエチレンジアミン9.6gと、予め調製したブタジエン、スチレンの混合物(ブタジエン960gとスチレン640gとをボンベ内で混合)1600gを逐次添加して、1時間重合した。その後メタノールを添加して重合反応を停止させ、重合体溶液を得た。得られた重合体溶液に水を添加して撹拌し、水で重合体溶液を洗浄した。撹拌を終了し、重合体溶液相と水相とが分離していることを確認した後、水を分離した。洗浄終了後の重合体溶液を70℃で24時間真空乾燥することにより、液状ジエン系ゴム(6)を得た。
 なお、製造例で得られた液状ジエン系ゴムの各物性の測定方法及び算出方法は以下の通りである。
 (重量平均分子量(Mw))
 液状ジエン系ゴム(C)のMwは、GPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下の通りである。
・装置    :東ソー社製GPC装置「GPC8020」
・分離カラム :東ソー社製「TSKgelG4000HXL」
・検出器   :東ソー社製「RI-8020」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0mL/分
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
 (ビニル含量)
 液状ジエン系ゴム(C)のビニル含量を、日本電子社製1H-NMR(500MHz)を使用し、サンプル/重クロロホルム=50mg/1mLの濃度、積算回数1024回で測定した。得られたスペクトルのビニル化されたジエン化合物由来の二重結合のピークと、ビニル化されていないジエン化合物由来の二重結合のピークとの面積比から、ビニル含量を算出した。
 (ガラス転移温度(Tg))
 液状ジエン系ゴム(C)10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
 (38℃における溶融粘度)
 液状ジエン系ゴム(C)の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS.  INC.社製)により測定した。
 以下、製造例1~6で得られた液状ジエン系ゴム(1)~(6)の物性を表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6及び比較例1~3
 セパラブルフラスコにポリオール化合物(1)100質量部と、イソシアネート化合物(B)200質量部を仕込み、撹拌しながら80℃に昇温した後、真空中2時間反応させてイソシアネート基末端ウレタンプレポリマー(B')を得た。
 次に別のセパラブルフラスコに表2に記載した配合割合(質量部)に従って、ポリオール化合物(1)、ポリオール化合物(2)、液状ジエン系ゴムを仕込み、80℃にて2時間撹拌した後、ポリオール化合物(3)を仕込み、30℃まで放冷した。続いて上記にて調製したイソシアネート基末端ウレタンプレポリマー(B')を仕込み、真空中80℃にて10分間撹拌混合してウレタン組成物を調製した。調製したウレタン組成物を50℃に加熱した金型に注入し、乾燥機(50℃)中で2時間放置した後、さらに80℃にて15時間放置し、ポリウレタンエラストマー硬化物を得た。得られたポリウレタンエラストマー硬化物中に分散する液状ジエン系ゴム(C)の平均分散粒径及び硬化物の各物性(硬度、引張強さ、切断時伸び、耐摩耗性)は、下記の方法に基づき評価した。その結果を表2に示す。
 (液状ジエン系ゴム(C)の平均分散粒径)
 得られた硬化物から、ウルトラミクロトーム(EM FC7、Leica社製)を用いて厚み150nmの凍結切片を作製した。得られた切片を光学顕微鏡(BXFMコンポーネント顕微鏡、オリンパス社製)にセットして400倍で観察、撮影を行い、撮影した画像から、島相として分散する液状ジエン系ゴム(C)粒子の長径をスケールマーカーから測定し、100個の平均値(数平均分散粒径)を平均分散粒径とした。
 (硬度)
 JIS K7312に準拠して、タイプA硬度計により、得られた硬化物の硬度を測定した。
 (引張強さ、切断時伸び)
 得られた硬化物からダンベル状試験片を打ち抜き、インストロン社製引張試験機を用いて、JIS K 7312に準じて引張強さ、切断時伸びを測定した。
 (耐摩耗性)
 得られた硬化物を110mm×110mmのシート状に打ち抜き、東洋精機製作所社製ロータリーアブレーションテスターを用いてJIS K 7312に準じて下記試験条件にて耐摩耗性を測定した。各実施例及び比較例の数値は、比較例1の値を100とした際の相対値である。なお、数値が大きいほど耐摩耗性が良好である。
 試験条件
 摩耗輪:H-22
 回転速度:60rpm
 回転数:1000回転
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ウレタン組成物から得られる硬化物中に分散する液状ジエン系ゴム(C)に由来する相の平均分散粒径が100μm以下である実施例1~6は、引張強さ、切断時伸び、耐摩耗性に優れた硬化物であることが分かる。一方、比較例2は液状ジエン系ゴム(C)に由来する相の平均分散粒径が大きいため、耐摩耗性に優れるものの、引張強さ及び切断時伸びに劣る。比較例3は引張強さ、切断時伸び、及び耐摩耗性のいずれについても劣る。
 本発明のウレタン組成物から得られる硬化物は、耐摩耗性に優れるだけでなく、引張物性にも優れる。そのため、種々の用途、例えば、ベルト、チューブ、ホース、キャスター、ローラー、パッキン、靴底等として有用である。

Claims (7)

  1.  1分子中に2個以上のヒドロキシ基を有するポリオール化合物(A)100質量部に対し、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(B)を1~200質量部、及び液状ジエン系ゴム(C)を0.1~20質量部含有するウレタン組成物で、
    該ウレタン組成物の硬化物中に分散する液状ジエン系ゴム(C)に由来する相の平均分散粒径が100μm以下となるウレタン組成物。
  2.  液状ジエン系ゴム(C)の38℃で測定した溶融粘度が、0.1~4,000Pa・sである、請求項1に記載のウレタン組成物。
  3.  液状ジエン系ゴム(C)のガラス転移温度(Tg)が-150~50℃である、請求項1又は2に記載のウレタン組成物。
  4.  液状ジエン系ゴム(C)が液状イソプレン単独重合体及び液状ブタジエン単独重合体からなる群より選ばれる少なくとも1つである、請求項1~3のいずれか一項に記載のウレタン組成物。
  5.  液状ジエン系ゴム(C)のビニル含量が15モル%以上である、請求項1~4のいずれか一項に記載のウレタン組成物。
  6.  熱硬化性である、請求項1~5のいずれか一項に記載のウレタン組成物。
  7.  請求項1~6のいずれか一項に記載のウレタン組成物の硬化物。
PCT/JP2019/008710 2018-03-13 2019-03-05 ウレタン組成物 WO2019176659A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506429A JPWO2019176659A1 (ja) 2018-03-13 2019-03-05 ウレタン組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045480 2018-03-13
JP2018045480 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176659A1 true WO2019176659A1 (ja) 2019-09-19

Family

ID=67906631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008710 WO2019176659A1 (ja) 2018-03-13 2019-03-05 ウレタン組成物

Country Status (3)

Country Link
JP (1) JPWO2019176659A1 (ja)
TW (1) TW201938626A (ja)
WO (1) WO2019176659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025273A1 (ja) * 2020-07-31 2022-02-03 キヤノン株式会社 車両用ワイパーブレード
WO2022025267A1 (ja) * 2020-07-31 2022-02-03 キヤノン株式会社 車両用ワイパーブレード

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079270A (en) * 1988-11-03 1992-01-07 Th. Goldschmidt Ag Method for the preparation of molded polyurethane and polyurea articles
WO1997001590A1 (en) * 1995-06-29 1997-01-16 Dow Italia S.P.A. Polyurethane elastomer and foam exhibiting improved abrasion resistance
JP2004231963A (ja) * 2003-01-28 2004-08-19 Bayer Antwerpen Nv 高支持性軟質ポリウレタン発泡体、その製造方法およびその圧潰力の低下方法
WO2011110485A2 (en) * 2010-03-08 2011-09-15 Bayer Materialscience Ag Polyurethane with improved abrasion resistance, the method for preparing the same and use thereof
WO2012013676A1 (en) * 2010-07-29 2012-02-02 Bayer Materialscience Ag Polyurethane with improved abrasion resistance, the method for preparing the same and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079270A (en) * 1988-11-03 1992-01-07 Th. Goldschmidt Ag Method for the preparation of molded polyurethane and polyurea articles
WO1997001590A1 (en) * 1995-06-29 1997-01-16 Dow Italia S.P.A. Polyurethane elastomer and foam exhibiting improved abrasion resistance
JP2004231963A (ja) * 2003-01-28 2004-08-19 Bayer Antwerpen Nv 高支持性軟質ポリウレタン発泡体、その製造方法およびその圧潰力の低下方法
WO2011110485A2 (en) * 2010-03-08 2011-09-15 Bayer Materialscience Ag Polyurethane with improved abrasion resistance, the method for preparing the same and use thereof
WO2012013676A1 (en) * 2010-07-29 2012-02-02 Bayer Materialscience Ag Polyurethane with improved abrasion resistance, the method for preparing the same and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025273A1 (ja) * 2020-07-31 2022-02-03 キヤノン株式会社 車両用ワイパーブレード
WO2022025267A1 (ja) * 2020-07-31 2022-02-03 キヤノン株式会社 車両用ワイパーブレード
CN116057096A (zh) * 2020-07-31 2023-05-02 佳能株式会社 车辆用擦拭器刮片
CN116057099A (zh) * 2020-07-31 2023-05-02 佳能株式会社 车辆用擦拭器刮片
US11945414B2 (en) 2020-07-31 2024-04-02 Canon Kabushiki Kaisha Vehicle windshield wiper blade

Also Published As

Publication number Publication date
JPWO2019176659A1 (ja) 2021-02-25
TW201938626A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
TWI664217B (zh) 橡膠組成物及使用其之交聯物、輪胎、以及橡膠組成物之製造方法
US7928161B2 (en) Aqueous polyurethane dispersions made from hydroxymethyl containing polyester polyols derived from fatty acids
TWI664218B (zh) 橡膠組成物及使用其之交聯物、輪胎、以及橡膠組成物之製造方法
JP7273718B2 (ja) 変性液状ジエン系ゴム
WO2019176659A1 (ja) ウレタン組成物
EP3722331B1 (en) Modified liquid diene polymer
JP6842262B2 (ja) ウレタン組成物および湿気硬化型ポリウレタン組成物
JP7145948B2 (ja) ゴム組成物
WO2020045609A1 (ja) 樹脂組成物、パウダー、接着剤、及び、自動車用ダイレクトグレージング接着剤
JP7289915B2 (ja) 変性共役ジエン系重合体及び該変性共役ジエン系重合体を含む重合体組成物
TWI833956B (zh) 二烯系橡膠及橡膠組成物
TWI833772B (zh) 橡膠組成物
WO2021075571A1 (ja) 粒子分散体、ゴム組成物、及び、空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766476

Country of ref document: EP

Kind code of ref document: A1