WO2019176326A1 - Led・トランジスタ複合素子 - Google Patents

Led・トランジスタ複合素子 Download PDF

Info

Publication number
WO2019176326A1
WO2019176326A1 PCT/JP2019/002538 JP2019002538W WO2019176326A1 WO 2019176326 A1 WO2019176326 A1 WO 2019176326A1 JP 2019002538 W JP2019002538 W JP 2019002538W WO 2019176326 A1 WO2019176326 A1 WO 2019176326A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
led
layer
insulating film
type semiconductor
Prior art date
Application number
PCT/JP2019/002538
Other languages
English (en)
French (fr)
Inventor
梶山 康一
鈴木 良和
後藤 哲也
Original Assignee
株式会社ブイ・テクノロジー
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー, 国立大学法人東北大学 filed Critical 株式会社ブイ・テクノロジー
Publication of WO2019176326A1 publication Critical patent/WO2019176326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Definitions

  • the present invention relates to an LED / transistor composite element in which an LED and a transistor are formed on the same substrate.
  • HEMT high electron mobility transistor
  • a semiconductor light emitting device having a portion a composite semiconductor light emitting device in which a light emitting portion and a constant current element made of a group 13 nitride compound semiconductor are formed on the same substrate is known (see, for example, Patent Document 1 below) ).
  • the entire light emitting device including the light emitting element and the driving circuit can be made compact and cost reduced.
  • a TFT substrate for driving the individual light emitting elements is required outside. Further, when considering the connection between the light emitting elements and the TFT substrate, there is a problem that a plurality of light emitting elements cannot be arranged at high density.
  • An object of the present invention is to cope with such a problem.
  • a TFT substrate is not required, and a plurality of light emitting elements are thin and high.
  • the problem is to be able to arrange them at a high density.
  • the present invention has the following configuration.
  • a laminated portion in which a plurality of group 13 nitride compound n-type or p-type semiconductor layers are laminated on a group 13 nitride compound thin film crystal layer on a substrate, wherein the laminated portion is an n-type semiconductor layer sandwiching a light emitting layer And a p-type semiconductor layer, a second laminated portion that is laminated on the first laminated portion, and in which n-type semiconductor layers and p-type semiconductor layers are alternately laminated, and the second laminated portion.
  • FIG. 2 is an explanatory diagram showing a circuit configuration of the LED / transistor composite element shown in FIG. 1.
  • Explanatory drawing which showed the formation method of the LED and transistor composite element which concerns on embodiment of this invention ((a) has shown the film-forming state of each layer, (b) has shown the etching process after film-forming. ).
  • Explanatory drawing which showed the formation method of the LED and transistor composite element which concerns on embodiment of this invention ((a) is sectional drawing which showed the filling of an electroconductive member and the formation state of a gate insulating film, (b) is a top view.
  • FIG. 8 is an explanatory view showing an LED / transistor composite element according to another embodiment of the present invention ((a) is a plan view, (b) is an X1-X1 cross-sectional view, and (c) is an X2-X2 cross-sectional view).
  • FIGS. 7A and 7B are explanatory views showing a method for forming the LED / transistor composite element according to the embodiment shown in FIG. 6 (FIG. 6A is a plan view, FIG.
  • FIG. 6B is a sectional view taken along line X3-X3, and FIG. FIGS. 7A and 7B are explanatory views showing a method for forming the LED / transistor composite element according to the embodiment shown in FIG. 6
  • FIG. 6A is a plan view
  • FIG. 6B is a sectional view taken along line X3-X3
  • FIG. 6A and 6B are explanatory views showing a method of forming the LED / transistor composite element according to the embodiment shown in FIG. 6
  • (a) is a plan view
  • (b) is an X3-X3 sectional view
  • (c) is an X4-X4 sectional view). It is.
  • gallium nitride (GaN) will be described as an example of the group 13 nitride-based compound, but is not particularly limited thereto.
  • the LED / transistor composite element 1 includes a laminated portion (a first laminated portion 100 and a second laminated portion) in which a plurality of GaN n-type or p-type semiconductor layers are laminated on a GaN thin film crystal layer on a substrate 10. 200, the third laminated portion 300).
  • a substrate 10 for example, a sapphire wafer substrate or a silicon crystal substrate can be used.
  • the first stacked unit 100 includes an n-type semiconductor layer (n-GaN layer) 101 and a p-type semiconductor layer (p-GaN layer) 103 with a light emitting layer (MQW) 102 interposed therebetween. It is configured.
  • the second stacked unit 200 is stacked on the first stacked unit 100, and includes an n-type semiconductor layer (n-GaN layer) 201, a p-type semiconductor layer (p-GaN layer) 202, and an n-type semiconductor layer (n- (GaN layer) 203 is provided, and a driving transistor (first transistor) 210 is constituted by these layers.
  • the third stacked unit 300 is stacked on the second stacked unit 200 via the intermediate insulating film 11, and includes an n-type semiconductor layer (n-GaN layer) 301, a p-type semiconductor layer (p-GaN layer) 302, An n-type semiconductor layer (n-GaN layer) 303 is provided, and an active matrix selection transistor (second transistor) 310 is constituted by these layers.
  • An external insulating film 12 is formed on the third stacked unit 300.
  • the cathode separation groove 20 is provided from the external insulating film 12 to the n-type semiconductor layer (n-GaN layer) 101 of the first stacked unit 100 which is a buffer layer, and the region separated by the cathode separation groove 20 is provided.
  • a cathode terminal 21 is provided on the external insulating film 12.
  • the cathode terminal 21 is connected to the n-type semiconductor layer (n-GaN layer) 101 through a conductive member 22 buried in a hole extending from the external insulating film 12 to the n-type semiconductor layer (n-GaN layer) 101. Yes.
  • the position of the cathode terminal 21 is on the n-type semiconductor layer (n-GaN layer) 101 as an operation, but in this embodiment, all electrode heights are on the same plane in consideration of active matrix selection.
  • the p-type semiconductor layer (p-GaN layer) 103 of the first stacked unit 100 that becomes the anode side of the LED 110 is the n-type semiconductor layer (n-GaN layer) of the second stacked unit 200 that becomes the source layer of the first transistor 210. 201 is connected.
  • the first transistor 210 and the second transistor 310 are separated from each other by the transistor isolation trench 23 extending from the external insulating film 12 to the intermediate insulating film 11.
  • the terminal structure of the first transistor 210 will be described.
  • the drain terminal 24 on the external insulating film 12 is buried in a hole extending from the external insulating film 12 to the n-type semiconductor layer (n-GaN layer) 203 of the second stacked unit 200.
  • the n-type semiconductor layer (n ⁇ GaN layer) 203 serving as the drain layer is connected to the n-type semiconductor layer (n ⁇ GaN layer) of the second stacked unit 200 serving as the source layer as described above.
  • a GaN layer 201 is connected to the p-type semiconductor layer (p-GaN layer) 103 of the LED 110. Similarly to the above, the position of the drain terminal 24 is on the n-type semiconductor layer (n-GaN layer) 203. However, in this embodiment, all electrode heights are set on the same plane in consideration of the active matrix selection. It is arranged to be.
  • the gate terminal 26 of the first transistor 210 is provided in the transistor isolation groove 23.
  • a gate insulating film 27 is provided between the gate terminal 26 and the p-type semiconductor layer (p-GaN layer) 202 of the second stacked unit 200 that becomes the channel layer of the first transistor 210.
  • the gate insulating film 27 is formed in a hole extending from the transistor isolation trench 23 to the n-type semiconductor layer (n-GaN layer) 201 of the second stacked unit 200, and is provided on the gate insulating film 27 in the hole.
  • the conductive member 28 is connected to the gate terminal 26.
  • the terminal structure of the second transistor 310 will be described. First, the n-type semiconductor layer (n-GaN layer) 303 of the third stacked unit 300 where the drain terminal 30 on the external insulating film 12 becomes the drain layer through the conductive member 31 filling the hole penetrating the external insulating film 12. It is connected to the. The n-type semiconductor layer (n-GaN layer) 301 of the third stacked unit 300 that becomes the source layer of the second transistor 310 is connected to the gate terminal 26 of the first transistor 210.
  • the gate insulating film 33 of the second transistor 310 is provided between the gate terminal 32 on the external insulating film 12 and the p-type semiconductor layer (p-GaN layer) 302 that becomes the channel layer of the second transistor 310. Yes.
  • the gate insulating film 33 is formed in a hole from the external insulating film 12 to the n-type semiconductor layer (n-GaN layer) 301 of the third stacked unit 300, and is provided on the gate insulating film 33 in the hole.
  • the conductive member 34 is connected to the gate terminal 32 of the second transistor 310.
  • the cathode terminal 21 of the LED 110, the drain terminal 24 of the first transistor 210, and the drain of the second transistor 310 are arranged on the same plane in the external insulating film 12 on the third stacked unit 300.
  • a terminal 30 and a gate terminal 32 are formed. Thereby, each terminal on the external insulating film 12 can be used as a flip chip.
  • the terminal of the first transistor 210 is provided in one region separated by the transistor isolation groove 23 extending from the external insulating film 12 to the intermediate insulating film 11, and the second region is provided in the other region separated by the transistor isolation groove 23.
  • a terminal of the transistor 310 is provided.
  • the cathode terminal 21 of the LED 210 is provided in one region separated by the cathode separation groove 20 extending from the external insulating film 12 to the n-type semiconductor layer (n-GaN layer) 101 of the first stacked unit 100 that is a buffer layer.
  • the terminals of the first transistor 210 and the second transistor 310 are provided in the other region separated by the cathode separation groove 20.
  • Such an LED / transistor composite element 1 can drive the LED 110 in an active matrix by using the wiring configuration shown in FIG.
  • the cathode terminal 21 of the LED 110 is connected to GND
  • the drain terminal 24 of the first transistor 210 that is a driving transistor is connected to the power supply line P.
  • the gate terminal 32 of the second transistor 310 that is an active matrix selection transistor is connected to the selection line Q
  • the drain terminal 30 of the second transistor 310 is connected to the data line R.
  • the cathode isolation groove 20 and the transistor isolation groove 23 are formed by etching, and further, the hole H1 for filling the conductive member 22 and the conductive member 25 are filled.
  • the hole H2 for forming the gate insulating film 27, the hole H3 for forming the gate insulating film 33, and the hole H5 for forming the conductive member 31 are formed by etching.
  • the holes H1, H2, and H5 are filled with the conductive members 22, 25, and 31, and the hole H3 is filled with the conductive member 28 after the gate insulating film 27 is formed.
  • the hole H4 is filled with the conductive member 34 after the gate insulating film 33 is formed.
  • the terminals (cathode terminal 21, drain terminal 24, gate terminal 26, gate terminal 32, drain terminal 30) connected to the conductive members 22, 25, 28, 34, 31 are external insulating films. 12 is formed.
  • FIG. 5 shows a state in which a plurality of (multiple) LED / transistor composite elements 1 are formed on the same substrate 10.
  • n-GaN layer n-type semiconductor layer
  • the cathode terminal 21 in each composite element is on the common n-type semiconductor layer (n-GaN layer) 101 in all LED / transistor composite elements, the electrode terminals can be shared, and the connection terminals The number can be reduced.
  • the second laminated portion 200 made of GaN for forming a driving transistor is formed on the first laminated portion 100 made of GaN for LED production, and an intermediate insulating film is formed.
  • the third laminated portion 300 made of GaN for forming the active matrix selection transistor is formed, so that the LED layers and the transistor layers are separated by the MO-CVD apparatus for LED production. All can be produced.
  • each LED / transistor composite element 1 includes the second transistor 310 for selecting an active matrix, the LED 110 can be actively driven only by connecting the data line R, the selection line Q, and the power supply line P. It is not necessary to provide a separate substrate. This makes it possible to reduce the thickness and increase the density of the display using the LED / transistor composite element 1 as each pixel.
  • the LED / transistor composite element 1A includes a first stacked portion including an n-type semiconductor layer (n-GaN layer) 401, a light emitting layer (MQW) 402, and a p-type semiconductor layer (p-GaN layer) 403 on a substrate 10. 400 is stacked, and a semiconductor layer (undoped GaN layer) 600 is stacked thereon via an intermediate insulating film 500, and a semiconductor layer (undoped AlGaN layer) 601 is stacked thereon.
  • n-GaN layer n-GaN layer
  • MQW light emitting layer
  • p-GaN layer p-type semiconductor layer
  • the light emitting layer 402, the p-type semiconductor layer 403, the intermediate insulating film 500, the semiconductor layer 600, and the semiconductor layer 601 are divided into three regions (1A1 region, 1A2 region, 1A2 region, 1A3 region).
  • an external insulating film 501 is formed on the semiconductor layer 601.
  • the LED 410 is formed by the first stacked portion 400 for the LED in the 1A1 region, and the first transistor 420 which is an active matrix selection transistor is formed by the semiconductor layers 600 and 601 in the 1A2 region, and the semiconductor layer in the 1A3 region. 600 and 601 form a second transistor 430 which is a driving transistor.
  • the anode terminal 50 of the LED 410 connected to the power supply line P is connected to the p-type semiconductor layer (p-GaN layer) 403 via the conductive member 60, and the cathode terminal separated from the anode terminal 50 by the separation groove 700.
  • 51 is connected to an n-type semiconductor layer (n-GaN layer) 401.
  • the anode terminal 50 and the cathode terminal 51 are arrange
  • the cathode terminal 51 of the LED 410 is integrated with the drain terminal 51A of the second transistor 430, and the source terminal 52 of the second transistor 430 is connected to GND.
  • the gate terminal 53 of the second transistor 430 is formed on the external insulating film 501 serving as a gate insulating film, and is integrated with the source terminal 53A of the first transistor 420 across the isolation trench 700.
  • the drain terminal 54 of the first transistor 420 is connected to the semiconductor layer 601
  • the gate terminal 55 is formed on the semiconductor layer 601 via the external insulating film 501 serving as a gate insulating film.
  • the gate terminal 55 of the first transistor 420 for active matrix selection is connected to the selection line Q, and the drain terminal 54 is connected to the data line R.
  • n-GaN layer 401 an n-type semiconductor layer (n-GaN layer) 401, a light emitting layer 402, a p-type semiconductor layer (p-GaN layer) 403, and an intermediate insulating film 500 are formed on the substrate 10.
  • a semiconductor layer (undoped GaN layer) 600 and a semiconductor layer (undoped AlGaN layer) 601 are sequentially laminated to form a T-shaped separation groove 700 and holes 701 and 702 as shown in FIG.
  • the hole 701 is formed to a depth at which the p-type semiconductor layer 403 is exposed by etching, and the isolation trench 700 and the hole 702 are formed to a depth at which the n-type semiconductor layer 401 is exposed by etching.
  • an external insulating film 501 is formed.
  • the holes 701 and 702 are respectively covered with a mask or externally so that the hole 701 exposes the p-type semiconductor layer 403 inside and the hole 702 exposes the n-type semiconductor layer 401 inside.
  • the inner external insulating film 501 is partially removed by etching or the like. Further, exposed regions 601A, 601B, 601C, and 601D of the semiconductor layer 601 from which the external insulating film 501 is partially removed are formed for electrode formation.
  • conductive members 60 and 61 are vapor-deposited in the holes 701 and 702, and further, the conductive member is vapor-deposited so as to partially fill the separation groove 700, thereby forming the gate terminal 53.
  • the anode terminal 50 is formed on the conductive member 60
  • the drain terminal 54 is formed on the exposed region 601A
  • the cathode terminal 51 is formed on the conductive member 61 and the exposed region 601C
  • a source terminal 52 is formed on the exposed region 601D.
  • a gate terminal 55 is formed on the external insulating film 501 between the exposed regions 601A and 601B.
  • all layers including the transistor layer can be formed by the MO-CVD apparatus for LED production. Further, similarly to the above-described example, it is not necessary to separately provide a TFT substrate, so that a display using the LED / transistor composite element 1A as each pixel can be thinned and densified. Since the number of layers is reduced as compared with the above-described example, the film forming process can be simplified and the manufacture becomes easy.
  • 1, 1A LED / transistor composite element, 10: substrate, 11,500: Intermediate insulating film, 12,501: External insulating film, 20: cathode separation groove, 23: transistor isolation groove, 40, 700: isolation groove, 22, 25, 28, 31, 34, 60, 61: conductive member, 21, 51: cathode terminal, 24, 30, 51A, 54: drain terminal, 26, 32, 53, 55: gate terminals, 50: Anode terminal, 52, 53A: Source terminal, 100, 400: 1st laminated part, 110, 410: LED, 200: second stacked portion, 210, 420, first transistor, 300: third stacked portion, 310, 430 second transistor, 101, 201, 203, 301, 303, 401: n-type semiconductor layer (n-GaN layer), 102, 402: light emitting layer (MQW), 103, 202, 302, 403: p-type semiconductor layer (p-GaN layer), 600: Semiconductor layer (undoped GaN layer), 601: a

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

複数の発光素子をアクティブマトリクス駆動することを前提にして、TFT基板を不要にして、複数の発光素子を薄型且つ高密度に配置できるようにする。LED・トランジスタ複合素子は、基板上の13族窒化物系化合物薄膜結晶層に13族窒化物系化合物のn型又はp型半導体層を複数積層した積層部を備え、積層部は、発光層を挟んだn型半導体層とp型半導体層とを備える第1積層部と、第1積層部上に積層され、n型半導体層とp型半導体層とが交互に積層された第2積層部と、第2積層部上に中間絶縁膜を介して積層され、n型半導体層とp型半導体層とが交互に積層された第3積層部とを備え、第1積層部によってLEDを構成し、第2積層部によって第1トランジスタを構成し、第3積層部によって第2トランジスタを構成した。

Description

LED・トランジスタ複合素子
 本発明は、LEDとトランジスタを同一基板上に形成したLED・トランジスタ複合素子に関するものである。
 従来、高電子移動度トランジスタ(HEMT)が定電流素子として用いうることに着目して、外部に定電流回路を必要としない半導体発光素子として、13族窒化物系化合物半導体の積層構造からなる発光部を有する半導体発光素子において、発光部と、13族窒化物系化合物半導体からなる定電流素子とが同一基板上に形成された複合半導体発光素子が知られている(例えば、下記特許文献1参照)。
特開2009-71220号公報
 前述した従来技術によると、外部に定電流回路を必要としないので、発光素子と駆動回路を含む発光装置全体のコンパクト化とコスト低減が期待できる。しかしながら、複数の発光素子をディスプレイの画素として配列してアクティブマトリクス駆動することを前提にすると、個々の発光素子を駆動するためのTFT基板が外部に必要になる。また、発光素子とTFT基板との接続を考慮した場合には、複数の発光素子を高密度に配置することができないといった問題があった。
 本発明は、このような問題に対処することを課題とするものであり、複数の発光素子をアクティブマトリクス駆動することを前提にして、TFT基板を不要にして、複数の発光素子を薄型且つ高密度に配置できるようにすることを課題としている。
 このような課題を解決するために、本発明は、以下の構成を具備するものである。
 基板上の13族窒化物系化合物薄膜結晶層に13族窒化物系化合物のn型又はp型半導体層を複数積層した積層部を備え、前記積層部は、発光層を挟んだn型半導体層とp型半導体層とを備える第1積層部と、前記第1積層部上に積層され、n型半導体層とp型半導体層とが交互に積層された第2積層部と、前記第2積層部上に中間絶縁膜を介して積層され、n型半導体層とp型半導体層とが交互に積層された第3積層部とを備え、前記第1積層部によってLEDを構成し、前記第2積層部によって第1トランジスタを構成し、前記第3積層部によって第2トランジスタを構成したことを特徴とするLED・トランジスタ複合素子。
本発明の実施形態に係るLED・トランジスタ複合素子の構成例を示した説明図である。 図1に示したLED・トランジスタ複合素子の回路構成を示した説明図である。 本発明の実施形態に係るLED・トランジスタ複合素子の形成方法を示した説明図((a)が各層の成膜状態を示しており、(b)が成膜後のエッチング工程を示している。)である。 本発明の実施形態に係るLED・トランジスタ複合素子の形成方法を示した説明図((a)が導電部材の充填とゲート絶縁膜の形成状態を示した断面図であり、(b)が平面図である。)である。 2連のLED・トランジスタ複合素子を示した説明図((a)が端子の配置状態を示した平面図であり、(b)が断面図を示している。)である。 本発明の他の実施形態に係るLED・トランジスタ複合素子を示した説明図((a)が平面図、(b)がX1-X1断面図、(c)がX2-X2断面図)である。 図6に示した実施形態の回路構成を示した説明図である。 図6に示した実施形態に係るLED・トランジスタ複合素子の形成方法を示した説明図((a)が平面図、(b)がX3-X3断面図、(c)が正面図)である。 図6に示した実施形態に係るLED・トランジスタ複合素子の形成方法を示した説明図((a)が平面図、(b)がX3-X3断面図、(c)が正面図)である。 図6に示した実施形態に係るLED・トランジスタ複合素子の形成方法を示した説明図((a)が平面図、(b)がX3-X3断面図、(c)がX4-X4断面図)である。
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。また、13族窒化物系化合物の例として、窒化ガリウム(GaN)を挙げて説明するが、特にこれに限定されるものではない。
 図1に示すように、LED・トランジスタ複合素子1は、基板10上のGaN薄膜結晶層にGaNのn型又はp型半導体層を複数積層した積層部(第1積層部100、第2積層部200、第3積層部300)を備えている。基板10は、例えば、サファイヤウエハー基板若しくはシリコン結晶基板を用いることができる。
 第1積層部100は、発光層(MQW)102を挟んだn型半導体層(n-GaN層)101とp型半導体層(p-GaN層)103を備えており、これらの層によってLED110が構成されている。
 第2積層部200は、第1積層部100上に積層されており、n型半導体層(n-GaN層)201とp型半導体層(p-GaN層)202とn型半導体層(n-GaN層)203を備えており、これらの層によって、駆動用トランジスタ(第1トランジスタ)210が構成されている。
 また、第3積層部300は、第2積層部200上に中間絶縁膜11を介して積層され、n型半導体層(n-GaN層)301とp型半導体層(p-GaN層)302とn型半導体層(n-GaN層)303を備えており、これらの層によって、アクティブマトリクス選択用トランジスタ(第2トランジスタ)310が構成されている。そして、第3積層部300上には、外部絶縁膜12が形成されている。
 LED110の端子構成について説明する。先ず、カソード分離溝20が外部絶縁膜12からバッファ層である第1積層部100のn型半導体層(n-GaN層)101に至るまで設けられ、このカソード分離溝20によって分離された領域の外部絶縁膜12上にカソード端子21が設けられている。このカソード端子21は、外部絶縁膜12からn型半導体層(n-GaN層)101に至るホールに埋められた導電部材22を介してn型半導体層(n-GaN層)101に接続されている。カソード端子21の位置は、動作としてはn型半導体層(n-GaN層)101上であるが、本実施例では、アクティブマトリクス選択用に考慮し、全ての電極高さを同一平面上になるように配置している。LED110のアノード側になる第1積層部100のp型半導体層(p-GaN層)103は、第1トランジスタ210のソース層となる第2積層部200のn型半導体層(n-GaN層)201に接続されている。
 第1トランジスタ210と第2トランジスタ310は、外部絶縁膜12から中間絶縁膜11に至るトランジスタ分離溝23によって互いに分離されている。第1トランジスタ210の端子構造について説明すると、外部絶縁膜12上のドレイン端子24が、外部絶縁膜12から第2積層部200のn型半導体層(n-GaN層)203に至るホールに埋められた導電部材25を介してドレイン層になるn型半導体層(n-GaN層)203に接続されており、前述したように、ソース層となる第2積層部200のn型半導体層(n-GaN層)201がLED110のp型半導体層(p-GaN層)103に接続されている。ドレイン端子24の位置も前述と同様に、動作としてはn型半導体層(n-GaN層)203上ではあるが、本実施例ではアクティブマトリクス選択用を考慮し全ての電極高さを同一平面上になるように配置している。
 第1トランジスタ210のゲート端子26は、トランジスタ分離溝23内に設けられている。そして、ゲート端子26と第1トランジスタ210のチャネル層になる第2積層部200のp型半導体層(p-GaN層)202との間に、ゲート絶縁膜27が設けられている。ゲート絶縁膜27は、トランジスタ分離溝23から更に第2積層部200のn型半導体層(n-GaN層)201に至るホール内に形成されており、そのホール内のゲート絶縁膜27上に設けた導電部材28がゲート端子26に接続されている。
 第2トランジスタ310の端子構造を説明する。先ず、外部絶縁膜12上のドレイン端子30が外部絶縁膜12を貫通するホールを埋めた導電部材31を介してドレイン層になる第3積層部300のn型半導体層(n-GaN層)303に接続されている。そして、第2トランジスタ310のソース層になる第3積層部300のn型半導体層(n-GaN層)301が、第1トランジスタ210のゲート端子26に接続されている。
 更に、外部絶縁膜12上のゲート端子32と第2トランジスタ310のチャネル層になるp型半導体層(p-GaN層)302との間に、第2トランジスタ310のゲート絶縁膜33が設けられている。ゲート絶縁膜33は、外部絶縁膜12から第3積層部300のn型半導体層(n-GaN層)301に至るホール内に形成されており、そのホール内のゲート絶縁膜33上に設けた導電部材34が、第2トランジスタ310のゲート端子32に接続されている。
 このようなLED・トランジスタ複合素子1は、第3積層部300上の外部絶縁膜12における同一平面に、LED110のカソード端子21と、第1トランジスタ210のドレイン端子24と、第2トランジスタ310のドレイン端子30及びゲート端子32が形成されている。これによって、外部絶縁膜12上の各端子をフリップチップとして利用することができる。
 この際、外部絶縁膜12から中間絶縁膜11に至るトランジスタ分離溝23によって分離される一方の領域に第1トランジスタ210の端子が設けられ、トランジスタ分離溝23によって分離される他方の領域に第2トランジスタ310の端子が設けられている。また、外部絶縁膜12からバッファ層である第1積層部100のn型半導体層(n-GaN層)101に至るカソード分離溝20によって分離される一方の領域に、LED210のカソード端子21が設けられ、カソード分離溝20によって分離される他方の領域に第1トランジスタ210と第2トランジスタ310の端子が設けられている。
 このようなLED・トランジスタ複合素子1は、図2に示す配線構成にすることで、LED110をアクティブマトリクス駆動することができる。この例では、LED110のカソード端子21はGNDに接続され、駆動用トランジスタである第1トランジスタ210のドレイン端子24は、電源線Pに接続される。そして、アクティブマトリクス選択用トランジスタである第2トランジスタ310のゲート端子32は、選択線Qに接続され、第2トランジスタ310のドレイン端子30は、データ線Rに接続される。
 LED・トランジスタ複合素子1を形成するには、先ず、図3(a)に示すように、基板10上に第1積層部100の各層、第2積層部200の各層、中間絶縁膜11、第3積層部300の各層を順次成膜し、更にその上に外部絶縁膜12を成膜する。その後は、図3(b)に示すように、前述したカソード分離溝20とトランジスタ分離溝23をエッチングによって形成し、更に、前述した導電部材22を埋めるためのホールH1、導電部材25を埋めるためのホールH2、ゲート絶縁膜27を形成するためのホールH3、ゲート絶縁膜33を形成するためのホールH4、導電部材31を設けるためのホールH5をそれぞれエッチングによって形成する。
 その後は、図4に示すように、ホールH1,H2,H5に対して導電部材22,25,31を充填し、ホールH3に対しては、ゲート絶縁膜27を形成した後に導電部材28を充填し、ホールH4に対しては、ゲート絶縁膜33を形成した後に導電部材34を充填する。その後は、図5に示すように、導電部材22,25,28,34,31に接続する端子(カソード端子21,ドレイン端子24,ゲート端子26,ゲート端子32,ドレイン端子30)が外部絶縁膜12上に形成される。
 図5は、同一の基板10上に複数(多連)のLED・トランジスタ複合素子1を形成した状態を示している。図示のように、外部絶縁膜12からバッファ層である第1積層部100のn型半導体層(n-GaN層)101に至る分離溝40を各LED・トランジスタ複合素子1毎に設けることで、多連のLED・トランジスタ複合素子1を高密度に基板10上に形成することができる。
 また、それぞれの複合素子にあるカソード端子21は全てのLED・トランジスタ複合素子で共通のn型半導体層(n-GaN層)101上となるため、電極端子を共通化することができ、接続端子数の削減が可能である。
 このようなLED・トランジスタ複合素子1は、LED作成用のGaNからなる第1積層部100上に、駆動用トランジスタを形成するためのGaNからなる第2積層部200を成膜し、中間絶縁膜11を成膜した後に、アクティブマトリクス選択用トランジスタを形成するためのGaNからなる第3積層部300を成膜するので、LED製作用のMO-CVD装置によって、LED用の各層と各トランジスタ層を全て製作することができる。
 そして、各LED・トランジスタ複合素子1は、アクティブマトリクス選択用の第2トランジスタ310を備えるので、データ線Rと選択線Qと電源線Pとの接続のみでLED110をアクティブ駆動することができ、TFT基板を別途設けることが不要になる。これによって、LED・トランジスタ複合素子1を各画素とするディスプレイの薄型化、高密度化が可能になる。
 図6及び図7は、LED・トランジスタ複合素子の他の形態例を示している。このLED・トランジスタ複合素子1Aは、基板10上に、n型半導体層(n-GaN層)401と発光層(MQW)402とp型半導体層(p-GaN層)403からなる第1積層部400が積層され、その上に中間絶縁膜500を介して、半導体層(アンドープGaN層)600が積層され、その上に半導体層(アンドープAlGaN層)601が積層されている。
 そして、発光層402とp型半導体層403と中間絶縁膜500と半導体層600と半導体層601は、平面視T字状の分離溝700によって、平面的に3つの領域(1A1領域,1A2領域,1A3領域)に分離されている。そして、分離溝700によって分離された3つの領域(1A1領域,1A2領域,1A3領域)では、半導体層601の上に外部絶縁膜501が形成されている。
 そして、1A1領域におけるLED用の第1積層部400によってLED410が形成されており、1A2領域における半導体層600,601によってアクティブマトリクス選択用トランジスタである第1トランジスタ420が形成され、1A3領域における半導体層600,601によって駆動用トランジスタである第2トランジスタ430が形成されている。
 電源線Pに接続されるLED410のアノード端子50は、導電部材60を介してp型半導体層(p-GaN層)403に接続され、アノード端子50とは分離溝700にで分離されたカソード端子51が、n型半導体層(n-GaN層)401に接続されている。ここで、アノード端子50とカソード端子51は、それぞれ導電部材60と導電部材61を介することで、同一平面上に配置されている。
 LED410のカソード端子51は、第2トランジスタ430のドレイン端子51Aと一体になっており、第2トランジスタ430のソース端子52は、GNDに接続されている。また、第2トランジスタ430のケート端子53は、ゲート絶縁膜となる外部絶縁膜501上に形成され、分離溝700を跨いで第1トランジスタ420のソース端子53Aと一体になっている。1A2領域においては、半導体層601に第1トランジスタ420のドレイン端子54が接続され、半導体層601上にゲート絶縁膜となる外部絶縁膜501を介してゲート端子55が形成されている。そして、アクティブマトリクス選択用の第1トランジスタ420のゲート端子55は、選択線Qに接続され、ドレイン端子54は、データ線Rに接続されている。
 図8~図11は、LED・トランジスタ複合素子1Aの形成工程を示している。LED・トランジスタ複合素子1Aを形成するには、先ず、基板10上にn型半導体層(n-GaN層)401、発光層402、p型半導体層(p-GaN層)403、中間絶縁膜500、半導体層(アンドープGaN層)600、半導体層(アンドープAlGaN層)601を順次積層し、図8に示すように、平面視T字状の分離溝700とホール701,702を形成する。この際、ホール701は、エッチングでp型半導体層403が露出する深さまで形成され、分離溝700とホール702は、エッチングでn型半導体層401が露出する深さまで形成される。
 次に、図9に示すように、外部絶縁膜501を形成する。その際、ホール701は、内部にp型半導体層403が露出するように、ホール702は、内部にn型半導体層401が露出するように、それぞれホール701,702内をマスクで覆うか或いは外部絶縁膜501の成膜後に内部の外部絶縁膜501をエッチングなどで部分除去する。また、電極形成用に外部絶縁膜501が部分的に除去された半導体層601の露出領域601A,601B,601C,601Dを形成する。
 その後、図10に示すように、ホール701,702内に導電部材60,61を蒸着させ、更には、分離溝700を一部埋めるようにして、導電部材を蒸着させてゲート端子53を形成する。その後は、図6に示すように、導電部材60上にアノード端子50を形成し、露出領域601A上にドレイン端子54を形成し、導電部材61と露出領域601C上にカソード端子51を形成し、露出領域601D上にソース端子52を形成する。また、露出領域601A,601B間の外部絶縁膜501上にゲート端子55を形成する。
 このようなLED・トランジスタ複合素子1Aは、前述した例と同様に、LED作成用のMO-CVD装置によってトランジスタ層を含む全ての層を成膜することが可能になる。また、前述した例と同様に、TFT基板を別途設けることが不要になるので、LED・トランジスタ複合素子1Aを各画素とするディスプレイの薄型化、高密度化が可能になる。そして、前述した例と比較すると、層数が少なくなるので、成膜工程を簡略化でき製作が容易になる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
1,1A:LED・トランジスタ複合素子,10:基板,
11,500:中間絶縁膜,12,501:外部絶縁膜,
20:カソード分離溝,
23:トランジスタ分離溝,40,700:分離溝,
22,25,28,31,34,60,61:導電部材,
21,51:カソード端子,24,30,51A,54:ドレイン端子,
26,32,53,55:ゲート端子,
50:アノード端子,52,53A:ソース端子,
100,400:第1積層部,110,410:LED,
200:第2積層部,210,420,第1トランジスタ,
300:第3積層部,310,430第2トランジスタ,
101,201,203,301,303,401:n型半導体層(n-GaN層),
102,402:発光層(MQW),
103,202,302,403:p型半導体層(p-GaN層),
600:半導体層(アンドープGaN層),
601:半導体層(アンドープAlGaN層),
P:電源線,Q:選択線,R:データ線

Claims (11)

  1.  基板上の13族窒化物系化合物薄膜結晶層に13族窒化物系化合物のn型又はp型半導体層を複数積層した積層部を備え、
     前記積層部は、
     発光層を挟んだn型半導体層とp型半導体層とを備える第1積層部と、
     前記第1積層部上に積層され、n型半導体層とp型半導体層とが交互に積層された第2積層部と、
     前記第2積層部上に中間絶縁膜を介して積層され、n型半導体層とp型半導体層とが交互に積層された第3積層部とを備え、
     前記第1積層部によってLEDを構成し、前記第2積層部によって第1トランジスタを構成し、前記第3積層部によって第2トランジスタを構成したことを特徴とするLED・トランジスタ複合素子。
  2.  前記第3積層部上に外部絶縁膜を設け、該外部絶縁膜上の同一平面に、前記LEDと前記第1トランジスタと前記第2トランジスタの各端子が形成されていることを特徴とする請求項1記載のLED・トランジスタ複合素子。
  3.  前記外部絶縁膜から前記中間絶縁膜に至るトランジスタ分離溝を設け、該トランジスタ分離溝によって分離される一方の領域に前記第1トランジスタの端子を設け、前記トランジスタ分離溝によって分離される他方の領域に前記第2トランジスタの端子を設けたことを特徴とする請求項2記載のLED・トランジスタ複合素子。
  4.  前記外部絶縁膜上に前記第1トランジスタのドレイン端子を設け、前記第3積層部を貫通するホールを埋めた導電部材を介して前記ドレイン端子が前記第2積層部におけるドレイン層に接続されており、
     前記トランジスタ分離溝内の前記中間絶縁膜上に前記第1トランジスタのゲート端子を設け、前記第2積層部におけるチャネル層に至るホール内に設けたゲート絶縁膜上の導電部材が前記ゲート端子に接続されており、
     前記第2積層部における前記第1トランジスタのソース層が前記第1積層部上に積層されていることを特徴とする請求項3記載のLED・トランジスタ複合素子。
  5.  前記外部絶縁膜上に前記第2トランジスタのドレイン端子とゲート端子を設け、前記第2トランジスタのドレイン端子が前記第3積層部のドレイン層に接続されており、
     前記第2トランジスタのゲート端子が前記第3積層部におけるソース層に至るホール内に設けたゲート絶縁膜上の導電部材に接続されており、
     前記第1トランジスタのゲート端子に、前記第3積層部における前記第2トランジスタのソース層が接続されていることを特徴とする請求項4記載のLED・トランジスタ複合素子。
  6.  前記外部絶縁膜から前記基板上の一つの半導体層に至るカソード分離溝を設け、該カソード分離溝によって分離される一方の領域に前記LEDのカソード端子が設けられ、前記カソード分離溝によって分離される他方の領域に前記第1トランジスタと前記第2トランジスタの各端子が設けられていることを特徴とする請求項1~5のいずれか1項記載のLED・トランジスタ複合素子。
  7.  前記カソード端子は、前記外部絶縁膜から前記基板上の一つの半導体層に至るホールを埋めた導電材料を介して前記LEDに接続されていることを特徴とする請求項6記載のLED・トランジスタ複合素子。
  8.  基板上の13族窒化物系化合物薄膜結晶層に13族窒化物系化合物のn型又はp型半導体層を複数積層した積層部を備え、
     前記積層部は、
     発光層を挟んだn型半導体層とp型半導体層とを備えるLED用積層部と、
     前記LED用積層部上に絶縁層を介して積層された複数の半導体層を備え、
     前記LED用積層部にLEDを形成し、
     前記絶縁層を部分的除去する溝によって分離された前記半導体層の一方と他方に第1トランジスタと第2トランジスタを独立して形成したことを特徴とするLED・トランジスタ複合素子。
  9.  第1トランジスタと第2トランジスタの一方が、駆動用トランジスタであり、第1トランジスタと第2トランジスタの他方が、アクティブマトリクス選択用トランジスタであることを特徴とする請求項1~8のいずれか1項記載のLED・トランジスタ複合素子。
  10.  前記基板がサファイヤウエハー基板又はシリコン結晶基板であり、前記13族窒化物系化合物が窒化ガリウムであることを特徴とする請求項1~9のいずれか1項記載のLED・トランジスタ複合素子。
  11.  請求項1~10のいずれか1項に記載されたLED・トランジスタ複合素子を共通の前記基板上に独立して多連に設けたことを特徴とする多連LED・トランジスタ複合素子。
PCT/JP2019/002538 2018-03-16 2019-01-25 Led・トランジスタ複合素子 WO2019176326A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-049731 2018-03-16
JP2018049731A JP2019161172A (ja) 2018-03-16 2018-03-16 Led・トランジスタ複合素子

Publications (1)

Publication Number Publication Date
WO2019176326A1 true WO2019176326A1 (ja) 2019-09-19

Family

ID=67908258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002538 WO2019176326A1 (ja) 2018-03-16 2019-01-25 Led・トランジスタ複合素子

Country Status (3)

Country Link
JP (1) JP2019161172A (ja)
TW (1) TW201943099A (ja)
WO (1) WO2019176326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161126A1 (ja) * 2020-02-14 2021-08-19 株式会社半導体エネルギー研究所 表示装置および電子機器
CN115863382A (zh) * 2023-02-27 2023-03-28 长沙湘计海盾科技有限公司 一种新型GaN外延结构及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2592208B (en) * 2020-02-19 2022-04-06 Plessey Semiconductors Ltd High resolution monolithic RGB arrays

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798535A (en) * 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
JP2007034315A (ja) * 2000-07-18 2007-02-08 Sony Corp 画像表示装置の製造方法
JP2009071220A (ja) * 2007-09-18 2009-04-02 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2011222999A (ja) * 2010-04-13 2011-11-04 Lg Innotek Co Ltd 発光素子
JP2013546161A (ja) * 2010-09-21 2013-12-26 クワンタム エレクトロ オプト システムズ エスディーエヌ. ビーエイチディー. 発光およびレーザ半導体方法およびデバイス
JP2015508238A (ja) * 2012-02-28 2015-03-16 コーニンクレッカ フィリップス エヌ ヴェ 交流ledのためのシリコン基板上における窒化ガリウムledの窒化アルミニウムガリウム/窒化ガリウムデバイスとの集積化
WO2017096032A1 (en) * 2015-12-04 2017-06-08 Quora Technology, Inc. Wide band gap device integrated circuit architecture on engineered substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798535A (en) * 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
JP2007034315A (ja) * 2000-07-18 2007-02-08 Sony Corp 画像表示装置の製造方法
JP2009071220A (ja) * 2007-09-18 2009-04-02 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2011222999A (ja) * 2010-04-13 2011-11-04 Lg Innotek Co Ltd 発光素子
JP2013546161A (ja) * 2010-09-21 2013-12-26 クワンタム エレクトロ オプト システムズ エスディーエヌ. ビーエイチディー. 発光およびレーザ半導体方法およびデバイス
JP2015508238A (ja) * 2012-02-28 2015-03-16 コーニンクレッカ フィリップス エヌ ヴェ 交流ledのためのシリコン基板上における窒化ガリウムledの窒化アルミニウムガリウム/窒化ガリウムデバイスとの集積化
WO2017096032A1 (en) * 2015-12-04 2017-06-08 Quora Technology, Inc. Wide band gap device integrated circuit architecture on engineered substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161126A1 (ja) * 2020-02-14 2021-08-19 株式会社半導体エネルギー研究所 表示装置および電子機器
CN115863382A (zh) * 2023-02-27 2023-03-28 长沙湘计海盾科技有限公司 一种新型GaN外延结构及其制备方法和应用

Also Published As

Publication number Publication date
JP2019161172A (ja) 2019-09-19
TW201943099A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
US11721718B2 (en) Display device and method of fabricating the same
CN109844947B (zh) 显示设备和用于生产该设备的方法
JP7457255B2 (ja) 画像表示装置の製造方法および画像表示装置
WO2019176326A1 (ja) Led・トランジスタ複合素子
TWI729612B (zh) 主動矩陣led陣列前驅物
US10361260B2 (en) Semiconductor device and method of manufacturing the same
KR20190029821A (ko) 폴딩 가능한 디스플레이 장치 및 그 제조방법
JP2018205741A (ja) ディスプレイ装置、電子機器、発光素子
US11812646B2 (en) Display device and manufacturing method thereof
US11508794B2 (en) Display panel with light-emitting portions in pixel definition layer and manufacturing method thereof
WO2022057508A1 (zh) 显示基板及显示装置
US9161397B2 (en) Organic EL device
US20220181381A1 (en) Light emitting element and display device
TWI796658B (zh) 單體電子器件、測試基片及其形成與測試方法
CN113948619A (zh) 显示装置及其制造方法
US20220246675A1 (en) Light-emitting device and display apparatus including the same
KR102491883B1 (ko) 표시 장치 및 그 제조방법
US20230197693A1 (en) Micro led display apparatus and method of manufacturing the same
WO2022147649A1 (zh) 显示面板及其制备方法、显示装置
US20230063063A1 (en) Light emitting device, semiconductor structure, method of manufacturing a thin-film layer, and method of manufacturing a light emitting device
US20230299055A1 (en) Substrate for manufacturing display device, and method for manufacturing display device by using same
KR20190011462A (ko) 컬러 필터를 포함하는 디스플레이 장치
US20230154907A1 (en) Interactive display device and method of manufacturing such a device
TW202215401A (zh) 顯示面板及其製造方法
TW202315190A (zh) 單片式集成之上部閘極薄膜電晶體和發光二極體及製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767727

Country of ref document: EP

Kind code of ref document: A1