WO2019176197A1 - 車両位置判定装置 - Google Patents

車両位置判定装置 Download PDF

Info

Publication number
WO2019176197A1
WO2019176197A1 PCT/JP2018/045666 JP2018045666W WO2019176197A1 WO 2019176197 A1 WO2019176197 A1 WO 2019176197A1 JP 2018045666 W JP2018045666 W JP 2018045666W WO 2019176197 A1 WO2019176197 A1 WO 2019176197A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
turned
stop position
determination device
movement amount
Prior art date
Application number
PCT/JP2018/045666
Other languages
English (en)
French (fr)
Inventor
浩二 浦脇
昭弘 川端
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176197A1 publication Critical patent/WO2019176197A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Definitions

  • the present invention relates to a vehicle position determination device that determines a current position of a vehicle.
  • the current position of the vehicle can be determined by specifying the current coordinates of the vehicle using, for example, GNSS (Global Navigation Satellite System), and further specifying the direction of the vehicle using a sensor.
  • GNSS Global Navigation Satellite System
  • Patent Document 1 describes a technology for assisting a driver when starting a vehicle from a parking position.
  • This document “provides a start support device that allows a driver to easily recognize the surrounding situation more than before and can start a vehicle safely from a parking area.
  • the automatic start control means for performing the start control from the parking area by automatically driving the vehicle by following the reverse locus of the parking locus based on the parking locus information, and along the reverse locus Based on the comparison between the vehicle periphery information at the time of parking and the vehicle periphery information at the time of start, and the vehicle periphery information at the time of parking and the vehicle periphery information at the time of start of the vehicle.
  • an automatic start control suppression output means for performing an output for suppressing the automatic start control when it is determined that
  • the current position of the vehicle has the property of improving accuracy by accumulating estimates. Therefore, when the vehicle is parked and the ignition is turned off, and then the ignition is turned on again, the current position estimation needs to be started again, so that the estimation accuracy may be temporarily lowered.
  • Patent Document 1 describes a technique for automatically starting a vehicle, but the method is not based on estimating the current position of the vehicle. Therefore, even if the vehicle can be started automatically, it is still difficult to specify the current position of the vehicle in the subsequent automatic driving.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a technique that can accurately determine the current position of a vehicle when the vehicle is started from a parking position.
  • the vehicle position determination device obtains the difference between the stop position of the vehicle and the vehicle position when the vehicle is activated as a movement amount, and uses the movement amount to determine the vehicle position when the vehicle is activated. Is estimated.
  • the vehicle position determination device can accurately determine the current position of the vehicle when starting the vehicle.
  • FIG. 1 is a configuration diagram of a vehicle position determination device 100 according to Embodiment 1.
  • FIG. 4 is a flowchart for explaining the operation of the vehicle position determination device 100 when an ignition switch of the vehicle 10 is turned off. 4 is a flowchart illustrating an operation of the vehicle position determination device 100 when an ignition switch of the vehicle 10 is turned on. It is a block diagram of the vehicle position determination apparatus 100 which concerns on Embodiment 2.
  • FIG. 1 is a configuration diagram of a vehicle position determination device 100 according to Embodiment 1.
  • FIG. 4 is a flowchart for explaining the operation of the vehicle position determination device 100 when an ignition switch of the vehicle 10 is turned off. 4 is a flowchart illustrating an operation of the vehicle position determination device 100 when an ignition switch of the vehicle 10 is turned on. It is a block diagram of the vehicle position determination apparatus 100 which concerns on Embodiment 2.
  • FIG. 1 is a configuration diagram of a vehicle position determination device 100 according to Embodiment 1.
  • FIG. 4 is a flowchart
  • FIG. 1 is a diagram illustrating a state where a vehicle 10 parked in a service area / parking area (SA / PA) starts.
  • the vehicle 10 merges from the SA / PA to the highway main line in the following order. (1) Turn on the ignition switch, (2) Start, (3) Travel from the parking position to the SA / PA exit, (4) Join the main line.
  • the vehicle 10 can be automatically driven from the start to the main line merge, it is useful for the driver.
  • the estimation accuracy of the vehicle position is improved by accumulating the estimation.
  • the estimation accuracy may be temporarily reduced.
  • a certain amount of time is required to establish communication with the GNSS, and the accuracy of the GNSS may be temporarily lowered in the process.
  • the vehicle position at the start may be recognized as a position 10 'on the main line adjacent to the parking position.
  • the estimation accuracy is sufficiently increased in the traveling process from the start to the SA / PA exit and automatic driving becomes possible.
  • automatic driving is started immediately before the main line merging, the risk of erroneous support increases.
  • erroneous recognition of the stop position as 10 'affects automatic driving the possibility of erroneous support increases.
  • Embodiment 1 of the present invention provides a technique for accurately estimating the vehicle position when the vehicle 10 is started. Thereby, even immediately after starting the vehicle 10 from the parking position, the vehicle 10 is appropriately automatically driven.
  • FIG. 2 is a configuration diagram of the vehicle position determination device 100 according to the first embodiment.
  • the vehicle position determination device 100 is a device that determines the current position of the vehicle 10 and is mounted in the vehicle 10.
  • the vehicle position determination device 100 includes a calculation unit 110, a GNSS tuner 120, an acceleration sensor 130, a high-accuracy map 140, and a stop position storage unit 150.
  • the calculation unit 110 includes an absolute position estimation unit 111, a relative position estimation unit 112, a matching unit 113, and a position correction unit 114.
  • the GNSS tuner 120 acquires the position coordinates of the vehicle 10 from the GNSS system.
  • This position coordinate is a position coordinate acquired without using the state of the vehicle 10 itself or surrounding information, and may be called an absolute position.
  • the acceleration sensor 130 measures the acceleration of the vehicle 10.
  • the high-accuracy map 140 is map information with higher positional accuracy than the absolute position acquired by the GNSS tuner 120, and is stored in advance in a storage device included in the vehicle position determination device 100. For example, the coordinates of roads and lanes can be stored as the high-precision map 140.
  • the stop position storage unit 150 will be described later.
  • the absolute position estimation unit 111 estimates the current absolute position of the vehicle 10 based on the absolute position coordinates acquired by the GNSS tuner 120.
  • the relative position estimation unit 112 estimates the relative position of the vehicle 10 based on the absolute position using information such as the acceleration acquired by the acceleration sensor 130 and the vehicle speed of the vehicle 10. That is, the relative position represents a vehicle position with higher accuracy than the absolute position, and also has a role of complementing coordinates acquired intermittently via the GNSS.
  • the matching unit 113 identifies the road or lane in which the vehicle 10 currently exists by comparing the absolute position and relative position of the vehicle 10 with the high-precision map 140.
  • the position correction unit 114 acquires a surrounding image of the vehicle 10 from a photographing device such as a camera, and corrects the absolute position / relative position of the vehicle 10 based on the surrounding image.
  • the calculation unit 110 outputs the current position of the vehicle 10 calculated as described above.
  • FIG. 3 is a flowchart for explaining the operation of the vehicle position determination device 100 when the ignition switch of the vehicle 10 is turned off.
  • the vehicle position determination device 100 executes this flowchart using, for example, power from a battery.
  • power from a battery for example, power from a battery.
  • the calculation unit 110 stores the high-accuracy position of the vehicle 10 in the stop position storage unit 150.
  • the high-accuracy position represents a relative position calculated based on the absolute position in the same description format (for example, latitude and longitude) as the absolute position.
  • the procedure for calculating the relative position is as described above. That is, (1) the absolute position estimation unit 111 estimates the absolute position by the GNSS tuner 120, (2) the relative position estimation unit 112 estimates the relative position using acceleration and vehicle speed, and (3) the matching unit 113 is high.
  • the vehicle position on the accuracy map 140 is specified, and (4) the position correction unit 114 corrects the relative position using the peripheral image.
  • Step S302 The calculation unit 110 stores the surrounding image of the vehicle 10 acquired in step S301 in the stop position storage unit 150. Therefore, the stop position storage unit 150 stores the high-accuracy position of the vehicle 10 and the surrounding image.
  • FIG. 4 is a flowchart for explaining the operation of the vehicle position determination device 100 when the ignition switch of the vehicle 10 is turned on.
  • the vehicle position determination device 100 determines the current position of the vehicle 10 when the ignition is turned on according to this flowchart.
  • each step of FIG. 4 will be described.
  • the position correction unit 114 reads out the high-accuracy position and surrounding image of the vehicle 10 when the ignition is OFF from the stop position storage unit 150 (S401).
  • the position correction unit 114 acquires a current peripheral image of the vehicle 10 from the camera (S402).
  • the position correction unit 114 calculates the difference between the vehicle position when the ignition is OFF and the vehicle position when the ignition is ON by comparing the peripheral image read in step S401 with the peripheral image acquired in step S402. . This difference is used as the amount of movement of the vehicle 10 since the ignition is turned off.
  • Step S403 Supplement
  • the difference in this step can be obtained, for example, by specifying a feature point in the peripheral image and calculating a shift amount of the feature point between the two images.
  • Other suitable methods may be used.
  • Step S404 The position correction unit 114 obtains the current position of the vehicle 10 according to the movement amount calculated in step S403.
  • the vehicle position calculated when the ignition is OFF is regarded as the current position of the vehicle 10. If the movement amount is equal to or greater than the predetermined threshold, the position obtained by adding the movement amount to the high-accuracy position read in step S401 is regarded as the current position of the vehicle 10.
  • the vehicle position determination apparatus 100 records the high-accuracy position and surrounding image of the vehicle 10 when the ignition is turned off, and captures the surrounding image again when the ignition is turned on and compares it with the surrounding image when the ignition is turned off. As a result, the amount of movement from when the ignition is OFF is calculated. As a result, the current position of the vehicle 10 can be obtained with high accuracy even immediately after the ignition is turned on, based on the highly accurate position estimation result when the ignition is off.
  • the amount of movement of the vehicle 10 from when the ignition is OFF is calculated by comparing the surrounding images when the ignition is OFF and when the vehicle 10 is ON.
  • comparing each peripheral image it is desirable to compare each other in a position where the position in the image does not change.
  • a specific example of feature points in the peripheral images when comparing the peripheral images will be described.
  • the configuration of the vehicle position determination device 100 is the same as that of the first embodiment.
  • FIG. 5 is a configuration diagram of the vehicle position determination device 100 according to the second embodiment of the present invention.
  • the calculation unit 110 position correction unit 1114 acquires the identification information of the object included in the peripheral image together with the peripheral image of the vehicle 10.
  • the identification information here is information that expresses the position and properties of the object such as the coordinates of the object in the peripheral image, the type of the object, and the like.
  • an ECU that controls a camera acquires a peripheral image via the camera and gives identification information to the peripheral image.
  • the calculation unit 110 can acquire the identification information from the camera ECU.
  • the calculation unit 110 itself may generate identification information.
  • the identification information may be acquired by any other appropriate method.
  • the stop position storage unit 150 also records identification information when recording a peripheral image in step S302.
  • the position correction unit 114 also acquires identification information when acquiring a peripheral image in step S402.
  • the position correction unit 114 uses the identification information to specify a stationary object in the surrounding image when calculating the movement amount in step S403.
  • a stationary object a sign such as a signboard, a building, a road surface pattern (such as a parking line), or the like that does not move with the passage of time and can easily specify coordinates can be considered.
  • the position correction unit 114 can calculate the amount of movement of the vehicle 10 by comparing the positions of stationary objects in the surrounding images. Since the position of a stationary object does not change with the passage of time, it is suitable as a feature point in a peripheral image used when calculating the amount of movement.
  • the identification information is used to identify a stationary object in the surrounding image.
  • the method for specifying a stationary object is not limited to this, and the stationary object may be specified by other methods.
  • image data of a stationary object near the parking position is held in advance by the vehicle position determination device 100 and the coordinates of the stationary object are specified by pattern matching.
  • the present invention is not limited to the above embodiment, and includes various modifications.
  • the above embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the described configurations.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • the above-described configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them, for example, with an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card or an SD card.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the calculation unit 110 can be configured using a calculation device such as a CPU (Central Processing Unit). Each functional unit included in the arithmetic unit 110 can be configured using a circuit device that implements the function, or can be configured by the arithmetic unit 110 executing software that implements the function. Each functional unit included in the arithmetic unit 110 can be configured as a part of the arithmetic unit 110 or can be configured as another functional unit.
  • the stop position storage unit 150 can be configured by using a non-volatile storage device (for example, a hard disk or an EEPROM).
  • the acceleration sensor 130 and other sensors may be included in the vehicle position determination device 100, or may be arranged outside the vehicle position determination device 100 so that the vehicle position determination device 100 acquires only the measurement result.
  • the position correction unit 114 can calculate the movement amount by comparing the stop position stored in the stop position storage unit 150 and the vehicle position acquired by the GNSS tuner 120 when the ignition is ON.
  • Vehicle position determination device 110 Calculation unit 111: Absolute position estimation unit 112: Relative position estimation unit 113: Matching unit 114: Position correction unit 120: GNSS tuner 130: Acceleration sensor 140: High-accuracy map 150: Stop position storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明は、車両を駐車位置から発進させるとき、車両の現在位置を精度よく判定することができる技術を提供することを目的とする。本発明に係る車両位置判定装置は、車両の停車位置と、車両を起動したときの車両位置との間の差分を移動量として求め、その移動量を用いて、車両を起動したときの車両位置を推定する(図2参照)。

Description

車両位置判定装置
 本発明は、車両の現在位置を判定する車両位置判定装置に関する。
 現在、車両を自動運転する技術が盛んに開発されている。自動運転においては、車両の現在位置を判定することが重要である。車両の現在位置は一般に、例えばGNSS(Global Navigation Satellite System)によって車両の現在座標を特定し、さらにセンサによって車両の方位を特定することにより、判定することができる。
 下記特許文献1は、駐車位置から車両を発進させるとき運転者を支援する技術を記載している。同文献は、『運転者が従来以上に周囲の状況を容易に認識できる状況とし、安全に駐車区域から車両を発進させることが可能な発進支援装置を提供する。』ことを課題として、『駐車準備位置から駐車区画に至る駐車軌跡を取得する駐車軌跡取得手段と、駐車軌跡に沿って車両を移動中に、車両周辺の情報を駐車時車両周辺情報として取得する駐車時周辺情報取得手段と、駐車軌跡情報に基づいて、車両を駐車軌跡の逆軌跡を辿って自動走行させることにより、駐車区画からの発進制御を行う自動発進制御手段と、逆軌跡に沿った車両の自動発進中または自動発進の準備中に、車両周辺の情報を発進時車両周辺情報として取得する発進時周辺情報取得手段と、駐車時車両周辺情報と発進時車両周辺情報との比較に基づいて、逆軌跡に沿った自動発進制御が実行ないし継続不能と判定された場合、自動発進制御を抑制するための出力を行う自動発進制御抑制出力手段と、を備えることを特徴とする発進支援装置として提供可能である。』という技術を開示している(要約参照)。
特開2008-302711号公報
 車両の現在位置は、推定を積み重ねることにより精度を向上させる性質を有している。したがって、車両を駐車させてイグニッションをOFFし、その後にイグニッションを再度ONしたとき、改めて現在位置推定を開始する必要があるので、一時的に推定精度が低下することがある。
 特許文献1においては、車両を自動発進させる技術について記載しているが、その手法は車両の現在位置を推定することによるものではない。したがって車両を自動発進させることができたとしても、その後の自動運転において車両の現在位置を特定することはやはり困難であると考えられる。
 本発明は、上記のような課題に鑑みてなされたものであり、車両を駐車位置から発進させるとき、車両の現在位置を精度よく判定することができる技術を提供することを目的とする。
 本発明に係る車両位置判定装置は、車両の停車位置と、車両を起動したときの車両位置との間の差分を移動量として求め、その移動量を用いて、車両を起動したときの車両位置を推定する。
 本発明に係る車両位置判定装置によれば、車両を発進させるときにおける車両の現在位置を精度よく判定することができる。
サービスエリア/パーキングエリア(SA/PA)に駐車している車両10が発進するときの様子を示す図である。 実施形態1に係る車両位置判定装置100の構成図である。 車両10のイグニッションスイッチがOFFされたときにおける車両位置判定装置100の動作を説明するフローチャートである。 車両10のイグニッションスイッチがONされたときにおける車両位置判定装置100の動作を説明するフローチャートである。 実施形態2に係る車両位置判定装置100の構成図である。
<実施の形態1>
 図1は、サービスエリア/パーキングエリア(SA/PA)に駐車している車両10が発進するときの様子を示す図である。車両10は、以下の順序によりSA/PAから高速道路本線に合流する。(1)イグニッションスイッチをONする、(2)発進する、(3)駐車位置からSA/PAの出口まで走行する、(4)本線に合流する。
 上記過程において、発進から本線合流まで車両10を自動運転することができれば、運転者にとって有用である。他方でイグニッションスイッチをONした直後は、車両位置を改めて推定し直す必要がある。車両10が発進してからある程度の時間が経過すると、推定を積み重ねることにより車両位置の推定精度が向上すると考えられる。しかし発進直後はその積み重ねがないので、推定精度が一時的に低下する場合がある。その他、イグニッションをONした直後は、GNSSとの間の通信を確立するためにある程度の時間を必要とし、その過程においてはGNSSの精度が一時的に低下する場合がある。
 発進直後の車両位置の推定精度が低下すると、自動運転に際して以下のような課題が生じる。例えば発進時の車両位置を、駐車位置に隣接する本線上の位置10’として認識する場合がある。この場合、駐車位置からSA/PA出口まで車両10を正しく導くことは困難である。発進からSA/PA出口までの走行過程において推定精度が充分に高まって自動運転可能になる場合もあり得るが、本線合流直前に自動運転を開始すると、誤支援のリスクが高まる。特に、停車位置を10’のように誤認識したことが自動運転に影響すると、誤支援の可能性が高まる。
 そこで本発明の実施形態1においては、車両10を発進させたときにおける車両位置を精度よく推定する技術を提供する。これにより、車両10を駐車位置から発進させた直後においても、車両10を適正に自動運転することを図る。
 図2は、本実施形態1に係る車両位置判定装置100の構成図である。車両位置判定装置100は、車両10の現在位置を判定する装置であり、車両10内に搭載されている。車両位置判定装置100は、演算部110、GNSSチューナ120、加速度センサ130、高精度地図140、停車位置記憶部150を備える。演算部110は、絶対位置推定部111、相対位置推定部112、マッチング部113、位置補正部114を有する。
 GNSSチューナ120は、GNSSシステムから車両10の位置座標を取得する。この位置座標は車両10自身の状態や周辺情報を用いずに取得した位置座標であるので、絶対位置と呼ぶ場合がある。加速度センサ130は、車両10の加速度を計測する。高精度地図140は、GNSSチューナ120が取得する絶対位置よりも位置精度が高い地図情報であり、あらかじめ車両位置判定装置100が備える記憶装置に格納されている。例えば道路やレーンの座標を高精度地図140として格納することができる。停車位置記憶部150については後述する。
 絶対位置推定部111は、GNSSチューナ120が取得した絶対位置座標に基づき、車両10の現在の絶対位置を推定する。相対位置推定部112は、加速度センサ130が取得した加速度や車両10の車速などの情報を用いて、絶対位置を基準とする車両10の相対位置を推定する。すなわち相対位置は、絶対位置よりも精度の高い車両位置を表すとともに、GNSSを介して間欠的に取得する座標を補完する役割も有している。マッチング部113は、車両10の絶対位置および相対位置と高精度地図140を比較することにより、車両10が現在存在している道路やレーンを特定する。位置補正部114は、車両10の周辺画像をカメラなどの撮影デバイスから取得し、その周辺画像に基づき、車両10の絶対位置・相対位置を補正する。演算部110は、以上によって算出した車両10の現在位置を出力する。
 図3は、車両10のイグニッションスイッチがOFFされたときにおける車両位置判定装置100の動作を説明するフローチャートである。車両10のイグニッションスイッチがOFFされたとき、車両位置判定装置100は例えばバッテリからの電力を用いて本フローチャートを実施する。以下図3の各ステップについて説明する。
(図3:ステップS301)
 演算部110は、車両10の高精度位置を停車位置記憶部150に格納する。ここでいう高精度位置とは、絶対位置を基準として演算した相対位置を、絶対位置と同じ記述形式(例えば緯度経度)によって表したものである。相対位置を算出する手順は上述の通りである。すなわち、(1)絶対位置推定部111はGNSSチューナ120により絶対位置を推定し、(2)相対位置推定部112は加速度や車速を用いて相対位置を推定し、(3)マッチング部113は高精度地図140上における車両位置を特定し、(4)位置補正部114は周辺画像を用いて相対位置を補正する。
(図3:ステップS302)
 演算部110は、ステップS301において取得した車両10の周辺画像を、停車位置記憶部150に格納する。したがって停車位置記憶部150は、車両10の高精度位置と周辺画像を格納することになる。
 図4は、車両10のイグニッションスイッチがONされたときにおける車両位置判定装置100の動作を説明するフローチャートである。車両位置判定装置100は本フローチャートにしたがって、イグニッションON時における車両10の現在位置を判定する。以下図4の各ステップについて説明する。
(図4:ステップS401~S402)
 位置補正部114は、イグニッションOFF時における車両10の高精度位置と周辺画像を停車位置記憶部150から読み出す(S401)。位置補正部114は、車両10の現時点における周辺画像をカメラから取得する(S402)。
(図4:ステップS403)
 位置補正部114は、ステップS401において読み出した周辺画像と、ステップS402において取得した周辺画像とを比較することにより、イグニッションOFF時における車両位置とイグニッションON時における車両位置との間の差分を算出する。この差分は、イグニッションOFF時からの車両10の移動量として用いられる。
(図4:ステップS403:補足)
 本ステップにおける差分は、例えば周辺画像内の特徴点を特定し、両画像間におけるその特徴点のずれ量を算出することにより、求めることができる。その他適当な手法を用いてもよい。例えばパターンマッチングなどの手法により、両画像間のずれ量を求めることが考えられる。
(図4:ステップS404)
 位置補正部114は、ステップS403において算出した移動量にしたがって、車両10の現在位置を求める。移動量が所定閾値未満である場合は、イグニッションOFF時において算出した車両位置を、車両10の現在位置とみなす。移動量が所定閾値以上である場合は、ステップS401において読み出した高精度位置に対して移動量を加算した位置を車両10の現在位置とみなす。
<実施の形態1:まとめ>
 本実施形態1に係る車両位置判定装置100は、イグニッションOFF時における車両10の高精度位置と周辺画像を記録しておき、イグニッションON時に改めて周辺画像を撮影してイグニッションOFF時の周辺画像と比較することにより、イグニッションOFF時からの移動量を算出する。これにより、イグニッションOFF時における高精度な位置推定結果を基準として、イグニッションON直後であっても車両10の現在位置を高精度に求めることができる。
<実施の形態2>
 実施形態1においては、車両10のイグニッションOFF時とON時それぞれにおける周辺画像を比較することにより、車両10がイグニッションOFF時から移動した量を算出することとした。各周辺画像を比較する際には、画像内の位置が変化しない箇所を相互比較することが望ましい。そこで本発明の実施形態2では、周辺画像を比較する際における周辺画像内の特徴点の具体例について説明する。車両位置判定装置100の構成は実施形態1と同様である。
 図5は、本発明の実施形態2に係る車両位置判定装置100の構成図である。本実施形態2において演算部110(位置補正部114)は、車両10の周辺画像と併せて、その周辺画像のなかに含まれる物体の識別情報を取得する。ここでいう識別情報とは、当該周辺画像のなかにおける物体の座標、物体の種別、などのように、当該物体の位置や性質を表現する情報である。
 例えばカメラを制御するECUは、カメラを介して周辺画像を取得するとともに、その周辺画像に対して識別情報を付与する。演算部110はその識別情報をカメラECUから取得することができる。演算部110自身が識別情報を生成してもよい。その他適当な手法により識別情報を取得してもよい。
 停車位置記憶部150は、ステップS302において周辺画像を記録する際に、識別情報を併せて記録する。位置補正部114は、ステップS402において周辺画像を取得する際に、識別情報を併せて取得する。位置補正部114は、ステップS403において移動量を算出する際に、識別情報を用いて、周辺画像内の静止物を特定する。静止物の例としては、看板、建物、路面パターン(駐車線など)、などのように、時間経過にともなって移動せず、かつ座標を容易に特定できるものが考えられる。位置補正部114は、周辺画像内における静止物の位置を比較することにより、車両10の移動量を算出することができる。静止物は時間経過にともなって位置が変化しないので、移動量を算出する際に用いる周辺画像内の特徴点として適している。
 本実施形態2においては、識別情報を用いて周辺画像内の静止物を特定することを説明した。静止物を特定する手法はこれに限られるものではなく、その他手法により静止物を特定してもよい。例えばあらかじめ駐車位置近傍の静止物の画像データを車両位置判定装置100が保持しておき、パターンマッチングにより静止物の座標を特定することが考えられる。
<本発明の変形例について>
 本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 演算部110は、CPU(Central Processing Unit)などの演算装置を用いて構成することができる。演算部110が備える各機能部は、その機能を実装した回路デバイスを用いて構成することもできるし、その機能を実装したソフトウェアを演算部110が実行することにより構成することもできる。演算部110が備える各機能部は、演算部110の一部として構成することもできるし、別の機能部として構成することもできる。停車位置記憶部150は、不揮発性の記憶装置(例えばハードディスクやEEPROMなど)を用いて構成することができる。
 加速度センサ130その他のセンサは、車両位置判定装置100が備えることもできるし、車両位置判定装置100の外にそれらセンサを配置して計測結果のみ車両位置判定装置100が取得することとしてもよい。
 以上の実施形態においては、車両10の周辺画像を用いて移動量を算出することを説明した。GNSSの精度が充分である環境下においては、GNSSチューナ120が取得した停車位置のみを用いて、移動量を算出することもできる。この場合、位置補正部114は停車位置記憶部150が格納している停車位置と、イグニッションON時においてGNSSチューナ120が取得した車両位置とを比較することにより、移動量を算出することができる。
100:車両位置判定装置
110:演算部
111:絶対位置推定部
112:相対位置推定部
113:マッチング部
114:位置補正部
120:GNSSチューナ
130:加速度センサ
140:高精度地図
150:停車位置記憶部

Claims (9)

  1.  車両の現在位置を判定する車両位置判定装置であって、
     前記車両の現在位置を演算する演算部、
     前記車両の起動スイッチがOFFされたときにおける前記車両の停車位置を記録する停車位置記録部、
     前記停車位置記録部が記録した前記停車位置と、前記起動スイッチがONされたときにおける前記車両の位置との間の差分を前記車両の移動量として算出する補正部、
     を備え、
     前記演算部は、前記移動量を用いて、前記起動スイッチがONされたときにおける前記車両の位置を推定し、その推定結果を出力する
     ことを特徴とする車両位置判定装置。
  2.  前記停車位置記録部は、前記車両の起動スイッチがOFFされたとき撮像された前記車両の第1周辺画像により、前記車両の停車位置を記録し、
     前記補正部は、前記起動スイッチがONされたとき撮像された前記車両の第2周辺画像と、前記第1周辺画像とを比較することにより、前記移動量を算出する
     ことを特徴とする請求項1記載の車両位置判定装置。
  3.  前記停車位置記録部は、前記車両の起動スイッチがOFFされたときGNSSを用いて取得した前記車両の位置を前記停車位置として記録し、
     前記補正部は、前記第1周辺画像と前記第2周辺画像との間の差分を求めることにより前記GNSSを用いて取得した前記停車位置からの前記移動量を算出する
     ことを特徴とする請求項2記載の車両位置判定装置。
  4.  前記演算部は、前記GNSSを用いて取得した前記車両の位置を基準として、前記車両の加速度または車速の少なくともいずれかを用いて前記車両の相対位置を求めることにより、前記GNSSを用いて取得した前記車両の位置よりも精度の高い位置を求め、
     前記停車位置記録部は、前記精度の高い位置を前記停車位置として記録する
     ことを特徴とする請求項3記載の車両位置判定装置。
  5.  前記補正部は、前記第1周辺画像に含まれる第1静止物と前記第2周辺画像に含まれる第2静止物をそれぞれ認識し、
     前記補正部は、前記第1静止物の位置と前記第2静止物の位置を比較することにより、前記移動量を算出する
     ことを特徴とする請求項2記載の車両位置判定装置。
  6.  前記補正部は、前記第1周辺画像を取得する際に、前記第1静止物の座標と前記第1静止物の種別についての第1情報を併せて取得し、
     前記補正部は、前記第2周辺画像を取得する際に、前記第2静止物の座標と前記第2静止物の種別についての第2情報を併せて取得し、
     前記補正部は、前記第1情報を用いて、前記第1周辺画像のなかにおける前記第1静止物の位置を特定するとともに、前記第2情報を用いて、前記第2周辺画像のなかにおける前記第2静止物の位置を特定する
     ことを特徴とする請求項5記載の車両位置判定装置。
  7.  前記停車位置記録部は、GNSSを介して取得した前記車両の停車位置を記録し、
     前記補正部は、GNSSを介して取得した、前記起動スイッチがONされたときにおける前記車両の位置を用いて、前記移動量を算出する
     ことを特徴とする請求項1記載の車両位置判定装置。
  8.  前記演算部は、前記移動量が所定閾値未満である場合は、前記停車位置記録部が記録した停車位置を、前記起動スイッチがONされたときにおける前記車両の位置とみなす
     ことを特徴とする請求項1記載の車両位置判定装置。
  9.  前記演算部は、前記移動量が所定閾値以上である場合は、前記移動量を用いて推定した前記車両の位置を、前記起動スイッチがONされたときにおける前記車両の位置とみなす ことを特徴とする請求項1記載の車両位置判定装置。
PCT/JP2018/045666 2018-03-14 2018-12-12 車両位置判定装置 WO2019176197A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046240 2018-03-14
JP2018046240A JP6955464B2 (ja) 2018-03-14 2018-03-14 車両位置判定装置

Publications (1)

Publication Number Publication Date
WO2019176197A1 true WO2019176197A1 (ja) 2019-09-19

Family

ID=67907612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045666 WO2019176197A1 (ja) 2018-03-14 2018-12-12 車両位置判定装置

Country Status (2)

Country Link
JP (1) JP6955464B2 (ja)
WO (1) WO2019176197A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463997B2 (ja) 2021-03-29 2024-04-09 トヨタ自動車株式会社 車両制御装置、車両制御方法及び車両制御用コンピュータプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304509A (ja) * 1998-04-22 1999-11-05 Toyota Motor Corp 車両用現在位置検出装置
JP2002188931A (ja) * 2000-09-28 2002-07-05 Denso Corp 車載用処理装置
JP2008215923A (ja) * 2007-03-01 2008-09-18 Denso Corp 車両用ナビゲーション装置
JP2009085628A (ja) * 2007-09-27 2009-04-23 Aisin Aw Co Ltd 車載用処理装置、ナビゲーション装置、及び車両進行方位補正プログラム
JP2010107457A (ja) * 2008-10-31 2010-05-13 Aisin Aw Co Ltd 車載ナビゲーション装置及び車両方位変更箇所判定プログラム
JP2010190721A (ja) * 2009-02-18 2010-09-02 Aisin Aw Co Ltd 車載ナビゲーション装置及び車両方位変更箇所判定プログラム
JP2015094690A (ja) * 2013-11-13 2015-05-18 株式会社デンソー 車両用走行軌跡算出装置
JP2016156802A (ja) * 2015-02-20 2016-09-01 株式会社デンソー 車両位置検出装置、車両位置検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304509A (ja) * 1998-04-22 1999-11-05 Toyota Motor Corp 車両用現在位置検出装置
JP2002188931A (ja) * 2000-09-28 2002-07-05 Denso Corp 車載用処理装置
JP2008215923A (ja) * 2007-03-01 2008-09-18 Denso Corp 車両用ナビゲーション装置
JP2009085628A (ja) * 2007-09-27 2009-04-23 Aisin Aw Co Ltd 車載用処理装置、ナビゲーション装置、及び車両進行方位補正プログラム
JP2010107457A (ja) * 2008-10-31 2010-05-13 Aisin Aw Co Ltd 車載ナビゲーション装置及び車両方位変更箇所判定プログラム
JP2010190721A (ja) * 2009-02-18 2010-09-02 Aisin Aw Co Ltd 車載ナビゲーション装置及び車両方位変更箇所判定プログラム
JP2015094690A (ja) * 2013-11-13 2015-05-18 株式会社デンソー 車両用走行軌跡算出装置
JP2016156802A (ja) * 2015-02-20 2016-09-01 株式会社デンソー 車両位置検出装置、車両位置検出方法

Also Published As

Publication number Publication date
JP2019156198A (ja) 2019-09-19
JP6955464B2 (ja) 2021-10-27

Similar Documents

Publication Publication Date Title
US11703860B2 (en) Automated driving apparatus
JP4724043B2 (ja) 対象物認識装置
EP3018448B1 (en) Methods and systems for enabling improved positioning of a vehicle
US20130162824A1 (en) Apparatus and method for recognizing current position of vehicle using internal network of the vehicle and image sensor
US10139832B2 (en) Computer-assisted or autonomous driving with region-of-interest determination for traffic light analysis
JP5968064B2 (ja) 走行レーン認識装置および走行レーン認識方法
JP6261832B1 (ja) 走行路認識装置及び走行路認識方法
JP4702149B2 (ja) 車両位置測位装置
CN109923438B (zh) 用于确定车辆速度的装置和方法
JP2007309670A (ja) 車両位置検出装置
JP2020087191A (ja) 車線境界設定装置、車線境界設定方法
JP4724079B2 (ja) 対象物認識装置
CN114670840A (zh) 死角推测装置、车辆行驶系统、死角推测方法
US20220256082A1 (en) Traveling environment recognition apparatus
JPH1049672A (ja) 走行制御装置
JP2019066445A (ja) 位置補正方法、車両制御方法及び位置補正装置
US11619495B2 (en) Position estimating apparatus and position estimating method
WO2019176197A1 (ja) 車両位置判定装置
WO2020070996A1 (ja) 走行車線推定装置、走行車線推定方法、制御プログラム、及びコンピュータ読み取り可能な非一時的な記憶媒体
JP7209912B2 (ja) 運転支援制御装置および運転支援制御方法
JP2018120303A (ja) 物体検出装置
WO2020021596A1 (ja) 車両位置推定装置および車両位置推定方法
WO2023119651A1 (ja) 車載電子制御装置、及び位置推定方法
US11256927B2 (en) Information provision device, vehicle, driving assistance system, map generation device, driving assistance device, and driving assistance method
CN116559899B (zh) 自动驾驶车辆的融合定位方法、装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909423

Country of ref document: EP

Kind code of ref document: A1