WO2019174286A1 - 光学成像镜片组 - Google Patents

光学成像镜片组 Download PDF

Info

Publication number
WO2019174286A1
WO2019174286A1 PCT/CN2018/115055 CN2018115055W WO2019174286A1 WO 2019174286 A1 WO2019174286 A1 WO 2019174286A1 CN 2018115055 W CN2018115055 W CN 2018115055W WO 2019174286 A1 WO2019174286 A1 WO 2019174286A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
focal length
effective focal
Prior art date
Application number
PCT/CN2018/115055
Other languages
English (en)
French (fr)
Inventor
周鑫
杨健
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019174286A1 publication Critical patent/WO2019174286A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an optical imaging lens set, in particular an optical imaging lens set consisting of seven lenses.
  • the invention provides an optical imaging lens set with small depth of field and large magnification, which is combined with a wide-angle lens to form a dual camera, which can obtain large magnification and good imaging effect in the case of autofocus, and can simultaneously ensure processing characteristics and small size. Chemical.
  • the present application provides an optical imaging lens set.
  • An aspect of the present application provides an optical imaging lens set comprising, in order from an object side to an image side, a first lens having positive power; a second lens having power; a third lens having power; a fourth lens having a power having a convex side, a side surface being a concave surface; a fifth lens having a negative power; a sixth lens having a negative power, the object side being a concave surface; having a power
  • the seventh lens wherein the effective focal length f5 of the fifth lens and the effective focal length f of the optical imaging lens set satisfy -40 ⁇ f5 / f ⁇ 0.
  • the on-axis distance TTL of the first lens object side to the imaging surface and the effective focal length f of the optical imaging lens group satisfy TTL/f ⁇ 1.0.
  • the maximum half angle of view of the optical imaging lens set is HFOV ⁇ 30°.
  • 1 ⁇ f1/R1 ⁇ 2 is satisfied between the effective focal length f1 of the first lens and the radius of curvature R1 of the first lens object side.
  • 1.0 ⁇ R7 / R8 ⁇ 2.6 is satisfied between the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image.
  • the air gap T56 of the fifth lens and the sixth lens on the optical axis satisfies 1.0 ⁇ T56/CT1 ⁇ 1.5 between the center thickness CT1 of the first lens.
  • -1 ⁇ f / R14 ⁇ 0 is satisfied between the effective focal length f of the optical imaging lens group and the radius of curvature R14 of the side surface of the seventh lens image.
  • the effective focal length f of the optical imaging lens group and the effective focal length f6 of the sixth lens satisfy -1.5 ⁇ f / f6 ⁇ 0.
  • -4 ⁇ f5 / f1 ⁇ -2 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f1 of the first lens.
  • the combined focal length f23 of the second lens and the third lens satisfies -2 ⁇ f23 / f ⁇ -1 between the effective focal length f of the optical imaging lens group.
  • 2 ⁇ CT7/CT6 ⁇ 4 is satisfied between the center thickness CT7 of the seventh lens and the center thickness CT6 of the sixth lens.
  • the air gap T56 of the fifth lens and the sixth lens on the optical axis satisfies 2 ⁇ T56/T67 ⁇ 5 between the air gap T67 of the sixth lens and the seventh lens on the optical axis.
  • the sum of the center thicknesses of the first to seventh lenses on the optical axis ⁇ CT and the axially spaced distance between any two adjacent lenses of the first lens to the seventh lens ⁇ AT ⁇ CT/ ⁇ AT ⁇ 2.0 is satisfied.
  • the effective focal length f5 of the fifth lens satisfies -3 ⁇ f5 / f ⁇ 0 between the effective focal length f of the optical imaging lens group.
  • An aspect of the present application provides an optical imaging lens set comprising, in order from an object side to an image side, a first lens having positive power; a second lens having power; a third lens having power; a fourth lens having a power having a convex side, a side surface being a concave surface; a fifth lens having a negative power; a sixth lens having a negative power, the object side being a concave surface; having a power a seventh lens; wherein the air gap T56 of the fifth lens and the sixth lens on the optical axis satisfies 1.0 ⁇ T56 / CT1 ⁇ 1.5 between the center thickness CT1 of the first lens.
  • An aspect of the present application provides an optical imaging lens set comprising, in order from an object side to an image side, a first lens having positive power; a second lens having power; a third lens having power; a fourth lens having a power having a convex side, a side surface being a concave surface; a fifth lens having a negative power; a sixth lens having a negative power, the object side being a concave surface; having a power
  • the seventh lens wherein the air space T56 of the fifth lens and the sixth lens on the optical axis and the air space T67 of the sixth lens and the seventh lens on the optical axis satisfy 2 ⁇ T56/T67 ⁇ 5.
  • the optical imaging lens set according to the present application has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and a good imaging effect in the case of autofocus, while ensuring processing characteristics and miniaturization.
  • FIG. 1 is a schematic structural view of an optical imaging lens group of Embodiment 1;
  • FIG. 2 to FIG. 5 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 1.
  • FIG. 6 is a schematic structural view of an optical imaging lens group of Embodiment 2;
  • Figure 11 is a view showing the structure of the optical imaging lens group of Embodiment 3.
  • Figure 16 is a view showing the structure of the optical imaging lens group of Embodiment 4.
  • 17 to 20 show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens group of Example 4, respectively;
  • FIG. 21 is a schematic structural view of an optical imaging lens group of Embodiment 5.
  • Figure 26 is a view showing the structure of the optical imaging lens group of Embodiment 6;
  • Figure 31 is a view showing the structure of the optical imaging lens group of Embodiment 7;
  • FIG. 36 is a schematic structural view of an optical imaging lens group of Embodiment 8.
  • Figure 41 is a view showing the structure of the optical imaging lens group of Embodiment 9;
  • Figure 46 is a view showing the structure of the optical imaging lens group of Embodiment 10.
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the present application provides an optical imaging lens set comprising, in order from the object side to the image side, a first lens having positive power, a second lens having power, a third lens having power, and a light focus a fourth lens having a convex side, a side surface being a concave surface; a fifth lens having a negative power; a sixth lens having a negative power, a concave side of the object side; and a seventh power having a power lens.
  • the effective focal length f5 of the fifth lens satisfies -40 ⁇ f5 / f ⁇ 0 between the effective focal length f of the optical imaging lens group, and specifically, -1.83 ⁇ f5 / f ⁇ -0.98 is satisfied.
  • the above configuration is advantageous for the optical imaging lens group to realize the characteristics of telephoto, and meets the requirements of miniaturization and magnification of portable electronic products.
  • the power of the sixth lens is negative, and the side of the object is concave, so that the system aberration can be corrected to improve system performance.
  • the on-axis distance TTL from the side of the first lens to the imaging surface and the effective focal length f of the optical imaging lens group satisfy TTL/f ⁇ 1.0, specifically, TTL/f ⁇ 0.93.
  • TTL/f ⁇ 1.0 specifically, TTL/f ⁇ 0.93.
  • the optical imaging lens group has a maximum half angle of view HFOV ⁇ 30°, specifically, HFOV ⁇ 23.8.
  • the effective focal length f1 of the first lens and the radius of curvature R1 of the first lens object side satisfy 1 ⁇ f1/R1 ⁇ 2, specifically, 1.69 ⁇ f1/R1 ⁇ 1.93.
  • the ratio between the effective focal length of the first lens and the radius of curvature of the side surface of the first lens object can be reasonably selected, the astigmatism of the optical imaging lens group can be effectively balanced, and the miniaturization of the optical imaging lens group can be further ensured.
  • the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image satisfy 1.0 ⁇ R7/R8 ⁇ 2.6, and more specifically, 1.00 ⁇ R7/R8 ⁇ 2.56 .
  • the radius of curvature of the side surface and the image side of the fourth lens can be reasonably controlled, which helps to reduce the power of the fourth lens of the optical imaging lens group, and the optical imaging lens group has better balance chromatic aberration and distortion. ability.
  • the air gap T56 between the fifth lens and the sixth lens on the optical axis satisfies 1.0 ⁇ T56/CT1 ⁇ 1.5 between the center thickness CT1 of the first lens, and more specifically, satisfies 1.13 ⁇ T56. /CT1 ⁇ 1.38.
  • the ratio between the air gap of the fifth lens and the sixth lens on the optical axis and the center thickness of the first lens can be reasonably distributed, which can effectively reduce the system size and satisfy the telephoto characteristic, and is advantageous for adjustment.
  • the structure of the imaging system reduces the difficulty of lens processing and assembly.
  • the effective focal length f of the optical imaging lens group and the radius of curvature R14 of the side surface of the seventh lens image satisfy -1 ⁇ f/R14 ⁇ 0, specifically, -0.77 ⁇ f/R14 ⁇ - 0.22.
  • the radius of curvature of the side surface of the seventh lens image can be reasonably selected, the astigmatism of the imaging system can be effectively balanced, the back focus of the system can be shortened, and the miniaturization of the optical system can be further ensured.
  • the effective focal length f of the optical imaging lens group and the effective focal length f6 of the sixth lens satisfy -1.5 ⁇ f / f6 ⁇ 0, specifically, -1.55 ⁇ f / f6 ⁇ -0.83.
  • the effective focal length of the sixth lens can be reasonably set, which helps to increase the focal length of the optical imaging lens group, realizes the characteristics of telephoto, and has the function of adjusting the position of the light, shortening the total length of the optical imaging lens group.
  • -4 ⁇ f5/f1 ⁇ -2 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f1 of the first lens, specifically, -3.83 ⁇ f5/f1 ⁇ -2.13 is satisfied.
  • the effective focal length of the fifth lens and the first lens can be reasonably distributed, and in the case where the first lens power is positive, the power of the fifth lens is ensured to be negative, thereby effectively controlling the optical imaging lens group. Volume and improve performance. Contrary to the power, the optical imaging lens set has the ability to have better balance aberrations.
  • the combined focal length f23 of the second lens and the third lens satisfies -2 ⁇ f23/f ⁇ -1 between the effective focal length f of the optical imaging lens group, and specifically, -1.90 ⁇ f23/ F ⁇ -1.08.
  • the combined focal length of the second lens and the third lens can be reasonably selected to achieve the characteristics of the telephoto while correcting the aberration, and contribute to appropriately shortening the total length of the optical imaging lens group to meet the thin and light requirements. .
  • 2 ⁇ CT7/CT6 ⁇ 4 is satisfied, specifically, 2.27 ⁇ CT7/CT6 ⁇ 3.88 is satisfied.
  • the ratio of the thickness of the seventh lens to the center of the sixth lens can be reasonably distributed, which can effectively reduce the size of the rear end of the optical imaging lens group, avoid excessive volume of the optical system lens group, and reduce the difficulty in assembling the lens. Space utilization.
  • the air interval T56 of the fifth lens and the sixth lens on the optical axis satisfies 2 ⁇ T56/T67 ⁇ 5 between the air gap T67 of the sixth lens and the seventh lens on the optical axis, Specifically, 2.67 ⁇ T56 / T67 ⁇ 4.13 is satisfied.
  • the degree of freedom of lens surface variation is higher to enhance the system's ability to correct astigmatism and curvature of field.
  • the sum of the center thicknesses of the first to seventh lenses on the optical axis ⁇ CT and the axial separation distance between any two adjacent lenses of the first lens to the seventh lens ⁇ AT ⁇ CT/ ⁇ AT ⁇ 2.0 is satisfied, specifically, ⁇ CT/ ⁇ AT ⁇ 1.76 is satisfied.
  • the optical imaging lens set includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • a side surface S7 and a fourth lens E4 of the image side surface S8 a fifth lens E5 having the object side surface S9 and the image side surface S10, a sixth lens E6 having the object side surface S11 and the image side surface S12, and a portion having the object side surface S13 and the image side surface S14 Seven lenses E7.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the optical imaging lens group.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • the optical imaging lens set further includes a filter E8 having an object side S15 and an image side S16 for filtering out infrared light.
  • a filter E8 having an object side S15 and an image side S16 for filtering out infrared light.
  • light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the first to seventh lenses E1 to E7 have respective effective focal lengths f1 to f7.
  • the first lens E1 to the seventh lens E7 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the optical imaging lens group.
  • Table 1 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL (mm) of the optical imaging lens group, and the maximum half-view of the imaging lens.
  • Field angle HFOV (°).
  • Table 2 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • each lens may be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for each aspherical lens in this embodiment.
  • FIG. 2 shows an axial chromatic aberration curve of the optical imaging lens group of Embodiment 1, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 3 shows an astigmatism curve of the optical imaging lens group of Example 1, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4 shows a distortion curve of the optical imaging lens group of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 5 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 1, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens set according to Embodiment 1 has a small depth of field and a large magnification characteristic, and is combined with a wide-angle lens to form a dual camera, and a large magnification can be obtained in the case of autofocus. And good imaging results, while ensuring processing characteristics and miniaturization.
  • Fig. 6 is a schematic structural view showing the optical imaging lens group of Embodiment 2.
  • the optical imaging lens set includes seven lenses.
  • the seven lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first to seventh lenses E1 to E7 are sequentially disposed from the object side to the image side of the optical imaging lens group.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a convex surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a concave surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a positive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 4 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 5 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 6 below shows the high order term coefficients of the respective aspheric surfaces S1-S14 that can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a graph showing the axial chromatic aberration of the optical imaging lens group of Example 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8 shows an astigmatism curve of the optical imaging lens group of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the optical imaging lens group of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 10 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 2, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 2 has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • Figure 11 is a schematic view showing the structure of an optical imaging lens group of Embodiment 3.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 7 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 8 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 9 below shows the high order coefficient of each aspherical surface S1-S14 which can be used for each aspherical lens in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging lens group of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging lens group of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the optical imaging lens group of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 15 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 3, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 3 has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • Fig. 16 is a schematic structural view showing the optical imaging lens group of Embodiment 4.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have a negative refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a convex surface.
  • Table 10 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 11 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 12 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Figure 17 is a graph showing the axial chromatic aberration of the optical imaging lens group of Example 4, which shows that the light of different wavelengths deviates from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the optical imaging lens group of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 19 is a view showing the distortion curve of the optical imaging lens group of Example 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 20 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 4, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 4 has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 13 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 14 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 15 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging lens group of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging lens group of Example 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing the distortion curve of the optical imaging lens group of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 25 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 5, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 5 has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • Fig. 26 is a schematic structural view showing the optical imaging lens group of Example 6.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a convex surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 16 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 17 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 18 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Figure 27 is a graph showing the axial chromatic aberration of the optical imaging lens group of Example 6, which shows that the light of different wavelengths is deflected by the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the optical imaging lens group of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the optical imaging lens group of Example 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 30 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 6, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 6 has a small depth of field and a large magnification characteristic, and can be combined with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • Figure 31 is a schematic view showing the structure of an optical imaging lens group of Embodiment 7.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a convex surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a concave surface, and the image side surface S4 may be a convex surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 19 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 20 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 21 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Figure 32 is a graph showing the axial chromatic aberration of the optical imaging lens group of Example 7, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the optical imaging lens group of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the optical imaging lens group of Example 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 35 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 7, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 7 has a small depth of field and a large magnification characteristic, and can be combined with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • Figure 36 is a schematic view showing the structure of an optical imaging lens group of Example 8.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have positive refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a concave surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 22 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 23 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 24 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • FIG. 37 shows an axial chromatic aberration curve of the optical imaging lens group of Example 8, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 38 is a view showing an astigmatism curve of the optical imaging lens group of Example 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 39 is a view showing the distortion curve of the optical imaging lens group of Example 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 40 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 8, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 8 has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a positive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a concave surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a convex surface, and the image side surface S14 may be a convex surface.
  • Table 25 shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 26 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 27 below shows the high order coefficient of each aspherical surface S1-S14 of each aspherical lens which can be used in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Figure 42 is a graph showing the axial chromatic aberration of the optical imaging lens group of Example 9, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Figure 43 is a view showing an astigmatism curve of the optical imaging lens group of Example 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 44 is a view showing the distortion curve of the optical imaging lens group of Example 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 45 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 9, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 9 has a small depth of field and a large magnification characteristic, and is matched with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • Fig. 46 is a view showing the configuration of an optical imaging lens group of Embodiment 10.
  • the optical imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a sixth lens E6, and a seventh lens E7.
  • the first lens E1 may have positive refractive power, and the object side surface S1 may be a convex surface, and the image side surface S2 may be a concave surface.
  • the second lens E2 may have a negative refractive power, and the object side surface S3 may be a convex surface, and the image side surface S4 may be a concave surface.
  • the third lens E3 may have a negative refractive power, and the object side surface S5 may be a convex surface, and the image side surface S6 may be a concave surface.
  • the fourth lens E4 may have a negative refractive power, and the object side surface S7 may be a convex surface, and the image side surface S8 may be a concave surface.
  • the fifth lens E5 may have a negative refractive power, and the object side surface S9 may be a concave surface, and the image side surface S10 may be a convex surface.
  • the sixth lens E6 may have a negative refractive power, and the object side surface S11 may be a concave surface, and the image side surface S12 may be a concave surface.
  • the seventh lens E7 may have positive refractive power, and the object side surface S13 may be a concave surface, and the image side surface S14 may be a convex surface.
  • Table 28 below shows the effective focal lengths f1 to f7 of the first to seventh lenses E1 to E7, the total effective focal length f of the optical imaging lens group, the total length TTL of the optical imaging lens group, and the maximum half angle of view HFOV of the imaging lens. (°).
  • Table 29 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging lens group in this embodiment, wherein the unit of curvature radius and thickness are in millimeters (mm). .
  • Table 30 below shows the high order term coefficients of the respective aspherical surfaces S1 to S14 which can be used for the respective aspherical lenses in this embodiment, wherein each aspherical surface type can be given by the formula (1) given in the above embodiment 1. limited.
  • Fig. 47 shows an axial chromatic aberration curve of the optical imaging lens group of Example 10, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 48 is a view showing an astigmatism curve of the optical imaging lens group of Example 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 49 is a view showing the distortion curve of the optical imaging lens group of Example 10, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 50 is a graph showing the chromatic aberration of magnification of the optical imaging lens set of Example 10, which shows the deviation of the different image heights of the light rays on the imaging surface after passing through the optical imaging lens group.
  • the optical imaging lens group according to Embodiment 10 has a small depth of field and a large magnification characteristic, and can be combined with a wide-angle lens to obtain a large magnification and good in the case of autofocus.
  • the imaging effect ensures the processing characteristics and miniaturization.
  • each conditional expression satisfies the conditions of Table 31 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜(E1);具有光焦度的第二透镜(E2);具有光焦度的第三透镜(E3);具有光焦度的第四透镜(E4),其物侧面(S7)为凸面,像侧面(S8)为凹面;具有负光焦度的第五透镜(E5);具有负光焦度的第六透镜(E6),其物侧面(S11)为凹面;具有光焦度的第七透镜(E7);其中,第五透镜(E5)的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40<f5/f<0。光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配形成双摄像头,在自动对焦情况下可得到大放大倍率以及良好的成像效果,并能同时保证加工特性以及小型化。

Description

光学成像镜片组
相关申请的交叉引用
本申请要求于2018年3月16日提交于中国国家知识产权局的、专利申请号为201810219437.2的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜片组,特别是由七片镜片组成的光学成像镜片组。
背景技术
近年来,随着智能手机等便携式电子产品的快速更新换代,后置双摄像头逐渐成为市场主流。常见的搭配方式为一个广角镜头和一个长焦镜头。这要求摄像镜头具备高像素、高分辨率,小型化等特性。其中,长焦镜头还需满足长焦距及小景深等特点,以便在同一拍摄距离上能获取更多的细节,并且适合于拍摄远处的对象。
本发明提出了一种具备小景深和大放大倍率的光学成像镜片组,与广角镜头搭配形成双摄像头,在自动对焦情况下可得到大放大倍率以及良好的成像效果,并能同时保证加工特性以及小型化。
发明内容
为了解决现有技术中的至少一个问题,本申请提供了一种光学成像镜片组。
本申请的一个方面提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40<f5/f<0。
根据本申请的一个实施方式,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。
根据本申请的一个实施方式,光学成像镜片组的最大半视场角HFOV<30°。
根据本申请的一个实施方式,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1<f1/R1<2。
根据本申请的一个实施方式,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。
根据本申请的一个实施方式,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0<T56/CT1<1.5。
根据本申请的一个实施方式,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1<f/R14<0。
根据本申请的一个实施方式,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5<f/f6<0。
根据本申请的一个实施方式,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4<f5/f1<-2。
根据本申请的一个实施方式,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2<f23/f<-1。
根据本申请的一个实施方式,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2<CT7/CT6<4。
根据本申请的一个实施方式,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2<T56/T67<5。
根据本申请的一个实施方式,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。
第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3<f5/f<0。
本申请的一个方面提供了一种光学成像镜片组,从物侧至像侧依次包 括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0<T56/CT1<1.5。
本申请的一个方面提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第七透镜;其中,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2<T56/T67<5。
根据本申请的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的光学成像镜片组的结构示意图;
图2至图5分别示出了实施例1的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的光学成像镜片组的结构示意图;
图7至图10分别示出了实施例2的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的光学成像镜片组的结构示意图;
图12至图15分别示出了实施例3的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的光学成像镜片组的结构示意图;
图17至图20分别示出了实施例4的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的光学成像镜片组的结构示意图;
图22至图25分别示出了实施例5的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的光学成像镜片组的结构示意图;
图27至图30分别示出了实施例6的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的光学成像镜片组的结构示意图;
图32至图35分别示出了实施例7的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的光学成像镜片组的结构示意图;
图37至图40分别示出了实施例8的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的光学成像镜片组的结构示意图;
图42至图45分别示出了实施例9的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图46示出了实施例10的光学成像镜片组的结构示意图;以及
图47至图50分别示出了实施例10的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的 所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种光学成像镜片组,从物侧至像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第五透镜;具有负光焦度的第六透镜,其物侧面为凹面;具有光焦度的第 七透镜。
在本申请的实施例中,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40<f5/f<0,具体地,满足-1.83≤f5/f≤-0.98。上述配置有利于光学成像镜片组实现长焦的特性,满足便携式电子产品小型化与放大倍率的需求。并且第六透镜的光焦度为负,物侧面为凹面,如此设置可校正系统像差,提升系统性能。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0,具体地,满足TTL/f≤0.93。通过满足上述关系,能够合理设置第一透镜物侧面至成像面的轴上距离和光学成像镜片组的有效焦距之间的比值,确保光学成像镜片组具有轻薄以及长焦的特性,使镜片组能配合广角镜头应用于高性能的便携式电子产品。
在本申请的实施例中,光学成像镜片组的最大半视场角HFOV<30°,具体地,满足HFOV≤23.8。通过满足上述关系,能够合理控制光学成像镜片组的最大半视场角,使光学系统满足长焦特性并具有较好的平衡像差的能力。并且能合理控制主光线偏转角度,提高与芯片的匹配程度。
在本申请的实施例中,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1<f1/R1<2,具体地,满足1.69≤f1/R1≤1.93。通过满足上述关系,能够合理选择第一透镜的有效焦距与第一透镜物侧面的曲率半径之间的比值,能有效平衡光学成像镜片组的像散,并进一步确保光学成像镜片组的小型化。
在本申请的实施例中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6,更具体地,满足1.00≤R7/R8≤2.56。通过满足上述关系,能够合理控制第四透镜物侧面和像侧面的曲率半径,有助于降低光学成像镜片组第四透镜的光焦度,使光学成像镜片组具备较好的平衡色差和畸变的能力。
在本申请的实施例中,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0<T56/CT1<1.5,更具体地,满足1.13≤T56/CT1≤1.38。通过满足上述关系,能够合理分配第五透镜与第六透镜在光轴上的空气间隔与第一透镜的中心厚度之间的比值,能有效降低系统尺寸,并满足长焦特性,同时有利于调整成像系统的结构,降低镜片加 工和组装的难度。
在本申请的实施例中,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1<f/R14<0,具体地,满足-0.77≤f/R14≤-0.22。通过满足上述关系,能够合理选择第七透镜像侧面的曲率半径,能有效平衡成像系统的像散,缩短系统的后焦距,进一步确保光学系统的小型化。
在本申请的实施例中,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5<f/f6<0,具体地,满足-1.15≤f/f6≤-0.83。通过满足上述关系,能够合理设置第六透镜的有效焦距,有助于增大光学成像镜片组的焦距,实现长焦的特性,并且具备调整光线位置的功能,缩短光学成像镜片组的总长。
在本申请的实施例中,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4<f5/f1<-2,具体地,满足-3.83≤f5/f1≤-2.13。通过满足上述关系,能够合理分配第五透镜和第一透镜的有效焦距,在第一透镜光焦度为正的情况下,确保第五透镜的光焦度为负,从而有效控制光学成像镜片组的体积并提升性能。光焦度相反能使光学成像镜片组具有较好的平衡像差的能力。
在本申请的实施例中,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2<f23/f<-1,具体地,满足-1.90≤f23/f≤-1.08。通过满足上述关系,能够合理选择第二透镜与第三透镜的组合焦距,以在校正像差的同时,实现长焦的特性,并且有助于适当缩短光学成像镜片组的总长,满足轻薄的要求。
在本申请的实施例中,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2<CT7/CT6<4,具体地,满足2.27≤CT7/CT6≤3.88。通过满足上述关系,能够合理分配第七透镜与第六透镜中心厚度的比值,能有效降低光学成像镜片组后端尺寸,避免光学系统镜片组的体积过大,降低镜片的组装难度切实现较高的空间利用率。
在本申请的实施例中,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2<T56/T67<5,具体地,满足2.67≤T56/T67≤4.13。通过满足上述关系,能够合理控制第五透镜和第六透镜在光轴上的空气间隔与第六透镜和第七透镜在光轴上的空 气间隔之间的比值,使透镜间具有足够的间隔空间,从而使透镜表面变化自由度更高,以提升系统校正像散和场曲的能力。
在本申请的实施例中,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0,具体地,满足∑CT/∑AT≤1.76。通过满足上述关系,能够合理控制第一透镜至第七透镜在光轴上的中心厚度之和与第一透镜至第七透镜在光轴上的空气间隔之和的比值,使各镜片厚度和镜片间距之间平衡稳定,提升空间利用率,保证镜头小型化的同时,增强了系统的像差校正能力。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的光学成像镜片组。
图1为示出了实施例1的光学成像镜片组的结构示意图。如图1所示,光学成像镜片组包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像镜片组的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
该光学成像镜片组还包括用于滤除红外光的具有物侧面S15和像侧面S16的滤光片E8。在该实施例中,来自物体的光依次穿过各表面S1至S16并最终成像在成像表面S17上。
在该实施例中,第一透镜E1至第七透镜E7分别具有各自的有效焦距f1至f7。第一透镜E1至第七透镜E7沿着光轴依次排列并共同决定了光学成像镜片组的总有效焦距f。下表1示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL(mm)以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.93 f(mm) 6.00
f2(mm) 500.55 TTL(mm) 5.59
f3(mm) -6.70 HFOV(°) 23.8
f4(mm) -424.91    
f5(mm) -10.05    
f6(mm) -5.40    
f7(mm) 8.99    
表1
表2示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000001
Figure PCTCN2018115055-appb-000002
表2
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018115055-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.7200E-03 -3.9600E-03 -1.0000E-03 -4.8800E-03 1.8320E-03 6.1900E-04 -2.2700E-03 6.6000E-04 5.6000E-05
S2 5.6766E-02 -7.3700E-02 1.8397E-02 1.7473E-01 -4.4545E-01 5.0674E-01 -3.0874E-01 9.8338E-02 -1.2880E-02
S3 5.8379E-02 -2.7240E-02 -2.9740E-02 2.0214E-01 -3.1992E-01 1.8501E-01 2.7107E-02 -7.7270E-02 2.4307E-02
S4 -8.7700E-03 5.3447E-01 -1.9842E+00 3.9274E+00 -3.9762E+00 1.0973E+00 1.7120E+00 -1.7836E+00 5.3479E-01
S5 -1.5520E-02 1.0003E+00 -4.6627E+00 1.1313E+01 -1.6176E+01 1.3283E+01 -5.0421E+00 -1.6376E-01 5.2577E-01
S6 -7.9850E-02 1.6084E+00 -8.3725E+00 2.3215E+01 -3.4958E+01 1.9107E+01 1.9551E+01 -3.4667E+01 1.4993E+01
S7 -1.7070E-01 1.3661E+00 -6.8889E+00 2.0564E+01 -3.3878E+01 2.1826E+01 1.7353E+01 -3.7115E+01 1.7635E+01
S8 -5.6000E-02 -4.1500E-02 7.1846E-02 -5.3460E-02 -5.6000E-08 4.7200E-08 0.0000E+00 0.0000E+00 0.0000E+00
S9 -2.0000E-03 -3.9140E-02 -3.4341E-01 1.3381E+00 -2.4490E+00 1.9034E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 8.1930E-02 -4.0060E-02 2.5230E-01 -1.0845E+00 3.2080E+00 -5.7076E+00 6.0683E+00 -3.5445E+00 8.7914E-01
S11 -2.1670E-02 -1.4830E-02 -1.5100E-03 3.1374E-02 -3.1270E-02 1.4641E-02 -3.7100E-03 4.9100E-04 -2.7000E-05
S12 -4.5730E-02 -2.2940E-02 2.0883E-02 -1.4300E-02 7.3020E-03 -2.5800E-03 5.7300E-04 -7.1000E-05 3.5900E-06
S13 -2.3830E-02 1.7732E-02 -4.1770E-02 4.4653E-02 -3.2420E-02 1.3916E-02 -3.3200E-03 4.1000E-04 -2.0000E-05
S14 -3.5180E-02 1.8793E-02 -2.1990E-02 1.4309E-02 -6.3100E-03 1.6530E-03 -2.4000E-04 1.6800E-05 -4.3000E-07
表3
图2示出了实施例1的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配形成双摄像头,在自动对焦情况下可得到大放大倍率以及良好的成像效果,并能同时保证加工特性以及小型化。
实施例2
以下参照图6至图10描述根据本申请实施例2的光学成像镜片组。
图6为示出了实施例2的光学成像镜片组的结构示意图。如图6所示,光学成像镜片组包括7片透镜。这7片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5、具有物侧面S11和像侧面S12的第六透镜E6和具有物侧面S13和像侧面S14的第七透镜E7。第一透镜E1至第七透镜E7从光学成像镜片组的物侧到像侧依次设置。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凸面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凹面,像侧面S4可为凹面。
第三透镜E3可具有正光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表4示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.61 f(mm) 6.00
f2(mm) -11.36 TTL(mm) 5.59
f3(mm) 1001.28 HFOV(°) 23.8
f4(mm) -9.15    
f5(mm) -9.71    
f6(mm) -5.92    
f7(mm) 13.90    
表4
表5示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000004
Figure PCTCN2018115055-appb-000005
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.9500E-03 -8.2900E-03 2.0431E-02 -6.0390E-02 8.9701E-02 -8.6610E-02 5.0613E-02 -1.7150E-02 2.5500E-03
S2 2.7389E-02 1.9872E-02 -1.5398E-01 3.6896E-01 -5.4326E-01 4.9182E-01 -2.6556E-01 7.8541E-02 -9.7800E-03
S3 5.0528E-02 -1.0010E-02 -7.1600E-02 3.3166E-01 -6.4214E-01 6.9008E-01 -4.4607E-01 1.6704E-01 -2.8070E-02
S4 6.1192E-02 -9.6980E-02 5.2397E-01 -1.6545E+00 3.1471E+00 -2.8997E+00 2.8056E-01 1.2752E+00 -5.8498E-01
S5 4.7179E-02 1.4030E-02 4.4056E-01 -3.0275E+00 8.6532E+00 -1.2808E+01 9.7506E+00 -3.2719E+00 2.5475E-01
S6 -8.9000E-03 3.2011E-01 2.5435E-01 -8.5360E+00 3.8815E+01 -9.0758E+01 1.2121E+02 -8.7922E+01 2.6971E+01
S7 -1.1467E-01 4.3979E-01 -6.8443E-01 -2.8678E+00 2.1775E+01 -6.2712E+01 9.7619E+01 -8.0703E+01 2.7792E+01
S8 -6.9730E-02 -4.2730E-02 7.8208E-02 -6.5760E-02 -6.3000E-08 -2.4647E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 -3.4300E-03 -1.1060E-02 -4.9913E-01 2.0549E+00 -3.8536E+00 3.0340E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 8.9009E-02 -2.0970E-02 1.5613E-01 -6.1882E-01 1.7291E+00 -2.8272E+00 2.6998E+00 -1.3896E+00 2.9688E-01
S11 -2.5080E-02 -5.5900E-03 -2.8840E-02 7.6180E-02 -7.0749E-02 3.4427E-02 -9.3800E-03 1.3580E-03 -8.2000E-05
S12 -6.5150E-02 3.0562E-02 -6.6960E-02 6.6507E-02 -3.8136E-02 1.3397E-02 -2.8100E-03 3.1400E-04 -1.4000E-05
S13 -5.8400E-02 7.7835E-02 -1.0859E-01 9.7920E-02 -6.9094E-02 3.2665E-02 -9.0800E-03 1.3310E-03 -7.9000E-05
S14 -7.3870E-02 6.7657E-02 -5.6850E-02 3.0373E-02 -1.1227E-02 2.5880E-03 -3.0000E-04 6.9000E-06 9.8800E-07
表6
图7示出了实施例2的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例3
以下参照图11至图15描述根据本申请实施例3的光学成像镜片组。
图11为示出了实施例3的光学成像镜片组的结构示意图。光学成像镜 片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表7示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.90 f(mm) 6.00
f2(mm) -91.71 TTL(mm) 5.59
f3(mm) -7.05 HFOV(°) 23.8
f4(mm) 1846.65    
f5(mm) -10.04    
f6(mm) -5.45    
f7(mm) 9.76    
表7
表8示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000006
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.1200E-03 -3.7400E-03 -5.6594E-04 -8.7400E-03 1.2629E-02 -1.4940E-02 1.0049E-02 -4.4100E-03 8.8600E-04
S2 5.1109E-02 -5.1910E-02 -4.4324E-03 1.6427E-01 -3.8194E-01 4.1879E-01 -2.4692E-01 7.5966E-02 -9.5600E-03
S3 5.8231E-02 -2.0060E-02 -4.9447E-02 2.8039E-01 -5.1393E-01 4.6049E-01 -2.0658E-01 3.3897E-02 1.8810E-03
S4 1.0257E-02 3.3657E-01 -1.2059E+00 2.3056E+00 -2.0645E+00 -7.7720E-02 1.8829E+00 -1.5904E+00 4.5316E-01
S5 6.1430E-03 6.4697E-01 -2.7809E+00 6.0279E+00 -7.0741E+00 3.2013E+00 2.0441E+00 -3.0753E+00 1.0601E+00
S6 -8.0160E-02 1.1383E+00 -4.4816E+00 7.3890E+00 6.2556E+00 -5.3246E+01 1.0317E+02 -9.2041E+01 3.2513E+01
S7 -1.8239E-01 9.7876E-01 -3.3542E+00 4.5791E+00 1.2870E+01 -6.9936E+01 1.3449E+02 -1.2459E+02 4.6359E+01
S8 -5.4800E-02 -4.0484E-02 7.9142E-02 -6.4450E-02 -6.3000E-08 -2.3531E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 4.3000E-04 -8.7235E-03 -5.2080E-01 2.0240E+00 -3.7760E+00 2.9519E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 8.2921E-02 -6.6680E-02 4.4433E-01 -1.9035E+00 5.3098E+00 -9.0670E+00 9.3251E+00 -5.2947E+00 1.2792E+00
S11 -2.6760E-02 -7.2400E-03 -2.5829E-02 7.2496E-02 -6.7210E-02 3.2238E-02 -8.6000E-03 1.2170E-03 -7.2000E-05
S12 -6.0370E-02 1.7852E-02 -4.9517E-02 5.3830E-02 -3.2531E-02 1.2030E-02 -2.7300E-03 3.4800E-04 -1.9000E-05
S13 -4.5890E-02 5.7028E-02 -7.7401E-02 6.2196E-02 -3.9587E-02 1.7485E-02 -4.6100E-03 6.4400E-04 -3.7000E-05
S14 -5.7240E-02 4.2549E-02 -3.0525E-02 1.0433E-02 -1.0407E-03 -7.5000E-04 3.6400E-04 -6.5000E-05 4.3100E-06
表9
图12示出了实施例3的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的光学 成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例4
以下参照图16至图20描述根据本申请实施例4的光学成像镜片组。
图16为示出了实施例4的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有负光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
下表10示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.87 f(mm) 6.00
f2(mm) -56.14 TTL(mm) 5.59
f3(mm) -8.32 HFOV(°) 23.7
f4(mm) -58.36    
f5(mm) -10.99    
f6(mm) -7.20    
f7(mm) -499.13    
表10
下表11示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000007
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.8000E-03 -1.1065E-02 3.1662E-02 -8.7060E-02 1.3306E-01 -1.3207E-01 8.0171E-02 -2.7850E-02 4.1860E-03
S2 4.4117E-02 -3.9638E-02 3.3680E-04 8.7909E-02 -2.0163E-01 2.0936E-01 -1.1446E-01 3.1981E-02 -3.5000E-03
S3 5.7118E-02 -1.9788E-02 -4.5750E-02 2.6388E-01 -4.8906E-01 4.5396E-01 -2.2454E-01 5.1008E-02 -2.3900E-03
S4 1.3002E-02 3.4864E-01 -1.2120E+00 1.8958E+00 -7.4159E-02 -4.5582E+00 7.3463E+00 -5.0533E+00 1.3464E+00
S5 -1.6000E-04 6.1144E-01 -2.3912E+00 4.3632E+00 -2.7033E+00 -4.2535E+00 9.9917E+00 -7.8167E+00 2.2525E+00
S6 -5.2810E-02 7.9984E-01 -2.4248E+00 4.7725E-02 2.3168E+01 -7.8494E+01 1.2652E+02 -1.0384E+02 3.4817E+01
S7 -1.5181E-01 6.7079E-01 -1.6181E+00 -1.7624E+00 2.7661E+01 -9.1549E+01 1.5278E+02 -1.3181E+02 4.6796E+01
S8 -5.3480E-02 -3.4332E-02 8.1720E-02 -7.9060E-02 -6.4000E-08 -5.2113E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 -8.3000E-04 -2.2972E-02 -2.6667E-01 1.0890E+00 -2.0990E+00 1.6912E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 7.6103E-02 -5.8230E-02 3.9399E-01 -1.5856E+00 4.2533E+00 -7.0787E+00 7.1170E+00 -3.9504E+00 9.3270E-01
S11 2.4680E-03 -4.4158E-02 -8.0433E-03 6.8183E-02 -6.3660E-02 2.9355E-02 -7.5500E-03 1.0370E-03 -6.0000E-05
S12 -1.1830E-02 -3.7761E-02 4.1197E-03 1.3203E-02 -1.0138E-02 3.6790E-03 -7.5000E-04 8.1100E-05 -3.8000E-06
S13 -2.9960E-02 6.1147E-02 -8.0159E-02 6.6561E-02 -4.3093E-02 1.8386E-02 -4.5700E-03 5.9800E-04 -3.2000E-05
S14 -1.1304E-01 1.1158E-01 -8.6101E-02 4.4337E-02 -1.5846E-02 3.6840E-03 -5.1000E-04 3.5300E-05 -8.6000E-07
表12
图17示出了实施例4的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以看出,根据实施例4的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例5
以下参照图21至图25描述根据本申请实施例5的光学成像镜片组。
图21为示出了实施例5的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表13示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.87 f(mm) 6.11
f2(mm) -66.04 TTL(mm) 5.59
f3(mm) -7.33 HFOV(°) 23.2
f4(mm) -141.10    
f5(mm) -9.43    
f6(mm) -5.38    
f7(mm) 10.08    
表13
下表14示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000008
Figure PCTCN2018115055-appb-000009
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.4860E-03 1.7632E-03 -2.0438E-02 3.1009E-02 -3.4831E-02 1.9235E-02 -3.8700E-03 -1.5700E-03 6.6500E-04
S2 4.9331E-02 -6.1778E-02 5.4053E-02 1.8491E-02 -1.5674E-01 1.9981E-01 -1.1876E-01 3.4850E-02 -4.0000E-03
S3 5.7721E-02 -1.7026E-02 -5.4367E-02 3.0012E-01 -5.6723E-01 5.4114E-01 -2.7827E-01 6.8803E-02 -5.1400E-03
S4 2.1761E-02 2.4651E-01 -9.0977E-01 1.8461E+00 -1.8982E+00 4.4205E-01 1.0197E+00 -1.0309E+00 3.1165E-01
S5 2.6650E-02 3.9974E-01 -1.6430E+00 3.1666E+00 -2.6603E+00 -1.0354E+00 4.4109E+00 -3.6934E+00 1.0824E+00
S6 -4.6029E-02 6.1623E-01 -1.3824E+00 -2.7375E+00 2.6569E+01 -7.7570E+01 1.1752E+02 -9.2769E+01 3.0254E+01
S7 -1.5475E-01 5.4259E-01 -7.3034E-01 -3.9834E+00 2.9084E+01 -8.5380E+01 1.3508E+02 -1.1278E+02 3.9177E+01
S8 -5.7890E-02 -4.5089E-02 8.0928E-02 -6.0690E-02 -6.3000E-08 -2.4586E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 1.0419E-02 -2.5751E-02 -4.7990E-01 1.8667E+00 -3.4130E+00 2.6262E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 9.2445E-02 -3.6450E-02 1.3299E-01 -4.2598E-01 1.1951E+00 -2.0070E+00 1.9952E+00 -1.0729E+00 2.3817E-01
S11 -2.6895E-02 -2.3221E-02 -2.1938E-02 1.0137E-01 -1.0774E-01 5.7923E-02 -1.7390E-02 2.7920E-03 -1.9000E-04
S12 -5.6346E-02 5.0937E-03 -4.5105E-02 6.2730E-02 -4.4221E-02 1.8676E-02 -4.8000E-03 6.9400E-04 -4.3000E-05
S13 -5.4469E-02 9.0188E-02 -1.3166E-01 1.1840E-01 -7.7274E-02 3.3601E-02 -8.8200E-03 1.2490E-03 -7.3000E-05
S14 -8.2606E-02 8.0911E-02 -6.7820E-02 3.4567E-02 -1.0833E-02 1.5730E-03 8.7400E-05 -5.7000E-05 5.1400E-06
表15
图22示出了实施例5的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的光学成像镜片组具备小景深 和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例6
以下参照图26至图30描述根据本申请实施例6的光学成像镜片组。
图26为示出了实施例6的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凸面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表16示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.81 f(mm) 6.00
f2(mm) -54.29 TTL(mm) 5.59
f3(mm) -8.17 HFOV(°) 23.8
f4(mm) -34.58    
f5(mm) -10.29    
f6(mm) -5.46    
f7(mm) 9.65    
表16
下表17示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000010
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.8950E-03 -4.8082E-03 2.9098E-03 -1.3840E-02 1.4916E-02 -1.1910E-02 5.4500E-03 -2.0600E-03 4.6800E-04
S2 5.3691E-02 -5.4393E-02 -2.1159E-02 2.1545E-01 -4.5542E-01 4.8592E-01 -2.8556E-01 8.8576E-02 -1.1340E-02
S3 5.9224E-02 -2.1614E-02 -5.4353E-02 2.9821E-01 -5.5169E-01 5.1579E-01 -2.5582E-01 5.7735E-02 -2.9400E-03
S4 -3.1900E-03 4.3519E-01 -1.5494E+00 2.9703E+00 -2.9197E+00 8.3617E-01 1.0364E+00 -1.0765E+00 3.2065E-01
S5 -7.9220E-03 7.9828E-01 -3.4121E+00 7.4330E+00 -9.1222E+00 5.5813E+00 -2.0417E-01 -1.7049E+00 6.9766E-01
S6 -7.5761E-02 1.2685E+00 -5.6409E+00 1.2906E+01 -1.2866E+01 -7.9446E+00 3.6850E+01 -3.8681E+01 1.4509E+01
S7 -1.7622E-01 1.0952E+00 -4.4875E+00 1.0594E+01 -9.6973E+00 -1.3594E+01 4.8226E+01 -5.1914E+01 2.0579E+01
S8 -5.6620E-02 -3.7167E-02 7.5593E-02 -5.9740E-02 -6.3000E-08 -2.3247E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 5.9270E-03 -3.2430E-02 -4.0037E-01 1.5262E+00 -2.7981E+00 2.1549E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 8.7729E-02 -4.7152E-02 3.0594E-01 -1.3740E+00 4.0324E+00 -7.1071E+00 7.4792E+00 -4.3244E+00 1.0619E+00
S11 -2.5157E-02 -4.8136E-03 -1.9094E-02 5.2147E-02 -4.6532E-02 2.1388E-02 -5.4600E-03 7.3600E-04 -4.1000E-05
S12 -5.5926E-02 2.7155E-03 -1.8000E-02 2.0143E-02 -1.1389E-02 3.7950E-03 -7.7000E-04 8.7300E-05 -4.4000E-06
S13 -3.6981E-02 3.8173E-02 -5.8975E-02 5.2490E-02 -3.5448E-02 1.5473E-02 -3.9000E-03 5.1500E-04 -2.8000E-05
S14 -4.6874E-02 3.1599E-02 -2.5698E-02 1.0578E-02 -2.2255E-03 -1.6000E-04 2.1200E-04 -4.4000E-05 3.0300E-06
表18
图27示出了实施例6的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例7
以下参照图31至图35描述根据本申请实施例7的光学成像镜片组。
图31为示出了实施例7的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凸面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凹面,像侧面S4可为凸面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12 可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表19示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.79 f(mm) 6.00
f2(mm) 170.09 TTL(mm) 5.59
f3(mm) -6.99 HFOV(°) 23.8
f4(mm) -28.41    
f5(mm) -10.32    
f6(mm) -5.46    
f7(mm) 9.54    
表19
下表20示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000011
Figure PCTCN2018115055-appb-000012
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.5250E-03 1.0329E-03 -2.3029E-02 5.3112E-02 -9.0680E-02 9.1155E-02 -5.5420E-02 1.7879E-02 -2.3100E-03
S2 4.6258E-02 -2.4935E-02 -8.7919E-02 3.2045E-01 -5.6222E-01 5.5101E-01 -3.0708E-01 9.1643E-02 -1.1420E-02
S3 5.8063E-02 -1.8249E-02 -5.9323E-02 3.1697E-01 -6.0223E-01 5.9191E-01 -3.2377E-01 9.1288E-02 -9.9400E-03
S4 2.3081E-02 2.2670E-01 -8.2996E-01 1.7625E+00 -2.1476E+00 1.3674E+00 -2.8027E-01 -1.4467E-01 7.3667E-02
S5 1.9665E-02 5.0435E-01 -2.2873E+00 5.5218E+00 -8.2412E+00 7.6532E+00 -4.0985E+00 1.0217E+00 -3.4900E-02
S6 -6.0546E-02 1.0017E+00 -4.6474E+00 1.2755E+01 -2.1759E+01 2.1298E+01 -8.2660E+00 -3.1087E+00 2.9446E+00
S7 -1.6272E-01 8.8078E-01 -3.5301E+00 9.3099E+00 -1.3312E+01 4.6125E+00 1.5309E+01 -2.3081E+01 1.0399E+01
S8 -5.5980E-02 -3.5449E-02 7.9706E-02 -6.6220E-02 -6.3000E-08 -2.2444E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 -6.4000E-04 -1.8182E-02 -5.2246E-01 1.9825E+00 -3.5882E+00 2.7166E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 8.6361E-02 -5.0106E-02 3.1921E-01 -1.4548E+00 4.4454E+00 -8.1821E+00 8.9965E+00 -5.4319E+00 1.3917E+00
S11 -2.6123E-02 -9.7114E-04 -2.5506E-02 5.9571E-02 -5.2331E-02 2.4251E-02 -6.2900E-03 8.6900E-04 -5.0000E-05
S12 -5.6036E-02 9.5438E-04 -1.5616E-02 1.9138E-02 -1.1427E-02 3.9900E-03 -8.4000E-04 1.0100E-04 -5.3000E-06
S13 -3.4774E-02 3.2082E-02 -5.4196E-02 5.0696E-02 -3.5259E-02 1.5680E-02 -4.0100E-03 5.3700E-04 -2.9000E-05
S14 -4.3028E-02 2.6150E-02 -2.3205E-02 1.0369E-02 -2.4627E-03 -7.1000E-05 2.0700E-04 -4.6000E-05 3.2600E-06
表21
图32示出了实施例7的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图31至图35可以看出,根据实施例7的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例8
以下参照图36至图40描述根据本申请实施例8的光学成像镜片组。
图36为示出了实施例8的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第 四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有正光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凹面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表22示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.97 f(mm) 6.00
f2(mm) 26.28 TTL(mm) 5.59
f3(mm) -5.24 HFOV(°) 23.8
f4(mm) 150.59    
f5(mm) -10.18    
f6(mm) -5.37    
f7(mm) 8.94    
表22
下表23示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000013
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.9690E-03 -1.6852E-03 -1.0821E-02 2.0563E-02 -4.0290E-02 4.4748E-02 -3.0340E-02 1.0537E-02 -1.4000E-03
S2 5.1744E-02 -4.6624E-02 -7.4048E-02 3.7377E-01 -7.1263E-01 7.3050E-01 -4.2248E-01 1.3055E-01 -1.6810E-02
S3 5.6535E-02 -2.6140E-02 -2.5732E-02 1.8647E-01 -2.8662E-01 1.4059E-01 6.2450E-02 -9.1380E-02 2.6233E-02
S4 4.9844E-03 4.1692E-01 -1.5383E+00 3.0742E+00 -3.2394E+00 1.1995E+00 8.8343E-01 -1.0726E+00 3.2500E-01
S5 7.5110E-04 8.5551E-01 -4.1717E+00 1.0727E+01 -1.6717E+01 1.5947E+01 -8.6934E+00 2.2170E+00 -1.0191E-01
S6 -6.9312E-02 1.4863E+00 -8.1440E+00 2.4334E+01 -4.2006E+01 3.6695E+01 -4.4815E+00 -1.6940E+01 9.4430E+00
S7 -1.5654E-01 1.2800E+00 -6.7318E+00 2.1186E+01 -3.8161E+01 3.2792E+01 1.9808E+00 -2.5378E+01 1.3797E+01
S8 -5.7370E-02 -4.5185E-02 6.9673E-02 -6.6530E-02 -6.4000E-08 -2.9679E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 -1.4330E-02 -3.8138E-02 -3.3620E-01 1.3229E+00 -2.3951E+00 1.8563E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 7.5460E-02 -3.4363E-02 2.4701E-01 -1.0774E+00 3.3217E+00 -6.1263E+00 6.7324E+00 -4.0578E+00 1.0374E+00
S11 -2.0392E-02 -2.2084E-02 8.4704E-03 2.3341E-02 -2.7131E-02 1.3252E-02 -3.4100E-03 4.5200E-04 -2.5000E-05
S12 -3.6377E-02 -4.4535E-02 4.8999E-02 -3.6480E-02 1.8498E-02 -6.2400E-03 1.3290E-03 -1.6000E-04 8.2200E-06
S13 -1.4842E-02 5.5624E-03 -3.3489E-02 4.2747E-02 -3.2877E-02 1.4277E-02 -3.4100E-03 4.1900E-04 -2.1000E-05
S14 -2.9302E-02 1.3417E-02 -2.1402E-02 1.6640E-02 -8.2186E-03 2.3850E-03 -4.0000E-04 3.6200E-05 -1.4000E-06
表24
图37示出了实施例8的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的光学 成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图36至图40可以看出,根据实施例8的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例9
以下参照图41至图45描述根据本申请实施例9的光学成像镜片组。
图41为示出了实施例9的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有正光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凹面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凸面,像侧面S14可为凸面。
下表25示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.87 f(mm) 6.24
f2(mm) -68.86 TTL(mm) 5.58
f3(mm) -7.66 HFOV(°) 22.7
f4(mm) 887.99    
f5(mm) -6.10    
f6(mm) -5.43    
f7(mm) 8.73    
表25
下表26示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000014
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.8620E-03 5.8185E-03 -2.8982E-02 4.6725E-02 -5.7986E-02 4.3974E-02 -2.0350E-02 4.4740E-03 -2.8000E-04
S2 4.7473E-02 -5.5036E-02 4.7871E-02 1.3271E-02 -1.3830E-01 1.7673E-01 -1.0244E-01 2.8708E-02 -3.0700E-03
S3 5.5797E-02 -1.4071E-02 -5.5577E-02 2.9465E-01 -5.5651E-01 5.3632E-01 -2.8360E-01 7.5664E-02 -7.2400E-03
S4 2.7545E-02 2.2542E-01 -8.8000E-01 1.8576E+00 -2.0155E+00 7.1984E-01 6.4595E-01 -7.7476E-01 2.4369E-01
S5 3.5131E-02 3.0734E-01 -1.2279E+00 1.9979E+00 -4.5199E-01 -3.7413E+00 6.4078E+00 -4.4730E+00 1.1991E+00
S6 -2.6416E-02 2.9138E-01 8.5638E-01 -1.2274E+01 5.3612E+01 -1.2746E+02 1.7489E+02 -1.2997E+02 4.0550E+01
S7 -1.4675E-01 4.1642E-01 -9.0146E-02 -5.9044E+00 3.3276E+01 -9.2284E+01 1.4354E+02 -1.1941E+02 4.1405E+01
S8 -5.7830E-02 -4.0589E-02 9.0016E-02 -4.3280E-02 -6.3000E-08 -1.9340E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 3.0000E-02 -9.6189E-02 -3.1309E-01 1.2723E+00 -2.1411E+00 1.4367E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 9.4561E-02 3.1391E-01 -3.1480E+00 1.6143E+01 -5.0081E+01 9.6721E+01 -1.1301E+02 7.2917E+01 -1.9911E+01
S11 -4.2624E-02 2.0967E-02 -8.8537E-02 1.7656E-01 -1.6589E-01 8.5046E-02 -2.4550E-02 3.7690E-03 -2.4000E-04
S12 -8.6583E-02 1.3584E-01 -2.7439E-01 2.8344E-01 -1.7288E-01 6.5340E-02 -1.5130E-02 1.9700E-03 -1.1000E-04
S13 -6.3899E-02 1.4841E-01 -1.9457E-01 1.2332E-01 -4.5160E-02 9.9760E-03 -1.2700E-03 7.8100E-05 -1.4000E-06
S14 -8.5025E-02 8.0406E-02 -4.4616E-02 -4.7400E-03 1.7613E-02 -9.3900E-03 2.4350E-03 -3.2000E-04 1.6700E-05
表27
图42示出了实施例9的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图41至图45可以看出,根据实施例9的光学成像镜片组具备小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
实施例10
以下参照图46至图50描述根据本申请实施例10的光学成像镜片组。
图46为示出了实施例10的光学成像镜片组的结构示意图。光学成像镜片组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6以及第七透镜E7。
第一透镜E1可具有正光焦度,且其物侧面S1可为凸面,像侧面S2为凹面。
第二透镜E2可具有负光焦度,且其物侧面S3可为凸面,像侧面S4可为凹面。
第三透镜E3可具有负光焦度,且其物侧面S5可为凸面,像侧面S6可为凹面。
第四透镜E4可具有负光焦度,且其物侧面S7可为凸面,像侧面S8可为凹面。
第五透镜E5可具有负光焦度,且其物侧面S9可为凹面,像侧面S10可为凸面。
第六透镜E6可具有负光焦度,且其物侧面S11可为凹面,像侧面S12可为凹面。
第七透镜E7可具有正光焦度,且其物侧面S13可为凹面,像侧面S14可为凸面。
下表28示出了第一透镜E1至第七透镜E7的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学成像镜片组的总长度TTL以及成像镜头的最大半视场角HFOV(°)。
f1(mm) 2.90 f(mm) 6.00
f2(mm) -90.22 TTL(mm) 5.59
f3(mm) -7.52 HFOV(°) 23.8
f4(mm) -144.33    
f5(mm) -10.35    
f6(mm) -5.89    
f7(mm) 11.86    
表28
下表29示出了该实施例中的光学成像镜片组中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018115055-appb-000015
Figure PCTCN2018115055-appb-000016
表29
下表30示出了可用于该实施例中的各非球面透镜的各非球面S1-S14的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.2420E-03 -2.4665E-03 -6.9490E-03 9.4780E-03 -1.7443E-02 1.4996E-02 -7.5500E-03 1.2630E-03 1.0300E-04
S2 5.2878E-02 -7.2599E-02 6.1739E-02 2.3356E-02 -1.7818E-01 2.3065E-01 -1.4198E-01 4.3845E-02 -5.4400E-03
S3 5.8589E-02 -2.2352E-02 -4.8593E-02 2.7913E-01 -5.1242E-01 4.6816E-01 -2.2179E-01 4.3822E-02 -2.9000E-04
S4 -1.0339E-02 5.5082E-01 -2.1791E+00 4.8947E+00 -6.4591E+00 4.6765E+00 -1.2081E+00 -5.3485E-01 3.2082E-01
S5 -2.2624E-02 9.9054E-01 -4.6006E+00 1.1586E+01 -1.7910E+01 1.6872E+01 -8.6646E+00 1.6110E+00 1.9514E-01
S6 -8.3723E-02 1.5475E+00 -7.9326E+00 2.2768E+01 -3.7314E+01 2.6794E+01 1.1366E+01 -3.2505E+01 1.5868E+01
S7 -1.7827E-01 1.3042E+00 -6.5367E+00 2.0357E+01 -3.6605E+01 2.9905E+01 9.3679E+00 -3.6208E+01 1.9480E+01
S8 -5.6070E-02 -3.9942E-02 7.1555E-02 -6.9220E-02 -6.3000E-08 -2.4103E-10 0.0000E+00 0.0000E+00 0.0000E+00
S9 3.0380E-03 -2.5343E-02 -3.4136E-01 1.3364E+00 -2.5241E+00 2.0115E+00 0.0000E+00 0.0000E+00 0.0000E+00
S10 8.3390E-02 -4.2463E-02 3.3162E-01 -1.4846E+00 4.3245E+00 -7.6209E+00 8.0317E+00 -4.6500E+00 1.1422E+00
S11 -2.5786E-02 -1.4044E-02 -2.8228E-02 8.9495E-02 -8.5637E-02 4.2328E-02 -1.1710E-02 1.7290E-03 -1.1000E-04
S12 -3.7454E-02 -3.3423E-02 1.9126E-02 -5.5700E-03 1.0775E-03 -2.8000E-04 8.9100E-05 -1.7000E-05 1.2500E-06
S13 -1.9924E-02 3.1867E-02 -7.2401E-02 8.0947E-02 -6.2312E-02 2.9475E-02 -7.9800E-03 1.1360E-03 -6.6000E-05
S14 -4.4532E-02 3.8308E-02 -3.6770E-02 2.0405E-02 -6.9545E-03 1.0870E-03 5.3700E-05 -3.9000E-05 3.6000E-06
表30
图47示出了实施例10的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图48示出了实施例10的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图49示出了实施例10的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图50示出了实施例10的光学成像镜片组的倍率色差曲线,其表示光线经由光学成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图46至图50可以看出,根据实施例10的光学成像镜片组具备 小景深和大放大倍率特性,与广角镜头搭配,在自动对焦情况下可得到大放大倍率以及良好的成像效果,同时能够保证加工特性以及小型化。
概括地说,在上述实施例1至10中,各条件式满足下面表31的条件。
条件式/实施例 1 2 3 4 5 6 7 8 9 10
f5/f -1.68 -1.62 -1.67 -1.83 -1.54 -1.72 -1.72 -1.70 -0.98 -1.73
TTL/f 0.93 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.89 0.93
HFOV 23.8 23.8 23.8 23.7 23.2 23.8 23.8 23.8 22.7 23.8
f1/R1 1.91 1.69 1.91 1.88 1.88 1.83 1.82 1.93 1.89 1.90
R7/R8 1.04 2.56 1.03 1.11 1.07 1.19 1.23 1.00 1.03 1.07
T56/CT1 1.33 1.13 1.26 1.21 1.24 1.29 1.30 1.38 1.18 1.25
f/R14 -0.60 -0.60 -0.60 -0.22 -0.64 -0.57 -0.55 -0.58 -0.71 -0.77
f/f6 -1.11 -1.01 -1.10 -0.83 -1.14 -1.10 -1.10 -1.12 -1.15 -1.02
f5/f1 -3.43 -3.72 -3.46 -3.83 -3.28 -3.66 -3.70 -3.42 -2.13 -3.57
f23/f -1.14 -1.90 -1.10 -1.21 -1.08 -1.18 -1.22 -1.11 -1.11 -1.16
CT7/CT6 2.99 3.41 3.24 3.88 3.39 3.07 2.98 2.92 2.27 3.43
T56/T67 3.53 2.90 3.33 2.67 3.15 3.31 3.39 3.82 4.13 3.10
∑CT/∑AT 1.57 1.74 1.65 1.76 1.61 1.59 1.56 1.55 1.73 1.68
表31
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (42)

  1. 一种光学成像镜片组,从物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;
    具有负光焦度的第五透镜;
    具有负光焦度的第六透镜,其物侧面为凹面;
    具有光焦度的第七透镜;
    其特征在于,
    第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40<f5/f<0。
  2. 根据权利要求1所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0<T56/CT1<1.5。
  3. 根据权利要求1所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2<T56/T67<5。
  4. 根据权利要求1至3中任一项所述的光学成像镜片组,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。
  5. 根据权利要求4所述的光学成像镜片组,其特征在于,光学成像镜片组的最大半视场角HFOV<30°。
  6. 根据权利要求5所述的光学成像镜片组,其特征在于,第一透镜的 有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1<f1/R1<2。
  7. 根据权利要求1至3以及5至6中任一项所述的光学成像镜片组,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。
  8. 根据权利要求1至3以及5至6中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1<f/R14<0。
  9. 根据权利要求1至3以及5至6中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5<f/f6<0。
  10. 根据权利要求9所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4<f5/f1<-2。
  11. 根据权利要求1至3以及10中任一项所述的光学成像镜片组,其特征在于,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2<f23/f<-1。
  12. 根据权利要求1至3以及10中任一项所述的光学成像镜片组,其特征在于,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2<CT7/CT6<4。
  13. 根据权利要求1至3以及10中任一项所述的光学成像镜片组,其特征在于,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。
  14. 根据权利要求1所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3<f5/f<0。
  15. 一种光学成像镜片组,从物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;
    具有负光焦度的第五透镜;
    具有负光焦度的第六透镜,其物侧面为凹面;
    具有光焦度的第七透镜;
    其特征在于,
    第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足1.0<T56/CT1<1.5。
  16. 根据权利要求15所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2<T56/T67<5。
  17. 根据权利要求15至16中任一项所述的光学成像镜片组,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。
  18. 根据权利要求17所述的光学成像镜片组,其特征在于,光学成像镜片组的最大半视场角HFOV<30°。
  19. 根据权利要求18所述的光学成像镜片组,其特征在于,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1<f1/R1<2。
  20. 根据权利要求15至16以及18至19中任一项所述的光学成像镜 片组,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。
  21. 根据权利要求15至16以及18至19中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1<f/R14<0。
  22. 根据权利要求15至16以及18至19中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5<f/f6<0。
  23. 根据权利要求22所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4<f5/f1<-2。
  24. 根据权利要求15至16以及23中任一项所述的光学成像镜片组,其特征在于,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2<f23/f<-1。
  25. 根据权利要求15至16以及23中任一项所述的光学成像镜片组,其特征在于,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2<CT7/CT6<4。
  26. 根据权利要求15至16以及23中任一项所述的光学成像镜片组,其特征在于,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。
  27. 根据权利要求16所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40<f5/f<0。
  28. 根据权利要求27所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3<f5/f<0。
  29. 一种光学成像镜片组,从物侧至像侧依次包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有光焦度的第四透镜,其物侧面为凸面,像侧面为凹面;
    具有负光焦度的第五透镜;
    具有负光焦度的第六透镜,其物侧面为凹面;
    具有光焦度的第七透镜;
    其特征在于,
    第五透镜与第六透镜在光轴上的空气间隔T56与第六透镜与第七透镜在光轴上的空气间隔T67之间满足2<T56/T67<5。
  30. 根据权利要求29所述的光学成像镜片组,其特征在于,第一透镜物侧面至成像面的轴上距离TTL与光学成像镜片组的有效焦距f之间满足TTL/f<1.0。
  31. 根据权利要求30所述的光学成像镜片组,其特征在于,光学成像镜片组的最大半视场角HFOV<30°。
  32. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第一透镜的有效焦距f1与第一透镜物侧面的曲率半径R1之间满足1<f1/R1<2。
  33. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间满足1.0≤R7/R8≤2.6。
  34. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第七透镜像侧面的曲率半径R14之间满足-1<f/R14<0。
  35. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,光学成像镜片组的有效焦距f与第六透镜的有效焦距f6之间满足-1.5<f/f6<0。
  36. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与第一透镜的有效焦距f1之间满足-4<f5/f1<-2。
  37. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第二透镜与第三透镜的组合焦距f23与光学成像镜片组的有效焦距f之间满足-2<f23/f<-1。
  38. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第七透镜的中心厚度CT7与第六透镜的中心厚度CT6之间满足2<CT7/CT6<4。
  39. 根据权利要求29至31中任一项所述的光学成像镜片组,其特征在于,第一透镜至第七透镜在光轴上的中心厚度之和∑CT与第一透镜至第七透镜任意相邻两透镜之间轴上间隔距离的总和∑AT之间满足∑CT/∑AT≤2.0。
  40. 根据权利要求30所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-40<f5/f<0。
  41. 根据权利要求30所述的光学成像镜片组,其特征在于,第五透镜与第六透镜在光轴上的空气间隔T56与第一透镜的中心厚度CT1之间满足 1.0<T56/CT1<1.5。
  42. 根据权利要求40所述的光学成像镜片组,其特征在于,第五透镜的有效焦距f5与光学成像镜片组的有效焦距f之间满足-3<f5/f<0。
PCT/CN2018/115055 2018-03-16 2018-11-12 光学成像镜片组 WO2019174286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810219437.2A CN108227151B (zh) 2018-03-16 2018-03-16 光学成像镜片组
CN201810219437.2 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174286A1 true WO2019174286A1 (zh) 2019-09-19

Family

ID=62659608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115055 WO2019174286A1 (zh) 2018-03-16 2018-11-12 光学成像镜片组

Country Status (2)

Country Link
CN (1) CN108227151B (zh)
WO (1) WO2019174286A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845576B2 (en) 2018-03-28 2020-11-24 Largan Precision Co., Ltd. Photographing optical lens system, imaging apparatus and electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227151B (zh) * 2018-03-16 2019-11-26 浙江舜宇光学有限公司 光学成像镜片组
CN108732723B (zh) * 2018-08-07 2024-01-30 舜宇光学(中山)有限公司 远心镜头
CN109254385B (zh) * 2018-10-30 2024-05-03 浙江舜宇光学有限公司 光学成像镜头
KR20200098047A (ko) * 2019-02-11 2020-08-20 삼성전기주식회사 촬상 광학계
WO2021127844A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN116974057B (zh) * 2023-09-22 2023-12-08 上海树突精密仪器有限公司 一种生物体成像系统与光学检测设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030496A (ja) * 2004-07-14 2006-02-02 Nidec Copal Corp テレセントリックレンズ
JP2011123304A (ja) * 2009-12-10 2011-06-23 Ricoh Co Ltd 読取レンズ、画像読取装置および画像形成装置
CN106842512A (zh) * 2017-04-17 2017-06-13 浙江舜宇光学有限公司 摄像镜头
CN106896477A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学镜片组
CN107015343A (zh) * 2016-01-28 2017-08-04 三星电机株式会社 光学成像系统
CN108227151A (zh) * 2018-03-16 2018-06-29 浙江舜宇光学有限公司 光学成像镜片组
CN208141029U (zh) * 2018-03-16 2018-11-23 浙江舜宇光学有限公司 光学成像镜片组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367827B (zh) * 2017-09-13 2019-10-18 浙江舜宇光学有限公司 光学成像镜头
CN107422465B (zh) * 2017-09-22 2022-09-16 浙江舜宇光学有限公司 光学成像镜片组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030496A (ja) * 2004-07-14 2006-02-02 Nidec Copal Corp テレセントリックレンズ
JP2011123304A (ja) * 2009-12-10 2011-06-23 Ricoh Co Ltd 読取レンズ、画像読取装置および画像形成装置
CN107015343A (zh) * 2016-01-28 2017-08-04 三星电机株式会社 光学成像系统
CN106896477A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学镜片组
CN106842512A (zh) * 2017-04-17 2017-06-13 浙江舜宇光学有限公司 摄像镜头
CN108227151A (zh) * 2018-03-16 2018-06-29 浙江舜宇光学有限公司 光学成像镜片组
CN208141029U (zh) * 2018-03-16 2018-11-23 浙江舜宇光学有限公司 光学成像镜片组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10845576B2 (en) 2018-03-28 2020-11-24 Largan Precision Co., Ltd. Photographing optical lens system, imaging apparatus and electronic device
US11971527B2 (en) 2018-03-28 2024-04-30 Largan Precision Co., Ltd. Photographing optical lens system, imaging apparatus and electronic device

Also Published As

Publication number Publication date
CN108227151B (zh) 2019-11-26
CN108227151A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019192180A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2019210738A1 (zh) 光学成像镜头
WO2019174286A1 (zh) 光学成像镜片组
WO2020082814A1 (zh) 成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019114366A1 (zh) 光学成像镜头
WO2020010879A1 (zh) 光学成像系统
WO2019210739A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2018090609A1 (zh) 光学成像系统及摄像装置
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2020007081A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019114524A1 (zh) 光学成像镜头
WO2019214334A1 (zh) 摄像镜头组
WO2019080554A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2019141210A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头
WO2019218628A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019169856A1 (zh) 摄像镜头组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909547

Country of ref document: EP

Kind code of ref document: A1