WO2019171994A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019171994A1
WO2019171994A1 PCT/JP2019/006972 JP2019006972W WO2019171994A1 WO 2019171994 A1 WO2019171994 A1 WO 2019171994A1 JP 2019006972 W JP2019006972 W JP 2019006972W WO 2019171994 A1 WO2019171994 A1 WO 2019171994A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion secondary
lithium ion
lithium
active material
Prior art date
Application number
PCT/JP2019/006972
Other languages
English (en)
French (fr)
Inventor
川村博昭
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019511800A priority Critical patent/JP6645621B1/ja
Publication of WO2019171994A1 publication Critical patent/WO2019171994A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries can store enormous energy, but if a malfunction occurs, the stored energy is released in a short time, and there is a risk that the battery may ignite or burn. Therefore, it is important for the lithium ion secondary battery to increase the energy density, but improvement of safety is also an important issue.
  • the positive electrode material greatly affects the safety of lithium ion secondary batteries.
  • a positive electrode material called a layered oxide type often used in smartphones and electric vehicles is a material having a high energy density among positive electrode materials of lithium ion secondary batteries. Since there is a danger of igniting and igniting, there are safety issues.
  • lithium iron phosphate one of the olivine-based positive electrode materials often used in stationary batteries, does not release oxygen easily because oxygen is covalently bonded to phosphorus, and is relatively stable at high temperatures. It is known that However, since its energy density is inferior to the layered oxide system, its use in electric vehicles and the like is limited.
  • Lithium manganese phosphate is known as an olivine-based positive electrode material with a high energy density of lithium iron phosphate having a relatively stable olivine-based crystal structure even at high temperatures. Lithium manganese oxide was difficult to express the energy density expected from the theoretical value.
  • lithium iron manganese phosphate in which a part of manganese in lithium manganese phosphate is replaced with iron is also being studied.
  • the theoretical discharge capacity (mAh / g) does not change, but the theoretical energy density (Wh / kg) decreases because the discharge voltage in the portion corresponding to iron decreases. .
  • the conductivity is improved by substituting iron, an energy density closer to the theoretical value is likely to appear.
  • Non-Patent Documents 1 and 2 the effect of improving the energy density is obtained by simultaneously doping two elements.
  • Non-Patent Documents 1 and 2 two elements are simultaneously doped, but the doping amount is 8% or more of the total transition metal components. Since doping elements do not contribute to the charge / discharge reaction, doping 8% transition metal element lowers the theoretical capacity (mAh / g) of the positive electrode material by 8%, so that high energy density can be achieved in principle. Is difficult. Further, in these Non-Patent Documents 1 and 2, the positive electrode active material in the undoped state can express only a capacity of less than 80% of theoretical capacity (that is, 136 mAh / g), and completely overcomes the problem of high resistance. Not done.
  • the positive electrode active material having the problem of high resistance easily develops the doping effect due to the large capacity extension, but expresses 80% or more of the theoretical capacity. In the positive electrode active material, the same effect is hardly obtained even if the same doping is performed.
  • An object of the present invention is to obtain an olivine-based positive electrode active material having high safety and high energy density.
  • the inventors of the olivine-based positive electrode material for lithium ion secondary batteries use lithium manganese phosphate or lithium manganese iron phosphate that is relatively stable even at high temperatures, and improve energy density with a small amount of doping. It has been studied repeatedly.
  • This invention for solving said subject is a positive electrode active material for lithium ion secondary batteries which consists of lithium manganese phosphate represented by the following formula 1, or lithium manganese iron phosphate.
  • an olivine-based positive electrode active material having high safety and high energy density can be obtained. Moreover, the safety
  • the positive electrode active material for lithium ion secondary battery of the present invention improves energy density by doping lithium manganese phosphate and lithium iron manganese phosphate with two kinds of doping elements selected from Cu, Ag, Mg, and Co. It is a thing. In the present specification, even if doped lithium manganese iron phosphate and lithium manganese phosphate are sometimes simply referred to as lithium manganese iron phosphate and lithium manganese phosphate for convenience.
  • the doping element is a metal element that does not directly contribute to the charge / discharge reaction.
  • iron in lithium iron manganese phosphate is oxidized / reduced within the charge / discharge range of lithium manganese phosphate, that is, in the range of 3.0 to 4.5 V (Li + / Li standard), contributing to the charge / discharge reaction To do. Therefore, since the discharge capacity of the positive electrode active material does not decrease by the amount of iron added, iron is not treated as a doping element in this specification.
  • Co and Ni do not contribute to the charge / discharge reaction because they are not oxidized / reduced by the voltage in the charge / discharge range of lithium manganese phosphate. Therefore, Co and Ni are treated as doping elements.
  • the doping element in the present invention does not directly contribute to the charge / discharge reaction, the theoretical capacity of the positive electrode active material decreases according to the amount of doping.
  • the theoretical capacities of both lithium manganese phosphate and lithium iron manganese phosphate are 170 mAh / g, but if the Mn and Fe to be oxidized and reduced are substituted with doping elements by X%, the theoretical capacity decreases by X%.
  • the actual capacity of lithium manganese phosphate and lithium iron manganese phosphate is lower than the theoretical capacity, even if the theoretical capacity is reduced by X%, if the capacity of X% or more is expressed by doping, the result is obtained. It can be said that there is a doping effect.
  • the present invention is a positive electrode active material for a lithium ion secondary battery comprising lithium manganese phosphate or lithium manganese iron phosphate represented by the following formula 1.
  • Equation 1 0 ⁇ c and 0 ⁇ d.
  • the details of the mechanism by which the energy density is specifically improved by the combination of the elements are not clear, but since lithium manganese phosphate and lithium iron manganese phosphate have large changes in the crystal lattice accompanying lithium desorption, the doping element is This is thought to induce lattice distortion that alleviates lattice distortion.
  • the relaxation effect is considered to be greatly affected by the ion radius and valence when incorporated into the crystals of the doping elements Me1 and Me2.
  • an element that becomes a trivalent ion excessively induces disorder of the lattice
  • an element that can become a monovalent or divalent ion is preferable as the doping elements Me1 and Me2.
  • Two types of doping elements promote the randomization of lattice disturbances, so that the relaxation effect is enhanced, and a high energy density is realized even with the same molar amount as compared with one type of doping. It is thought that.
  • the discharge of lithium iron manganese phosphate is composed of two discharges at 4V corresponding to manganese oxidation and 3.4V discharge corresponding to iron oxidation, but the ratio of iron to manganese is excessive. And most of discharge becomes 3.4V. Since it is necessary to discharge at a high voltage to obtain a higher energy density, the ratio of iron in lithium iron manganese phosphate needs to be a certain amount or less, and 0.5 ⁇ a ⁇ 1.0 and 0 ⁇ b ⁇ 0.5.
  • the addition amount of the doping element in the present invention is 0 ⁇ c + d ⁇ 0.03 in Formula 1. Since the doping element does not oxidize and reduce in the range of 3 to 4.5 V (based on Li + / Li), the theoretical capacity is reduced by the amount added. Therefore, excessive addition reduces the theoretical capacity and cannot be compensated for by the doping effect. For this reason, it is necessary that the amount of doping to obtain a doping effect while suppressing a decrease in theoretical capacity is in the above range, and 0 ⁇ c + d ⁇ 0.015 is preferable in order to bring out a higher doping effect. Further, in order to sufficiently obtain the effect as doping, it is more preferable that 0.005 ⁇ c + d.
  • One of the doping elements of the present invention is preferably Cu or Ag. That is, in Equation 1, it is preferable either Me1 and Me2 is Cu or Ag 2. Cu or Ag is considered to enhance the doping effect due to the electronic state peculiar to the noble metal and high electronic conductivity. Therefore, the combination of the doping element is Cu and Ag, i.e. be a combination Me1 and Me2 is Cu and Ag 2 in Formula 1 are more preferred embodiment.
  • Me1 and Me2 in Formula 1 are Ni and Co. It is considered that the energy density of the battery is improved by this combination because the doping of the combination has a particularly high effect of relaxing the crystal lattice gap associated with lithium desorption.
  • the positive electrode active material for a lithium ion secondary battery of the present invention is preferably nanoparticles.
  • Lithium manganese phosphate and lithium manganese iron phosphate are known to have low conductivity of lithium ions and electrons, and in order to minimize the effect, nano particles should be used to reduce the diffusion distance in the solid. Is effective. Since the non-nanoparticulate particles are unlikely to undergo a charge / discharge reaction, the doping effect tends to be small.
  • the nanoparticles are particles having an average particle diameter of 70 nm or less. That is, the positive electrode active material for a lithium ion secondary battery of the present invention is preferably nanoparticles having an average particle diameter of 70 nm or less.
  • the average particle diameter of particles is the average of the particle diameters of all the particles in the field of view when observed with a scanning electron microscope at a magnification that falls within one field of view so that only 30 to 50 particles are included. It is.
  • the particle diameter of one particle is the average of the maximum diameter and the minimum diameter of the particles.
  • the carbon-coated layer is an extremely thin layer of several nanometers. The particle diameter obtained by observation as it is is defined as the particle diameter of the positive electrode active material.
  • the positive electrode active material for lithium ion secondary batteries of this invention can also be electrically conductive-processed by coat
  • the powder resistance value of the particles coated with carbon is preferably 1 ⁇ ⁇ cm or more and 10 8 ⁇ ⁇ cm or less. If it is 10 8 ⁇ ⁇ cm or more, the electron resistance from the current collector to the particle surface when it is used as an electrode increases, which may significantly inhibit the expression of capacity.
  • an active material coated with carbon may be simply referred to as an active material.
  • the surface of the lithium ion secondary coated with carbon is used.
  • the battery positive electrode active material is preferably in the form of secondary particles in which the particles are aggregated, that is, a granulated structure.
  • the granulated body is preferably granulated in a spherical shape, and the particle diameter is preferably 0.1 ⁇ m or more and 30 ⁇ m or less. If it is less than 0.1 ⁇ m, a large amount of N-methylpyrrolidinone, which is a dispersion medium at the time of coating, is required, and a large amount of time and energy is required for the drying step, which is not preferable. Further, if the particle diameter is 30 ⁇ m or more, the surface smoothness of the obtained positive electrode coating film usually molded to 50 to 100 ⁇ m is easily lost, which is not preferable.
  • the introduction of the doping element into the particles can be achieved by synthesizing lithium manganese phosphate or lithium manganese iron phosphate particles and then heating the doping element source after mixing with the particles. Further, as a method for uniformly doping the particles, a method of adding a doping element source as a part of the manganese source at the time of particle synthesis is also suitable.
  • Carbonates, phosphates, sulfates, hydrochlorides, nitrates, acetates, and acetylacetone salts can be used as a doping element source as a raw material for doping elements, but in particular, solubility in water, which is a general-purpose solvent, is considered. Sulfates and acetates are preferred.
  • the method for coating the lithium manganese phosphate and lithium iron manganese phosphate of the present invention with carbon is not particularly limited, but a method of mixing with carbon such as acetylene black using a ball mill to form a complex, glucose, sucrose, etc.
  • the method of mixing with saccharides and baking is mentioned. Of these two methods, the latter method is preferred in that a thin layer uniform coating can be applied to the particles.
  • the granulated product obtained by the spray dryer may be subjected to a classification treatment using a classifier.
  • a classification treatment using a classifier.
  • centrifugation is performed using an air stream, but an air stream type is preferable in that it is easy to avoid contamination by foreign matters.
  • the lithium ion secondary battery of the present invention is a lithium ion secondary battery using the lithium manganese phosphate or the manganese iron phosphate of the present invention as at least a part of the positive electrode material.
  • the lithium manganese iron phosphate and lithium manganese iron phosphate of the present invention can be obtained by a known method such as a solid phase method, a hydrothermal method, or a liquid phase method, but nanosized particles can be more easily obtained.
  • the hydrothermal method or the liquid phase method is preferred.
  • the obtained electrode slurry was applied to an aluminum foil (thickness: 18 ⁇ m) using a doctor blade (300 ⁇ m), dried at 80 ° C. for 30 minutes, and then pressed to obtain an electrode plate.
  • Celgard (registered trademark) # 2400 manufactured by Celgard Co., Ltd. obtained by cutting out the produced electrode plate to a positive electrode by cutting out to a diameter of 15.9 mm and using a lithium foil cut to a diameter of 16.1 mm and a thickness of 0.2 mm as a negative electrode.
  • the measurement was performed at a theoretical capacity of 170 mAh / g, a cutoff potential of 3.0 V, a maximum charging voltage of 4.3 V, charging and discharging three times at a 0.1 C rate, and from the discharge capacity of the coin battery in the third discharge, The discharge capacity (mAh / g) per weight of lithium manganese iron phosphate or lithium manganese phosphate was calculated.
  • Example 1 200 g of dimethyl sulfoxide was added to 150 g of pure water, and 120 mmol of phosphoric acid was further added using an 85% aqueous phosphoric acid solution. After 360 mmol of lithium hydroxide monohydrate was added to the resulting solution, 95.04 mmol of manganese sulfate monohydrate, 23.76 mmol of iron (II) sulfate heptahydrate, 0.6 mmol of hydrate and 1.2 mmol of silver (I) sulfate were added. The resulting solution was transferred to an autoclave and heated and held for 4 hours so that the inside maintained at 120 ° C.
  • glucose having the same weight as 15% by weight of lithium iron manganese phosphate in the dispersion was added to the dispersion and dissolved.
  • the obtained dispersion was dried and granulated with a spray dryer (MDL-050B, manufactured by Fujisaki Electric Co., Ltd.) using hot air at 200 ° C.
  • the obtained powder was heated in a rotary kiln (manufactured by Takasago Industrial Co., Ltd., desktop rotary kiln) in a nitrogen atmosphere at 700 ° C. for 4 hours to obtain carbon-coated lithium manganese iron phosphate.
  • Example 2 In Example 1, 94.08 mmol of manganese sulfate monohydrate, 23.52 mmol of iron (II) sulfate heptahydrate, 1.2 mmol of copper sulfate pentahydrate, and silver (I) sulfate Lithium iron manganese phosphate was synthesized in the same manner except that the amount was changed to 2.4 mmol.
  • Example 3 In Example 1, manganese sulfate monohydrate was changed to 93.12 mmol, iron sulfate (II) heptahydrate was changed to 23.28 mmol, and silver (I) sulfate was changed to 2.4 mmol in the same manner. Lithium manganese iron phosphate was synthesized.
  • Example 4 In Example 1, 118.8 mmol of manganese sulfate monohydrate, 0 mmol of iron (II) sulfate heptahydrate, 0.6 mmol of copper sulfate pentahydrate, and 1.1 of silver (I) sulfate. 2 mmol, the temperature in the autoclave during synthesis was 105 ° C., the weight of glucose during carbon coating was 25% by weight of lithium manganese phosphate, and the temperature of the rotary kiln during carbon coating was changed to 600 ° C. in the same manner. Lithium manganese oxide was synthesized.
  • Example 5 In Example 1, 71.28 mmol of manganese sulfate monohydrate, 47.52 mmol of iron (II) sulfate heptahydrate, 0.6 mmol of copper sulfate pentahydrate, and silver (I) sulfate Lithium iron manganese phosphate was synthesized in the same manner except that the amount was changed to 1.2 mmol.
  • Example 6 lithium manganese iron phosphate was synthesized in the same manner except that 1.2 mmol of silver (I) sulfate was changed to 0.6 mmol of cobalt sulfate heptahydrate.
  • Example 7 lithium manganese iron phosphate was synthesized in the same manner except that 1.2 mmol of silver (I) sulfate was changed to 0.6 mmol of nickel sulfate hexahydrate.
  • Example 8 lithium manganese iron phosphate was synthesized in the same manner except that 1.2 mmol of silver (I) sulfate was changed to 0.6 mmol of magnesium sulfate heptahydrate.
  • Example 9 lithium manganese iron phosphate was synthesized in the same manner except that 0.6 mmol of copper sulfate pentahydrate was changed to 0.6 mmol of cobalt sulfate heptahydrate.
  • Example 10 lithium manganese phosphate was synthesized in the same manner except that 0.6 mmol of copper sulfate pentahydrate was changed to 0.6 mmol of nickel sulfate hexahydrate.
  • Example 11 lithium manganese iron phosphate was synthesized in the same manner except that 0.6 mmol of copper sulfate pentahydrate was changed to 0.6 mmol of magnesium sulfate heptahydrate.
  • Example 12 In Example 1, 0.6 mmol of copper sulfate pentahydrate was changed to 0.6 mmol of nickel sulfate hexahydrate, and 1.2 mmol of silver (I) sulfate was changed to 0.6 mmol of magnesium sulfate heptahydrate. Except for the above, lithium iron manganese phosphate was synthesized in the same manner.
  • Example 1 In Example 1, manganese sulfate monohydrate was changed to 96 mmol, iron sulfate (II) heptahydrate was changed to 24 mmol, copper sulfate pentahydrate was changed to 0 mmol, and silver (I) sulfate was changed to 0 mmol. Synthesized lithium iron manganese phosphate in the same manner.
  • Example 4 lithium manganese phosphate was synthesized in the same manner except that manganese sulfate monohydrate was changed to 120 mmol, copper sulfate pentahydrate was changed to 0 mmol, and silver (I) sulfate was changed to 0 mmol.
  • Example 3 In Example 1, 0 mmol of manganese sulfate monohydrate, 120 mmol of iron (II) sulfate heptahydrate, 0 mmol of copper sulfate pentahydrate, 0 mmol of silver (I) sulfate, Lithium iron phosphate was synthesized in the same manner except that the temperature in the autoclave was changed to 200 ° C. and the weight of glucose at the time of carbon coating was changed to 10% by weight of lithium iron phosphate.
  • Example 4 lithium manganese phosphate was synthesized in the same manner except that the copper sulfate pentahydrate was changed to 1.2 mmol and the silver (I) sulfate was changed to 0 mmol.
  • Example 5 lithium manganese iron phosphate was synthesized in the same manner except that the copper sulfate pentahydrate was changed to 0 mmol and the silver (I) sulfate was changed to 2.4 mmol.
  • Example 6 lithium manganese phosphate was synthesized in the same manner except that 0.6 mmol of copper sulfate pentahydrate was changed to 1.2 mmol of cobalt sulfate heptahydrate and silver (I) sulfate was changed to 0 mmol. did.
  • Example 7 lithium manganese phosphate was synthesized in the same manner except that 0.6 mmol of copper sulfate pentahydrate was changed to 1.2 mmol of nickel sulfate hexahydrate and silver (I) sulfate was changed to 0 mmol. did.
  • Example 8 lithium manganese phosphate was synthesized in the same manner except that 0.6 mmol of copper sulfate pentahydrate was changed to 1.2 mmol of magnesium sulfate heptahydrate and silver (I) sulfate was changed to 0 mmol. did.
  • Example 9 In Example 1, 91.2 mmol of manganese sulfate monohydrate, 22.8 mmol of iron (II) sulfate heptahydrate, 3 mmol of copper sulfate pentahydrate, and 6 mmol of silver (I) sulfate Lithium manganese iron phosphate was synthesized in the same manner except that it was changed to.
  • Comparative Example 10 In Comparative Example 3, phosphoric acid was similarly changed except that iron sulfate (II) heptahydrate was changed to 118 mmol, copper sulfate pentahydrate was changed to 0.6 mmol, and silver sulfate (I) was changed to 0.6 mmol. Iron lithium was synthesized.
  • Example 11 In Example 1, 86.4 mmol of manganese sulfate monohydrate, 21.6 mmol of iron (II) sulfate heptahydrate, 6 mmol of copper sulfate pentahydrate, and silver (I) sulfate as aluminum sulfate (III) Lithium manganese iron phosphate was synthesized in the same manner except that the n-hydrate was changed to 6 mmol.
  • Comparative Example 12 lithium manganese iron phosphate was synthesized in the same manner except that 300 g of pure water and 50 g of dimethyl sulfoxide were changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、安全性が高く、かつ高いエネルギー密度を有するオリビン系正極活物質を得る。本発明は、下記式1で表されるリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムからなるリチウムイオン二次電池用正極活物質である。 LiMnFeMe1Me2PO (式1) (式1において、Me1及びMe2は、Cu、Ag、Mg、CoおよびNiからなる群より重複することなく選択され、a~dは、a+b+c+d=1、 0.5≦a<1.0、 0≦b<0.5、 0<c+d≦0.03、 0<c、 0<dを満たす。)

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池に関するものである。
 近年、自動車の電動化や非常用電源の確保を目的として、リチウムイオン二次電池の採用と大型化が進んでいる。
 リチウムイオン二次電池は莫大なエネルギーを貯蔵できる反面、不具合が生じると貯蔵されているエネルギーが短時間に放出され、電池が発火・炎上する危険性がある。そのためリチウムイオン二次電池にとってエネルギー密度を高めることも重要であるが、安全性の向上も同様に重要な課題である。
 リチウムイオン二次電池の安全性を大きく左右するのが正極材料であることはよく知られている。特にスマートフォンや電気自動車などに用いられることが多い層状酸化物系と呼ばれる正極材料は、リチウムイオン二次電池の正極材料の中でも高エネルギー密度を有する材料であるが、例えば過充電によって電池内で酸素を放出し、発火に至る危険性があるため安全性に課題がある。
 一方で、定置用電池などに用いられることが多いオリビン系正極材料の1つリン酸鉄リチウムは酸素がリンと共有結合しているために容易には酸素を放出せず、高温でも比較的安定であることが知られている。しかしながら、そのエネルギー密度は層状酸化物系に対して劣るために、電気自動車などへの採用は限定的である。
 高温でも比較的安定なオリビン系結晶構造を有するリン酸鉄リチウムを高エネルギー密度化したオリビン系正極材料として、リン酸マンガンリチウムが知られているが、リチウムイオンと電子の伝導性が共に低いリン酸マンガンリチウムは理論値から期待されるエネルギー密度を発現させることは困難であった。
 リン酸マンガンリチウムのエネルギー密度を向上させる手法の1つとして、マンガンの一部を充放電反応に直接は寄与しない他の金属元素で置換することが検討されている。ドーピングとも呼ばれるこの手法は、詳細なメカニズムについては必ずしも明らかではないが、異元素が入ることで結晶の格子定数が部分的に変化し、充放電時に生じるリン酸マンガンリチウムとリン酸マンガンの格子不整合が緩和されることが想定される。この緩和効果によって充放電反応の活性化エネルギーが低減し、結果としてエネルギー密度が向上していると考えられる。
 さらに、リン酸マンガンリチウムにおけるマンガンの一部を鉄に置換した、リン酸マンガン鉄リチウムも検討されている。マンガンを鉄に置き換えた場合、理論的な放電容量(mAh/g)は変わらないが、鉄に相当する部分の放電の電圧が低下するために理論的なエネルギー密度(Wh/kg)は低下する。しかしながら鉄に置換することよって導電性が向上するため、より理論値に近いエネルギー密度が発現しやすい。
 特許文献1~3に開示される方法においてはオリビン系正極材料への種々のドーピング元素が検討されており、その効果としてエネルギー密度向上が得られるとしている。
 また非特許文献1及び2では2元素を同時ドープにすることにことでエネルギー密度の向上効果を得ている。
特開2016-190787号公報 国際公開第2005/041327号 特許第5381115号明細書
Materials Letters 173(2016)P131 Journal of Nanomaterials Volume2015,ArticleID 970856, 7pages.
 特許文献1~3のドーピングにおいても、エネルギー密度向上の効果は限定的に得られるが、そのドーピングはすべて1元素のドーピングに着目したものであり、2元素同時ドーピングによる組み合わせの効果が得られておらず、ドーピングの効果を最大限に引き出しているとは言いがたい。
 非特許文献1及び2では2元素を同時ドーピングしているものの、そのドーピング量は全遷移金属成分中の8%以上である。ドーピング元素は充放電反応に寄与しないため、8%の遷移金属元素をドーピングすると、正極材料の理論容量(mAh/g)が8%低下するために、高エネルギー密度化が原理的に達成することが困難である。また、これら非特許文献1及び2においては、ドーピングを施さない状態の正極活物質は理論容量の80%(すなわち136mAh/g)未満の容量しか発現できておらず、高抵抗の課題を全く克服できていない。
 本発明者の鋭意検討したところによると、このような高抵抗の課題のある正極活物質においては容量の伸びしろが大きいためにドーピングの効果が発現しやすいが、理論容量の80%以上を発現する正極活物質においては同様のドーピングを施しても同じ効果を得られにくい。
 本発明の目的は、安全性が高く、かつ高いエネルギー密度を有するオリビン系正極活物質を得ることである。すなわち、本発明者らはリチウムイオン二次電池用オリビン系正極材料において、高温でも比較的安定なリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムを用い、少量のドーピングでエネルギー密度を向上させるため、鋭意検討を重ねたものである。
 上記の課題を解決するための本発明は、下記式1で表されるリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムからなるリチウムイオン二次電池用正極活物質である。
LiMnFeMe1Me2PO  (式1)
(式1において、Me1及びMe2は、Cu、Ag、Mg、CoおよびNiからなる群より重複することなく選択され、a~dは、a+b+c+d=1、 0.5≦a<1.0、 0≦b<0.5、 0<c+d≦0.03、 0<c、 0<dを満たす。)
 本発明によれば、安全性が高く、かつ高いエネルギー密度を有するオリビン系正極活物質を得ることができる。また、本発明の正極活物質を用いることで、リチウムイオン二次電池の安全性およびエネルギー密度を向上させることができる。
 本発明のリチウムイオン二次電池用正極活物質は、リン酸マンガンリチウム及びリン酸マンガン鉄リチウムにCu、Ag、Mg、Coから選択される2種類のドーピング元素をドープすることでエネルギー密度を向上したものである。なお本明細書では、ドーピングをしたリン酸マンガン鉄リチウム及びリン酸マンガンリチウムであっても、便宜上それぞれ単にリン酸マンガン鉄リチウム及びリン酸マンガンリチウムと呼ぶことがある。
 ドーピング元素とは、充放電反応に直接は寄与しない金属元素である。例えば、リン酸マンガン鉄リチウムにおける鉄は、リン酸マンガンリチウムの充放電範囲の電圧、すなわち3.0~4.5V(Li/Li基準)の範囲で酸化・還元し、充放電反応に寄与する。従って、鉄を添加した分だけ正極活物質の放電容量が低下することがないため、本明細書では鉄をドーピング元素としては扱わない。一方、CoやNiは、リン酸マンガンリチウムの充放電範囲の電圧では酸化・還元しないため、充放電反応に寄与しない。従ってCo及びNiはドーピング元素として扱う。
 本発明におけるドーピング元素は、充放電反応には直接は寄与しないため、ドーピングした量に応じて正極活物質の理論容量は低下する。リン酸マンガンリチウム及びリン酸マンガン鉄リチウムの理論容量は共に170mAh/gであるが、酸化還元するMn及びFeをドーピング元素でX%置換すると、理論容量はX%低下する。しかしながら、実際のリン酸マンガンリチウム及びリン酸マンガン鉄リチウムが発現する容量は理論容量よりも低いため、理論容量がX%低下しても、ドーピングによってX%以上の容量が発現するのであれば結果としてドーピングの効果があると言える。
 本発明は、下記式1で表されるリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムからなるリチウムイオン二次電池用正極活物質である。
LiMnFeMe1Me2PO  (式1)
(式1において、Me1及びMe2は、Cu、Ag、Mg、CoおよびNiからなる群より重複することなく選択され、a~dは、a+b+c+d=1、 0.5≦a<1.0、 0≦b<0.5、 0<c+d≦0.03、 0<c、 0<dを満たす。)
 式1において、ドーピング元素Me1及びMe2は、Cu、Ag、Mg、CoおよびNiからなる群より重複することなく選択される。すなわち、式1においては、0<cかつ0<dである。該元素の組み合わせによって特異的にエネルギー密度が向上するメカニズムの詳細は定かではないが、リン酸マンガンリチウム及びリン酸マンガン鉄リチウムはリチウムの脱挿入に伴う結晶格子の変化が大きいため、ドーピング元素が格子の歪みを緩和するような格子の乱れを誘発していると考えられる。
 該緩和効果については、ドーピング元素Me1及びMe2の結晶中に取り込まれた際のイオン半径及び価数の影響が大きいと考えられる。特に3価のイオンとなる元素は格子の乱れを過剰に誘発するため、ドーピング元素Me1及びMe2としては1価もしくは2価のイオンとなれる元素が好適である。ドーピング元素が2種類であることは、格子の乱れのランダム化が促進されるため、より緩和効果が高まり、1種類のドーピングと比較して同じモル量であっても、高いエネルギー密度を実現していると考えられる。
 リン酸マンガン鉄リチウムの放電は、マンガンの酸化に対応する4Vでの放電と鉄の酸化に対応する3.4Vでの放電の2つから構成されるが、マンガンに対する鉄の割合が過剰であると、放電のほとんどが3.4Vとなる。より高いエネルギー密度を得るには高電圧で放電する必要があるため、リン酸マンガン鉄リチウムにおいて鉄の割合は一定量以下とする必要があり、0.5≦a<1.0かつ0≦b<0.5である。
 なお、Agは1価の金属であるため、他の金属と比較して2倍のモル量を添加しなければ、電気的に等価とならない。そこで本発明の説明においては、式LiMnFeMe1Me2POにおいて、例えばMe1がAgの場合はLiMnFeAg2cMe2POと表記することで、c及びdの係数を決定することとする。
 本発明におけるドーピング元素の添加量は、式1において0<c+d≦0.03である。ドーピング元素は3~4.5V(Li/Li基準)の範囲では酸化還元しないために、添加した量だけ理論容量が低下する。従って、過剰な添加は理論容量を低下させ、ドーピングの効果では補えなくなる。そのため理論容量の低下を抑えつつ、ドーピングの効果が得られる添加量として上記の範囲である必要があり、より高いドーピングの効果を引き出すためには0<c+d≦0.015が好適である。また、ドーピングとしての効果を十分に得るために、0.005≦c+dであることはさらに好適である。
 ドーピング量の定量についてはICP発光分光分析法を用いてMn,Fe,Me1,Me2、の測定を行うのが測定精度と再現性の点から好適である。また、Me1及びMe2が微量であることから、より確からしい精度を得るために測定は3回行い、その平均値を採用することが好ましい。また、測定サンプル溶液の濃度を変えて測定を複数回に分けてもよい。尚、a~dの係数の決定には、a+b+c+d=1となるように規格化して決定することとする。
 本発明のドーピング元素の1つはCuまたはAgであることが好適である。すなわち、式1において、Me1及びMe2のいずれかがCuまたはAgであることが好ましい。CuまたはAgは、貴金属特有の電子状態と高い電子伝導性が高いドーピング効果を高めていると考えられる。従って、ドーピング元素の組み合わせがCuおよびAgであること、すなわち式1においてMe1及びMe2がCu及びAgの組み合わせであることはより好ましい態様である。
 また、本発明のドーピング元素の組み合わせとしては、式1においてMe1及びMe2がNi及びCoであることも好適である。該組み合わせにより電池のエネルギー密度が向上するのは、該組み合わせのドーピングがリチウムの脱挿入に伴う結晶格子のギャップを緩和する効果が特異的に高いためと考えられる。
 本発明のリチウムイオン二次電池用正極活物質はナノ粒子であることが好ましい。リン酸マンガンリチウム及びリン酸マンガン鉄リチウムはリチウムイオン及び電子の伝導性が低いことが知られており、その影響を最小限にするためには、ナノ粒子化して固体内拡散距離を低減することが有効である。ナノ粒子化していない該粒子は充放電反応が進行しにくいため、ドーピングの効果が小さくなる傾向にある。ここで、ナノ粒子とは、平均粒子径が70nm以下の粒子である。すなわち、本発明のリチウムイオン二次電池用正極活物質は平均粒子径が70nm以下のナノ粒子であることが好ましい。
 粒子の平均粒子径とは走査型電子顕微鏡を用いて、粒子が30個以上50個以下だけ含まれるように一視野内に入る倍率で観察したとき、視野内のすべての粒子の粒子径の平均である。また、一個の粒子の粒子径は、粒子の最大径と最小径の平均とする。また、該粒子が炭素被覆してある場合でかつ炭素の重量割合が炭素被覆粒子全体の5重量%未満である場合は、炭素被覆層が数nmと極めて薄層になるため、炭素被覆した状態のままで観察して得られた粒径を該正極活物質の粒径とする。
 また、本発明のリチウムイオン二次電池用正極活物質は、表面を炭素で被覆することによって導電処理することもできる。この場合、当該炭素で被覆した粒子の粉体抵抗値は1Ω・cm以上10Ω・cm以下であることが好ましい。10Ω・cm以上であると、電極にした際の集電体から粒子表面に至るまでの電子抵抗が大きくなるため、容量の発現を大きく阻害する場合がある。本明細書においては炭素被覆を施した活物質についても、単に活物質と呼ぶことがある。
 リン酸マンガンリチウム及びリン酸マンガン鉄リチウムの容量を十分に引き出すためには、このような炭素被覆状態において、リン酸マンガンリチウム粒子もしくはリン酸マンガン鉄リチウム粒子に対して1重量%以上10重量%未満の炭素で被覆することが好ましく、1重量%以上5重量%未満であることがより好ましい。適量の炭素で被覆することにより、電極としたときの電極内の電子伝導性が向上し、リン酸マンガンリチウム及びリン酸マンガン鉄リチウムが容量を発現することに寄与する。一方、多量の炭素で被覆すると炭素がリチウムイオン伝導を阻害し、イオン伝導性が低下する傾向にある。
 本発明におけるリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムからなるリチウムイオン二次電池用正極活物質をリチウムイオン二次電池用正極材料として用いるためには、表面を炭素で被覆されたリチウムイオン二次電池用正極活物質を、該粒子が集合した二次粒子の形態、すなわち造粒体構造とすることが好ましい。リチウムイオン二次電池用正極活物質が集合した造粒体を含むことで、正極材料を塗膜とする過程でのハンドリング性を大幅に向上することができる。該造粒体は、球形に造粒されていることが好ましく、その粒子径は0.1μm以上30μm以下であることが好ましい。0.1μm未満であると塗工時の分散媒であるN-メチルピロリジノンが大量に必要になり、乾燥工程に時間とエネルギーが多量に必要になるため好ましくない。また、該粒子径が30μm以上であると、得られる通常50~100μmに成型される正極塗膜の表面平滑性が失われやすいため好ましくない。 ドーピング元素の粒子内への導入については、リン酸マンガンリチウムまたはリン酸マンガン鉄リチウム粒子を合成後にドーピング元素源を該粒子と混合後に加熱することで達成できる。さらに粒子内に均一にドーピングする手法として、粒子合成時にマンガン源の一部としてドーピング元素源を添加しておく方法も好適である。
 ドーピング元素の原料となるドーピング元素源については炭酸塩、りん酸塩、硫酸塩、塩酸塩、硝酸塩、酢酸塩、アセチルアセトン塩を用いることができるが、特に汎用溶媒である水への溶解性を考慮して硫酸塩と酢酸塩が好ましい。
 本発明のリン酸マンガンリチウム及びリン酸マンガン鉄リチウムを炭素被覆する方法は、特に限定されないが、アセチレンブラックなどの炭素とボールミルを用いて混合して複合体化させる方法や、グルコースやスクロースなどの糖類と混合して焼成する方法が挙げられる。この2つの手法のうち、薄層均一なコーティングを粒子に施せるという点において、後者の方法が好ましい。
 本発明のリン酸マンガンリチウム及びリン酸マンガン鉄リチウムを造粒体構造にするにはスプレードライヤーを用いるのが、均一な球形形状と粒度分布が得られる点で好適である。また、さらに粒度分布を狭めるために、スプレードライヤーで得られた造粒体に対し、分級機を用いて分級処理を行っても良い。分級にはメッシュを用いるほか、気流を用いて遠心分離で行う方法があるが、異物の混入を避けやすいという点で気流式が好適である。
 本発明のリチウムイオン二次電池は、本発明のリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムを正極材料の少なくとも一部に用いたリチウムイオン二次電池である。
 本発明のリン酸マンガン鉄リチウム及びリン酸マンガン鉄リチウムは、固相法、水熱法、液相法らの公知の手法によって得ることができるが、ナノサイズの粒子をより簡便に得られる点において水熱法もしくは液相法が好適である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに制限されるものではない。
 [測定A]結晶構造の解析
 合成して得られた固体がリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムであることは、X線回折装置(ブルカー社製D8 ADVANCE)を用いてLiMnPO以外に相当する結晶ピークがないことを確認することで行った。
 [測定B]化合物の元素比の決定
 合成したリン酸マンガンリチウム及びリン酸マンガン鉄リチウムの一部を純水及び希硝酸で分解容器に移し、硫酸を加えて加熱分解したのち、希硝酸および少量の過酸化水素水で加温溶解して定容とした。この溶液を用いてICP発光分光分析法(日立ハイテクサイエンス製 PS3520VDDII)を3回行い、3回の平均値から化学式LiMnFeMe1Me2POにおける係数a、b、c、dを決定した。
 [測定C]無機金属ナノ粒子の平均粒子径の算出
 合成したリン酸マンガンリチウム及びリン酸マンガン鉄リチウムの平均粒子径は、粉体の状態で走査型電子顕微鏡(日立ハイテク社製 S-5500)にて測定した。
 [測定D]カーボンコート後の炭素量の測定
カーボンコートしたリン酸マンガンリチウム及びリン酸マンガン鉄リチウムの炭素量はHORIBA社製の炭素硫黄分析装置EMIA-810Wを用いて測定した。
 [測定E]造粒体の平均粒子径の測定
 造粒後のリン酸マンガン鉄リチウムもしくはリン酸マンガンリチウムの平均二次粒子径はHORIBA製のレーザー回折/散乱式粒度分布測定装置LA-920を用いて測定した。
 [測定F]活物質の放電容量の測定
 エネルギー密度は放電容量に比例するため、高エネルギー密度化の効果を放電容量で評価した。
 アセチレンブラック(デンカ株式会社製 Li-400)とバインダー(株式会社クレハKFポリマー L#9305)を混合した後、活物質であるリン酸マンガン鉄リチウムもしくはリン酸マンガンリチウムを添加して乳鉢で固練りを実施した。その際、含まれる各材料の質量比は活物質:アセチレンブラック:バインダーが90:5:5となるようにした。その後、N-メチルピロリジノンを添加して固形分が45質量%となるように調整し電極スラリーを得た。得られたスラリーに流動性がない場合には、N-メチルピロリジノンをスラリーに流動性が得られるまで、適宜追加した。
 得られた電極スラリーをアルミニウム箔(厚さ18μm)にドクターブレード(300μm)を用いて塗布し、80℃30分間の乾燥後、プレスを施し電極板を得た。作製した電極板を直径15.9mmに切り出して正極とし、直径16.1mm厚さ0.2mmに切り出したリチウム箔を負極とし、直径20mmに切り出したセルガード(登録商標)#2400(セルガード社製)セパレータとして、LiPFを1M含有するエチレンカーボネート:ジエチルカーボネート=3:7(体積比)の溶液を電解液として、2032型コイン電池を作製し、電気化学評価を行った。
 測定は、理論容量を170mAh/g、カットオフ電位を3.0V、最大充電電圧4.3Vとし、充放電を0.1Cレートで3回行い、3回目の放電におけるコイン電池の放電容量から、リン酸マンガン鉄リチウムもしくはリン酸マンガンリチウムの重量当たりの放電容量(mAh/g)を算出した。
 [実施例1]
 純水150gにジメチルスルホキシド200gを加え、85%リン酸水溶液を用いてリン酸を120ミリモルさらに添加した。得られた溶液に、水酸化リチウム1水和物を360ミリモル添加したのち、硫酸マンガン1水和物を95.04ミリモル、硫酸鉄(II)7水和物を23.76ミリモル、硫酸銅5水和物を0.6ミリモル、硫酸銀(I)を1.2ミリモル添加した。得られた溶液をオートクレーブに移し、内部が120℃を維持するように4時間加熱保持した。加熱後に溶液の上澄みを捨て、沈殿物としてリン酸マンガン鉄リチウムを得た。得られたリン酸マンガン鉄リチウムは純水にて洗浄した後に、遠心分離にて上澄みを除去することを5回繰り返し、最後に再度純水を加えて分散液とした。分散液の一部を80℃で乾燥させて分析用のサンプルを得て、測定A~Cを実施した結果を表1に示す。
 続いて分散液中のリン酸マンガン鉄リチウムの15重量%と同重量のグルコースを分散液に添加して溶解させた。得られた分散液をスプレードライヤー(藤崎電機社製 MDL-050B)にて200℃の熱風を用いて乾燥・造粒した。得られた粉体をロータリーキルン(高砂工業社製 デスクトップロータリーキルン)にて窒素雰囲気下700℃4時間加熱し、カーボンコートされたリン酸マンガン鉄リチウムを得た。
 得られたリン酸マンガン鉄リチウムの一部を用いて測定D~Fを実施し、得られた結果を表1に示す。
 [実施例2]
 実施例1において、硫酸マンガン1水和物を94.08ミリモル、硫酸鉄(II)7水和物を23.52ミリモル、硫酸銅5水和物を1.2ミリモル、硫酸銀(I)を2.4ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例3]
 実施例1において、硫酸マンガン1水和物を93.12ミリモル、硫酸鉄(II)7水和物を23.28ミリモル、硫酸銀(I)を2.4ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例4]
 実施例1において、硫酸マンガン1水和物を118.8ミリモル、硫酸鉄(II)7水和物を0ミリモル、硫酸銅5水和物を0.6ミリモル、硫酸銀(I)を1.2ミリモル、合成時のオートクレーブ内の温度を105℃、カーボンコート時のグルコースの重量をリン酸マンガンリチウムの25重量%、カーボンコート時のロータリーキルンの温度を600℃に変えた以外は同様にしてリン酸マンガンリチウムを合成した。
 [実施例5]
 実施例1において、硫酸マンガン1水和物を71.28ミリモル、硫酸鉄(II)7水和物を47.52ミリモル、硫酸銅5水和物を0.6ミリモル、硫酸銀(I)を1.2ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例6]
 実施例1において、硫酸銀(I)1.2ミリモルを硫酸コバルト7水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例7]
 実施例1において、硫酸銀(I)1.2ミリモルを硫酸ニッケル6水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例8]
 実施例1において、硫酸銀(I)1.2ミリモルを硫酸マグネシウム7水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例9]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸コバルト7水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例10]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸ニッケル6水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例11]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸マグネシウム7水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [実施例12]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸ニッケル6水和物0.6ミリモルに、硫酸銀(I)1.2ミリモルを硫酸マグネシウム7水和物0.6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例1]
 実施例1において、硫酸マンガン1水和物を96ミリモル、硫酸鉄(II)7水和物を24ミリモル、硫酸銅5水和物を0ミリモル、硫酸銀(I)を0ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例2]
 実施例4において、硫酸マンガン1水和物を120ミリモル、硫酸銅5水和物を0ミリモル、硫酸銀(I)を0ミリモルに変えた以外は同様にしてリン酸マンガンリチウムを合成した。
 [比較例3]
実施例1において、硫酸マンガン1水和物を0ミリモル、硫酸鉄(II)7水和物を120ミリモル、硫酸銅5水和物を0ミリモル、硫酸銀(I)を0ミリモル、合成時のオートクレーブ内の温度を200℃、カーボンコート時のグルコースの重量をリン酸鉄リチウムの10重量%、に変えた以外は同様にしてリン酸鉄リチウムを合成した。
 [比較例4]
 実施例1において、硫酸銅5水和物を1.2ミリモル、硫酸銀(I)を0ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例5]
 実施例1において、硫酸銅5水和物を0ミリモル、硫酸銀(I)を2.4ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例6]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸コバルト7水和物1.2ミリモル、硫酸銀(I)を0ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例7]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸ニッケル6水和物1.2ミリモル、硫酸銀(I)を0ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例8]
 実施例1において、硫酸銅5水和物0.6ミリモルを硫酸マグネシウム7水和物1.2ミリモル、硫酸銀(I)を0ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例9]
 実施例1において、硫酸マンガン1水和物を91.2ミリモル、硫酸鉄(II)7水和物を22.8ミリモル、硫酸銅5水和物を3ミリモル、硫酸銀(I)を6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例10]
 比較例3において、硫酸鉄(II)7水和物を118ミリモル、硫酸銅5水和物を0.6ミリモル、硫酸銀(I)を0.6ミリモルに変えた以外は同様にしてリン酸鉄リチウムを合成した。
 [比較例11]
 実施例1において、硫酸マンガン1水和物を86.4ミリモル、硫酸鉄(II)7水和物を21.6ミリモル、硫酸銅5水和物を6ミリモル、硫酸銀(I)を硫酸アルミニウム(III)n水和物6ミリモルに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例12]
 比較例1において、純水を300g、ジメチルスルホキシドを50gに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 [比較例13]
 比較例11において、純水を300g、ジメチルスルホキシドを50gに変えた以外は同様にしてリン酸マンガン鉄リチウムを合成した。
 実施例2~12、比較例1~13で合成した活物質粒子に対して、実施例1と同様に測定A~Cを実施した結果、およびそれぞれの活物質粒子に実施例1と同様にカーボンコートした粒子に対して測定D~Fを実施した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 

Claims (10)

  1. 下記式1で表されるリン酸マンガンリチウムもしくはリン酸マンガン鉄リチウムからなるリチウムイオン二次電池用正極活物質。
    LiMnFeMe1Me2PO  (式1)
    (式1において、Me1及びMe2は、Cu、Ag、Mg、CoおよびNiからなる群より重複することなく選択され、a~dは、a+b+c+d=1、 0.5≦a<1.0、 0≦b<0.5、 0<c+d≦0.03、 0<c、 0<dを満たす。)
  2. 前記式1において、cおよびdが0<c+d≦0.015を満たす、請求項1記載のリチウムイオン二次電池用正極活物質。
  3. 前記式1において、Me1及びMe2のいずれかがCuまたはAgである、請求項1または2に記載のリチウムイオン二次電池用正極活物質。
  4. 前記式1において、Me1及びMe2がCu及びAgの組み合わせである、請求項3に記載のリチウムイオン二次電池用正極活物質。
  5. 前記式1において、Me1及びMe2がCo及びNiの組み合わせである、請求項1または2に記載のリチウムイオン二次電池用正極活物質。
  6. 平均粒子径が70nm以下のナノ粒子である、請求項1~5のいずれかに記載のリチウムイオン二次電池用正極活物質。
  7. 請求項1~6のいずれかに記載のリチウムイオン二次電池用正極活物質の表面をさらに炭素で被覆してなるリチウムイオン二次電池用正極活物質。
  8. 請求項1~7のいずれかに記載のリチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極材料。
  9. 請求項7に記載のリチウムイオン二次電池用正極活物質が集合した造粒体を含む、請求項8に記載のリチウムイオン二次電池用正極材料。
  10. 請求項1~7のいずれかに記載のリチウムイオン二次電池用正極活物質を正極材料の少なくとも一部に用いてなるリチウムイオン二次電池。
     
PCT/JP2019/006972 2018-03-09 2019-02-25 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 WO2019171994A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511800A JP6645621B1 (ja) 2018-03-09 2019-02-25 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-042684 2018-03-09
JP2018042684 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171994A1 true WO2019171994A1 (ja) 2019-09-12

Family

ID=67846583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006972 WO2019171994A1 (ja) 2018-03-09 2019-02-25 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Country Status (3)

Country Link
JP (1) JP6645621B1 (ja)
TW (1) TWI782192B (ja)
WO (1) WO2019171994A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849324A (zh) * 2022-11-23 2023-03-28 中国科学院深圳先进技术研究院 一种磷酸锰铁锂前驱体及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212764B (zh) * 2021-11-30 2023-06-30 厦门厦钨新能源材料股份有限公司 一种磷酸盐正极材料前驱体、其制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052988A1 (en) * 2009-08-25 2011-03-03 A123 Systems, Inc. Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
JP2013211209A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 正極活物質及びその製造方法並びに負極及び非水電解質2次電池
JP2017021999A (ja) * 2015-07-10 2017-01-26 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052988A1 (en) * 2009-08-25 2011-03-03 A123 Systems, Inc. Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
JP2013211209A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 正極活物質及びその製造方法並びに負極及び非水電解質2次電池
JP2017021999A (ja) * 2015-07-10 2017-01-26 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849324A (zh) * 2022-11-23 2023-03-28 中国科学院深圳先进技术研究院 一种磷酸锰铁锂前驱体及其制备方法和应用

Also Published As

Publication number Publication date
TWI782192B (zh) 2022-11-01
JP6645621B1 (ja) 2020-02-14
JPWO2019171994A1 (ja) 2020-04-16
TW201938481A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
Wang et al. Porous CuO nanowires as the anode of rechargeable Na-ion batteries
Zhang et al. Spherical nano-Sb@ C composite as a high-rate and ultra-stable anode material for sodium-ion batteries
Etacheri et al. Ordered network of interconnected SnO2 nanoparticles for excellent lithium‐ion storage
Reddy et al. Synthesis of SnO 2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries
Sourice et al. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries
Zhu et al. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability
Jiang et al. Graphene/carbon-coated Fe 3 O 4 nanoparticle hybrids for enhanced lithium storage
CN107148692B (zh) 电极用导电性组合物、使用该导电性组合物的电极以及锂离子二次电池
JP6328888B2 (ja) アモルファスおよび部分的にアモルファスからなるナノスケールイオン貯蔵材料
Cabán-Huertas et al. Aqueous synthesis of LiFePO4 with fractal granularity
KR20110007112A (ko) 인산철리튬 입자 분말의 제조 방법, 올리빈형 구조의 인산철리튬 입자 분말, 상기 인산철리튬 입자 분말을 이용한 정극재 시트 및 비수용매계 이차 전지
Wang et al. Graphene‐assisted exfoliation of molybdenum disulfide to fabricate 2D heterostructure for enhancing lithium storage
Ashuri et al. Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids
Shanmugharaj et al. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process
He et al. Facile fabrication of RGO wrapped LiMn 2 O 4 nanorods as a cathode with enhanced specific capacity
WO2021005535A9 (en) Methods for the production of nanocomposites for high temperature electrochemical energy storage devices
Kumar et al. Enhanced electrochemical performance of carbon-coated LiMPO 4 (M= Co and Ni) nanoparticles as cathodes for high-voltage lithium-ion battery
Gryzlov et al. Behavior of LiFePO4/CPVDF/Ag-based cathode materials obtained using polyvinylidene fluoride as the carbon source
Chen et al. Reduced graphene oxide enwrapped vanadium pentoxide nanorods as cathode materials for lithium-ion batteries
Dhaybi et al. A novel low-cost and simple colloidal route for preparing high-performance carbon-coated LiFePO4 for lithium batteries
Kim et al. Synthesis of nano-Li 4 Ti 5 O 12 decorated on non-oxidized carbon nanotubes with enhanced rate capability for lithium-ion batteries
US10374215B2 (en) Centrifugation-assisted preparation of additive-free carbon-decorated magnetite electrodes
Kim et al. Synthesis of reduced graphene oxide-modified LiMn0. 75Fe0. 25PO4 microspheres by salt-assisted spray drying for high-performance lithium-ion batteries
Li et al. Facile synthesis of single-crystalline mesoporous NiO nanosheets as high-performance anode materials for Li-ion batteries
EP3893296A1 (en) Positive electrode for lithium ion secondary batteries, electrode paste for lithium ion secondary batteries, and lithium ion secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511800

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765046

Country of ref document: EP

Kind code of ref document: A1