WO2019171987A1 - 導電性構造体、複合体、及び、これらの製造方法 - Google Patents

導電性構造体、複合体、及び、これらの製造方法 Download PDF

Info

Publication number
WO2019171987A1
WO2019171987A1 PCT/JP2019/006857 JP2019006857W WO2019171987A1 WO 2019171987 A1 WO2019171987 A1 WO 2019171987A1 JP 2019006857 W JP2019006857 W JP 2019006857W WO 2019171987 A1 WO2019171987 A1 WO 2019171987A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive structure
conductive
sheet
fibrous carbon
structure according
Prior art date
Application number
PCT/JP2019/006857
Other languages
English (en)
French (fr)
Inventor
内田 秀樹
智子 山岸
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2019171987A1 publication Critical patent/WO2019171987A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a conductive structure, a composite, and a manufacturing method thereof.
  • conductive structures containing carbon nanostructures have attracted attention.
  • Such a conductive structure is expected not only as an electrically conductive material, but also to expand its application by enabling other functions in addition to “electrical conductivity”.
  • the conductive structure can be applied as a component of the thermoelectric conversion element.
  • the conductive structure can be applied as an electromagnetic wave absorbing material.
  • thermoelectric conversion efficiency Will improve.
  • a conductive structure as an electromagnetic wave absorbing material
  • the thermal conductivity of the electromagnetic wave absorbing material is low, a heat insulating effect can be exhibited together with the electromagnetic wave absorbing performance, so that the wall surface of a house, etc. Suitable for application to.
  • thermoelectric conversion element including a thermoelectric conversion layer including at least one of a carbon nanotube and a conductive polymer and a hollow particle
  • the conductive structure containing the carbon nanostructure is composed of a flexible organic material in which carbon nanotube fine particles are dispersed and pores, and the mass ratio of the carbon nanotube to the organic material is a specific ratio.
  • Thermoelectric conversion materials have also been proposed (see, for example, Patent Document 2).
  • a conductive structure including a carbon nanostructure a conductive material obtained by adding multi-walled carbon nanotubes to a foamable plastic material has been proposed (for example, see Patent Document 3).
  • thermoelectric conversion elements and conductive materials described in Patent Documents 1 to 3 have room for improvement in terms of reducing the thermal conductivity while maintaining the electrical conductivity.
  • an object of the present invention is to provide a conductive structure having a low thermal conductivity. Moreover, an object of this invention is to provide the composite_body
  • the present inventors have intensively studied for the purpose of solving the above problems.
  • the present inventors have newly found that a conductive structure in which a structure satisfying a specific condition is formed using a fibrous carbon nanostructure, and the thermal conductivity can be kept low while ensuring electrical conductivity.
  • the present invention was completed.
  • the conductive structure of the present invention is a conductive structure including a plurality of fibrous carbon nanostructures, and the conductive structure
  • the skeleton structure of the structure is a network structure in which the plurality of fibrous carbon nanostructures are connected to each other, and the volume of the conductive structure is V a (cm 3 ) and is included in the conductive structure the total mass of the plurality of fibrous carbon nanostructures as M c (g) to said plurality of mass of fibrous carbon nanostructures contained per unit volume of the conductive structure [M c (g ) / V a (cm 3 )] is 0.1 g / cm 3 or less.
  • the conductive structure has a network structure in which carbon nanostructures are connected to each other, and the density is equal to or lower than a predetermined value, electrical conductivity is secured by the network structure of the fibrous carbon nanostructure.
  • the thermal conductivity can be kept low due to the low density, that is, the inclusion of many voids in the structure.
  • the value of [M c (g) / V a (cm 3)] can be measured by the method described in Example.
  • the conductive structure of the present invention may be an anisotropic heat conductor.
  • anisotropic thermal conductor in this specification means that there is a difference between the thermal conductivity in the thickness direction and the thermal conductivity in the main surface direction in the conductive structure.
  • the heat conductivity of the thickness direction of a conductive structure and the heat conductivity of a main surface direction can be measured by the method as described in an Example.
  • the conductive structure has a sheet shape, the thermal conductivity ⁇ p (W / mK) in the principal surface direction of the sheet shape, and the thickness direction of the sheet shape.
  • the thermal conductivity ⁇ o (W / mK) preferably satisfies ⁇ p / ⁇ o ⁇ 10.
  • the thermal conductivity in the principal surface direction and the thickness direction If the thermal conductivity satisfies the above relationship, the heat insulation effect can be exhibited well.
  • the “main surface” means both the main surface and the back surface of the sheet-like conductive structure, and the front surface and the back surface are opposed to each other with a distance corresponding to the sheet thickness.
  • the conductive structure of the present invention preferably further contains a resin. This is because if the conductive structure includes a resin, the shape maintaining performance, mechanical strength, and workability of the conductive structure can be improved.
  • the network structure of the present invention it is preferable that at least a part of the network structure has a layer structure. If at least a part of the network structure has a layer structure, the anisotropy of the thermal conductivity of the conductive structure can be increased.
  • the conductive structure of the present invention it is preferable that at least a part of the network structure has a honeycomb structure. This is because if at least a part of the network structure has a honeycomb structure, the mechanical strength of the conductive structure can be improved.
  • the fibrous carbon nanostructure comprises a carbon nanotube. If a network structure is formed using a fibrous carbon nanostructure including carbon nanotubes, the density of the conductive structure can be further reduced and the electrical conductivity can be maintained well.
  • the fibrous carbon nanostructure has a shape in which a t-plot obtained from an adsorption isotherm is convex upward.
  • the bending point of the t-plot is preferably in the range of 0.2 ⁇ t (nm) ⁇ 1.5.
  • the total specific surface area S1 and the internal specific surface area S2 obtained from the t-plot satisfy 0.05 ⁇ S2 / S1 ⁇ 0.30.
  • T-plot obtained from adsorption isotherm “bending point of t-plot”, and “S2 / S1 value of total specific surface area S1 and internal specific surface area S2 obtained from t-plot” are respectively It can be obtained according to the measurement method described herein.
  • the composite of the present invention that can advantageously solve the above-described problem is characterized by including any of the conductive structures described above and a conductive layer different from the conductive structure.
  • the composite having such a configuration has good electrical conductivity and low thermal conductivity in the thickness (height) direction.
  • the method for producing a conductive structure of the present invention that can advantageously solve the above-described problem is obtained by using a sheet-like structure including an unfoamed foamable resin and a plurality of fibrous carbon nanostructures.
  • Decomposition temperature of the foamable resin in a mold having at least one pair of surfaces facing each other in the thickness direction of the sheet, or at least one surface surrounding the sheet-like structure in the principal surface direction of the sheet-like structure
  • the method for manufacturing a conductive structure of the present invention further includes a baking step of heating the heated structure at a temperature equal to or higher than the decomposition temperature of the foamable resin after the heating step.
  • the method for producing a composite according to the present invention that can advantageously solve the above-described problem is the method for producing at least one of the upper and lower surfaces of the sheet-like structure before the heating step in the method for producing a conductive structure.
  • the method further includes a conductive layer disposing step of disposing a conductive layer different from the sheet-like structure on at least a part of the side surface of the sheet-like structure. According to such a production method, a composite having a low thermal conductivity can be produced satisfactorily.
  • a conductive structure having a low thermal conductivity can be provided.
  • a composite provided with the electroconductive structure with low heat conductivity can be provided.
  • the conductive structure and the composite of the present invention are not particularly limited, and can be used as components of electrodes of various batteries such as thermoelectric conversion materials, electromagnetic wave absorbing materials, and lithium ion batteries.
  • the manufacturing method of this invention can manufacture the electroconductive structure and composite_body
  • thermoelectric conversion material when used as a thermoelectric conversion material, the dimensionless figure of merit ZT of the thermoelectric conversion element can be improved, and when used as an electromagnetic wave absorbing material, the electromagnetic wave shielding characteristics can be improved.
  • electrolyte solution when it uses as a component of the electrode of various batteries, electrolyte solution can enter into the network structure of an electroconductive structure, and the responsiveness of an electrode can be improved.
  • the conductive structure of the present invention is a conductive structure including a plurality of fibrous carbon nanostructures.
  • the skeleton structure has a network structure in which a plurality of fibrous carbon nanostructures are connected to each other.
  • the volume of the conductive structure is V a (cm 3 )
  • the total mass of the plurality of fibrous carbon nanostructures included in the conductive structure is M c (g).
  • the value of mass [M c (g) / V a (cm 3 )] of a plurality of fibrous carbon nanostructures contained per unit volume of the conductive structure is 0.1 g / cm 3 or less. It is characterized by that.
  • the conductive structure of the present invention has a small mass value of the plurality of fibrous carbon nanostructures contained per unit volume of the conductive structure.
  • the conductive structure of the present invention has a network structure in which fibrous carbon nanostructures are connected to each other, and the mass of a plurality of fibrous carbon nanostructures contained per unit volume of the conductive structure [M c (g) / V a (cm 3 )] satisfies the condition of 0.1 g / cm 3 or less, and therefore a portion where no conductive structure exists in the network structure is frequently present. Contains.
  • a medium having a low thermal conductivity, such as air, can be interposed in the “portion where the conductive structure does not exist”.
  • the thermal conductivity can be lowered while ensuring conductivity by a network structure in which a plurality of fibrous carbon nanostructures are connected to each other.
  • a metal and a resin may optionally be blended in the conductive structure. Even when a metal and / or resin is blended in the conductive structure of the present invention, the present invention is not limited as long as it includes a network structure composed of fibrous carbon nanostructures satisfying the above conditions as a skeleton structure.
  • the conductive structure can exhibit excellent heat insulation.
  • Fibrous carbon nanostructure As the fibrous carbon nanostructure used for forming a network structure which is a skeleton structure in the conductive structure, a fibrous carbon nanostructure satisfying the following various properties is preferable. In addition, these various properties of the fibrous carbon nanostructure are usually maintained even in the obtained conductive structure.
  • the fibrous carbon nanostructure generally refers to a fibrous carbon material having an outer diameter (fiber diameter) of less than 1 ⁇ m. In this specification, “fibrous” means that the aspect ratio is 100 or more. Furthermore, the fibrous carbon nanostructure preferably has a bent structure.
  • the fibrous carbon nanostructure having a bent structure can be preferably produced by the “super growth method” described later.
  • the fibrous carbon nanostructure includes a carbon nanotube. If a network structure is formed using a fibrous carbon nanostructure including carbon nanotubes, the density of the conductive structure can be further reduced and the electrical conductivity can be maintained well.
  • the fibrous carbon nanostructure containing carbon nanotubes that can be suitably used for forming a network structure may be composed of only carbon nanotubes (hereinafter sometimes referred to as “CNT”). Further, it may be a mixture of CNT and a fibrous carbon nanostructure other than CNT.
  • the CNTs in the fibrous carbon nanostructure are not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Preferably, it is a single-walled carbon nanotube. If single-walled carbon nanotubes are used, the conductive structure can be reduced in density and a network structure can be favorably formed as compared with the case where multi-walled carbon nanotubes are used.
  • the average diameter (Av) of the fibrous carbon nanostructure containing CNTs is preferably 1 nm or more, more preferably 2.5 nm or more, more preferably 3 nm or more, and 15 nm or less. It is preferable that it is 10 nm or less.
  • the average diameter (Av) of the fibrous carbon nanostructure is not less than the above lower limit, the mechanical strength of the conductive structure can be improved and the handleability of the conductive structure can be improved. Further, if the average diameter (Av) of the fibrous carbon nanostructure is not more than the above upper limit value, since the fibrous carbon nanostructure is flexible, even when the conductive structure is bent, The fibrous carbon nanostructure is difficult to break and the performance can be maintained.
  • the “average diameter (Av) of fibrous carbon nanostructures” is obtained by measuring the diameter (outer diameter) of 100 fibrous carbon nanostructures selected at random using a transmission electron microscope. Can do. And the average diameter (Av) of the fibrous carbon nanostructure containing CNT may be adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure containing CNT, or obtained by a different manufacturing method. You may adjust by combining multiple types of fibrous carbon nanostructure containing the produced CNT.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNTs is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and preferably 2500 m 2 / g or less. More preferably, it is 1200 m 2 / g or less. If the BET specific surface area of the fibrous carbon nanostructure containing CNT is not less than the above lower limit value, the conductivity of the conductive structure can be further increased. Moreover, if the BET specific surface area of the fibrous carbon nanostructure containing CNT is not more than the above upper limit value, a conductive structure having excellent moldability can be produced.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the fibrous carbon nanostructure containing CNTs is oriented in a direction substantially perpendicular to the base material on the base material having a catalyst layer for carbon nanotube growth on the surface, for example, according to the super growth method described later.
  • the mass density of the fibrous carbon nanostructure as the aligned aggregate after growth may be 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. preferable.
  • the network formed by moderately weakening the bonds between the fibrous carbon nanostructures and connecting the plurality of fibrous carbon nanostructures to each other in the conductive structure The structure can be uniformly dispersed, and the conductivity of the conductive structure can be further increased. Moreover, if mass density is more than the said lower limit, the bundle structure of fibrous carbon nanostructure can be maintained moderately, and a network structure can be favorably formed in an electroconductive structure.
  • the fibrous carbon nanostructure containing CNTs has a shape in which the t-plot obtained from the adsorption isotherm is convex upward. Among them, it is more preferable that the CNT opening process is not performed and the t-plot has a convex shape. If the t-plot of the fibrous carbon nanostructure shows a convex shape, the conductivity of the conductive structure can be further increased.
  • the “t-plot” is obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm of the fibrous carbon nanostructure measured by the nitrogen gas adsorption method. Can do.
  • the average thickness t of the nitrogen gas adsorption layer is plotted against the relative pressure P / P0, and the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from the known standard isotherm to perform the above conversion.
  • the growth of the nitrogen gas adsorption layer is classified into the following processes (1) to (3).
  • the slope of the t-plot is changed by the following processes (1) to (3).
  • the t-plot indicating an upwardly convex shape is located on a straight line passing through the origin in a region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t is large, the plot is The position will be shifted downward.
  • the fibrous carbon nanostructure having such a t-plot shape has a large ratio of the internal specific surface area to the total specific surface area of the fibrous carbon nanostructure, and there are many carbon nanostructures constituting the fibrous carbon nanostructure. It is shown that the opening is formed.
  • the inflection point of the t-plot of the fibrous carbon nanostructure containing CNT is preferably in a range satisfying 0.2 ⁇ t (nm) ⁇ 1.5, and 0.45 ⁇ t (nm) ⁇ More preferably, it is in the range of 1.5, and more preferably in the range of 0.55 ⁇ t (nm) ⁇ 1.0.
  • the “position of the bending point” is an intersection of the approximate line A in the process (1) described above and the approximate line B in the process (3) described above.
  • the fibrous carbon nanostructure containing CNTs preferably has a ratio (S2 / S1) of the internal specific surface area S2 to the total specific surface area S1 obtained from the t-plot of 0.05 or more and 0.30 or less.
  • the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure containing CNTs are not particularly limited, but individually, S1 is preferably 600 m 2 / g or more and 1400 m 2 / g or less. 800 m 2 / g or more and 1200 m 2 / g or less is more preferable.
  • S2 is preferably 30 m 2 / g or more and 540 m 2 / g or less.
  • the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure containing CNT can be obtained from the t-plot. Specifically, first, the total specific surface area S1 can be obtained from the slope of the approximate line in the process (1), and the external specific surface area S3 can be obtained from the slope of the approximate line in the process (3). Then, the internal specific surface area S2 can be calculated by subtracting the external specific surface area S3 from the total specific surface area S1.
  • the measurement of the adsorption isotherm of the fibrous carbon nanostructure containing CNT, the creation of the t-plot, and the calculation of the total specific surface area S1 and the internal specific surface area S2 based on the analysis of the t-plot are, for example, commercially available.
  • the measurement apparatus “BELSORP (registered trademark) -mini” manufactured by Nippon Bell Co., Ltd.) can be used.
  • the fibrous carbon nanostructure containing CNTs having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface,
  • a method supergrowth method; which dramatically improves the catalytic activity of the catalyst layer by allowing a small amount of an oxidizing agent (catalyst activation material) to be present in the system.
  • an oxidizing agent catalyst activation material
  • the conductive structure may contain a resin.
  • a resin include, but are not limited to, thermoplastic resins such as polyacrylonitrile, polyurethane, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyester, and polyamide.
  • the resin that can be contained in the conductive structure can be a resin component derived from the foamable resin described in detail in the item “Production Method”.
  • the content of the resin in the conductive structure is preferably 400 parts by mass or less with respect to 100 parts by mass of the fibrous carbon nanostructure. If resin content is below the upper limit which requires, it can suppress effectively that the heat conductivity of an electroconductive composition increases.
  • content of resin can be 10 mass parts or more with respect to 100 mass parts of fibrous carbon nanostructures, for example.
  • the shape maintaining performance, mechanical strength, and workability of the conductive structure may be appropriately increased.
  • the conductive structure may contain a metal.
  • the metal is not particularly limited, and a metal that is shaped into particles (that is, metal particles) can be suitably used.
  • the metal that can be contained in the conductive structure is not particularly limited as long as it has conductivity, and examples thereof include Al, Cu, Pd, and Ag.
  • “particulate” means that the aspect ratio is less than 5.
  • the conductive structure may be a sheet-like structure in which a main surface and a back surface (also collectively referred to as “main surface”) are opposed to each other with a distance corresponding to a thickness.
  • the conductive structure obtained according to the manufacturing method according to the example of the present invention has a structure in which the mesh structure is open at least at each end in the main surface direction.
  • FIG. 1 the microscope image which expandedly displayed the cross section of the electroconductive structure which concerns on an example of this invention is shown.
  • the area displayed in light color is the network structure 1 in which a plurality of fibrous carbon nanostructures are connected to each other, and the area displayed in dark color is the gap 2 between the network structures.
  • the network structure shown in FIG. 1 is like a so-called “pie dough” in which a plurality of layers partially connected to each other are laminated in the horizontal direction in FIG. 1 substantially along the main surface direction of the conductive structure. A layered structure is formed.
  • the mesh structure shown in FIG. 1 has an end portion in the main surface direction on the right side in FIG. 1, and the mesh structure is open at the end portion.
  • the microscope image of the cross section of the electroconductive structure of another example of this invention is shown in FIG. As in FIG. 1, the bright color area in the image is the mesh structure 1, and the dark color area is the gap 2.
  • the network structure having a shape as shown in FIG. 2 can also be referred to as a honeycomb structure. It is considered that the mechanical strength of the conductive structure is increased by including such a honeycomb structure in the skeleton structure.
  • whether or not the conductive structure has a layered structure or a honeycomb structure as described above is not particularly limited, and is determined by image analysis of a microscopic image of a cross section of the conductive structure. can do. More specifically, for example, an edge in an image is extracted by a general filtering process, and the presence / absence of a layered structure or a honeycomb structure can be determined by shape recognition based on the extracted edge.
  • Mass of fibrous carbon nanostructure contained per unit volume of conductive structure [M c (g) / V a (cm 3 )]]
  • the mass of the fibrous carbon nanostructure contained per unit volume of the conductive structure [M c (g) / V a (cm 3 ). ] Needs to be 0.1 g / cm 3 or less.
  • the value of M c (g) / V a (cm 3) is preferably at 0.08 g / cm 3 or less, more preferably 0.05 g / cm 3 or less, usually, 0. It is 01 g / cm 3 or more. If the value of [M c (g) / V a (cm 3 )] is low, the thermal conductivity is also low.
  • “Volume V a of conductive structure” is the volume of the entire conductive structure, and when the conductive structure contains an optional component such as a resin and / or a metal as described above, the optional component The volume of the entire conductive structure including In addition, after adjusting the shape of the conductive structure as necessary, the volume V a (cm 3 ) of the conductive structure is obtained by calculating (bottom area cm 2 ⁇ height cm). Can do. In addition, when the conductive structure includes optional components such as resin and metal as described above, after obtaining the volume V a (cm 3 ) of the conductive structure according to the above, pulverization and classification, etc.
  • the total mass M c (g) of the fibrous carbon nanostructure contained in the body can be calculated.
  • the mass of the conductive structure itself is the total mass M of the fibrous carbon nanostructures contained in the conductive structure. It corresponds to c (g).
  • the conductive structure of the present invention is a conductive structure in which the thermal conductivity in the thickness direction and the thermal conductivity in the principal surface direction of the conductive structure are different, that is, an anisotropic thermal conductor. good. More specifically, it is preferable that the heat conductivity in the thickness direction of the conductive structure is smaller than the heat conductivity in the main surface direction. If the conductive structure is an anisotropic heat conductor, it is preferably used for applications where anisotropy of thermal conductivity may be required, such as when used as a component of a thermoelectric conversion element. it can. Such a conductive structure is preferably in the form of a sheet.
  • the thermal conductivity ⁇ o in the thickness direction of the conductive structure is preferably 0.2 W / (m ⁇ K) or less, more preferably 0.1 W / (m ⁇ K) or less, and More preferably, it is 05 W / (m ⁇ K) or less, and particularly preferably 0.03 W / (m ⁇ K) or less. If the heat conductivity in the thickness direction of the conductive structure is not more than the above upper limit value, the heat conductivity in the thickness direction is sufficiently low, and it can be used favorably for various applications as a heat insulating material.
  • the thermal conductivity ⁇ p (W / mK) in the main surface direction and the thermal conductivity ⁇ o (W / mK) in the thickness direction satisfy ⁇ p / ⁇ o ⁇ 10. preferable.
  • the thermal conductivity in the principal surface direction and the thermal conductivity in the thickness direction satisfy the above relationship. If it has, the heat insulation effect can be exhibited favorably.
  • the value of ⁇ p / ⁇ o is preferably 8 or less, more preferably 5 or less, and even more preferably 1.5 or less. Note that the value of ⁇ p / ⁇ o can usually be 1 or more.
  • the conductive structure preferably has a value of ⁇ p / ⁇ p that is a ratio of the electrical conductivity ⁇ p in the main surface direction to the thermal conductivity ⁇ p in the main surface direction is 1.0 or more. .
  • a conductive structure having a value of ⁇ p / ⁇ p of 1.0 or more can be suitably applied particularly as a component of a thermoelectric conversion element.
  • the electrical conductivity ⁇ p in the main surface direction can be measured by the method described in the examples.
  • the conductive structure of the present invention when the conductive structure of the present invention is a sheet-like conductive structure, at least one of the main surfaces of the conductive structure or at least a part of the side surfaces is electrically conductive.
  • a conductive layer different from the conductive structure is further provided.
  • the composite having such a structure can be applied to various uses.
  • the conductive layer has at least a composition different from that of the conductive structure, or the mass value of the fibrous carbon nanostructure contained per unit volume is 0.1 g / cm 3 or more. It differs from the conductive structure described above.
  • the conductive layer is not particularly limited as long as it is formed using a conductive material, and can be formed of, for example, a metal material such as Al, Cu, Pd, and Ag, or a conductive carbon material. Among these, if a metal plate made of a metal material is employed as the conductive layer, it can function as an extraction electrode for various batteries. Alternatively, conductive layers are arranged on both upper and lower surfaces of the conductive structure, and further conductive structures are arranged on the upper surface and the lower surface, respectively. The conductive structure can be electrically connected.
  • the resistance value is reduced when it is used as an electrode for various batteries while protecting the conductive structure layer. It is possible to make it.
  • the method for producing a conductive structure according to the present invention includes a sheet-like structure including an unfoamed expandable resin and a fibrous carbon nanostructure, at least a pair of surfaces facing each other in the thickness direction of the sheet-like structure, Or the heating process which heats within the metal mold
  • the heated structure is in contact with at least one pair of surfaces or at least one surface. That is, in the heated structure, expansion in a direction perpendicular to the pair of surfaces or one surface is restricted by at least the pair of surfaces or at least one surface of the mold in the heating process.
  • the manufacturing method of the electroconductive structure of this invention uses the dispersion liquid preparation process which prepares the dispersion liquid containing a fibrous carbon nanostructure and resin prior to this process, and the obtained composition.
  • a sheet-like structure forming step for obtaining a sheet-like structure can be included.
  • the manufacturing method of the electroconductive structure of this invention can include the baking process which bakes the heated structure obtained through the heating process after a heating process. Hereinafter, each step will be described.
  • the conductive carbon dispersion (hereinafter also simply referred to as “dispersion”) is prepared by dispersing the fibrous carbon nanostructure and the resin in a solvent.
  • a metal as an arbitrary component with a conductive structure arbitrary metal particles can be added in this process.
  • Fibrous carbon nanostructure As the fibrous carbon nanostructure to be blended in the dispersion, various fibrous carbon nanostructures as described in the item “Conductive structure” can be used.
  • the network structure of the fibrous carbon nanostructure is formed by foaming the foamable resin in a heating step described later.
  • SGCNT it is optimal to use SGCNT especially as a fibrous carbon nanostructure.
  • SGCNT has an appropriate bundle forming strength, and can form a good network structure when foaming resin is foamed.
  • the network structure formed by SGCNT can sufficiently increase the mechanical strength of the conductive structure, the conductive structure can be obtained even after the resin component is removed from the conductive structure in the baking step described later. Sufficient strength can be imparted.
  • the resin blended in the dispersion is preferably a foamable resin.
  • the foamable resin include a particulate foamable resin.
  • the expandable resin is a thermally expandable material in which an expandable substance such as a low-boiling hydrocarbon is encapsulated in a cell made of a thermoplastic polymer as exemplified with respect to the resin in the item of “conductive structure” above. It can be a microsphere.
  • the expandable resin starts to expand when heated to a temperature equal to or higher than the expansion start temperature, and when the maximum expansion ratio specific to each expandable resin is reached at the maximum expansion temperature, the temperature is higher than that. Even if it is heated, it does not expand further and may contract on the contrary.
  • the particulate foamable resin preferably has a diameter before foaming of 10 ⁇ m or more and 50 ⁇ m or less. If the diameter of the particulate foamable resin before foaming is within such a range, the network structure can be satisfactorily formed in the conductive structure.
  • the solvent is not particularly limited, and examples thereof include water; methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, Alcohols such as nonanol and decanol; ketones such as acetone, methyl ethyl ketone and cyclohexanone; esters such as ethyl acetate and butyl acetate; ethers such as diethyl ether, dioxane and tetrahydrofuran; N, N-dimethylformamide, N-methylpyrrolidone Amide polar organic solvents such as: aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene, paradichlorobenzene,
  • a surfactant in preparing the dispersion, a surfactant, a synthetic polymer, or a natural polymer can be optionally added as an additive.
  • the dispersion liquid preparing step can be prepared by a dispersion process using ultrasonic waves, a dispersion process using stirring, or the like, without particular limitation.
  • the dispersion prepared in the dispersion preparing step preferably contains 100 parts by mass or more and 1000 parts by mass or less of the resin with respect to 100 parts by mass of the fibrous carbon nanostructure. This is because if the fibrous carbon nanostructure and the resin are blended within such a range, a good network structure can be formed in the conductive structure. Furthermore, the solid content concentration of the dispersion is preferably 0.1% by mass or more and 10% by mass or less.
  • the solvent is removed from the dispersion obtained in the dispersion preparing step to form a sheet-like structure.
  • a sheet-like structure can be formed by a method of drying the obtained filtrate.
  • the film-forming substrate is not particularly limited, and a known substrate can be used.
  • examples of the film formation substrate on which the CNT dispersion liquid is applied in the method (1) include a resin substrate and a glass substrate.
  • seat which consists of a filter paper and a cellulose, nitrocellulose, an alumina, etc. can be mentioned.
  • a known coating method can be adopted as a method for coating the dispersion on the film-forming substrate.
  • a coating method dipping method, roll coating method, gravure coating method, knife coating method, air knife coating method, roll knife coating method, die coating method, screen printing method, spray coating method, gravure offset method, etc. Can be used.
  • a known filtration method can be employed as a method for filtering the dispersion using a film-forming substrate.
  • natural filtration, vacuum filtration, pressure filtration, centrifugal filtration, or the like can be used as a filtration method.
  • vacuum filtration is preferable.
  • drying method As a method of drying the dispersion applied on the film-forming substrate in the method (1) or the filtrate obtained in the method (2), a known drying method can be employed. Examples of the drying method include a hot air drying method, a vacuum drying method, a hot roll drying method, and an infrared irradiation method.
  • the drying temperature is not particularly limited, but is usually room temperature to 200 ° C.
  • the drying time is not particularly limited, but is usually 0.1 to 150 minutes.
  • the thickness of the sheet-like structure obtained in the sheet-like structure forming step can be appropriately set according to the use of the conductive structure, but can usually be 45 ⁇ m or more and 200 ⁇ m or less. If the thickness of the sheet structure is not more than the above upper limit value, it is possible to effectively suppress the hardness of the sheet structure and the foaming resin from being insufficiently foamed.
  • the sheet-like structure obtained in the above-described step is a pair of surfaces facing each other in the thickness direction of the structure, or at least one surface surrounding the sheet-like structure in the main surface direction of the structure
  • a heated structure In FIG. 3, the microscope image of an example of the heated structure obtained by the heating process is shown.
  • FIG. 3 is a microscopic image of a heated structure having a “layered structure”.
  • the light color display area that exists in a shape that just fills the gap is the resin component 3 of the foamable resin.
  • the heating temperature in the heating step is preferably a temperature not lower than the foaming temperature of the foamable resin contained in the structure and lower than the decomposition temperature, and is usually 100 ° C. or higher and 300 ° C. or lower.
  • the foaming start temperature of the foamable resin can be adjusted also by appropriately changing the pressure conditions in the heating step.
  • the heating time is usually 30 minutes or longer and 120 minutes or shorter.
  • die As a metal mold
  • the shape of the molded product of the mold is not particularly limited as long as it has at least one pair of opposing surfaces or at least one surface capable of defining the shape of the product to be molded in a certain direction, and can be any shape. These “at least a pair of surfaces / one surface” are spaced apart in consideration of the use of the conductive structure and the amount of expansion when the unfoamed foamable resin contained in the sheet-like structure is foamed.
  • the sheet-like structure can be spaced apart.
  • the sheet-like structure can be expanded to a thickness of 5 times or more and 500 times or less by foaming. More specifically, in the case of manufacturing a conductive structure having a layered structure using a mold having at least a pair of surfaces facing each other in the thickness direction of the sheet-like structure, the sheet is heated in the heating step. The structure can be expanded from 5 times to 10 times. Alternatively, in the case of manufacturing a conductive structure having a honeycomb structure using a mold having at least one surface surrounding the sheet-like structure in the principal surface direction of the sheet-like structure, the sheet is heated in the heating step. The shaped structure can be expanded from 200 times to 500 times.
  • a sheet-like structure is heated by using a mold having a pair of surfaces or one surface capable of defining the shape of a molded product in a certain direction. It is possible to impose restrictions on the expansion, that is, the spatial extent when the expandable resin contained in the structure is foamed. More specifically, the foamable resin foams in a direction other than the direction in which expansion is restricted by at least one pair of surfaces or at least one surface of the mold to form pores.
  • the mechanism by which such a layered structure or honeycomb structure as described above can be formed in the conductive structure using such restrictions is not clear, but is presumed to be as follows.
  • the fibrous carbon nanostructures are arranged in a direction closer to the main surface direction than the thickness direction of the sheet-like structure.
  • the fibrous carbon nanostructure extends “falling” in the sheet-like structure. Therefore, when at least a pair of surfaces of the mold face each other in the thickness direction of the sheet-like structure, pores grow in the surface direction due to the expansion of the foamable resin, and at least the pair of surfaces of the mold A plurality of layers extending substantially along the surface direction extends through the holes. Thereby, it is guessed that the layered structure of the fibrous carbon nanostructure can be formed in the conductive structure.
  • the expansion direction of the foamable resin is restricted in the main surface direction.
  • a sheet-like structure including a fibrous carbon nanostructure extending in a collapsed state is heated in such a mold, the pores grow in the thickness direction, and the fibrous carbon nanoparticle that extends in a collapsed manner.
  • the gap between the structures is enlarged.
  • the fibrous carbon nanostructure itself is not completely dispersed in the dispersion medium, and a plurality of fibrous carbon nanostructures are present even in the dispersion medium. Are bundled to form a bundle.
  • honeycomb structure as described above can be obtained if the voids between the fibrous carbon nanostructures extending while falling while maintaining the bonding by the bundle are expanded. Note that the bundle formed by the plurality of fibrous carbon nanostructures also contributes to increasing the strength of the conductive structure.
  • the “pair of surfaces” included in the mold does not necessarily have to be flat.
  • the “pair of surfaces” is not a flat surface, for example, when the shape of the molded product has a curved surface or uneven portions, first, the sheet-like structure is press-molded with the die prior to heating. Then, it may be deformed into a shape along the shape of the molded product of the mold. Then, a pair of opposing surfaces of the mold are arranged at predetermined intervals, a deformed sheet-like structure is arranged in the mold, and the foamable resin is foamed by heating to form a desired network structure. A conductive structure having a desired shape can be obtained.
  • the heated structure that has undergone the heating step can be heated at a temperature equal to or higher than the decomposition temperature of the foamable resin.
  • the foamable resin component can be removed from the heated structure.
  • the heating temperature in the firing step is not particularly limited and may be any temperature, but is usually 450 ° C. or higher and 600 ° C. or lower.
  • the baking time in a baking process is 10 minutes or more and 120 minutes or less normally. If the component of the foamable resin is removed from the heated structure by the firing step, the thermal conductivity of the obtained conductive structure can be further reduced.
  • the firing step as the foamable resin is decomposed and disappears from the conductive structure, the network structure 1 extending around the resin component 3 in FIG. 3 can also disappear. Therefore, the conductive structure that has undergone the firing process has a lower density, and as shown in FIG. 1, the shape of the network structure can be a more complete “layer” state. If the heating temperature in the firing step is extremely high, the network structure that can be formed by the fibrous carbon nanostructure is impaired, and the electrical conductivity of the conductive structure may be deteriorated. As described above, the firing process is an optional process.
  • the firing step which is a step of heating the heated structure at a temperature equal to or higher than the decomposition temperature of the foamable resin, or replace the heated structure at a temperature lower than the decomposition temperature of the foamable resin.
  • the resin component derived from the foamable resin can be left in the obtained conductive structure.
  • a conductive structure including a resin is excellent in shape maintenance performance, mechanical strength, and workability, and thus can be a very suitable material depending on applications.
  • a cutout step of cutting out the obtained conductive structure into a desired shape may be performed.
  • the conductive structure is cut so as to form a cut surface in a direction intersecting with the main surface of the conductive structure or in a direction parallel to the main surface of the conductive structure. be able to.
  • the main surface of the conductive structure was described above.
  • the mesh structure is not open, and the mesh structure is open at each end in the main surface direction.
  • the above-described network structure is open on each surface of the conductive structure. .
  • the method for producing a composite according to the present invention includes at least one of upper and lower surfaces of a sheet-like structure or at least one of side surfaces of the sheet-like structure before the heating step in the above-described method for producing an electrically conductive structure.
  • the method further includes a conductive layer disposing step of disposing a conductive layer different from the structure in the part.
  • the manufacturing method of the composite of this invention is a heating process subsequent to a conductive layer arrangement
  • the structure it is preferable to heat the structure in a mold having respective surfaces respectively arranged on the upper surface side and the lower surface side of the structure.
  • the conductive layer is arranged on at least a part of the side surface of the sheet-like structure in the conductive layer arranging step, the sheet-like structure in the main surface direction of the structure in the heating step subsequent to the conductive layer arranging step.
  • the structure is preferably heated in a mold having at least one surface surrounding the body.
  • the mechanism of electrically connecting the conductive layer and the conductive structure by laminating and heating the conductive layer-sheet-like structure is not clear, but the following two mechanisms are available. Presumed.
  • the first mechanism is that the foamable resin is physically joined to the conductive layer by being softened by heating.
  • the second mechanism when the conductive layer contains a fibrous carbon nanostructure, the fibrous carbon nanostructure that is a component of the conductive layer and the fibrous form that forms the conductive structure. Joining is caused by a physical interaction with the carbon nanostructure.
  • a conductive layer different from the sheet-like structure is arranged on at least one of the upper and lower surfaces (front surface and back surface) of the sheet-like structure or at least a part of the side surface of the sheet-like structure. .
  • the conductive layer and the conductive structure are removed when the sheet-like structure is heated in the heating step. Can be integrated. Thereby, a composite_body
  • the conductive layer is not particularly limited, and may be any known material having electrical conductivity, for example, a metal material such as Al, Cu, Pd, and Ag, or a conductive carbon material. Furthermore, it is of course possible to dispose a conductive structure similar to the conductive structure of the present invention as the conductive layer. In this case, a conductive structure having a desired thickness can be obtained by stacking a plurality of thin conductive structures. Moreover, if the conductive layer is an electrode or other components of various batteries, the production efficiency of various batteries can be improved.
  • the electrical conductivity (s / m) at room temperature was measured using a low resistivity meter (Mitsubishi Chemical Analytic, “Loresta (registered trademark)”, probe: ESP probe) by a four-probe method.
  • a low resistivity meter Mitsubishi Chemical Analytic, “Loresta (registered trademark)”, probe: ESP probe
  • probe: ESP probe probe: three test pieces of an arbitrary size were cut out from the sheet-like structure and conductive structure produced in the example to obtain a measurement sample.
  • the electrical conductivity (s / m) in the principal surface direction at room temperature was measured, and the average value was calculated as the electrical conductivity.
  • thermal conductivity thermal diffusivity ⁇ density ⁇ heat capacity.
  • Example 1 Single-walled carbon nanotubes (manufactured by ZEON NANO TECHNOLOGY, ZEONANO (registered trademark) SG101, corresponding to “SGCNT”) were used as the fibrous carbon nanostructure.
  • the average diameter of the SGCNT is 3.5 nm
  • the BET specific surface area is 900 m 2 / g
  • the t-plot is convex upward
  • the bending point of the t-plot is 0.6 nm
  • the ratio S2 / S1 between them was 0.09.
  • Dispersion preparation process 25 mg of the above-mentioned SGCNT, which is a fibrous carbon nanostructure, and an expandable resin (manufactured by Sekisui Chemical Co., Ltd., ADVANCEL (registered trademark) EM series “EMH204”, expansion start temperature: 110 to 130 ° C., maximum expansion temperature) : 160 to 180 ° C.) was added to 100 ml of ethanol as a solvent, and dispersion treatment was carried out for 30 minutes using an ultrasonic dispersion device to obtain a dispersion containing SGCNT and foamable resin.
  • SGCNT which is a fibrous carbon nanostructure
  • an expandable resin manufactured by Sekisui Chemical Co., Ltd., ADVANCEL (registered trademark) EM series “EMH204”, expansion start temperature: 110 to 130 ° C., maximum expansion temperature) : 160 to 180 ° C.
  • ⁇ Sheet-like structure forming step> The dispersion was filtered under reduced pressure using a filter paper (manufactured by Kiriyama Co., No. 5A) to obtain a deposit. And the deposit was dried at room temperature for 20 minutes, and the deposit was peeled from the filter paper. Furthermore, the peeled deposit was put in a vacuum oven and dried at 80 ° C. for 120 minutes, and the solvent was completely removed from the deposit to obtain a sheet-like structure. The thickness of the obtained sheet-like structure was 50 ⁇ m, the diameter was 50 mm, and the density measured according to the above method was 0.5 g / cm 3 .
  • positioned a sheet-like structure was mounted in the oven heated up at 170 degreeC, and also heated so that the temperature of an upper and lower metal plate might also be set to 170 degreeC.
  • the sheet-like structure was heated for 60 minutes to obtain a heated structure.
  • the structure was removed from the mold.
  • the thickness of the obtained structure was 3 mm (3000 ⁇ m), and the density was 0.05 g / cm 3 . Further, it was confirmed that the structure had electrical conductivity in the thickness (height) direction and the principal surface direction in the same manner as in the above-described conductivity measurement method.
  • the heated structure obtained in the above step was further baked for 30 minutes in a heating furnace at 550 ° C.
  • Example 2 A sheet-like structure obtained in the same manner as in Example 1 was cut into 2 cm square.
  • the cut out 2 cm square sheet-like structure was placed in a mold made of a 3 cm ⁇ 3 cm metal rectangular frame and a bottom plate. Specifically, a 2 cm square sheet-like structure was placed on the bottom plate of the mold and heated under the same conditions as in Example 1.
  • the obtained heated structure had a thickness (height) of 1.5 cm and had electrical conductivity in the thickness direction and the principal surface direction. Furthermore, when a cross section of the obtained heated structure was observed with a microscope, a honeycomb-like structure was confirmed. Further, the obtained heated structure was fired in the same manner as in Example 1 to obtain a conductive structure.
  • the value of [M c (g) / V a (cm 3 )] of the conductive structure was 0.04 g / cm 3 , and the conductivity in the main surface direction was 2.1 S / cm.
  • Example 3 The upper and lower sides of the sheet-like structure obtained in the same manner as in Example 1 were sandwiched between copper plates having a diameter of 6 cm and a thickness of 500 ⁇ m as conductive layers, and the heating step and the firing step were performed in the same manner as in Example 1.
  • the copper plate was completely joined to the heated structure. Furthermore, when the electric resistance value in the thickness direction of the obtained heated structure was measured using a tester, it was 1 ⁇ , and it was confirmed that an electrical connection was formed in the thickness direction in the composite.
  • Example 4 In ⁇ dispersion liquid preparation process>, the blending amount of the foamable resin was changed to 25 mg, and the mold was used except that a mold having a gap of 547 ⁇ m between the upper and lower metal plates was used as the mold used in the ⁇ heating process>. In the same manner as in Example 1, a conductive structure was obtained. Various measurements and evaluations were performed on the obtained conductive structure. The results are shown in Table 1.
  • Example 5 In ⁇ dispersion liquid preparation step>, the blending amount of the foamable resin was changed to 50 mg, and this was carried out except that a die having a gap of 1354 ⁇ m between the upper and lower metal plates was used as the die used in the ⁇ heating step>. In the same manner as in Example 1, a conductive structure was obtained. Various measurements and evaluations were performed on the obtained conductive structure. The results are shown in Table 1.
  • Example 6 In ⁇ Dispersion Preparation Step>, the blending amount of the foamable resin was changed to 75 mg, except that a die having a gap between the upper and lower metal plates of 2276 ⁇ m was used as the die used in the ⁇ Heating Step>. In the same manner as in Example 1, a conductive structure was obtained. Various measurements and evaluations were performed on the obtained conductive structure. The results are shown in Table 1.
  • Example 7 A conductive structure was obtained in the same manner as in Example 1 except that a mold having a gap between the upper and lower metal plates of 3800 ⁇ m was used as the mold used in the ⁇ heating step>. Various measurements and evaluations were performed on the obtained conductive structure. The results are shown in Table 1.
  • Comparative Example 2 Example except that multi-walled carbon nanotubes (manufactured by Nanocyl, NC7000, average diameter: 9.5 nm, average length: 1.5 nm, specific surface area distribution: 250 to 300 m 2 / g) were used as the fibrous carbon nanostructure.
  • the heating process was performed in the same manner as in 1.
  • the obtained heated structure showed no electrical conductivity.
  • the baking process similar to Example 1 was implemented, it will collapse
  • Comparative Example 3 As the fibrous carbon nanostructure, a single-walled carbon nanotube (manufactured by Nano Integris, HiPCO (registered trademark) Super Purified, diameter distribution: 0.8-1.2 nm, tube length distribution: ⁇ 100-1000 nm, specific surface area distribution: ⁇ The heating process was performed in the same manner as in Example 1 except that 400-1000 m 2 / g) was used. The obtained heated structure showed no electrical conductivity. And when the baking process similar to Example 1 was implemented, it will collapse
  • a conductive structure having a low thermal conductivity can be provided.
  • a composite provided with the electroconductive structure with low heat conductivity can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造1よりなる、導電性構造体である。そして、導電性構造体の体積をV(cm3)、繊維状炭素ナノ構造体の総質量をM(g)として、導電性構造体の単位体積あたりに含有される繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値が、0.1g/cm3以下である。また、導電性構造体の厚み方向の熱伝導率κ(W/mK)及び主面方向の熱伝導率κ(W/mK)が、κ/κ<10を満たすことが好ましい。

Description

導電性構造体、複合体、及び、これらの製造方法
 本発明は、導電性構造体、複合体、及び、これらの製造方法に関するものである。
 近年、炭素ナノ構造体を含有する導電性構造体が注目されている。かかる導電性構造体には、電気伝導性材料としてのみならず、「電気伝導性」に併せて他の機能を発揮できるようにすることで用途を拡大することが期待されている。例えば、導電性構造体に、「電気伝導性」に併せて「熱伝導性」を発揮させることで、かかる導電性構造体を熱電変換素子の構成要素として応用しうる。或いは、導電性構造体に、「電気伝導性」に併せて「電磁波吸収特性」を発揮させることで、かかる導電性構造体を電磁波吸収材料として応用しうる。ここで、「電気伝導性」及び「熱伝導性」といった性能は、両方とも、原理的には自由電子の振動に起因するものであるため、電気伝導性に富む材料は同時に熱伝導性に富む材料でありうる。その一方で、電気伝導性を利用する用途に導電性構造体を使用する場合、導電性構造体の熱伝導性が低いことが望ましい場合が多い。例えば、熱電変換素子の構成要素として導電性構造体を利用する場合には、熱電変換素子の熱伝導性が低い方が、熱電変換素子内における温度差を拡大することができるため、熱電変換効率が向上する。また、例えば、電磁波吸収材料として導電性構造体を利用する場合には、電磁波吸収材料の熱伝導性が低ければ、電磁波吸収性能に併せて断熱効果も発揮することができるので、家屋の壁面等への適用に適している。
 ここで、炭素ナノ構造体を含有する導電性構造体としては、カーボンナノチューブ及び導電性高分子の少なくとも一方と、中空粒子と、を含む熱電変換層を備える熱電変換素子が提案されてきた(例えば、特許文献1参照)。また、炭素ナノ構造体を含有する導電性構造体として、カーボンナノチューブ微粒子を分散させたフレキシビリティーを有する有機材料、及び空孔によって構成され、有機材料に対するカーボンナノチューブの質量比が特定割合である、熱電変換材料も提案されてきた(例えば、特許文献2参照)。さらには、炭素ナノ構造体を含む導電性構造体として、発泡性プラスチック素材に対して多層カーボンナノチューブを添加してなる導電性材料が提案されてきた(例えば、特許文献3参照)。
特開2015-38961号公報 特許第5713472号明細書 特開2015-33845号公報
 ここで、炭素ナノ構造体を含有する導電性構造体には、上述したように、熱伝導率が低いことが求められている。しかし、特許文献1~3に記載されたような、熱電変換素子及び導電性材料には、電気伝導性を維持しつつ、熱伝導率を低くするという点において改善の余地があった。
 そこで、本発明は、熱伝導率が低い導電性構造体を提供することを目的とする。また、本発明は、熱伝導率が低い導電性構造体を備える複合体を提供することを目的とする。さらに、本発明は、熱伝導率が低い導電性構造体及び複合体を良好に形成することができる製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、繊維状炭素ナノ構造体を用いて特定の条件を満たす構造を形成した導電性構造体で、電気伝導性を確保しつつ熱伝導率を低く抑えることができることを新たに見出し、本発明を完成させた。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の導電性構造体は、複数の繊維状炭素ナノ構造体を含む導電性構造体であって、該導電性構造体の骨格構造が、前記複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造よりなり、前記導電性構造体の体積をV(cm3)、前記導電性構造体に含まれる前記複数の繊維状炭素ナノ構造体の総質量をM(g)として、前記導電性構造体の単位体積あたりに含有される前記複数の繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値が、0.1g/cm3以下であることを特徴とする。導電性構造体が、炭素ナノ構造体が相互に接続してなる網目構造を有し、さらに、密度が所定値以下であれば、繊維状炭素ナノ構造体の網目構造により電気伝導性を確保しつつ、低密度、すなわち多くの空隙を構造体内に内包することに起因して熱伝導率を低く抑えることができる。
 ここで、本明細書において、[M(g)/V(cm3)]の値は、実施例に記載した方法により測定することができる。
 また、本発明の導電性構造体は、異方性熱伝導体であっても良い。
 ここで、本明細書において「異方性熱伝導体」とは、導電性構造体において、厚み方向の熱伝導率と主面方向の熱伝導率との間に差があることを意味する。
 なお、導電性構造体の厚み方向の熱伝導率と主面方向の熱伝導率は、実施例に記載の方法により測定することができる。
 また、本発明の導電性構造体は、前記導電性構造体がシート形状を有し、前記シート形状の主面方向における熱伝導率κ(W/mK)、及び前記シート形状の厚み方向における熱伝導率κ(W/mK)が、κ/κ<10を満たすことが好ましい。上述したように、[M(g)/V(cm3)]の値が0.1g/cm3以下であるシート状の導電性構造体において、主面方向の熱伝導率及び厚み方向の熱伝導率が上記関係を満たしていれば、断熱効果を良好に発揮することができる。なお、「主面」とはシート状の導電性構造体における主要な表面及び裏面の双方を意味し、かかる表面及び裏面はシート厚み分の距離を隔てて対向してなる。
 また、本発明の導電性構造体は、樹脂を更に含むことが好ましい。導電性構造体が樹脂を含めば、導電性構造体の形状維持性能、機械的強度及び加工性を向上させることができるからである。
 また、本発明の導電性構造体は、前記網目構造の少なくとも一部が、層構造をなすことが好ましい。網目構造の少なくとも一部が層構造を有していれば、導電性構造体の熱伝導率の異方性を高めることができる。
 また、本発明の導電性構造体は、前記網目構造の少なくとも一部が、ハニカム構造をなすことが好ましい。網目構造の少なくとも一部がハニカム構造を有していれば、導電性構造体の機械的強度を向上させることができるからである。
 また、本発明の導電性構造体は、前記繊維状炭素ナノ構造体が、カーボンナノチューブを含んでなることが好ましい。カーボンナノチューブを含む繊維状炭素ナノ構造体を用いて網目構造を形成すれば、導電性構造体の密度を一層低くするとともに、電気伝導性を良好に維持することができる。
 また、本発明の導電性構造体は、前記繊維状炭素ナノ構造体が、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。さらに、本発明の導電性構造体は、前記t-プロットの屈曲点が、0.2≦t(nm)≦1.5の範囲にあることが好ましい。さらに、本発明の導電性構造体において、前記t-プロットから得られる全比表面積S1及び内部比表面積S2が、0.05≦S2/S1≦0.30を満たすことが好ましい。
 なお、「吸着等温線から得られるt-プロット」、「t-プロットの屈曲点」、及び「t-プロットから得られる全比表面積S1及び内部比表面積S2のS2/S1値」は、それぞれ、本明細書に記載の測定方法に従って取得することができる。
 上記課題を有利に解決することができる本発明の複合体は、上述した何れかの導電性構造体と、該導電性構造体とは異なる導電層と、を備えることを特徴とする。このような構成の複合体は、電気伝導性が良好であると共に、厚み(高さ)方向の熱伝導率が低い。
 上記課題を有利に解決することができる本発明の導電性構造体の製造方法は、未発泡の発泡性樹脂及び複数の繊維状炭素ナノ構造体を含むシート状構造体を、前記シート状構造体の厚み方向にて相互に対向する少なくとも一対の面、又は前記シート状構造体の主面方向で前記シート状構造体を囲繞する少なくとも一つの面を有する金型内で前記発泡性樹脂の分解温度未満の温度で加熱して加熱済構造体を得る加熱工程を含み、前記加熱済構造体は前記少なくとも一対の面又は前記少なくとも一つの面に対して当接することを特徴とする。このような製造方法によれば、熱伝導率が低い導電性構造体を良好に製造することができる。
 ここで、本発明の導電性構造体の製造方法では、前記加熱工程の後に、前記加熱済構造体を、前記発泡性樹脂の分解温度以上の温度で加熱する焼成工程を更に含むことが好ましい。
 上記課題を有利に解決することができる本発明の複合体の製造方法は、導電性構造体の製造方法における前記加熱工程の前に、前記シート状構造体の上下面のうちの少なくとも一方又は前記シート状構造体の側面のうちの少なくとも一部に、前記シート状構造体とは異なる導電層を配置する導電層配置工程を更に含むことを特徴とする。このような製造方法によれば、熱伝導率が低い複合体を良好に製造することができる。
 本発明によれば、熱伝導率が低い導電性構造体を提供することができる。また本発明によれば、熱伝導率が低い導電性構造体を備える複合体を提供することができる。さらに、本発明の製造方法によれば、熱伝導率が低い導電性構造体及び複合体を良好に形成することができる。
本発明の導電性構造体の有する層状構造の一例を示す顕微鏡画像である。 本発明の導電性構造体の有するハニカム構造の一例を示す顕微鏡画像である。 本発明の導電性構造体製造方法の加熱工程を経て得られた加熱済構造体の一例の顕微鏡画像を示す。
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。図中、同一の又は対応する構成要素については、同一の参照符号により示す。ここで、本発明の導電性構造体及び複合体は、特に限定されることなく、熱電変換材料、電磁波吸収材料、及びリチウムイオン電池等の各種電池の電極の構成要素として用いることができる。また、本発明の製造方法は、本発明の導電性構造体及び複合体を良好に製造することができる。そして、本発明の導電性構造体及び複合体は、熱伝導率が低い。このため、熱電変換材料として用いた場合には、熱電変換素子の無次元性能指数ZTを向上させることができ、電磁波吸収材料として用いた場合には、電磁波遮断特性を向上させることができる。また、各種電池の電極の構成要素として用いた場合には、導電性構造体の網目構造内に電解液が入り込み、電極の応答性を向上させることができる。
(導電性構造体)
 ここで、本発明の導電性構造体は、複数の繊維状炭素ナノ構造体を含む導電性構造体である。そして、本発明の導電性構造体は、骨格構造が、複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造よりなる。そして、本発明の導電性構造体は、導電性構造体の体積をV(cm3)、導電性構造体に含まれる複数の繊維状炭素ナノ構造体の総質量をM(g)として、導電性構造体の単位体積あたりに含有される複数の繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値が、0.1g/cm3以下であることを特徴とする。このように、本発明の導電性構造体は導電性構造体の単位体積あたりに含有される複数の繊維状炭素ナノ構造体の質量の値が小さい。本発明の導電性構造体は、繊維状炭素ナノ構造体が相互に接続してなる網目構造が、導電性構造体の単位体積あたりに含有される複数の繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値が、0.1g/cm3以下という条件を満たして存在してなるため、網目構造内に導電性構造体の存在しない部分を高い頻度で含んでいる。かかる「導電性構造体の存在しない部分」に、例えば空気等の熱伝導率が低い媒体が介在することができる。よって、本発明の導電性構造体によれば、複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造により導電性を確保しつつも、熱伝導率を低くすることができる。なお、導電性構造体中には、任意で、金属及び樹脂が配合されていても良い。本発明の導電性構造体に、金属及び/又は樹脂が配合された場合であっても、骨格構造として、上記条件を満たす繊維状炭素ナノ構造よりなる網目構造を含んでいる限りにおいて、本発明の導電性構造体は、優れた断熱性を発揮することができる。
<導電性構造体の構成成分>
[繊維状炭素ナノ構造体]
 導電性構造体内にて骨格構造である網目構造を形成するために用いる繊維状炭素ナノ構造体としては、以下のような各種性状を満たす繊維状炭素ナノ構造体が好ましい。なお、繊維状炭素ナノ構造体のこれらの各種性状は、通常、得られた導電性構造体中でも維持されている。ここで、繊維状炭素ナノ構造体とは、通常、外径(繊維径)が1μm未満の繊維状の炭素材料を指す。また、本明細書にて「繊維状」とはアスペクト比が100以上であることを意味する。さらに、繊維状炭素ナノ構造体は、屈曲構造を有することが好ましい。繊維状炭素ナノ構造体が屈曲構造を有していれば、繊維状炭素ナノ構造体間のネットワークを強固に形成することが可能となり、導電性構造体の機械的強度を向上させることができるからである。なお、屈曲構造を有する繊維状炭素ナノ構造体は、後述する「スーパーグロース法」により好適に製造することができる。
 さらにまた、繊維状炭素ナノ構造体は、カーボンナノチューブを含むことが好ましい。カーボンナノチューブを含む繊維状炭素ナノ構造体を用いて網目構造を形成すれば、導電性構造体の密度を一層低くするとともに、電気伝導性を良好に維持することができる。
 ここで、網目構造の形成に好適に使用し得る、カーボンナノチューブを含む繊維状炭素ナノ構造体は、カーボンナノチューブ(以下、「CNT」と称することがある。)のみからなるものであってもよいし、CNTと、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
 なお、繊維状炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブ及び/又は多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、導電性構造体を低密度化すると共に、網目構造を良好に形成することができる。
 また、CNTを含む繊維状炭素ナノ構造体の平均直径(Av)は、1nm以上であることが好ましく、2.5nm以上であることが更に好ましく、3nm以上であることがより好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。繊維状炭素ナノ構造体の平均直径(Av)が上記下限値以上であれば、導電性構造体の機械的強度を向上させて、導電性構造体の取扱性を向上させることができる。また、繊維状炭素ナノ構造体の平均直径(Av)が上記上限値以下であれば、繊維状炭素ナノ構造体が柔軟であるため、導電性構造体をたわませた場合であっても、繊維状炭素ナノ構造体が折れにくく、性能を維持することができる。
 なお、「繊維状炭素ナノ構造体の平均直径(Av)」は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、CNTを含む繊維状炭素ナノ構造体の平均直径(Av)は、CNTを含む繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを含む繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
 更に、CNTを含む繊維状炭素ナノ構造体のBET比表面積は、600m/g以上であることが好ましく、800m/g以上であることがより好ましく、2500m/g以下であることが好ましく、1200m/g以下であることがより好ましい。CNTを含む繊維状炭素ナノ構造体のBET比表面積が上記下限値以上であれば、導電性構造体の導電率をさらに高めることができる。また、CNTを含む繊維状炭素ナノ構造体のBET比表面積が上記上限値以下であれば、成形性に優れる導電性構造体を作製することができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 更に、CNTを含む繊維状炭素ナノ構造体は、例えば、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(配向集合体)として得られるが、成長後の配向集合体としての、繊維状炭素ナノ構造体の質量密度は、0.002g/cm以上0.2g/cm以下であることが好ましい。質量密度が上記上限値以下であれば、繊維状炭素ナノ構造体同士の結合を適度に弱めて、導電性構造体中にて、複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造を均一に分散させ、導電性構造体の導電率をさらに高めることができる。また、質量密度が上記下限値以上であれば、繊維状炭素ナノ構造体のバンドル構造を適度に維持して、導電性構造体中にて網目構造を良好に形成することができる。
 また、CNTを含む繊維状炭素ナノ構造体は、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。中でも、CNTの開口処理が施されておらず、t-プロットが上に凸な形状を示すことがより好ましい。繊維状炭素ナノ構造体のt-プロットが上に凸な形状を示すものであれば、導電性構造体の導電率を一層高めることができる。
 なお、「t-プロット」は、窒素ガス吸着法により測定された繊維状炭素ナノ構造体の吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得ることができる。すなわち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、CNTを含む繊維状炭素ナノ構造体のt-プロットが得られる(de Boerらによるt-プロット法)。
 ここで、表面に細孔を有する物質では、窒素ガス吸着層の成長は、次の(1)~(3)の過程に分類される。そして、下記の(1)~(3)の過程によって、t-プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
 そして、上に凸な形状を示すt-プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt-プロットの形状を有する繊維状炭素ナノ構造体は、繊維状炭素ナノ構造体の全比表面積に対する内部比表面積の割合が大きく、繊維状炭素ナノ構造体を構成する炭素ナノ構造体に多数の開口が形成されていることを示している。
 なお、CNTを含む繊維状炭素ナノ構造体のt-プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることがより好ましく、0.55≦t(nm)≦1.0の範囲にあることが更に好ましい。
 なお、「屈曲点の位置」は、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
 更に、CNTを含む繊維状炭素ナノ構造体は、t-プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が0.05以上0.30以下であるのが好ましい。
 また、CNTを含む繊維状炭素ナノ構造体の全比表面積S1及び内部比表面積S2は、特に限定されないが、個別には、S1は、600m/g以上1400m/g以下であることが好ましく、800m/g以上1200m/g以下であることがより好ましい。一方、S2は、30m/g以上540m/g以下であることが好ましい。
 ここで、CNTを含む繊維状炭素ナノ構造体の全比表面積S1及び内部比表面積S2は、そのt-プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
 因みに、CNTを含む繊維状炭素ナノ構造体の吸着等温線の測定、t-プロットの作成、及び、t-プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル(株)製)を用いて行うことができる。
 そして、上述した性状を有するCNTを含む繊維状炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物及びキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
[樹脂]
 導電性構造体は樹脂を含んでいても良い。かかる樹脂としては、特に限定されることなく、ポリアクリロニトリル、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエステル、及びポリアミド等の熱可塑性樹脂が挙げられる。導電性構造体に含有されうる樹脂は、「製造方法」の項目で詳述する発泡性樹脂に由来する樹脂成分でありうる。
 導電性構造体内における樹脂の含有量は、繊維状炭素ナノ構造体100質量部に対して、400質量部以下であることが好ましい。樹脂の含有量がかかる上限値以下であれば、導電性組成物の熱伝導率が高まることを効果的に抑制することができる。なお、導電性構造体が樹脂を含有する場合には、樹脂の含有量は、繊維状炭素ナノ構造体100質量部に対して、例えば、10質量部以上であり得る。導電性構造体が樹脂を含有することで、導電性構造体の形状維持性能、機械的強度、及び加工性を適度に高めることができる場合がある。
[金属]
 また、導電性構造体は金属を含んでいても良い。金属としては、特に限定されることなく、粒子状に成形された金属(即ち、金属粒子)を好適に用いることができる。導電性構造体に含まれ得る金属としては、導電性を有する限りにおいて特に限定されることなく、例えば、Al、Cu、Pd、及びAg等が挙げられる。なお、本明細書において「粒子状」とは、アスペクト比が5未満であることを意味する。
<導電性構造体の構造>
 導電性構造体は、主要な表面及び裏面(併せて「主面」とも称する)が厚み分の距離を挟んで対向してなる、シート状構造体であり得る。本発明の一例に従う製造方法に従って得られた導電性構造体では、少なくとも主面方向の各端部では、網目構造が開放した構造となっている。
 図1に、本発明の一例に係る導電性構造体の断面を拡大表示した顕微鏡画像を示す。かかる画像中、明色で表示されている領域が複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造1であり、暗色で表示されている領域が網目構造間の空隙2である。図1に示す網目構造では、図1における水平方向に、導電性構造体の主面方向に概ね沿いつつ、部分的に相互に連結した複数の層が積層されてなるいわゆる「パイ生地」のような層状構造を形成している。また、図1に示す網目構造は、図1における右側に主面方向端部を有しており、かかる端部において、網目構造が開放した状態となっている。このような層状構造では、電気伝導性や熱伝導性といった諸特性が、導電性構造体の厚み方向と主面方向とで異なると考えられる。より具体的には繊維状炭素ナノ構造体間のネットワークの接続点数が比較的多い主面方向での導電率及び熱伝導率が、ネットワークの接続点数が比較的少ない厚み方向での導電率及び熱伝導率よりも、高くなる。
 また、図2に本発明の他の一例の導電性構造体の断面の顕微鏡画像を示す。図1と同様に、かかる画像中における明色領域は網目構造1であり、暗色領域は空隙2である。図2に示すような形状の網目構造は、ハニカム構造とも称しうる。このようなハニカム構造を骨格構造に含むことで、導電性構造体の機械的強度が上がると考えられる。
 なお、導電性構造体が、上述したような層状構造又はハニカム構造を有するものであるか否かは、特に限定されることなく、導電性構造体の断面の顕微鏡画像を画像解析することにより判定することができる。より具体的には、例えば、一般的なフィルタリング処理により画像中のエッジを抽出し、抽出されたエッジに基づく形状認識により層状構造やハニカム構造の有無を判定することができる。
[導電性構造体の単位体積あたりに含有される繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]]
 ここで、上述したように、本発明の導電性構造体では、導電性構造体の単位体積あたりに含有される繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]が、0.1g/cm3以下である必要がある。好ましくは、M(g)/V(cm3)の値は、0.08g/cm3以下であることが好ましく、0.05g/cm3以下であることがより好ましく、通常、0.01g/cm3以上である。[M(g)/V(cm3)]の値が低ければ、熱伝導率も低くなる。
 「導電性構造体の体積V」は、導電性構造体全体の体積であり、導電性構造体が、上述したような樹脂及び/又は金属等の任意成分を含有する場合は、かかる任意成分も含んだ導電性構造体全体の体積である。なお、導電性構造体について、必要に応じて形状を整えた上で、(底面積cm2×高さcm)を計算することで、導電性構造体の体積V(cm3)を得ることができる。
 なお、導電性構造体が、上述したような、樹脂及び金属等の任意成分を含む場合には、上記に従って導電性構造体の体積V(cm3)を得た後に、粉砕及び分級等の既知の手法を組み合わせて導電性構造体に含まれていた任意成分を除去して、導電性構造体に含まれていた繊維状炭素ナノ構造体のみを分離した後に、秤量して、導電性構造体に含まれる繊維状炭素ナノ構造体の総質量M(g)を算出することができる。云うまでもなく、導電性構造体が樹脂及び金属等の任意成分を含まない場合には、導電性構造体の質量そのものが、導電性構造体に含まれる繊維状炭素ナノ構造体の総質量M(g)に相当する。
[熱伝導率]
 さらに、本発明の導電性構造体が、導電性構造体の厚み方向の熱伝導率と主面方向の熱伝導率とが異なる導電性構造体、即ち、異方性熱伝導体であっても良い。より具体的には、導電性構造体の厚み方向の熱伝導率が、主面方向の熱伝導率よりも小さいことが好ましい。導電性構造体が異方性熱伝導体であれば、例えば、熱電変換素子の構成要素として用いる場合等のように、熱伝導率の異方性が必要とされうる用途に好適に用いることができる。そのような導電性構造体としては、シート形状のものが好ましい。
 導電性構造体の厚み方向の熱伝導率κは、0.2W/(m・K)以下であることが好ましく、0.1W/(m・K)以下であることがより好ましく、0.05W/(m・K)以下であることがさらに好ましく、0.03W/(m・K)以下であることが特に好ましい。導電性構造体の厚み方向の熱伝導率が上記上限値以下であれば、厚み方向における熱伝導率が十分に低く、断熱材料として各種用途に良好に使用することができる。
 さらに、導電性構造体は、主面方向の熱伝導率κ(W/mK)、及び厚み方向の熱伝導率κ(W/mK)が、κ/κ<10を満たすことが好ましい。M(g)/V(cm3)]の値が0.1g/cm3以下である導電性構造体において、主面方向の熱伝導率及び厚み方向の熱伝導率が上記関係を満たしていれば、断熱効果を良好に発揮することができる。なお、κ/κの値は、好ましくは8以下であり、より好ましくは5以下、更に好ましくは1.5以下であり得る。なお、κ/κの値は、通常、1以上でありうる。
[主面方向の導電率σ/主面方向の熱伝導率κ
 さらに、導電性構造体は、主面方向の導電率σの、主面方向の熱伝導率κに対する比率である、σ/κの値が、1.0以上であることが好ましい。σ/κの値が、1.0以上である導電性構造体は、特に、熱電変換素子の構成要素として、好適に適用することができるからである。なお、主面方向の導電率σは、実施例に記載の方法により測定することができる。
(複合体)
 本発明の複合体は、本発明の導電性構造体がシート状の導電性構造体である場合に、導電性構造体の主面のうちの少なくとも一方又は側面のうちの少なくとも一部が、導電性構造体とは異なる導電層を更に備える。このような構造の複合体は、多種多様な用途に応用が可能である。なお、導電層は、少なくとも、組成が導電性構造体と異なるか、或いは、単位体積あたりに含まれる繊維状炭素ナノ構造体の質量の値が、0.1g/cm3以上で有る点で、上述した導電性構造体とは異なる。
[導電層]
 導電層は、導電性を有する材料を用いて形成される限りにおいて特に限定されることなく、例えば、Al、Cu、Pd、及びAg等の金属材料や導電性炭素材料により形成することができる。中でも、導電層として金属材料よりなる金属板を採用すれば、各種電池の取出電極として機能させることができる。或いは、導電性構造体の上下両面に導電層を配置し、更に、上面及び下面側にそれぞれ更なる導電性構造体を配置し、かかる交互積層構造を任意の繰り返し数だけ積み重ねれば、複数の導電性構造体を電気的に接続することができる。さらには、導電層として、カーボンナノチューブのみで成形したシート(例えば、いわゆるバッキーペーパー)を採用すれば、導電性構造体の層を保護しつつ、各種電池の電極として採用した場合に抵抗値を低減させることが可能である。
(導電性構造体の製造方法)
 本発明の導電性構造体の製造方法は、未発泡の発泡性樹脂及び繊維状炭素ナノ構造体を含むシート状構造体を、シート状構造体の厚み方向で相互に対向する少なくとも一対の面、又はシート状構造体の主面方向でシート状構造体を囲繞する少なくとも一つの面を有する金型内で加熱して加熱済構造体を得る加熱工程を含む。そして、加熱済構造体は、少なくとも一対の面又は少なくとも一つの面に対して当接する。すなわち、加熱済構造体は、加熱工程において、金型の少なくとも一対の面又は少なくとも一つの面により、かかる一対の面又は一つの面に対して垂直な方向における膨張が制約される。
 さらに、本発明の導電性構造体の製造方法は、かかる工程に先立って、繊維状炭素ナノ構造体及び樹脂を含有する分散液を調製する分散液調製工程、及び得られた組成物を用いてシート状構造体を得るシート状構造体形成工程を含みうる。更にまた、本発明の導電性構造体の製造方法は、加熱工程の後に、加熱工程を経て得られた加熱済構造体を焼成する焼成工程を含みうる。以下、各工程について説明する。
<分散液調製工程>
 分散液調製工程では、繊維状炭素ナノ構造体及び樹脂を溶媒中に分散させることで導電性構造体用分散液(以下、単に「分散液」とも称する)を調製する。なお、導電性構造体に、任意成分として、金属を配合する場合には、本工程において、任意の金属粒子を添加することができる。
[繊維状炭素ナノ構造体]
 分散液に配合する繊維状炭素ナノ構造体としては、上記「導電性構造体」の項目で説明したような各種繊維状炭素ナノ構造体を用いることができる。ここで、本製造方法では、発泡性樹脂を後述する加熱工程にて発泡させることで繊維状炭素ナノ構造体の網目構造を形成する。このため、本製造方法では、特に、繊維状炭素ナノ構造体として、SGCNTを使用することが最適である。SGCNTは、バンドル形成の強度が適度であり、発泡性樹脂を発泡させた際に良好な網目構造を形成することができる。さらに、SGCNTにより形成された網目構造は、導電性構造体の機械的強度を十分に高めることができるため、後述する焼成工程において樹脂成分を導電性構造体から除去した後も、導電性構造体に対して十分な強度を付与することができる。
[樹脂]
 分散液に配合する樹脂は、発泡性樹脂であることが好ましい。発泡性樹脂としては、粒子状発泡性樹脂を挙げることができる。より具体的には、発泡性樹脂は、上記「導電性構造体」の項目で樹脂に関して例示したような熱可塑性ポリマーからなるセル内に低沸点炭化水素等の膨張性物質を内包した熱膨張性マイクロスフェアーでありうる。なお、発泡性樹脂は、膨張開始温度以上の温度に加熱することで膨張性物質が膨張を開始し、最大膨張温度にて各発泡性樹脂に固有の最大発泡倍率に到達すると、それ以上の温度に加温しても更なる膨張はせず、逆に収縮することがある。
 ここで、粒子状発泡性樹脂は、発泡前の直径が10μm以上50μm以下であることが好ましい。粒子状発泡性樹脂の発泡前の直径がかかる範囲内であれば、導電性構造体内で網目構造を良好に形成することができる。
[溶媒]
 分散液調製工程では、溶媒として、特に限定されることなく、例えば、水;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノールなどのアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類;N,N-ジメチルホルムアミド、N-メチルピロリドンなどのアミド系極性有機溶媒;トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類;などを用いることができる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
 更に、分散液の調製にあたり、任意で、界面活性剤、合成高分子又は天然高分子を添加剤として配合することができる。
[分散処理]
 分散液調製工程では、特に限定されることなく、超音波による分散処理、撹拌による分散処理等により、分散液を調製することができる。
[分散液の性状]
 分散液調製工程にて調製する分散液は、繊維状炭素ナノ構造体100質量部に対して、樹脂を100質量部以上1000質量部以下含有することが好ましい。かかる範囲内で繊維状炭素ナノ構造体及び樹脂を配合すれば、導電性構造体中で良好な網目構造を形成することができるからである。さらに、分散液の固形分濃度は、0.1質量%以上10質量%以下であることが好ましい。
<シート状構造体形成工程>
 シート状構造体形成工程では、分散液調製工程で得られた分散液から溶媒を除去してシート状構造体を形成する。具体的には、1)分散液を成膜基材上に塗布した後、塗布した分散液を乾燥させる方法、又は、2)多孔質の成膜基材を用いて分散液をろ過し、得られたろ過物を乾燥させる方法により、シート状構造体を形成することができる。
[成膜基材]
 ここで、成膜基材としては、特に限定されることなく、既知の基材を用いることができる。具体的には、上記方法(1)においてCNT分散液を塗布する成膜基材としては、樹脂基材、ガラス基材などを挙げることができる。また、上記方法(2)においてCNT分散液をろ過する成膜基材としては、ろ紙、並びに、セルロース、ニトロセルロース、及びアルミナ等よりなる多孔質シートを挙げることができる。
[塗布]
 上記方法(1)において分散液を成膜基材上に塗布する方法としては、公知の塗布方法を採用できる。具体的には、塗布方法としては、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、及びグラビアオフセット法などを用いることができる。
[ろ過]
 上記方法(2)において成膜基材を用いて分散液をろ過する方法としては、公知のろ過方法を採用できる。具体的には、ろ過方法としては、自然ろ過、減圧ろ過、加圧ろ過、及び遠心ろ過などを用いることができる。中でも、減圧ろ過が好ましい。
[乾燥]
 上記方法(1)において成膜基材上に塗布した分散液又は上記方法(2)において得られたろ過物を乾燥する方法としては、公知の乾燥方法を採用できる。乾燥方法としては、熱風乾燥法、真空乾燥法、熱ロール乾燥法、及び赤外線照射法等が挙げられる。乾燥温度は、特に限定されないが、通常、室温~200℃、乾燥時間は、特に限定されないが、通常、0.1~150分である。
[シート状構造体の厚さ]
 シート状構造体形成工程で得られるシート状構造体の厚さは、導電性構造体の用途に応じて適宜設定することができるが、通常、45μm以上200μm以下でありうる。シート構造体の厚さが上記上限値以下であれば、シート状構造体の硬度が過度に高くなり、発泡性樹脂の発泡が不十分となることを効果的に抑制することができる。
<加熱工程>
 加熱工程では、上記工程で得られたシート状構造体を、構造体の厚み方向にて相互に対向する一対の面、又は構造体の主面方向でシート状構造体を囲繞する少なくとも一つの面を有する金型内で加熱して加熱済構造体を得る。図3に、加熱工程により得られた加熱済構造体の一例の顕微鏡画像を示す。図3は、「層状構造」を有する加熱済構造体の顕微鏡画像である。そして、画像中、層状の網目構造1及び空隙2に加えて、ちょうど空隙を埋めるような形状で存在する明色表示領域が、発泡性樹脂の樹脂成分3である。ここで、加熱工程における加熱温度は構造体に含まれる発泡性樹脂の発泡温度以上分解温度未満の温度であることが好ましく、通常、100℃以上300℃以下である。なお、加熱工程での圧力条件を適宜変更することによっても、発泡性樹脂の発泡開始温度を調節することが可能である。また、加熱時間は、通常、30分以上120分以下である。
[金型]
 加熱工程にて使用しうる金型としては、特に限定されることなく、鋼やセラミックス等の一般的な材料により形成された金型が挙げられる。そして、金型の成型品形状は、ある方向における被成型品の形状を規定可能な対向する少なくとも一対の面又は少なくとも一つの面を有する限りにおいて特に限定されることなく、あらゆる形状でありうる。これらの「少なくとも一対の面/一つの面」は、導電性構造体の用途や、シート状構造体に含まれる未発泡の発泡性樹脂が発泡した場合の膨張量を考慮した間隔をあけて、シート状構造体とは離間して配置されうる。例えば、発泡により、シート状構造体を膨張させて5倍以上500倍以下の厚みとすることができる。より具体的には、シート状構造体の厚み方向で相互に対向する少なくとも一対の面を有する金型を用いて層状構造を有する導電性構造体を製造する場合には、加熱工程にて、シート状構造体を5倍以上10倍以下に膨張させうる。あるいは、シート状構造体の主面方向でシート状構造体を囲繞する少なくとも一つの面を有する金型を用いてハニカム構造を有する導電性構造体を製造する場合には、加熱工程にて、シート状構造体を200倍以上500倍以下に膨張させうる。
 本発明の導電性構造体の製造方法で、ある方向における被成型品の形状を規定可能な一対の面又は一つの面を有する金型を用いてシート状構造体を加熱することで、シート状構造体に含まれる発泡性樹脂が発泡する際の膨張、すなわち、空間的な広がりの態様に制約を課すことができる。より具体的には、金型の少なくとも一対の面又は少なくとも一つの面により膨張が制約される方向以外の方向に向かって発泡性樹脂が発泡して空孔を形成する。かかる制約を利用して、導電性構造体内にて、上述したような層状構造やハニカム構造を形成することができるメカニズムは明らかではないが、以下の通りであると推察される。
 まず、シート状構造体中では、繊維状炭素ナノ構造体は、シート状構造体の厚み方向よりは主面方向に近い向きで配置されている。換言すれば、繊維状炭素ナノ構造体は、シート状構造体中で、「倒れて」延在している。よって、金型の少なくとも一対の面がシート状構造体の厚み方向で相互に対向する場合には、発泡性樹脂の膨張により、空孔が面方向で成長し、金型の少なくとも一対の面の面方向に略沿うような複数の層が空孔を介して延在するようになる。これにより、導電性構造体内で繊維状炭素ナノ構造体の層状構造を形成することができると推察される。
 他方で、金型の少なくとも一つの面がシート状構造体の主面方向でシート状構造体を囲繞する場合には、発泡性樹脂の膨張方向が主面方向で制約を受ける。このため、倒れて延在する繊維状炭素ナノ構造体を含むシート状構造体を、かかる金型内で加熱すれば、空孔が厚み方向で成長して、倒れて延在する繊維状炭素ナノ構造体間の空隙が拡大される。そして、上述したように、繊維状炭素ナノ構造体は、それ自体が分散媒中で完全に分散して存在するわけではなく、分散媒中であっても、複数本の繊維状炭素ナノ構造体が束になりバンドルを形成している。このようなバンドルによる結合を保ちつつ、倒れて延在する繊維状炭素ナノ構造体間の空隙が拡大されれば、上述したようなハニカム構造が得られると推察される。
 なお、複数の繊維状炭素ナノ構造体により形成されるバンドルは、導電性構造体の強度を上昇させることにも寄与する。
 また、金型の備える「一対の面」は、必ずしも平面である必要はない。「一対の面」が平面ではない場合、例えば、金型の成型品形状が曲面や凹凸等の部分を有する場合には、まず、加熱に先立って、金型によりシート状構造体をプレス成形して金型の成型品形状に沿う形状に変形させてもよい。そして、金型の対向する一対の面を所定間隔で配置して、かかる金型内に変形させたシート状構造体を配置し、加熱して発泡性樹脂を発泡させて、所望の網目構造を有する、所望形状の導電性構造体を得ることができる。
<焼成工程>
 焼成工程では、加熱工程を経た加熱済構造体を、発泡性樹脂の分解温度以上の温度で加熱することができる。かかる工程によれば、加熱済構造体から、発泡性樹脂の成分を除去することができる。焼成工程における加熱温度は、特に限定されず、あらゆる温度でありうるが、通常、450℃以上600℃以下である。また、焼成工程における焼成時間は、通常、10分以上120分以下である。焼成工程により発泡性樹脂の成分を加熱済構造体から除去すれば、得られた導電性構造体の熱伝導率を一層低下させることができる。焼成工程では、発泡性樹脂が分解されて導電性構造体から消失することに伴って、図3の樹脂成分3の周囲に延在していた網目構造1も消失しうる。よって、焼成工程を経た導電性構造体は、密度が一層低くなると共に図1に示したように、網目構造の形状がより完全な「層」状に近い状態となりうる。
 なお、焼成工程における加熱温度を極端に高温とすれば、繊維状炭素ナノ構造体により形成されうる網目構造が損なわれ、導電性構造体の電気伝導性が劣化する虞がある。
 なお、上述したように、焼成工程は任意工程である。加熱済構造体を発泡性樹脂の分解温度以上の温度で加熱する工程である焼成工程を行わない、或いは、焼成工程に代えて、加熱済構造体を、発泡性樹脂の分解温度未満の温度で加熱する工程を行うことで、得られた導電性構造体中に発泡性樹脂由来の樹脂成分を残留させることができる。上述したように、樹脂を含む導電性構造体は、形状維持性能、機械的強度、及び加工性に優れるため、用途によっては非常に適した材料となりうる。
 さらに、得られた導電性構造体について、所望の形状に切り出す切り出し工程を行っても良い。かかる切り出し工程では、例えば、導電性構造体の主面に対して交差する方向、或いは、導電性構造体の主面に並行な方向の切断面を形成するように、導電性構造体を切断することができる。なお、切り出し工程を行わなかった場合、及び、切り出し工程において、導電性構造体の主面に並行な方向の切断面を形成しなかった場合には、導電性構造体の主面において、上述した網目構造が非開放であり、主面方向の各端部では、網目構造が開放した構造となっている。また、切り出し工程において、導電性構造体の主面に対して交差する方向の切断面を形成した場合には、導電性構造体の各表面において、上述した網目構造が開放した構造となっている。
(複合体の製造方法)
 本発明の複合体の製造方法は、上述した導電性構造体の製造方法における加熱工程の前に、シート状構造体の上下面のうちの少なくとも一方又はシート状構造体の側面のうちの少なくとも一部に、かかる構造体とは異なる導電層を配置する導電層配置工程を更に含む。さらに、本発明の複合体の製造方法は、導電層配置工程にてシート状構造体の上下面のうちの少なくとも一方に導電層を配置した場合には、導電層配置工程に後続する加熱工程で構造体の上面側及び下面側にそれぞれ配置された各面を有する金型内で、構造体を加熱することが好ましい。或いは、導電層配置工程にてシート状構造体の側面のうちの少なくとも一部に導電層を配置した場合には、導電層配置工程に後続する加熱工程で構造体の主面方向でシート状構造体を囲繞する少なくとも一つの面を有する金型内で、構造体を加熱することが好ましい。なお、導電層配置工程以外の工程については、任意で、上述した導電性構造体の製造方法と同様にして行うことができる。
 複合体の製造方法において、導電層-シート状構造体を積層させて加熱することで、導電層と導電性構造体とが電気的に接続する機構は明らかではないが以下の2通りの機構が推定される。1つめの機構としては、発泡性樹脂が加熱により軟化することで導電層と物理的に接合することが挙げられる。また、2つ目の機構としては、導電層が繊維状炭素ナノ構造体を含有する場合には、導電層の含有成分である繊維状炭素ナノ構造体と、導電性構造体を形成する繊維状炭素ナノ構造体との間で物理的な相互作用が生じることで接合することが挙げられる。
<導電層配置工程>
 導電層配置工程では、シート状構造体の上下面(表面及び裏面)のうちの少なくとも一方又はシート状構造体の側面のうちの少なくとも一部に、シート状構造体とは異なる導電層を配置する。このように、加熱工程に先立ってシート状構造体の少なくとも一部に、導電層を配置しておけば、加熱工程でシート状構造体を加熱した際に、導電層と導電性構造体とを一体化させることができる。これにより、複合体を効率的に製造することができる。
[導電層]
 導電層は、特に限定されることなく、電気伝導性を有する既知のあらゆる材料、例えば、Al、Cu、Pd、及びAg等の金属材料や導電性炭素材料でありうる。さらには、導電層として、本発明の導電性構造体と同様の導電性構造体を配置することももちろん可能である。この場合、一つ一つの厚みが薄い導電性構造体を複数個積み重ねることで、所望の厚みの導電性構造体を得ることができる。また、導電層が各種電池の電極その他の構成要素であれば、各種電池の製造効率を向上させることができる。
 以下、本発明について実施例、比較例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。実施例において、シート状構造体及び導電性構造体の、導電率、熱伝導率、単位体積あたりに含有される繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値は、それぞれ以下のようにして測定した。
<導電率>
 四探針法による低抵抗率計(三菱化学アナリティック社製、「ロレスタ(登録商標)」、プローブ:ESPプローブ)を用いて、室温での導電率(s/m)を測定した。
 測定にあたり、まず、実施例で製造したシート状構造体や導電性構造体から任意の大きさの試験片を3個切り出し、測定サンプルとした。各測定サンプルについて室温での主面方向の導電率(s/m)を測定し、平均値を算出して導電率とした。
<熱伝導率>
 以下のようにして測定した熱拡散率、密度、及び熱容量の値を、式:熱伝導率=熱拡散率×密度×熱容量にそれぞれ代入して、熱伝導率を算出した。
[熱拡散率]
 まず、製造したシート状構造体や導電性構造体から直径25mmの試験片を切り出し、測定サンプルとした。得られた測定サンプルについて、レーザーフラッシュ法熱拡散率測定装置(ネッチ社製、LFA 467 HT HyperFlash(登録商標))を用いて、まず、測定サンプルの厚み方向の熱拡散率を測定した。そして、得られた厚み方向の熱拡散率に基づいて、主面方向の熱拡散率を測定した。
[熱容量]
 製造したシート状構造体及び導電性構造体から任意の大きさの試験片について、示差走査熱量計(ネッチ社製、DSC 3500 Sirius)を用いて熱容量を測定した。
[密度]
 製造したシート状構造体及び導電性構造体(直方体形状)の縦、横、及び高さを測定し、底面積×高さの計算をして、体積V(cm3)を算出した。そして、かかるシート状構造体及び導電性構造体の質量を精密天秤で測定し全質量Ma(g)を得た。これらの値に基づいて、密度:Ma(g)/体積V(cm3)の値を得た。
<シート状構造体/導電性構造体の単位体積あたりに含有される繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値>
 実施例で製造した導電性構造体、及び比較例4で製造したシート状構造体は、実質的に樹脂を含んでおらず、繊維状炭素ナノ構造体のみからなるものであることを確認した。このため、導電性構造体自体の質量Ma(g)が、導電性構造体に含まれる繊維状炭素ナノ構造体の質量M(g)に一致する。従って、上記で測定した「密度」の値を、そのまま[M(g)/V(cm3)]の値に相当する値とした。
(実施例1)
 繊維状炭素ナノ構造体として、単層カーボンナノチューブ(ゼオンナノテクノロジー社製、ZEONANO(登録商標)SG101、「SGCNT」に相当)を用いた。なお、かかるSGCNTの平均直径は3.5nm、BET比表面積は900m/g、t-プロットは上に凸、t-プロットの屈曲点は0.6nm、全比表面積S1及び内部比表面積S2の間の比S2/S1が0.09であった。なお、吸着等温線の測定、及びt-プロットの作成には、「BELSORP(登録商標)-mini」(日本ベル(株)製)を用いた。
<分散液調製工程>
 分散液調製工程では、繊維状炭素ナノ構造体である上記SGCNT25mg、及び発泡性樹脂(積水化学工業製、ADVANCELL(登録商標) EMシリーズ「EMH204」、膨張開始温度:110~130℃、最大膨張温度:160~180℃)100mgを、溶媒としてのエタノール100mlに対して添加し、超音波分散装置を用いて30分間分散処理してSGCNT及び発泡性樹脂を含む分散液を得た。
<シート状構造体形成工程>
 分散液をろ紙(桐山社製、No.5A)を用いて減圧ろ過して堆積物を得た。そして、堆積物を室温で20分間乾燥させて、ろ紙から堆積物を剥離した。さらに、剥離した堆積物を真空オーブンに入れ、80℃で120分間乾燥させて、堆積物から溶媒を完全に除去してシート状構造体を得た。得られたシート状構造体の厚みは50μm、直径は50mm、上記方法に従って測定した密度は0.5g/cmであった。また、シート状構造体の主面方向の導電率を上記方法に従って測定したところ、10.35S/cmであった。
<加熱工程>
 シート状構造体を、それぞれ、大きさが10cm×10cmの下側金属板及び上側金属板を備える一対の金属板よりなる金型内に配置した。上下の金属板の間の隙間は3mmであった。さらに、シート状構造体は下側金属板の中央に配置した。ここで、シート状構造体(直径50mm)に対して、上下の金属板の大きさが十分に大きく、シート状構造体は、たとえ発泡性樹脂の発泡により膨張したとしても、上下方向以外は金属板により変形制約を受けることは無かった。そして、シート状構造体を配置した金型を170℃に昇温させたオーブン内に載置し、さらに、上下の金属板の温度も170℃となるようにそれぞれ加熱した。この状態で、シート状構造体を60分間加熱し加熱済構造体を得た。加熱後、構造体を金型から取り出した。得られた構造体の厚さは3mm(3000μm)であり、密度は0.05g/cmであった。また、上記導電率の測定方法と同様にして、構造体が厚み(高さ)方向及び主面方向で電気伝導性を有することを確認した。
<焼成工程>
 上記工程で得られた加熱済構造体を、さらに550℃(発泡性樹脂の分解温度以上の温度)の加熱炉内で30分間焼成し、導電性構造体を得た。導電性構造体の[M(g)/V(cm3)]の値は0.04g/cm、主面方向の導電率は10.8S/cmであった。
(実施例2)
 実施例1と同様にして得たシート状構造体を2cm角に切り出した。切り出した2cm角のシート状構造体を、3cm×3cmの金属矩形枠及び底板よりなる金型内に配置した。具体的には、金型の底板上に2cm角のシート状構造体を載置し、実施例1と同条件下で加熱した。得られた加熱済構造体は、厚さ(高さ)が1.5cmであり、厚み方向及び主面方向で電気伝導性を有していた。さらに、得られた加熱済構造体の断面を顕微鏡観察すると、ハニカム状の構造が確認された。
 さらに、得られた加熱済構造体を、実施例1と同様にして焼成して、導電性構造体を得た。導電性構造体の[M(g)/V(cm3)]の値は0.04g/cm、主面方向の導電率は2.1S/cmであった。
(実施例3)
 実施例1と同様にして得たシート状構造体の上下を、導電層として、直径6cm厚さ500μmの銅板で挟み、実施例1と同様にして、加熱工程及び焼成工程を行った。得られた加熱済構造体では、銅板が加熱済構造体と完全に接合されていた。さらに、得られた加熱済構造体の厚み方向の電気抵抗値を、テスターを用いて測定したところ、1Ωであり、複合体内にて厚み方向に電気的接続が形成されていることを確認した。
(実施例4)
 <分散液調製工程>において、発泡性樹脂の配合量を25mgに変更し、<加熱工程>にて用いる金型として、上下の金属板の間の隙間が547μmである金型を用いた以外は、実施例1と同様にして、導電性構造体を得た。得られた導電性構造体について、各種測定及び評価を行った。結果を表1に示す。
(実施例5)
 <分散液調製工程>において、発泡性樹脂の配合量を50mgに変更し、<加熱工程>にて用いる金型として、上下の金属板の間の隙間が1354μmである金型を用いた以外は、実施例1と同様にして、導電性構造体を得た。得られた導電性構造体について、各種測定及び評価を行った。結果を表1に示す。
(実施例6)
 <分散液調製工程>において、発泡性樹脂の配合量を75mgに変更し、<加熱工程>にて用いる金型として、上下の金属板の間の隙間が2276μmである金型を用いた以外は、実施例1と同様にして、導電性構造体を得た。得られた導電性構造体について、各種測定及び評価を行った。結果を表1に示す。
(実施例7)
 <加熱工程>にて用いる金型として、上下の金属板の間の隙間が3800μmである金型を用いた以外は、実施例1と同様にして、導電性構造体を得た。得られた導電性構造体について、各種測定及び評価を行った。結果を表1に示す。
(比較例1)
 繊維状炭素ナノ構造体として、SGCNTに代えて、単層カーボンナノチューブ(Meijo eDIPS EC1.5、直径分布:1.5±0.8、比表面積:1052m/g)を配合した他は実施例1と同様にして、加熱工程まで実施した。得られた加熱済構造体について、[M(g)/V(cm3)]の値を算出したところ、0.1g/cm3超であった。そして、得られた加熱済構造体について、実施例1と同様の焼成工程を実施したところ、崩れてしまい、導電性構造体を得ることができなかった。よって、比較例1については、各種測定及び評価を実施することができなかった。
(比較例2)
 繊維状炭素ナノ構造体として、多層カーボンナノチューブ(Nanocyl製、NC7000、平均直径:9.5nm、平均長さ:1.5nm、比表面積分布:250~300m/g)を用いた以外は実施例1と同様にして加熱工程まで実施した。得られた加熱済構造体には、電気伝導性が認められなかった。そして、実施例1と同様の焼成工程を実施したところ、粉末状に崩れてしまい、導電性構造体を得ることができなかった。よって、比較例2については、各種測定及び評価を実施することができなかった。
(比較例3)
 繊維状炭素ナノ構造体として、単層カーボンナノチューブ(Nano Integris製、HiPCO(登録商標)Super Purified、直径分布:0.8-1.2nm、チューブ長分布:~100-1000nm、比表面積分布:~400-1000m/g)を用いた以外は実施例1と同様にして加熱工程まで実施した。得られた加熱済構造体には、電気伝導性が認められなかった。そして、実施例1と同様の焼成工程を実施したところ、粉末状に崩れてしまい、導電性構造体を得ることができなかった。よって、比較例3については、各種測定及び評価を実施することができなかった。
(比較例4)
 <分散液調製工程>において、発泡性樹脂を配合しなかった。<加熱工程>以降の工程を実施せず、実施例1と同様の<分散液調製工程>及び<シート状構造体形成工程>を実施して得られたシート状構造体について、各種測定及び評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、熱伝導率が低い導電性構造体を提供することができる。また、本発明によれば、熱伝導率が低い導電性構造体を備える複合体を提供することができる。さらに、本発明によれば、熱伝導率が低い導電性構造体及び複合体を良好に形成することができる製造方法を提供することができる。
 1   網目構造
 2   空隙
 3   樹脂成分

Claims (14)

  1.  複数の繊維状炭素ナノ構造体を含む導電性構造体であって、
     該導電性構造体の骨格構造が、前記複数の繊維状炭素ナノ構造体が相互に接続してなる網目構造よりなり、
     前記導電性構造体の体積をV(cm3)、前記導電性構造体に含まれる前記複数の繊維状炭素ナノ構造体の総質量をM(g)として、前記導電性構造体の単位体積あたりに含有される前記複数の繊維状炭素ナノ構造体の質量[M(g)/V(cm3)]の値が、0.1g/cm3以下である、導電性構造体。
  2.  異方性熱伝導体である、請求項1に記載の導電性構造体。
  3.  前記導電性構造体がシート形状を有し、前記シート形状の主面方向における熱伝導率κ(W/mK)、及び前記シート形状の厚み方向における熱伝導率κ(W/mK)が、κ/κ<10を満たす、請求項1又は2に記載の導電性構造体。
  4.  樹脂を更に含む、請求項1~3の何れかに記載の導電性構造体。
  5.  前記網目構造の少なくとも一部が、層構造をなす、請求項1~4の何れかに記載の導電性構造体。
  6.  前記網目構造の少なくとも一部が、ハニカム構造をなす、請求項1~4の何れかに記載の導電性構造体。
  7.  前記繊維状炭素ナノ構造体が、カーボンナノチューブを含んでなる、請求項1~6の何れかに記載の導電性構造体。
  8.  前記繊維状炭素ナノ構造体が、吸着等温線から得られるt-プロットが上に凸な形状を示す、請求項7に記載の導電性構造体。
  9.  前記t-プロットの屈曲点が、0.2≦t(nm)≦1.5の範囲にある、請求項8に記載の導電性構造体。
  10.  前記t-プロットから得られる全比表面積S1及び内部比表面積S2が、0.05≦S2/S1≦0.30を満たす、請求項8又は9に記載の導電性構造体。
  11.  請求項1~10の何れかに記載の前記導電性構造体と、該導電性構造体とは異なる導電層と、を備える複合体。
  12.  未発泡の発泡性樹脂及び複数の繊維状炭素ナノ構造体を含むシート状構造体を、前記シート状構造体の厚み方向にて相互に対向する少なくとも一対の面、又は前記シート状構造体の主面方向で前記シート状構造体を囲繞する少なくとも一つの面を有する金型内で前記発泡性樹脂の分解温度未満の温度で加熱して加熱済構造体を得る加熱工程を含み、
     前記加熱済構造体は前記少なくとも一対の面又は前記少なくとも一つの面に対して当接する、
     請求項1~10の何れかに記載の導電性構造体の製造方法。
  13.  前記加熱工程の後に、前記加熱済構造体を、前記発泡性樹脂の分解温度以上の温度で加熱する焼成工程を更に含む、請求項12に記載の導電性構造体の製造方法。
  14.  請求項12又は13に記載の導電性構造体の製造方法における前記加熱工程の前に、前記シート状構造体の上下面のうちの少なくとも一方又は前記シート状構造体の側面のうちの少なくとも一部に、前記シート状構造体とは異なる導電層を配置する導電層配置工程を更に含む、
    複合体の製造方法。
PCT/JP2019/006857 2018-03-07 2019-02-22 導電性構造体、複合体、及び、これらの製造方法 WO2019171987A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040951 2018-03-07
JP2018-040951 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019171987A1 true WO2019171987A1 (ja) 2019-09-12

Family

ID=67845667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006857 WO2019171987A1 (ja) 2018-03-07 2019-02-22 導電性構造体、複合体、及び、これらの製造方法

Country Status (1)

Country Link
WO (1) WO2019171987A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134332A (ja) * 2020-02-28 2021-09-13 株式会社ジェイエスピー 発泡粒子及び発泡粒子成形体
WO2023127923A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 複合シート及びその製造方法、並びに熱電変換素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066427A (ja) * 2009-09-21 2011-03-31 Hitachi Global Storage Technologies Netherlands Bv 電子デバイス
JP2013232284A (ja) * 2012-04-27 2013-11-14 Toyota Industries Corp 固体電解質及び二次電池
WO2016136275A1 (ja) * 2015-02-27 2016-09-01 日本ゼオン株式会社 シリコーンゴム組成物および加硫物
WO2018025587A1 (ja) * 2016-08-03 2018-02-08 日本ゼオン株式会社 熱伝導シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066427A (ja) * 2009-09-21 2011-03-31 Hitachi Global Storage Technologies Netherlands Bv 電子デバイス
JP2013232284A (ja) * 2012-04-27 2013-11-14 Toyota Industries Corp 固体電解質及び二次電池
WO2016136275A1 (ja) * 2015-02-27 2016-09-01 日本ゼオン株式会社 シリコーンゴム組成物および加硫物
WO2018025587A1 (ja) * 2016-08-03 2018-02-08 日本ゼオン株式会社 熱伝導シート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134332A (ja) * 2020-02-28 2021-09-13 株式会社ジェイエスピー 発泡粒子及び発泡粒子成形体
JP7421092B2 (ja) 2020-02-28 2024-01-24 株式会社ジェイエスピー 発泡粒子及び発泡粒子成形体
WO2023127923A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 複合シート及びその製造方法、並びに熱電変換素子

Similar Documents

Publication Publication Date Title
Gao et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities
Mikhalchan et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method
Wang et al. General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotube arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation
Futaba et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
Min et al. Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode
Feng et al. Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons
EP2865729A1 (en) Heat-dissipating film, and its production method and apparatus
JP2010503214A (ja) カーボンナノチューブのナノコンポジット、カーボンナノチューブのナノコンポジットを作製する方法、およびナノコンポジットを含むデバイス
JP6936439B2 (ja) セルロースナノファイバーカーボンとその製造方法
Meyyappan Nanostructured materials for supercapacitors
Zhou et al. A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors
Venkateshalu et al. Heterogeneous 3D graphene derivatives for supercapacitors
JP2010105909A (ja) 高密度カーボンナノチューブ集合体及びその製造方法
WO2019171987A1 (ja) 導電性構造体、複合体、及び、これらの製造方法
US8911859B1 (en) Carbon nanotube material and method of making the same
WO2019065517A1 (ja) シート及びその製造方法
US10392254B2 (en) Carbon film and method for producing the same
CN113753880B (zh) 一种3d打印制备三维石墨烯结构的方法
Smithyman et al. Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles
US11325831B2 (en) Carbon nanotube foams with controllable architecture and methods
KR101452397B1 (ko) 그래핀 중공입자 제조방법 및 이로부터 제조된 그래핀 중공입자
EP2842910B1 (en) Method of preparing graphene paper
O'Neill et al. Thermal conductivity of 3-dimensional graphene papers
KR101780394B1 (ko) 에너지 저장 물질로 유용한 다공성 나노구조체 및 이의 제조 방법
Xia et al. Density-induced Joule-heating characteristics of nanocarbon aerogels: implications for tunable electrothermal behaviors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP