WO2019171608A1 - 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服 - Google Patents

多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服 Download PDF

Info

Publication number
WO2019171608A1
WO2019171608A1 PCT/JP2018/013686 JP2018013686W WO2019171608A1 WO 2019171608 A1 WO2019171608 A1 WO 2019171608A1 JP 2018013686 W JP2018013686 W JP 2018013686W WO 2019171608 A1 WO2019171608 A1 WO 2019171608A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
heat
yarn
spun yarn
aramid fiber
Prior art date
Application number
PCT/JP2018/013686
Other languages
English (en)
French (fr)
Inventor
岡部孝之
田先慶多
Original Assignee
日本毛織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本毛織株式会社 filed Critical 日本毛織株式会社
Priority to CN201880023316.9A priority Critical patent/CN110603351A/zh
Publication of WO2019171608A1 publication Critical patent/WO2019171608A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Definitions

  • the present invention relates to a multi-layer structure spun yarn containing polybenzimidazole fiber and p-aramid fiber, a heat-resistant fabric and a heat-resistant protective clothing using the same.
  • a woven fabric woven with p-aramid fiber is usually used.
  • This woven fabric is composed of a warp yarn or a weft yarn, one of which is a spun yarn made of polybenzimidazole fiber and the other of which is a filament yarn made of p-aramid fiber.
  • the present inventors use a check spun yarn of para-aramid fiber for the core, and meta-aramid fiber, flame-retardant acrylic fiber or polyetherimide fiber for the sheath. Have been proposed (Patent Documents 1 and 2).
  • the present inventors use a multi-layered spun yarn using a p-aramid fiber check spun yarn for the core and a mixed fiber of a flame retardant fiber other than p-aramid fiber and a polybenzimidazole fiber for the sheath. Is proposed in Patent Document 3.
  • Patent Documents 1 to 3 have a problem of insufficient strength, heat resistance and flame retardancy.
  • Patent Document 3 solves the problem of fibrillation peculiar to p-aramid fibers and the tendency of strength deterioration and discoloration due to ultraviolet rays by not adding p-aramid fibers to the sheath component. Even if there is a problem, there is a need for protective clothing with higher strength, heat resistance and flame resistance.
  • the present invention provides a multi-layer structure spun yarn having high strength, heat resistance and flame retardancy, a heat resistant fabric using the same, and a heat resistant protective clothing.
  • the multilayer structure spun yarn of the present invention is a p-aramid fiber yarn in which the core component is check spun, and the sheath component is a multilayer structure spun yarn containing polybenzimidazole fiber, wherein the sheath component is a polybenzimidazole fiber.
  • the heat resistant fabric of the present invention is characterized by using the above-mentioned multilayered spun yarn.
  • the heat-resistant protective clothing of this invention is characterized by including the said heat-resistant cloth.
  • the multilayer structure spun yarn of the present invention is a p-aramid fiber yarn in which the core component is check spun, and the sheath component is a multilayer structure spun yarn containing polybenzimidazole fiber, wherein the sheath component is a polybenzimidazole fiber.
  • FIG. 1 is a perspective view showing a main part of a ring spinning machine for producing a core-sheath structure spun yarn in one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a core-sheath spun yarn according to an embodiment of the present invention.
  • FIG. 3 is a woven structure diagram of a fabric according to an embodiment of the present invention.
  • FIG. 4 is a woven structure diagram of a fabric according to another embodiment of the present invention.
  • FIG. 5 is a perspective view of a combustion drop test apparatus according to an embodiment of the present invention.
  • FIG. 6 is a side view of the combustion drop test apparatus.
  • the multilayer structure spun yarn of the present invention is a p-aramid fiber yarn in which the core component is check spun, and the sheath component is a multilayer structure spun yarn containing polybenzimidazole fiber, wherein the sheath component is a polybenzimidazole fiber.
  • Polybenzimidazole (hereinafter also referred to as “PBI”) fiber is, for example, a fiber made from a polymer of 2,2 ′-(m-phenylen) -5,5′-bibenzimidazole, and has a thermal decomposition temperature exceeding 600 ° C.
  • the deflection temperature under load is 410 ° C.
  • the glass transition point is 427 ° C.
  • the oxygen index (OI) value is 41 or more.
  • This fiber has a strength retention of 95% even after being exposed to air at 230 ° C. for 2 weeks, can maintain the fiber performance up to 1000 ° C. in nitrogen, is essentially nonflammable and has high heat resistance (hereinafter “ Encyclopedia of Textiles, page 848, Maruzen, March 25, 2002).
  • PBI fibers are known to be products manufactured by PBI® Performance® Products, Inc., USA.
  • the PBI fibers used for the sheath component are preferably produced or original fibers.
  • the term “generated” refers to a state in which neither the original material nor the dyeing is performed. PBI fibers are yellow in their formed state. Therefore, this yellow color is mixed.
  • the original is colored by adding a colorant to the polymer (for example, black) and then fiberized.
  • the copolymer p-aramid fiber used for the core component is manufactured by Teijin Limited and trade name “Technola”.
  • the “technola” is copolyparaphenylene-3,4′-oxydiphenylene-terephthalamide. These fibers have a tensile strength of 24.5 to 24.7 cN / dtex, a thermal decomposition initiation temperature of about 500 ° C., and an oxygen index (OI) value of 25.
  • Homopolymerized p-aramid fiber (polyparaphenylene terephthalamide fiber) used for the sheath component is manufactured by Du pont in the US, trade name "Kevlar” (same product name by Toray DuPont in Japan), manufactured by Teijin Ltd. There is a trade name “Twaron”, a product name “Taparan” made by Yantai Taiwa Co., Ltd., and is known as rigidity.
  • the homopolymerized p-aramid fiber (polyparaphenylene terephthalamide fiber) has a tensile strength of 20.3 to 23.7 cN / dtex, a thermal decomposition starting temperature of about 520 ° C., and an oxygen index (OI) value of 29.
  • the homopolymerized p-aramid fiber used for the sheath component has peculiar problems that p-aramid fiber is susceptible to fibrillation and strength deterioration and discoloration due to ultraviolet rays.
  • the service life is 7 to 8 years, and if it can withstand this period, it will not be a big problem.
  • fibrillation can be solved by reducing the number of washings or making it inconspicuous by coloring it in a bright color (for example, beige, orange, yellow, green). Drying during storage and after washing can be solved by indoors.
  • the PBI fiber when the sheath component is 100% by mass, the PBI fiber is preferably 50 to 65% by mass, the homopolymerized p-aramid fiber is preferably 35 to 50% by mass, and more preferably 52 to 63% by mass.
  • the homopolymerized p-aramid fiber is 37 to 48% by mass. If it is the said range, intensity
  • the core component is 20 to 40% by mass
  • the sheath component is preferably 60 to 80% by mass, and more preferably the core component is 22 to 38% by mass.
  • the component is 62 to 78% by mass.
  • the core component is less than 20% by mass, the check spun yarn of the core component must be made extremely fine, and it is difficult to produce the check spun yarn.
  • the sheath fiber coverage becomes low.
  • the sheath component is less than 60% by mass, the covering property is not good, and when it exceeds 80% by mass, the fineness of the entire multi-layer structure spun yarn is undesirably increased.
  • the PBI fiber is preferably a toe-breaked check fiber, a bias cut or a square cut fiber.
  • a toe-breaked check fiber is a fiber (both torn fibers) that is similar to the p-aramid fiber yarn that has been spun in the core component, so the core component and the sheath component have good affinity and good integrity. It becomes a good multilayer structure spun yarn.
  • the sheath component may be bias cut or square cut.
  • Bias cut refers to alternately repeating perpendicular cutting and oblique cutting with respect to the traveling direction of the long fiber bundle (tow). For example, in the case of a 76/102 mm bias cut, the fiber length is uniformly distributed from the shortest 76 mm to the longest 102 mm.
  • the square cut repeats only a fixed length of right-angle cutting. For example, in the case of a 51 mm square cut, all the fiber lengths are uniformly 51 mm.
  • a mix cut such as 76 mm (33%) + 89 mm (34%) + 102 mm (33%), in which square cuts having different fiber lengths are mixed. It is in circulation.
  • the preferred fiber length of the cut fibers is in the range of 30 to 180 mm, more preferably 45 to 150 mm, particularly preferably 50 to 125 mm. Within this range, the strength can be maintained higher.
  • the single fiber fineness is preferably in the range of 1 to 5 dtex, more preferably in the range of 1.5 to 4 dtex.
  • the sheath component fiber is processed into a coated short fiber bundle having an optimal shape and form by a spinning method according to the fineness and fiber length.
  • French style wool spinning is a suitable method for wool with thick fineness and long fiber length.
  • the hues and different types of fibers are mixed by, for example, passing a plurality of types of fiber bundles (sliver) each having a composition of 100% through an intersecting gill box, and doubling in the subsequent comber or pre-spinning process. And leveling by the drafting action.
  • this method is referred to as “sliver blending”. This method has a good yield and is suitable for high-mix low-volume production.
  • cotton spinning is a method suitable for cotton having a small fineness and a short fiber length.
  • the hue and the dissimilar fibers are mixed mainly by a card machine during the blended cotton and carding process.
  • this method is referred to as “card blending”, which is suitable for mass production of small varieties although the yield is poor.
  • the coated fiber is further blended with an antistatic fiber.
  • antistatic fibers When antistatic fibers are blended, it is possible to prevent ignition due to static electricity.
  • the antistatic fiber is preferably blended in the range of 0.1 to 1% by mass.
  • the multi-layer structure spun yarn preferably has a metric count of 28 to 52 (fineness: 357 to 192 dtex). If it is in this range, protective work clothes with good workability can be obtained.
  • a heat-resistant fabric is produced using the above-described multilayered spun yarn.
  • the fabric is preferably a woven fabric.
  • the heat resistant fabric does not reach the end of the flame, does not open a hole, has no melt, and has an average afterflame time of 2 seconds or less.
  • the heat-resistant fabric preferably has a shrinkage rate of 5% or less without melting, dropping, separating and igniting the fabric in 5 minutes at 180 ° C. in a heat resistance test of ISO 1311613-1999. With these physical properties, the heat resistance and flame retardancy are very excellent.
  • the heat-resistant fabric conforms to ISO 6330-1984, 2A-E specified in the international performance standard ISO 11613-1999, which is a test for measuring washing resistance in the sense that it does not exhibit poor appearance due to fibrillation. It is preferable that no whitening or discoloration is observed even after washing 5 times. Thereby, the product value can be maintained high.
  • the light resistance is preferably 2-3 or higher in both the carbon arc lamp test of JIS L 0842.7.2 (a) and the xenon arc lamp test of JIS L 0843. Thereby, the discoloration by light is low and a product value can be maintained high.
  • the heat-resistant protective clothing including the heat-resistant fabric of the present invention is suitable as work clothes for fire fighting suits, emergency crews, life crews, marine rescue workers, military personnel, oil-related facility workers, chemical factory workers, etc. is there.
  • the heat resistant fabric of the present invention for the outer layer. This is because the heat resistance is high.
  • the core component is a check-spun copolymer p-aramid fiber yarn.
  • the check spun yarn refers to a yarn obtained by drafting a long fiber bundle (tow), cutting (stripping), and twisting it into a spun yarn.
  • a direct spinning method in which draft-twisting is performed by one fine spinning machine may be used, or a slur bar may be once twisted to form a spun yarn (Perlock method or converter method) in two or more steps.
  • the direct spinning method is preferable.
  • the preferred fineness of the check spun yarn is preferably in the range of 5.56 to 20.0 tex (single yarn, 50 to 180 single yarn), more preferably 6.67 to 16.7 tex (meter count). 60 to 150 single yarn). If the fineness is in the above range, the strength is high and it is suitable for heat-resistant protective clothing and the like from the viewpoint of texture and the like.
  • the number of twists is preferably 350 to 550 times / m, more preferably 400 to 500 times / m in the 125th single yarn having a metric count. When the number of twists is in the above range, the integrity with the coated fiber is further increased.
  • the preferred fiber length is distributed in the range of 30 to 180 mm, and the average fiber length is in the range of 45 to 150 mm, preferably 50 to 125 mm. Within this range, the strength can be maintained higher.
  • FIG. 1 is a perspective view showing a main part of a ring spinning machine in one embodiment of the present invention.
  • Two large and small cylindrical bodies 2 and 3 having different diameters are provided for each weight on the front bottom roller 1 that is actively rotated.
  • the two cylindrical bodies 2 and 3 are directly connected coaxially in the axial direction.
  • Two cylindrical front top rollers 4 and 5 having different diameters are placed on the two cylindrical bodies 2 and 3.
  • the difference in diameter between the two front top rollers 4 and 5 is substantially the same as the difference in diameter between the lower two cylindrical bodies 2 and 3, but the size is opposite to that of the lower two cylindrical bodies 2 and 3.
  • the two front top rollers 4 and 5 are covered with a rubber cot, and are fitted on a common arbor 6 to which a load is applied so as to be independently rollable.
  • the short fiber bundle 16 pulled out from the roving bobbin is supplied from the guide bar to the back roller 8 through the trumpet feeder 7.
  • the short fiber bundle 15 is a core fiber copolymer p-aramid check fiber bundle, and the short fiber bundle 16 is a coated fiber bundle.
  • the trumpet feeder 7 can be swung in the axial direction of the front bottom roller 1, and the swiveling width can be adjusted.
  • the short fiber bundle B sent from the back roller 8 and passed through the draft apron 9 is held and spun by the large diameter side cylindrical body 3 and the small diameter side cylindrical front top roller 5.
  • the short fiber bundle A is spun by being supplied to the small-diameter columnar body 2 and the large-diameter cylindrical front top roller 4 via the yarn guide 14.
  • the delivery speed of the short fiber bundle 16 spun from the large diameter side cylindrical body 3 is higher than the spinning speed of the short fiber bundle 15 spun from the small diameter side cylindrical body 2, the two are connected via the snell wire 10.
  • the spun short fiber bundles 15 and 16 are twisted together, the short fiber bundle 16 is entangled around the short fiber bundle 15, and the short fiber bundle 15 serves as a core and the short fiber bundle 16 serves as a sheath.
  • a structural spun yarn 17 is formed.
  • the overfeed rate of the short fiber bundle 16 with respect to the short fiber bundle 15 is preferably 5 to 9%, more preferably 6 to 8%.
  • the short fiber bundle 16 can wrap the short fiber bundle 15 in a “twist” shape and cover the core fiber with a coverage of almost 100%.
  • the formed multi-layered spun yarn 17 is wound around the thread tube 13 on the weight via the anti-node ring 11 and the traveler 12. Even if the gripping positions of the short fiber bundles 15 and 16 on the cylindrical bodies 2 and 3 are somewhat different from one weight to another, the ratio of the feeding speeds of the two is always constant. There is no possibility that the properties of the thread 17 vary from one weight to another. Further, when the trumpet feeder 7 is swung as far as possible in the axial direction of the front bottom roller 1, the friction area of the front top roller 5 with the short fiber bundle 16 of the rubber cot coating is dispersed to prevent premature wear of the rubber cot coating. can do. Although not shown, it is desirable that the yarn guide 14 is swung in the axial direction of the front bottom roller 1 to reduce wear of the rubber cot coating of the cylindrical front top roller 4.
  • the proportionality constant Rs 0.495
  • the core fiber and the sheath fiber show the highest degree of integrity like a bolt and a nut
  • the single yarn strength of the core-sheath multi-layer structure spun yarn is the maximum value. I take the.
  • T max Rc ⁇ T 0 / ⁇ C 0
  • Rc 15.7
  • the core component fiber 21 is a check-spun copolymer p-aramid fiber yarn
  • the sheath component fiber 22 includes a PBI fiber and a homopolymer p-aramid fiber and covers the periphery of the core component 21. Because of its good integrity, the damage due to wear of p-aramid fiber yarns is reduced even after washing, or the ratio of the core component fibers appearing on the surface of the spun yarn is reduced. Even if damage such as this occurs, the appearance will not be deteriorated. Similarly, there is no fear of discoloration or strength reduction. In any case, deterioration of the quality can be prevented.
  • the fabric for protective clothing of the present invention is preferably formed by twisting two core-sheath spun yarns (single yarns) into a double yarn and making it a woven fabric.
  • twin yarn has a strength that is more than twice that of single yarn and provides a binding force to prevent yarn breakage during weaving. It is to do.
  • the twin yarn is manufactured using a twisting machine such as a double twister.
  • the double twister is highly productive because it can be twisted twice with one rotation of the spindle.
  • the coated portion tends to be peeled off and disturbed to easily expose the core portion.
  • a ring twister having two rubbing points is preferable, and an up twister having a very short twist path with two rubbing points is most preferable.
  • the warp yarn breakage in a loom is much more dependent on the conjugation force related to rubbing / entanglement / peeling of the surface fluff than the single fiber strength (cN / dtex) constituting the yarn. Accordingly, the warp yarn is preferably a twin yarn.
  • the spun yarn When the spun yarn is indicated by a count, it is preferably in the range of 1/28 to 1/52, the single yarn twist coefficient Kc 1 is in the range of 81 to 87, and the twist direction of the double yarn is the twist of the single yarn. It is preferable that the twisting coefficient Kc 2 of the twin yarn is in the range of 78 to 84, which is opposite to the direction.
  • Kc 1 T 1 / ⁇ C 1
  • Kc 2 T 2 / ⁇ C 2
  • T 1 is the number of single yarn twists (times / m)
  • T 2 is the number of twists of double yarn (times / m)
  • C 1 is the single yarn count (m / g)
  • C 2 is the double yarn count (m / g).
  • T 1 is the number of single yarn twists (times / m)
  • T 2 is the number of twists of double yarn (times / m)
  • C 1 is the single yarn count (m / g)
  • C 2 is the double yarn count (m / g).
  • the twisted structure is stable, the yarn packing property is high, and the fabric can be made into a soft and soft texture.
  • the obtained double yarn is twisted and used as a woven fabric for warp and weft.
  • a woven fabric structure plain weave, twill weave, also called satin weave, satin weave, and other changed weave can be used.
  • plain weave, twill weave, also called satin weave, satin weave, and other changed weave can be used.
  • any of flat knitting, circular knitting and warp knitting can be applied. Any organization may be used.
  • air is included in the knitted fabric, it is knitted into a double-bonded pile fabric.
  • the mat weave shown in FIG. 3 is preferable, and this mat woven fabric is a flat +3/3 mat weave.
  • the plain weave part is a plain structure composed of 8 warps and wefts, and the 3/3 mat weave part has three warps and wefts aligned, and this part protrudes from the surface.
  • Another example of mat weave is shown in FIG.
  • This mat weave structure is a flat +2/2 mat weave.
  • the plain weave part is a plain structure composed of two warps and wefts, and the 2/2 mat weave part has two warps and wefts aligned, and this part protrudes from the surface.
  • Such a woven fabric has an anti-slip effect, and even if the plain structure is torn, it stops at the mat-woven portion and is not easily torn. This is called Rip Stop structure in the sense of tearing prevention.
  • the mass (unit weight) per unit of the protective clothing fabric of the present invention is preferably in the range of 100 to 340 g / m 2 . If it is the said range, it can be set as lighter and more comfortable work clothes. A more preferred range is 140 to 300 g / m 2 , and a particularly preferred range is 150 to 260 g / m 2 .
  • antistatic fibers or antistatic fibers are mixed according to the customer's request, metal fibers, carbon fibers, fibers in which metal particles or carbon particles are kneaded are used.
  • the antistatic fiber is preferably added in the range of 0.1 to 1% by mass, more preferably in the range of 0.3 to 0.7% by mass with respect to the spun yarn.
  • Antistatic fiber yarns can also be added during weaving. For example, “Beltron” manufactured by KB Seiren, “Kurabo” manufactured by Kuraray, carbon fiber, metal fiber, etc. are preferably added in the range of 0.1 to 1% by mass.
  • FIG. 5 is a perspective view of the combustion drop test apparatus 30 and a side view of the apparatus 30 of FIG.
  • the heat-resistant fabric has a width of 25 mm and a length of 200 mm, the upper end is fixed, and a weight of 228 g is attached to the lower end to suspend it. Is applied to the center of the fabric from a position separated by 100 mm, and the time until the weight falls is measured. Specific explanation is described in the column of Examples. The evaluation of the combustion drop test is acceptable if it can withstand 30 seconds or more, and is unacceptable if it is less than 30 seconds.
  • the case 37 has a length L1 of 300 mm, a width L2 of 500 mm, and a height L3 of 200 mm.
  • the flame length L4 is 100 mm.
  • the height L5 of the stand is 502 mm.
  • the flame from the gas torch (gas burner) 36 has a temperature of 1700 ° C. and a calorific value of 3174 kcal / h (standard value of the gas torch).
  • the evaluation of the combustion drop test is acceptable if it can withstand 30 seconds or more, and is unacceptable if it is less than 30 seconds.
  • Core component As core component, copolymer p-aramid fiber, checked spinning yarn of trade name "Technola” manufactured by Teijin Ltd. (twist number Z direction 45 times / 10cm), yarn fineness 8.0tex (meter) (Number: 1/125) (single fiber fineness 1.7 dtex, average fiber length 100 mm, product (yellow)) was used.
  • Second Sheath component The following three types of fibers were blended.
  • PBI fiber Tow (790000dtex (711000 denier), 444,000 fibers) with a PBI single fiber fineness of 1.8dtex manufactured by PBI Performance Products, Inc., USA, and a square cut with a fiber length of 102mm (4 inches)
  • a fiber bundle (sliver) was produced by card blending.
  • the PBI fiber was a product (yellow).
  • (iii) Antistatic fiber The antistatic fiber used was a trade name “Bertron” manufactured by KB Seiren, white, single fiber fineness 5.6 dtex, fiber length: 89 mm square cut.
  • (iv) Sliver blend The above PBI fiber, homopolymer p-aramid fiber, and antistatic fiber were uniformly mixed by sliver blend. 2. Fabrication of spun yarn (1) Core-sheath spun yarn The sliver-blended fiber comprising a copolymer p-aramid fiber as a core component and containing PBI fiber, homopolymer p-aramid fiber and antistatic fiber by the method shown in FIG.
  • a core-sheath spun yarn was prepared using a bundle (sliver) as a sheath component.
  • the twist direction of the core-sheath spun yarn was Z, the number of twists was 700 times / m, and the fineness was 312.5 dtex.
  • Table 1 summarizes the conditions and results of the obtained core-sheath spun yarn.
  • twist yarn The core-sheath spun yarn was twisted with an up twister to obtain a double yarn.
  • the twist direction of the twin yarn was S, the number of twists was 600 times / m, and the fineness was 625 dtex.
  • Example 4 Homopolymerized p-aramid fibers were used for both the core component and the sheath component at the mixing ratio of Example 2. As shown in Table 3, the obtained woven fabric had a low tensile strength (1510 N), the combustion drop test was 8 seconds, and it failed.
  • Example 5 In this example, an actual fireproof garment was assumed, and a test was conducted by laminating a fabric composed of three layers of an outer layer, a middle layer, and an inner layer.
  • Outer layer The fabric obtained in Example 2 was used.
  • Middle layer Moisture permeable waterproof layer, moisture barrier
  • Moisture permeable waterproof membrane on a base fabric made of a plain woven fabric mass of 77 g / m 2 ) using 85% by mass of meta-aramid fiber (fineness 2.2 dtex, fiber length 76/102 mm bias cut) and 15% by mass of wool.
  • As an intermediate layer a polytetrafluoroethylene film laminated with a mass of 105 g / m 2 was used.
  • Inner layer (thermal barrier, inner liner)
  • a 16-sheet honeycomb fabric (mass 213 g / m 2 ) using a blended spun yarn of 85% by mass of meta-aramid fiber (fineness 2.2 dtex, fiber length 76/102 mm bias cut) and 15% by mass of wool was used.
  • the measurement results of the above laminated products are summarized in Table 3.
  • Table 3 was measured by the ISO11613 European method.
  • Table 3 shows that all test items passed.
  • the heat-resistant protective clothing using the heat-resistant fabric of the present invention is suitable as work clothing for fire fighting suits, emergency crews, life crews, marine rescue workers, military personnel, oil-related facility workers, chemical factory workers, etc. It is.
  • the core component is p-aramid fiber yarn that has been spun and the sheath component is a blended fiber containing PBI fiber and p-aramid fiber, so that the multi-layer structure spun yarn has high strength, heat resistance and flame retardancy.
  • a heat-resistant fabric and a heat-resistant protective clothing using the same can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Woven Fabrics (AREA)

Abstract

芯成分21が牽切紡績されたp-アラミド繊維糸であり、鞘成分22がポリベンズイミダゾール繊維を含む多層構造紡績糸20であって、鞘成分22はポリベンズイミダゾール繊維とp-アラミド繊維を含んで混紡されており、鞘成分22を100質量%としたとき、ポリベンズイミダゾール繊維:p-アラミド繊維=50:50~65:35の混率であり、芯成分21は共重合系p-アラミド繊維糸であり、鞘成分22のp-アラミド繊維は単独重合系p-アラミド繊維である。本発明の耐熱性布帛は前記の多層構造紡績糸を使用したものであり、本発明の耐熱性防護服は前記耐熱性布帛を含む。これにより、高い強度、耐熱性及び難燃性が高い多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服を提供する。

Description

多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服
 本発明は、ポリベンズイミダゾール繊維とp-アラミド繊維を含む多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服に関する。
 防護服は、消防、救急隊員、救命隊員、海上救護員、軍隊、石油関連施設の作業員、化学工場の作業員などの作業服として使用されている。近年の米国、カナダ、豪州、及び一部の欧州における消防服は、耐熱性及び難燃性の優れたポリベンズイミダゾール繊維が使用されている。この繊維は強度が約2.4cN/decitex(decitexは以下dtexと略す)と弱いため、通常はp-アラミド繊維と交織した織物が使用されている。この織物は、経糸又は緯糸のうち、一方の糸がポリベンズイミダゾール繊維からなる紡績糸、他方の糸がp-アラミド繊維からなるフィラメント糸で構成されている。別の耐熱性及び難燃性の優れた織物として、本発明者らは芯にパラ系アラミド繊維の牽切紡績糸を使用し、鞘にメタ系アラミド繊維、難燃アクリル繊維又はポリエーテルイミド繊維等を使用した芯鞘紡績糸を提案している(特許文献1~2)。また、本発明者らは芯にp-アラミド繊維の牽切紡績糸を使用し、鞘にp-アラミド繊維以外の難燃性繊維とポリベンズイミダゾール繊維との混紡繊維を使用した多層構造紡績糸を特許文献3で提案している。
WO2009/014007号公報 WO2012/137556号公報 特許第5972420号公報
 しかし、特許文献1~3の繊維組成は、強度、耐熱性及び難燃性が不足であるという問題があった。特許文献3は、鞘成分にp-アラミド繊維を加えないことにより、p-アラミド繊維特有のフィブリル化の発生、及び紫外線で強度劣化と変色が起こりやすい問題を解決しているが、このような問題があってもさらに高い強度、耐熱性及び難燃性の防護服が求められている。
 本発明は、前記従来の問題を解決するため、高い強度、耐熱性及び難燃性が高い多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服を提供する。
 本発明の多層構造紡績糸は、芯成分が牽切紡績されたp-アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であって、前記鞘成分はポリベンズイミダゾール繊維とp-アラミド繊維を含んで混紡されており、前記鞘成分を100質量%としたとき、ポリベンズイミダゾール繊維:p-アラミド繊維=50:50~65:35の混率であり、前記芯成分は共重合系p-アラミド繊維糸であり、前記鞘成分のp-アラミド繊維は単独重合系p-アラミド繊維であることを特徴とする。
 本発明の耐熱性布帛は、前記の多層構造紡績糸を使用したことを特徴とする。また、本発明の耐熱性防護服は、前記の耐熱性布帛を含むことを特徴とする。
 本発明の多層構造紡績糸は、芯成分が牽切紡績されたp-アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であって、前記鞘成分はポリベンズイミダゾール繊維とp-アラミド繊維を含んで混紡されており、前記鞘成分を100質量%としたとき、ポリベンズイミダゾール繊維:p-アラミド繊維=50:50~65:35の混率であり、前記芯成分は共重合系p-アラミド繊維糸であり、前記鞘成分のp-アラミド繊維は単独重合系p-アラミド繊維であることにより、強度、耐熱性及び難燃性が高い多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服を提供できる。すなわち、鞘成分を100質量%としたとき、ポリベンズイミダゾール繊維:p-アラミド繊維=50:50~65:35の混率としたことにより、強度、耐熱性及び難燃性を高い状態に保持できる。また、強度は高いが相対的に耐熱性はそれほど高くない共重合系p-アラミド繊維糸を芯成分とすることにより強度を高め、相対的に耐熱性の高い単独重合系p-アラミド繊維を鞘成分に加えることにより耐熱性及び難燃性を高い状態に保持できる。
図1は本発明の一実施形態における芯鞘構造紡績糸を製造するためのリング精紡機の要部を示す斜視図である。 図2は本発明の一実施形態における芯鞘構造紡績糸の模式的斜視図である。 図3は本発明の一実施形態における織物の織組織図である。 図4は本発明の別の一実施形態における織物の織組織図である。 図5は本発明の一実施例の燃焼落下試験装置の斜視図である。 図6は同、燃焼落下試験装置の側面図である。
 本発明の多層構造紡績糸は、芯成分が牽切紡績されたp-アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であって、前記鞘成分はポリベンズイミダゾール繊維とp-アラミド繊維を含んで混紡されており、前記鞘成分を100質量%としたとき、ポリベンズイミダゾール繊維:p-アラミド繊維=50:50~65:35の混率であり、前記芯成分は共重合系p-アラミド繊維糸であり、前記鞘成分のp-アラミド繊維は単独重合系p-アラミド繊維である。ポリベンズイミダゾール(以下「PBI」ともいう)繊維は、例えば2,2'-(m-phenylen)-5,5'-bibenzimidazoleのポリマーから作られる繊維であり、600℃を超える熱分解温度を持ち、荷重たわみ温度が410℃、ガラス転移点が427℃、酸素指数(OI)値が41以上である。この繊維は230℃の空気中で2週間暴露しても強度保持率は95%、窒素中では1000℃まで繊維性能を維持でき、本質的に不燃性であるとともに高耐熱性である(以上「繊維の百科事典」848頁,丸善,平成14年3月25日)。PBI繊維は米国PBI Performance Products, Inc.社製の製品が知られている。
 鞘成分に使用するPBI繊維は、生成り又は原着繊維が好ましい。ここで生成りとは、原着も染色もされていない状態をいう。PBI繊維は生成りの状態で黄色である。したがって、この黄色を生かして混色する。原着は、ポリマーに着色剤を加えて着色し(例えば黒色)、その後に繊維化したものである。
 芯成分に使用する共重合系p-アラミド繊維は、帝人社製、商品名"テクノーラ"等がある。前記"テクノーラ"は、コポリパラフェニレン-3,4’-オキシジフェニレン-テレフタルアミドである。これらの繊維の引張強度は24.5~24.7cN/dtex、熱分解開始温度は約500℃、酸素指数(OI)値は25である。
 鞘成分に使用する単独重合系p-アラミド繊維(ポリパラフェニレンテレフタルアミド繊維)は、米国Du pont社製、商品名"ケブラー"(日本の東レ・デュポン社製も同一商品名)、帝人社製、商品名"トワロン"、中国煙台泰和社製、商品名"タパラン"等があり、剛直性として知られている。単独重合系p-アラミド繊維(ポリパラフェニレンテレフタルアミド繊維)の引張強度は20.3~23.7cN/dtex、熱分解開始温度は約520℃、酸素指数(OI)値は29である。
 鞘成分に使用する単独重合系p-アラミド繊維について、p-アラミド繊維はフィブリル化の発生、及び紫外線で強度劣化と変色が起こり易いという特有の問題があるが、これらの問題は例えば消防服については、耐用期間は7~8年であり、この期間に耐えられれば大きな問題とはならない。そして、フィブリル化については、洗濯回数を減らすとか、明るい色(例えばベージュ、オレンジ、黄、緑)に着色することにより目立たなくすることで解決でき、紫外線で強度劣化と変色が起こる問題については、保管時や洗濯後の乾燥は室内ですることで解決できる。
 本発明においては、鞘成分を100質量%としたとき、PBI繊維は50~65質量%、単独重合系p-アラミド繊維は35~50質量%が好ましく、さらに好ましくはPBI繊維52~63質量%、単独重合系p-アラミド繊維は37~48質量%である。前記の範囲であれば、強度、耐熱性及び難燃性がバランスよく高く維持できる。
 前記多層構造紡績糸を100質量%としたとき、芯成分は20~40質量%であり、鞘成分は60~80質量%が好ましく、さらに好ましくは芯成分が22~38質量%であり、鞘成分が62~78質量%である。芯成分が20質量%未満では、芯成分の牽切紡績糸を極細としなければならず、牽切紡績糸を製造することに困難が伴う。また、芯成分が40質量%を超えると、鞘繊維の被覆性が低くなる。また、鞘成分が60質量%未満では被覆性が良好とならず、80質量%を超すと多層構造紡績糸全体の繊度が高くなり好ましくない。
 前記PBI繊維はトウブレークした牽切繊維、バイアスカット又はスクエアカットされている繊維であることが好ましい。トウブレークした牽切繊維であれば、芯成分の牽切紡績されたp-アラミド繊維糸に近似した繊維(ともに引きちぎり繊維)であるため、芯成分と鞘成分の親和性が良く一体性の良い多層構造紡績糸となる。鞘成分はバイアスカット又はスクエアカットされていても良い。バイアスカットとは、長繊維束(トウ)の進行方向に対し直角切りと斜め切りを交互に繰り返すことをいう。例えば76/102mmバイアスカットとした場合、その繊維長は最短の76mmから最長の102mmまで一様に分布している。これに対しスクエアカットとは、一定長の直角切りだけを繰り返すので、例えば51mmスクエアカットとした場合、すべての繊維長は均一に51mmとなる。
 さらに近年では、繊維長の異なるスクエアカット同士を混合した、例えば76mm(33%)+89mm(34%)+102mm(33%)のような、ミックスカットと称される階段状の分布を有する商品も市中に流通している。カットされた繊維の好ましい繊維長は30~180mmの範囲、更に好ましくは45~150mm、特に好ましくは50~125mmの範囲である。この範囲であればさらに強力を高く維持できる。また、単繊維繊度は1~5dtexの範囲が好ましく、更に好ましくは1.5~4dtexの範囲である。
 鞘成分繊維はその繊度と繊維長に応じた紡績方法によって、最適な形状・形態の被覆短繊維束まで加工される。仏式梳毛紡績は太い繊度と長い繊維長を有する羊毛に適した方法である。ここにおいて色相や異種繊維の混合は、例えば混毛インターセクティング ギル ボックス(intersecting gill box)に各々が100%組成である複数種の繊維束(スライバー)を通し、後のコーマーや前紡工程におけるダブリング及びドラフティング作用によって、平行かつ均整化する。以下この方法を「スライバー混紡」という。この方法は歩留りが良く、多品種少量生産に好適である。これに対し綿紡績は細い繊度と短い繊維長を有する綿花に適した方法である。ここにおいて色相や異種繊維の混合は、混打綿や梳綿工程中の主としてカード機でなされる。以下この方法を「カード混紡」といい、歩留りは悪いが小品種大量生産に好適である。
 前記被覆繊維には、更に帯電防止繊維が混紡されているのが好ましい。帯電防止繊維が混紡されていると静電気による発火を防止できる。帯電防止繊維は0.1~1質量%の範囲混紡するのが好ましい。
 前記多層構造紡績糸は、メートル番手で28~52番(繊度:357~192dtex)の範囲であるのが好ましい。この範囲であれば、作業性の良い防護服が得られる。
 本発明は前記の多層構造紡績糸を使用して耐熱性布帛とする。布帛は織物が好ましい。前記耐熱性布帛は、EN532の防炎性試験において、炎が端に達せず、穴も開かず、溶融物はなく、平均残炎時間が2秒以下が好ましい。また、前記耐熱性布帛は、ISO 11613-1999の耐熱性試験180℃、5分において、生地が溶融、落下、分離及び発火せず、収縮率は5%以下であるのが好ましい。この物性であれば耐熱性も難燃性も非常に優れたレベルである。
 前記耐熱性布帛は、フィブリル化による外観不良を呈しないという意味で耐洗濯性を測定するための試験である国際性能基準ISO 11613-1999に規定されているISO 6330-1984, 2A-Eにしたがい、5回洗濯した後においても、白化や変色が見られないことが好ましい。これにより、製品価値を高く維持できる。また耐光性は、JIS L 0842.7.2(a)のカーボンアーク灯試験、及びJIS L 0843のキセノンアーク灯試験でいずれも2-3級以上が好ましい。これにより光による変色が低く、製品価値を高く維持できる。
 本発明の耐熱性布帛を含む耐熱性防護服は、消防服のほか、救急隊員、救命隊員、海上救護員、軍隊、石油関連施設の作業員、化学工場の作業員などの作業服として好適である。消防服の場合は、外層に本発明の耐熱性布帛を使用するのが好ましい。耐熱性が高いからである。
 次に芯鞘紡績糸について説明する。まず芯成分として牽切紡績糸を使用する。芯成分は牽切紡績された共重合系p-アラミド繊維糸である。ここで牽切紡績糸とは、長繊維束(トウ)をドラフトしてカット(引きちぎり)し、加撚して紡績糸としたものをいう。ドラフト-加撚を1つの精紡機で行う直紡方式であっても良いし、一旦スラーバーとし撚り掛けして2工程以上で紡績糸(パーロック方式又はコンバータ法)としてもよい。好ましくは、直紡方式である。牽切糸を使用することにより、強力を高く維持でき、鞘繊維との一体性に優れた芯鞘構造紡績糸が得られる。
 牽切紡績糸の好ましい繊度は、単糸で5.56~20.0 tex(メートル番手で50~180番単糸)の範囲が好ましく、更に好ましくは6.67~16.7 tex(メートル番手で60~150番単糸)の範囲である。繊度が前記の範囲であれば、強力も高く、風合いなどの面からも耐熱性防護服等に好適である。また、撚り数はメートル番手125番単糸で350~550回/mが好ましく、更に好ましくは400~500回/mである。撚り数が前記範囲であれば、被覆繊維との一体性がさらに高いものとなる。また、好ましい繊維長は30~180mmの範囲に分布しており、平均繊維長は45~150mm、好ましくは50~125mmの範囲である。この範囲であれば強力をさらに高く維持できる。
 本発明において、牽切紡績糸単糸の繊度をS(tex)、その撚り数をT(回/m) とすると、同単糸の撚り係数Ks0は、次に示す数式によって計算する。
Ks0=T0・√S0
 前記紡績糸を番手表示する場合は、単糸の番手をC(m/g)、その撚り数をT(回/m) とすると、同単糸の撚り係数Kcは、次に示す数式によって計算する。
Kc0=T0/√C0
 次に本発明の芯鞘構造糸を製造するための装置と方法について説明する。図1は本発明の一実施例におけるリング精紡機の要部を示す斜視図である。積極回転駆動するフロントボトムローラ1に、直径の異なる2つの大小の円柱体2,3を錘ごとに設ける。2つの円柱体2,3は軸方向に同軸に直結する。2つの円柱体2,3の上に、2つの直径の異なる円筒形のフロントトップローラ4,5をのせる。2つのフロントトップローラ4,5の直径差は下側の2つの円柱体2,3の直径差と略同じであるが、大小は下側の2つの円柱体2,3とは逆である。2つのフロントトップローラ4,5はゴムコットで被覆され、荷重を掛けた共通のアーバー6にそれぞれ独立に転動可能に外嵌する。粗糸ボビンから引き出した短繊維束16は、ガイドバーからトランペットフィーダー7を介してバックローラ8に供給する。
 短繊維束15は芯繊維の共重合系p-アラミド牽切繊維束とし、短繊維束16は被覆繊維束とする。図示していないが、トランペットフィーダー7はフロントボトムローラ1の軸方向に揺動させることが可能であり、その揺動幅は調節することができる。バックローラ8から送出されてドラフトエプロン9を経た短繊維束Bは、大径側円柱体3と小径側の円筒形フロントトップローラ5に把持されて紡出される。短繊維束Aは、ヤーンガイド14を介して、小径の円柱体2と大径の円筒形フロントトップローラ4に供給して紡出される。
 小径側円柱体2から紡出される短繊維束15の紡出速度よりも、大径側円柱体3から紡出される短繊維束16の送出速度の方が速いから、スネルワイヤ10を介して2本の紡出された短繊維束15、16を撚り合わせると、短繊維束15の周りに短繊維束16が絡み、短繊維束15を芯とし短繊維束16が鞘となる芯鞘型の多層構造紡績糸17が形成される。
 短繊維束15に対する短繊維束16のオーバーフィード率は5~9%が好ましく、更に好ましくは6~8%である。オーバーフィード率が前記の範囲であると、短繊維束16は短繊維束15を「こより状」に包み込み、ほぼ100%の被覆率で芯繊維を被覆できる。
 形成された多層構造紡績糸17は、アンチノードリング11とトラベラ12を介して錘上の糸管13に巻き取られる。短繊維束15,16の円柱体2,3上の把時位置が錘ごとに多少のばらつきがあっても、両者の送出速度比は常に一定であるから、製造した芯鞘型の多層構造紡績糸17の性状が錘ごとにばらつくおそれはない。又、トランペットフィーダー7をフロントボトムローラ1の軸方向に可能な範囲で揺動させると、フロントトップローラ5のゴムコット被覆の短繊維束16との摩擦領域が分散し、ゴムコット被覆の早期摩耗を防止することができる。図示していないが、ヤーンガイド14は、フロントボトムローラ1の軸方向に揺動させて円筒形フロントトップローラ4のゴムコット被覆の摩耗を軽減することが望ましい。
 芯鞘型の多層構造紡績糸単糸の好ましい撚り方向は牽切糸単糸と同方向であり、かつ最も好ましい撚り数Tmax (回/m) は、鞘繊維を被覆した後の単糸繊度に関わらず、牽切紡績糸繊度S0 (tex) とその撚り数T(回/m) によって決定され、次式が成立する。
max=Rs・T0・√S0
ここにおいて、比例定数Rs=0.495とすれば、芯繊維と鞘繊維はいわばボルトとナットのように最高度の一体性を示し、芯鞘型の多層構造紡績糸の単糸強力は極大値を取る。
 前記単糸を番手表示する場合、最も好ましい撚り数Tmax (回/m) は、牽切紡績糸単糸番手C0 (m/g) とその撚り数T(回/m) によって決定され、次式が成立する。
max=Rc・T0/√C0
ここにおいて、比例定数Rc=15.7とすれば、最高度の一体性を示し、多層構造紡績糸の単糸強力は極大値を取る。
 以上のようにして得られた多層構造紡績糸20を図2に示す。図2において芯成分繊維21は牽切紡績された共重合系p-アラミド繊維糸であり、鞘成分繊維22はPBI繊維と単独重合系p-アラミド繊維を含み、芯成分21の周囲を被覆しており、一体性も良いため、洗濯してもp-アラミド繊維糸の摩耗などによる傷みは減少されるか、又は芯成分繊維が紡績糸の表面に現れる割合が少なくなり、着用や洗濯によって摩耗などの傷みが生じても外観を悪くすることはない。同様に変色や強度低下の恐れもない。いずれにしても品位の低下を防止できる。
 本発明の防護服用布帛は、前記芯鞘紡績糸(単糸)を2本撚り合わせて双糸にし、これを織物にするのが好ましい。双糸を使う理由は、単糸の2倍以上の強度をもってして製織時の糸切れを防止する抱合力を付与するとともに、単糸の持つ太さムラを相殺させ、織物の目風をきれいにするためである。双糸は一例としてダブルツイスター等の撚り機を使用して製造する。ダブルツイスターはその名前の通り、スピンドル1回転で2回の撚りが得られるので生産性は高い。しかし、長い撚りかけ糸道に6か所もの擦過点があるため、被覆部分が剥ぎ取られ、乱されて芯部が露出しやすい傾向にある。好ましくは擦過点が2か所のリングツイスター、最も好ましくは擦過点が2か所で極めて短い撚りかけ糸道のアップツイスターである。
 織機におけるタテ糸切れは、糸を構成する単繊維強力(cN/dtex)よりは、表面毛羽の擦れ具合・絡み合い・剥ぎ取りに関する抱合力の方にはるかに大きく依存している。従って、タテ糸は双糸とするのが好ましい。
 前記紡績糸を番手表示する場合は、1/28~1/52の範囲が好ましく、単糸の撚り係数Kc1は81~87の範囲であり、前記双糸の撚り方向は前記単糸の撚り方向と逆であり、かつ双糸の撚り係数Kc2は78~84の範囲とするのが好ましい。但し、単糸の撚り係数Kc1、双糸の撚り係数Kc2は、次に示す数式によって計算する。
Kc1=T1/√C1
Kc2=T2/√C2
ここにおいてT1は単糸の撚り数(回/m)、T2は双糸の撚り数(回/m)、C1は単糸番手(m/g) 、C2は双糸番手(m/g)を表す。
 前記範囲であると撚構造が安定し、糸包合性も高く、さらに目風がきれいでソフトな風合いの織物とすることができる。
 得られた双糸は、撚り止めし、経糸と緯糸に使用して織物とする。織物組織は、平織(plain weave)、斜文織(twill weave、綾織ともいう)、又は朱子織(satin weave)組織、その他の変化織組織等を使用できる。編物にする場合は、横編、丸編、経編のいずれでも適用できる。編組織はどのようなものであっても良い。編物内に空気を含ませる場合は、二重接結パイル布帛に編成する。織物組織の中でも好ましいのは図3に示すマット織であり、このマット織組織は、平+3/3マット織である。平織の部分は8本の経糸と緯糸で構成されプレーンな組織であり、3/3マット織の部分は経糸も緯糸も3本引き揃えられており、この部分は表面に突出している。マット織の別の例を図4に示す。このマット織組織は、平+2/2マット織である。平織の部分は2本の経糸と緯糸で構成されプレーンな組織であり、2/2マット織の部分は経糸も緯糸も2本引き揃えられており、この部分は表面に突出している。このような織物は滑り止め効果があるとともに、平組織が破れてもマット織の部分で止まり、破れにくい組織である。これは引き裂き止めという意味合いからRip Stop 構造と呼ばれている。
 本発明の防護服用布帛の単位あたりの質量(目付)は100~340g/m2の範囲が好ましい。前記範囲であれば、さらに軽くて着心地の良い作業服とすることができる。さらに好ましくは140~300g/m2の範囲、とくに好ましくは150~260g/m2の範囲である。
 本発明の多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服は、帯電防止繊維又は制電繊維を混用することは必須ではない。これはPBI繊維が吸湿しやすく、静電気を帯びにくいためである。顧客の希望により帯電防止繊維を混用する場合は、金属繊維、炭素繊維、金属粒子や炭素粒子を練りこんだ繊維等を使用する。帯電防止繊維は、紡績糸に対して0.1~1質量%の範囲加えることが好ましく、更に好ましくは0.3~0.7質量%の範囲である。帯電防止繊維糸は製織時に加えることもできる。例えばKBセーレン社製“ベルトロン”、クラレ社製“クラカーボ”、炭素繊維、金属繊維等を0.1~1質量%の範囲加えるのが好ましい。
 図5は燃焼落下試験装置30の斜視図、図6の同装置30の側面図である。 前記耐熱性布帛は、横25mm、縦200mmの大きさとし、上端部を固定し、下端部に228gの重りを付けて吊り下げ、ガストーチから温度1700℃、発熱量3174kcal/h(ガストーチの規格値)の火炎を、100mm離した位置から前記布帛の中央部に当て、重りが落下するまでの時間を測定する。具体的説明は実施例の欄に記載する。燃焼落下試験の評価は、30秒以上耐えられると合格、30秒未満は不合格である。
 以下、実施例を用いてさらに具体的に説明する。本発明は下記の実施例に限定されるものではない。
 本発明の実施例、比較例における測定方法は次のとおりとした。
<耐熱性試験>
 ISO 11613-1999に従って、180℃、5分の条件で測定した。
<燃焼落下試験>
 図5の燃焼落下試験装置30の斜視図、図6の同装置30の側面図に示すとおり、スタンド33のほぼ中央部の試料チャック32に、横25mm、縦200mmの大きさの試料サンプル31の一端を取り付け、他端に228gの重り34を付けて吊り下げる。重り34の下方には受け皿35の中にクッション材を敷いておく。ガストーチ(ガスバーナー)36から火炎を試料サンプル31に当て、重り34が落下するまでの時間を測定する。この測定装置はケース37内に収められている。ケース37の大きさは縦L1が300mm、横L2が500mm、高さL3が200mmである。炎の長さL4は100mmである。スタンドの高さL5は502mmである。ガストーチ(ガスバーナー)36からの火炎は、温度1700℃、発熱量3174kcal/h(ガストーチの規格値)である。燃焼落下試験の評価は、30秒以上耐えられると合格、30秒未満は不合格である。
<耐洗濯性>
 国際性能基準ISO 11613-1999に規定されているISO 6330-1984, 2A-Eにしたがい、5回洗濯した。
<その他の物性>
 JIS又は業界規格にしたがって測定した。
 (実施例1~4、比較例1~2)
1.使用繊維
(1)芯成分
 芯成分として、共重合体p-アラミド繊維、帝人社製商品名“テクノーラ”の牽切紡績糸(撚り数Z方向45回/10cm)、糸繊度8.0tex(メートル番手:1/125)(単繊維繊度1.7dtex、平均繊維長100mm、生成り品(黄色))を使用した。
(2)鞘成分
 下記の3種類の繊維を混紡した。
(i)PBI繊維
 米国PBI Performance Products, Inc.社製のPBI単繊維繊度1.8dtex、のトウ(790000dtex(711000デニール),繊維本数444000本)を入手し、繊維長102mm(4インチ)のスクエアカットとして、カード混紡により繊維束(スライバー)を作製した。PBI繊維は生成り品(黄色)とした。
(ii) 単独重合体p-アラミド繊維
 中国煙台泰和社製、商品名"タパラン"、(繊維長76mm(3インチ)スクエアカット、繊度2.2dtex、赤色品)を使用し、カード混紡により繊維束(スライバー)を作製した。
(iii)帯電防止繊維
 帯電防止繊維はKBセーレン社製商品名“ベルトロン”、白色、単繊維繊度5.6dtex、繊維長:89mmスクエアカットを使用した。
(iv)スライバー混紡
 以上のPBI繊維、単独重合体p-アラミド繊維、帯電防止繊維をスライバー混紡により均一混合した。
2.紡績糸の作製
(1)芯鞘紡績糸
 図1に示す方法により共重合体p-アラミド繊維を芯成分とし、PBI繊維と単独重合体p-アラミド繊維と帯電防止繊維を含む前記スライバー混紡した繊維束(スライバー)を鞘成分とし、芯鞘紡績糸を作製した。芯鞘紡績糸の撚り方向はZ、撚り数は700回/m、繊度312.5dtexとした。得られた芯鞘紡績糸の条件と結果は表1にまとめて示す。


Figure JPOXMLDOC01-appb-T000001
(2)双糸
 前記芯鞘紡績糸をアップツイスターで撚り合わせて双糸とした。双糸の撚り方向はS、撚り数は600回/m、繊度625dtexとした。
3.織物の作製
 前記双糸を経糸と緯糸に使用し、レピア織機を使用して図4に示す平+2/2マット織り組織の織物を作製した。得られた織物の条件及び結果はまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、鞘成分のPBI繊維の混率が、50~65%の範囲で優位性があることは、引張強度、引裂強度、燃焼落下試験(キセノン照射を含む)から確かめられた。
 (比較例3)
 実施例2の混率で、芯成分、鞘成分ともに共重合系p-アラミド繊維を使用した。得られた織物は燃焼落下試験が7秒であり、不合格であった。
 (比較例4)
 実施例2の混率で、芯成分、鞘成分ともに単独重合系p-アラミド繊維を使用した。得られた織物は表3に示すように引っ張り強度が低く(1510N)、燃焼落下試験が8秒であり、不合格であった。
 (比較例5)
 実施例2又は3の混率で、鞘成分の単独重合系p-アラミド繊維に代えてメタアラミド繊維を使用した。得られた織物は表3に示すように燃焼落下試験が2秒であり、不合格であった。
 (実施例5)
 この実施例では、実際の防火服を想定し、外層と中層と内層の3層からなる織物を積層して試験をした。
(1)外層
 前記実施例2で得られた織物を使用した。
(2)中層(透湿防水層、モイスチャーバリアー)
 メタアラミド繊維(繊度2.2dtex,繊維長76/102mmバイアスカット)85質量%、ウール15質量%の混紡紡績糸を用いた平織物(質量77g/m2)からなる基布に、透湿防水膜としてポリテトラフルオロエチレンフィルムをラミネートした質量105g/m2の中層を使用した。
(3)内層(防熱層、インナーライナー)
 メタアラミド繊維(繊度2.2dtex,繊維長76/102mmバイアスカット)85質量%、ウール15質量%の混紡紡績糸を用いた16枚綜絖の蜂巣織物(質量213g/m2)を使用した。
 以上の積層品の測定結果を表3にまとめて示す。なお、表3はISO11613欧州法によって測定した。
Figure JPOXMLDOC01-appb-T000003
 表3から、すべての試験項目において合格であったことが分かる。
 本発明の耐熱性布帛を使用した耐熱性防護服は、消防服のほか、救急隊員、救命隊員、海上救護員、軍隊、石油関連施設の作業員、化学工場の作業員などの作業服として好適である。とくに芯成分が牽切紡績されたp-アラミド繊維糸であり、鞘成分がPBI繊維とp-アラミド繊維を含む混紡繊維であるため、強度、耐熱性及び難燃性が高い多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服を提供できる。
1 フロントボトムローラ
2 大径円柱体
3 小系円柱体
4,5 フロントトップローラ
6 アーバー
7 トランペットフィーダー
8 バックローラ
9 ドラフトエプロン
10 スネルワイヤ
11 アンチノードリング
12 トラベラー
13 糸管
14 ヤーンガイド
15 短繊維束(芯成分繊維束)
16 短繊維束(被覆繊維束)
17,20 多層構造紡績糸
21 芯成分繊維
22 鞘成分繊維
30 燃焼落下試験装置
31 試料サンプル
32 試料チャック
33 スタンド
34 重り
35 受け皿
36 ガストーチ
37 ケース

Claims (7)

  1.  芯成分が牽切紡績されたp-アラミド繊維糸であり、鞘成分がポリベンズイミダゾール繊維を含む多層構造紡績糸であって、
     前記鞘成分はポリベンズイミダゾール繊維とp-アラミド繊維を含んで混紡されており、
     前記鞘成分を100質量%としたとき、ポリベンズイミダゾール繊維:p-アラミド繊維=50:50~65:35の混率であり、
     前記芯成分は共重合系p-アラミド繊維糸であり、前記鞘成分のp-アラミド繊維は単独重合系p-アラミド繊維であることを特徴とする多層構造紡績糸。
  2.  前記多層構造紡績糸を100質量%としたとき、芯成分は20~40質量%であり、鞘成分は60~80質量%である請求項1に記載の多層構造紡績糸。
  3.  前記多層構造紡績糸は、メートル番手で28~52番(繊度:357~192decitex)の範囲である請求項1又は2に記載の多層構造紡績糸。
  4.  請求項1~3のいずれか1項に記載の多層構造紡績糸を使用した耐熱性布帛。
  5.  前記耐熱性布帛は、平織組織と2/2又は3/3マット織組織を組み合わせた織物である請求項4に記載の耐熱性布帛。
  6.  前記耐熱性布帛は、横25mm、縦200mmの大きさとし、上端部を固定し、下端部に228gの重りを付けて吊り下げ、ガストーチから温度1700℃、発熱量3174kcal/hの火炎を、100mm離した位置から前記布帛の中央部に当て、重りが落下するまでの時間を測定する燃焼落下試験において、30秒以上耐えられる請求項4又は5に記載の耐熱性布帛。
  7.  請求項4~6のいずれかに記載の耐熱性布帛を含む耐熱性防護服。
PCT/JP2018/013686 2018-03-07 2018-03-30 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服 WO2019171608A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880023316.9A CN110603351A (zh) 2018-03-07 2018-03-30 多层结构短纤维纱和使用了该短纤维纱的耐热性布帛及耐热性防护服

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-040382 2018-03-07
JP2018040382A JP6599496B2 (ja) 2018-03-07 2018-03-07 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服

Publications (1)

Publication Number Publication Date
WO2019171608A1 true WO2019171608A1 (ja) 2019-09-12

Family

ID=67845972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013686 WO2019171608A1 (ja) 2018-03-07 2018-03-30 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服

Country Status (3)

Country Link
JP (1) JP6599496B2 (ja)
CN (1) CN110603351A (ja)
WO (1) WO2019171608A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110725032B (zh) * 2019-10-15 2022-07-26 上海伊贝纳纺织品有限公司 一种耐日晒耐洗涤的pbi混纺纱线及其织物
JP7280295B2 (ja) * 2021-02-03 2023-05-23 日本毛織株式会社 多層構造紡績糸、その製造方法、耐熱性布帛及び耐熱性防護服
WO2024013790A1 (ja) * 2022-07-11 2024-01-18 日本毛織株式会社 多層構造紡績糸、その製造方法、耐熱性布帛及び耐熱性防護服

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646299B2 (ja) * 1974-09-30 1989-02-02 Ii Ai Deyuhon De Nimoasu Ando Co
JPH0363597U (ja) * 1989-10-25 1991-06-20
WO2016147779A1 (ja) * 2015-03-18 2016-09-22 日本毛織株式会社 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581665B1 (fr) * 1985-05-07 1987-06-12 Rhone Poulenc Textile Files de fibres en materiaux textiles thermostables
US6410140B1 (en) * 1999-09-28 2002-06-25 Basf Corporation Fire resistant corespun yarn and fabric comprising same
US20050186875A1 (en) * 2004-02-03 2005-08-25 Norfab Corporation Firefighter garment outer shell fabric utilizing core-spun dref yarn
WO2009014007A1 (ja) * 2007-07-25 2009-01-29 The Japan Wool Textile Co., Ltd. 多層構造紡績糸、その製造方法、これを用いた耐熱性布帛及び耐熱性防護服
CN206052259U (zh) * 2016-07-22 2017-03-29 上海伊贝纳纺织品有限公司 一种高强度阻燃背带

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646299B2 (ja) * 1974-09-30 1989-02-02 Ii Ai Deyuhon De Nimoasu Ando Co
JPH0363597U (ja) * 1989-10-25 1991-06-20
WO2016147779A1 (ja) * 2015-03-18 2016-09-22 日本毛織株式会社 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服

Also Published As

Publication number Publication date
JP6599496B2 (ja) 2019-10-30
CN110603351A (zh) 2019-12-20
JP2019157279A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
JP5972420B1 (ja) 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服
US8209948B2 (en) Multilayer structured spun yarn, process for producing the same, and, fabricated from the yarn, heat-resistant fabric and heat-resistant protective suit
JP5060668B1 (ja) 防護服用布帛及びこれに使用する紡績糸
US7156883B2 (en) Lightweight protective apparel
EP2402488B1 (en) Fireproof fabric and fireproof clothing including same
US20050025962A1 (en) Flame retardant fiber blends comprising flame retardant cellulosic fibers and fabrics and garments made therefrom
US20120110721A1 (en) Waterproof moisture-permeable sheet with fire protection performance and fire-protecting clothing using same
JPH02182936A (ja) 耐火性安全衣服用の三成分コアスパンヤーン及びその製造方法
JP6599496B2 (ja) 多層構造紡績糸とこれを使用した耐熱性布帛及び耐熱性防護服
US20120102632A1 (en) Arc resistant garment containing a multilayer fabric laminate and processes for making same
US20210238773A1 (en) Composite yarn with glass core
WO1987001140A1 (en) Improvements in flame resistant materials
JP7280295B2 (ja) 多層構造紡績糸、その製造方法、耐熱性布帛及び耐熱性防護服
WO2024013790A1 (ja) 多層構造紡績糸、その製造方法、耐熱性布帛及び耐熱性防護服
WO2019116591A1 (ja) 衣服用織編物及びこれを用いた衣服
US11761124B1 (en) Elastic flame-resistant fabric
JP2024058029A (ja) 二層構造紡績糸及び織編物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908443

Country of ref document: EP

Kind code of ref document: A1