WO2019171522A1 - 電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法 - Google Patents

電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法 Download PDF

Info

Publication number
WO2019171522A1
WO2019171522A1 PCT/JP2018/008908 JP2018008908W WO2019171522A1 WO 2019171522 A1 WO2019171522 A1 WO 2019171522A1 JP 2018008908 W JP2018008908 W JP 2018008908W WO 2019171522 A1 WO2019171522 A1 WO 2019171522A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
image
pixel
region
interest
Prior art date
Application number
PCT/JP2018/008908
Other languages
English (en)
French (fr)
Inventor
征志 中田
Original Assignee
株式会社ソニー・インタラクティブエンタテインメント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニー・インタラクティブエンタテインメント filed Critical 株式会社ソニー・インタラクティブエンタテインメント
Priority to US16/969,510 priority Critical patent/US11190714B2/en
Priority to PCT/JP2018/008908 priority patent/WO2019171522A1/ja
Priority to JP2020504577A priority patent/JPWO2019171522A1/ja
Publication of WO2019171522A1 publication Critical patent/WO2019171522A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/443Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to an imaging sensor that captures an image used for analysis or display, a head-mounted display that displays an image using a captured image, a gazing point detector that detects a user's gazing point using the captured image, and pixel data readout Regarding the method.
  • a technique for realizing augmented reality or virtual reality by photographing a real space with a field of view corresponding to a user's line of sight and performing predetermined processing is known.
  • the real-time property is important in many cases.
  • the data amount of the original photographed image tends to increase. Accordingly, there is a high possibility that a delay that cannot be overlooked from shooting to display is caused due to the transmission band between the imaging device, the image processing device, and the display device, the processing performance of each device, and the like. As a result, the sense of reality may be impaired or the user may be stressed.
  • the present invention has been made in view of these problems, and an object thereof is to provide a technique capable of performing image analysis and display using a photographed image with low delay.
  • One embodiment of the present invention relates to an electronic device.
  • This electronic device determines a region of interest on a capturing surface made up of pixels arranged in a matrix according to a predetermined reference, and reads data held by each pixel in an order depending on the position of the region of interest.
  • a control circuit that performs control, a readout processing circuit that reads out pixel data in an order according to the control, performs a predetermined process, and an output circuit that sequentially outputs pixel data that has undergone the predetermined process It is characterized by that.
  • the type of “electronic device” is not limited as long as it is a device having an imaging function, such as an imaging sensor, an imaging device, an information terminal, a portable terminal, a game device, a wearable display, and a personal computer.
  • the head-mounted display includes an imaging sensor, a display panel that displays an image generated based on an image captured by the imaging sensor, and a gazing point detector that detects a user's gazing point with respect to the display image.
  • the imaging sensor determines a region of interest based on a gaze corresponding point on the imaging surface corresponding to the gazing point, and reads out data held by each pixel in an order depending on the position of the region of interest.
  • a control circuit that performs control, a readout processing circuit that reads out pixel data in an order according to the control, performs a predetermined process, and an output circuit that sequentially outputs pixel data that has undergone the predetermined process It is characterized by that.
  • This gaze point detector is a gaze point detector that includes an imaging sensor that captures an eyeball of a user viewing the display screen, and an image analysis unit that acquires position coordinates of the gaze point on the display screen based on the captured image.
  • the imaging sensor determines a region of interest based on a captured image at a previous timing, and controls the data held by each pixel to be read out in an order depending on the position of the region of interest.
  • the image processing apparatus includes: a readout processing circuit that reads out pixel data in an order according to the control and performs a predetermined process; and an output circuit that sequentially outputs the pixel data subjected to the predetermined process.
  • Still another embodiment of the present invention relates to a pixel data reading method.
  • a region of interest is determined based on a predetermined reference on an imaging surface composed of pixels arranged in a matrix, and the data held by each pixel is in an order depending on the position of the region of interest.
  • a step of performing control so as to be read a step of reading pixel data in an order according to the control, performing a predetermined process, and sequentially outputting data of the pixel subjected to the predetermined process
  • analysis and display can be performed with low delay.
  • FIG. 1 It is a figure which shows the structural example as a hardware of the gazing point detection part and spatial imaging part in this Embodiment. It is a figure which shows the structural example of the imaging sensor for space which implement
  • the present embodiment relates to a technique for performing predetermined processing with low delay and displaying the image using image data output from an imaging apparatus.
  • the form of the imaging device, the image processing device, and the display device is not particularly limited.
  • FIG. 1 shows an example of the appearance of the head mounted display of the present embodiment.
  • the head mounted display 100 includes an output mechanism unit 102 and a mounting mechanism unit 104.
  • the mounting mechanism unit 104 includes a mounting band 106 that goes around the head when the user wears to fix the device.
  • the output mechanism unit 102 includes a housing 108 shaped to cover the left and right eyes when the user mounts the head mounted display 100, and includes a display panel inside so as to face the eyes when worn.
  • the housing 108 may further include a lens that is positioned between the display panel and the user's eyes when the head mounted display 100 is attached, and that enlarges the viewing angle of the user.
  • Stereoscopic viewing may be realized by displaying a stereo image corresponding to the parallax of both eyes in each region obtained by dividing the display panel into left and right.
  • the head mounted display 100 may further include a speaker or an earphone at a position corresponding to the user's ear when worn.
  • the head mounted display 100 includes the space imaging unit 110 on the front surface of the housing 108 and shoots a moving image of the surrounding real space with a field of view corresponding to the user's line of sight.
  • the spatial imaging unit 110 is configured by a stereo camera that captures a front space from the left and right viewpoints corresponding to the left and right eyes of the user.
  • the spatial imaging unit 110 is not limited to this, and may be a monocular camera or three or more multi-lens cameras.
  • the head mounted display 100 further includes a gazing point detector that detects a portion of the display panel where the user is gazing on the screen of the display panel.
  • the head mounted display 100 may also include at least one of various sensors for deriving the movement, posture, position, and the like of the head mounted display 100 such as an acceleration sensor, a gyro sensor, and a geomagnetic sensor.
  • FIG. 2 shows a configuration example of the image display system of the present embodiment.
  • the head mounted display 100 is connected to the image processing apparatus 10 by wireless communication.
  • a wired connection such as USB may be used.
  • the image processing apparatus 10 may be further connected to a server via a network.
  • the server may provide the image processing apparatus 10 with an online application such as a game that allows a plurality of users to participate via a network.
  • the image processing apparatus 10 continuously acquires data of images taken by the spatial imaging unit 110 of the head mounted display 100, generates a display image with a field of view corresponding thereto, and outputs the display image to the head mounted display 100.
  • the content of the display image is not particularly limited, and may vary depending on the function requested by the user from the system, the content of the activated application, and the like.
  • the image processing apparatus 10 may perform some processing on the image captured by the spatial imaging unit 110 or may superimpose and draw a virtual object that interacts with an image of a real object.
  • the virtual world may be drawn with a field of view corresponding to the field of view of the user based on a photographed image, a measurement value by a motion sensor of the head mounted display 100, or the like.
  • Typical examples of these modes include virtual reality (VR) and augmented reality (AR). Or you may implement
  • a series of processing is repeated at a predetermined frame rate, such as transmitting a captured image from the head mounted display 100 to the image processing apparatus 10, and generating a display image and transmitting the display image to the head mounted display 100.
  • the speed of processing and data transmission performed by each device is important. That is, if any one of the processes is delayed, there is a time lag between the movement of the user's head and the display image, which may cause the user to feel uncomfortable or cause motion sickness.
  • temporal priority is given to the area on the image plane by devising the processing at the stage of reading the data of the captured image.
  • the spatial imaging unit 110 identifies a location on the display image that the user is gazing at, reads out and outputs data corresponding to the region on the captured image with priority over other regions.
  • the “priority readout” process may be performed at the stage of reading out the electric charge obtained by converting the light detected by the image sensor, or an analog signal representing the electric charge is converted into a digital signal and stored in the memory. You may implement at the stage of the read after recording.
  • the pixel data with high priority is transmitted to the image processing apparatus 10 first.
  • the processing may be performed in the order of following the priority for all processing of image analysis, display image generation, transmission to the head mounted display 100, and display in the image processing apparatus 10, or a part of them.
  • the present embodiment also exhibits the same effect in a mode other than the provision of the spatial imaging unit 110 in the head mounted display 100.
  • the spatial imaging unit may be provided on the image processing apparatus 10 side, or may be a separate imaging apparatus connected to the image processing apparatus 10 via a network.
  • a spatial imaging unit may be mounted as a robot eye, and an image may be displayed with a corresponding visual field.
  • the display device is not limited to the head mounted display 100 as long as the user's gaze point is obtained, and may be a flat display or the like.
  • the image processing device 10 and the display device may be a portable terminal that integrally includes them. An imaging device may be further provided in the portable terminal.
  • FIG. 3 shows the internal circuit configuration of the image processing apparatus 10.
  • the image processing apparatus 10 includes a CPU (Central Processing Unit) 23, a GPU (Graphics Processing Unit) 24, and a main memory 26. These units are connected to each other via a bus 30.
  • An input / output interface 28 is further connected to the bus 30.
  • the input / output interface 28 includes a peripheral device interface such as USB and IEEE 1394, a communication unit 32 which is a wired or wireless LAN network interface and establishes communication with the head mounted display 100, and a storage unit 34 such as a hard disk drive or a nonvolatile memory.
  • the unit 40 is connected.
  • the CPU 23 controls the entire image processing apparatus 10 by executing the operating system stored in the storage unit 34.
  • the CPU 23 also executes various programs read from the removable recording medium and loaded into the main memory 26 or downloaded via the communication unit 32.
  • the GPU 24 has a function of a geometry engine and a function of a rendering processor, performs a drawing process according to a drawing command from the CPU 23, and outputs it to the output unit 36.
  • the main memory 26 is composed of RAM (Random Access Memory) and stores programs and data necessary for processing.
  • FIG. 4 shows the functional block configuration of the image processing apparatus 10 and the head mounted display 100.
  • Each functional block shown in the figure can be realized in hardware by the various circuits shown in FIG. 3, a gaze point detection device, an image sensor, a control circuit, a signal processing circuit, a display panel, a microprocessor, a memory, and the like.
  • software it is realized by a program that loads various functions such as an image analysis function, an information processing function, an image drawing function, a data input / output function, and a communication function, loaded from a recording medium into a memory. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and is not limited to any one.
  • the head mounted display 100 includes a gazing point detection unit 120 that detects a user's gazing point with respect to a display screen, a spatial imaging unit 110 that captures a space and outputs data in an order based on the gazing point information, and a display image from the image processing apparatus 10.
  • the gaze point detection unit 120 acquires the position coordinates of the user's gaze point with respect to the display screen of the head mounted display 100.
  • various techniques for detecting a gazing point have been put into practical use, and any of them may be adopted in the present embodiment.
  • the spatial imaging unit 110 captures a moving image used for a display image as described above, and preferentially outputs pixel data of an area corresponding to a gazing point in each frame.
  • the spatial imaging unit 110 basically outputs data of pixels other than the area, but a difference in resolution and output rate may be provided depending on circumstances.
  • the spatial imaging unit 110 may be a stereo camera as shown in FIG.
  • the display image data acquisition unit 122 continuously acquires display image data from the image processing apparatus 10. The acquisition order at this time may be the region corresponding to the point of interest.
  • the display unit 124 displays the display image at a predetermined rate.
  • the display unit 124 may be a general display having a display panel and a control mechanism, such as a liquid crystal display or an organic EL display.
  • display images may be output in an order corresponding to the output order of the spatial imaging unit 110 by appropriately controlling the drive order of the display elements. In this case, the area of the display image that is being watched by the user is updated first.
  • the image processing apparatus 10 uses a captured image data acquisition unit 50 that acquires captured image data from the head-mounted display 100, an image analysis unit 52 that performs predetermined analysis processing on the captured image, an analysis result, and the like.
  • a display image generation unit 54 to generate and an output unit 56 for supplying display image data to the head mounted display 100 are provided.
  • the captured image data acquisition unit 50 acquires captured image data output from the spatial imaging unit 110 of the head mounted display 100.
  • the spatial imaging unit 110 outputs the pixel data of the region corresponding to the user's gazing point in the captured image with priority in terms of time, so the data acquisition order of the captured image data acquisition unit 50 is also determined by the region. Be ahead.
  • the image analysis unit 52 analyzes the captured image with predetermined contents. For example, the image analysis unit 52 may perform any of face detection, face recognition, gesture recognition, visual tracking, position detection, and the like. Alternatively, the image analysis unit 52 may acquire the posture of the head mounted display 100 by Visual SLAM (Simultaneous Localization and Mapping).
  • Visual SLAM Simultaneous Localization and Mapping
  • the image analysis unit 52 may preferentially analyze the area previously transmitted from the head mounted display 100. For areas other than the area corresponding to the user's gaze point, analysis processing may be omitted or the level of detail of analysis may be reduced. This ensures that the analysis result is obtained at least for the region that the user is gazing at.
  • the display image generation unit 54 generates display image data by using the analysis result. Also in this case, the area corresponding to the area on the captured image transmitted from the head mounted display 100 may be generated with priority.
  • the processing of the display image generation unit 54 may vary depending on the purpose of image display, and as described above, an image may be drawn on a part of the photographed image, or the display may be performed according to the field of view obtained from the photographed image by SLAM or the like. The entire image may be drawn. Information on the position and orientation of the head may be acquired based on measurement values of a motion sensor (not shown) included in the head mounted display 100. The captured image may be output as a display image as it is. In this case, the image analysis unit 52 may omit the process.
  • the display image generation unit 54 supplies the display image data to the output unit 56 in the order of the generated pixels.
  • the output image is output to the output unit 56 as a result following the order output from the spatial imaging unit 110.
  • the pixel data is supplied.
  • the output unit 56 sequentially transmits the supplied display image data to the head mounted display 100.
  • FIG. 5 shows a configuration example of the gazing point detection unit 120 of the head mounted display 100.
  • the lower part of the figure schematically shows the head mounted display 100 and the user's head 472 wearing the head mounted display 100 as seen from above.
  • a display image 476 as shown in the upper row is displayed on the head mounted display 100, and the user is viewing it with the left and right eyes 474a and 474b.
  • the gazing point detection unit 120 infrared LEDs 478a and 478b, infrared cameras or PSD sensors 480a and 480b, and an image analysis device 482 are provided.
  • the infrared LEDs 478a and 478b respectively irradiate the left and right eyes 474a and 474b of the user with infrared rays.
  • the infrared cameras or PSD sensors 480a and 480b respectively photograph the left and right eyes 474a and 474b of the user and supply the data to the image analysis device 482.
  • the image analysis device 482 identifies the reflection position of the infrared cornea and the position of the pupil from the captured images of the left and right eyes, and identifies the user's line of sight from the positional relationship. This method is put into practical use in the field of eye gaze detection technology as a corneal reflection method.
  • the method of detecting the line of sight is not limited to this, and any of general methods such as a technique of photographing the left and right eyes with a visible light camera and identifying the line of sight from the positional relationship between the eyes and the iris among them may be adopted.
  • the image analysis device 482 detects the position coordinates using intersections 484a and 484b between the line of sight thus detected and the display panel on which the display image 476 is displayed as the user's point of sight. Information on the position coordinates of the gazing point is supplied to the spatial imaging unit 110 at a predetermined rate, for example.
  • FIG. 6 is a diagram for explaining a process in which the spatial imaging unit 110 reads out preferentially the data of the area corresponding to the gazing point in the display image among the captured images.
  • a captured image 202 in the upper part of the figure shows an image captured by the spatial imaging unit 110.
  • the spatial imaging unit 110 is configured with a stereo camera, similar captured images are captured from the left and right viewpoints.
  • the captured image 202 is an image that is a source of the display image 476 shown in FIG.
  • the display image 476 and the captured image 202 are the same, but the present invention is not limited to this. That is, the display image 476 may be an image obtained by superimposing a virtual object on the captured image 202, or may be an image drawn entirely by computer graphics. In any case, the plane position coordinates of the captured image 202 are associated with the plane position coordinates of the display image 476.
  • a position corresponding to the user's gaze point is set as a gaze corresponding point 204.
  • the spatial imaging unit 110 identifies the position coordinates of the gaze corresponding point 204 in the shooting field of view from the position coordinates of the gaze point acquired from the gaze point detection unit 120. Then, a pixel value (analog signal or digital signal) is preferentially read out from a predetermined range region (referred to as a region of interest 206) including the gaze corresponding point 204.
  • the region of interest 206 may be a region of a predetermined size on the image plane with the gaze corresponding point 204 as the center, and the size of the region of interest 206 is adjusted according to the size of the image of a subject such as a person imaged on the gaze corresponding point 204. May be.
  • the shape of the region of interest 206 is not limited to a rectangle, but may be a circle, an ellipse, or the like, and may depend on the shape of the subject image.
  • the lower part (a) and (b) of the figure exemplifies the reading order of pixel values.
  • pixel values are read out in a raster order in which reading from the leftmost pixel in the right direction is repeated from the top to the bottom on the imaging surface formed of a matrix of pixels.
  • the solid line and broken line arrows in FIG. 5A schematically show such pixel rows. However, in this embodiment, the pixel column indicated by the solid line arrow is read first.
  • the row including the region of interest 206 is read from the leftmost pixel to the rightmost respectively.
  • the row reading order may be downward from the top row of the corresponding row, or the row closer to the gaze corresponding point 204 may be read first. That is, as indicated by the numbers 1 to 5 on the right side of the image, the row (1) closest to the gaze corresponding point 204 is read first, its upper and lower (2, 3) rows, and its upper and lower rows (4, 5). As shown in FIG.
  • the imaging surface is divided into a plurality of blocks, and the block including the region of interest 206 is read first.
  • this aspect is based on the premise that a processing circuit for reading out pixel values is provided for each block.
  • a processing circuit for reading out pixel values is provided for each block.
  • a pixel column that includes the region of interest 206 and that is read with priority may be referred to as a “priority pixel column”.
  • the data of the priority pixel column when the data of the priority pixel column is read, the data of other regions are read as indicated by the dotted arrows.
  • the rows and blocks closer to the gaze corresponding point 204 may be preferentially read, or may be read sequentially from the upper left of the imaging surface.
  • the data read frequency of the area may be lower than the priority pixel column read frequency.
  • the timing for reading the data of the region of interest 206 depends on the position of the point of sight.
  • the readout frequency of the other regions with respect to the priority pixel column it is possible to immediately perform image analysis of the region being watched by the user and display of the corresponding region.
  • FIG. 7 shows a configuration example of the gazing point detection unit 120 and the spatial imaging unit 110 as hardware.
  • the gazing point detection unit 120 includes an eyeball imaging sensor 210 that captures an eyeball, and an application processor 212 that acquires a gazing point from a captured image of the eyeball, and the spatial imaging unit 110 captures a space.
  • a spatial imaging sensor 214 that outputs pixel values in the order based on the gazing point is provided.
  • the eyeball image sensor 210 corresponds to an infrared camera or PSD sensors 480 a and 480 b
  • the application processor 212 corresponds to an image analysis device 482.
  • MIPI Mobile Industry Processor Interface
  • i2C Inter-Integrated Circuit
  • i3C Inter-Integrated Circuit
  • the configuration of (b) includes a gazing point detection sensor 216 as the gazing point detection unit 120 and a spatial imaging sensor 214 as the spatial imaging unit 110.
  • the gazing point detection sensor 216 includes the functions of the imaging sensor 210 for the eyeball (a) and a logic circuit that acquires the gazing point based on the image of the eyeball taken by the sensor, that is, the function of the application processor 212 of (a). It is a sensor in which a logic circuit is stacked.
  • the spatial imaging sensor 214 is the same as (a). In this case, for example, by using an i2C or i3C architecture, information related to the gazing point is directly transmitted from the gazing point detection sensor 216 to the imaging sensor 214 for space.
  • FIG. 8 shows a configuration example of a spatial imaging sensor that realizes the mode of FIG.
  • the spatial imaging sensor 214a includes a pixel unit 220, a vertical scanning circuit 222, a horizontal transfer scanning circuit 224, a timing control circuit 226, an analog-digital converter (ADC) group 230, and a digital-analog converter (DAC: (Ditital-Analog Converter) 238, horizontal transfer line 240, amplifier circuit 242, signal processing circuit 244, and output circuit 246.
  • ADC analog-digital converter
  • DAC digital-analog converter
  • the pixel unit 220 has a configuration in which pixels including photodiodes that perform photoelectric conversion are arranged in a matrix. Each pixel holds a signal charge corresponding to the amount of incident light.
  • the vertical scanning circuit 222 drives the pixels in units of rows by supplying a driving pulse to each pixel via a pixel driving wiring (not shown). As a result, the analog signals of the pixels in the row are supplied to the ADC group 230 by the vertical signal line provided for each column.
  • the ADC group 230 counts a comparison time, a comparator 232 that compares a reference voltage generated by the DAC 238 with an analog signal obtained from a pixel via a vertical signal line for each row line.
  • An ADC including a counter 234 and a latch 236 for holding a count result is arranged for each pixel column.
  • the analog signal read out by the vertical signal line is compared with a reference voltage having a slope waveform by the comparator 232, and a count value when the two coincide with each other is obtained to be converted into a digital signal.
  • the output of each latch 236 is connected to the horizontal transfer line 240.
  • the horizontal transfer scanning circuit 224 is configured by, for example, a shift register, and sequentially outputs horizontal scanning pulses, whereby one row of digital signals stored in the latch 236 is transferred to the amplifier circuit 242 and the signal processing circuit 244 through the horizontal transfer line 240.
  • the timing control circuit 226 generates and outputs a clock signal and a control signal that serve as a reference for operations of the vertical scanning circuit 222, the ADC group 230, and the horizontal transfer scanning circuit 224 based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. .
  • the signal processing circuit 244 performs predetermined processing such as defect correction, demosaic processing, and gamma correction on the input digital signal of each pixel to generate captured image data.
  • the output circuit 246 appropriately buffers the captured image data generated by the signal processing circuit 244 and outputs the data for each row.
  • These basic configurations may be the same as those of a general image sensor.
  • the priority pixel column data is output first by changing the order of the pixel rows driven by the vertical scanning circuit 222.
  • the timing control circuit 226 acquires gaze point information from the gaze point detection unit 120, and obtains the position of the pixel in the pixel unit 220 corresponding to the gaze point as the gaze corresponding point. Then, the timing control circuit 226 determines a region of interest, that is, a priority pixel row, and controls the vertical scanning circuit 222 so that the pixel row is driven first. That is, the timing control circuit 226 focuses on the gaze corresponding point on the imaging surface corresponding to the position coordinate of the user's gaze point with respect to the image displayed on the head mounted display 100 using the pixel data output from the imaging sensor. Determine the area.
  • the timing control circuit 226 controls the data held by each pixel to be read out in an order depending on the position of the region of interest. As a result, the analog-to-digital conversion is first performed from the pixel value of the priority pixel column, and is transferred to the signal processing circuit 244 through the horizontal transfer line 240. The signal processing circuit 244 and the output circuit 246 appropriately process and output the data in the order in which the data is input, whereby the captured image data is output to the image processing apparatus 10 in order from the priority pixel column. In this case, the timing control circuit 226 may determine a region to be excluded from the data read target based on the position of the region of interest.
  • the priority pixel row is read first.
  • a memory (not shown) that stores digital values of all pixels.
  • the time difference depending on the position on the image plane does not occur at the pixel charge readout stage. Therefore, the image stored in the memory has a characteristic that a focal plane phenomenon in which the image is distorted due to high-speed movement of the subject does not occur.
  • the output from the memory is in units of pixel columns, the same effect can be obtained by outputting the priority pixel columns first.
  • FIG. 9 shows a configuration example of an imaging sensor for space that realizes the mode shown in FIG.
  • the configuration of the sensor itself is an existing technology disclosed in, for example, Japanese Patent Application Laid-Open No. 2016-184843, and therefore only an outline will be described here.
  • the space imaging sensor 214b has a structure in which a pixel portion 250 and a readout control circuit 254 are stacked.
  • the pixel portion 250 has a configuration in which pixels including photodiodes that perform photoelectric conversion are arranged in a matrix. An analog signal representing a pixel value acquired by photoelectric conversion is output to the read control circuit 254.
  • the plane of the pixel unit 250 is divided into M ⁇ N pixel blocks 252 including one or more pixels.
  • the readout control circuit 254 is configured by M ⁇ N signal processing units 256 provided for each pixel block 252 as a readout processing circuit.
  • Each signal processing unit 256 performs the analog-digital conversion and the subsequent signal processing similar to those described in FIG. 8 independently of each other for the pixel of the corresponding pixel block 252. That is, the signal processing unit 256 controls whether or not each pixel block 252 formed by dividing the imaging surface 208 in the vertical direction and the horizontal direction is a data read target.
  • each signal processing unit 256 of the read control circuit 254 includes a logical operation unit 262.
  • the logic operation unit 262 acquires control signals from the horizontal control line 258 common to the signal processing unit 256 for one row and the vertical control line 260 common to the signal processing unit 256 for one column, and performs a logical operation on them. Control signals for the horizontal control line 258 and the vertical control line 260 are given by the control circuit 264.
  • the calculation result by the logic calculation unit 262 is used to determine whether or not to operate the corresponding signal processing unit 256.
  • the circuit configuration is such that the signal processing unit 256 is operated when the result of the logical operation is L level and is in the standby state when the result is H level.
  • the logic operation unit 262 is configured by an OR gate
  • the operation result becomes L level when both the horizontal control signal and the vertical control signal are L level, and the signal processing unit 256 operates. Therefore, the control circuit 264 gives an L level control signal to the horizontal control line 258 and the vertical control line 260 including the signal processing unit 256 to be scanned, and gives an H level control signal to the other control lines.
  • the control circuit 264 acquires the information of the gazing point from the gazing point detection unit 120, and acquires the position of the pixel in the pixel unit 250 corresponding to the gazing point. Then, the control circuit 264 determines a region of interest, and hence a priority pixel column (pixel block), and determines a level of a signal to be applied to each control line so that the pixel column is driven first.
  • the configuration of the sensor shown in FIG. 9 requires more control lines and arithmetic circuits.
  • the range of the priority pixel column can be narrowed down and brought closer to the substance of the region of interest, so that the effect is more easily exhibited. Based on this, an appropriate sensor structure is selected from various viewpoints such as accuracy and responsiveness required for processing and display, and manufacturing cost.
  • FIG. 10 is a diagram for explaining the effect of reading and outputting the data of the region of interest first.
  • the vertical position coordinate (y coordinate) when the upper end of the image is 0 is taken as the vertical axis
  • the time is taken as the horizontal axis
  • the relationship between the position at which data is read and the timing is shown by arrows.
  • a thick line 270 illustrates the time change of the y coordinate of the gaze corresponding point.
  • pixel readout starts from the top row of the image, and readout for one frame is completed at time ⁇ t.
  • the timing of reading the data of the region of interest centered on the gaze corresponding point varies depending on the position of the gaze corresponding point.
  • the image data output first in a predetermined vertical scanning cycle is information of a region having a high priority
  • the analysis processing and display image generation processing in the image processing apparatus 10 You can spend more time on the data.
  • the data of the area of interest is securely transmitted and processed, and the other areas are processed.
  • FIG. 11 is a diagram for explaining another effect obtained by first reading and outputting the data of the region of interest. Conventionally, processing details are secured for important areas similar to the target area of the present embodiment, and other areas are processed and displayed at a low level of detail, thereby reducing the data size and transmitting. Techniques to improve speed have been proposed.
  • FIG. 11A shows a case where the method is applied in the conventional reading order. The representation of the figure is the same as in FIG.
  • the actual gaze corresponding point changes as indicated by a dotted line 280, whereas the gaze corresponding point that can be acquired changes as indicated by a thick line 282.
  • the pixel data read at a timing indicated by a circle 286 or the like is treated as a region of interest.
  • the actual gaze corresponding point moves with time, there is a possibility that the data read as the region of interest does not include the actual gaze corresponding point.
  • FIG. 12 exemplifies the relationship between the data reading position and the timing in a mode in which the reading frequency is different between the priority pixel column and other regions.
  • the thick line 291 indicates the time change of the y coordinate of the gaze corresponding point.
  • the gazing point information is acquired at the same frequency as at least the frequency of reading only the priority pixel columns.
  • the priority pixel column data is read out three times as often as the other regions. That is, as indicated by an arrow 292a, first, data of a priority pixel column centered on the gaze corresponding point is read, and subsequently, as indicated by arrows 292b and 292c, data of pixel columns in other regions are read.
  • the data of the priority pixel column centered on the gaze corresponding point at each time point is repeatedly read out.
  • the pixel column data in the region other than the immediately preceding priority pixel column is read.
  • the spatial imaging unit 110 may multiply the priority pixel column data by a gain value proportional to the readout frequency and output the result.
  • the readout frequency is set in two ways by dividing into two regions, that is, a priority pixel column and a pixel column in other regions.
  • the region may be divided into three or more by setting a second priority pixel column outside the priority pixel column. In this case, the read frequency is set for each, and a gain value proportional to the frequency is given to each.
  • the spatial imaging unit 110 may perform output after performing noise removal processing using the data of the priority pixel column read at the previous timing. For example, an average value of the data of the same pixel read at a plurality of previous timings is acquired and compared with the data read at the present time. When the difference from the average value is equal to or smaller than a predetermined threshold value, the average value is used as current data.
  • noise removal processing is known as 3DNR (Noise Reduction).
  • the noise removal processing is particularly performed on a priority pixel row read out frequently.
  • the gain value multiplication and noise removal processing may be performed simultaneously. Also, instead of taking the average value, both gain and noise removal may be realized simultaneously by adding the data of the same pixel at a plurality of previous timings to the data read at the present time and outputting it.
  • the number of data added here may be proportional to the data read frequency.
  • the pixels representing the subject moving with respect to the imaging surface are excluded from the addition processing target, thereby preventing the image from blurring or loss of detail. That is, the spatial imaging unit 110 determines whether or not to add pixel data according to the readout frequency, depending on whether or not the subject moves relative to the imaging surface 208.
  • the movement of the subject can be detected by an existing motion detection process. The detection process is performed by the image processing apparatus 10 and may be fed back to the head mounted display 100 or may be performed by the spatial imaging unit 110.
  • FIG. 13 is a diagram for explaining a method of lowering the resolution of other regions with respect to the resolution of the priority pixel column.
  • the priority pixel row 304 and other regions are determined according to the gaze corresponding point 310.
  • the priority pixel row 304 and a part of the pixels in other regions are enlarged and shown as pixel blocks 306 and 308.
  • the image sensor When the image sensor is provided with a Bayer array color filter, from the pixel blocks 306 and 308 made up of 2 ⁇ 4 pixels, for example, red luminance Ra and Rb for two pixels, and green luminance G1a and G2a for four pixels. , G1b, G2b, analog signals of blue luminance Ba, Bb for two pixels are read out, respectively. For the pixels in the priority pixel row 304, the analog signal read in this way is converted into a digital signal as it is, and various processes are performed and output.
  • the pixel blocks 306 and 308 made up of 2 ⁇ 4 pixels, for example, red luminance Ra and Rb for two pixels, and green luminance G1a and G2a for four pixels.
  • G1b, G2b analog signals of blue luminance Ba, Bb for two pixels are read out, respectively.
  • the analog signal read in this way is converted into a digital signal as it is, and various processes are performed and output.
  • the spatial imaging unit 110 reduces the resolution by adding the signals of neighboring pixels of the same color and performing digital conversion while reading out the signals.
  • the spatial imaging unit 110 determines an area to be converted into a digital signal after adding an analog signal held by each pixel by a predetermined number of pixels at a predetermined distance based on the position of the region of interest on the imaging surface 208. For example, analog signals of two pixels of the same color every other pixel in the same column are added. That is, the red luminance Rc, the green luminances G1c and G2c, and the blue luminance Bc after addition are determined by the following calculation.
  • Rc Ra + Rb
  • G1c G1a + G1b
  • G2c G2a + G2b
  • the image plane may be divided into three or more regions and the resolution may be changed in three or more stages, such as setting a second priority pixel column around the priority pixel column.
  • the data transmission size can be reduced rather than having the same resolution in all areas, and the load on analysis processing and display can be simplified for non-important areas, further reducing the time to display. it can.
  • the priority pixel row may be read with high frequency and high resolution, and the other regions may be read with low frequency and low resolution. As a result, high-quality processing and display can be performed for the region of interest while further reducing the transmission size and processing load.
  • the spatial imaging unit 110 may omit data reading of pixels included in the peripheral area 314. For example, the spatial imaging unit 110 determines a region whose distance from the gaze corresponding point 310 or the region of interest based on the gaze corresponding point 310 or more is a predetermined value or more as the peripheral region 314 so that a row or a pixel block including the corresponding pixel is not driven.
  • the peripheral region 314 is a frame-like region including the four sides of the captured image plane 302, but is not limited thereto, and may be an upper end portion and a lower end portion of the captured image plane 302. Alternatively, the entire region other than the priority pixel column 304 may be the peripheral region 314. With these configurations, useless data reading and transmission can be omitted, and faster analysis and display can be realized.
  • FIG. 14 illustrates a functional block configuration of the spatial imaging unit 110 in which the priority pixel column determination function is expanded.
  • the functional blocks shown in the figure may be mounted as a part of the control circuit and the signal processing circuit in FIGS. 8 and 9, or at least a part of the functions may be mounted in a separately provided microprocessor.
  • the spatial imaging unit 110 acquires a gaze point information acquisition unit 320 that acquires information related to the gaze point from the gaze point detection unit 120, a priority pixel column determination unit 322 that calculates a gaze corresponding point from the gaze point, and determines a priority pixel column based on the gaze corresponding point.
  • a pixel data acquisition unit 328 that reads pixel data from the priority pixel column first and performs a predetermined process, and an output unit 330 that outputs the data to the image processing apparatus 10.
  • the spatial imaging unit 110 further includes a gazing point information storage unit 324 that temporarily stores information related to the gazing point, and a gazing point estimation unit 326 that estimates a gazing point and, in turn, a gaze corresponding point.
  • the basic operations of the gazing point information acquisition unit 320 and the priority pixel column determination unit 322 may be the same as those described for the timing control circuit 226 in FIG. 8 and the control circuit 264 in FIG. Further, the operations of the pixel data acquisition unit 328 and the output unit 330 are the same as those of the pixel unit 220, the ADC group 230, the signal processing circuit 244, the output circuit 246, etc. in FIG. 8, or the pixel unit 250, the readout control circuit 254, etc. in FIG. It's okay.
  • the gaze point information acquisition unit 320 in the illustrated example stores the information related to the position of the gaze point acquired from the gaze point detection unit 120 in the gaze point information storage unit 324. This is in preparation for the gaze point detection unit 120 to make the gaze point indefinite because the user cannot blink the eyeball due to, for example, blinking. In this case, since the gaze point detection unit 120 cannot obtain effective gaze point information, the gaze point information acquisition unit 320 notifies the gaze point estimation unit 326 to that effect.
  • the gaze point estimation unit 326 reads the gaze point information finally obtained at that time from the gaze point information storage unit 324 and supplies it to the priority pixel column determination unit 322 as the current gaze point.
  • the gaze point information storage unit 324 may store at least the gaze point information obtained last.
  • the gazing point estimation unit 326 reads the gazing point information obtained at the timing earlier than the gazing point information obtained from the gazing point information storage unit 324 in addition to the gazing point information obtained at the end, and based on the temporal change, The position of the gazing point at may be estimated.
  • the gaze point information storage unit 324 stores gaze point information for a predetermined number of frames, for example.
  • the gazing point estimation unit 326 estimates the gazing point in accordance with the timing of starting to read out the priority pixel row based on the past changes in the gazing point. it can. This process corresponds to the process of estimating the thick line 291 in FIG.
  • the gaze point may be estimated based on information other than changes in the past gaze point. For example, when a new subject enters the subject space of the spatial imaging unit 110 or when a sound is made from a certain position in the subject space, the person is highly likely to look in that direction. Using this, the gazing point estimation unit 326 detects the entry of a subject based on the captured image, or specifies the direction in which sound is emitted by a microphone (not shown). Then, the area on the image corresponding to the direction is notified to the priority pixel column determination unit 322 as the next gazing point. This processing may be performed only at the timing when these events occur, or may be continued for a predetermined period according to the state of the subject or sound.
  • the range of the region of interest may be adjusted according to the movement of the gaze point and thus the gaze corresponding point.
  • FIG. 15 is a diagram for explaining a method of adjusting the range of the region of interest according to the movement of the gazing point.
  • the gaze corresponding point 342 is at the same position as the gaze corresponding point 204 shown in FIG.
  • the region of interest 206 is determined around the gaze corresponding point 204.
  • the region of interest 344 is determined in consideration of the path of the gaze corresponding point up to that point.
  • the gaze corresponding point moves like the gaze corresponding point movement vector 346 during the unit time to reach the gaze corresponding point 342, it is assumed that the same movement is likely to continue, and the region of interest is expanded in the corresponding direction. That is, among the four sides of the region of interest 344, the distance (h, v) between the two sides facing the gaze corresponding point movement vector 346 and the gaze corresponding point 342 is expressed as the element (X, Y) of the gaze corresponding point movement vector 346. Expand at the same ratio. Alternatively, the size of the region of interest may be translated in the horizontal and vertical directions at the same ratio as the element (X, Y) of the gaze corresponding point movement vector 346 without changing the size of the region of interest.
  • the adjustment of the region of interest may be based on the actual movement history (movement path) of the gazing point as described above, or may be determined based on the movement or sound of the subject in the subject space as described above. Alternatively, the determination may be made based on the movement of the object on the display image, the localization of the sound output from the speaker of the head mounted display 100, or the like. Such information may be used in appropriate combination. In this way, even if the gazing point is indefinite or the error is large, or the movement of the gazing point is large, it is possible to accurately include the gaze corresponding point corresponding to the actual gazing point in the attention area. it can.
  • the data reading order on the photographed image plane is controlled based on the user's point of interest with respect to the displayed image.
  • an area on a captured image that is particularly important in image analysis and display can be transmitted to an image processing apparatus or display apparatus at the beginning of a frame, and various processes in these apparatuses can be performed with priority over other areas.
  • the data read cycle of the area is constant, it is possible to easily estimate the time that can be applied to the subsequent processing.
  • the actual area of interest can be used when performing local image analysis or increasing the resolution of the area of interest.
  • the displacement from the position can be reduced.
  • the readout frequency of the pixel column including the region of interest higher than others, or by reducing the resolution of other regions at the time of data readout, while transmitting data in important regions reliably and with high image quality,
  • the transmission data size can be reduced.
  • the gaze point is estimated and the range of the region of interest is adjusted according to the movement history of the gaze point up to that point, changes in the subject and sound in the subject space, changes in the display image and output sound, and the like.
  • the data of the region of interest can be accurately read regardless of the detection accuracy of the gazing point.
  • a spatial imaging sensor that captures an image used for a display image has been described as an example, but the same mechanism may be applied to the eyeball imaging sensor of the gazing point detection unit.
  • information relating to the position of the pupil at the previous timing obtained by photographing the eyeball is fed back to the own apparatus. Then, in a photographed image of the eyeball at the next timing, data in a predetermined range centered on the position of the pupil is read out before the other regions.
  • pupil image data can be read and output reliably and periodically.
  • the read data is immediately input to the logic circuit of the application processor 212 in FIG. 7A or the gaze point detection sensor 216 in FIG. Accordingly, the position coordinates of the gazing point can be periodically derived regardless of the position of the pupil image in the captured image.
  • an imaging sensor that captures a general image representing visible light has been mainly described, but the type of sensor is not limited thereto. That is, as long as it is information obtained as a two-dimensional pixel value, the type of physical quantity represented by the pixel value is not particularly limited.
  • a depth sensor that acquires distance information of a subject, a multispectral sensor that acquires information on a plurality of wavelength bands, and the like may be used.
  • the determination factor of the priority pixel column is set as a gazing point with respect to the display image, but the determination factor of the priority pixel column may vary depending on the detection target of the sensor and the purpose of use. For example, it may simply be a place where an image of an object appears or a place showing a characteristic pixel value. In any case, the same effect as that of the present embodiment can be obtained by reading out and outputting data of a region considered to be important first.
  • 10 image processing device 23 CPU, 24 GPU, 26 main memory, 50 captured image data acquisition unit, 52 image analysis unit, 54 display image generation unit, 56 output unit, 100 head mounted display, 110 spatial imaging unit, 120 gaze point Detection unit, 122 display image data acquisition unit, 124 display unit, 210 eyeball imaging sensor, 212 application processor, 214 spatial imaging sensor, 216 gaze point detection sensor, 214 spatial imaging sensor, 320 gaze point information acquisition unit, 322 Priority pixel column determination unit, 324 gaze point information storage unit, 326 gaze point estimation unit, 328 pixel data acquisition unit, 330 output unit.
  • the present invention can be used for various apparatuses such as an imaging apparatus, a head mounted display, a sensor, an image processing apparatus, and a content reproduction apparatus, and a system including the apparatus.

Abstract

撮影画像202の平面において、表示画像に対するユーザの注視点に対応する注視対応点204を特定し、それに基づき着目領域206を決定する。空間撮像部は、撮像面208のうち、着目領域206を含む行、または画素ブロックを決定し、それに含まれる画素列のデータを、他の領域より先に読み出し、出力する。

Description

電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法
 本発明は、解析あるいは表示に用いる画像を撮影する撮像センサ、撮影画像を用いて画像を表示するヘッドマウントディスプレイ、撮影画像を用いてユーザの注視点を検出する注視点検出器、および画素データ読み出し方法に関する。
 撮影された画像を即時解析したり表示に用いたりする技術は広く実用化されている。例えばヘッドマウントディスプレイなどのウェアラブルディスプレイにおいて、ユーザの視線に対応する視野で実空間を撮影し、所定の加工を施して表示することにより、拡張現実や仮想現実を実現する技術が知られている。ヘッドマウントディスプレイに限らず、その場で撮影された画像を処理し表示に用いる態様では多くの場合、そのリアルタイム性が重要となる。
 一方、画像処理の精度や表示の精細さを追求するほど、元の撮影画像のデータ量が増える傾向となる。これに伴い、撮像装置、画像処理装置、表示装置間の伝送帯域や各装置の処理性能などに起因して、撮影から表示までに看過できない遅延が生じる可能性が高くなる。その結果、臨場感が損なわれたりユーザにストレスを与えたりすることがあり得る。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、撮影画像を用いた画像解析や表示を低遅延に行える技術を提供することにある。
 本発明のある態様は電子機器に関する。この電子機器は、マトリクス状に配置された画素からなる撮像面に対し、所定の基準により着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御する制御回路と、当該制御に従う順序で画素のデータを読み出し、所定の処理を施す読み出し処理回路と、所定の処理が施された画素のデータを順次出力する出力回路と、を備えたことを特徴とする。
 ここで「電子機器」は撮像センサ、撮像装置、情報端末、携帯端末、ゲーム機器、ウェアラブルディスプレイ、パーソナルコンピュータなど、撮像機能を備えた機器であればその種類は限定されない。
 本発明の別の態様はヘッドマウントディスプレイに関する。このヘッドマウントディスプレイは、撮像センサと、当該撮像センサによる撮影画像に基づき生成された画像を表示する表示パネルと、表示画像に対するユーザの注視点を検出する注視点検出器と、を備えたヘッドマウントディスプレイであって、撮像センサは、注視点に対応する、撮像面における注視対応点に基づき着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御する制御回路と、当該制御に従う順序で画素のデータを読み出し、所定の処理を施す読み出し処理回路と、所定の処理が施された画素のデータを順次出力する出力回路と、を備えたことを特徴とする。
 本発明のさらに別の態様は注視点検出器に関する。この注視点検出器は、表示画面を見るユーザの眼球を撮影する撮像センサと、撮影画像に基づき表示画面上の注視点の位置座標を取得する画像解析部と、を備えた注視点検出器であって、撮像センサは、前のタイミングにおける撮影画像に基づき着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御する制御回路と、当該制御に従う順序で画素のデータを読み出し、所定の処理を施す読み出し処理回路と、所定の処理が施された画素のデータを順次出力する出力回路と、を備えたことを特徴とする。
 本発明のさらに別の態様は画素データ読み出し方法に関する。この画素データ読み出し方法は、マトリクス状に配置された画素からなる撮像面に対し、所定の基準により着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御するステップと、当該制御に従う順序で画素のデータを読み出し、所定の処理を施すステップと、所定の処理が施された画素のデータを順次出力するステップと、を含むことを特徴とする。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、コンピュータプログラム、コンピュータプログラムを記録した記録媒体などの間で変換したものもまた、本発明の態様として有効である。
 本発明によると、撮影画像を用いた画像解析または画像表示技術において、解析や表示を低遅延に行える。
本実施の形態のヘッドマウントディスプレイの外観例を示す図である。 本実施の形態の画像表示システムの構成例を示す図である。 本実施の画像処理装置の内部回路構成を示す図である。 本実施の形態における画像処理装置およびヘッドマウントディスプレイの機能ブロックの構成を示す図である。 本実施の形態におけるヘッドマウントディスプレイの注視点検出部の構成例を示す図である。 本実施の形態の空間撮像部が、撮影画像のうち、表示画像における注視点に対応する領域のデータを優先して読み出す処理を説明するための図である。 本実施の形態における注視点検出部と空間撮像部のハードウェアとしての構成例を示す図である。 図6の(a)の態様を実現する空間用撮像センサの構成例を示す図である。 図6の(b)の態様を実現する空間用撮像センサの構成例を示す図である。 本実施の形態において着目領域のデータを先に読み出し出力することによる効果を説明するための図である。 本実施の形態において着目領域のデータを先に読み出し出力することによる別の効果を説明するための図である。 本実施の形態のうち、優先画素列とその他の領域で読み出し頻度を異ならせる態様における、データの読み出し位置とタイミングの関係を例示する図である。 本実施の形態において、優先画素列の解像度に対し、その他の領域の解像度を低くする手法を説明するための図である。 本実施の形態において、優先画素列の決定機能を拡張させた、空間撮像部の機能ブロックの構成を示す図である。 本実施の形態において、注視点の動きに応じて着目領域の範囲を調整する手法を説明するための図である。
 本実施の形態は、撮像装置から出力される画像データを用いて、低遅延に所定の処理を行ったり当該画像を表示したりする技術に関する。この限りにおいて撮像装置、画像処理装置、表示装置の形態は特に限定されないが、以後、撮像装置と表示装置を備えたヘッドマウントディスプレイ、および画像処理装置からなるシステムを例に説明する。図1は、本実施の形態のヘッドマウントディスプレイの外観例を示している。この例においてヘッドマウントディスプレイ100は、出力機構部102および装着機構部104で構成される。装着機構部104は、ユーザが被ることにより頭部を一周し装置の固定を実現する装着バンド106を含む。
 出力機構部102は、ヘッドマウントディスプレイ100をユーザが装着した状態において左右の目を覆うような形状の筐体108を含み、内部には装着時に目に正対するように表示パネルを備える。筐体108内部にはさらに、ヘッドマウントディスプレイ100の装着時に表示パネルとユーザの目との間に位置し、ユーザの視野角を拡大するレンズを備えてよい。表示パネルを左右に分割してなる各領域に、両眼の視差に対応するステレオ画像を表示することにより立体視を実現してもよい。
 ヘッドマウントディスプレイ100はさらに、装着時にユーザの耳に対応する位置にスピーカーやイヤホンを備えてよい。この例でヘッドマウントディスプレイ100は、筐体108の前面に空間撮像部110を備え、ユーザの視線に対応する視野で周囲の実空間を動画撮影する。図示する例では空間撮像部110は、ユーザの左右の目に対応する左右の視点から前方の空間を撮影するステレオカメラにより構成される。ただし空間撮像部110をこれに限る趣旨ではなく、単眼カメラでもよいし、3つ以上の多眼カメラでもよい。
 ヘッドマウントディスプレイ100はさらに、筐体108の内部に、表示パネルの画面に対しユーザが注視している箇所を検出する注視点検出器を備える。ヘッドマウントディスプレイ100はまた、加速度センサ、ジャイロセンサ、地磁気センサなど、ヘッドマウントディスプレイ100の動き、姿勢、位置などを導出するための各種センサの少なくともいずれかを備えてもよい。
 図2は、本実施の形態の画像表示システムの構成例を示している。ヘッドマウントディスプレイ100は無線通信により画像処理装置10に接続される。ただしUSBなどによる有線接続としてもよい。画像処理装置10は、さらにネットワークを介してサーバに接続されてもよい。その場合、サーバは、複数のユーザがネットワークを介して参加できるゲームなどのオンラインアプリケーションを画像処理装置10に提供してもよい。
 画像処理装置10は、ヘッドマウントディスプレイ100の空間撮像部110が撮影した画像のデータを継続的に取得し、それに応じた視野で表示画像を生成してヘッドマウントディスプレイ100に出力する。ここで表示画像の内容は特に限定されず、ユーザがシステムに求める機能や起動させたアプリケーションの内容などによって様々でよい。
 例えば画像処理装置10は、空間撮像部110による撮影画像に何らかの加工を施したり、実物体の像とインタラクションする仮想オブジェクトを重畳描画したりしてよい。あるいは撮影画像や、ヘッドマウントディスプレイ100のモーションセンサによる計測値などに基づき、ユーザの視野に対応する視野で仮想世界を描画してもよい。これらの態様の代表的なものとして、仮想現実(VR:Virtual Reality)や拡張現実(AR:Augmented Reality)が挙げられる。あるいは、撮影画像をそのまま表示画像とすることで、ヘッドマウントディスプレイ100の画面を介して実世界が見えるシースルーの形態を実現してもよい。
 このように、ヘッドマウントディスプレイ100から画像処理装置10へ撮影画像を伝送し、画像処理装置10が表示画像を生成したうえヘッドマウントディスプレイ100へ伝送する、といった一連の処理を所定のフレームレートで繰り返す場合、各装置でなされる処理やデータ伝送の速度が重要となる。すなわちいずれかの処理に遅れが生じると、ユーザの頭部の動きと表示画像に時間的なずれが生じ、ユーザに違和感を与えたり映像酔いを引き起こしたりすることがある。
 そのため従来、伝送帯域を拡張したり、圧縮率を高め伝送するデータ量を削減したりする対策がとられているが、表示画像の質や情報処理の精度を追求するほど扱うデータ量が増加するため、これらの対策が十分とはいえない場合がある。本実施の形態では、撮影された画像のデータ読み出しの段階で処理を工夫することにより、画像平面での領域に対し時間的な優先順位を与える。具体的には空間撮像部110は、表示画像上でユーザが注視している箇所を特定し、それに対応する、撮影画像上の領域のデータを他の領域より優先して読み出し出力する。
 ここで「優先して読み出す」処理は、撮像素子により検出された光を変換されてなる電荷の読み出しの段階で実施してもよいし、電荷を表すアナログ信号をデジタル信号に変換し、メモリに記録した後の読み出しの段階で実施してもよい。いずれにしろ空間撮像部110における後段の処理も、読み出し順あるいはそれに近い順で実施することにより、画像処理装置10には、優先度の高い画素のデータが先に伝送される。画像処理装置10における画像解析、表示画像生成、ヘッドマウントディスプレイ100への伝送、表示、の全ての処理、またはそのうちの一部についても当該優先度を踏襲する順序で処理を実施してよい。
 これにより、ユーザが注視している領域について、画像解析の確実性や表示の即時性を保証できる。また当該領域以外の領域については、一部の処理を省略したり詳細度、解像度を軽減させたりすることにより、見た目への影響を最小限に、さらなる高速化を実現できる。なお本実施の形態は上述のとおり、ヘッドマウントディスプレイ100に空間撮像部110を設ける以外の態様でも同様に効果を発揮する。
 例えば空間撮像部は、画像処理装置10側に設けてもよいし、画像処理装置10とネットワークを介して接続した別個体の撮像装置としてもよい。さらに空間撮像部をロボットの目として実装し、それに対応する視野で画像を表示してもよい。表示装置は、ユーザの注視点が得られれば、ヘッドマウントディスプレイ100に限らず、平板型ディスプレイなどでもよい。画像処理装置10と表示装置は、それらを一体的に備える携帯端末などでもよい。当該携帯端末に、さらに撮像装置を設けてもよい。
 図3は、画像処理装置10の内部回路構成を示している。画像処理装置10は、CPU(Central Processing Unit)23、GPU(Graphics Processing Unit)24、メインメモリ26を含む。これらの各部は、バス30を介して相互に接続されている。バス30にはさらに入出力インターフェース28が接続されている。入出力インターフェース28には、USBやIEEE1394などの周辺機器インターフェースや、有線又は無線LANのネットワークインターフェースからなりヘッドマウントディスプレイ100と通信を確立する通信部32、ハードディスクドライブや不揮発性メモリなどの記憶部34、ヘッドマウントディスプレイ100へデータを出力する出力部36、ヘッドマウントディスプレイ100や図示しない入力装置からデータを入力する入力部38、磁気ディスク、光ディスクまたは半導体メモリなどのリムーバブル記録媒体を駆動する記録媒体駆動部40が接続される。
 CPU23は、記憶部34に記憶されているオペレーティングシステムを実行することにより画像処理装置10の全体を制御する。CPU23はまた、リムーバブル記録媒体から読み出されてメインメモリ26にロードされた、あるいは通信部32を介してダウンロードされた各種プログラムを実行する。GPU24は、ジオメトリエンジンの機能とレンダリングプロセッサの機能とを有し、CPU23からの描画命令に従って描画処理を行い、出力部36に出力する。メインメモリ26はRAM(Random Access Memory)により構成され、処理に必要なプログラムやデータを記憶する。
 図4は、画像処理装置10およびヘッドマウントディスプレイ100の機能ブロックの構成を示している。同図に示す各機能ブロックは、ハードウェア的には、図3で示した各種回路や、注視点検出装置、撮像素子、制御回路、信号処理回路、表示パネル、マイクロプロセッサ、メモリなどにより実現でき、ソフトウェア的には、記録媒体からメモリにロードした、画像解析機能、情報処理機能、画像描画機能、データ入出力機能、通信機能などの諸機能を発揮するプログラムで実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
 ヘッドマウントディスプレイ100は、表示画面に対するユーザの注視点を検出する注視点検出部120、空間を撮影し注視点の情報に基づく順序でデータを出力する空間撮像部110、画像処理装置10から表示画像のデータを取得する表示画像データ取得部122、および当該表示画像を表示する表示部124を備える。注視点検出部120は、ヘッドマウントディスプレイ100の表示画面に対するユーザの注視点の位置座標を取得する。後述するように注視点を検出する技術としては様々なものが実用化されており、本実施の形態ではそのいずれを採用してもよい。
 空間撮像部110は上述のとおり表示画像に用いる動画像を撮影し、各フレームのうち注視点に対応する領域の画素のデータを優先して出力する。空間撮像部110は基本的に、当該領域以外の画素のデータについても出力するが、場合によって解像度や出力レートに差を設けてもよい。空間撮像部110は図1に示したように、ステレオカメラとしてもよい。表示画像データ取得部122は、画像処理装置10から表示画像のデータを継続的に取得する。このときの取得順も、注視点に対応する領域を先としてよい。
 表示部124は、表示画像を所定のレートで表示する。表示部124は液晶ディスプレイ、有機ELディスプレイなど、表示パネルと制御機構を有する一般的なディスプレイでよい。ただし表示素子の駆動順を適切に制御することにより、空間撮像部110の出力順に対応する順序で、表示画像が出力されるようにしてもよい。この場合、表示画像のうちユーザが注視している領域が先に更新されることになる。
 画像処理装置10は、撮影画像のデータをヘッドマウントディスプレイ100から取得する撮影画像データ取得部50、撮影画像に対し所定の解析処理を実施する画像解析部52、解析結果などを用いて表示画像を生成する表示画像生成部54、および表示画像のデータをヘッドマウントディスプレイ100へ供給する出力部56を備える。撮影画像データ取得部50は、ヘッドマウントディスプレイ100の空間撮像部110が出力する撮影画像のデータを取得する。
 上述のとおり空間撮像部110は、撮影画像のうちユーザの注視点に対応する領域の画素のデータを時間的に優先して出力するため、撮影画像データ取得部50のデータ取得順も当該領域が先となる。画像解析部52は、撮影画像を所定の内容で解析する。例えば画像解析部52は、顔検出、顔認識、ジェスチャ認識、視覚追跡、位置検出などのいずれかを実施してよい。あるいは画像解析部52は、Visual SLAM(Simultaneous Localization and Mapping)により、ヘッドマウントディスプレイ100の姿勢を取得してもよい。
 このとき画像解析部52は、ヘッドマウントディスプレイ100から先に送信された領域を優先して解析してよい。ユーザの注視点に対応する領域以外の領域については、解析処理を省略したり、解析の詳細度を下げたりしてもよい。これにより少なくとも、ユーザが注視している領域については確実に解析結果が得られるようにする。表示画像生成部54は、解析結果を利用するなどして表示画像のデータを生成する。この場合も、ヘッドマウントディスプレイ100から先に送信された、撮影画像上の領域に対応する領域を優先して生成してよい。
 表示画像生成部54の処理は、画像表示の目的によって様々でよく、上述のとおり撮影画像の一部に画像を描画してもよいし、撮影画像からSLAMなどによって得られる視野に応じて、表示画像全体を描画してもよい。なお頭部の位置や姿勢に係る情報は、ヘッドマウントディスプレイ100が備える図示しないモーションセンサの計測値に基づいて取得してもよい。また撮影画像をそのまま表示画像として出力してもよい。この場合、画像解析部52は処理を省略してもよい。
 いずれにしろ表示画像生成部54は、表示画像のデータを、生成した画素順に出力部56に供給する。例えば撮影画像データ取得部50が取得した画素順に、画像解析、表示画像生成を実施する場合、出力部56には結果的に、空間撮像部110から出力された順序を踏襲する順序で、表示画像の画素のデータが供給される。出力部56は、供給された表示画像のデータを、ヘッドマウントディスプレイ100に順次送信する。
 図5は、ヘッドマウントディスプレイ100の注視点検出部120の構成例を示している。同図下段はヘッドマウントディスプレイ100と、それを装着したユーザの頭部472を、上から見た様子を模式的に表している。ヘッドマウントディスプレイ100には上段で示したような表示画像476が表示され、ユーザが左右の目474a、474bでそれを見ている。この例では注視点検出部120として、赤外線LED478a、478b、赤外線カメラまたはPSDセンサ480a、480b、および画像解析装置482を設けている。
 赤外線LED478a、478bはそれぞれ、ユーザの左右の目474a、474bに赤外線を照射する。赤外線カメラまたはPSDセンサ480a、480bはそれぞれ、ユーザの左右の目474a、474bを撮影し、そのデータを画像解析装置482に供給する。画像解析装置482は、左右の目の撮影画像から、赤外線の角膜における反射位置と瞳孔の位置とを特定し、その位置関係からユーザの視線を特定する。この手法は角膜反射法として視線検出技術の分野で実用化されている。
 なお視線を検出する手法はこれに限らず、例えば可視光カメラで左右の目を撮影し、そのうち目頭と虹彩の位置関係から視線を特定する技術など一般的な手法のいずれを採用してもよい。画像解析装置482は、そのように検出した視線と、表示画像476が表示されている表示パネルとの交点484a、484bをユーザの注視点とし、その位置座標を検出する。当該注視点の位置座標の情報は、例えば所定のレートで空間撮像部110に供給される。
 図6は、空間撮像部110が、撮影画像のうち、表示画像における注視点に対応する領域のデータを優先して読み出す処理を説明するための図である。同図上段の撮影画像202は、空間撮像部110により撮影される画像を示している。空間撮像部110をステレオカメラで構成する場合、同様の撮影画像が左右の視点から撮影される。撮影画像202は、図5で示した表示画像476の元となる画像である。
 同図では表示画像476と撮影画像202を同じとしているが、それに限る趣旨ではない。すなわち表示画像476は、撮影画像202に仮想オブジェクトを重畳させたものでもよいし、全体をコンピュータグラフィックスで描画したものでもよい。いずれにしろ、撮影画像202の平面の位置座標は、表示画像476の平面の位置座標と対応づけられている。
 撮影画像202において、ユーザの注視点に対応する位置を注視対応点204とする。空間撮像部110は、注視点検出部120から取得した注視点の位置座標から、撮影視野における注視対応点204の位置座標を特定する。そして当該注視対応点204を含む所定範囲の領域(着目領域206と呼ぶ)から、優先して画素値(アナログ信号またはデジタル信号)を読み出す。着目領域206は、注視対応点204を中心として画像平面上の所定サイズの領域としてもよいし、注視対応点204に結像している人などの被写体の像の大きさによって、そのサイズを調整してもよい。また着目領域206の形状は矩形に限らず、円形、楕円形などでもよし、被写体の像の形状に依存させてもよい。
 図の下段(a)、(b)は、画素値の読み出し順を例示している。一般的な撮像装置では、画素のマトリクスよりなる撮像面において、左端の画素から右方向への読み出しを、最上段から下方向へ繰り返すラスタ順に、画素値の読み出しを進捗させる。同図(a)における実線および破線の矢印は、そのような画素の行を模式的に示している。ただし本実施の形態では、実線矢印で示す画素列を先に読み出す。
 すなわち(a)における撮像面208のうち、まず着目領域206を含む行を、それぞれ左端の画素から右端まで読み出す。ここで行の読み出し順は、該当行のうち最も上の行から下方向としてもよいし、注視対応点204から近い行ほど先に読み出すようにしてもよい。すなわち画像の右に1から5の番号で示すように、注視対応点204に最も近い行(1)を最初に読み出し、その上下(2、3)の行、さらにその上下の行(4、5)というように、注視対応点204から近い順に上下交互に読み出す。
 (b)の場合、撮像面を複数のブロックに分け、着目領域206を含むブロックを先に読み出す。この態様は後述するように、ブロックごとに画素値を読み出す処理回路を設けることを前提としている。以後、実線で示すように、着目領域206を含み優先して読み出す画素列を「優先画素列」と呼ぶことがある。(a)、(b)いずれの場合も、優先画素列のデータを読み出し終えたら、点線矢印のようにその他の領域のデータを読み出す。当該領域についても、注視対応点204に近い行やブロックほど優先的に読み出すようにしてもよいし、撮像面の左上から順に読み出すようにしてもよい。
 また当該領域のデータの読み出し頻度を、優先画素列の読み出し頻度より低くしてもよい。上述した従来技術では、注視点に関わりなく読み出し順が固定のため、着目領域206のデータを読み出すタイミングは注視点の位置に依存する。一方、(a)、(b)に示すように着目領域206のデータを優先して読み出し出力することにより、注視点の位置に依存せず、当該データの読み出しタイミングを見積もることができる。また優先画素列に対しそれ以外の領域の読み出し頻度を下げることにより、ユーザが注視している領域の画像解析や、対応する領域の表示を即座に行える。
 図7は、注視点検出部120と空間撮像部110のハードウェアとしての構成例を示している。まず(a)の例では、注視点検出部120として、眼球を撮影する眼球用撮像センサ210、眼球の撮影画像から注視点を取得するアプリケーションプロセッサ212を備え、空間撮像部110として、空間を撮影し注視点に基づく順序で画素値を出力する空間用撮像センサ214を備える。この構成は図5と同様であり、眼球用撮像センサ210は、赤外線カメラまたはPSDセンサ480a、480bに対応し、アプリケーションプロセッサ212は画像解析装置482に対応する。
 この構成では、眼球用撮像センサ210からアプリケーションプロセッサ212への撮影画像のデータ伝送に、MIPI(Mobile Industry Processor Interface)のアーキテクチャを用いることができる。またアプリケーションプロセッサ212から空間用撮像センサ214への注視点に係る情報の伝送に、i2C(Inter-Integrated Circuit)やi3Cのアーキテクチャを用いることができる。一方、(b)の構成は、注視点検出部120として注視点検出センサ216を備え、空間撮像部110として空間用撮像センサ214を備える。
 ここで注視点検出センサ216は、(a)の眼球用撮像センサ210と、当該センサにより撮影された眼球の像に基づき注視点を取得するロジック回路、すなわち(a)のアプリケーションプロセッサ212の機能を有するロジック回路を積層させたセンサである。空間用撮像センサ214は(a)と同様である。この場合、例えばi2Cやi3Cのアーキテクチャにより、注視点検出センサ216から空間用撮像センサ214へ、注視点に係る情報を直接伝送する。
 図8は、図6の(a)の態様を実現する空間用撮像センサの構成例を示している。空間用撮像センサ214aは、画素部220、垂直走査回路222、水平転送走査回路224、タイミング制御回路226、およびアナログデジタル変換器(ADC:Analog-Digital Converter)群230、デジタルアナログ変換器(DAC:Ditital-Analog Converter)238、水平転送線240、アンプ回路242、信号処理回路244、および出力回路246を含む。
 画素部220は、光電変換を行うフォトダイオードを含む画素をマトリクス状に配置した構成を有する。各画素は入射光量に応じた信号電荷を保持する。垂直走査回路222は、図示しない画素駆動配線を介して各画素に駆動パルスを供給することにより、行単位で画素を駆動する。これにより行内の画素のアナログ信号は、列ごとに設けられた垂直信号線によってADC群230に供給される。
 ADC群230は、アナログデジタル変換回路として、DAC238により生成される参照電圧と、行線ごとに画素から垂直信号線を経由して得られるアナログ信号とを比較する比較器232、比較時間をカウントするカウンタ234、カウント結果を保持するラッチ236からなるADCが画素列ごとに配置された構成を有する。垂直信号線により読み出されたアナログ信号は、比較器232でスロープ波形を有する参照電圧と比較され、両者が一致したときのカウント値が取得されることにより、デジタル信号に変換される。各ラッチ236の出力は、水平転送線240に接続される。
 水平転送走査回路224は例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、ラッチ236に格納された一行分のデジタル信号を、水平転送線240によりアンプ回路242、信号処理回路244へと入力させる。タイミング制御回路226は、垂直同期信号、水平同期信号、マスタクロックに基づいて、垂直走査回路222、ADC群230、水平転送走査回路224の動作の基準となるクロック信号や制御信号を生成し出力する。
 信号処理回路244は、読み出し処理回路として、入力された各画素のデジタル信号に、欠陥補正、デモザイク処理、ガンマ補正など所定の処理を施し撮影画像のデータを生成する。出力回路246は、信号処理回路244が生成した撮影画像のデータを適宜バッファリングし、行ごとに出力する。これらの基本的な構成は、一般的な撮像センサと同様でよい。一方、本実施の形態では上述のとおり、垂直走査回路222により駆動する画素行の順序を変化させることにより、優先画素列のデータが先に出力されるようにする。
 このためタイミング制御回路226は、注視点検出部120から注視点の情報を取得し、当該注視点に対応する、画素部220における画素の位置を、注視対応点として取得する。そしてタイミング制御回路226は着目領域、ひいては優先画素列を決定し、当該画素列が先に駆動されるように垂直走査回路222を制御する。すなわちタイミング制御回路226は、撮像センサから出力された画素のデータを用いてヘッドマウントディスプレイ100に表示された画像に対するユーザの注視点の位置座標に対応する、前記撮像面における注視対応点に基づき着目領域を決定する。
 そしてタイミング制御回路226は、着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御している。これにより、優先画素列の画素値から先にアナログデジタル変換がなされ、水平転送線240により信号処理回路244に転送される。信号処理回路244、出力回路246において、データが入力された順に適宜処理して出力することにより、撮影画像のデータは、優先画素列から順に、画像処理装置10に出力される。この場合、タイミング制御回路226は、着目領域の位置に基づき、データの読み出し対象から除外する領域を決定してもよい。
 なお、図示するように画素部220をラスタ順に走査するローリングシャッター方式に代えて、全ての画素の電荷を一度に読み出しデジタル変換するグローバルシャッター方式を採用する場合、優先画素列を先に読み出す対象は、全ての画素のデジタル値を格納した図示しないメモリとする。グローバルシャッターは画素の電荷読み出し段階では、画像平面上での位置に依存した時間差が生じない。このためメモリに格納された画像には、被写体の高速移動に起因して像が歪むフォーカルプレーン現象が発生しないという特性を有する。ただしメモリからの出力は画素列単位となるため、優先画素列を先に出力することにより、同様の効果が得られる。
 図9は、図6の(b)の態様を実現する空間用撮像センサの構成例を示している。このセンサの構成自体は、例えば特開2016-184843号公報に開示される既存技術であるため、ここでは概略のみを説明する。空間用撮像センサ214bは、画素部250と読み出し制御回路254を積層させた構造を有する。画素部250は、光電変換を行うフォトダイオードを含む画素をマトリクス状に配置した構成を有する。光電変換により取得された、画素値を表すアナログ信号は、読み出し制御回路254に出力される。
 ここで画素部250の平面は、1以上の画素からなる、M×N個の画素ブロック252に区分される。読み出し制御回路254は読み出し処理回路として、画素ブロック252ごとに設けた、M×N個の信号処理部256により構成される。各信号処理部256は、対応する画素ブロック252の画素を対象として、図8で説明したのと同様のアナログデジタル変換やその後の信号処理を、互いに独立して行う。すなわち信号処理部256は、撮像面208を縦方向および横方向に分割してなる画素ブロック252ごとに、データの読み出し対象か否かを制御する。
 同図右下に拡大して示すように、読み出し制御回路254の信号処理部256はそれぞれ、論理演算部262を備える。論理演算部262は、一行分の信号処理部256に共通の水平制御線258および、一列分の信号処理部256に共通の垂直制御線260からそれぞれ制御信号を取得し、それらを論理演算する。水平制御線258および垂直制御線260の制御信号は、制御回路264により与えられる。論理演算部262による演算結果は、対応する信号処理部256を動作させるか否かの決定に用いられる。
 例えば、論理演算の結果がLレベルのときに信号処理部256を動作させ、Hレベルのときにスタンバイ状態となるような回路構成とする。ここで論理演算部262をORゲートで構成すると、水平制御信号と垂直制御信号の双方がLレベルのときに演算結果がLレベルとなり、信号処理部256が動作する。したがって制御回路264は、走査させたい信号処理部256を含む水平制御線258および垂直制御線260にLレベルの制御信号を与え、それ以外の制御線にHレベルの制御信号を与える。
 このため制御回路264は、注視点検出部120から注視点の情報を取得し、当該注視点に対応する、画素部250における画素の位置を取得する。そして制御回路264は、着目領域、ひいては優先画素列(画素ブロック)を決定し、当該画素列が先に駆動されるように、各制御線に与える信号のレベルを決定する。図9に示すセンサの構成は制御線や演算回路が余計に必要となる一方、優先画素列の範囲を絞り込み、着目領域の実体に近づけることができるため、より効果を発揮しやすくなる。これを踏まえ、処理や表示に求められる精度や応答性、製造コストなど多角的な観点から、適切なセンサ構造を選択する。
 図10は、着目領域のデータを先に読み出し出力することによる効果を説明するための図である。同図は、画像の上端を0としたときの縦方向の位置座標(y座標)を縦軸とし、時間を横軸として、データが読み出される位置とタイミングの関係を矢印で示している。また太線270は、注視対応点のy座標の時間変化を例示している。(a)に示す従来技術では、矢印272に示すように、画像の上端の行から画素の読み出しが開始され、時間Δtで1フレーム分の読み出しが完了する。この場合、丸印274などで示されるように、注視対応点を中心とする着目領域のデータが読み出されるタイミングは、注視対応点の位置によって様々となる。
 一方、(b)に示す本実施の形態では、矢印276aに示すように、まず注視対応点を中心とする優先画素列のデータを読み出し、それに続けて、矢印276b、276cに示すように、その他の領域の画素列のデータを読み出す。なお同図ではわかりやすさのため、優先画素列およびその他の領域をそれぞれ、上の行から順に読み出す例を示しているが、実際には上述したように、注視対応点を基準に読み出し順を決定してよい。いずれにしろこの態様によれば、丸印278などに示されるように、注視対応点を中心とする着目領域のデータが読み出されるタイミングが、その位置によらず周期的となる。
 つまり所定の垂直走査周期で最初に出力される画像のデータが、高い優先度を有する領域の情報であることが明確化されるため、画像処理装置10における解析処理や表示画像生成処理において、当該データに対しより多くの時間をかけることができる。また画像の複雑さや解析処理の内容などに起因して、所定のフレームレートでの表示が困難な状況において、着目領域のデータについては確実に伝送や処理を実施したうえ、その他の領域の処理を簡略化することにより、表示に遅延を生じさせないように制御することができる。
 図11は、着目領域のデータを先に読み出し出力することによる別の効果を説明するための図である。従来、本実施の形態の着目領域と同様の重要な領域について処理の詳細度を確保し、それ以外の領域は低い詳細度で処理したり表示したりすることにより、データサイズを軽減させ、伝送速度を向上させる手法が提案されている。図11の(a)は、従来の読み出し順で、当該手法を適用した場合を示している。図の表し方は図10と同様である。
 ただし注視点に係る情報は、フレームレートと同様の頻度で与えられるとする。つまり実際の注視対応点は点線280で示すように変化するのに対し、取得できる注視対応点は太線282のように変化するとする。ここで矢印284に示すように、画像の上端の行から下方向に画素のデータを読み出すと、丸印286などで示すタイミングで読み出した画素のデータが着目領域として扱われる。ところが実際の注視対応点は時間経過とともに移動しているため、着目領域として読み出したデータに、実際の注視対応点が含まれていない可能性がある。
 一方、(b)に示す本実施の形態では、矢印288に示すように、与えられた注視点に対応する優先画素列のデータをまず読み出す。したがって丸印290のタイミングで読み出した画像のデータは、実際の注視対応点近傍のものとなる。このため当該画像のデータの解像度や処理の詳細度を高くし、その後に読み出される画像のデータについて解像度や詳細度を低くすれば、実際の注視対応点を含む着目領域について高品質な画像を表示できるとともに、データサイズを抑え表示までの速度を向上させることができる。なおこの場合も、重要なデータが周期的に出力されることによる効果は同様に得られる。
 図10、11で説明した例は、優先画素列とその他の領域のデータの読み出し順のみを入れ替えたため、1フレームの読み出しに要する時間は従来技術と同様であった。一方、読み出し順とともに読み出し頻度にも差を設けることにより、優先画素列についてはより新しい像を用いた解析や表示を行いつつ、伝送データサイズや処理の負荷を抑えるようにしてもよい。図12は、優先画素列とその他の領域で読み出し頻度を異ならせる態様における、データの読み出し位置とタイミングの関係を例示している。
 図の表し方は図10、11と同様である。すなわち太線291は、注視対応点のy座標の時間変化を示している。なおこの態様では、少なくとも優先画素列のみを読み出す頻度と同じ頻度で、注視点の情報が取得されるとする。この例では、優先画素列のデータを、その他の領域の3倍の頻度で読み出すことを想定している。すなわち矢印292aに示すように、まず注視対応点を中心とする優先画素列のデータを読み出し、それに続けて、矢印292b、292cに示すように、その他の領域の画素列のデータを読み出す。
 次に矢印292d、292e、292fに示すように、各時点での注視対応点を中心とする優先画素列のデータを繰り返し読み出す。その後、矢印292g、292hに示すように、直前の優先画素列以外の領域の画素列のデータを読み出す。これにより、注視点が動いている場合のほか、静止していても形状や色が変化している場合などに、最新の情報を解析や表示に反映させることができる。
 なお図12に示す態様では、優先画素列の画素の電荷が高頻度で読み出されることにより、電荷蓄積時間がその他の領域より短くなり、得られる輝度が低くなってしまうことが考えられる。そこで空間撮像部110は、優先画素列のデータに、読み出し頻度に比例するゲイン値を乗算させたうえで出力してもよい。また図示する例は、優先画素列とそれ以外の領域の画素列という2つの領域分けにより、読み出し頻度を2通りに設定した。一方、優先画素列の外側に第2の優先画素列を設定するなどして、領域を3つ以上に分けてもよい。この場合、読み出し頻度はそれぞれに設定し、当該頻度に比例するゲイン値をそれぞれに与える。
 また読み出し頻度が高く蓄積電荷を示すアナログ信号が小さいと、SN比が低下することが考えられる。そこで空間撮像部110は、前のタイミングで読み出された優先画素列のデータを用いて、ノイズ除去処理を実施したうえで出力してもよい。例えば前の複数のタイミングで読み出された同じ画素のデータの平均値を取得し、現時点で読み出されたデータと比較する。平均値との差が所定のしきい値以下の場合は、当該平均値を現時点でのデータとする。このようなノイズ除去処理は、3DNR(Noise Reduction)として知られているが、本実施の形態では特に、高頻度に読み出される優先画素列について実施する。
 ゲイン値の乗算とノイズ除去処理は同時に行ってもよい。また平均値をとる代わりに、前の複数のタイミングにおける同じ画素のデータを現時点で読み出されたデータに加算して出力することにより、ゲインとノイズ除去の双方を同時に実現してもよい。ここで加算するデータの数は、データの読み出し頻度に比例させてもよい。ただし撮像面に対し移動している被写体を表す画素については、加算処理対象から除外することにより、画像がにじんだり詳細度が失われたりするのを防止する。すなわち空間撮像部110は、撮像面208に対する被写体の動きの有無によって、読み出し頻度に応じて画素のデータを加算するか否かを決定する。ここで被写体の移動は、既存の動き検出処理により検出できる。当該検出処理は、画像処理装置10が実施し、ヘッドマウントディスプレイ100にフィードバックしてもよいし、空間撮像部110において実施してもよい。
 本実施の形態ではさらに、優先画素列とその他の領域で、解像度に差を設けるようにしてもよい。図13は、優先画素列の解像度に対し、その他の領域の解像度を低くする手法を説明するための図である。これまで述べたように撮影画像平面302において、優先画素列304とそれ以外の領域が、注視対応点310に応じて決定される。同図では優先画素列304とそれ以外の領域の画素の一部を、画素ブロック306、308として拡大して示している。
 撮像素子にベイヤ配列のカラーフィルタを設けた場合、2×4個の画素からなる画素ブロック306、308から、例えば2画素分の赤色の輝度Ra、Rb、4画素分の緑色の輝度G1a、G2a、G1b、G2b、2画素分の青色の輝度Ba、Bbのアナログ信号がそれぞれ読み出される。優先画素列304内の画素については、このように読み出されたアナログ信号をそのままデジタル信号に変換したうえ、各種処理を施し出力する。
 一方、優先画素列304以外の領域について、空間撮像部110は、近傍の同じ色の画素の信号を加算したうえで読み出しつつデジタル変換することにより、解像度を低下させる。言い換えれば空間撮像部110は、撮像面208における着目領域の位置に基づき、各画素が保持するアナログ信号を所定距離にある所定数の画素で加算したうえでデジタル信号に変換する領域を決定する。例えば同じ列において1画素おきにある同じ色の2つの画素のアナログ信号を加算する。すなわち次の演算により加算後の赤色の輝度Rc、緑色の輝度G1c、G2c、青色の輝度Bcを決定する。
 Rc=Ra+Rb
 G1c=G1a+G1b
 G2c=G2a+G2b
 Bc=Ba+Bb
 上記演算により、列方向の2画素分の情報が加算され1画素の情報となる。結果として2×4画素の画素ブロック308の情報は、2×2画素の画素ブロック312の情報に圧縮される。ただし加算する画素の数は3つ以上でもよい。この加算処理は、例えば図8で示したADCによって実現できる。
 すなわち加算対象の2つの画素のうち一方のアナログ信号が参照電圧と一致した際、カウンタ234におけるカウント値をリセットせずに、他方のアナログ信号を読み出して参照電圧との比較を繰り返す。そして再度一致したときのカウント値を変換後のデジタル値とすれば、加算とデジタル変換を同時に実現できる。このような加算処理を一部の領域のみに実施する場合、図9に示すように画素ブロックごとに独立した制御が可能な撮像センサを用いることが考えられる。
 なお図13の態様においても、優先画素列の周囲に第2の優先画素列を設定するなど、画像平面を3つ以上の領域に分け、解像度を3段階以上に変化させてもよい。いずれの場合も、全ての領域で同じ解像度とするより、データ伝送サイズを小さくできるとともに、重要でない領域について解析処理の負荷を軽減させたり表示を簡略化させたりでき、表示までの時間をより軽減できる。また図12で示した態様と組み合わせ、優先画素列は高頻度かつ高解像度で読み出し、それ以外の領域は低頻度かつ低解像度で読み出すようにしてもよい。これにより伝送サイズや処理の負荷をさらに抑えつつ、着目領域については質の高い処理や表示を行える。
 なお撮影画像平面302のうち注視対応点310からある程度離れている周縁領域314は、ユーザの認識上で重要性が低く、画像解析や、場合によっては表示においても必要とされない可能性が高くなる。したがって空間撮像部110は、当該周縁領域314に含まれる画素のデータ読み出しを省略するようにしてもよい。例えば空間撮像部110は、注視対応点310やそれに基づく着目領域からの距離が所定値以上の領域を周縁領域314として決定し、該当する画素を含む行や画素ブロックが駆動されないようにする。
 なお図では周縁領域314を、撮影画像平面302の4辺を含む枠状の領域としたが、それに限らず、撮影画像平面302の上端部分と下端部分などでもよい。また、優先画素列304以外の領域を全て周縁領域314としてもよい。これらの構成により、無駄なデータの読み出しや伝送を省略でき、より高速な解析や表示を実現できる。
 これまで述べた例では、注視点検出部120が検出したあるタイミングでの注視点から、撮影画像における注視対応点、ひいては優先画素列を一意に定めていた。一方、優先画素列の決定に様々な情報を加味することにより、処理の精度を高めてもよい。図14は、優先画素列の決定機能を拡張させた、空間撮像部110の機能ブロックの構成を示している。図示する機能ブロックは、図8や図9の制御回路や信号処理回路の一部として実装してもよいし、少なくとも一部の機能を、別途設けたマイクロプロセッサに実装してもよい。
 空間撮像部110は、注視点検出部120から注視点に係る情報を取得する注視点情報取得部320、注視点から注視対応点を求め、それに基づき優先画素列を決定する優先画素列決定部322、優先画素列から先に画素のデータを読み出し所定の処理を施す画素データ取得部328、および、画像処理装置10へデータを出力する出力部330を備える。空間撮像部110はさらに、注視点に係る情報を一時的に格納する注視点情報格納部324、および、注視点ひいては注視対応点を推定する注視点推定部326を備える。
 注視点情報取得部320、優先画素列決定部322の基本的な動作は、図8のタイミング制御回路226や図9の制御回路264について説明したのと同様でよい。また画素データ取得部328および出力部330の動作は、図8の画素部220、ADC群230、信号処理回路244、出力回路246など、あるいは図9の画素部250、読み出し制御回路254などと同様でよい。
 一方、図示する例の注視点情報取得部320は、注視点検出部120から取得した注視点の位置に係る情報を、注視点情報格納部324に格納する。これは注視点検出部120において、ユーザが瞬きするなどして眼球が撮影できず、注視点が不定となることに備えたものである。この場合、注視点検出部120からは有効な注視点の情報が得られないため、注視点情報取得部320はその旨を注視点推定部326に通知する。
 すると注視点推定部326は、その時点で最後に得られた注視点の情報を注視点情報格納部324から読み出し、それを現時点での注視点として優先画素列決定部322に供給する。この場合、注視点情報格納部324には、少なくとも最後に得られた注視点の情報を格納しておけばよい。あるいは注視点推定部326は、最後に得られた注視点の情報に加え、それより前のタイミングで得られた注視点の情報を注視点情報格納部324から読み出し、その時間変化に基づき、現時点での注視点の位置を推定してもよい。
 例えば過去の注視点の時間変化を、所定の直線または曲線で外挿することにより、それ以後の注視点の変化を推定する。この場合、注視点情報格納部324には、例えば所定数のフレーム分の注視点の情報を格納しておく。これらの構成により、瞬きなどにより注視点が不定となっても、継続して優先画素列を決定できる。なおこの態様は、注視点が不定の場合以外にも効果を発揮する。
 例えば図12で示したように優先画素列のデータの読み出し頻度を高くする場合、対応する頻度で注視点を取得する必要がある。この場合、注視点検出部120からの情報供給が低頻度であっても、注視点推定部326が過去の注視点の変化に基づき、優先画素列の読み出し開始のタイミングに合わせて注視点を推定できる。この処理は、図12の太線291を推定する処理に対応する。
 注視点の推定は、過去の注視点の変化以外の情報に基づき行ってもよい。例えば空間撮像部110の被写空間に新たな被写体が進入した場合や、被写空間のある位置から音がした場合、人はそちらの方向に目を向ける可能性が高い。これを利用し、注視点推定部326は、撮影画像に基づき被写体の進入を検出したり、図示しないマイクロフォンにより音のする方向を特定したりする。そして、当該方向に対応する画像上の領域を、次の注視点として優先画素列決定部322に通知する。この処理は、それらの事象が発生したタイミングのみで行ってもよいし、被写体や音の状態に応じて所定期間、継続してもよい。
 そのような注視点、ひいては注視対応点の動きに応じて、着目領域の範囲を調整してもよい。図15は、注視点の動きに応じて着目領域の範囲を調整する手法を説明するための図である。撮影画像平面340において、注視対応点342は図6で示した注視対応点204と同様の位置にある。図6の例では、注視対応点204を中心に着目領域206を決定した。図15の場合、それまでの注視対応点の経路を考慮して着目領域344を決定する。
 例えば注視対応点342へ至る単位時間に、注視対応点移動ベクトル346のように注視対応点が移動したとすると、同様の動きが継続する確率が高いとして、対応する方向に着目領域を拡張する。すなわち着目領域344の4辺のうち、注視対応点移動ベクトル346に対向する2辺と注視対応点342との距離(h,v)を、注視対応点移動ベクトル346の要素(X,Y)と同じ比率で拡張する。あるいは着目領域のサイズは変化させず、注視対応点移動ベクトル346の要素(X,Y)と同じ比率で水平方向および垂直方向に平行移動させてもよい。
 着目領域の調整は、このように実際の注視点の移動履歴(移動経路)に基づいてもよいし、上述のように被写空間における被写体の動きや音に基づき決定してもよい。また、表示画像上でのオブジェクトの動きや、ヘッドマウントディスプレイ100のスピーカーから出力される音声の定位などに基づき決定してもよい。それらの情報を適宜組み合わせて用いてもよい。このようにすると、注視点が不定であったり誤差が大きかったりしても、また、注視点の動きが大きくても、実際の注視点に対応する注視対応点を着目領域に精度よく含めることができる。
 以上述べた本実施の形態によれば、撮影画像を用いた画像表示技術において、表示された画像に対するユーザの注視点に基づき、撮影画像平面におけるデータの読み出し順序を制御する。これにより、画像解析や表示において特に重要となる撮影画像上の領域を、フレームの最初に画像処理装置や表示装置に伝送でき、それらの装置における各種処理を他の領域より優先して実施できる。また当該領域のデータ読み出し周期が一定となることから、後続の処理にかけることのできる時間を容易に見積もることができる。
 さらに注視点が検出されるタイミングに合わせて、その近傍の領域のデータを即時に出力できるため、着目領域に対し局所的に画像解析を行ったり解像度を高くしたりする場合に、実際の着目領域からの位置ずれを小さくできる。また着目領域を含む画素列の読み出し頻度を他より高くしたり、データの読み出し時に、他の領域の解像度を低下させたりすることにより、重要な領域のデータを確実かつ高画質で伝送しつつ、伝送データサイズを軽減させることができる。
 また、それまでの注視点の移動履歴や被写空間での被写体や音の変化、表示画像や出力音声の変化などに応じて、注視点を推定したり着目領域の範囲を調整したりする。これにより、注視点の検出精度によらず、着目領域のデータ読み出しを的確に行える。以上のことにより、撮影画像を用いた画像表示において、見た目の画質や処理精度を維持したまま、画像の撮影から表示までの時間を短縮でき、遅延が少ない高品質な表示を実現できる。
 以上、本発明を実施の形態をもとに説明した。上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば本実施の形態では、表示画像に用いる画像を撮影する空間用撮像センサを例に説明したが、同じ機構を、注視点検出部の眼球用撮像センサに適用してもよい。この場合、眼球を撮影することにより得られた、前のタイミングの瞳孔の位置に係る情報を、自装置にフィードバックする。そして次のタイミングにおける眼球の撮影画像のうち、瞳孔の位置を中心とした所定範囲の領域のデータを、その他の領域より先に読み出す。
 この場合も、瞳孔の像のデータを確実かつ周期的に読み出し出力できる。読み出したデータは、図7(a)のアプリケーションプロセッサ212や(b)の注視点検出センサ216のロジック回路に即時に入力する。これにより、撮影画像における瞳孔の像の位置によらず、注視点の位置座標を周期的に導出できる。図10から図15で示した態様の全てあるいは一部を、眼球用撮像センサに適用することにより、本実施の形態と同様の効果が得られる。また眼球用撮像センサと空間用撮像センサの双方に適用することにより、より高速かつ高い精度で、撮影から表示までの処理を実現してもよい。
 また本実施の形態では主に、可視光を表す一般的な画像を撮影する撮像センサについて説明したが、センサの種類はそれに限らない。すなわち2次元の画素値として得られる情報であれば、当該画素値が表す物理量の種類は特に限定されない。例えば上述の注視点検出に用いる赤外線センサ、PSDセンサのほか、被写体の距離情報を取得するデプスセンサ、複数の波長帯の情報を取得するマルチスペクトルセンサなどでもよい。
 また本実施の形態では、優先画素列の決定要因を表示画像に対する注視点としたが、センサの検出対象や使用目的によって、優先画素列の決定要因は様々でよい。例えば単に、対象物の像が表れている箇所でもよいし、特徴的な画素値を示している箇所などでもよい。いずれの場合も、重要と考えられる領域のデータを先に読み出して出力することにより、本実施の形態と同様の効果が得られる。
 10 画像処理装置、 23 CPU、 24 GPU、 26 メインメモリ、 50 撮影画像データ取得部、 52 画像解析部、 54 表示画像生成部、 56 出力部、 100 ヘッドマウントディスプレイ、 110 空間撮像部、 120 注視点検出部、 122 表示画像データ取得部、 124 表示部、 210 眼球用撮像センサ、 212 アプリケーションプロセッサ、 214 空間用撮像センサ、 216 注視点検出センサ、 214 空間用撮像センサ、 320 注視点情報取得部、 322 優先画素列決定部、 324 注視点情報格納部、 326 注視点推定部、 328 画素データ取得部、 330 出力部。
 以上のように本発明は、撮像装置、ヘッドマウントディスプレイ、センサ、画像処理装置、コンテンツ再生装置など各種装置と、それを含むシステムなどに利用可能である。

Claims (17)

  1.  マトリクス状に配置された画素からなる撮像面に対し、所定の基準により着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御する制御回路と、
     当該制御に従う順序で画素のデータを読み出し、所定の処理を施す読み出し処理回路と、
     前記所定の処理が施された画素のデータを順次出力する出力回路と、
     を備えたことを特徴とする電子機器。
  2.  前記読み出し処理回路は、前記制御に従う順序で、各画素が保持するアナログ信号をデジタル信号に変換するアナログデジタル変換回路を備えることを特徴とする請求項1に記載の電子機器。
  3.  前記制御回路は、前記電子機器から出力された画素のデータを用いて表示装置に表示された画像に対するユーザの注視点の位置座標に対応する、前記撮像面における注視対応点に基づき、前記着目領域を決定することを特徴とする請求項1または2に記載の電子機器。
  4.  前記読み出し処理回路は、前記撮像面を縦方向および横方向に分割してなる画素ブロックごとに、データの読み出し対象か否かを制御する信号処理部を備え、
     前記制御回路は、前記撮像面における前記着目領域との位置関係に基づき、データを読み出す画素列の順序を、前記画素ブロックごとに決定することを特徴とする請求項1から3のいずれかに記載の電子機器。
  5.  前記読み出し処理回路は、前記撮像面における前記着目領域の位置に基づき、各画素が保持するアナログ信号を所定距離にある所定数の画素で加算したうえでデジタル信号に変換する領域を決定することを特徴とする請求項2に記載の電子機器。
  6.  前記制御回路は、前記撮像面において前記着目領域の位置に基づき決定した領域ごとに、画素のデータを読み出す頻度を異ならせるように制御することを特徴とする請求項1から5のいずれかに記載の電子機器。
  7.  前記読み出し処理回路は、前記頻度に応じたゲイン値を、読み出した画素のデータに乗算することを特徴とする請求項6に記載の電子機器。
  8.  前記読み出し処理回路は、前のタイミングで読み出された同じ画素のデータを、前記頻度に応じた数だけ加算することを特徴とする請求項6に記載の電子機器。
  9.  前記読み出し処理回路は、前記撮像面に対する被写体の動きの有無によって、前記頻度に応じて画素のデータを加算するか否かを決定することを特徴とする請求項8に記載の電子機器。
  10.  前記制御回路は、前記撮像面における前記着目領域の位置に基づき、データの読み出し対象から除外する領域を決定することを特徴とする請求項1から9のいずれかに記載の電子機器。
  11.  前のタイミングにおける前記注視点の位置座標の情報を格納する注視点情報格納部と、
     前記前のタイミングにおける前記注視点の位置座標を用いて、以後の注視点の位置座標を推定する注視点推定部と、
     をさらに備え、
     前記制御回路は、推定された注視点を用いて前記着目領域を決定することを特徴とする請求項3に記載の電子機器。
  12.  前のタイミングにおける前記注視点の位置座標の情報を格納する注視点情報格納部をさらに備え、
     前記制御回路は、前記注視点の移動経路に基づき、前記着目領域の範囲を調整することを特徴とする請求項3に記載の電子機器。
  13.  被写空間における被写体の動きまたは音に基づき、以後の注視点の位置座標を推定する注視点推定部をさらに備え、
     前記制御回路は、推定された注視点を用いて前記着目領域を決定することを特徴とする請求項3に記載の電子機器。
  14.  前記制御回路は、前記表示装置に表示された画像におけるオブジェクトの動きまたは出力された音の定位に基づき、前記着目領域の範囲を調整することを特徴とする請求項3に記載の電子機器。
  15.  撮像センサと、当該撮像センサによる撮影画像に基づき生成された画像を表示する表示パネルと、表示画像に対するユーザの注視点を検出する注視点検出器と、を備えたヘッドマウントディスプレイであって、
     前記撮像センサは、
     前記注視点に対応する、撮像面における注視対応点に基づき着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御する制御回路と、
     当該制御に従う順序で画素のデータを読み出し、所定の処理を施す読み出し処理回路と、
     前記所定の処理が施された画素のデータを順次出力する出力回路と、
     を備えたことを特徴とするヘッドマウントディスプレイ。
  16.  表示画面を見るユーザの眼球を撮影する撮像センサと、撮影画像に基づき前記表示画面上の注視点の位置座標を取得する画像解析部と、を備えた注視点検出器であって、
     前記撮像センサは、
     前のタイミングにおける撮影画像に基づき着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御する制御回路と、
     当該制御に従う順序で画素のデータを読み出し、所定の処理を施す読み出し処理回路と、
     前記所定の処理が施された画素のデータを順次出力する出力回路と、
     を備えたことを特徴とする注視点検出器。
  17.  マトリクス状に配置された画素からなる撮像面に対し、所定の基準により着目領域を決定するとともに、当該着目領域の位置に依存した順序で、各画素が保持するデータが読み出されるように制御するステップと、
     当該制御に従う順序で画素のデータを読み出し、所定の処理を施すステップと、
     前記所定の処理が施された画素のデータを順次出力するステップと、
     を含むことを特徴とする、撮像センサによる画素データ読み出し方法。
PCT/JP2018/008908 2018-03-08 2018-03-08 電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法 WO2019171522A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/969,510 US11190714B2 (en) 2018-03-08 2018-03-08 Electronic device, head-mounted display, gaze point detector, and pixel data readout method
PCT/JP2018/008908 WO2019171522A1 (ja) 2018-03-08 2018-03-08 電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法
JP2020504577A JPWO2019171522A1 (ja) 2018-03-08 2018-03-08 ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008908 WO2019171522A1 (ja) 2018-03-08 2018-03-08 電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法

Publications (1)

Publication Number Publication Date
WO2019171522A1 true WO2019171522A1 (ja) 2019-09-12

Family

ID=67845628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008908 WO2019171522A1 (ja) 2018-03-08 2018-03-08 電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法

Country Status (3)

Country Link
US (1) US11190714B2 (ja)
JP (1) JPWO2019171522A1 (ja)
WO (1) WO2019171522A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230783A1 (ja) * 2021-04-28 2022-11-03 キヤノン株式会社 記録装置、撮像装置、制御方法、記録システム
WO2023189218A1 (ja) * 2022-04-01 2023-10-05 ソニーグループ株式会社 情報処理装置、情報処理方法、記録媒体
JP7424201B2 (ja) 2020-05-18 2024-01-30 富士フイルムビジネスイノベーション株式会社 目視点検確認装置及びプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711587A (zh) * 2019-02-07 2021-11-26 奇跃公司 具有无源深度提取的轻型交叉显示设备
US11315326B2 (en) * 2019-10-15 2022-04-26 At&T Intellectual Property I, L.P. Extended reality anchor caching based on viewport prediction
US11072075B2 (en) * 2019-10-24 2021-07-27 Disney Enterprises, Inc. Eye contact sensing and control for robotic characters
US11653083B2 (en) * 2020-12-15 2023-05-16 Qualcomm Incorporated Image sensor module
CN114860062A (zh) * 2021-02-03 2022-08-05 华为技术有限公司 图像的显示方法、装置、可读介质和电子设备
US11871133B2 (en) * 2021-09-30 2024-01-09 Varjo Technologies Oy Gaze-based non-regular subsampling of sensor pixels
US20230130524A1 (en) * 2021-10-25 2023-04-27 Samsung Electronics Co., Ltd. Personalized vertigo rehabilitation
CN114217691B (zh) * 2021-12-13 2023-12-26 京东方科技集团股份有限公司 一种显示器驱动方法、装置、电子设备及智能显示系统
US20230300285A1 (en) * 2022-03-18 2023-09-21 Apple Inc. Dynamic binning passthrough content

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060496A (ja) * 2004-08-19 2006-03-02 Nikon Corp 画像表示装置
JP2007281548A (ja) * 2006-04-03 2007-10-25 Samsung Techwin Co Ltd 撮像装置および撮像方法
JP2013046125A (ja) * 2011-08-23 2013-03-04 Canon Inc 撮像装置
JP2013046232A (ja) * 2011-08-24 2013-03-04 Nippon Hoso Kyokai <Nhk> 固体撮像装置
JP2013236298A (ja) * 2012-05-10 2013-11-21 Olympus Corp 撮像装置
JP2014023067A (ja) * 2012-07-20 2014-02-03 Ricoh Imaging Co Ltd 画像合成装置
JP2015070476A (ja) * 2013-09-30 2015-04-13 株式会社ニコン 電子機器、電子機器の制御方法、及び制御プログラム
JP2015231106A (ja) * 2014-06-04 2015-12-21 三菱電機株式会社 ヘッドマウントディスプレイ装置及びヘッドマウントディスプレイシステム
JP2016116162A (ja) * 2014-12-17 2016-06-23 日立マクセル株式会社 映像表示装置、映像表示システム、及び映像表示方法
JP2016184843A (ja) * 2015-03-26 2016-10-20 ソニー株式会社 イメージセンサ、処理方法、及び、電子機器
JP2018004950A (ja) * 2016-07-01 2018-01-11 フォーブ インコーポレーテッド 映像表示システム、映像表示方法、映像表示プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268271B2 (ja) * 2007-03-23 2013-08-21 株式会社東芝 画像表示装置および画像表示方法
JP5417418B2 (ja) 2011-12-01 2014-02-12 京楽産業.株式会社 遊技機
IL233684B (en) * 2014-07-17 2018-01-31 Shamir Hanan Stabilizing and displaying remote images
US10281976B2 (en) * 2015-07-07 2019-05-07 Seiko Epson Corporation Display device, control method for display device, and computer program
JP6583996B2 (ja) * 2015-07-17 2019-10-02 日本放送協会 映像評価装置、及びプログラム
WO2019145954A1 (en) * 2018-01-25 2019-08-01 Sharon Ehrlich Device, method, and system of high-speed eye tracking

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060496A (ja) * 2004-08-19 2006-03-02 Nikon Corp 画像表示装置
JP2007281548A (ja) * 2006-04-03 2007-10-25 Samsung Techwin Co Ltd 撮像装置および撮像方法
JP2013046125A (ja) * 2011-08-23 2013-03-04 Canon Inc 撮像装置
JP2013046232A (ja) * 2011-08-24 2013-03-04 Nippon Hoso Kyokai <Nhk> 固体撮像装置
JP2013236298A (ja) * 2012-05-10 2013-11-21 Olympus Corp 撮像装置
JP2014023067A (ja) * 2012-07-20 2014-02-03 Ricoh Imaging Co Ltd 画像合成装置
JP2015070476A (ja) * 2013-09-30 2015-04-13 株式会社ニコン 電子機器、電子機器の制御方法、及び制御プログラム
JP2015231106A (ja) * 2014-06-04 2015-12-21 三菱電機株式会社 ヘッドマウントディスプレイ装置及びヘッドマウントディスプレイシステム
JP2016116162A (ja) * 2014-12-17 2016-06-23 日立マクセル株式会社 映像表示装置、映像表示システム、及び映像表示方法
JP2016184843A (ja) * 2015-03-26 2016-10-20 ソニー株式会社 イメージセンサ、処理方法、及び、電子機器
JP2018004950A (ja) * 2016-07-01 2018-01-11 フォーブ インコーポレーテッド 映像表示システム、映像表示方法、映像表示プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424201B2 (ja) 2020-05-18 2024-01-30 富士フイルムビジネスイノベーション株式会社 目視点検確認装置及びプログラム
WO2022230783A1 (ja) * 2021-04-28 2022-11-03 キヤノン株式会社 記録装置、撮像装置、制御方法、記録システム
WO2023189218A1 (ja) * 2022-04-01 2023-10-05 ソニーグループ株式会社 情報処理装置、情報処理方法、記録媒体

Also Published As

Publication number Publication date
US20200412983A1 (en) 2020-12-31
JPWO2019171522A1 (ja) 2021-02-04
US11190714B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2019171522A1 (ja) 電子機器、ヘッドマウントディスプレイ、注視点検出器、および画素データ読み出し方法
EP3441935B1 (en) Low latency mixed reality head wearable device
JP6632443B2 (ja) 情報処理装置、情報処理システム、および情報処理方法
JP6870080B2 (ja) 画像生成装置、画像表示システム、および画像生成方法
KR20180002607A (ko) 캡처된 이미지에 대한 패스-스루 디스플레이
JP2018511098A (ja) 複合現実システム
EP2590396A1 (en) Information processing system, information processing device, and information processing method
US20170324899A1 (en) Image pickup apparatus, head-mounted display apparatus, information processing system and information processing method
JP6909286B2 (ja) 画像生成装置、画像表示システム、および画像生成方法
US20230236425A1 (en) Image processing method, image processing apparatus, and head-mounted display
US20210382316A1 (en) Gaze tracking apparatus and systems
JP6525740B2 (ja) 情報処理装置、情報処理装置の制御方法、画像処理システム及びプログラム
WO2021261248A1 (ja) 画像処理装置、画像表示システム、方法及びプログラム
US20240031551A1 (en) Image capturing apparatus for capturing a plurality of eyeball images, image capturing method for image capturing apparatus, and storage medium
JP6768933B2 (ja) 情報処理装置、情報処理システム、および画像処理方法
JPWO2020071029A1 (ja) 情報処理装置、情報処理方法、及び記録媒体
US20230319407A1 (en) Image processing device, image display system, method, and program
JP7429515B2 (ja) 画像処理装置、ヘッドマウントディスプレイ、および画像表示方法
JP6645949B2 (ja) 情報処理装置、情報処理システム、および情報処理方法
JP6725999B2 (ja) 情報処理装置、情報処理装置の制御方法およびプログラム
US10778893B2 (en) Detection device, display device and detection method
JP6930011B2 (ja) 情報処理装置、情報処理システム、および画像処理方法
US20230014562A1 (en) Image processing apparatus, image processing method, and image processing program
US20240089605A1 (en) Head-Mounted Device with Spatially Aware Camera Adjustments
WO2024059440A1 (en) Head-mounted device with spatially aware camera adjustments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908985

Country of ref document: EP

Kind code of ref document: A1