WO2019170142A1 - 自移动园艺机器人 - Google Patents

自移动园艺机器人 Download PDF

Info

Publication number
WO2019170142A1
WO2019170142A1 PCT/CN2019/077487 CN2019077487W WO2019170142A1 WO 2019170142 A1 WO2019170142 A1 WO 2019170142A1 CN 2019077487 W CN2019077487 W CN 2019077487W WO 2019170142 A1 WO2019170142 A1 WO 2019170142A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
gardening robot
moving
module
moving gardening
Prior art date
Application number
PCT/CN2019/077487
Other languages
English (en)
French (fr)
Inventor
安德罗·保罗
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to CN201980004554.XA priority Critical patent/CN111246725B/zh
Priority to DE212019000211.0U priority patent/DE212019000211U1/de
Publication of WO2019170142A1 publication Critical patent/WO2019170142A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/047Spraying of liquid fertilisers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C15/00Fertiliser distributors
    • A01C15/06Fertiliser distributors with distributing slots, e.g. adjustable openings for dosing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/002Apparatus for sowing fertiliser; Fertiliser drill
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/005Following a specific plan, e.g. pattern
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D43/00Mowers combined with apparatus performing additional operations while mowing
    • A01D43/14Mowers combined with apparatus performing additional operations while mowing with dispensing apparatus, e.g. for fertilisers, herbicides or preservatives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/09Watering arrangements making use of movable installations on wheels or the like

Definitions

  • the present invention relates to a self-moving gardening robot, and more particularly to a self-moving gardening robot that implements a yard maintenance function.
  • a self-moving gardening robot that moves and works in a defined work area, comprising: a housing, a moving module that drives the movement of the self-moving gardening robot, a working module that performs a corresponding work, and drives the a moving module and a power module of the working module, an energy module providing energy to the mobile gardening robot, a control module for controlling automatic movement and performing work of the mobile gardening robot; wherein the self-moving gardening robot further comprises a material cavity for the sustained release nutrient and a delivery window for dispensing the micro-release nutrient, the self-moving gardening robot placing the micro-release nutrient into the working area through the dispensing window.
  • micro-release nutrient can be dissolved in water to form a liquid micro-nutrient solution
  • the release window includes a watering window
  • the self-moving gardening robot waters the micro-nutrient solution through the watering window to the work region.
  • the watering window includes a spray head for spraying the micro nutrient solution radially, and the micro nutrient solution is sprayed radially through the spray head to perform the work of pouring the micro nutrient solution.
  • the self-moving horticultural robot further includes a lateral extension for mounting the spray head, the lateral extension of the lateral extension being beyond a lateral projection of the self-moving gardening robot.
  • the spray width of the self-moving gardening robot is wider than twice the width of the self-moving gardening robot.
  • the self-moving gardening robot includes at least two of the nozzles, and the at least two nozzles are laterally spaced apart from the lateral extension.
  • the watering window includes a drip irrigation port, and the micro nutrient solution can be dripped through the drip irrigation port to perform the work of pouring the micro nutrient solution.
  • micronutrient solution is stored in the material cavity.
  • the self-moving horticultural robot further includes a water tank independent of the material chamber, and the micro-release nutrient in the material chamber is soluble in water in the water tank to form a micro nutrient solution, and the micro nutrient solution is stored. In the water tank.
  • the self-moving gardening robot further includes a power supply device for driving the micronutrient solution to flow out from the watering window, the power supply device being driven by the power module.
  • the self-moving gardening robot is an automatic lawn mower
  • the working module includes a cutting assembly
  • the power module includes a cutting motor that drives the cutting assembly
  • the power supply device is driven by the cutting motor
  • the self-moving gardening robot is an automatic lawn mower
  • the moving module includes a wheel set
  • the power module includes a wheel set driving motor that drives the wheel set
  • the power supply device is driven by the wheel set Motor driven.
  • the self-moving gardening robot further includes a path planning unit pre-set with a preset path mode, and the control module controls the self-moving gardening robot to move and deploy in a preset path mode according to the preset path mode. A small amount of sustained release nutrients.
  • the working area is defined by a boundary
  • the housing has a longitudinal central axis
  • the path planning unit includes a boundary detection module for detecting a positional relationship between the mobile gardening robot and the boundary
  • the control module is electrically connected to the mobile module and the boundary detection module.
  • the self-moving gardening robot turns to the limit position after reaching the limit and reaching the preset positional relationship, at the preset position.
  • the boundary is divided into two sides by the intersection with the central axis, and the control module causes the mobile module to execute according to the signal sent by the boundary detection module representing the angular relationship between the mobile gardening robot and the boundary.
  • the moving module drives the self-moving gardening robot to rotate in a direction of reducing an acute angle or a right angle formed by the central axis and the boundary.
  • the moving module includes two driving wheels and a driving motor for driving the driving wheel
  • the working area is defined by a limit
  • the housing has a longitudinal central axis
  • the path planning unit includes at least two a boundary detection module for detecting a positional relationship between the self-moving gardening robot and the boundary, wherein the at least two boundary detection modules are respectively disposed on left and right sides of the central axis
  • the control The module is electrically connected to the mobile module and the limit detection module.
  • the control module receives a signal sent by the limit detection module; when the control When the module receives the signal, the self-moving gardening robot turns to drive away from the limit; during the steering, two of the drive motors drive the driving wheel to rotate at different speeds or in different directions;
  • the control module determines the steering angle according to the limit detection module that sends the signal, and when the central axis forms an obtuse angle with the boundary, Horticultural from the mobile robot toward the obtuse angle turning.
  • the path planning unit includes a path storage unit that stores a preset path, and in the preset path mode, the control module controls the self-moving gardening robot to move according to the preset path and deliver the micro-slow Release nutrients.
  • micro-release nutrient is a granular fertilizer.
  • the release window includes a spreading opening
  • the working module includes an automatic switch for opening or closing the spreading opening
  • the control module controls the automatic switch to open the spreading opening to perform Spread the work of micro-slow release nutrients.
  • the self-moving gardening robot is an automatic lawn mower, and its working mode includes a mowing mode and a dispensing mode, and in the mowing mode, the control module controls the self-moving gardening robot to move and mowing, In the delivery mode, the control module controls the self-moving gardening robot to move and dispense the micro-release nutrients.
  • the self-mobile gardening robot includes an information acquiring module for acquiring related information of the working mode, and the control module controls an operating mode of the self-moving gardening robot according to the information acquired by the information acquiring module.
  • the related information includes a schedule
  • the control module controls an operation mode of the self-moving gardening robot according to the schedule.
  • the present invention has the beneficial effects that the present invention puts the micro-release nutrient into the work by setting a material cavity for storing the micro-slow release nutrient and placing the micro-release nutrient release window. In the region, the micro-release nutrient release period is long, and only a small amount is needed to provide sufficient nutrition for the plants in the work area.
  • the invention also increases the uniformity of the delivery of the micro-release nutrients by dissolving the micro-release nutrient in water to form a liquid micro-nutrient solution, and then pouring the liquid micro-nutrient solution into the working area.
  • the invention also sets the preset path mode, and the self-moving gardening robot puts the micro-release nutrient into the working area through a preset path mode to enhance the uniformity of the micro-release nutrient delivery.
  • FIG. 1 is a schematic diagram of a working system of a self-moving gardening robot of the present invention.
  • FIG. 2 is a schematic view of the present invention for placing a self-moving gardening robot in a spreading manner.
  • FIG. 3 is a block diagram of the self-moving gardening robot shown in FIG. 2.
  • FIG. 4 is a schematic view of the present invention for watering a mobile gardening robot by spraying.
  • Fig. 5 is a schematic view showing the independent storage of trace sustained-release nutrients and water in the self-moving gardening robot of the present invention.
  • Figure 6 is a schematic illustration of the provision of a laterally extending member from a mobile gardening robot of the present invention.
  • Fig. 7 is a schematic view showing the self-moving gardening robot of the present invention by drip irrigation.
  • Figure 8 is a schematic illustration of the path selection of the self-moving gardening robot of the present invention.
  • Figure 9 is a schematic illustration of the path selection of the self-moving gardening robot of the present invention.
  • Figure 10 is a schematic illustration of the path selection of the self-moving gardening robot of the present invention.
  • Figure 11 is a schematic illustration of the steering principle of a self-moving gardening robot in accordance with an embodiment of the present invention.
  • Figure 12 is a schematic illustration of the movement of the self-moving gardening robot in accordance with the preset path of the present invention.
  • Figure 1 discloses a self-moving gardening robot working system.
  • the self-moving gardening robot working system includes a self-moving gardening robot 100 and a docking station 400.
  • the self-moving gardening robot 100 automatically walks and automatically performs work in the work area 3.
  • the docking station 400 is disposed within or near the work area 3 to provide docking, energy supplementation, and/or material replenishment for the mobile gardening robot 100.
  • the working area 3 is enclosed by a limit 31, which in a particular embodiment is a boundary line.
  • a self-moving gardening robot 100 includes a housing 10, a moving module 20 for moving the self-moving gardening robot 100, a working module 50 for performing work, and a driving and moving module 20 and working.
  • the self-moving gardening robot 100 further includes a material chamber 40 for storing a small release micronutrients, an input port 42 for introducing the micro-release nutrient 43 into the material chamber 40, and a micro-release nutrient.
  • the delivery window 41 of 43 places the micro-release nutrient 43 into the work area 3 through the release window 41 from the mobile gardening robot.
  • the micro-release nutrient 43 is a solid granular fertilizer whose release is slow, and a small amount of a small amount of the slow-release nutrient 43 is required to realize a large amount of ordinary fertilizer as compared with the ordinary fertilizer. Compared with common fertilizers, when the same area of the work area is fertilized, the volume of the slow release nutrient 43 is much smaller and the quality is much smaller than that of the ordinary fertilizer, so that it can be quickly transported and placed by the mobile gardening robot 100 to the work area.
  • the self-moving gardening robot 100 further includes a capacity detecting device 48 for detecting the amount of material stored.
  • the capacity detecting device 48 is electrically connected to the control module 30.
  • the capacity detecting device detects the amount of material remaining in the material chamber 40 and transmits the capacity signal to the control module 30.
  • the control module 30 controls the different actions from the mobile gardening robot 100 according to the difference in the capacity signals.
  • the capacity detecting device 48 such as a ranging sensor, a weight sensor, a space sensor, a capacitance detecting sensor, a Hall sensing sensor, and the like.
  • the volume detecting device 48 can also use a float for capacity detection.
  • an infrared sensor, an ultrasonic sensor, a laser sensor, or the like can be specifically used.
  • the mobile module 20 may specifically adopt a crawler type movement or a wheel type movement.
  • the energy module 60 may specifically be a lead-acid battery, or a rechargeable lithium battery, or a super capacitor, or the energy module 60 may be supplemented with energy by solar energy or wind energy.
  • the power module 80 is specifically a drive motor. The number of the drive motors may be one or more, for driving the mobile module 20 to travel and the work module 50 to perform corresponding functions.
  • the dispensing window 41 is a spreading opening 411 through which the micro-release nutrient 43 can be directly sprinkled into the working area.
  • the working module 50 includes an automatic switch for opening or closing the spreading opening 411, and the control module controls the automatic switch to automatically open or close the spreading opening to perform or stop the task of spreading the micro-release nutrient 43 .
  • micro-slow release nutrients must be spread evenly. Otherwise, there will be local over-nutrition in the work area and local undernutrition. Therefore, the uniformity of the micro-release nutrient delivery is critical.
  • the micro-release nutrient 43 is dissolved in water to form a micro-nutrient solution, and the micro-nutrient solution may be After leaving the factory, the user can dissolve the solid micro-slow release nutrient 43 into water to make a micro-nutrient solution; before the factory, the manufacturer has dissolved the solid micro-release slow-release nutrient 43 into water to make a micro-nutrient solution. Nutrient solution.
  • the micro-release nutrient 43 by dissolving the solid micro-release nutrient 43 in water to form a liquid micro-nutrient solution, and then placing the liquid micro-nutrient solution into the working area by watering, the micro-release nutrient 43 can be made. It is placed in the working area in the form of a solution, which effectively improves the uniformity of the delivery of the micro-release nutrient 43.
  • the dispensing window 41 of the self-moving gardening robot 100 is a watering window, and the self-moving gardening robot 100 waters the micro-nutrient solution into the working area 3 through the watering window.
  • the micro-release nutrient 43 is directly mixed with water to form a micro-nutrient solution, and the micro-nutrient solution is directly stored in the material cavity 40.
  • FIG. 1 shows a watering window, and the self-moving gardening robot 100 waters the micro-nutrient solution into the working area 3 through the watering window.
  • the micro-release nutrient 43 is directly mixed with water to form a micro-nutrient solution, and the micro-nutrient solution is directly stored in the material cavity 40.
  • the micro-release nutrient 43 is stored separately from water, and the self-moving gardening robot 100 further includes a water tank 45 independent of the material chamber 40, the water being stored in In the water tank 45, the micro-relieving nutrient 43 in the material chamber 40 is soluble in the water in the water tank 45 to form a micro-nutrient solution, and the micro-nutrient solution is stored in the water tank 45.
  • the watering window includes a spray head 412 for spraying a micro nutrient solution, and the micro nutrient solution is sprayed through the spray head 412 to perform the work of pouring the micro nutrient solution.
  • the showerhead 412 can spray the micronutrient solution radially to expand the spray area.
  • the spraying efficiency is increased in order to increase the spray area during the movement of the self-moving gardening robot 100. As shown in FIG.
  • the self-moving gardening robot 100 includes a laterally extending member 417 and a plurality of spray heads 412 disposed on the laterally extending members.
  • the projection of the laterally extending member 417 in the lateral direction exceeds the lateral projection of the self-moving gardening robot 100, where the meaning of the lateral extension 417 extends beyond the self-moving gardening robot 100.
  • the lateral projection is in a range such that the lateral extent of the showerhead 412 can be set beyond the lateral range that can be set by the self-moving gardening robot 100 itself to enhance the lateral area covered by the single walking of the mobile gardening robot 100, thereby increasing the unit time.
  • the spray area within is reduced by the travel distance required for the mobile gardening robot 100 to spray the entire work area, where the projection including the lateral extension 417 in the lateral direction only exceeds the extent of the lateral projection of the mobile gardening robot 100.
  • the spray width of the self-moving gardening robot is wider than twice the width of the self-moving gardening robot to increase the lateral area covered by the single walking of the mobile gardening robot 100, and the spraying area per unit time is increased. , reducing the walking distance required for the mobile gardening robot 100 to spray the entire work area.
  • the spray heads 412 are laterally spaced apart from the longitudinal direction of the lateral extensions 417, and the number of the spray heads 412 is at least two to increase the spray area per unit time during the movement of the mobile gardening robot 100. Improve spray efficiency.
  • the laterally extending member 417 is in communication with a material chamber or water tank containing a micronutrient solution for transporting the micronutrient solution to the spray head 412.
  • the laterally extending members 417 are only used to position the spray heads 412 in a lateral direction, and the spray heads 412 are in communication with the material chamber or water tank containing the micronutrient solution through other conduits to transfer the micronutrient solution to the spray head 412.
  • the micro-nutrient solution may also be watered in other ways.
  • the watering window includes a drip port 413, and the micro-nutrient solution is dripped through the drip port 413 to perform the task of watering the micro-nutrient solution. .
  • the self-mobile gardening robot 100 further includes a power supply device 59 for driving the micro nutrient solution to flow out from the watering window, and the power supply device 59 is driven by the power module 80.
  • the power supply device 59 can be a pump. The pump is driven by the power module 80 to deliver the micronutrient solution or to pressurize the micronutrient solution to drive the micronutrient solution out of the irrigation window.
  • the work module 50 includes a cutting assembly 56 that includes a cutting motor that drives the cutting assembly 56, the power supply device 59 being driven by the cutting motor.
  • the mobile module 20 is a wheel set
  • the power module 80 includes a wheel set drive motor that drives a wheel set
  • the power supply unit 59 is driven by the wheel set drive motor.
  • the self-mobile gardening robot 100 further includes a path planning unit 70 pre-set with a preset path mode, the control module 30 according to the The preset path mode controls the self-moving gardening robot 100 to move and deliver the micro-release nutrient in a preset path mode.
  • the path planning unit 70 may preset a steering logic, that is, the preset path mode includes a preset steering logic, as shown in FIG. 8 to FIG.
  • the working area 3 is defined by a boundary
  • the housing 10 has a longitudinal central axis 133
  • the path planning unit 70 includes a positional relationship between the self-moving gardening robot 100 and the limit 31.
  • the boundary detection module is electrically connected to the mobile module 20 and the boundary detection module.
  • the self-moving gardening robot 100 is heading toward the limit 31 and reaches a preset positional relationship. The rearward steering is separated from the limit 31.
  • the boundary 31 is divided into two sides by the intersection 311 with the central axis 133, and the control module 30 is represented by the limit detection module.
  • the signal of the angular relationship between the mobile gardening robot 100 and the limit 31 causes the moving module 20 to perform steering so that the central axis 133 of the self-moving gardening robot 100 is always at an acute or right angle to one side of the limit 31 when the steering is completed, the limit 3
  • the other side of 1 is at an acute or right angle to the center axis 133 of the self-moving gardening robot 100 at the beginning of the steering.
  • the control module 30 controls the self-moving gardening robot 100 to follow the preset steering logic to reduce the probability of repeated delivery at the same location, but the local area is not delivered, effectively enhancing the uniformity of delivery, and shortening the work. The time required for a single delivery in the area.
  • the center axis 31 of the self-moving gardening robot 100 necessarily forms an intersection with the limit 133, it is inevitable that one side of the self-moving gardening robot 100 is closer to the limit when the boundary is not vertically approached. Then, when the central axis 31 of the mobile gardening robot 100 is not perpendicular to the limit, an acute angle is formed with the boundary of the left or right side of the intersection, and the self-moving gardening robot 100 can rotate in the direction of reducing the acute angle. It is more efficient to turn into the boundary with a smaller corner.
  • the control module 30 causes the mobile module to perform steering according to a signal transmitted by the boundary detection module representing the angular relationship between the mobile gardening robot and the boundary.
  • the control module 30 causes the mobile module 20 to rotate from the mobile gardening robot 100 to the angle of the acute angle or the right angle formed by the reduction of the central axis 133 and the limit 31, and always ensures the self-moving gardening robot.
  • the central axis 133 of 100 is always at an acute or right angle to one side of the boundary 31, the other side of which is at an acute or right angle to the central axis 133 of the self-moving gardening robot 100 at the beginning of the steering.
  • the above process can also be understood as the positional relationship between the self-moving gardening robot 100 and the limit 31, and when a predetermined positional relationship is reached between the mobile gardening robot 100 and the limit 31, which of the self-moving gardening robots 100 is determined.
  • One side is closer to the limit, and if the left side is closer to the limit, the self-moving gardening robot 100 turns clockwise; if the right side is closer to the limit 31, the self-moving gardening robot 100 turns counterclockwise, and the steering result is always the self-moving
  • the distance from one side to the limit of the gardening robot 100 is less than the distance from the other side to the limit, which side is closer to the limit at the beginning of the turn.
  • FIGS. 8, 9, and 10 are schematic diagrams of path selection after the aforementioned self-moving gardening robot 100 encounters a limit.
  • the traveling direction of the self-moving gardening robot 100 is the same, and the extending direction of the center axis 133 is the same when striking the limit 31, but the extending direction of the boundary 31 is different in each drawing, thereby causing steering. The direction and result are different.
  • the dotted line passing through the self-moving gardening robot 100 in each figure is the walking trajectory of the self-moving gardening robot 100.
  • the central axis 133 and the boundary 31 of the self-moving gardening robot 100 have an intersection point 311, and the central axis 133 and the boundary 31 on both sides of the intersection 311 form an angle, respectively.
  • the sum of the angles is 180 degrees.
  • the limit 31 may be curved as a whole, but the limit 31 near a specific intersection may be regarded as a straight line; or it may be said that although the limit 31 may be curved, the preset for determining the steering is reached.
  • the intersection of the central axis 133 and the limit 31 the direction in which the limit 31 extends is a straight line which is a tangent to the limit 31.
  • the angle between the central axis 133 and the boundary 31 it is hereinafter referred to as the angle between the central axis 133 and the boundary 31, but the meaning of the boundary 31 and the boundary is as described above, and refers to the boundary at the intersection 31/ The straight line segment of the boundary or the direction of extension or tangential direction.
  • the mobile module 20 includes two driving wheels and a driving motor for driving the driving wheel
  • the path planning unit 70 includes at least two for detecting the self-moving gardening.
  • the control module 30 receives the signal sent by the boundary sensing element 135; When the control module 30 receives the signal, the self-moving gardening robot 100 turns to drive away from the limit; during the steering, two of the driving motors drive the driving wheels at different speeds or different Directional rotation; the control module 30 determines the steering angle based on the boundary sensing element 135 that transmits the signal.
  • the above-described self-moving gardening robot 100 realizes the angle determination and the steering direction determination by the boundary sensing elements 135 located on both sides of the casing 21, respectively, but may be realized by only one boundary sensing element 135.
  • the above steering mode makes the walking of the self-moving gardening robot 1 finally achieved directionality. If the working range is divided into two parts by the boundary vertical line at the intersection of the self-moving gardening robot 1 and the boundary, the self-moving gardening robot will be moved after the steering. Move from the original part to another part without staying in the original part. In this way, self-moving gardening robots will cruise more often to different areas, increasing work area coverage efficiency, and making it easier to get out of areas where the original self-moving gardening robots are not easy to get out of.
  • the boundary detection module determines the angle is qualitative, and only determines which side of the mobile gardening robot 100 first hits the limit, and then correspondingly, turns to the other side, and the rotation angle does not exceed 180 degrees; Or to judge only which side of the moving gardening robot 100 and the intersection point 311 is sharp, and then rotate correspondingly to reduce the angle of the acute angle, and the angle between the last side and the other side is also an acute angle, and then continue the straight line. travel.
  • the limit detection module can also determine the angle, that is, the limit detection module can determine the exact angle of the self-moving gardening robot and the boundary, and monitor and determine the self-moving gardening robot when hitting the line.
  • the angle between the central axis and the boundary is rotated in the direction of decreasing the acute angle, and the steering angle is selected according to the specific angle to achieve the purpose of optimizing the steering angle.
  • Optimizing the steering angle may mean reducing the steering angle, or It means that the pop-up angle is within a certain range, and it can also mean optimizing the path, increasing the coverage rate or reducing the number of foldbacks.
  • the self-moving gardening robot 100 is provided with a displacement monitoring component for monitoring the walking distance of the self-moving gardening robot within a certain time, since the displacement and the speed are related.
  • the self-moving gardening robot 100 monitors the displacement of the self-moving gardening robot by monitoring the walking speed.
  • the displacement monitoring component may specifically be a rotational speed sensor that monitors the rotational speed of the driving wheel, or directly monitors the acceleration of the speed of the self-moving gardening robot 100. Sensors, or other components that can monitor the speed of the mobile gardening robot 100.
  • the limit 31 can be varied, not limited to current-type boundary line signals or obstacles, but also walls in the house, other acoustic and optical boundary signals, and the like.
  • limit 3 detection modules such as infrared sensors, ultrasonic sensors, etc., which will be different according to the nature of the limit 31.
  • the self-moving gardening robot cannot hit the boundary, so the distance between the predetermined turning point and the actual limit will be longer, and the sensor is remote-sensing to ensure that the steering will not hit the limit.
  • the predetermined steering distance will be shorter, and it will turn when it is very close or has hit the boundary.
  • the steering determination point of the signal limit 31 can also be set to be the same as the physical limit, so that the self-moving gardening robot 100 does not intersect the limit 31 when turning, that is, the self-moving gardening robot when steering
  • the distance of the 100 limit is greater than or equal to zero.
  • the manner of determining the distance and angle between the mobile gardening robot 100 and the limit 31 may be various, and is not limited to the manner described in the specific embodiment.
  • a GPS navigation system similar to vehicle navigation may be employed.
  • a map and a boundary position and direction of the work area are built in the memory of the control module 30, and a GPS navigation module is provided in the mobile gardening robot, and the map information and the GPS information may be used.
  • the angle and distance from when the mobile gardening robot 100 hits the limit are judged, and then steering is performed using the aforementioned steering mode.
  • Another example is the use of image acquisition technology to install a camera on a mobile gardening robot. It is also feasible to determine the direction and distance of the collision line by image recognition of the environment. In the present invention, it is more important to determine the steering strategy after the direction and the direction after the steering.
  • the path planning unit 70 may preset another steering logic, that is, the preset path mode includes another preset steering logic, as shown in FIG.
  • the working area 3 is defined by a boundary
  • the housing 10 has a longitudinal central axis 133
  • the path planning unit 70 includes a positional relationship between the self-moving gardening robot 100 and the limit 31.
  • the boundary detection module is electrically connected to the mobile module 20 and the boundary detection module.
  • the self-moving gardening robot 100 is heading toward the limit 31 and reaches a preset positional relationship.
  • the control module 30 After the steering is turned away from the limit 31, the control module 30 causes the mobile module 20 to perform steering according to the signal sent by the limit detection module representing the angular relationship between the mobile gardening robot 100 and the limit 31.
  • the steering principle is that When the positional relationship is set, the boundary 31 is divided into two sides by the intersection 311 with the central axis, and the angle between the central axis and one of the two sides is an obtuse angle O' , the control module 30 From the mobile robot system horticultural 100 toward the obtuse angle O 'steering.
  • the difference between the present embodiment and the steering logic of the previous embodiment is that the previous embodiment is controlled by the control module such that the central axis 133 of the self-moving gardening robot 100 is always at an acute angle to one side of the boundary 31 when the steering is completed or At right angles, the other side of the limit 31 is at an acute or right angle to the center axis 133 of the self-moving gardening robot 100 at the beginning of the steering.
  • the embodiment is controlled by the control module.
  • the boundary is divided into two sides by the intersection 311 with the central axis, and the central axis and the two sides are The angle between one of the sides is an obtuse angle O', and the control module 30 controls the steering from the mobile gardening robot 100 toward the obtuse angle O'.
  • the path planning unit 70 includes a path storage unit that stores a preset path.
  • the control module 30 controls the self-moving gardening robot 100 according to the The preset path moves and delivers the micro-slow release nutrients.
  • the preset path is a preset rule path.
  • the control module 30 controls the self-moving gardening robot 100 to move and deliver the micro-slow release nutrient according to a preset regular path, so as to avoid repeated delivery in the same location under a random path, but the local area is not delivered, and the delivery is effectively enhanced. Uniformity and reduced time required for a single delivery in the work area.
  • the self-moving gardening robot 100 further includes a positioning module 73.
  • the positioning module 73 is used to determine the location information of the self-moving gardening robot 100.
  • the control module 30 controls the self-moving gardening robot 100 to move and dispense the micro-release nutrients according to the preset rule path according to the position information determined by the positioning module 73.
  • the positioning module 73 can assist the mobile gardening robot 100 in implementing various functions such as navigation, path planning, and the like.
  • the positioning module 73 is a GPS positioning device that implements a positioning function by receiving satellite signals.
  • the positioning module 73 is a DGPS positioning device that performs differential positioning by receiving satellite signals and cooperating with the base station.
  • the positioning module 73 is an odometer and a compass combination device, and the positioning function is realized by calculating the walking distance and determining the moving direction.
  • the positioning module 73 is a combination of a GPS positioning device and an inertial navigation device, and is used in conjunction with the GPS positioning device to achieve accurate positioning.
  • the positioning module 73 is an image navigation device that performs positioning by capturing image information and stored image information for comparison.
  • the self-moving gardening robot 100 is an automatic lawn mower, and its working mode includes a mowing mode and a dispensing mode, and in the mowing mode, the control module 30 controls the self-moving gardening The robot 100 moves and mowing, and in the placement mode, the control module 30 controls the self-moving gardening robot 100 to move and dispense the micro-release nutrients.
  • the self-mobile gardening robot 100 includes an information acquiring module for acquiring related information of the working mode, and the control module 30 controls the work of the self-moving gardening robot 100 according to the information acquired by the information acquiring module. mode.
  • the related information includes a scheduling table, and the control module 30 controls the working mode of the self-moving gardening robot 100 according to the scheduling table.
  • the schedule table sets a certain period of time to deliver a small amount of slow release nutrients to the working area.
  • the work area is mowing, and the work of mowing and placing the mobile gardening robot 100 is reasonably arranged according to the schedule.
  • the information acquisition module includes a communication module for remote communication, and specifically, a wireless communication module.
  • the control module 30 transmits data to the outside or receives external data and instructions through the wireless communication module.
  • the specific device type of the wireless communication module may be a wireless communication device such as a wifi device, a Bluetooth device, a cellular mobile communication device, a zigbee, or a sub-1G.
  • the self-moving gardening robot 100 acquires related information through the wireless communication module, and the control module controls the working mode of the self-moving gardening robot 100 according to the information acquired by the wireless communication module.
  • the information acquisition module includes an information presetting module that presets the related information.
  • the self-moving gardening robot 100 presets related information through the information preset module, and the control module controls the working mode of the self-moving gardening robot 100 according to the related information preset by the information preset module.
  • the present invention is not limited to the specific embodiment structures, and the structures based on the inventive concept are all within the scope of the present invention.

Abstract

一种自移动园艺机器人(100),所述自移动园艺机器人(100)在限定的工作区域(3)内移动并工作,包括壳体(10)、带动所述自移动园艺机器人(100)移动的移动模块(20)、执行相应工作的工作模块(50)、驱动所述移动模块(20)和所述工作模块(50)的动力模块(80)、向自移动园艺机器人(100)提供能量的能量模块(60)及控制自移动园艺机器人(100)自动移动和执行工作的控制模块(30),所述自移动园艺机器人(100)还包括用于存储微量缓释养料(43)的物料腔(40)及投放微量缓释养料(43)的投放窗口(41),所述自移动园艺机器人(100)通过所述投放窗口(41)将所述微量缓释养料(43)投放于所述工作区域(3)内。

Description

自移动园艺机器人 技术领域
本发明涉及一种自移动园艺机器人,尤其涉及实现庭院维护功能的自移动园艺机器人。
背景技术
常规的家庭庭院场景,房屋周边(如前、后)通常会铺设整片的草坪,在庭院的其他地方还会零星或成形地布置一些灌木丛、花圃或者树木。在进行庭院维护时,为了提高工作区域土壤的肥力,用户需要单独对工作区域进行施肥。
为了将用户从各类庭院维护任务中解脱出来,市场上出现了各种自动化和半自动化的庭院维护机器。如半自动化的用于施肥的施肥机。然而,单独的施肥机不仅需要增加昂贵的额外费用,而且要对整个工作区域进行施肥,需要大量的普通肥料,大量的普通肥料大大增加施肥机的质量,需要很大的动力才能带动。更甚至,单次无法完成工作,还需要人工添加普通肥料。使得在工作区域内,单次完成施肥的周期长,浪费人力物力。
因此,有必要设计一种新的自移动园艺机器人,缩短给整个工作区域施肥的周期,节省为提高工作区域土壤肥力所带来的成本。
发明内容
有鉴于此,本发明的目的在于提供一种有效提高工作区域土壤肥力的自移动园艺机器人。
本发明可采用如下技术方案:
一种自移动园艺机器人,所述自移动园艺机器人在限定的工作区域内移动并工作,包括:壳体、带动所述自移动园艺机器人移动的移动模块、执行相应工作的工作模块、驱动所述移动模块和所述工作模块的动力模块、向自移动园艺机器人提供能量的能量模块、控制自移动园艺机器人自动移动和执行工作的控制模块;其中,所述自移动园艺机器人还包括用于存储微量缓释养料的物料腔及投放微量缓释养料的投放窗口,所述自移动园艺机器人通过所述投放窗口将所述微量缓释养料投放于所述工作区域内。
进一步的,所述微量缓释养料能够溶于水中形成液态的微量营养液,所述投放窗口包括浇灌窗口,所述自移动园艺机器人通过所述浇灌窗口将所述微量营养液浇灌于所述工作区域。
进一步的,所述浇灌窗口包括用于呈放射状喷洒微量营养液的喷头,所述微量营养液通过所述喷头呈放射状的喷出以执行浇灌微量营养液的工作。
进一步的,所述自移动园艺机器人还包括用于安装所述喷头的横向延展件,所述横向延展件在横向上的投影超出于所述自移动园艺机器人的横向投影。
进一步的,所述自移动园艺机器人的喷洒宽度宽于自移动园艺机器人的宽度的两倍。
进一步的,所述自移动园艺机器人包括至少两个所述喷头,所述至少两个喷头横向间隔设置于所述横向延展件上。
进一步的,所述浇灌窗口包括滴灌口,所述微量营养液可通过滴灌口滴灌以执行浇灌微量营养液的工作。
进一步的,所述微量营养液存储于所述物料腔内。
进一步的,所述自移动园艺机器人还包括独立于所述物料腔的水箱,所述物料腔内的微量缓释养料可溶于所述水箱内的水中形成微量营养液,所述微量营养液存储于所述水箱内。
进一步的,所述自移动园艺机器人还包括用于驱动所述微量营养液从所述浇灌窗口流出的动力供应装置,所述动力供应装置由所述动力模块驱动。
进一步的,所述自移动园艺机器人为自动割草机,所述工作模块包括切割组件,所述动力模块包括驱动所述切割组件的切割马达,所述动力供应装置由所述切割马达驱动。
进一步的,所述自移动园艺机器人为自动割草机,所述移动模块包括轮组,所述动力模块包括驱动所述轮组的轮组驱动马达,所述动力供应装置由所述轮组驱动马达驱动。
进一步的,所述自移动园艺机器人还包括预设有预设路径模式的路径规划单元,所述控制模块根据所述预设路径模式控制所述自移动园艺机器人以预设路径模式移动并投放所述微量缓释养料。
进一步的,所述工作区域由界限限定,所述壳体具有纵向的中轴线,所述 路径规划单元包括用于侦测自移动园艺机器人和界限之间的位置关系的界限侦测模块,所述控制模块与移动模块和界限侦测模块电性连接,在预设路径模式下,所述自移动园艺机器人在驶向界限并到达预设的位置关系后转向以驶离界限,在预设的位置关系时所述界限被与所述中轴线的交点分为两个侧边,所述控制模块根据界限侦测模块发送的代表自移动园艺机器人和界限之间的角度关系的信号,令移动模块执行转向,使得转向完成时自移动园艺机器人的中轴线始终与界限的一侧边成锐角或直角,该界限的另一侧边在转向开始时与自移动园艺机器人的中轴线成锐角或直角。
进一步的,所述移动模块带动所述自移动园艺机器人向减小所述中轴线和所述界限所成的锐角夹角或直角夹角的方向转动。
进一步的,所述移动模块包括两个主动轮及驱动所述主动轮的驱动马达,所述工作区域由界限限定,所述壳体具有纵向的中轴线,所述路径规划单元包括至少两个用于侦测所述自移动园艺机器人和所述界限之间的位置关系的界限侦测模块,其中所述至少两个界限侦测模块被分别设置于所述中轴线的左右两侧,所述控制模块与移动模块和界限侦测模块电性连接,当所述界限侦测模块中至少一个位于所述界限之外时,所述控制模块接收所述界限侦测模块发送的信号;当所述控制模块接收到所述信号时,所述自移动园艺机器人转向以驶离所述界限;在转向过程中,两个所述驱动马达驱动所述主动轮以不同的速度或者不同的方向旋转;所述控制模块根据发送所述信号的所述界限侦测模块确定所述转向角度,当所述中轴线与所述界限之间形成一个钝角时,所述自移动园艺机器人朝向所述钝角转向。
进一步的,所述路径规划单元包括存储有预设路径的路径存储单元,在预设路径模式下,所述控制模块控制所述自移动园艺机器人按照所述预设路径移动并投放所述微量缓释养料。
进一步的,所述微量缓释养料为一种颗粒肥料。
进一步的,所述投放窗口包括撒布开口,所述工作模块包括自动开关,所述自动开关用于打开或关闭所述撒布开口,所述控制模块控制所述自动开关打开所述撒布开口,以执行撒布微量缓释养料的工作。
进一步的,所述自移动园艺机器人为自动割草机,其工作模式包括割草模 式和投放模式,在所述割草模式下,所述控制模块控制所述自移动园艺机器人移动和割草,在所述投放模式下,所述控制模块控制所述自移动园艺机器人移动和投放所述微量缓释养料。
进一步的,所述自移动园艺机器人包括用于获取所述工作模式的相关信息的信息获取模块,所述控制模块根据所述信息获取模块获取的信息控制所述自移动园艺机器人的工作模式。
进一步的,所述相关信息包括时间安排表,所述控制模块根据所述时间安排表控制所述自移动园艺机器人的工作模式。
与现有技术相比,本发明的有益效果为:本发明通过设置存储微量缓释养料的物料腔及投放所述微量缓释养料的投放窗口,将所述微量缓释养料投放于所述工作区域内,微量缓释养料释放周期长,只需要少量就可以给工作区域内的植物提供足够的营养。本发明还通过将所述微量缓释养料溶于水形成液态的微量营养液,然后将液态的微量营养液浇灌到工作区域中,以增加微量缓释养料的投放的均匀性。本发明还通过设定预设的路径模式,所述自移动园艺机器人通过预设的路径模式将所述微量缓释养料投放到工作区域内,以增强微量缓释养料投放的均匀性。
附图说明
图1是本发明自移动园艺机器人工作系统示意图。
图2是本发明自移动园艺机器人采用撒布的方式投放的示意图。
图3是图2所示自移动园艺机器人的模块示意图。
图4是本发明自移动园艺机器人采用喷洒的方式浇灌的示意图。
图5是本发明自移动园艺机器人中微量缓释养料与水独立存储的示意图。
图6是本发明自移动园艺机器人上设置横向延展件的示意图。
图7是本发明自移动园艺机器人采用滴灌方式浇灌的示意图。
图8是本发明自移动园艺机器人的路径选择示意图。
图9是本发明自移动园艺机器人的路径选择示意图。
图10是本发明自移动园艺机器人的路径选择示意图。
图11是本发明的具体实施例的自移动园艺机器人的转向原理示意图。
图12是本发明自移动园艺机器人按照预设路径移动的示意图。
具体实施方式
有关本发明的详细说明和技术内容,配合附图说明如下,然而所附附图仅提供参考与说明,并非用来对本发明加以限制。
图1揭示了一种自移动园艺机器人工作系统。自移动园艺机器人工作系统包括自移动园艺机器人100和停靠站400。自移动园艺机器人100在工作区域3内自动行走和自动执行工作。停靠站400布置在工作区域3内或边界附近,为自移动园艺机器人100提供停靠、提供能量补充或/和提供物料补充等。工作区域3由界限31围成,在一具体实施例中,界限31为边界线。
如图2及图3所示,一种自移动园艺机器人100包括壳体10、带动所述自移动园艺机器人100移动的移动模块20、用于执行工作的工作模块50、驱动移动模块20与工作模块50的动力模块80、为自移动园艺机器人100提供能量的能量模块60及控制自移动园艺机器人100自动移动和执行工作的控制模块。自移动园艺机器人100还包括用于存储微量缓释养料43(slow release micronutrients)的物料腔40、向所述物料腔40内投入所述微量缓释养料43的投入口42及投放微量缓释养料43的投放窗口41,自移动园艺机器人通过投放窗口41将所述微量缓释养料43投放于所述工作区域3内。所述微量缓释养料43为一种固态的颗粒肥料,其释放缓慢,相较于普通肥料而言,只需要很少量的微量缓释养料43即可实现大量的普通肥料的作用。相较于普通肥料而言,对相同面积的工作区域进行施肥时,微量缓释养料43体积及质量远小于普通肥料,以便能够快速的被自移动园艺机器人100运输和投放到所述工作区域。
具体的,在一优选实施例中,自移动园艺机器人100还包括用于检测物料存储量的容量检测装置48。容量检测装置48与控制模块30电性连接。容量检测装置检测物料腔40内所剩余的物料容量,并且将该容量信号传输给控制模块30。控制模块30根据容量信号的不同,而控制自移动园艺机器人100进行不同的动作。容量检测装置48的具体实现方式有多种,如测距传感器、重量传感器、空间传感器,电容检测传感器,霍尔感应传感器等。当物料腔40主要功能为存储液体时,容量检测装置48还可以采用浮子进行容量检测。在测距传感器中,具体可采用红外传感器、超声波传感器、激光传感器等。
具体的,移动模块20具体可以采用履带式移动,也可以采用轮式移动。能量模块60具体可以为铅酸电池,或者为可二次充电的锂电池,或者为超级电容,或者能量模块60可采用太阳能或风能进行能量补充。动力模块80具体为驱动电机,该驱动电机的数量可以为1个、也可以为多个,用于驱动移动模块20行走以及工作模块50执行相应功能。
如图2所示,在一实施例中,所述投放窗口41为撒布开口411,所述微量缓释养料43可直接通过所述撒布开口411撒布到所述工作区域中。所述工作模块50包括自动开关,所述自动开关用于打开或关闭所述撒布开口411,控制模块控制自动开关自动打开或关闭所述撒布开口,以执行或停止撒布微量缓释养料43的任务。
因为微量缓释养料很少量就能够提供足够的养份,所以微量缓释养料必须播撒均匀,否则,会出现工作区域内,局部营养过剩,而局部营养不足。因此,所述微量缓释养料投放的均匀性至关重要。
为了实现所述微量缓释养料投放的均匀性,在一具体实施例中,如图4至图5所示,所述微量缓释养料43溶于水形成微量营养液,微量营养液可以是在出厂后用户自行将固态的微量缓释养料43溶于水制成微量营养液;也可以在出厂前,厂家已将固态的微量缓释养料43溶于水制成微量营养液,用户直接购买微量营养液。在本实施例中,通过将固态的微量缓释养料43溶于水中,形成液态的微量营养液,然后以浇灌的方式将液态的微量营养液投放到工作区域中,可以使得微量缓释养料43以溶液的形式被投放到工作区域中,有效的提高微量缓释养料43投放的均匀性。
在本实施例中,所述自移动园艺机器人100的投放窗口41为浇灌窗口,所述自移动园艺机器人100通过所述浇灌窗口将所述微量营养液浇灌于所述工作区域3。具体的,在一实施例中,所述微量缓释养料43直接与水混合形成微量营养液,所述微量营养液直接存储于所述物料腔40内。在另一实施例中,如图5所示,所述微量缓释养料43与水分开存储,所述自移动园艺机器人100还包括独立于所述物料腔40的水箱45,所述水存储于所述水箱45内,所述物料腔40内的微量缓释养料43可溶于所述水箱45内的水中形成微量营养液,所述微量营养液存储于所述水箱45内。
具体的,在本实施例中,如图4所示,所述浇灌窗口包括用于喷洒微量营养液的喷头412,所述微量营养液通过所述喷头412喷出以执行浇灌微量营养液的工作,具体的,喷头412可呈放射状喷洒微量营养液,以扩大喷洒面积。本实施例中,为提升浇灌的均匀性,优选通过喷洒的方式浇灌微量营养液。在一具体实施例中,为增大自移动园艺机器人100移动过程中的喷洒面积,提升喷洒效率。可如图6所示,自移动园艺机器人100包括横向延展件417及设置于所述横向延展件上的若干喷头412。在一实施例中,横向延展件417在横向上的投影超出于自移动园艺机器人100的横向投影,这里超出于的意思是指,横向延展件417在横向上的投影超出了自移动园艺机器人100的横向投影所在的范围,以使喷头412可设置的横向范围超出于自移动园艺机器人100自身所能设置的横向范围,以提升自移动园艺机器人100单次行走所覆盖的横向区域,提高单位时间内的喷洒面积,减少自移动园艺机器人100喷洒整个工作区域所需的行走路程,这里包括横向延展件417横向上的投影仅一端超出自移动园艺机器人100的横向投影所在的范围。在一实施例中,所述自移动园艺机器人的喷洒宽度宽于自移动园艺机器人的宽度的两倍,以提升自移动园艺机器人100单次行走所覆盖的横向区域,提高单位时间内的喷洒面积,减少自移动园艺机器人100喷洒整个工作区域所需的行走路程。在一实施例中,喷头412横向间隔设置于所述横向延展件417的长度方向上,喷头412的数量至少两个,以增大自移动园艺机器人100移动过程中,单位时间内的喷洒面积,提升喷洒效率。具体的,在一具体实施例中,横向延展件417与装有微量营养液的物料腔或水箱连通,用于将微量营养液传输至喷头412。在另一具体实施例中,横向延展件417仅用于沿横向布置喷头412,喷头412通过其他管道与装有微量营养液的物料腔或水箱连通,以将微量营养液传输至喷头412。
当然,在其他实施例中,也可以采用其他方式浇灌微量营养液,例如图7所示的,浇灌窗口包括滴灌口413,所述微量营养液通过滴灌口413滴灌以执行浇灌微量营养液的任务。
具体的,所述自移动园艺机器人100还包括用于驱动所述微量营养液从所述浇灌窗口流出的动力供应装置59,所述动力供应装置59由所述动力模块80驱动。具体的,所述动力供应装置59可为泵。泵由所述动力模块80驱动来输 送所述微量营养液或给所述微量营养液增压,驱动所述微量营养液从所述浇灌窗口流出。在一具体实施例中,所述工作模块50包括切割组件56,所述动力模块80包括驱动所述切割组件56的切割马达,所述动力供应装置59由所述切割马达驱动。在另一实施例中,所述移动模块20为轮组,所述动力模块80包括驱动轮组的轮组驱动马达,所述动力供应装置59由所述轮组驱动马达驱动。
为了实现所述微量缓释养料投放的均匀性,在另一具体实施例中,所述自移动园艺机器人100还包括预设有预设路径模式的路径规划单元70,所述控制模块30根据所述预设路径模式控制所述自移动园艺机器人100以预设路径模式移动并投放所述微量缓释养料。
具体的,在一实施例中,所述路径规划单元70可预设一种转向逻辑,也即所述预设路径模式包括一种预设的转向逻辑,如图8至图10所示,在一实施例中,所述工作区域3由界限限定,所述壳体10具有纵向的中轴线133,所述路径规划单元70包括用于侦测自移动园艺机器人100和界限31之间的位置关系的界限侦测模块,所述控制模块30与移动模块20和界限侦测模块电性连接,在预设路径模式下,所述自移动园艺机器人100在驶向界限31并到达预设的位置关系后转向以驶离界限31,在预设的位置关系时所述界限31被与所述中轴线133的交点311分为两个侧边,所述控制模块30根据界限侦测模块发送的代表自移动园艺机器人100和界限31之间的角度关系的信号,令移动模块20执行转向,使得转向完成时自移动园艺机器人100的中轴线133始终与界限31的一侧边成锐角或直角,该界限31的另一侧边在转向开始时与自移动园艺机器人100的中轴线133成锐角或直角。所述控制模块30控制所述自移动园艺机器人100按照预设的转向逻辑转向,减小了重复在同一位置投放,而局部区域却没有投放的概率,有效增强投放的均匀性,而且缩短了工作区域内单次投放所需要的时间。
对于转向的具体过程,因为自移动园艺机器人100的中轴线31必然和界限133形成一个交点,在非垂直接近界限时,也必然有自移动园艺机器人100的其中一侧更接近界限。那么当自移动园艺机器人100的中轴线31不垂直于界限时,与该交点的左侧或右侧的界限形成一个锐角夹角,自移动园艺机器人100向减小该锐角夹角的方向转动可以通过较小的转角转向界内,较为高效。 更抽象的说,自移动园艺机器人100监测自身和界限31的位置关系,控制模块30根据界限侦测模块发送的代表自移动园艺机器人和界限之间的角度关系的信号,令移动模块执行转向,使得为了转向的高效快捷,控制模块30使移动模块20带动自移动园艺机器人100向减小中轴线133和界限31所成的锐角夹角或直角夹角的方向转动,且始终保证自移动园艺机器人100的中轴线133始终与界限31的一侧边成锐角或直角,该界限31的另一侧边在转向开始时与自移动园艺机器人100的中轴线133成锐角或直角。类似的,上述过程也可以理解为自移动园艺机器人100监测自身和界限31的位置关系,当自移动园艺机器人100和界限31之间达到一预设位置关系时,判断自移动园艺机器人100的哪一侧更接近界限,若左侧更接近界限,则自移动园艺机器人100顺时针转向;若右侧更接近界限31,则自移动园艺机器人100逆时针转向,且转向结果始终为所述自移动园艺机器人100的其中一侧到界限的距离小于其中另一侧到界限的距离,所述其中一侧在转向开始时更接近界限。上述两种描述方式虽然不同,然而其实质内容是一致的,应能理解,界限侦测模块发送的信号参数在物理能对应不同的场景。
图8、图9和图10为前述的自移动园艺机器人100遇到界限之后的路径选择示意图。在图8、图9和图10中,自移动园艺机器人100的行走方向相同,在撞向界限31时中轴线133的延伸方向相同,但各图中界限31的延伸方向不同,从而导致转向的方向和结果不同。各图中穿过自移动园艺机器人100的虚线为自移动园艺机器人100的行走轨迹线。在自移动园艺机器人100撞到界限31的时刻,自移动园艺机器人100的中轴线133和界限31具有一个交点311,则中轴线133与交点311两侧的界限31各形成一个角度,这两个角度之和为180度。需要说明,整体上看界限31可能是弯曲的,但在具体的一个交点附近的界限31可以视作是直线;或者也可以说,虽然界限31可能是弯曲的,但是在达到判断转向的预设距离处,中轴线133和界限31的交点,界限31的延伸方向为直线,该延伸方向为界限31的切线。在后文中,为了描述的直观和方便,在后文仍称之为中轴线133和界限31的夹角,但该处界限31和界限的意义如上所述,是指在交点处的界限31/界限的直线段或者延伸方向或者切线方向。
如前所述,在一实施例中,所述移动模块20包括两个主动轮及驱动所述主动轮的驱动马达,所述路径规划单元70包括至少两个用于侦测所述自移动园艺机器人100和所述界限31之间的位置关系的边界感应元件135,其中所 述至少两个边界感应元件135被分别设置于所述中轴线的左右两侧,所述控制模块30与移动模块20和边界感应元件135电性连接,当所述边界感应元件135中至少一个撞到界限31或位于所述界限31之外时,所述控制模块30接收所述边界感应元件135发送的信号;当所述控制模块30接收到所述信号时,所述自移动园艺机器人100转向以驶离所述界限;在转向过程中,两个所述驱动马达驱动所述主动轮以不同的速度或者不同的方向旋转;所述控制模块30根据发送所述信号的所述边界感应元件135确定所述转向角度。上述的自移动园艺机器人100是通过分别位于壳体21的两侧的边界感应元件135来实现角度判断和转向方向确定,然而,也可仅通过一个边界感应元件135来实现。
上述转向方式使得最终达到的自移动园艺机器人1的行走具有方向性,若以自移动园艺机器人1和界限的交点处的界限垂直线将工作范围分为两部分,则转向后自移动园艺机器人会从原来一部分移动到另一部分中,而不会停留在原来部分。这样,自移动园艺机器人会更经常的巡航到不同的区域,增加了工作区域覆效率,并且更容易从一些原来的自移动园艺机器人不易走出的区域走出。上述转向过程中,界限侦测模块对角度的判断是定性的,仅仅判断自移动园艺机器人100的哪一侧先撞向界限,然后相应的,向另一侧转向,并且转角不超过180度;或者说仅仅判断自移动园艺机器人100和交点311的哪一侧的界限成锐角,然后相应的向减小该锐角夹角的方向转动,最后和另一侧的夹角也为锐角,然后继续直线行驶。
然而,为了达到更佳的效果,界限侦测模块对角度的判断也可以是定量的,即界限侦测模块能够判断自移动园艺机器人和界限的确切角度,监测确定在撞线时自移动园艺机器人的中轴线和界限的夹角值,并朝减小锐角夹角的方向转动,并根据具体的夹角选择转向角度,达到优化转向角的目的,优化转向角可以指减小转向角度,也可以指保证弹出角度在一定范围内,也可以指优化路径,增大覆盖率或者减小折返次数。在本自移动园艺机器人上,其实现方式如下所述:自移动园艺机器人100上会设有位移监测元件,用于监测自移动园艺机器人在一定时间内的行走距离,由于位移和速度是相关的量,本自移动园艺机器人100通过监测行走速度来监测自移动园艺机器人的位移,位移监测元件具体可以为监测驱动轮的转速度的转速度传感器,或者直接监测自移动园艺机器人100的速度的加速度传感器,或其他可以监测自移动园艺机器人100速度的元件。
同样如前所述,界限31可以有多种,而不局限于电流式的边界线信号或者障碍,还可以是房屋中的墙体,其他声光电边界信号等。相应的,界限3侦测模块为多种,如红外线传感器、超声波传感器等,根据界限31性质的不同会相应的不同。通常,对于实体的界限,为实现转向,自移动园艺机器人不能撞到界限,因此预定转向的地点和实际界限的距离会较长,传感器为遥感式,以保证转向时都不会撞到界限31。而对于信号式的界限31,预定转向的距离会较短,在很接近或者已经撞到边界了才转向,由于惯性,转向的真实轨迹可能会和界限是相交的。当然,根据具体情况,信号式的界限31的转向判断点也可以设置的和实体界限一样,保持一段距离,从而使转向时自移动园艺机器人100与界限31不相交,即转向时自移动园艺机器人100界限的距离大于等于零。
如前所述,判断自移动园艺机器人100与界限31之间的距离和角度的方式可以有多种,不限于本具体实施例所描述的方式。例如,还可以采用类似于车辆导航的GPS导航系统,在控制模块30的存储器中内置工作区域的地图和界限位置与方向,自移动园艺机器人中设GPS导航模块,则可以根据地图信息和GPS信息判断出自移动园艺机器人100撞向界限时的角度和距离,然后使用前述的转向方式转向。又如,采用图像采集技术,在自移动园艺机器人上安装摄像头,通过对环境的图像识别来判断撞线方向和距离也是可行的。在本发明中,更加重要的是判断方向后的转向策略和转向后的方向。
具体的,在另一实施例中,所述路径规划单元70可预设另一种转向逻辑,也即所述预设路径模式包括另一种预设的转向逻辑,如图11所示,在本实施例中,所述工作区域3由界限限定,所述壳体10具有纵向的中轴线133,所述路径规划单元70包括用于侦测自移动园艺机器人100和界限31之间的位置关系的界限侦测模块,所述控制模块30与移动模块20和界限侦测模块电性连接,在预设路径模式下,所述自移动园艺机器人100在驶向界限31并到达预设的位置关系后转向以驶离界限31,所述控制模块30根据界限侦测模块发送的代表自移动园艺机器人100和界限31之间的角度关系的信号,令移动模块20执行转向,转向原则为,在预设位置关系时,所述界限31被与所述中轴线的交点311分为两个侧边,所述中轴线与所述两个侧边中的一个侧边之间的夹角为钝角O’,所述控制模块30控制自移动园艺机器人100朝向所述钝角O’转向。本实施例与上一实施例的转向逻辑的区别在于,上一实施例是通过:控制 模块控制,使得转向完成时自移动园艺机器人100的中轴线133始终与界限31的一侧边成锐角或直角,该界限31的另一侧边在转向开始时与自移动园艺机器人100的中轴线133成锐角或直角。而本实施例是通过:通过控制模块控制,在预设位置关系时,所述界限被与所述中轴线的交点311分为两个侧边,所述中轴线与所述两个侧边中的一个侧边之间的夹角为钝角O’,所述控制模块30控制自移动园艺机器人100朝向所述钝角O’转向。
具体的,在另一实施例中,所述路径规划单元70包括存储有预设路径的路径存储单元,在预设路径模式下,所述控制模块30控制所述自移动园艺机器人100按照所述预设路径移动并投放所述微量缓释养料。具体的,如图12所示,所述预设路径为预设的规则路径。所述控制模块30控制所述自移动园艺机器人100按照预设的规则路径移动并投放所述微量缓释养料,避免随机路径下重复在同一位置投放,而局部区域却没有投放,有效增强投放的均匀性,而且缩短了工作区域内单次投放所需要的时间。
在一优选实施例中,自移动园艺机器人100还包括定位模块73。定位模块73用于确定自移动园艺机器人100所处位置信息。控制模块30根据定位模块73确定的位置信息,控制自移动园艺机器人100按照预设的规则路径移动并投放微量缓释养料。定位模块73可协助自移动园艺机器人100实现导航、路径规划等多种功能。在一实施例中,定位模块73为GPS定位装置,通过接收卫星信号实现定位功能。在一实施例中,定位模块73为DGPS定位装置,通过接收卫星信号、与基站配合,实现差分精准定位。在一实施例中,定位模块73为里程计和罗盘组合装置,通过计算行走距离以及确定移动方向,实现定位功能。在一实施例中,定位模块73为GPS定位装置和惯导装置组合,通过惯导装置与GPS定位装置的配合使用,实现精准定位。在一实施例中,定位模块73为图像导航装置,通过摄取图像信息和存储的图像信息进行比对,实现定位功能。
在一具体实施例中,所述自移动园艺机器人100为自动割草机,其工作模式包括割草模式和投放模式,在所述割草模式下,所述控制模块30控制所述自移动园艺机器人100移动和割草,在所述投放模式下,所述控制模块30控制所述自移动园艺机器人100移动和投放所述微量缓释养料。
具体的,所述自移动园艺机器人100包括用于获取所述工作模式的相关信息的信息获取模块,所述控制模块30根据所述信息获取模块获取的信息控 制所述自移动园艺机器人100的工作模式。所述相关信息包括时间安排表,所述控制模块30根据所述时间安排表控制所述自移动园艺机器人100的工作模式,例如,时间安排表设定某段时间给工作区域投放微量缓释养料,而另一段时间对工作区域进行割草,根据时间安排表对自移动园艺机器人100的割草和投放的工作做合理的安排。
在一优选实施例中,信息获取模块包括用于远程通信的通信模块,具体的,可为无线通信模块。控制模块30通过无线通信模块向外部发送数据或者接收外部的数据和指令。无线通信模块的具体装置类型,可以为wifi装置、蓝牙装置、蜂窝移动通信装置、zigbee、sub-1G等各类无线通信装置。自移动园艺机器人100通过无线通信模块获取相关信息,控制模块根据无线通信模块获取的信息控制自移动园艺机器人100的工作模式。
在另一优选实施例中,信息获取模块包括用预设所述相关信息的信息预设模块。自移动园艺机器人100通过信息预设模块预设相关信息,控制模块根据信息预设模块预设的相关信息控制自移动园艺机器人100的工作模式。
本发明不局限于所举的具体实施例结构,基于本发明构思的结构均属于本发明保护范围。

Claims (22)

  1. 一种自移动园艺机器人,所述自移动园艺机器人在限定的工作区域内移动并工作,包括:
    壳体;
    移动模块,带动所述自移动园艺机器人移动;
    工作模块,执行相应工作;
    动力模块,驱动所述移动模块和所述工作模块;
    能量模块,向自移动园艺机器人提供能量;
    控制模块,控制自移动园艺机器人自动移动和执行工作;其特征在于:
    所述自移动园艺机器人还包括用于存储微量缓释养料的物料腔及投放微量缓释养料的投放窗口,所述自移动园艺机器人通过所述投放窗口将所述微量缓释养料投放于所述工作区域内。
  2. 如权利要求1所述的自移动园艺机器人,其特征在于:所述微量缓释养料能够溶于水中形成液态的微量营养液,所述投放窗口包括浇灌窗口,所述自移动园艺机器人通过所述浇灌窗口将所述微量营养液浇灌于所述工作区域。
  3. 如权利要求2所述的自移动园艺机器人,其特征在于:所述浇灌窗口包括用于呈放射状喷洒微量营养液的喷头,所述微量营养液通过所述喷头呈放射状的喷出以执行浇灌微量营养液的工作。
  4. 如权利要求3所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人还包括用于安装所述喷头的横向延展件,所述横向延展件在横向上的投影超出于所述自移动园艺机器人的横向投影。
  5. 如权利要求4所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人的喷洒宽度宽于自移动园艺机器人的宽度的两倍。
  6. 如权利要求4所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人包括至少两个所述喷头,所述至少两个喷头横向间隔设置于所述横向延展件上。
  7. 如权利要求2所述的自移动园艺机器人,其特征在于:所述浇灌窗口包括滴灌口,所述微量营养液可通过滴灌口滴灌以执行浇灌微量营养液的工作。
  8. 如权利要求2所述的自移动园艺机器人,其特征在于:所述微量营养液存储于所述物料腔内。
  9. 如权利要求2所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人还包括独立于所述物料腔的水箱,所述物料腔内的微量缓释养料可溶于所述水箱内的水中形成微量营养液,所述微量营养液存储于所述水箱内。
  10. 如权利要求2所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人还包括用于驱动所述微量营养液从所述浇灌窗口流出的动力供应装置,所述动力供应装置由所述动力模块驱动。
  11. 如权利要求10所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人为自动割草机,所述工作模块包括切割组件,所述动力模块包括驱动所述切割组件的切割马达,所述动力供应装置由所述切割马达驱动。
  12. 如权利要求10所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人为自动割草机,所述移动模块包括轮组,所述动力模块包括驱动所述轮组的轮组驱动马达,所述动力供应装置由所述轮组驱动马达驱动。
  13. 如权利要求1所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人还包括预设有预设路径模式的路径规划单元,所述控制模块根据所述预设路径模式控制所述自移动园艺机器人以预设路径模式移动并投放所述微量缓释养料。
  14. 如权利要求13所述的自移动园艺机器人,其特征在于:所述工作区域由界限限定,所述壳体具有纵向的中轴线,所述路径规划单元包括用于侦测自移动园艺机器人和界限之间的位置关系的界限侦测模块,所述控制模块与移动模块和界限侦测模块电性连接,在预设路径模式下,所述自移动园艺机器人在驶向界限并到达预设的位置关系后转向以驶离界限,在预设的位置关系时所述界限被与所述中轴线的交点分为两个侧边,所述控制模块根据界限侦测模块发送的代表自移动园艺机器人和界限之间的角度关系的信号,令移动模块执行转向,使得转向完成时自移动园艺机器人的中轴线始终与界限的一侧边成锐角或直角,该界限的另一侧边在转向开始时与自移动园艺机器人的中轴线成锐角或直角。
  15. 如权利要求14所述的自移动园艺机器人,其特征在于:所述移动模块带动所述自移动园艺机器人向减小所述中轴线和所述界限所成的锐角夹角或 直角夹角的方向转动。
  16. 如权利要求13所述的自移动园艺机器人,其特征在于:所述移动模块包括两个主动轮及驱动所述主动轮的驱动马达,所述工作区域由界限限定,所述壳体具有纵向的中轴线,所述路径规划单元包括至少两个用于侦测所述自移动园艺机器人和所述界限之间的位置关系的界限侦测模块,其中所述至少两个界限侦测模块被分别设置于所述中轴线的左右两侧,所述控制模块与移动模块和界限侦测模块电性连接,当所述界限侦测模块中至少一个位于所述界限之外时,所述控制模块接收所述界限侦测模块发送的信号;当所述控制模块接收到所述信号时,所述自移动园艺机器人转向以驶离所述界限;在转向过程中,两个所述驱动马达驱动所述主动轮以不同的速度或者不同的方向旋转;所述控制模块根据发送所述信号的所述界限侦测模块确定所述转向角度,当所述中轴线与所述界限之间形成一个钝角时,所述自移动园艺机器人朝向所述钝角转向。
  17. 如权利要求13所述的自移动园艺机器人,其特征在于:所述路径规划单元包括存储有预设路径的路径存储单元,在预设路径模式下,所述控制模块控制所述自移动园艺机器人按照所述预设路径移动并投放所述微量缓释养料。
  18. 如权利要求1所述的自移动园艺机器人,其特征在于:所述微量缓释养料为一种颗粒肥料。
  19. 如权利要求1所述的自移动园艺机器人,其特征在于:所述投放窗口包括撒布开口,所述工作模块包括自动开关,所述自动开关用于打开或关闭所述撒布开口,所述控制模块控制所述自动开关打开所述撒布开口,以执行撒布微量缓释养料的工作。
  20. 如权利要求1所述的自移动园艺机器人,其特征在于:所述自移动园艺机器人为自动割草机,其工作模式包括割草模式和投放模式,在所述割草模式下,所述控制模块控制所述自移动园艺机器人移动和割草,在所述投放模式下,所述控制模块控制所述自移动园艺机器人移动和投放所述微量缓释养料。
  21. 如权利要求20所述的自移动园艺机器人,其特征在于:所述自移动园艺 机器人包括用于获取所述工作模式的相关信息的信息获取模块,所述控制模块根据所述信息获取模块获取的信息控制所述自移动园艺机器人的工作模式。
  22. 如权利要求21所述的自移动园艺机器人,其特征在于:所述相关信息包括时间安排表,所述控制模块根据所述时间安排表控制所述自移动园艺机器人的工作模式。
PCT/CN2019/077487 2018-03-09 2019-03-08 自移动园艺机器人 WO2019170142A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980004554.XA CN111246725B (zh) 2018-03-09 2019-03-08 自移动园艺机器人
DE212019000211.0U DE212019000211U1 (de) 2018-03-09 2019-03-08 Selbstfahrender Gartenroboter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810194995 2018-03-09
CN201810194995.8 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019170142A1 true WO2019170142A1 (zh) 2019-09-12

Family

ID=67845883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077487 WO2019170142A1 (zh) 2018-03-09 2019-03-08 自移动园艺机器人

Country Status (3)

Country Link
CN (1) CN111246725B (zh)
DE (1) DE212019000211U1 (zh)
WO (1) WO2019170142A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492938A (zh) * 2020-11-27 2021-03-16 四川省农业机械研究设计院 一种自走式侧位施肥机及其工作方法
CN117268401A (zh) * 2023-11-16 2023-12-22 广东碧然美景观艺术有限公司 一种动态围栏的园艺路径生成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243871A (zh) * 2018-03-09 2019-09-17 苏州宝时得电动工具有限公司 植被识别系统、方法和割草机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060016375A1 (en) * 2004-07-26 2006-01-26 Jack Fry Method and equipment for interseeding an area of ground to convert the existing vegetation or to improve the quality of the existing vegetation
CN102768535A (zh) * 2011-04-28 2012-11-07 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN203675606U (zh) * 2014-01-26 2014-07-02 北京农业信息技术研究中心 一种无人驾驶果园施肥机器人
CN205124832U (zh) * 2015-11-24 2016-04-06 天津农学院 智能除草机器人
CN205922015U (zh) * 2016-06-30 2017-02-08 常州市风雷精密机械有限公司 兼具施肥杀菌的喷水机器人
WO2018014838A1 (zh) * 2016-07-19 2018-01-25 苏州宝时得电动工具有限公司 自移动园艺机器人及其系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483881A (zh) * 2012-01-20 2017-03-08 苏州宝时得电动工具有限公司 自动工作设备
CN105660039A (zh) * 2014-11-19 2016-06-15 苏州宝时得电动工具有限公司 智能割草机系统及智能割草机
CN106304942A (zh) * 2015-06-16 2017-01-11 哈尔滨宏万智科技开发有限公司 一种太阳能洒水除草多用车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060016375A1 (en) * 2004-07-26 2006-01-26 Jack Fry Method and equipment for interseeding an area of ground to convert the existing vegetation or to improve the quality of the existing vegetation
CN102768535A (zh) * 2011-04-28 2012-11-07 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN203675606U (zh) * 2014-01-26 2014-07-02 北京农业信息技术研究中心 一种无人驾驶果园施肥机器人
CN205124832U (zh) * 2015-11-24 2016-04-06 天津农学院 智能除草机器人
CN205922015U (zh) * 2016-06-30 2017-02-08 常州市风雷精密机械有限公司 兼具施肥杀菌的喷水机器人
WO2018014838A1 (zh) * 2016-07-19 2018-01-25 苏州宝时得电动工具有限公司 自移动园艺机器人及其系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492938A (zh) * 2020-11-27 2021-03-16 四川省农业机械研究设计院 一种自走式侧位施肥机及其工作方法
CN112492938B (zh) * 2020-11-27 2021-10-29 四川省农业机械研究设计院 一种自走式侧位施肥机及其工作方法
CN117268401A (zh) * 2023-11-16 2023-12-22 广东碧然美景观艺术有限公司 一种动态围栏的园艺路径生成方法
CN117268401B (zh) * 2023-11-16 2024-02-20 广东碧然美景观艺术有限公司 一种动态围栏的园艺路径生成方法

Also Published As

Publication number Publication date
DE212019000211U1 (de) 2020-10-12
CN111246725B (zh) 2023-03-10
CN111246725A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2019170142A1 (zh) 自移动园艺机器人
US8386129B2 (en) Raster-based contour swathing for guidance and variable-rate chemical application
US20170020087A1 (en) Robotic irrigation system
JP4904404B2 (ja) 農作物に物質を散布するための方法およびシステム
CN109717175B (zh) 果园智能自行走式喷雾系统及其控制方法
US20180364739A1 (en) Choreographer system for autonomous off-road vehicles
US20200356096A1 (en) Autonomous agricultural working machine and method of operation
CN105518546A (zh) 喷灌控制系统
WO2023173667A1 (zh) 一种割草机、草坪护理方法和存储介质
CN112889446A (zh) 一种农业种植水肥一体化装置
JP2016086727A (ja) 圃場管理車両
US20210360853A1 (en) Autonomous System For Automating Garden Tasks And A Method For Automating Customizable Lawn Patterns
US11896002B2 (en) Systems and methods for scheduling and coordinating applications of fertilizers, pesticides, and water in agricultural fields
CN209749570U (zh) 果园智能自行走式喷雾系统
CN107864711B (zh) 耙地方法、控制装置及耙地系统
CN217011813U (zh) 一种割草机
US20220382291A1 (en) Route Generation Method, Route Generation Device, and Route Generation Program
WO2023276341A1 (ja) 農業機械の制御システムおよび農業管理システム
CN110402788A (zh) 一种无人机林木精准浇水施肥洒药装置及技术
US20220378034A1 (en) Automatic Traveling Method, Automatic Traveling System, and Automatic Traveling Program
US11882799B2 (en) System and method for coordinating movement of agricultural machines and irrigation systems
WO2023234254A1 (ja) 資材供給システムおよび資材供給方法
CN213210799U (zh) 一种用于金槐种植的撒药设备
JP2022183963A (ja) 散布作業方法、散布作業システム、及び散布作業プログラム
JP2023026853A (ja) 農業用資材補給方法、農業用資材補給システム、及び農業用資材補給プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763182

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19763182

Country of ref document: EP

Kind code of ref document: A1