WO2019169897A1 - 应用电化学压缩机的空调的氢气泄漏检测方法及装置 - Google Patents

应用电化学压缩机的空调的氢气泄漏检测方法及装置 Download PDF

Info

Publication number
WO2019169897A1
WO2019169897A1 PCT/CN2018/116191 CN2018116191W WO2019169897A1 WO 2019169897 A1 WO2019169897 A1 WO 2019169897A1 CN 2018116191 W CN2018116191 W CN 2018116191W WO 2019169897 A1 WO2019169897 A1 WO 2019169897A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
air
outlet
heat exchange
Prior art date
Application number
PCT/CN2018/116191
Other languages
English (en)
French (fr)
Inventor
张龙
朱百发
王若峰
乔光宝
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019169897A1 publication Critical patent/WO2019169897A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a hydrogen leak detecting method and device for an air conditioner using an electrochemical compressor.
  • electrochemical compressor technology has begun to be gradually applied to the field of air conditioning technology.
  • the principle of electrochemical compressor is to operate by pumping protons through an ion exchange membrane located between two gas diffusion electrodes. These protons will drive non-
  • the fluorine refrigerant passes through the ion exchange membrane; after the refrigerant reaches the other side of the membrane, it is released at a high pressure and enters the refrigeration cycle system.
  • hydrogen is mostly used as the refrigerant, and the metal hydride is filled into the heat exchanger.
  • the metal hydride has the characteristics of hydrogen absorption and exothermic heat release and hydrogen absorption, thereby hydrogenating the metal.
  • the air flowing through the object is heated or cooled during hydrogen absorption or hydrogen release.
  • the electrochemical compressor is the core component of the electrochemical air conditioning system, if the hydrogen leaks and the long-term hydrogen deficiency operation will cause irreversible damage to it, and the hydrogen itself is a colorless and odorless gas, it is not easy to be perceived by the user. However, there are flammable and explosive safety hazards. Therefore, based on the safety considerations of users, it is indispensable to detect whether hydrogen leaks and timely avoid risks.
  • the invention provides a hydrogen leak detection method and device for an air conditioner using an electrochemical compressor, aiming at solving the problem of hydrogen leak detection of an air conditioner using an electrochemical compressor.
  • a hydrogen leak detecting method for an air conditioner using an electrochemical compressor comprising:
  • the detecting method further includes:
  • the temperature deviation value is determined according to the preset relationship, and the relationship is used to represent the correspondence between the working parameter and the temperature deviation value.
  • obtaining the first inlet air temperature and the first outlet air temperature of the air conditioner include:
  • the detecting method further includes: pushing the fault alarm information to the user.
  • obtaining the first inlet air temperature and the first outlet air temperature of the air conditioner comprising: acquiring an inlet air temperature and an outlet air temperature of the indoor heat exchange side of the air conditioner;
  • Detection methods also include:
  • a fault side in which a hydrogen leak exists in the indoor heat exchange side and the outdoor heat exchange side is determined according to the first temperature difference value and the second temperature difference between the second inlet air temperature and the second outlet air temperature.
  • a hydrogen leak detecting device for an air conditioner using an electrochemical compressor, the detecting device comprising:
  • a first acquiring unit configured to acquire a first intake air temperature and a first air outlet temperature of the air conditioner
  • a determining unit configured to determine whether the first temperature difference between the first inlet air temperature and the first outlet temperature is less than a preset temperature deviation value
  • the response unit is configured to determine that the air conditioner has a hydrogen leak fault in response to the determination result that the first temperature difference is less than the preset temperature deviation value.
  • the detecting device further includes:
  • a second obtaining unit configured to acquire an operating parameter of the electrochemical compressor
  • the first determining unit is configured to determine the temperature deviation value according to a preset association relationship, where the association relationship is used to represent a correspondence between the working parameter and the temperature deviation value.
  • the first acquiring unit is specifically configured to:
  • the detecting device further includes an alarm unit, configured to push the fault alarm information to the user after the response unit determines that the air conditioner has a hydrogen leak fault.
  • the first acquiring unit is specifically configured to acquire an inlet air temperature and an air outlet temperature of the indoor heat exchange side of the air conditioner;
  • the detection device includes:
  • a third obtaining unit configured to acquire a second inlet air temperature and a second outlet temperature of the outdoor heat exchange side of the air conditioner
  • a second determining unit configured to determine, according to the first temperature difference, and the second temperature difference between the second inlet air temperature and the second outlet temperature, a fault side in which hydrogen leakage exists in the indoor heat exchange side and the outdoor heat exchange side .
  • the hydrogen leak detection method provided by the invention can judge whether the hydrogen leaks according to the degree of temperature difference between the air inlet and outlet of the air conditioner, the detection is accurate, the real-time performance is strong, and the influence of the system self-running adjustment is small, and the detection and early warning of the air-conditioning hydrogen leak can be It is very helpful to improve the performance and life of the air conditioning system.
  • FIG. 1 is a schematic structural view of an air conditioner to which an electrochemical compressor of the present invention is applied, according to an exemplary embodiment
  • FIG. 2 is a schematic flow chart 1 of a hydrogen leak detecting method of the present invention, according to an exemplary embodiment
  • FIG. 3 is a schematic flow chart 2 of a hydrogen leak detecting method of the present invention according to an exemplary embodiment
  • FIG. 4 is a schematic flow chart 3 of a hydrogen leak detecting method of the present invention according to an exemplary embodiment
  • FIG. 5 is a structural block diagram 1 of a hydrogen leak detecting apparatus of the present invention, according to an exemplary embodiment
  • FIG. 6 is a structural block diagram 2 of a hydrogen leak detecting apparatus of the present invention, according to an exemplary embodiment.
  • relational terms such as first and second are used merely to distinguish one entity or operation from another entity or operation, and do not require or imply any actual relationship between the entities or operations or order.
  • the terms “comprises” or “comprising” or “comprising” or any other variations are intended to encompass a non-exclusive inclusion, such that a process, method, or device that includes a plurality of elements includes not only those elements but also other items not specifically listed. Elements, or elements that are inherent to such a process, method, or device. An element that is defined by the phrase “comprising a " does not exclude the presence of additional equivalent elements in the process, method, or device that comprises the element.
  • FIG. 1 is a schematic structural view of an air conditioner to which an electrochemical compressor of the present invention is applied, according to an exemplary embodiment.
  • the air conditioner includes an electrochemical compressor 1, a first heat exchange portion, a second heat exchange portion, and a rotating disk 2, and the first heat exchange portion, the second heat exchange portion, and the electrochemical compressor 1 are disposed at a rotation.
  • the first heat exchange portion includes a first metal hydride heat exchanger 3
  • the second heat exchange portion includes a second metal hydride heat exchanger 4, the first metal hydride exchange
  • the heat exchanger 3 is connected to the first electrode of the electrochemical compressor 1
  • the second metal hydride is connected to the second electrode of the electrochemical compressor 1.
  • the two metal hydride heat exchangers are respectively connected to the electrochemical compressor 1 via a hydrogen conduit, and the necessary electronic control devices are placed in position on the rotating disk 2.
  • the first heat exchange portion and the second heat exchange portion can be selectively exchanged with the indoor environment.
  • the first heat exchange portion further includes a first air inlet 5, a first air outlet 6 and a first fan 7, and the second heat exchange portion further includes a second air inlet 8, a second air outlet 9, and a second fan 10, first
  • the metal hydride heat exchanger 3 is disposed between the first air inlet 5 and the first fan 7, and the second metal hydride heat exchanger 4 is disposed between the second air inlet 8 and the second fan 10; the first fan 7
  • the air outlet is connected to the first air outlet 6, and the air outlet of the second fan 10 is in communication with the second air outlet 9.
  • the first heat exchange portion when the first heat exchange portion is on the indoor heat exchange side, the first air inlet 5 and the first air outlet 6 are in communication with the indoor environment, so that under the driving action of the first fan 7, the indoor environment and the first metal
  • the hydride heat exchanger 3 constitutes a circulating flow path of indoor air; at this time, the second heat exchange portion is on the outdoor heat exchange side, and the second air inlet 8 and the second air outlet 9 are connected to the outdoor environment, so that Under the driving action of the second fan 10, a circulation flow path of the outdoor air is formed between the outdoor environment and the second metal hydride heat exchange 4. vice versa.
  • the electrochemical compressor 1, the first heat exchange portion and the second heat exchange portion are all disposed in the same casing 15, and the casing 15 is provided with an indoor air inlet 11 communicating with the indoor environment and The indoor air outlet 12 and the outdoor air inlet 13 and the outdoor air outlet 14 are connected to the outdoor environment. Therefore, when the first heat exchange portion is on the indoor heat exchange side, the first air inlet 5 and the indoor air inlet 11 are connected to each other.
  • the first air outlet 6 is connected to the indoor air outlet 12; at this time, the second heat exchange portion is on the outdoor heat exchange side, the second air inlet port 8 is connected to the outdoor air inlet port 13, and the second air outlet port 9 is connected to the outdoor air outlet port. 14 corresponds to communication.
  • the hydrogen leak detecting method of the present invention can be applied to the safety control aspect of the air conditioner shown in Fig. 1 described above.
  • FIG. 2 is a flow chart 1 of a hydrogen leak detecting method of the present invention, according to an exemplary embodiment.
  • the present invention provides a hydrogen leak detection method for an air conditioner using an electrochemical compressor.
  • the control flow of the detection method mainly includes:
  • a temperature sensor is respectively disposed on the indoor air inlet and the indoor air outlet of the casing, wherein the temperature sensor disposed in the indoor air inlet can be used to detect the real-time temperature of the indoor air flowing into the air conditioner, in step S201. That is, the real-time temperature of the indoor air flowing into the air conditioner is taken as the first intake air temperature;
  • the temperature sensor disposed in the indoor air inlet can be used to detect the real-time temperature of the indoor air flowing out of the air conditioner, and the real-time temperature of the indoor air flowing out of the air conditioner is used as the first air outlet temperature in step S201;
  • the specific location of the temperature sensor is not limited to the indoor air inlet and the indoor air outlet of the casing disclosed in the above embodiments; in other embodiments, the temperature sensor may also be disposed in the first heat exchange portion. a first air inlet and a first air outlet, and a second air inlet and a second air outlet of the second heat exchange portion; thus, when the temperature data of the indoor heat exchange side is required as the calculation parameter of step S201, firstly, it may be determined One of the first heat exchange portion and the second heat exchange portion currently on the indoor heat exchange side, and then acquired by the temperature sensor at the air inlet and the air outlet of the heat exchange portion on the indoor heat exchange side Temperature data.
  • the air conditioner performs step S201, when it is first determined that the second heat exchange portion is currently on the indoor heat exchange side, the real-time temperature detected by the temperature sensor disposed at the second air inlet can be acquired as the first intake air.
  • the temperature, and the real-time temperature detected by the temperature sensor disposed at the second air outlet is obtained as the first air outlet temperature.
  • the air conditioner prestores one or more temperature deviation values, and the temperature deviation value can be used to characterize the heat exchange amount of the air flowing through the current operating state of the air conditioner.
  • the heat exchange amount can be directly The flow rate of hydrogen in the hydrogen flow path formed by the metal hydride and the electrochemical compressor.
  • the temperature deviation value of the normal operation of the air conditioner ie, the hydrogen is not leaked
  • the actual heat exchange amount of the metal hydride heat exchanger is required. It is lower than the normal heat exchange amount in the state where hydrogen is not leaked.
  • the air conditioner by comparing the first temperature difference between the first inlet air temperature and the first outlet temperature with the magnitude of the preset temperature deviation value, it can be determined whether the air conditioner has a hydrogen leak failure. Specifically, if the first temperature difference is less than the preset temperature deviation value, it indicates that the actual heat exchange amount of the metal hydride heat exchanger is lower than the normal heat exchange amount of the hydrogen non-leakage state, and the air conditioner may be further determined to have hydrogen gas.
  • the air conditioner There is generally no hydrogen leak failure, so the air conditioner maintains its current operating state.
  • step S202 when the determination result that the first temperature difference is less than the preset temperature deviation value is obtained in step S202, it can be determined that the heat exchange amount of the air conditioner to the indoor air does not reach the normal heat exchange amount, and thus can be determined. There is a hydrogen leak in the air conditioner.
  • the hydrogen leak detection method provided by the invention can judge whether the hydrogen leaks according to the degree of temperature difference between the air inlet and outlet of the air conditioner, the detection is accurate, the real-time performance is strong, and the air conditioning system applied to the air conditioner system does not need to be subjected to a large structural change, and is adjusted by the system itself.
  • the impact is small, and the detection and early warning of air conditioning hydrogen leakage can greatly improve the performance and life of the air conditioning system.
  • the air conditioner can be realized by adjusting the working parameters of the electrochemical compressor.
  • the working parameters due to the change of the working parameters, even if there is no hydrogen leak failure, the temperature difference between the inlet and outlet winds will occur. Changes, such as when the operating voltage of the electrochemical compressor is increased, the temperature difference between the inlet and outlet is significantly increased. Therefore, in order to avoid the problem of fault misjudgment caused by the adjustment of the operating parameters of the electrochemical compressor; in an optional embodiment, the detecting method further comprises:
  • the temperature deviation value is determined, and the correlation relationship is used to represent the correspondence between the working parameter and the temperature deviation value.
  • the above working parameters include an operating voltage, a current, and the like of the electrochemical compressor.
  • the temperature deviation value when the electrochemical compressor is operated under different operating parameters and the hydrogen is not leaked can be tested by multiple tests.
  • the present invention can perform each temperature deviation value with the current operating parameters. Binding, the two constitute a one-to-one correspondence, such as A working voltage corresponding to temperature deviation value t1, B working voltage corresponding to temperature deviation value t2, and so on. Store it in an air conditioner. Thus, before performing the above step S202, the current corresponding temperature deviation value can be further confirmed by acquiring the operating parameters of the electrochemical compressor.
  • the temperature deviation value may also include operating parameters such as the rotational speed of the fan on different heat exchange sides. Therefore, in order to ensure the accuracy of the control, other temperature deviation values of the air conditioner may also be affected.
  • the operational parameters are introduced into the above embodiments, and the present invention is not limited thereto.
  • FIG. 3 is a second schematic diagram of a flow of a hydrogen leak detection method of the present invention, according to an exemplary embodiment.
  • the main processes of the detection method include:
  • S301 taking 30s as a sampling interval, acquiring a plurality of inlet air temperatures and a plurality of air outlet temperatures detected by sampling within 5 minutes;
  • the detection processes of the inlet air temperature and the outlet air temperature are simultaneously performed, that is, the detection and sampling are performed within the same 5 min;
  • the plurality of inlet air temperatures are detected by the same temperature sensor
  • the plurality of outlet temperatures are detected by the same temperature sensor
  • step S305 it is determined that ⁇ T1 is less than ⁇ Tp, if yes, step S306 is performed, and if not, step S307 is performed;
  • ⁇ Tp is a preset temperature deviation value
  • the calculation process of the first inlet air temperature and the second inlet air temperature is a mean value of a plurality of detection values of a set duration (5 min), so that the temperature of the inlet and outlet air can be avoided.
  • the problem of misjudgment caused by transient abnormal changes improves the accuracy of the detection and judgment process and reduces the interference effect of the error.
  • the detecting method further comprises: pushing the fault alarm information to the user.
  • the preset alarm information may be displayed by a display component such as a display screen of the air conditioner itself; or the air conditioner transmits relevant alarm information to a mobile terminal such as a mobile phone bound to the air conditioner through a local network or the like. Therefore, the user can be reminded in time to pay attention to the safety of the air conditioner, and it is recommended to contact the maintenance personnel of the air conditioner manufacturer for on-site maintenance and other services.
  • the first intake air temperature of the air conditioner is obtained as the intake air temperature of the indoor heat exchange side of the air conditioner, and the first air outlet temperature is the outlet air temperature of the indoor heat exchange side of the air conditioner; in another embodiment
  • the air conditioner can also determine whether there is a hydrogen leakage fault according to the temperature difference between the air outlet temperature and the inlet air temperature on the outdoor heat exchange side.
  • FIG. 4 is a third schematic diagram of a flow of a hydrogen leak detection method of the present invention, according to an exemplary embodiment.
  • the present invention also provides a hydrogen leak detection method, which can determine the fault side where hydrogen gas leaks by comparing the temperature difference between the indoor heat exchange side and the outdoor heat exchange side, and the specific process thereof. as follows;
  • the outdoor side is the fault side of the hydrogen leak
  • the indoor side is the fault side of the hydrogen leak.
  • the actual amount of hydrogen transport is smaller than the non-fault side, and therefore, the actual heat exchange amount on the fault side is also smaller than the non-fault side due to the reduction in the amount of hydrogen transported.
  • the overall hydrogen storage amount in the air conditioner is reduced accordingly. Therefore, after the hydrogen leak fault is determined in the flow shown in FIG. 2, the execution shown in FIG. 4 is further performed. In the process step, since there is still a hydrogen leak failure on the fault side, the temperature difference on the fault side is smaller than the temperature difference on the non-fault side on the premise that the overall hydrogen storage amount is reduced.
  • FIG. 5 is a block diagram showing the structure of a hydrogen leak detecting apparatus of the present invention, according to an exemplary embodiment.
  • the present invention also provides a hydrogen leak detecting device for an air conditioner using an electrochemical compressor, and the detecting device 500 includes:
  • a first obtaining unit 510 configured to acquire a first intake air temperature and a first air outlet temperature of the air conditioner
  • the determining unit 520 is configured to determine whether the first temperature difference between the first inlet air temperature and the first outlet temperature is less than a preset temperature deviation value
  • the response unit 530 is configured to determine that the air conditioner has a hydrogen leak fault in response to the determination result that the first temperature difference is less than the preset temperature deviation value.
  • the hydrogen leak detection fault provided by the invention can judge whether the hydrogen leaks according to the degree of temperature difference of the air inlet and outlet air, the detection is accurate, the real-time performance is strong, and the influence of the system self-running adjustment is small, and the detection and early warning of the air-conditioning hydrogen leak can be It is very helpful to improve the performance and life of the air conditioning system.
  • FIG. 6 is a structural block diagram 2 of a hydrogen leak detecting apparatus of the present invention, according to an exemplary embodiment.
  • the present invention also provides a hydrogen leak detecting device for an air conditioner using an electrochemical compressor.
  • the detecting device 600 includes a first acquiring unit 620, a determining unit 620, and a response unit 630.
  • the first obtaining unit 610 is configured to acquire a first intake air temperature and a first air outlet temperature of the air conditioner
  • the determining unit 620 is configured to determine whether the first temperature difference between the first inlet air temperature and the first outlet temperature is less than a preset temperature deviation value
  • the response unit 630 is configured to determine that the air conditioner has a hydrogen leak fault in response to the determination result that the first temperature difference is less than the preset temperature deviation value.
  • the detecting device further includes:
  • a second obtaining unit configured to acquire an operating parameter of the electrochemical compressor
  • the first determining unit is configured to determine the temperature deviation value according to a preset association relationship, where the association relationship is used to represent a correspondence between the working parameter and the temperature deviation value.
  • the first obtaining unit 610 is specifically configured to:
  • the detecting device 600 further includes an alarm unit 640 for pushing the fault alarm information to the user after the response unit 630 determines that the air conditioner has a hydrogen leak fault.
  • the first obtaining unit 610 is specifically configured to acquire an intake air temperature and an air outlet temperature of the indoor heat exchange side of the air conditioner;
  • the detecting device 600 includes:
  • a third obtaining unit 650 configured to acquire a second inlet air temperature and a second outlet temperature of the outdoor heat exchange side of the air conditioner
  • a second determining unit 660 configured to determine, according to the first temperature difference value, and the second temperature difference between the second inlet air temperature and the second outlet air temperature, a fault of hydrogen leakage in the indoor heat exchange side and the outdoor heat exchange side side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了应用电化学压缩机的空调的氢气泄漏检测方法及装置,属于空调技术领域。检测方法包括:获取空调的第一进风温度和第一出风温度;判断第一进风温度和第一出风温度的第一温度差值是否小于预设的温度偏差值;响应于第一温度差值小于预设的温度偏差值的判断结果,确定空调存在氢气泄漏故障。本发明提供的氢气泄漏检测方法可以根据空调进出风的温差变化程度判断氢气是否泄露,检测准确,实时性较强,受系统自身运行调整的影响较小,通过对空调氢气泄漏的检测预警,可以对提高该空调系统的性能和寿命有很大帮助。

Description

应用电化学压缩机的空调的氢气泄漏检测方法及装置
本申请基于申请号为201810191798.0、申请日为2018.03.08的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,特别是涉及应用电化学压缩机的空调的氢气泄漏检测方法及装置。
背景技术
目前,电化学压缩机技术已经开始逐步应用于空调技术领域,电化学压缩机的原理是:通过用泵使质子穿过位于两个气体扩散电极中间的离子交换膜来运转,这些质子会带动非氟制冷剂穿过离子交换膜;在制冷剂到达膜的另一侧后,会以高压释放,进入制冷循环系统中。采用电化学压缩机的空调结构中,多是以氢气作为制冷介质,并将金属氢化物填充至换热器中,金属氢化物具有吸氢放热及放氢吸热的特性,从而在金属氢化物的吸氢或放氢过程中对流经的空气进行升温或降温。
由于电化学压缩机是电化学空调系统中的核心部件,若是氢气泄露、长期缺氢运行会对其造成不可逆转的损坏;并且,氢气本身是一种无色无味的气体,不易被用户察觉,但是存在易燃、易爆的安全隐患,因此基于对用户的安全考虑,检测氢气是否泄漏,及时规避风险是必不可少的。
发明内容
本发明提供了应用电化学压缩机的空调的氢气泄漏检测方法及装置,旨在解决应用电化学压缩机的空调的氢气泄漏检测的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明的第一个方面,提供了应用电化学压缩机的空调的氢气泄漏检测方 法,检测方法包括:
获取空调的第一进风温度和第一出风温度;
判断第一进风温度和第一出风温度的第一温度差值是否小于预设的温度偏差值;
响应于第一温度差值小于预设的温度偏差值的判断结果,确定空调存在氢气泄漏故障。
在一种可选的实施方式中,检测方法还包括:
获取电化学压缩机的工作参数;
根据预设的关联关系,确定温度偏差值,关联关系用于表征工作参数与温度偏差值的对应关系。
在一种可选的实施方式中,获取空调的第一进风温度和第一出风温度,包括:
获取空调的在设定时长内的进风温度的均值,并作为第一进风温度;以及
获取空调的在设定时长内的出风温度的均值,并作为第一出风温度。
在一种可选的实施方式中,确定空调存在氢气泄漏故障之后,检测方法还包括:向用户推送故障报警信息。
在一种可选的实施方式中,获取空调的第一进风温度和第一出风温度,包括:获取空调的室内换热侧的进风温度和出风温度;
检测方法还包括:
获取空调的室外换热侧的第二进风温度和第二出风温度;
根据第一温度差值,以及第二进风温度和第二出风温度的第二温度差值,确定室内换热侧和室外换热侧中存在氢气泄漏的故障侧。
根据本发明的第二个方面,还提供了应用电化学压缩机的空调的氢气泄漏检测装置,检测装置包括:
第一获取单元,用于获取空调的第一进风温度和第一出风温度;
判断单元,用于判断第一进风温度和第一出风温度的第一温度差值是否小于预设的温度偏差值;
响应单元,用于响应于第一温度差值小于预设的温度偏差值的判断结果,确定空调存在氢气泄漏故障。
在一种可选的实施方式中,检测装置还包括:
第二获取单元,用于获取所述电化学压缩机的工作参数;
第一确定单元,用于根据预设的关联关系,确定所述温度偏差值,所述关联关系 用于表征所述工作参数与所述温度偏差值的对应关系。
在一种可选的实施方式中,第一获取单元具体用于:
获取空调的在设定时长内的进风温度的均值,并作为第一进风温度;以及
获取空调的在设定时长内的出风温度的均值,并作为第一出风温度。
在一种可选的实施方式中,检测装置还包括报警单元,用于在响应单元确定空调存在氢气泄漏故障之后,向用户推送故障报警信息。
在一种可选的实施方式中,第一获取单元具体用于获取空调的室内换热侧的进风温度和出风温度;
检测装置包括:
第三获取单元,用于获取空调的室外换热侧的第二进风温度和第二出风温度;
第二确定单元,用于根据第一温度差值,以及第二进风温度和第二出风温度的第二温度差值,确定室内换热侧和室外换热侧中存在氢气泄漏的故障侧。
本发明采用上述技术方案所具有的有益效果是:
本发明提供的氢气泄漏检测方法可以根据空调进出风的温差变化程度判断氢气是否泄露,检测准确,实时性较强,受系统自身运行调整的影响较小,通过对空调氢气泄漏的检测预警,可以对提高该空调系统的性能和寿命有很大帮助。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例所示出的本发明应用电化学压缩机的空调的结构示意图;
图2是根据一示例性实施例所示出的本发明氢气泄漏检测方法的流程示意图一;
图3是根据一示例性实施例所示出的本发明氢气泄漏检测方法的流程示意图二;
图4是根据一示例性实施例所示出的本发明氢气泄漏检测方法的流程示意图三;
图5是根据一示例性实施例所示出的本发明氢气泄漏检测装置的结构框图一;
图6是根据一示例性实施例所示出的本发明氢气泄漏检测装置的结构框图二。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1是根据一示例性实施例所示出的本发明应用电化学压缩机的空调的结构示意图。
如图1所示,空调包括电化学压缩机1、第一换热部、第二换热部和转动盘2,第一换热部、第二换热部和电化学压缩机1设置在转动盘2上,并随转动盘2一同转动,第一换热部包括第一金属氢化物换热器3,第二换热部包括第二金属氢化物换热器4,第一金属氢化物换热器3连接在电化学压缩机1的第一电极,第二金属氢化物连接在电化学压缩机1的第二电极。两个金属氢化物换热器分别与电化学压缩机1通过氢气管道连接,必要的电控装置放置在转动盘2上的合适位置。
通过将第一换热部、第二换热部和电化学压缩机1设置在转动盘2上,可以使第一换热部和第二换热部可选择地处于与室内环境进行热交换的室内换热侧或者与室外环境进行热交换的室外侧,如此一来,在通过电化学压缩机1对氢气流向进行控制时,就可以根据第一换热器和第二换热器的工作状态来调整第一换热部和第二换热部 的工作位置,使得室内能够始终保持在所需的换热状态,由于仅需通过旋转转动盘2就可以快速实现第一换热部和第二换热部的位置切换,因此无需进行停机,可以保证空调的连续稳定有效运行,结构更加简单,冷量和热量损失小,工作效率和可靠性明显提高。
第一换热部还包括第一进风口5、第一出风口6和第一风机7,第二换热部还包括第二进风口8、第二出风口9和第二风机10,第一金属氢化物换热器3设置在第一进风口5和第一风机7之间,第二金属氢化物换热器4设置在第二进风口8和第二风机10之间;第一风机7的出风口与第一出风口6连通,第二风机10的出风口与第二出风口9连通。
这样,当第一换热部处于室内换热侧时,第一进风口5、第一出风口6与室内环境相连通,这样,在第一风机7的驱动作用下,室内环境与第一金属氢化物换热器3之间构成室内空气的循环流路;此时,第二换热部处于室外换热侧,第二进风口8、第二出风口9与室外环境相连通,这样,在第二风机10的驱动作用下,室外环境与第二金属氢化物换热4之间构成室外空气的循环流路。反之亦然。
在本实施例中,电化学压缩机1、第一换热部和第二换热部均是设置于同一罩壳15中,罩壳15上开设有与室内环境相连通的室内进风口11和室内出风口12,以及与室外环境相连通的室外进风口13和室外出风口14.因此,当前述的第一换热部处于室内换热侧时,第一进风口5与室内进风口11对应连通,第一出风口6与室内出风口12对应连通;此时,第二换热部处于室外换热侧,第二进风口8与室外进风口13对应连通,第二出风口9与室外出风口14对应连通。
本发明的氢气泄漏检测方法即可应用与上述图1所示出的空调的安全控制方面。
图2是根据一示例性实施例所示出的本发明氢气泄漏检测方法的流程示意图一。
如图2所示,本发明提供了一种应用电化学压缩机的空调的氢气泄漏检测方法,具体的,检测方法的控制流程主要包括:
S201、获取空调的第一进风温度和第一出风温度;
以室内换热侧为例,罩壳的室内进风口和室内出风口上分别设置有温度传感器,其中,设置于室内进风口的温度传感器可用于检测流入空调的室内空气的实时温度,步骤S201中即是将该流入空调的室内空气的实时温度作为第一进风温度;
同理,设置于室内进风口的温度传感器可用于检测流出空调的室内空气的实时温度,步骤S201中即是将该流出空调的室内空气的实时温度作为第一出风温度;
应当理解的是,温度传感器的具体设置位置并不限于上述实施例中所公开的罩壳的室内进风口和室内出风口;在其它实施例中,温度传感器也可以设置于第一换热部的第一进风口和第一出风口,以及第二换热部的第二进风口和第二出风口;这样,当需要以室内换热侧的温度数据作为步骤S201的计算参数时,首先可以确定当前处于室内换热侧的第一换热部和第二换热部的其中一个,之后,再获取该处于室内换热侧的换热部的进风口和出风口处的温度传感器所检测到的温度数据。
例如,在空调执行步骤S201时,当首先确定出当前处于室内换热侧的是第二换热部时,则可以获取设置于第二进风口的温度传感器所检测的实时温度作为第一进风温度,以及,获取设置于第二出风口的温度传感器所检测的实时温度作为第一出风温度。
S202、判断第一进风温度和第一出风温度的第一温度差值是否小于预设的温度偏差值;
在本实施例中,空调预存有一个或多个温度偏差值,温度偏差值可用于表征空调当前运行状态下对流经的空气的换热量,对于电化学压缩机而言,换热量可以直接反应氢气在金属氢化物及电化学压缩机所构成的氢气流路中的流量。在空调出厂前,可以通过实验测试等方式测得空调正常工作(即氢气未泄漏)时的温度偏差值。而在空调的使用过程中,如果存在氢气泄漏等问题,则明显氢气流路中的氢气总量减少,导致氢气的流量也随之下降,因此,金属氢化物换热器的实际换热量要低于氢气未泄漏状态下的正常换热量。
这样,通过比较第一进风温度和第一出风温度的第一温度差值与预设的温度偏差值的大小,可判断处空调是否出现氢气泄漏故障。具体的,如果第一温度差值小于预设的温度偏差值,则表明金属氢化物换热器的实际换热量要低于氢气未泄漏状态下的正常换热量,可进一步判定空调出现氢气泄漏故障;而如果第一温度差值不小于预设的温度偏差值,则表明金属氢化物换热器的实际换热量不低于氢气未泄漏状态下的正常换热量,此时,空调一般不存在氢气泄漏故障,因此空调维持当前运行状态不变。
S203、响应于第一温度差值小于预设的温度偏差值的判断结果,确定空调存在氢气泄漏故障。
在本实施例中,当在步骤S202中得到第一温度差值小于预设的温度偏差值的判断结果,则可以判定空调对室内空气的换热量未达到正常的换热量,因此可以确定空调存在氢气泄漏故障。
本发明提供的氢气泄漏检测方法可以根据空调进出风的温差变化程度判断氢气是否泄露,检测准确,实时性较强,且无需对其应用的空调系统做较大的结构改变,受系统自身运行调整的影响较小,通过对空调氢气泄漏的检测预警,可以对提高该空调系统的性能和寿命有很大帮助。
一般的,为达到不同的换热效率,空调可通过调整电化学压缩机的工作参数来实现,此时,由于工作参数的变化,即使未发生氢气泄漏故障,进出风的温度差值也会发生变化,如电化学压缩机的工作电压调高时,进出的温度差值明显增大。因此,为避免因电化学压缩机的工作参数调整所导致的故障误判问题;在一种可选的实施方式中,检测方法还包括:
获取电化学压缩机的工作参数;
根据预设的关联关系,确定温度偏差值,关联关系用于表征工作参数与温度偏差值的对应关系
其中,上述工作参数包括电化学压缩机的工作电压、电流等。
在空调出厂前,可通过多次试验测得电化学压缩机以不同工作参数工作时,氢气未泄漏情况下的温度偏差值,本发明即可将将每一温度偏差值与当前的工作参数进行绑定,两者构成一一对应的关联关系,如A工作电压对应温度偏差值t1,B工作电压对应温度偏差值t2,等等。并将其储存在空调中。这样,在执行上述步骤S202之前,可通过获取电化学压缩机的工作参数,进一步的确当前对应的温度偏差值。
当然,在其它的实施例中,影响温度偏差值的还可能包括不同换热侧的风机的转速等工作参数,因此,为保证控制的精确性,也可以将空调的其它可影响温度偏差值的工作参数引入上述实施例中,本发明不限于此。
图3是根据一示例性实施例所示出的本发明氢气泄漏检测方法的流程示意图二。
在图3所示出的应用场景中,仍以室内换热侧为例,该检测方法的主要流程包括:
S301、以30s为采样间隔,获取5min内采样检测到的多个进风温度和多个出风温度;
在本实施例中,进风温度和出风温度的检测流程同时进行,即均在同一5min内进行检测采样;
S302、计算多个进风温度的均值,并作为第一进风温度Tn1;
在本实施例中,多个进风温度均有同一温度传感器检测得到;
S303、计算多个出风温度的均值,并作为第一出风温度Tm1;
在本实施例中,多个出风温度均有同一温度传感器检测得到;
S304、计算Tn1和Tm1的第一温度差值△T1;
S305、判断是△T1否小于△Tp,如果是,则执行步骤S306,如果否,则执行步骤S307;;
在本实施例中,△Tp是预设的温度偏差值;
S306、确定空调存在氢气泄漏故障;本次检测流程结束;
S307、维持空调运行状态不变;本次检测流程结束。
在图3的实施例中,第一进风温度和第二进风温度的计算过程是取设定时长(5min)的多个检测值的均值,这样,可以避免出现因进、出风温度的瞬时异常变化所导致的故障误判的问题,提高了检测判断过程的精确性,降低了误差的干扰影响。
在上述的多个实施例中,确定空调存在氢气泄漏故障之后,检测方法还包括:向用户推送故障报警信息。例如,可以通过空调本身的显示屏等显示部件显示预设的报警信息;或者,空调通过本地网络等方式向与空调绑定的手机等移动终端发送相关的报警信息。从而可以及时提醒用户注意空调的使用安全,并可建议联系空调厂商的维修人员进行上门检修等服务。
在前述的实施例中,获取空调的第一进风温度为空调的室内换热侧的进风温度,第一出风温度为空调的室内换热侧的出风温度;在另外的实施例中,空调还可以根据室外换热侧的出风温度和进风温度的温差情况判断是否存在氢气泄漏故障,其具体检测判断过程可以参照上文公开的内容,在此不作赘述。
图4是根据一示例性实施例所示出的本发明氢气泄漏检测方法的流程示意图三。
如图4所示,本发明还提供了一种氢气泄漏检测方法,该检测方法可以通过比较室内换热侧和室外换热侧的温度差值,确定发生氢气发生泄漏的故障侧,其具体流程如下;
S401、获取空调的室内换热侧的第一进风温度Tn1和第一出风温度Tm1;
S402、获取空调的室外换热侧的第二进风温度Tn2和第二出风温度Tm2;
S403、计算第一进风温度Tn1和第一出风温度Tm1的第一温度差值△T1;
S404、计算第二进风温度Tn2和第二出风温度Tm2的第二温度差值△T2;
S405、判断第一温度差值△T1是否大于第二温度差值△T2,如果是,则执行步骤S406,如果否,则执行步骤S407;
S406、室外侧为氢气泄漏的故障侧;
S407、室内侧为氢气泄漏的故障侧。
在图4的实施例中,在氢气泄漏的故障侧,实际的输氢量要小于非故障侧,因此,由于输氢量的减少,故障侧的实际换热量也要小于非故障侧,这样,通过比较室内换热侧和室外换热侧的温度差值的大小,就可以对发生氢气泄漏的故障侧进行初步判断,从而有利于维修人员对故障侧的快速定位,提高了检修效率。
这里,空调发生氢气泄漏故障之后,空调内的整体储氢量是随之减少的,因此,可以在图2所示的流程中确定出存在氢气泄漏故障之后,进一步的执行图4所示出的流程步骤,由于故障侧仍存在氢气泄漏故障,因此,在整体储氢量减少的前提下,故障侧的温度差值是要小于非故障侧的温度差值。
图5是根据一示例性实施例所示出的本发明氢气泄漏检测装置的结构框图一。
如图5所示,本发明还提供了一种应用电化学压缩机的空调的氢气泄漏检测装置,检测装置500包括:
第一获取单元510,用于获取空调的第一进风温度和第一出风温度;
判断单元520,用于判断第一进风温度和第一出风温度的第一温度差值是否小于预设的温度偏差值;
响应单元530,用于响应于第一温度差值小于预设的温度偏差值的判断结果,确定空调存在氢气泄漏故障。
本发明提供的氢气泄漏检测故障可以根据空调进出风的温差变化程度判断氢气是否泄露,检测准确,实时性较强,受系统自身运行调整的影响较小,通过对空调氢气泄漏的检测预警,可以对提高该空调系统的性能和寿命有很大帮助。
图6是根据一示例性实施例所示出的本发明氢气泄漏检测装置的结构框图二。
如图6所示,本发明还提供了一种应用电化学压缩机的空调的氢气泄漏检测装置,检测装置600包括第一获取单元620、判断单元620和响应单元630。
其中,第一获取单元610,用于获取空调的第一进风温度和第一出风温度;
判断单元620,用于判断第一进风温度和第一出风温度的第一温度差值是否小于预设的温度偏差值;
响应单元630,用于响应于第一温度差值小于预设的温度偏差值的判断结果,确定空调存在氢气泄漏故障。
在一种可选的实施例中,检测装置还包括:
第二获取单元,用于获取所述电化学压缩机的工作参数;
第一确定单元,用于根据预设的关联关系,确定所述温度偏差值,所述关联关系用于表征所述工作参数与所述温度偏差值的对应关系。
在一种可选的实施例中,第一获取单元610具体用于:
获取空调的在设定时长内的进风温度的均值,并作为第一进风温度;以及
获取空调的在设定时长内的出风温度的均值,并作为第一出风温度。
在一种可选的实施例中,检测装置600还包括报警单元640,用于在响应单元630确定空调存在氢气泄漏故障之后,向用户推送故障报警信息。
在一种可选的实施例中,第一获取单元610具体用于获取空调的室内换热侧的进风温度和出风温度;
检测装置600包括:
第三获取单元650,用于获取空调的室外换热侧的第二进风温度和第二出风温度;
第二确定单元660,用于根据第一温度差值,以及第二进风温度和第二出风温度的第二温度差值,确定室内换热侧和室外换热侧中存在氢气泄漏的故障侧。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 应用电化学压缩机的空调的氢气泄漏检测方法,其特征在于,所述检测方法包括:
    获取所述空调的第一进风温度和第一出风温度;
    判断所述第一进风温度和所述第一出风温度的第一温度差值是否小于预设的温度偏差值;
    响应于所述第一温度差值小于所述预设的温度偏差值的判断结果,确定所述空调存在氢气泄漏故障。
  2. 根据权利要求1所述的氢气泄漏检测方法,其特征在于,所述检测方法还包括:
    获取所述电化学压缩机的工作参数;
    根据预设的关联关系,确定所述温度偏差值,所述关联关系用于表征所述工作参数与所述温度偏差值的对应关系。
    如何确定温度偏差值。
  3. 根据权利要求要求1的氢气泄漏检测方法,其特征在于,所述获取所述空调的第一进风温度和第一出风温度,包括:
    获取所述空调的在设定时长内的所述进风温度的均值,并作为所述第一进风温度;以及
    获取所述空调的在设定时长内的所述出风温度的均值,并作为所述第一出风温度。
  4. 根据权利要求1所述的氢气泄漏检测方法,其特征在于,所述确定所述空调存在氢气泄漏故障之后,检测方法还包括:
    向用户推送故障报警信息。
  5. 根据权利要求1所述的氢气泄漏检测方法,其特征在于,所述获取所述空调的第一进风温度和第一出风温度,包括:获取所述空调的室内换热侧的进风温度和出风温度;
    所述检测方法还包括:
    获取所述空调的室外换热侧的第二进风温度和第二出风温度;
    根据所述第一温度差值,以及所述第二进风温度和所述第二出风温度的第二温度差值,确定所述室内换热侧和所述室外换热侧中存在氢气泄漏的故障侧。
  6. 应用电化学压缩机的空调的氢气泄漏检测装置,其特征在于,所述检测装置包括:
    第一获取单元,用于获取所述空调的第一进风温度和第一出风温度;
    判断单元,用于判断所述第一进风温度和所述第一出风温度的第一温度差值是否小于预设的温度偏差值;
    响应单元,用于响应于所述第一温度差值小于所述预设的温度偏差值的判断结果,确定所述空调存在氢气泄漏故障。
  7. 根据权利要求6所述的氢气泄漏检测装置,其特征在于,所述检测装置还包括:
    第二获取单元,用于获取所述电化学压缩机的工作参数;
    第一确定单元,用于根据预设的关联关系,确定所述温度偏差值,所述关联关系用于表征所述工作参数与所述温度偏差值的对应关系。
  8. 根据权利要求要求6的氢气泄漏检测装置,其特征在于,所述第一获取单元具体用于:
    获取所述空调的在设定时长内的所述进风温度的均值,并作为所述第一进风温度;以及
    获取所述空调的在设定时长内的所述出风温度的均值,并作为所述第一出风温度。
  9. 根据权利要求6所述的氢气泄漏检测装置,其特征在于,检测装置还包括报警单元,用于在所述响应单元确定所述空调存在氢气泄漏故障之后,向用户推送故障报警信息。
  10. 根据权利要求6所述的氢气泄漏检测装置,其特征在于,所述第一获取单元具体用于获取所述空调的室内换热侧的进风温度和出风温度;
    所述检测装置包括:
    第三获取单元,用于获取所述空调的室外换热侧的第二进风温度和第二出风温度;
    第二确定单元,用于根据所述第一温度差值,以及所述第二进风温度和所述第二出风温度的第二温度差值,确定所述室内换热侧和所述室外换热侧中存在氢气泄漏的故障侧。
PCT/CN2018/116191 2018-03-08 2018-11-19 应用电化学压缩机的空调的氢气泄漏检测方法及装置 WO2019169897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810191798.0A CN108548272B (zh) 2018-03-08 2018-03-08 应用电化学压缩机的空调的氢气泄漏检测方法及装置
CN201810191798.0 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019169897A1 true WO2019169897A1 (zh) 2019-09-12

Family

ID=63515878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116191 WO2019169897A1 (zh) 2018-03-08 2018-11-19 应用电化学压缩机的空调的氢气泄漏检测方法及装置

Country Status (2)

Country Link
CN (1) CN108548272B (zh)
WO (1) WO2019169897A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548272B (zh) * 2018-03-08 2021-04-20 青岛海尔空调器有限总公司 应用电化学压缩机的空调的氢气泄漏检测方法及装置
CN110057056B (zh) * 2019-04-15 2021-09-21 青岛海尔空调器有限总公司 温湿度调节设备运行模式监控的方法、装置及存储介质
CN110057027B (zh) * 2019-04-15 2021-01-29 青岛海尔空调器有限总公司 温湿度调节设备监控的方法、装置及计算机存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337222A (ja) * 1998-05-27 1999-12-10 Zexel:Kk 車両用空調装置
CN104566863A (zh) * 2014-12-30 2015-04-29 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
CN106288072A (zh) * 2016-07-21 2017-01-04 青岛海尔空调器有限总公司 电化学空调系统
CN108548272A (zh) * 2018-03-08 2018-09-18 青岛海尔空调器有限总公司 应用电化学压缩机的空调的氢气泄漏检测方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892199B2 (ja) * 2014-06-27 2016-03-23 ダイキン工業株式会社 空調室内機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337222A (ja) * 1998-05-27 1999-12-10 Zexel:Kk 車両用空調装置
CN104566863A (zh) * 2014-12-30 2015-04-29 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
CN106288072A (zh) * 2016-07-21 2017-01-04 青岛海尔空调器有限总公司 电化学空调系统
CN108548272A (zh) * 2018-03-08 2018-09-18 青岛海尔空调器有限总公司 应用电化学压缩机的空调的氢气泄漏检测方法及装置

Also Published As

Publication number Publication date
CN108548272A (zh) 2018-09-18
CN108548272B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2019169897A1 (zh) 应用电化学压缩机的空调的氢气泄漏检测方法及装置
CN110895024B (zh) 一种冷媒泄漏检测方法及空调器
WO2013038704A1 (ja) 空気調和機
CN103090504B (zh) 空调器及其检测方法和装置
CN105485856B (zh) 空调系统及空调系统制热状态下的异常检测方法
CN108344108B (zh) 一种应用电化学压缩机的空调及氢气泄漏检测方法、装置
CN109631229B (zh) 制冷系统制冷剂快速泄漏的判定方法
KR20140056965A (ko) 공기조화기 및 그 제어 방법
CN110895023B (zh) 一种空调冷媒泄漏检测方法及空调器
CN107084494A (zh) 电子膨胀阀的故障检测方法、检测装置和多联式空调系统
CN103884480A (zh) 冷媒泄漏检测方法、冷媒泄漏检测系统和空调器
CN105674507A (zh) 空调冷媒检测方法及装置
CN109237721A (zh) 用于空调的电子膨胀阀故障检测方法
WO2022068964A1 (zh) 空调器的控制方法、存储介质及控制装置
CN106016621A (zh) 一种多联机空调系统的泄漏检测控制方法
CN108317662A (zh) 故障检测方法、装置、空调器和计算机可读存储介质
CN107314499A (zh) 一种空调制热低压开关保护控制方法
TW201030240A (en) Method and system for controling compressor
CN103940158A (zh) 空调室外机、空调系统和空调系统的操作方法
CN109282424A (zh) 空调器控制方法、空调器控制装置
CN110529974B (zh) 空调器的冷媒泄露检测方法、冷媒泄露检测装置及空调器
CN110542196B (zh) 用于空调器的检测组件、控制方法、控制装置及空调器
CN105864953A (zh) 空调节流部件的堵塞检测方法、装置及空调
CN108548352B (zh) 一种机房空调系统的控制方法
WO2024104496A1 (zh) 一种co2泄漏量检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909106

Country of ref document: EP

Kind code of ref document: A1