WO2019168179A1 - Snめっき鋼板及びSnめっき鋼板の製造方法 - Google Patents

Snめっき鋼板及びSnめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2019168179A1
WO2019168179A1 PCT/JP2019/008222 JP2019008222W WO2019168179A1 WO 2019168179 A1 WO2019168179 A1 WO 2019168179A1 JP 2019008222 W JP2019008222 W JP 2019008222W WO 2019168179 A1 WO2019168179 A1 WO 2019168179A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
plated steel
less
zirconium oxide
amount
Prior art date
Application number
PCT/JP2019/008222
Other languages
English (en)
French (fr)
Inventor
山中 晋太郎
正和 野田
恭彦 佐藤
信夫 仲宗根
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2019541379A priority Critical patent/JP6642774B1/ja
Priority to US16/975,637 priority patent/US11598009B2/en
Priority to EP19760710.4A priority patent/EP3760763A4/en
Priority to CN201980016324.5A priority patent/CN111788334B/zh
Priority to KR1020207024589A priority patent/KR102364143B1/ko
Publication of WO2019168179A1 publication Critical patent/WO2019168179A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • Y10T428/12667Oxide of transition metal or Al
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Definitions

  • the present invention relates to a Sn plated steel sheet and a method for producing a Sn plated steel sheet.
  • Tin (Sn) -plated steel sheet is well known as “tinplate” and is widely used for cans such as beverage cans and food cans. This is because Sn is safe for the human body and is a beautiful metal.
  • This Sn-plated steel sheet is manufactured mainly by an electroplating method. This is because the electroplating method is more advantageous than the hot dipping method in order to control the amount of Sn, which is a relatively expensive metal, to the minimum necessary amount.
  • the Sn-plated steel sheet is given a beautiful metallic luster by heat-melting treatment after plating, and then the chromate film is formed on the Sn plating by chromate treatment such as electrolytic treatment and immersion treatment using a hexavalent chromate solution. Often given.
  • This chromate film is to prevent yellowing of the appearance by suppressing the oxidation of the Sn plating surface, to prevent deterioration of the adhesion of the coating film due to cohesive failure of tin oxide when used in coating, Improvement of denaturation, etc.
  • the Sn-plated steel sheet having no chromate film is yellowish in appearance due to the growth of tin oxide, the adhesion of the coating film is lowered, or the resistance to sulfur blackening is lowered.
  • Patent Document 1 an Sn-plated steel sheet is proposed in which a film containing P and Si is formed by a treatment using a solution containing a phosphate ion and a silane coupling agent.
  • Patent Document 2 a film containing a reaction product of Al and P, at least one of Ni, Co, and Cu and a silane coupling agent is formed by treatment using a solution containing aluminum phosphate.
  • Patent Document 3 proposes a method for producing a Sn-plated steel sheet having no chromate film, in which heat treatment is performed until the Zn single plating layer disappears after Zn plating is performed on Sn plating.
  • the steel plate for containers which has a chemical conversion treatment film containing a zirconium, phosphoric acid, a phenol resin, etc. is proposed.
  • Japanese Unexamined Patent Publication No. 2004-60052 Japanese Unexamined Patent Publication No. 2011-174172 Japanese Unexamined Patent Publication No. Sho 63-290292 Japanese Unexamined Patent Publication No. 2007-284789 Japanese Unexamined Patent Publication No. 2010-13728
  • the present invention has been made in view of the above problems, and the object thereof is more excellent in yellowing resistance, coating adhesion, and sulfurization blackening resistance without performing conventional chromate treatment.
  • the present inventors diligently studied to solve the above problems and achieve the object. As a result, by forming a layer containing zirconium oxide and tin oxide on the surface of the Sn-plated steel sheet, without yellowing resistance, coating film adhesion, and sulfurization blackening resistance without performing chromate treatment. It was found that an even better Sn-plated steel sheet can be realized.
  • the summary of this invention completed based on the said knowledge is as follows.
  • An Sn-plated steel sheet includes a steel sheet, a base-plated steel sheet having a Sn-plated layer on at least one surface of the steel sheet; and a zirconium oxide positioned on the base-plated steel sheet;
  • the peak position of the binding energy of Sn3d 5/2 by X-ray photoelectron spectroscopy of the tin oxide in the coating layer is a metal Sn of Yes from the peak position of the binding energy in the range to less than 1.4 eV 1.6 eV, the quantity of electricity required for reduction of the tin oxide, 5.0mC / cm 2 ultra 20mC / cm 2 or
  • a method for producing a Sn-plated steel sheet according to one aspect of the present invention is a base material plating in which a Sn plating layer containing Sn of 0.1 g / m 2 or more and 15 g / m 2 or less is formed on at least one surface of a steel sheet.
  • the steel plate is subjected to immersion treatment in a solution containing zirconium ions or cathodic electrolysis treatment in a solution containing zirconium ions to form a zirconium oxide layer containing zirconium oxide.
  • Step 1 After the first step, the base material plated steel sheet on which the zirconium oxide layer is formed is heated in the atmosphere containing oxygen, the heating temperature T being the unit K, and the unit being the Hour.
  • the heat treatment in the second step is performed in an atmosphere containing oxygen and having an amount of water vapor in the range of 60% by volume to 90% by volume. May be.
  • the zirconium ion concentration of the solution containing zirconium ions is 100 ppm or more and 4000 ppm or less, and the pH value of the solution containing zirconium ions is 3 or more. It may be 5 or less.
  • the zirconium oxide layer is formed by cathodic electrolysis, and current density in the cathodic electrolysis is obtained. May be 0.05 A / dm 2 or more and 50 A / dm 2 or less.
  • the Sn-plated steel sheet that is more excellent in yellowing resistance, coating film adhesion, and sulfurization blackening resistance without performing the conventional chromate treatment, and It becomes possible to provide the manufacturing method of Sn plating steel plate.
  • the present embodiment described below relates to a Sn-plated steel plate widely used for cans such as food cans and beverage cans, and a method for producing the Sn-plated steel plate. More specifically, the present invention relates to a Sn-plated steel sheet that is more excellent in yellowing resistance, coating film adhesion, and sulfurization blackness resistance, and a method for producing the Sn-plated steel sheet without performing conventional chromate treatment.
  • a Sn-plated steel sheet 10 includes a predetermined amount of zirconium oxide on the surface of a base-plated steel sheet 3 on which a Sn plating layer 2 is formed on at least one surface 1 a of a steel sheet 1. And a coating layer 4 containing tin oxide.
  • the Sn-plated steel sheet 1 includes a base metal-plated steel sheet 3 in which a Sn-plated layer 2 is formed on at least one surface of the steel sheet 1, and a zirconium oxide positioned on the base-material plated steel sheet 3. And a coating layer 4 containing tin oxide, and the amount of Sn deposited on one side of the Sn plating layer 2 is 0.1 g / m 2 or more and 15 g / m 2 or less.
  • FIG. 1 shows the case where the Sn plating layer 2 and the coating layer 4 are formed in this order only on the surface 1a which is one side of the steel plate 1, it is not limited to this form.
  • the Sn plating layer 2 and the coating layer 4 are formed in this order on the back surface 1b of the steel plate 1 is also included.
  • the Sn adhesion amount on the Sn plating layer 2 formed on the front surface 1a is 0.1 g / m 2 or more and 15 g / m 2 or less, and at the same time the back surface
  • the adhesion amount of Sn in the Sn plating layer 2 formed on 1b may also be 0.1 g / m 2 or more and 15 g / m 2 or less.
  • the Sn plating layer 2 is formed on both surfaces of the steel plate 1, although the Sn adhesion amount of the Sn plating layer 2 in one of them is 0.1 g / m 2 or more and 15 g / m 2 or less, The Sn adhesion amount of the Sn plating layer 2 on the other side may be outside the range of 0.1 g / m 2 or more and 15 g / m 2 or less.
  • the zirconium oxide content in the coating layer 4 is 1 mg / m 2 or more and 30 mg / m 2 or less per side in terms of the amount of metal Zr.
  • the peak position of the Sn3d 5/2 binding energy by XPS (X-ray Photoelectron Spectroscopy) of tin oxide in the coating layer 4 is the metal Sn.
  • the amount of electricity required for reduction of tin oxide is within the range of more than 5.0 mC / cm 2 and less than 20 mC / cm 2 from the peak position of the binding energy of 1.4 eV to less than 1.6 eV. .
  • the outermost surface layer of the coating layer 4 is etched, and within a range from a position (for example, a depth position of 0.5 nm from the surface layer position before the etching) to a depth position of 5 nm inside the coating layer 4. It is preferable to measure.
  • the steel plate 1 used as the base material of the Sn-plated steel plate 10 according to the present embodiment is not particularly specified, and any steel plate used for a general Sn-plated steel plate for containers may be used. It can be used. Examples of such a steel plate 1 include low carbon steel and extremely low carbon steel. Also, the manufacturing method and material of the steel sheet 1 to be used are not particularly specified, and for example, a steel sheet manufactured through processes such as casting, hot rolling, pickling, cold rolling, annealing, temper rolling, etc. Can be used as appropriate.
  • Sn plating is applied to at least one surface of the steel plate 1 as described above to form the Sn plating layer 2.
  • the Sn plating layer 2 improves the post-coating corrosion resistance of the steel plate 1.
  • the “Sn plating” in this specification includes not only plating with metal Sn but also plating in which impurities are mixed in metal Sn and plating in which trace elements are contained in metal Sn.
  • the method of applying Sn plating to the surface 1a of the steel sheet 1 is not particularly specified, but for example, a known electroplating method is preferable, and a melting method of plating by immersing the steel sheet 1 in molten Sn may be used.
  • a known electroplating method for example, an electrolysis method using a well-known ferrostan bath, halogen bath, alkali bath, or the like can be used.
  • the surface of the Sn-plated steel sheet 10 becomes glossy, and an alloy layer of Sn and Fe is formed between the Sn plating 2 and the steel sheet 1 to further improve the corrosion resistance after coating.
  • the Sn-plated steel sheet 10 has a coating layer 4 containing both zirconium oxide and tin oxide on the surface of the base material-plated steel sheet 3 having the Sn plating layer 2 as described above.
  • the content of zirconium oxide in the coating layer 4 is in the range of 1 mg / m 2 or more and 30 mg / m 2 or less per side in terms of the amount of metal Zr.
  • the tin oxide in the coating layer 4 has a peak position of Sn3d 5/2 binding energy by XPS within the range of 1.4 eV or more and less than 1.6 eV from the peak position of the binding energy of metal Sn, and tin oxide
  • the amount of electricity required for the reduction of is in the range of more than 5.0 mC / cm 2 and not more than 20 mC / cm 2 .
  • the “Sn3d 5/2 ” means the energy level of electrons in Sn as described in Non-Patent Document 1. More specifically, it means the energy level of 3d electrons in which the spins are in a parallel state in Sn.
  • the Sn-plated steel sheet 10 according to the present embodiment has the coating layer 4 on which the zirconium oxide and the tin oxide coexist as described above on the surface 2a of the Sn plating layer 2, thereby preventing yellowing resistance and coating adhesion. And sulfur blackening resistance can be further improved. It should be noted that only the zirconium oxide or the tin oxide alone cannot sufficiently improve the yellowing resistance, coating film adhesion, and sulfurization blackening resistance. Although this reason is not certain, it thinks as follows by detailed investigation of the present inventors.
  • the amount of electricity required for the reduction of tin oxide is a tin oxide amount within a range of more than 5.0 mC / cm 2 and not more than 20 mC / cm 2 .
  • the lower limit of the amount of electricity required for the reduction of tin oxide is preferably 7.0 mC / cm 2 , more preferably 8 mC / cm 2 .
  • the upper limit of the amount of electricity required for the reduction of tin oxide is preferably 15 mC / cm 2 , more preferably 12 mC / cm 2 .
  • the “amount of electricity required for the reduction of tin oxide” indicates the amount of electricity obtained as the product of the time required for reducing and removing tin oxide in the coating layer 4 of the Sn-plated steel sheet 10 and the current value. The value substantially corresponds to the amount (film thickness) of the coating layer 4.
  • zirconium oxide coexists in the coating layer 4. This is because the zirconium oxide improves the brittleness of the coating containing tin oxide and improves the adhesion of the coating. Further, zirconium oxide itself has an effect of improving the resistance to sulfur blackening. To obtain such effects, the content of zirconium oxide, it is necessary in the range of 1 mg / m 2 or more 30 mg / m 2 or less in the metal Zr content. When the amount of metal Zr is less than 1 mg / m 2 , embrittlement of the film containing tin oxide cannot be suppressed.
  • the lower limit of the content of the zirconium compound is preferably 3 mg / m 2 , more preferably 5 mg / m 2 .
  • the upper limit of the content of the zirconium compound is preferably 10 mg / m 2 , and more preferably 8 mg / m 2 .
  • tin oxide needs to have a peak position of Sn3d 5/2 binding energy by XPS within a range of 1.4 eV or more and less than 1.6 eV from the peak position of binding energy of metal Sn.
  • tin oxide has a binding energy value outside the above range, coating film adhesion is not stable.
  • the coating layer 4 containing these zirconium oxides and tin oxides may be in a mixed state or a solid solution of oxides, regardless of the state of existence. Moreover, there is no problem even if any element such as P, Fe, Ni, Cr, Ca, Na, Mg, Al, Si or the like is further contained in these oxides. That is, as a component of the coating layer 4, in addition to zirconium oxide and tin oxide, other components (phosphorus compound, fluoride, etc.) may further be contained.
  • the Zr adhesion amount is obtained by immersing and dissolving the Sn-plated steel sheet 10 on which the coating layer 4 according to the present embodiment is formed on an acidic solution such as hydrofluoric acid and sulfuric acid.
  • the dissolved solution is a value measured by chemical analysis such as high frequency inductively coupled plasma (ICP) emission analysis.
  • ICP inductively coupled plasma
  • the amount of Zr attached may be determined by fluorescent X-ray measurement.
  • the amount of electricity required for the reduction of tin oxide is measured by the following method. That is, the Sn-plated steel sheet 10 according to this embodiment is subjected to cathodic electrolysis with a constant current of 0.06 mA / cm 2 in a 0.001 mol / L hydrobromic acid aqueous solution from which dissolved oxygen has been removed by bubbling nitrogen gas or the like. To do. At this time, the amount of electricity required for the reduction of tin oxide can be determined from the product of the time required for reducing and removing the tin oxide and the current value.
  • the peak position of Sn3d 5/2 binding energy by XPS can be measured by a known method using a known XPS measuring apparatus.
  • the Sn adhesion amount per side is 0.1 g / m 2 or more and 15 g / m 2 or less as the metal Sn amount.
  • the coating layer 4 of the Sn-plated steel sheet 10 according to the present embodiment is obtained by heat-treating a Sn-plated steel sheet (material) on which a zirconium oxide layer is formed under predetermined conditions, thereby performing Sn plating. It is formed by diffusing Sn in the layer 2 into the zirconium oxide layer.
  • the Sn adhesion amount per one side of the Sn-plated steel sheet 10 according to the present embodiment includes the Sn content present in the Sn plating layer 2 and not diffused in the coating layer 4 and the coating layer 4. And the total amount of tin oxide in terms of metal Sn.
  • the corrosion resistance after coating is inferior, which is not preferable.
  • the Sn adhesion amount per side exceeds 15 g / m 2 , the effect of improving the corrosion resistance after coating by Sn is sufficient, and further increase in the adhesion amount is not preferable from an economical viewpoint, and the adhesion of the coating film Tend to decrease.
  • the lower limit value of the Sn adhesion amount per one side is preferably 1.0 g / m 2 , and more preferably 2.0 g / m 2 .
  • the upper limit value of the Sn adhesion amount per one side is preferably 10 g / m 2 , and more preferably 7.0 g / m 2 .
  • the amount of Sn adhered per one side as described above is a value measured by, for example, an electrolysis method or a fluorescent X-ray method described in JIS G 3303.
  • the manufacturing method of the Sn plating steel plate (About the manufacturing method of Sn plating steel plate 10) Below, the manufacturing method of the Sn plating steel plate concerning this embodiment is explained in detail.
  • the Sn plating layer 2 is formed on at least one surface of the steel sheet 1 so that the Sn adhesion amount per one surface is 0.1 g / m 2 or more and 15 g / m 2 or less.
  • the base metal plated steel plate 3 is used as a material.
  • the manufacturing method of the base metal-plated steel sheet 3 is not particularly limited, and for the known steel sheet 1 having a desired mechanical strength (for example, tensile strength), by a known plating method, as Sn coating weight per one side is 0.1 g / m 2 or more 15 g / m 2 or less, it can be produced by applying Sn plating. Moreover, it is also possible to use a known Sn-plated steel plate (material) that has been subjected to Sn plating in advance so that the amount of adhesion per one side is within the above range as the base material-plated steel plate 3.
  • a method for forming the coating layer 4 containing zirconium oxide and tin oxide will be described in detail.
  • a zirconium oxide layer containing zirconium oxide is formed on the Sn plating layer 2 constituting the base material plated steel sheet 3.
  • the zirconium oxide layer containing the zirconium oxide includes a dipping treatment in a solution containing zirconium ions or a zirconium ion with respect to the base material plated steel plate 3 on which the Sn plating layer 2 is formed as described above. It can form on the base material plating steel plate 3 by performing the cathodic electrolysis process in a solution.
  • the surface of the base material plated steel sheet 3 that is the base is etched to form a zirconium oxide layer containing zirconium oxide, so that the amount of adhesion tends to be non-uniform, Since processing time also becomes long, it is disadvantageous in industrial production.
  • the cathodic electrolysis treatment a uniform film can be obtained in combination with forced charge transfer, surface cleaning by hydrogen generation at the steel plate interface, and adhesion promotion effect by increasing pH value.
  • nitrate ions and ammonium ions coexist in the treatment solution, a short time treatment of several seconds to several tens of seconds is possible, which is extremely advantageous industrially. Therefore, it is preferable to use a method by cathodic electrolysis (cathodic electrolysis treatment) for forming the zirconium oxide layer containing the zirconium oxide according to the present embodiment.
  • the concentration of zirconium ions in the solution for performing the cathodic electrolysis treatment may be appropriately adjusted according to production equipment and production rate (capacity).
  • the concentration of zirconium ions in the solution is preferably 100 ppm or more and 4000 ppm or less, for example.
  • there is no problem even if other components such as fluorine ions, ammonium ions, nitrate ions, and sulfate ions are contained in the solution containing zirconium ions.
  • the temperature of the solution for cathodic electrolysis is not particularly specified, but is preferably in the range of 10 ° C. to 50 ° C., for example.
  • cathodic electrolysis at 50 ° C. or lower, it is possible to form a dense and uniform film structure formed of very fine particles.
  • the liquid temperature is less than 10 ° C., the film formation efficiency is poor, and when the outside air temperature is high such as in summer, the solution needs to be cooled, which is not economical and the corrosion resistance after painting is also reduced. there's a possibility that.
  • the liquid temperature exceeds 50 ° C., the formed zirconium oxide film structure becomes non-uniform, and defects, cracks, microcracks, etc. occur, making it difficult to form a dense film, This is not preferable.
  • the pH value of the cathode electrolyte is not particularly specified, but is preferably 3 or more and 5 or less. When the pH value is less than 3, the production efficiency of zirconium oxide may be reduced. When the pH value exceeds 5, a large amount of precipitate is generated in the solution, and the continuous productivity is increased. May be reduced.
  • nitric acid, aqueous ammonia or the like may be contained in the cathode electrolyte.
  • nitric acid and aqueous ammonia may be contained in the catholyte solution in order to reduce the time for cathodic electrolysis.
  • the current density in the cathodic electrolysis treatment is preferably in the range of 0.05 A / dm 2 or more and 50 A / dm 2 or less, for example.
  • the current density is less than 0.05 A / dm 2 , the formation efficiency of the zirconium oxide is reduced, and it becomes difficult to stably form the coating layer containing the zirconium oxide. Not only is the sulfur blackening resistance reduced but also the corrosion resistance after coating may be reduced, which is not preferable.
  • the current density exceeds 50 A / dm 2 , the formation efficiency of the zirconium oxide is too high, and there is a possibility that a zirconium oxide having coarseness and poor adhesion may be formed.
  • the lower limit value of the current density range is more preferably 1 A / dm 2 and even more preferably 2 A / dm 2 .
  • the upper limit value of the current density range is more preferably 10 A / dm 2 , and even more preferably 6 A / dm 2 .
  • the time for cathodic electrolysis is not critical when the zirconium oxide layer is formed.
  • the cathode electrolysis time may be adjusted as appropriate according to the current density with respect to the target Zr adhesion amount. For example, when the cathode electrolysis treatment is performed in the range of the current density as described above, the energization time is 0.3 mm. It can be about 5 seconds.
  • a solvent of the solution used for the cathodic electrolysis treatment for example, distilled water or the like can be used. However, it is not defined in water such as distilled water, and depending on a material to be dissolved, a forming method, and the like. It is possible to select as appropriate.
  • Zirconium during cathodic electrolysis can use, for example, a zirconium complex such as H 2 ZrF 6 as a source of zirconium.
  • Zr in the zirconium complex as described above is present in the cathode electrolyte as Zr 4+ due to an increase in pH value at the cathode electrode interface.
  • Such zirconium ions further react in the cathode electrolyte to form zirconium oxide.
  • zirconium phosphate is also formed.
  • the coating layer 4 containing zirconium oxide and tin oxide according to the present embodiment is a heat treatment of the base material plated steel plate 3 on which the zirconium oxide layer containing zirconium oxide as described above is formed under predetermined conditions. It is obtained by doing. Specifically, after forming a zirconium oxide layer on the Sn plating layer 2 of the base material plated steel sheet 3, in an atmosphere containing oxygen, temperature T (unit: K) and time t (unit: hour) The Sn-plated steel sheet 10 according to this embodiment can be obtained by heating under conditions that satisfy both the following formulas 101 and 102.
  • Sn in the Sn plating layer 2 is diffused into the zirconium oxide layer by heat treatment as described in detail below, whereby the diffused Sn is oxidized to become tin oxide.
  • the amount of tin oxide produced corresponds to the amount of electricity required for reduction as described above, and the peak position of Sn3d 5/2 binding energy by XPS of tin oxide is as described above. Within range.
  • the heating method in the above production method is not limited at all, and for example, a known heating method such as atmospheric heating, induction heating, electric heating or the like can be applied.
  • the heating temperature needs to be more than 308 K and less than 373 K (that is, more than 35 ° C. and less than 100 ° C.) as shown in the above-described formula 102.
  • the heating temperature is 308K or less, tin oxide is formed unevenly, and the performance is not improved.
  • the heating temperature is 373 K or more, the structure of tin oxide changes and the appearance deteriorates, which is not suitable.
  • the above formula 101 indicates whether or not the obtained Sn-plated steel sheet 10 is within the range of the present embodiment while the inventors change the heating temperature and the heating time during the heat treatment. It was obtained experimentally by verifying. That is, the inventors manufactured the Sn-plated steel sheet 10 while changing the heating temperature T (K) during the heat treatment and the heating time t (hour), respectively, and obtained the Sn-plated steel sheet 10 obtained. Was verified to be within the scope of the present embodiment. In addition, the obtained verification results are plotted at positions corresponding to the heating conditions of each Sn-plated steel sheet 10 with respect to the coordinate plane defined by the heating time t (hour) and the heating temperature T (K). It was.
  • the heating temperature T [K] and the heating time t [hour] in the heat treatment step preferably satisfy the following expression 103, and satisfy the following expression 104: It became clear that it was more preferable.
  • the temperature increase rate and the cooling rate in the heat treatment step are not particularly limited, and may be set as appropriate according to a known method.
  • the atmosphere for heating is not particularly limited as long as the atmosphere contains oxygen, but the amount of water vapor in the atmosphere containing oxygen is preferably in the range of 60 to 90% by volume. By performing the heat treatment within such a range, it is considered that tin oxide is generated more uniformly, and the performance is improved.
  • the Sn-plated steel sheet 10 and the method for manufacturing the Sn-plated steel sheet 10 according to the present embodiment will be specifically described with reference to examples.
  • the Example shown below is only an example to the last, and the manufacturing method of Sn plating steel plate and Sn plating steel plate which concerns on this invention is not limited only to the following example.
  • Example 1 Low carbon cold rolled steel sheet (corresponding to steel sheet 1) with a thickness of 0.2 mm is subjected to electrolytic alkali degreasing, water washing, dilute sulfuric acid immersion acid washing, water washing, and then Sn plating using a phenolsulfonic acid bath. After that, it was further heated and melted.
  • the amount of Sn plating adhered was about 2.8 g / m 2 per side as a standard, but some test materials changed the amount of Sn plating adhered by changing the energization time.
  • a test material that was not heat-melted after electro Sn plating was also prepared.
  • the Sn plating adhesion amount was specified by measuring by the fluorescent X-ray method (ZSX Primus manufactured by Rigaku Corporation).
  • the Sn-plated steel sheet produced as described above was subjected to cathodic electrolysis in an aqueous solution containing zirconium fluoride to form a zirconium oxide layer on the Sn-plated steel sheet.
  • the zirconium concentration in the cathode electrolyte was 1400 ppm.
  • the bath temperature of the cathode electrolyte is set to 35 ° C.
  • the pH value of the cathode electrolyte is adjusted to be 3 or more and 5 or less
  • the current density and the cathode electrolysis time are set according to the target Zr adhesion amount. Adjusted accordingly.
  • the current density and cathodic electrolysis time during the production of each test material are as shown in Table 1 below.
  • the Sn-plated steel sheet on which the zirconium oxide layer is formed is held at various heating temperatures and heating times as shown in Table 1 below to form a coating layer containing zirconium oxide and tin oxide. It was.
  • test materials No. 1B, No. 3B in which only a zirconium oxide layer is formed and not subjected to heat treatment
  • test materials No. 7B in which only heat treatment is performed without forming zirconium oxide.
  • some test materials were subjected to anodic electrolysis in an aqueous sodium carbonate solution before the formation of zirconium oxide to change the structure of tin oxide (No. 5B, No. 6B).
  • test materials formed zirconium oxide by alternating electrolytic treatment in which cathodic electrolysis and anodic electrolysis were alternately repeated in an aqueous solution containing zirconium fluoride (No. 9B).
  • Zr adhesion amount The Zr adhesion amount per one side in the coating layer of each test material was measured by a fluorescent X-ray method using ZSX Primus manufactured by Rigaku Corporation. The obtained Zr adhesion amount is shown together in Table 1 below.
  • Yellowing resistance was evaluated as follows. A wet test is performed in which each test material prepared as described above is placed in a constant temperature and humidity chamber maintained at 40 ° C. and a relative humidity of 80% for 4 weeks, and the amount of change in the color coordinate b * value before and after the wet test. ⁇ b * was determined and evaluated. If the change ⁇ b * is 1 or less, it is 3 points, if it exceeds 1 or 2 it is 2 points, if it is 2 to 3 it is 1 point, if it exceeds 3 it is 0, and it is 1 point The above was regarded as passing. The color coordinate b * was measured using SC-GV5 manufactured by Suga Test Instruments, which is a commercially available color difference meter, and the measurement conditions of the color coordinate b * were light source C, total reflection, and measurement diameter 30 mm.
  • the coating film adhesion was evaluated as follows. Each test material produced as described above was subjected to a wet test by the method described in the above [yellowing resistance], and then a commercially available epoxy resin paint for cans was applied to the surface in a dry mass of 7 g / m 2 , and 200 Baked at 10 ° C. for 10 minutes and left at room temperature for 24 hours. Thereafter, for each of the obtained test materials, scratches reaching the surface of the steel plate were put in a grid pattern (scratches of length and width at intervals of 3 mm), and evaluation was performed by performing a tape peeling test at that portion.
  • Total performance the total of various performance scores is obtained, and when the total value is 8 points or 9 points, it is “Very Good”, and when it is 6 points or 7 points, it is “Good”, 4 points Alternatively, the case of 5 points was set to “Fair”, and when 0 points existed in any one of the performances, the total value was set to “Bad” with 0 points, and the scores Very Good, Good, and Fair were passed.
  • test materials corresponding to the invention examples have good performance.
  • test material corresponding to the comparative example is inferior in any of yellowing resistance, paint film adhesion, sulfurization black resistance, and post-coating corrosion resistance.
  • Example 2 For the low carbon cold-rolled steel sheet having a thickness of 0.2 mm, as a pretreatment, after electrolytic alkaline degreasing, washing with water, dilute sulfuric acid immersion pickling, washing with water, electric Sn plating is performed using a phenolsulfonic acid bath, and then, Heat melting treatment was performed. The adhesion amount of Sn was 2.8 g / m 2 per side.
  • the Sn-plated steel sheet produced as described above was subjected to cathodic electrolysis in an aqueous solution containing zirconium fluoride to form a zirconium oxide layer on the Sn-plated steel sheet.
  • the zirconium concentration in the cathode electrolyte was 1400 ppm.
  • the bath temperature of the cathode electrolyte is set to 35 ° C.
  • the pH value of the cathode electrolyte is adjusted to be 3 or more and 5 or less
  • the current density and cathode electrolysis time are set such that the Zr adhesion amount is 5 mg / m 2 . It adjusted suitably so that it might become.
  • the Sn plated steel sheet on which the zirconium oxide layer is formed is held at various heating temperatures and heating times to form a film layer containing zirconium oxide and tin oxide, and each of the obtained Sn plated steel sheets was used as a test material.
  • the Sn-plated steel sheet according to the present invention does not require a conventional chromate treatment, and is excellent in yellowing resistance, coating film adhesion, and sulfurization blackening resistance. Therefore, as an environmentally friendly can material, It can be widely used in food cans, beverage cans, etc., and has very high industrial utility value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

このSnめっき鋼板は、鋼板、及び、前記鋼板の少なくとも片面にSnめっき層を有する母材めっき鋼板と、前記母材めっき鋼板上に位置する、ジルコニウム酸化物と酸化スズとを含有する皮膜層と、を備える。このSnめっき鋼板の片面当たりのSnの付着量が、0.1g/m以上15g/m以下であり、前記皮膜層中における前記ジルコニウム酸化物の含有量が、金属Zr量で1mg/m以上30mg/m以下の範囲内であり、前記皮膜層中における前記酸化スズのX線光電子分光法によるSn3d5/2の結合エネルギーのピーク位置が、金属Snの結合エネルギーのピーク位置から1.4eV以上1.6eV未満の範囲内にあり、前記酸化スズの還元に要する電気量が、5.0mC/cm超20mC/cm以下の範囲内である。

Description

Snめっき鋼板及びSnめっき鋼板の製造方法
 本発明は、Snめっき鋼板及びSnめっき鋼板の製造方法に関する。
 本願は、2018年3月1日に、日本国に出願された特願2018-036587号に基づき優先権を主張し、その内容をここに援用する。
 スズ(Sn)めっき鋼板は、「ブリキ」としてよく知られており、飲料缶や食缶などの缶用途その他に、広く用いられている。これは、Snが人体に安全であり、かつ、美麗な金属であることによる。このSnめっき鋼板は、主に電気めっき法によって製造される。これは、比較的高価な金属であるSnの使用量を必要最小限の量に制御するには、溶融めっき法よりも電気めっき法の方が有利であることによる。Snめっき鋼板は、めっき後の加熱溶融処理により美麗な金属光沢が付与された後に、6価クロム酸塩の溶液を用いた電解処理や浸漬処理などのクロメート処理によって、Snめっき上にクロメート皮膜が施されることが多い。このクロメート皮膜の効果は、Snめっき表面の酸化を抑えることによる外観の黄変の防止や、塗装されて使用される場合における酸化スズの凝集破壊による塗膜密着性の劣化の防止、耐硫化黒変性の向上、などである。
 一方、近年、環境や安全に対する意識の高まりから、最終製品に6価クロムが含まれないのみならず、クロメート処理自体を行わないことが求められている。しかしながら、クロメート皮膜が存在しないSnめっき鋼板は、上述の如く、酸化スズの成長により外観が黄変したり、塗膜密着性が低下したり、耐硫化黒変性が低下したりする。
 このため、クロメート皮膜に替わる皮膜処理が施されたSnめっき鋼板が、いくつか提案されている。
 例えば、以下の特許文献1では、リン酸イオンとシランカップリング剤とを含有する溶液を用いた処理によって、PとSiとを含む皮膜を形成させたSnめっき鋼板が提案されている。以下の特許文献2では、リン酸アルミニウムを含む溶液を用いた処理によって、Al及びPと、Ni、Co、Cuの少なくとも1種と、シランカップリング剤との反応物を含む皮膜を形成させたSnめっき鋼板が提案されている。また、以下の特許文献3では、Snめっき上にZnめっきをした後にZn単独めっき層が消失するまで加熱処理を施す、クロメート皮膜を有さないSnめっき鋼板の製造方法が提案されている。また、以下の特許文献4及び特許文献5では、ジルコニウム、リン酸、フェノール樹脂等を含む化成処理皮膜を有する容器用鋼板が提案されている。
日本国特開2004-60052号公報 日本国特開2011-174172号公報 日本国特開昭63-290292号公報 日本国特開2007-284789号公報 日本国特開2010-13728号公報
日本表面科学会編、「表面分析化学選書 X線光電子分光法」、丸善株式会社、P.83
 しかしながら、本発明者らによる検討の結果、上記特許文献1~特許文献5で提案されているSnめっき鋼板やその製造方法では、経時による酸化スズの成長を十分に抑制することができず、耐黄変性や塗膜密着性が不十分な場合があることが明らかとなった。
 本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性、及び、耐硫化黒変性においてより一層優れたSnめっき鋼板の提供と、Snめっき鋼板の製造方法の提供とにある。
 上記課題を解決して係る目的を達成するために、本発明者らが鋭意検討した。その結果、Snめっき鋼板の表面に、ジルコニウム酸化物と酸化スズとを含有する層を形成させることで、クロメート処理を行わずに、耐黄変性、塗膜密着性、及び、耐硫化黒変においてより一層優れるSnめっき鋼板を実現可能であることを見出した。上記知見に基づき完成された本発明の要旨は、以下の通りである。
[1]本発明の一態様に係るSnめっき鋼板は、鋼板、及び、前記鋼板の少なくとも片面にSnめっき層を有する母材めっき鋼板と;前記母材めっき鋼板上に位置する、ジルコニウム酸化物と酸化スズとを含有する皮膜層と;を備え、片面当たりのSnの付着量が、0.1g/m以上15g/m以下であり、前記皮膜層中における前記ジルコニウム酸化物の含有量が、金属Zr量で1mg/m以上30mg/m以下の範囲内であり、前記皮膜層中における前記酸化スズのX線光電子分光法によるSn3d5/2の結合エネルギーのピーク位置が、金属Snの結合エネルギーのピーク位置から1.4eV以上1.6eV未満の範囲内にあり、前記酸化スズの還元に要する電気量が、5.0mC/cm超20mC/cm以下の範囲内である。
[2]本発明の一態様に係るSnめっき鋼板の製造方法は、鋼板の少なくとも片面に、Snを0.1g/m以上15g/m以下含有するSnめっき層が形成された母材めっき鋼板に対して、ジルコニウムイオンを含有する溶液中への浸漬処理、又は、ジルコニウムイオンを含有する溶液中での陰極電解処理を施すことで、ジルコニウム酸化物を含有するジルコニウム酸化物層を形成させる第1の工程と;前記第1の工程の後、前記ジルコニウム酸化物層が形成された前記母材めっき鋼板を、酸素を含有する雰囲気下において、単位がKである加熱温度T、及び単位がHourである加熱時間tに関する以下の式1及び式2を共に満足する条件で加熱処理する第2の工程と;を有する。
 0.11×exp(2400/T)<t<0.65×exp(2400/T)・・・(式1)
 308<T<373 ・・・(式2)
[3]上記[2]の態様において、前記第2の工程における前記加熱処理が、酸素を含有し、かつ、水蒸気量が60体積%以上90体積%以下の範囲内である雰囲気下で実施されてもよい。
[4]上記[2]又は上記[3]の態様において、前記ジルコニウムイオンを含有する溶液のジルコニウムイオン濃度が、100ppm以上4000ppm以下であり、前記ジルコニウムイオンを含有する溶液のpH値が、3以上5以下であってもよい。
[5]上記[2]~[4]の何れか1項に記載の態様において、前記第1の工程で、前記ジルコニウム酸化物層を、陰極電解処理により形成し、前記陰極電解処理における電流密度を、0.05A/dm以上50A/dm以下としてもよい。
 以上に説明したように本発明の上記各態様によれば、従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性、及び、耐硫化黒変性において、より一層優れたSnめっき鋼板及びSnめっき鋼板の製造方法を提供することが可能となる。
本発明の一実施形態に係るSnめっき鋼板を示す図であってその板厚方向に沿った断面図である。 実施例2において加熱処理時の温度と時間を変化させた場合の結果について示したグラフである。
 以下に、本発明の一実施形態について詳細に説明する。
 以下で説明する本実施形態は、食缶、飲料缶などの缶用途その他に広く用いられるSnめっき鋼板と、このSnめっき鋼板の製造方法とに関する。より詳細には、従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性、及び、耐硫化黒変性において、より一層優れたSnめっき鋼板と、このSnめっき鋼板の製造方法とに関する。
(Snめっき鋼板について)
 図1に示すように、本実施形態に係るSnめっき鋼板10は、鋼板1の少なくとも片方の表面1aにSnめっき層2の形成された母材めっき鋼板3の表面に、所定量のジルコニウム酸化物と酸化スズとを含有する皮膜層4を有する。
 より詳細には、本実施形態に係るSnめっき鋼板1は、鋼板1の少なくとも片面にSnめっき層2が形成された母材めっき鋼板3と、かかる母材めっき鋼板3上に位置する、ジルコニウム酸化物と酸化スズとを含有する皮膜層4と、を有しており、Snめっき層2における片面当たりのSnの付着量は、0.1g/m以上15g/m以下である。
 なお、図1では、鋼板1の片面である表面1aのみにSnめっき層2及び皮膜層4がこの順に形成されている場合を示すが、この形態のみに限らない。すなわち、上記構成に加え、鋼板1の裏面1bに、Snめっき層2及び皮膜層4がこの順に形成されている場合も含まれる。このように両面にSnめっき層2が形成される場合、表面1aに形成されたSnめっき層2におけるSnの付着量が、0.1g/m以上15g/m以下であり、同時に、裏面1bに形成されたSnめっき層2におけるSnの付着量も、0.1g/m以上15g/m以下であってもよい。さらには、鋼板1の両面にSnめっき層2が形成されるが、それらのうちの一方におけるSnめっき層2のSnの付着量が0.1g/m以上15g/m以下であるものの、他方におけるSnめっき層2のSnの付着量が0.1g/m以上15g/m以下の範囲外であってもよい。
 本実施形態に係るSnめっき鋼板10において、かかる皮膜層4中におけるジルコニウム酸化物の含有量は、金属Zr量で、片面当たり1mg/m以上30mg/m以下である。また、本実施形態に係るSnめっき鋼板10において、皮膜層4中における酸化スズのXPS(X-ray Photoelectron Spectroscopy:X線光電子分光法)によるSn3d5/2の結合エネルギーのピーク位置は、金属Snの結合エネルギーのピーク位置から1.4eV以上1.6eV未満の範囲内にあり、かつ、酸化スズの還元に要する電気量は、5.0mC/cm超20mC/cm以下の範囲内である。
 なお、皮膜層4における、ジルコニウム酸化物の含有量、及び、XPSによるSn3d5/2の結合エネルギーのピーク位置を測定する際、皮膜層4の最表層の汚れによる測定精度への影響を排除する必要がある。そのために、被膜層4の最表層をエッチングし、皮膜層4の少し内部に入った位置(例えばエッチング前の表層位置よりも0.5nmの深さ位置)から5nm深さ位置までの範囲内で測定することが好ましい。
 以下、上記構成を有するSnめっき鋼板10について、詳細に説明する。
<鋼板1について>
 本実施形態に係るSnめっき鋼板10の母材として用いられる鋼板1は、特に規定されるものではなく、一般的な容器用のSnめっき鋼板に用いられている鋼板であれば、任意のものを使用可能である。このような鋼板1として、例えば、低炭素鋼や極低炭素鋼などが挙げられる。また、用いる鋼板1の製造方法や材質についても、特に規定されるものではなく、例えば、鋳造から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造された鋼板を適宜利用することができる。
<Snめっき層2について>
 上記のような鋼板1の少なくとも片面には、Snめっきが施されて、Snめっき層2が形成される。かかるSnめっき層2によって、鋼板1の塗装後耐食性は向上する。なお、本明細書における「Snめっき」とは、金属Snによるめっきだけでなく、金属Snに不純物が混入しためっきや、金属Snに微量元素が含有されているめっきについても、含むものとする。
 Snめっきを鋼板1の表面1aに施す方法は、特に規定するものではないが、例えば公知の電気めっき法が好ましく、溶融したSnに鋼板1を浸漬することでめっきする溶融法を用いてもよい。電気めっき法としては、例えば、周知のフェロスタン浴やハロゲン浴やアルカリ浴などを用いた電解法を利用することができる。
 なお、Snめっき後に、Snめっき層2の施された鋼板1をSnの融点である231.9℃以上に加熱する、加熱溶融処理を施してもよい。この加熱溶融処理によって、Snめっき鋼板10の表面に光沢が出るとともに、Snめっき2と鋼板1の間に、SnとFeとの合金層が形成され、塗装後耐食性が更に向上する。
<ジルコニウム酸化物と酸化スズとを含有する皮膜層4について>
 本実施形態に係るSnめっき鋼板10は、上記のようなSnめっき層2を有する母材めっき鋼板3の表面に、ジルコニウム酸化物と酸化スズの両者を含有する皮膜層4を有する。前述のように、かかる皮膜層4中におけるジルコニウム酸化物の含有量は、金属Zr量で、片面当たり1mg/m以上30mg/m以下の範囲内である。皮膜層4中における酸化スズは、XPSによるSn3d5/2の結合エネルギーのピーク位置が、金属Snの結合エネルギーのピーク位置から1.4eV以上1.6eV未満の範囲内にあり、かつ、酸化スズの還元に要する電気量が、5.0mC/cm超20mC/cm以下の範囲内である。
 なお、上記「Sn3d5/2」とは、上記非特許文献1に記載されているように、Snの中の電子のエネルギー準位を意味する。より詳細には、Snにおいて、スピンが平行な状態となっている3d電子のエネルギー準位を意味する。
 本実施形態に係るSnめっき鋼板10は、Snめっき層2の表面2a上に、上記のようなジルコニウム酸化物と酸化スズとが共存する皮膜層4を有することで、耐黄変性、塗膜密着性、及び、耐硫化黒変性をより一層向上させることができる。なお、ジルコニウム酸化物のみ、又は、酸化スズのみでは、耐黄変性、塗膜密着性、及び、耐硫化黒変性を十分に改善することが出来ない。この理由は定かではないが、本発明者らの詳細な調査により、以下のように考えている。
 酸化スズは、従来、黄変の原因とされてきたが、本発明者らによる検討の結果、Snめっき鋼板上に、均一かつ十分な量の酸化スズを生成させると、耐黄変性が逆に向上する傾向にあることが分かった。また、Snめっき鋼板上に、均一かつ十分な量の酸化スズを生成させると、耐黄変性の向上に加えて、同時に耐硫化黒変性も向上する傾向にあることが分かった。これは、黄変がSnめっき鋼板上のミクロな金属スズの溶出と酸化現象との繰り返しで生じることに対し、Snめっき表面を酸化スズで被覆してしまうことで、ミクロな金属スズの溶出を抑制出来るためと考えられる。かかる効果を得るには、酸化スズの還元に要する電気量が5.0mC/cm超20mC/cm以下の範囲内である酸化スズ量とする必要がある。酸化スズの還元に要する電気量が20mC/cm超となる場合には、塗膜密着性が劣るため好ましくない。酸化スズの還元に要する電気量の下限値は、好ましくは7.0mC/cmであり、さらに好ましくは8mC/cmである。また、酸化スズの還元に要する電気量の上限値は、好ましくは15mC/cmであり、さらに好ましくは12mC/cmである。なお、「酸化スズの還元に要する電気量」とは、Snめっき鋼板10の皮膜層4における酸化スズを還元除去するために要する時間と電流値との積として求めた電気量を示すものであり、実質的に皮膜層4の量(膜厚)に対応する数値となる。
 酸化スズによる上記の効果を得るためには、ジルコニウム酸化物が皮膜層4中に共存していることが必要である。これは、ジルコニウム酸化物が、酸化スズを含有する皮膜の脆性を改善し、塗膜密着性を向上させるためである。また、ジルコニウム酸化物自体によっても、耐硫化黒変性を向上させる効果がある。かかる効果を得るには、ジルコニウム酸化物の含有量を、金属Zr量で1mg/m以上30mg/m以下の範囲内とする必要がある。金属Zr量が1mg/m未満である場合には、酸化スズを含む皮膜の脆化を抑制できない。一方、金属Zr量が30mg/m超となる場合には、ジルコニウム酸化物の含有量が過剰であり、逆に塗膜密着性を低下させる。ジルコニウム化合物の含有量の下限値は、好ましくは3mg/mであり、さらに好ましくは5mg/mである。また、ジルコニウム化合物の含有量の上限値は、好ましくは10mg/mであり、さらに好ましくは8mg/mである。
 なお、酸化スズは、XPSによるSn3d5/2の結合エネルギーのピーク位置が、金属Snの結合エネルギーのピーク位置から1.4eV以上1.6eV未満の範囲内となる必要がある。酸化スズが上記の範囲外の結合エネルギー値を有する場合は、塗膜密着性が安定しない。
 これらのジルコニウム酸化物と酸化スズとを含有する皮膜層4は、両者の混合状態であってもよいし、酸化物の固溶体であってもよく、その存在状態を問わない。また、これらの酸化物中に、P、Fe、Ni、Cr、Ca、Na、Mg、Al、Si等のような、いかなる元素が更に含有されていても、何ら問題ない。すなわち、皮膜層4の成分としては、ジルコニウム酸化物と酸化スズ以外に、他の成分(リン化合物やフッ化物等)を更に含有してもよい。
 ここで、上記のZrの付着量は、本実施形態に係る皮膜層4を表面に形成させたSnめっき鋼板10を、例えば、フッ酸と硫酸などの酸性溶液に浸漬して溶解し、得られた溶解液を高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分析法などの化学分析によって測定された値とする。あるいは、上記のZrの付着量は、蛍光X線測定によって求めても構わない。
 酸化スズの還元に要する電気量は、以下のような方法で測定する。すなわち、窒素ガスのバブリング等により溶存酸素を除去した0.001mol/Lの臭化水素酸水溶液中で、0.06mA/cmの定電流により、本実施形態に係るSnめっき鋼板10を陰極電解する。この際に、酸化スズを還元除去するために要する時間と電流値との積から、酸化スズの還元に要する電気量を求めることができる。
 また、XPSによるSn3d5/2の結合エネルギーのピーク位置は、公知のXPS測定装置を用いて、公知の方法により測定することが可能である。
<Snめっき鋼板のSn付着量>
 本実施形態に係るSnめっき鋼板10において、片面当たりのSn付着量は、金属Sn量として、0.1g/m以上15g/m以下とする。以下で詳述するように、本実施形態に係るSnめっき鋼板10の皮膜層4は、ジルコニウム酸化物層が形成されたSnめっき鋼板(素材)を所定の条件下で加熱処理して、Snめっき層2中のSnをジルコニウム酸化物層中に拡散させることで形成される。従って、上記片面当たりのSn付着量は、本実施形態に係るSnめっき鋼板10において、Snめっき層2中に存在する、皮膜層4中に拡散していないSnの含有量と、皮膜層4中に存在する酸化スズの金属Sn換算量と、の合計値である。
 本実施形態に係るSnめっき鋼板10において、片面当たりのSn付着量が0.1g/m未満である場合には、塗装後耐食性に劣り、好ましくない。また、片面当たりのSn付着量が15g/mを超える場合、Snによる塗装後耐食性の向上効果は十分であり、更なる付着量の増加は経済的な観点から好ましくなく、また、塗膜密着性も低下する傾向にある。本実施形態に係るSnめっき鋼板10において、片面当たりのSn付着量の下限値は、好ましくは1.0g/mであり、さらに好ましくは2.0g/mである。また、片面当たりのSn付着量の上限値は、好ましくは10g/mであり、さらに好ましくは7.0g/mである。
 ここで、上記のような、片面当たりのSnの付着量は、例えばJIS G 3303に記載された電解法や蛍光X線法によって測定された値とする。
(Snめっき鋼板10の製造方法について)
 以下では、本実施形態に係るSnめっき鋼板の製造方法について、詳細に説明する。本実施形態に係るSnめっき鋼板の製造方法では、鋼板1の少なくとも片面に、片面当たりのSn付着量が0.1g/m以上15g/m以下となるようにSnめっき層2の形成された母材めっき鋼板3が、素材として用いられる。
 ここで、母材めっき鋼板3の製造方法については、特に限定されるものではなく、所望の機械的強度(例えば、引張強度等)を有する公知の鋼板1に対して、公知のめっき方法により、片面当たりのSnめっき付着量が0.1g/m以上15g/m以下となるように、Snめっきを施すことで製造することができる。また、片面当たりの付着量が上記の範囲内となるように予めSnめっきの施された公知のSnめっき鋼板(素材)を、母材めっき鋼板3として使用することも可能である。
 続いて、ジルコニウム酸化物及び酸化スズを含有する皮膜層4の形成方法について、詳細に説明する。本実施形態に係る皮膜層4を形成するためには、まず、母材めっき鋼板3をなすSnめっき層2上に対して、ジルコニウム酸化物を含有するジルコニウム酸化物層を形成する。
 ジルコニウム酸化物を含有するジルコニウム酸化物層は、上記のようなSnめっき層2の形成された母材めっき鋼板3に対して、ジルコニウムイオンを含む溶液中への浸漬処理、又は、ジルコニウムイオンを含む溶液中での陰極電解処理を施すことで、母材めっき鋼板3上に形成することができる。
 ただし、浸漬処理では、下地である母材めっき鋼板3の表面がエッチングされることでジルコニウム酸化物を含有するジルコニウム酸化物層が形成されるため、その付着量が不均一になりやすく、また、処理時間も長くなるため、工業生産的には不利である。一方、陰極電解処理では、強制的な電荷移動及び鋼板界面での水素発生による表面清浄化とpH値の上昇による付着促進効果も相まって、均一な皮膜を得ることができる。更に、この陰極電解処理において、処理液中に硝酸イオンとアンモニウムイオンとが共存することにより、数秒から数十秒程度の短時間処理が可能であることから、工業的には極めて有利である。従って、本実施形態に係るジルコニウム酸化物を含有するジルコニウム酸化物層の形成には、陰極電解による方法(陰極電解処理)を利用することが好ましい。
 以下では、陰極電解処理を行ってジルコニウム酸化物層を形成する場合について詳細に説明するが、電流密度等といった陰極電解処理に特有な条件以外の溶液に関する条件については、浸漬処理によりジルコニウム酸化物層を形成する場合にも同様に適用可能である。
 ここで、陰極電解処理を実施する溶液中のジルコニウムイオンの濃度は、生産設備や生産速度(能力)に応じて適宜調整すればよい。溶液中のジルコニウムイオン濃度は、例えば、100ppm以上4000ppm以下であることが好ましい。また、ジルコニウムイオンを含む溶液中には、フッ素イオン、アンモニウムイオン、硝酸イオン、硫酸イオンなど、他の成分が含まれていても何ら問題ない。
 ここで、陰極電解する溶液(陰極電解液)の液温は、特に規定するものではないが、例えば、10℃以上50℃以下の範囲とすることが好ましい。50℃以下で陰極電解を行うことにより、非常に細かい粒子により形成された、緻密で均一な皮膜組織の形成が可能となる。一方、液温が10℃未満である場合には、皮膜の形成効率が悪く、夏場など外気温が高い場合には溶液の冷却が必要となり、経済的ではないだけでなく、塗装後耐食性も低下する可能性がある。また、液温が50℃を超える場合には、形成されるジルコニウム酸化物皮膜組織が不均一となり、欠陥、割れ、マイクロクラック等が発生して緻密な皮膜形成が困難となり、腐食等の起点となる可能性があるため、好ましくない。
 また、陰極電解液のpH値は、特に規定するものではないが、3以上5以下であることが好ましい。pH値が3未満である場合には、ジルコニウム酸化物の生成効率が低下する可能性があり、pH値が5超となる場合には、溶液中に沈殿が多量に発生し、連続生産性が低下する可能性がある。
 なお、陰極電解液のpH値を調整したり電解効率を向上させたりするために、陰極電解液中に、例えば硝酸、アンモニア水等を含有させてもよい。特に、陰極電解処理の短時間化を実現するためには、陰極電解液中に、硝酸及びアンモニア水を含有させることが好ましい。
 また、陰極電解処理における電流密度は、例えば、0.05A/dm以上50A/dm以下の範囲内とすることが好ましい。電流密度が0.05A/dm未満である場合には、ジルコニウム酸化物の形成効率の低下を招き、ジルコニウム酸化物を含有する皮膜層の安定的な形成が困難となって、耐黄変性や耐硫化黒変性が低下するだけでなく、塗装後耐食性も低下する可能性があるため、好ましくない。一方、電流密度が50A/dm超となる場合には、ジルコニウム酸化物の形成効率が大き過ぎ、粗大かつ密着性に劣るジルコニウム酸化物が形成される可能性があるため、好ましくない。電流密度の範囲の下限値は、より好ましくは1A/dmであり、さらに好ましくは2A/dmである。電流密度の範囲の上限値は、より好ましくは10A/dmであり、さらに好ましくは6A/dmである。
 なお、ジルコニウム酸化物層の形成に際して、陰極電解の時間は、問うものではない。狙いとするZr付着量に対し、電流密度に応じて適宜陰極電解の時間を調整すればよいが、例えば上記のような電流密度の範囲で陰極電解処理を行う場合、通電時間は、0.3~5秒程度とすることができる。
 また、陰極電解処理に用いられる溶液の溶媒としては、例えば、蒸留水等を使用することができるが、蒸留水等の水に規定されるものではなく、溶解する材料や形成方法等に応じて、適宜選択することが可能である。
 陰極電解中のジルコニウムは、例えば、HZrFのようなジルコニウム錯体をジルコニウムの供給源として使用できる。上記のようなジルコニウム錯体中のZrは、陰極電極界面におけるpH値の上昇によりZr4+となって陰極電解液中に存在する。このようなジルコニウムイオンは、陰極電解液中で更に反応し、ジルコニウム酸化物となる。電解液中にリン酸を含む場合は、リン酸ジルコニウムも形成される。
 また、陰極電解する際の通電パターンとしては、連続通電であっても断続通電であっても何ら問題はない。
 本実施形態に係るジルコニウム酸化物及び酸化スズを含有する皮膜層4は、上記のようなジルコニウム酸化物を含有するジルコニウム酸化物層を形成させた母材めっき鋼板3を、所定の条件で加熱処理することで得られる。具体的には、母材めっき鋼板3のSnめっき層2上にジルコニウム酸化物層を形成させた後に、酸素を含有する雰囲気下において、温度T(単位:K)及び時間t(単位:hour)に関する以下の式101及び式102を共に満足するような条件で加熱することで、本実施形態に係るSnめっき鋼板10を得ることができる。すなわち、以下で詳述するような加熱処理により、Snめっき層2中のSnをジルコニウム酸化物層に拡散させることで、拡散したSnが酸化されて酸化スズとなる。かかる加熱処理により、酸化スズの生成量は、上記のような還元に要する電気量に対応するものとなり、かつ、酸化スズのXPSによるSn3d5/2の結合エネルギーのピーク位置が、上記のような範囲内となる。
 0.11×exp(2400/T)<t<0.65×exp(2400/T)・・・(式101)
 308<T<373 ・・・(式102)
 上記の製造方法における加熱方法は、何ら限定するものではなく、例えば、雰囲気加熱、誘導加熱、通電加熱等の公知の加熱方法を適用することができる。ここで、加熱温度は、上記式102に示したように、308K超373K未満(すなわち、35℃超100℃未満)とする必要がある。加熱温度が308K以下となる場合には、酸化スズが不均一に形成されて、性能が向上しない。一方、加熱温度が373K以上となる場合には、酸化スズの構造が変化して外観が劣化するため、不適である。
 ここで、上記式101は、本発明者らが、加熱処理の際の加熱温度と、加熱時間と、をそれぞれ変化させながら、得られるSnめっき鋼板10が本実施形態の範囲内となるか否かについて検証を行うことで、実験的に得られたものである。すなわち、本発明者らは、加熱処理の際の加熱温度T(K)と、加熱時間t(hour)と、をそれぞれ変化させながら、Snめっき鋼板10を製造し、得られたSnめっき鋼板10が本実施形態の範囲内となったか否かを検証した。その上で、加熱時間t(hour)及び加熱温度T(K)で規定される座標平面に対して、各Snめっき鋼板10の加熱条件に対応する位置に、得られた検証結果をプロットしていった。その後、本実施形態の範囲内となる領域の境界を与える曲線を得るために、座標平面上のプロットに対して、上記式102で規定される加熱温度T(K)の範囲内で、公知の数値演算アプリケーションを用いて非線形の最小二乗法を適用した。このような事前の検証により、本発明者らは、上記式101で表される関係を得ることができた。
 本発明者らによる上記のような検討の結果、加熱処理工程における加熱温度T[K]及び加熱時間t[hour]は、以下の式103を満足することが好ましく、以下の式104を満足することがより好ましいことが明らかとなった。
 0.22×exp(2400/T)<t<0.55×exp(2400/T)・・・(式103)
 0.33×exp(2400/T)<t<0.44×exp(2400/T)・・・(式104)
 なお、加熱処理工程における昇温速度や冷却速度については、特に限定するものではなく、公知の方法に則して適宜設定すればよい。また、酸素を含有する雰囲気であれば、加熱する雰囲気も特に限定しないが、酸素を含有する雰囲気中の水蒸気量を、60~90体積%の範囲内とすることが好ましい。かかる範囲内で加熱処理することで、酸化スズがより均一に生成すると考えられ、性能が良化する。
 続いて、実施例を示しながら、本実施形態に係るSnめっき鋼板10及びSnめっき鋼板10の製造方法について、具体的に説明する。なお、以下に示す実施例は、あくまでも一例にすぎず、本発明に係るSnめっき鋼板及びSnめっき鋼板の製造方法が下記の例のみに限定されるものではない。
(実施例1)
<試験材>
 板厚0.2mmの低炭素冷延鋼板(鋼板1に対応)に対し、前処理として、電解アルカリ脱脂、水洗、希硫酸浸漬酸洗、水洗した後、フェノールスルホン酸浴を用いて電気Snめっきを施し、更にその後、加熱溶融処理をした。Snめっきの付着量は、片面当たり約2.8g/mを標準としたが、一部の試験材は、通電時間を変えることでSnめっきの付着量を変化させた。また、電気Snめっき後に加熱溶融処理をしない試験材も、あわせて作製した。Snめっき付着量は、蛍光X線法(リガク社製ZSX Primus)により測定することで特定した。
 上記のように作製したSnめっき鋼板を、フッ化ジルコニウムを含む水溶液中で陰極電解し、Snめっき鋼板上にジルコニウム酸化物層を形成した。陰極電解液中のジルコニウム濃度は、1400ppmとした。また、陰極電解液の浴温は35℃とし、かつ、陰極電解液のpH値が3以上5以下となるように調整し、電流密度及び陰極電解時間を、狙いとするZr付着量に応じて適宜調整した。各試験材の作製時における電流密度及び陰極電解時間は、以下の表1に示した通りである。
 更に、ジルコニウム酸化物層を形成させたSnめっき鋼板を、以下の表1に示したような種々の加熱温度及び加熱時間で保持し、ジルコニウム酸化物と酸化スズとを含有する皮膜層を形成させた。なお、比較として、ジルコニウム酸化物層のみを形成させ加熱処理をしない試験材(No.1B、No.3B)と、ジルコニウム酸化物を形成せずに加熱処理のみ実施した試験材(No.7B)も、あわせて作製した。また、一部の試験材は、ジルコニウム酸化物の形成前に炭酸ナトリウム水溶液中で陽極電解処理し、酸化スズの構造を変化させた(No.5B、No.6B)。このように作製したSnめっき鋼板について、以下に示す種々の評価を行った。また、一部の試験材はフッ化ジルコニウムを含む水溶液中で陰極電解と陽極電解を交互に繰り返す交番電解処理でジルコニウム酸化物を形成させた(No.9B)。
[Zr付着量]
 各試験材の皮膜層における片面当たりのZr付着量は、リガク社製ZSX Primusを用いて、蛍光X線法により測定した。得られたZr付着量を、以下の表1に併せて示した。
[酸化スズ量]
 各試験材について、窒素ガスのバブリングにより溶存酸素を除去した0.001mol/Lの臭化水素酸水溶液中において、0.06mA/cmの定電流で陰極電解し、酸化スズを還元除去するまでに要する時間と電流との積から、酸化スズの還元に要する電気量を測定した。測定した電気量を、以下の表1の「酸化スズ量」の欄に併せて示した。
[XPSでのピーク位置]
 各試験材について、XPS(ULVAC-PHI製PHI Quantera SXM)を用いてSn3d5/2の結合エネルギーのピーク位置を測定し、金属Snの結合エネルギーのピーク位置からのピーク位置のシフト量を算出した。得られたシフト量を、以下の表1の「Sn3d5/2の結合エネルギーピーク位置」の欄に併せて示した。
[耐黄変性]
 耐黄変性は、以下のようにして評価した。
 上記のようにして作製した各試験材を、40℃、相対湿度80%に保持した恒温恒湿槽中に4週間載置する湿潤試験を行い、湿潤試験前後における色座標b値の変化量△bを求めて、評価した。変化量△bが1以下であれば3点とし、1超過2以下であれば2点とし、2~3であれば1点とし、3を超過していれば0点とし、評価1点以上を合格とした。なお、色座標bは、市販の色差計であるスガ試験機製SC-GV5を用いて測定し、色座標bの測定条件は、光源C、全反射、測定径30mmとした。
[耐硫化黒変性]
 耐硫化黒変性は、以下のようにして評価した。
 上記のようにして作製した各試験材の表面に、市販の缶用エポキシ樹脂塗料を乾燥質量で7g/m塗布した後、200℃で10分焼き付け、24時間室温に置いた。その後、得られた各試験材を所定のサイズに切断し、0.3質量%のリン酸二水素ナトリウム、0.7質量%のリン酸水素ナトリウム、0.6質量%のL-システイン塩酸塩をそれぞれ含有する水溶液中に浸漬し、密封容器中で121℃・60分のレトルト処理を行い、試験後の外観から評価した。試験前後で外観の変化が全く認められなければ2点とし、僅かに黒変が認められれば(黒変した面積が10%以下であれば)1点とし、試験面の10%超過の領域に黒変が認められれば0点とし、評価1点以上を合格とした。
[塗膜密着性]
 塗膜密着性は、以下のようにして評価した。
 上記のようにして作製した各試験材を、上記[耐黄変性]に記載の方法で湿潤試験した後、表面に、市販の缶用エポキシ樹脂塗料を乾燥質量で7g/m塗布し、200℃で10分焼き付け、24時間室温に置いた。その後、得られた各試験材に対し、鋼板表面に達する傷を碁盤目状に入れ(3mm間隔で縦横7本ずつの傷)、その部位のテープ剥離試験をすることで評価した。テープ貼り付け部位の塗膜が全て剥離していなければ2点とし、碁盤目の傷部周囲で塗膜剥離が認められれば1点とし、碁盤目の枡内に塗膜剥離が認められれば0点とし、評価1点以上を合格とした。
[塗装後耐食性]
 塗装後耐食性は、以下のようにして評価した。
 上記[塗膜密着性]に記載の方法で作製及び湿潤試験した各試験材の表面に、市販の缶用エポキシ樹脂塗料を乾燥質量で7g/m塗布した後、200℃で10分焼き付け、24時間室温に置いた。その後、得られた各試験材を40mm×40mmのサイズに切断し、市販のトマトジュースに60℃の温度環境下で7日間浸漬した後の錆の発生有無を、目視にて評価した。錆が全く認められなければ2点とし、僅かに錆が認められれば(発錆した面積が5%以下であれば)1点とし、錆が5%超認められれば0点とし、評価1点以上を合格とした。
[総合性能]
 また、総合性能として、各種性能の評点の合計を求め、その合計値が8点又は9点である場合を「Very Good」とし、6点又は7点である場合を「Good」とし、4点又は5点である場合を「Fair」とし、何れか一つの性能において0点が存在する場合は、合計値を0点として「Bad」とし、評点Very Good、Good、Fairを合格とした。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、発明例に該当する試験材では、いずれの性能も良好であることがわかる。一方、比較例に該当する試験材は、耐黄変性、塗膜密着性、耐硫化黒変性、塗装後耐食性のいずれかが劣ることがわかる。
(実施例2)
 板厚0.2mmの低炭素冷延鋼板に対し、前処理として、電解アルカリ脱脂、水洗、希硫酸浸漬酸洗、水洗した後、フェノールスルホン酸浴を用いて電気Snめっきを施し、更にその後、加熱溶融処理をした。Snの付着量は、片面当たり2.8g/mとした。
 上記のように作製したSnめっき鋼板を、フッ化ジルコニウムを含む水溶液中で陰極電解し、Snめっき鋼板上にジルコニウム酸化物層を形成した。陰極電解液中のジルコニウム濃度は、1400ppmとした。また、陰極電解液の浴温は35℃とし、かつ、陰極電解液のpH値が3以上5以下となるように調整し、電流密度及び陰極電解時間を、Zr付着量が5mg/mとなるように、適宜調整した。
 更に、ジルコニウム酸化物層を形成させたSnめっき鋼板を、種々の加熱温度及び加熱時間で保持し、ジルコニウム酸化物と酸化スズとを含有する皮膜層を形成させ、得られたSnめっき鋼板のそれぞれを試験材とした。
 得られた各試験材について、上記実施例1に記載した方法と同様に各種性能を評価し、各評価項目における合計点から総合性能を行った。総合性能の評価基準は、実施例1と同様である。結果を以下の表2に纏める。また、加熱温度T[℃]及び加熱時間t[hour]で規定される座標平面において、各試験材の加熱温度及び加熱時間の組み合わせに対応する位置に、得られた総合性能の評価結果をプロットした。得られたプロットを、図2に示した。
Figure JPOXMLDOC01-appb-T000002
 なお、図2では、上記式101、式103及び式104のそれぞれにおける最左辺及び最右辺で規定される曲線を、あわせて図示している。
 図2から明らかなように、本実施形態の範囲内の条件で加熱処理を施した場合には、良好な性能が得られる一方で、本実施形態の範囲外となる条件で加熱処理を施した場合には、良好な性能が得られないことがわかる。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例のみに限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 以上のように、本発明に係るSnめっき鋼板は、従来のクロメート処理を必要とせずに、耐黄変性、塗膜密着性、耐硫化黒変性に優れることから、環境にやさしい缶用材料として、食缶、飲料缶などに広く用いることができ、産業上の利用価値が極めて高いものである。
 1 鋼板
 2 Snめっき層
 3 母材めっき鋼板
 4 皮膜層
 10 Snめっき鋼板

Claims (5)

  1.  鋼板、及び、前記鋼板の少なくとも片面にSnめっき層を有する母材めっき鋼板と;
     前記母材めっき鋼板上に位置する、ジルコニウム酸化物と酸化スズとを含有する皮膜層と;
    を備え、
     片面当たりのSnの付着量が、0.1g/m以上15g/m以下であり、
     前記皮膜層中における前記ジルコニウム酸化物の含有量が、金属Zr量で1mg/m以上30mg/m以下の範囲内であり、
     前記皮膜層中における前記酸化スズのX線光電子分光法によるSn3d5/2の結合エネルギーのピーク位置が、金属Snの結合エネルギーのピーク位置から1.4eV以上1.6eV未満の範囲内にあり、
     前記酸化スズの還元に要する電気量が、5.0mC/cm超20mC/cm以下の範囲内である、
    Snめっき鋼板。
  2.  鋼板の少なくとも片面に、Snを0.1g/m以上15g/m以下含有するSnめっき層が形成された母材めっき鋼板に対して、ジルコニウムイオンを含有する溶液中への浸漬処理、又は、ジルコニウムイオンを含有する溶液中での陰極電解処理を施すことで、ジルコニウム酸化物を含有するジルコニウム酸化物層を形成させる第1の工程と;
     前記第1の工程の後、前記ジルコニウム酸化物層が形成された前記母材めっき鋼板を、酸素を含有する雰囲気下において、単位がKである加熱温度T、及び単位がHourである加熱時間tに関する以下の式1及び式2を共に満足する条件で加熱処理する第2の工程と;
    を有する、Snめっき鋼板の製造方法。
     0.11×exp(2400/T)<t<0.65×exp(2400/T)・・・(式1)
     308<T<373 ・・・(式2)
  3.  前記第2の工程における前記加熱処理は、酸素を含有し、かつ、水蒸気量が60体積%以上90体積%以下の範囲内である雰囲気下で実施される、請求項2に記載のSnめっき鋼板の製造方法。
  4.  前記ジルコニウムイオンを含有する溶液のジルコニウムイオン濃度は、100ppm以上4000ppm以下であり、前記ジルコニウムイオンを含有する溶液のpH値は、3以上5以下である、請求項2又は3に記載のSnめっき鋼板の製造方法。
  5.  前記第1の工程で、
      前記ジルコニウム酸化物層を、陰極電解処理により形成し、
      前記陰極電解処理における電流密度を、0.05A/dm以上50A/dm以下とする、
    請求項2~4の何れか1項に記載のSnめっき鋼板の製造方法。
PCT/JP2019/008222 2018-03-01 2019-03-01 Snめっき鋼板及びSnめっき鋼板の製造方法 WO2019168179A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019541379A JP6642774B1 (ja) 2018-03-01 2019-03-01 Snめっき鋼板及びSnめっき鋼板の製造方法
US16/975,637 US11598009B2 (en) 2018-03-01 2019-03-01 Sn-plated steel sheet and method for manufacturing Sn-plated steel sheet
EP19760710.4A EP3760763A4 (en) 2018-03-01 2019-03-01 SN PLATED STEEL SHEET AND ITS MANUFACTURING PROCESS
CN201980016324.5A CN111788334B (zh) 2018-03-01 2019-03-01 镀Sn钢板及镀Sn钢板的制造方法
KR1020207024589A KR102364143B1 (ko) 2018-03-01 2019-03-01 Sn 도금 강판 및 Sn 도금 강판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018036587 2018-03-01
JP2018-036587 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019168179A1 true WO2019168179A1 (ja) 2019-09-06

Family

ID=67805423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008222 WO2019168179A1 (ja) 2018-03-01 2019-03-01 Snめっき鋼板及びSnめっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US11598009B2 (ja)
EP (1) EP3760763A4 (ja)
JP (1) JP6642774B1 (ja)
KR (1) KR102364143B1 (ja)
CN (1) CN111788334B (ja)
TW (1) TWI689633B (ja)
WO (1) WO2019168179A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124510A1 (ja) * 2019-12-19 2021-06-24
WO2023243717A1 (ja) * 2022-06-17 2023-12-21 日本製鉄株式会社 錫めっき鋼板および缶

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290292A (ja) 1987-05-20 1988-11-28 Nippon Steel Corp 耐錆性、溶接性に優れた薄Snメツキ鋼板の製造方法
JP2004060052A (ja) 2002-06-05 2004-02-26 Jfe Steel Kk Si含有化成皮膜を有する錫系めっき鋼板の製造方法
JP2007284789A (ja) 2006-03-24 2007-11-01 Nippon Steel Corp 製缶加工性に優れた容器用鋼板
WO2008123632A1 (ja) * 2007-04-04 2008-10-16 Nippon Steel Corporation 缶用めっき鋼板及びその製造方法
JP2010013728A (ja) 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP2011174172A (ja) 2010-01-28 2011-09-08 Jfe Steel Corp 錫めっき鋼板およびその製造方法
WO2015001598A1 (ja) * 2013-07-01 2015-01-08 Jfeスチール株式会社 容器用鋼板
WO2017204265A1 (ja) * 2016-05-24 2017-11-30 新日鐵住金株式会社 Snめっき鋼板
JP2018036587A (ja) 2016-09-02 2018-03-08 コニカミノルタ株式会社 画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518944B1 (en) 2002-06-05 2014-05-14 JFE Steel Corporation Tin-plated steel plate and method for production thereof
US9127341B2 (en) * 2011-01-18 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container having excellent organic film performance and process for producing the same
JP5994495B2 (ja) 2011-09-05 2016-09-21 Jfeスチール株式会社 容器用鋼板
TWI549812B (zh) * 2013-05-21 2016-09-21 新日鐵住金股份有限公司 容器用鋼板及容器用鋼板之製造方法
WO2017204266A1 (ja) * 2016-05-24 2017-11-30 新日鐵住金株式会社 Sn系合金めっき鋼板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290292A (ja) 1987-05-20 1988-11-28 Nippon Steel Corp 耐錆性、溶接性に優れた薄Snメツキ鋼板の製造方法
JP2004060052A (ja) 2002-06-05 2004-02-26 Jfe Steel Kk Si含有化成皮膜を有する錫系めっき鋼板の製造方法
JP2007284789A (ja) 2006-03-24 2007-11-01 Nippon Steel Corp 製缶加工性に優れた容器用鋼板
WO2008123632A1 (ja) * 2007-04-04 2008-10-16 Nippon Steel Corporation 缶用めっき鋼板及びその製造方法
JP2010013728A (ja) 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP2011174172A (ja) 2010-01-28 2011-09-08 Jfe Steel Corp 錫めっき鋼板およびその製造方法
WO2015001598A1 (ja) * 2013-07-01 2015-01-08 Jfeスチール株式会社 容器用鋼板
WO2017204265A1 (ja) * 2016-05-24 2017-11-30 新日鐵住金株式会社 Snめっき鋼板
JP2018036587A (ja) 2016-09-02 2018-03-08 コニカミノルタ株式会社 画像形成装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Surface Analysis Chemistry Selection: X-ray Photoelectron Spectroscopy", MARUZEN PUBLISHING CO., LTD., pages: 83
See also references of EP3760763A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124510A1 (ja) * 2019-12-19 2021-06-24
WO2021124510A1 (ja) * 2019-12-19 2021-06-24 日本製鉄株式会社 Sn系めっき鋼板
JP7239020B2 (ja) 2019-12-19 2023-03-14 日本製鉄株式会社 Sn系めっき鋼板
WO2023243717A1 (ja) * 2022-06-17 2023-12-21 日本製鉄株式会社 錫めっき鋼板および缶

Also Published As

Publication number Publication date
CN111788334B (zh) 2022-08-19
US11598009B2 (en) 2023-03-07
KR20200111772A (ko) 2020-09-29
TWI689633B (zh) 2020-04-01
JP6642774B1 (ja) 2020-02-12
EP3760763A4 (en) 2021-11-24
TW201937007A (zh) 2019-09-16
US20200399765A1 (en) 2020-12-24
EP3760763A1 (en) 2021-01-06
CN111788334A (zh) 2020-10-16
KR102364143B1 (ko) 2022-02-18
JPWO2019168179A1 (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
US8133594B2 (en) Steel sheet for container use
WO2018190412A1 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6855833B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6806151B2 (ja) Snめっき鋼板
JP2009120919A (ja) 容器用鋼板とその製造方法
JP6806152B2 (ja) Sn系合金めっき鋼板
WO2019168179A1 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP5994495B2 (ja) 容器用鋼板
JP2014095121A (ja) 処理液、容器用鋼板、および、容器用鋼板の製造方法
JP2018135570A (ja) Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法
JP7239020B2 (ja) Sn系めっき鋼板
JP6003912B2 (ja) 容器用鋼板およびその製造方法
JP7410386B2 (ja) Sn系めっき鋼板
JP6468059B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6003910B2 (ja) 容器用鋼板およびその製造方法
TW202124788A (zh) Sn系鍍敷鋼板
JP2016145425A (ja) 処理液、および、容器用鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541379

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207024589

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019760710

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019760710

Country of ref document: EP

Effective date: 20201001