WO2019168087A1 - クレーン - Google Patents

クレーン Download PDF

Info

Publication number
WO2019168087A1
WO2019168087A1 PCT/JP2019/007769 JP2019007769W WO2019168087A1 WO 2019168087 A1 WO2019168087 A1 WO 2019168087A1 JP 2019007769 W JP2019007769 W JP 2019007769W WO 2019168087 A1 WO2019168087 A1 WO 2019168087A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
actuator
unit
boom
filter
Prior art date
Application number
PCT/JP2019/007769
Other languages
English (en)
French (fr)
Inventor
末和 郷東
真輔 神田
和磨 水木
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to CN201980014584.9A priority Critical patent/CN111741922B/zh
Priority to EP19760219.6A priority patent/EP3760567A4/en
Priority to US16/976,275 priority patent/US11267681B2/en
Priority to JP2019523886A priority patent/JP6551638B1/ja
Publication of WO2019168087A1 publication Critical patent/WO2019168087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists
    • B66C2700/085Control actuators

Definitions

  • the present invention relates to a crane.
  • the crane is mainly composed of a traveling body and a turning body.
  • the traveling body includes a plurality of wheels and is configured to be able to travel.
  • the swivel body includes a boom, a wire rope, a hook, and the like.
  • Such a revolving structure is configured to be able to carry luggage.
  • Such a crane is provided with an actuator for carrying the load and a control device for instructing the operating state of the actuator.
  • the filtering control signal means a signal obtained by applying a filter having a predetermined characteristic to the basic control signal of the actuator.
  • a notch filter is mentioned as a filter.
  • the notch filter has a feature that the attenuation rate increases as it approaches the resonance frequency in an arbitrary range centering on the resonance frequency. The resonance frequency is calculated based on the hanging length of the hook.
  • the above-mentioned actuator is a turning hydraulic motor, and the boom turning operation is manually stopped.
  • the boom turning operation continues while the boom decelerates for a while. This is because the swinging movement of the boom is not immediately stopped, but the deceleration section based on the filtering control signal is provided to suppress the swing of the load.
  • such a characteristic means that the turning motion of the boom does not match the operation by the operator, and there is a problem that the more uncomfortable the operator, the greater the uncomfortable feeling. Therefore, there is a demand for a crane that can select an operation characteristic for the control mode of the load carrying operation.
  • An object of the present invention is to provide a crane capable of selecting an operation characteristic with respect to a control mode of a load carrying operation.
  • One aspect of the crane according to the present invention includes an operated function unit, an operation unit that receives an operation input for operating the operated function unit, an actuator that drives the operated function unit, and an actuator based on the operation input.
  • the first generation unit that generates the first control signal
  • the switch unit that can switch between the first state and the second state, and the second state of the switch unit
  • the first control signal is filtered to obtain the second control signal
  • the first filter unit to be generated and the control unit that controls the actuator based on the first control signal in the first state of the switch unit, and controls the actuator based on the second control signal in the second state of the switch unit And comprising.
  • FIG. 1 is a diagram illustrating a crane.
  • FIG. 2 is a view showing the interior of the cabin.
  • FIG. 3 is a diagram illustrating the configuration of the control system.
  • FIG. 4 is a diagram illustrating frequency characteristics of the notch filter.
  • FIG. 5 is a diagram illustrating a basic control signal and a filtering control signal.
  • FIG. 6 is a diagram illustrating a transport allowable area and a transport restriction area at a work site.
  • FIG. 7 is a diagram showing a control mode in which the boom turning operation is automatically stopped or manually stopped.
  • FIG. 8 is a diagram illustrating the movement of the load when the boom turning operation is automatically stopped.
  • FIG. 9 is a diagram illustrating the movement of the load when the boom turning operation is manually stopped.
  • FIG. 1 is a diagram illustrating a crane.
  • FIG. 2 is a view showing the interior of the cabin.
  • FIG. 3 is a diagram illustrating the configuration of the control system.
  • FIG. 4 is a diagram
  • FIG. 10 is a diagram showing the movement of the load when the boom telescopic operation is automatically stopped.
  • FIG. 11 is a diagram illustrating the movement of the load when the boom telescopic operation is manually stopped.
  • FIG. 12 is a diagram illustrating the movement of the load when the boom hoisting operation is automatically stopped.
  • FIG. 13 is a diagram illustrating the movement of the load when the boom hoisting operation is manually stopped.
  • FIG. 14 is a diagram illustrating the movement of the load when the hook lifting / lowering operation is automatically stopped.
  • FIG. 15 is a diagram illustrating the movement of the load when the lifting / lowering operation of the hook is manually stopped.
  • FIG. 16 is a view showing an adjustment dial provided in the cabin.
  • the crane 1 is mainly composed of a traveling body 2 and a revolving body 3.
  • the traveling body 2 includes a pair of left and right front tires 4 and a rear tire 5.
  • the traveling body 2 includes an outrigger 6 that is grounded and stabilized when carrying the cargo W.
  • the revolving unit 3 is supported on the upper part of the traveling unit 2. Such a revolving structure 3 can be revolved by an actuator.
  • the revolving unit 3 includes a boom 7 so as to protrude forward from the rear part. Therefore, the boom 7 can turn freely by an actuator (see arrow A). The boom 7 can be extended and contracted by an actuator (see arrow B).
  • the boom 7 can be raised and lowered by an actuator (see arrow C).
  • a wire rope 8 is bridged over the boom 7.
  • a winch 9 around which a wire rope 8 is wound is disposed on the proximal end side of the boom 7, and a hook 10 is suspended by the wire rope 8 on the distal end side of the boom 7.
  • the winch 9 is configured integrally with the actuator and enables the wire rope 8 to be wound and unwound. Therefore, the hook 10 can be moved up and down by an actuator (see arrow D).
  • the revolving unit 3 includes a cabin 11 on the side of the boom 7.
  • the winch 9 corresponds to an example of an operated function unit.
  • a turning operation tool 21, a telescopic operation tool 22, a hoisting operation tool 23, and a winding operation tool 24 described later are provided inside the cabin 11. Further, a changeover switch 25 is provided in the cabin 11.
  • Each of these operation units 21 to 24 corresponds to an example of an operation unit.
  • the operation unit accepts an operation input for operating the operated function unit.
  • control system will be described with reference to FIG.
  • this control system is an example of a conceivable configuration and is not limited to this.
  • the control system is mainly composed of the control device 20.
  • Various operating tools 21 to 24 are connected to the control device 20.
  • the control device 20 is connected with a turning valve 31, an expansion / contraction valve 32, a hoisting valve 33, and a winding valve 34.
  • a weight sensor 40 is connected to the control device 20.
  • the weight sensor 40 can detect the weight of the load W. Therefore, the control device 20 can recognize the weight of the luggage W.
  • the boom 7 can be pivoted by an actuator (see arrow A in FIG. 1).
  • the turning hydraulic motor 51 corresponds to an example of an actuator.
  • the turning hydraulic motor 51 is appropriately operated by a turning valve 31 that is an electromagnetic proportional switching valve.
  • the turning hydraulic motor 51 is appropriately operated by the turning valve 31 changing the flow direction of the hydraulic oil or adjusting the flow rate of the hydraulic oil.
  • the turning angle and turning speed of the boom 7 are detected by the turning sensor 41. Therefore, the control device 20 can recognize the turning angle and turning speed of the boom 7.
  • the boom 7 can be expanded and contracted by an actuator (see arrow B in FIG. 1).
  • the telescopic hydraulic cylinder 52 corresponds to an example of an actuator.
  • the expansion / contraction hydraulic cylinder 52 is appropriately operated by the expansion / contraction valve 32 which is an electromagnetic proportional switching valve.
  • the expansion / contraction hydraulic cylinder 52 is appropriately operated by the expansion / contraction valve 32 switching the flow direction of the hydraulic oil or adjusting the flow rate of the hydraulic oil.
  • the extension / contraction length and extension / contraction speed of the boom 7 are detected by the extension / contraction sensor 42. Therefore, the control device 20 can recognize the expansion / contraction length and the expansion / contraction speed of the boom 7.
  • the boom 7 can be raised and lowered by an actuator (see arrow C in FIG. 1).
  • the hoisting hydraulic cylinder 53 corresponds to an example of an actuator.
  • the hoisting hydraulic cylinder 53 is appropriately operated by a hoisting valve 33 which is an electromagnetic proportional switching valve.
  • the hoisting hydraulic cylinder 53 is appropriately operated by the hoisting valve 33 switching the flow direction of the hydraulic oil or adjusting the flow rate of the hydraulic oil.
  • the hoisting angle and hoisting speed of the boom 7 are detected by the hoisting sensor 43. Therefore, the control device 20 can recognize the hoisting angle and hoisting speed of the boom 7.
  • the winding hydraulic motor 54 corresponds to an example of an actuator.
  • the winding hydraulic motor 54 is appropriately operated by a winding valve 34 that is an electromagnetic proportional switching valve.
  • the winding hydraulic motor 54 is appropriately operated when the winding valve 34 switches the flow direction of the hydraulic oil or adjusts the flow rate of the hydraulic oil.
  • the hanging length L of the hook 10 (see FIG. 1) and the lifting speed are detected by the winding sensor 44. Therefore, the control device 20 can recognize the hanging length L and the lifting speed of the hook 10.
  • the control device 20 controls each actuator (51, 52, 53, 54) via various valves 31-34.
  • the control device 20 includes a basic control signal creation unit 20a, a resonance frequency calculation unit 20b, a filter coefficient calculation unit 20c, and a filtering control signal creation unit 20d.
  • the filtering control signal creation unit 20d may be regarded as an example of the first filter unit and the second filter unit.
  • the first filter unit filters the first control signal to generate a second control signal.
  • the second filter unit filters the third control signal to generate a fourth control signal.
  • the first filter unit and the second filter unit may have different filter characteristics. That is, the filter coefficient of the first filter unit and the filter coefficient of the second filter unit may be different. Note that the first filter unit and the second filter unit may have the same filter characteristics.
  • the basic control signal creation unit 20a creates a basic control signal S that is a speed command for each actuator (51, 52, 53, 54) (see FIG. 5).
  • the basic control signal creation unit 20a recognizes the operation amounts and operation speeds of the various operation tools 21 to 24 by the operator, and creates a basic control signal S for each situation.
  • the basic control signal creation unit 20a includes a basic control signal S corresponding to the operation amount and the operation speed of the turning operation tool 21, a basic control signal S corresponding to the operation amount and the operation speed of the telescopic operation tool 22, and a undulation operation.
  • the basic control signal S corresponding to the operation amount and operation speed of the tool 23 and / or the basic control signal S corresponding to the operation amount and operation speed of the winding operation tool 24 are created.
  • the basic control signal creation unit 20a corresponds to an example of a first generation unit.
  • the resonance frequency calculation unit 20b calculates a resonance frequency ⁇ that is a vibration frequency of the load W generated when each actuator (51, 52, 53, 54) is operated.
  • the resonance frequency calculation unit 20b recognizes the hanging length L of the hook 10 based on the posture of the boom 7 and the unwinding amount of the wire rope 8, and calculates the resonance frequency ⁇ for each situation.
  • the resonance frequency calculation unit 20b calculates the resonance frequency ⁇ based on the following formula using the hanging length L of the hook 10 and the gravitational acceleration g.
  • the filter coefficient calculation unit 20c calculates a center frequency coefficient ⁇ n, a notch width coefficient ⁇ , and a notch depth coefficient ⁇ of a transfer coefficient H (s) included in the notch filter F described later.
  • the filter coefficient calculation unit 20c calculates a corresponding center frequency coefficient ⁇ n around the resonance frequency ⁇ calculated by the resonance frequency calculation unit 20b.
  • the filter coefficient calculation unit 20c calculates a notch width coefficient ⁇ and a notch depth coefficient ⁇ corresponding to each basic control signal S.
  • the transfer coefficient H (s) is expressed by the following formula using the center frequency coefficient ⁇ n, the notch width coefficient ⁇ , and the notch depth coefficient ⁇ .
  • the transfer coefficient H (s) is also called a filter characteristic. If the parameter of the transfer coefficient H (s) is different, it may be considered that the filter characteristics of the notch filter F are different.
  • the filtering control signal creation unit 20d creates the notch filter F and also applies the notch filter F to the basic control signal S to create the filtering control signal Sf (see FIG. 5).
  • the filtering control signal creation unit 20d creates various notches ⁇ n, ⁇ , and ⁇ from the filter coefficient calculation unit 20c and creates the notch filter F.
  • the filtering control signal creating unit 20d acquires the basic control signal S from the basic control signal creating unit 20a, and applies the notch filter F to the basic control signal S to create the filtering control signal Sf.
  • the filtering control signal creation unit 20d creates a filtering control signal Sf from the basic control signal S and the notch filter F corresponding to the operation amount of the turning operation tool 21 and the like. Further, the filtering control signal creation unit 20 d creates a filtering control signal Sf based on the basic control signal S and the notch filter F corresponding to the operation amount of the telescopic operation tool 22 and the like. The filtering control signal creation unit 20d creates the filtering control signal Sf based on the basic control signal S and the notch filter F corresponding to the operation amount of the hoisting operation tool 23 and the like. Further, the filtering control signal creation unit 20 d generates the filtering control signal Sf based on the basic control signal S and the notch filter F corresponding to the operation amount of the winding operation tool 24 and the like.
  • control device 20 controls the various valves 31 to 34 based on the filtering control signal Sf.
  • control apparatus 20 controls each actuator (51, 52, 53, 54) based on the filtering control signal Sf.
  • the notch filter F has a feature that the attenuation rate increases as it approaches the resonance frequency ⁇ in an arbitrary range centering on the resonance frequency ⁇ .
  • An arbitrary range centered on the resonance frequency ⁇ is represented as a notch width Bn.
  • the difference in attenuation amount at the notch width Bn is expressed as a notch depth Dn.
  • the notch filter F is specified by the resonance frequency ⁇ , the notch width Bn, and the notch depth Dn.
  • the filtering control signal Sf is a speed command transmitted to each actuator (51, 52, 53, 54).
  • the filtering control signal Sf corresponding to the acceleration of the boom 7 or the like has a characteristic that the acceleration is gentler than the basic control signal S, and is temporarily decelerated and then accelerated again (see the part X in FIG. 5). ).
  • the reason for temporarily decelerating is to suppress the swing of the load W during acceleration.
  • the filtering control signal Sf corresponding to the deceleration of the boom 7 or the like has a characteristic that the deceleration is moderate or similar to that of the basic control signal S, and is temporarily increased and then decelerated again ( (See Y part in FIG. 5).
  • the temporary increase in speed is to suppress the swing of the luggage W during deceleration.
  • the transportation allowable area Rp represents an area where the transportation of the luggage W is permitted. In the transport allowable region Rp, movement of the boom 7 is also permitted. In the transport allowable region Rp, the notch depth coefficient ⁇ can be selected in the range of 0 to 1.
  • the notch depth coefficient ⁇ When the notch depth coefficient ⁇ is 0 or a value close to 0, a slow response to the operator's operation is made, and the swing of the load W can be suppressed. On the other hand, when the notch depth coefficient ⁇ is 1 or a numerical value close to 1, it becomes an agile response to the operator's operation and can be adjusted to the operator's operation feeling.
  • the transportation restriction area Rr represents an area where the transportation of the luggage W is not permitted. In the transport restriction region Rr, movement (intrusion) of the boom 7 is not permitted. In the transport restriction region Rr, since the load W and the boom 7 do not enter, the notch depth coefficient ⁇ and the like are not determined.
  • the transport restriction area Rr is provided so as to surround the obstacle B and the like. For this reason, it is possible to prevent the luggage W or the boom 7 from colliding with the obstacle B or the like. Note that when the load W or the boom 7 in the transport allowable area Rp is moving toward the transport restriction area Rr, the transport operation is automatically stopped.
  • the boom 7 corresponds to an example of the operated function unit.
  • step S11 the control device 20 determines whether or not an automatic stop signal has been input.
  • the automatic stop signal is generated when the luggage W or the boom 7 comes close to the transport restriction area Rr.
  • the control process proceeds to step S12.
  • the automatic stop signal is not input (“NO” in step S11)
  • the control process proceeds to S14.
  • step S12 the control device 20 creates an automatic control signal Sa for the turning hydraulic motor 51 (see FIG. 8).
  • the automatic control signal Sa is a basic control signal S created at the time of automatic stop.
  • the automatic control signal Sa corresponds to an example of a third control signal.
  • the automatic control signal Sa is generated based on the turning speed of the boom 7 and the weight of the load W.
  • the automatic control signal Sa is created based on a program used at the time of automatic stop.
  • the program is stored in the control device 20 in advance.
  • the part that generates the automatic control signal Sa may be regarded as an example of the second generation unit.
  • step S13 the control device 20 applies a notch filter F to the automatic control signal Sa (third control signal) to create a filtering control signal Sf (hereinafter referred to as “automatic filtering control signal Sfa”) (FIG. 8). reference).
  • the notch filter F at this time is created based on an arbitrarily set notch depth coefficient ⁇ .
  • the automatic filtering control signal Sfa corresponds to an example of a fourth control signal.
  • control device 20 controls the turning hydraulic motor 51 based on the automatic filtering control signal Sfa. Thereby, for example, it is possible to realize a control content that prioritizes suppression of the swing of the luggage W. In this case, when the turning speed of the boom 7 is reduced, the load W starts to swing due to inertia (see (A) in FIG. 8).
  • the boom 7 is tracked and the swing of the luggage W is suppressed (see (B) in FIG. 8). Thereafter, the vehicle is decelerated again with the swing of the luggage W suppressed (see (C) in FIG. 8).
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 26 described later.
  • the flow amount of the luggage W and the boom 7 (the movement distance from when the operation for stopping the turning operation to the stop) is determined to be within the allowable flow amount Pd.
  • the allowable flow amount Pd can be arbitrarily set by the operator.
  • step S14 the control device 20 determines whether or not a manual stop signal has been input.
  • the manual stop signal is generated when the operator operates the turning operation tool 21 to stop the turning operation of the boom 7.
  • the control process proceeds to step S15.
  • the manual stop signal is not input (“NO” in step S14)
  • the control process is: It returns to step S11.
  • step S15 the control device 20 creates a manual control signal Sm for the turning hydraulic motor 51 (see FIG. 9).
  • the manual control signal Sm indicates the basic control signal S created at the time of manual stop.
  • the manual control signal Sm is created based on the operation amount and operation speed of the turning operation tool 21 by the operator.
  • the manual control signal Sm is created based on a program used at the time of manual stop.
  • the program is stored in the control device 20 in advance.
  • step S16 the control device 20 determines whether the changeover switch 25 is “ON” or “OFF”.
  • the changeover switch 25 can be freely changed by the operator. If the changeover switch 25 is “ON” (“YES” in step S16), the control process proceeds to step S17. If the changeover switch 25 is “OFF” (“NO” in step S16), the control process is performed. Moves to step S18.
  • the state where the changeover switch 25 is “OFF” is defined as the first state of the changeover switch 25.
  • a state in which the changeover switch 25 is “ON” is defined as a second state of the changeover switch 25.
  • the changeover switch 25 corresponds to an example of a switch unit.
  • step S17 the control device 20 creates a filtering control signal Sf (hereinafter referred to as “manual filtering control signal Sfm”) by applying a notch filter F to the manual control signal Sm (see FIG. 9).
  • the notch filter F at this time is also created based on an arbitrarily set notch depth coefficient ⁇ .
  • the notch filter F used in step S13 and the notch filter F used in step S17 may be the same filter or different filters.
  • the ratio of the frequency component attenuated from the manual control signal Sm by the notch filter F used in step S17 is smaller than the ratio of the frequency component attenuated from the automatic control signal Sa by the notch filter F used in step S13. It's okay.
  • the ratio of the frequency component attenuated from the manual control signal Sm is automatically set when the actuator is controlled by automatic control (in the case of step S13). It may be smaller than the ratio of frequency components to be attenuated from the control signal Sa.
  • the control device 20 controls the turning hydraulic motor 51 based on the manual filtering control signal Sfm. Thereby, for example, it is possible to realize the control content that gives priority to matching the operator's operation feeling rather than suppressing the swing of the luggage W.
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 27 described later.
  • the amount of deflection of the luggage W is determined to be within the allowable deflection width Px.
  • the allowable swing width Px can be arbitrarily set by the operator.
  • step S18 the control device 20 controls the turning hydraulic motor 51 based on the manual control signal Sm. That is, the control device 20 does not create the manual filtering control signal Sfm, and controls the turning hydraulic motor 51 as it is based on the manual control signal Sm.
  • the crane 1 includes an actuator (hydraulic hydraulic motor 51 for turning) used to transport the load W, the control device 20 that instructs the operating state of the actuator 51, and the control mode of the actuator 51 connected to the control device 20. And a switch (changeover switch 25).
  • the control device 20 controls the basic control signal S (manual control signal Sm) of the actuator 51. Based on the above, the actuator 51 is controlled to stop the carrying operation.
  • the control device 20 When the switch 25 selects the other (when the switch 25 is in the ON state and the switch is in the second state), the control device 20 performs the notch filter F with respect to the basic control signal Sm of the actuator 51. To create a filtering control signal Sf (manual filtering control signal Sfm). And the control apparatus 20 controls the actuator 51 based on the produced filtering control signal Sfm, and stops conveyance operation
  • the actuator (the turning hydraulic motor 51) is a hydraulic motor that turns the boom 7.
  • the control device 20 performs hydraulic pressure based on the basic control signal S (manual control signal Sm) of the hydraulic motor 51. The turning operation is stopped by controlling the motor 51.
  • the control device 20 applies a notch filter F to the basic control signal Sm of the hydraulic motor 51 and applies the filtering control signal Sf. (Manual filtering control signal Sfm) is created. And the control apparatus 20 controls the hydraulic motor 51 based on the produced filtering control signal Sfm, and stops turning operation
  • the vibration frequency of the load W is set to the resonance frequency ⁇ in order to suppress the swing of the load W caused by the turning motion of the boom 7.
  • the vibration frequency of the boom 7 may be set to the resonance frequency ⁇ in order to suppress the vibration of the boom 7 itself caused by the turning operation of the boom 7.
  • the resonance frequency ⁇ may be considered in consideration of both the vibration frequency of the load W and the vibration frequency of the boom 7.
  • the operator operates the changeover switch 25 to select the control mode, but the present invention is not limited to this.
  • the changeover switch 25 may be incorporated in the arithmetic unit of the control device 20 and may be configured in advance so as to select a desired control mode.
  • the changeover switch 25 is not limited to a manually operated switch.
  • step S11 the control device 20 determines whether or not an automatic stop signal has been input.
  • the automatic stop signal is generated when the luggage W or the boom 7 comes close to the transport restriction area Rr.
  • the control process proceeds to step S12.
  • the automatic stop signal is not input (“NO” in step S11)
  • the control process proceeds to S14.
  • step S12 the control device 20 creates an automatic control signal Sa for the telescopic hydraulic cylinder 52 (see FIG. 10).
  • the automatic control signal Sa is a basic control signal S created at the time of automatic stop.
  • the automatic control signal Sa is created based on the extension speed of the boom 7, the weight of the load W, and the like.
  • the automatic control signal Sa is created based on a program used during automatic stop.
  • the program is stored in the control device 20 in advance.
  • step S13 the control device 20 applies a notch filter F to the automatic control signal Sa to create a filtering control signal Sf (hereinafter referred to as “automatic filtering control signal Sfa”) (see FIG. 10).
  • the notch filter F at this time is created based on an arbitrarily set notch depth coefficient ⁇ .
  • the control device 20 controls the expansion / contraction hydraulic cylinder 52 based on the automatic filtering control signal Sfa. Thereby, for example, it is possible to realize a control content that prioritizes suppression of the swing of the luggage W. In this case, when the extension speed of the boom 7 is decelerated, the load W starts to swing due to inertia (see (A) in FIG. 10).
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 26 described later.
  • the flow amount of the load W or the boom 7 (the movement distance from when the operation to stop the extension operation to when it stops) is determined to be within the allowable flow amount Pd.
  • the allowable flow amount Pd can be arbitrarily set by the operator.
  • step S14 the control device 20 determines whether or not a manual stop signal has been input.
  • the manual stop signal is generated when the operator operates the telescopic operation tool 22 to stop the extension operation of the boom 7.
  • the control process proceeds to step S15.
  • the control process is: It returns to step S11.
  • step S15 the control device 20 creates a manual control signal Sm for the telescopic hydraulic cylinder 52 (see FIG. 11).
  • the manual control signal Sm is a basic control signal S created at the time of manual stop.
  • the manual control signal Sm is created based on the operation amount and operation speed of the telescopic operation tool 22 by the operator.
  • the manual control signal Sm is created based on a program used at the time of manual stop.
  • the program is stored in the control device 20 in advance.
  • step S16 the control device 20 determines whether the changeover switch 25 is “ON” or “OFF”.
  • the changeover switch 25 can be freely changed by the operator. If the changeover switch 25 is “ON” (“YES” in step S16), the control process proceeds to step S17. If the changeover switch 25 is “OFF” (“NO” in step S16), the control process is performed. Moves to step S18.
  • step S17 the control device 20 applies a notch filter F to the manual control signal Sm to create a filtering control signal Sf (hereinafter referred to as “manual filtering control signal Sfm”) (see FIG. 11).
  • the notch filter F at this time is also created based on an arbitrarily set notch depth coefficient ⁇ .
  • control device 20 controls the expansion / contraction hydraulic cylinder 52 based on the manual filtering control signal Sfm. Thereby, for example, it is possible to realize the control content that gives priority to matching the operator's operation feeling rather than suppressing the swing of the luggage W.
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 27 described later.
  • the shake amount of the luggage W is determined to be an amount that falls within the allowable shake width Px.
  • the allowable swing width Px can be arbitrarily set by the operator.
  • step S18 the control device 20 controls the expansion / contraction hydraulic cylinder 52 based on the manual control signal Sm. That is, the control device 20 does not create the manual filtering control signal Sfm, and controls the expansion / contraction hydraulic cylinder 52 based on the manual control signal Sm as it is. As a result, it is possible to realize the control contents with the highest priority given to the operator's sense of operation without considering the swing of the luggage W.
  • the operator in order to suppress the swing of the load W, the operator needs to temporarily increase the extension speed of the boom 7 by operating the telescopic operation tool 22 so that the boom 7 catches up with the load W that has started swinging. .
  • Such an operation can be performed by a skilled operator.
  • the crane 1 includes an actuator (extension / contraction hydraulic cylinder 52) used for transporting the load W, the control device 20 for instructing the operating state of the actuator 52, and the control of the actuator 52 connected to the control device 20. And a switch (switch 25) for switching modes.
  • actuator extension / contraction hydraulic cylinder 52
  • control device 20 for instructing the operating state of the actuator 52
  • control of the actuator 52 connected to the control device 20.
  • switch switch 25
  • the control device 20 controls the actuator 52 based on the basic control signal S (manual control signal Sm) of the actuator 52 to stop the transporting operation.
  • the control device 20 applies a notch filter F to the basic control signal Sm of the actuator 52 to create a filtering control signal Sf (manual filtering control signal Sfm), Based on the filtering control signal Sfm, the actuator 52 is controlled to stop the transporting operation. According to the crane 1, it is possible to select an operation characteristic for the control mode when stopping the transportation operation of the load W.
  • the actuator extension / retraction hydraulic cylinder 52
  • the control device 20 controls the hydraulic cylinder 52 based on the basic control signal S (manual control signal Sm) of the hydraulic cylinder 52 to perform the expansion / contraction operation. Stop.
  • the control device 20 applies a notch filter F to the basic control signal Sm of the hydraulic cylinder 52 to generate a filtering control signal Sf (manual filtering control signal Sfm).
  • the hydraulic cylinder 52 is controlled based on the filtering control signal Sfm to stop the expansion / contraction operation. According to such a crane 1, it is possible to select an operation characteristic for a control mode when stopping the telescopic operation of the boom 7.
  • the vibration frequency of the load W is set to the resonance frequency ⁇ in order to suppress the swing of the load W caused by the expansion and contraction operation of the boom 7.
  • the vibration frequency of the boom 7 may be set to the resonance frequency ⁇ in order to suppress the vibration of the boom 7 itself caused by the expansion and contraction operation of the boom 7.
  • the resonance frequency ⁇ may be considered in consideration of both the vibration frequency of the load W and the vibration frequency of the boom 7.
  • the crane 1 is configured to select the control mode by operating the changeover switch 25, the present invention is not limited to this.
  • the changeover switch 25 may be incorporated in the arithmetic unit of the control device 20 and may be configured in advance so as to select a desired control mode. Or the structure which selects an appropriate control aspect automatically according to a condition may be sufficient. That is, the changeover switch 25 is not limited to a manually operated switch.
  • step S11 the control device 20 determines whether or not an automatic stop signal has been input.
  • the automatic stop signal is generated when the luggage W or the boom 7 comes close to the transport restriction area Rr.
  • the control process proceeds to step S12.
  • the automatic stop signal is not input (“NO” in step S11)
  • the control process proceeds to S14.
  • step S12 the control device 20 creates an automatic control signal Sa for the hydraulic cylinder 53 for undulation (see FIG. 12).
  • the automatic control signal Sa is a basic control signal S created at the time of automatic stop.
  • the automatic control signal Sa is created based on the standing speed of the boom 7 and the weight of the load W.
  • the automatic control signal Sa is created based on a program used at the time of automatic stop.
  • the program is stored in the control device 20 in advance.
  • step S13 the control device 20 applies the notch filter F to the automatic control signal Sa to create a filtering control signal Sf (hereinafter referred to as “automatic filtering control signal Sfa”) (see FIG. 12).
  • the notch filter F at this time is created based on an arbitrarily set notch depth coefficient ⁇ .
  • the control device 20 controls the undulation hydraulic cylinder 53 based on the automatic filtering control signal Sfa. Thereby, for example, it is possible to realize a control content that prioritizes suppression of the swing of the luggage W. In this case, when the rising speed of the boom 7 is decelerated, the load W starts to swing due to inertia (begins to swing due to the bending of the wire rope 8: see FIG. 12A).
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 26 described later.
  • the flow amount of the load W or the boom 7 (the movement distance from when the operation to stop the standing operation to when it stops) is determined to be an amount that falls within the allowable flow amount Pd.
  • the allowable flow amount Pd can be arbitrarily set by the operator.
  • step S14 the control device 20 determines whether or not a manual stop signal has been input.
  • the manual stop signal is generated when the operator tries to stop the standing motion of the boom 7 by operating the hoisting operation tool 23.
  • the control process proceeds to step S15.
  • the manual stop signal is not input (“NO” in step S14)
  • the control process It returns to S11.
  • step S15 the control device 20 creates a manual control signal Sm for the undulating hydraulic cylinder 53 (see FIG. 13).
  • the manual control signal Sm is a basic control signal S created at the time of manual stop.
  • the manual control signal Sm is created based on the operation amount and operation speed of the hoisting operation tool 23 by the operator.
  • the manual control signal Sm is created based on a program used at the time of manual stop. The program is stored in the control device 20 in advance.
  • step S16 the control device 20 determines whether the changeover switch 25 is “ON” or “OFF”.
  • the changeover switch 25 can be freely changed by the operator. If the changeover switch 25 is “ON” (“YES” in step S16), the control process proceeds to step S17. If the changeover switch 25 is “OFF” (“NO” in step S16), the control process is performed. Moves to step S18.
  • step S17 the control device 20 creates a filtering control signal Sf (hereinafter referred to as “manual filtering control signal Sfm”) by applying a notch filter F to the manual control signal Sm (see FIG. 13).
  • the notch filter F at this time is also created based on an arbitrarily set notch depth coefficient ⁇ .
  • control device 20 controls the undulation hydraulic cylinder 53 based on the manual filtering control signal Sfm. Thereby, for example, it is possible to realize the control content that gives priority to matching the operator's operation feeling rather than suppressing the swing of the luggage W.
  • the load W starts to swing due to inertia (begins to swing due to the bending of the wire rope 8; see FIG. 13A). Then, the rising speed of the boom 7 is reduced as it is without slightly increasing or increasing the rising speed of the boom 7 (see (B) in FIG. 13).
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 27 described later.
  • the shake amount of the luggage W is determined to be an amount that falls within the allowable shake width Px.
  • the allowable swing width Px can be arbitrarily set by the operator.
  • step S18 the control device 20 controls the hydraulic cylinder for undulation 53 based on the manual control signal Sm. That is, the control device 20 does not create the manual filtering control signal Sfm, and controls the undulation hydraulic cylinder 53 based on the manual control signal Sm as it is.
  • the crane 1 includes an actuator (lifting hydraulic cylinder 53) used for transporting the load W, the control device 20 that instructs the operating state of the actuator 53, and the control mode of the actuator 53 connected to the control device 20. And a switch (changeover switch 25).
  • the control device 20 controls the actuator 53 based on the basic control signal S (manual control signal Sm) of the actuator 53 to stop the transporting operation.
  • the control device 20 applies a notch filter F to the basic control signal Sm of the actuator 53 to create a filtering control signal Sf (manual filtering control signal Sfm). Based on this filtering control signal Sfm, the actuator 53 is controlled to stop the carrying operation. According to such a crane 1, it is possible to select an operation characteristic for a control mode when the carrying operation of the load W is stopped.
  • the actuator (the hoisting hydraulic cylinder 53) is a hydraulic cylinder that raises and lowers the boom 7.
  • the control device 20 controls the hydraulic cylinder 53 based on the basic control signal S (manual control signal Sm) of the hydraulic cylinder 53 to perform the undulation operation. Stop.
  • the control device 20 applies a notch filter F to the basic control signal Sm of the hydraulic cylinder 53 to generate a filtering control signal Sf (manual filtering control signal Sfm). Based on the filtering control signal Sfm, the hydraulic cylinder 53 is controlled to stop the undulation operation. According to the crane 1, the operation characteristics can be selected for the control mode when stopping the hoisting operation of the boom 7.
  • the vibration frequency of the load W is set to the resonance frequency ⁇ in order to suppress the swing of the load W caused by the lifting operation of the boom 7.
  • the vibration frequency of the boom 7 may be set as the resonance frequency ⁇ in order to suppress the vibration of the boom 7 itself caused by the boom 7 swinging operation.
  • the resonance frequency ⁇ may be considered in consideration of both the vibration frequency of the load W and the vibration frequency of the boom 7.
  • the crane 1 is configured to select the control mode by operating the changeover switch 25, the present invention is not limited to this.
  • the changeover switch 25 may be incorporated in the arithmetic unit of the control device 20 and may be configured in advance so as to select a desired control mode. Or the structure which selects an appropriate control aspect automatically according to a condition may be sufficient. That is, the changeover switch 25 is not limited to a manually operated switch.
  • step S11 the control device 20 determines whether or not an automatic stop signal has been input.
  • the automatic stop signal is generated when the luggage W or the boom 7 comes close to the transport restriction area Rr. If the automatic stop signal is input, the process proceeds to step S12. If the automatic stop signal is not input, the process proceeds to step S14.
  • step S12 the control device 20 creates an automatic control signal Sa for the winding hydraulic motor 54 (see FIG. 14).
  • the automatic control signal Sa is a basic control signal S created at the time of automatic stop.
  • the automatic control signal Sa is generated based on the ascending speed of the hook 10 and the weight of the load W.
  • the automatic control signal Sa is created based on a program used at the time of automatic stop. The program is stored in the control device 20 in advance.
  • step S13 the control device 20 creates a filtering control signal Sf (hereinafter referred to as “automatic filtering control signal Sfa”) by applying a notch filter F to the automatic control signal Sa (see FIG. 14).
  • the notch filter F at this time is created based on an arbitrarily set notch depth coefficient ⁇ .
  • the control device 20 controls the winding hydraulic motor 54 based on the automatic filtering control signal Sfa. Thereby, for example, it is possible to realize a control content that prioritizes suppression of the swing of the luggage W.
  • the load W begins to swing due to inertia (begins to swing due to the bending of the wire rope 8: see FIG. 14A).
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 26 described later.
  • the flow amount of the load W (the movement distance from when the operation for stopping the ascending operation is performed to when it stops) is determined to be an amount that falls within the allowable flow amount Pd.
  • the allowable flow amount Pd can be arbitrarily set by the operator.
  • step S14 the control device 20 determines whether or not a manual stop signal has been input.
  • the manual stop signal is generated when the operator operates the winding operation tool 24 to stop the lifting operation of the hook 10.
  • the control process proceeds to step S15.
  • the manual stop signal is not input (“NO” in step S14)
  • the control process It returns to S11.
  • step S15 the control device 20 creates a manual control signal Sm for the winding hydraulic motor 54 (see FIG. 15).
  • the manual control signal Sm is a basic control signal S created at the time of manual stop.
  • the manual control signal Sm is created based on the operation amount and operation speed of the winding operation tool 24 by the operator.
  • the manual control signal Sm is created based on a program used at the time of manual stop. The program is stored in the control device 20 in advance.
  • step S16 the control device 20 determines whether the changeover switch 25 is “ON” or “OFF”.
  • the changeover switch 25 can be freely changed by the operator. If the changeover switch 25 is “ON” (“YES” in step S16), the control process proceeds to step S17. If the changeover switch 25 is “OFF” (“NO” in step S16), the control process is performed. Moves to step S18.
  • step S17 the control device 20 applies a notch filter F to the manual control signal Sm to create a filtering control signal Sf (hereinafter referred to as “manual filtering control signal Sfm”) (see FIG. 15).
  • the notch filter F at this time is also created based on an arbitrarily set notch depth coefficient ⁇ .
  • the control device 20 controls the winding hydraulic motor 54 based on the manual filtering control signal Sfm.
  • the notch depth coefficient ⁇ of the notch filter F can be changed by an adjustment dial 27 described later.
  • the shake amount of the luggage W is determined to be an amount that falls within the allowable shake width Px.
  • the allowable swing width Px can be arbitrarily set by the operator.
  • step S18 the control device 20 controls the winding hydraulic motor 54 based on the manual control signal Sm. That is, the control device 20 does not create the manual filtering control signal Sfm, and controls the winding hydraulic motor 54 based on the manual control signal Sm as it is.
  • the crane 1 controls the actuator 54 connected to the control device 20 and the actuator (winding hydraulic motor 54) used for transporting the load W, the control device 20 that instructs the operating state of the actuator 54, and the like. And a switch (switch 25) for switching modes.
  • the control device 20 controls the actuator 54 based on the basic control signal S (manual control signal Sm) of the actuator 54 to stop the transport operation.
  • the control device 20 applies a notch filter F to the basic control signal Sm of the actuator 54 to create a filtering control signal Sf (manual filtering control signal Sfm). Based on the filtering control signal Sfm, the actuator 54 is controlled to stop the transporting operation.
  • the operation characteristics can be arbitrarily adjusted with respect to the control mode when the carrying operation of the load W is manually stopped.
  • the actuator is a hydraulic motor that raises and lowers the hook 10.
  • the control device 20 controls the hydraulic motor 54 based on the basic control signal S (manual control signal Sm) of the hydraulic motor 54 to move up and down. Stop.
  • the control device 20 When the switch 25 selects the other, the control device 20 creates a filtering control signal Sf (manual filtering control signal Sfm) by applying a notch filter F to the basic control signal Sm of the hydraulic motor 54. To do. And the control apparatus 20 controls the hydraulic motor 54 based on this filtering control signal Sfm, and stops raising / lowering operation
  • the vibration frequency of the load W is set to the resonance frequency ⁇ in order to suppress the swing of the load W caused by the lifting and lowering operation of the hook 10.
  • the vibration frequency of the boom 7 may be set to the resonance frequency ⁇ in order to suppress the vibration of the boom 7 itself caused by the lifting and lowering operation of the hook 10.
  • the resonance frequency ⁇ may be considered in consideration of both the vibration frequency of the load W and the vibration frequency of the boom 7.
  • the crane 1 is configured to select the control mode by operating the changeover switch 25, the present invention is not limited to this.
  • the changeover switch 25 may be incorporated in the arithmetic unit of the control device 20 and may be configured in advance so as to select a desired control mode. Or the structure which selects an appropriate control aspect automatically according to a condition may be sufficient. That is, the changeover switch 25 is not limited to a manually operated switch.
  • the crane 1 includes adjustment dials 26 and 27.
  • the adjustment dials 26 and 27 are arranged in a range that can be reached by the operator. Therefore, the operator can freely turn the adjustment dials 26 and 27.
  • FIG. 2 only the adjustment dial 26 is shown.
  • the adjustment dial 27 may be provided at a position where the adjustment dial 27 is separated from or in contact with the adjustment dial 26 (for example, right adjacent in FIG. 2).
  • the adjustment dial 26 selects the notch depth coefficient ⁇ relating to automatic stop and changes the notch depth Dn.
  • the adjustment dial 27 changes the notch depth Dn by selecting a notch depth coefficient ⁇ relating to manual stop.
  • the adjustment dial 26 corresponds to an example of a second filter characteristic setting unit.
  • the adjustment dial 27 corresponds to an example of a first filter characteristic setting unit.
  • the control device 20 creates the automatic filtering control signal Sfa using the notch filter F set by the adjustment dial 26. Similarly, the control device 20 uses the notch filter F set by the adjustment dial 27 to create the manual filtering control signal Sfm.
  • the adjustment dial 26 can select 1 as the notch depth coefficient ⁇ . In this case, the control device 20 controls the actuators 51 to 54 based on the automatic control signal Sa.
  • the adjustment dial 27 can also select 1 for the notch depth coefficient ⁇ . In this case, the control device 20 controls the actuators 51 to 54 based on the manual control signal Sm.
  • the crane 1 includes the adjusting tools (adjustment dials 26 and 27).
  • the strength of the notch filter F can be adjusted by operating the adjusters 26 and 27. According to the crane 1, it is possible to adjust to the operator's operation feeling more finely.
  • the notch filter F is used as a filter for creating the filtering control signal Sf, but the present invention is not limited to this. That is, any band stop filter that can attenuate or reduce only a specific frequency range may be used. For example, a band limit filter, a band elimination filter, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

クレーンは、被操作機能部と、被操作機能部を操作するための操作入力を受け付ける操作部と、被操作機能部を駆動するアクチュエータと、操作入力に基づいてアクチュエータの第一制御信号を生成する第一生成部と、第一状態と第二状態とを切り換え可能なスイッチ部と、スイッチ部の第二状態において、第一制御信号をフィルタリングして第二制御信号を生成する第一フィルタ部と、スイッチ部の第一状態において、第一制御信号に基づいてアクチュエータを制御し、スイッチ部の第二状態において、第二制御信号に基づいて、アクチュエータを制御する制御部と、を備える。

Description

クレーン
 本発明は、クレーンに関する。
 従来より、代表的な作業車両としてクレーンが知られている。クレーンは、主に走行体と旋回体とで構成されている。走行体は、複数の車輪を備え、走行自在に構成されている。旋回体は、ブーム、ワイヤロープ、及び、フック等を備える。このような旋回体は、荷物を運搬自在に構成されている。そして、このようなクレーンは、荷物の運搬に供するアクチュエータと、アクチュエータの作動状態を指示する制御装置と、を具備している。
 ところで、制御装置がフィルタリング制御信号を作成し、このフィルタリング制御信号に基づいてアクチュエータを制御するクレーンが提案されている(特許文献1参照)。ここで、フィルタリング制御信号とは、アクチュエータの基本制御信号に対して所定の特徴を有するフィルタをかけたものを意味する。例えば、フィルタとして、ノッチフィルタが挙げられる。ノッチフィルタは、共振周波数を中心とする任意の範囲で共振周波数に近づく程に減衰率が高くなる特徴を有する。なお、共振周波数は、フックの吊下長さに基づいて算出される。
 ここで、前述したアクチュエータを旋回用油圧モータとし、ブームの旋回動作を手動停止させる状況について想定する。この場合、オペレータがブームの旋回動作を止める操作を行っても、しばらくの間はブームが減速しつつ旋回動作が続いてしまう。これは、ブームの旋回動作を直ちに止めるのではなく、フィルタリング制御信号に基づいた減速区間を設けることで、荷物の振れを抑えようとしているからである。しかし、このような特性は、オペレータによる操作に対してブームの旋回動作が合致しないことを意味しており、熟練のオペレータであるほど違和感が大きくなるという問題があった。そこで、荷物の運搬動作の制御態様について、動作特性を選択できるクレーンが求められている。
特開2015-151211号公報
 本発明の目的は、荷物の運搬動作の制御態様について動作特性を選択できるクレーンを提供することである。
 本発明に係るクレーンの一態様は、被操作機能部と、被操作機能部を操作するための操作入力を受け付ける操作部と、被操作機能部を駆動するアクチュエータと、操作入力に基づいてアクチュエータの第一制御信号を生成する第一生成部と、第一状態と第二状態とを切り換え可能なスイッチ部と、スイッチ部の第二状態において、第一制御信号をフィルタリングして第二制御信号を生成する第一フィルタ部と、スイッチ部の第一状態において、第一制御信号に基づいてアクチュエータを制御し、スイッチ部の第二状態において、第二制御信号に基づいて、アクチュエータを制御する制御部と、を備える。
 本発明によれば、荷物の運搬動作の制御態様について動作特性を選択できるクレーンを提供できる。
図1は、クレーンを示す図である。 図2は、キャビンの内部を示す図である。 図3は、制御システムの構成を示す図である。 図4は、ノッチフィルタの周波数特性を示す図である。 図5は、基本制御信号とフィルタリング制御信号とを示す図である。 図6は、作業現場における運搬許容領域と運搬制限領域とを示す図である。 図7は、ブームの旋回動作を自動停止又は手動停止させる制御態様を示す図である。 図8は、ブームの旋回動作を自動停止させたときの荷物の動きを示す図である。 図9は、ブームの旋回動作を手動停止させたときの荷物の動きを示す図である。 図10は、ブームの伸縮動作を自動停止させたときの荷物の動きを示す図である。 図11は、ブームの伸縮動作を手動停止させたときの荷物の動きを示す図である。 図12は、ブームの起伏動作を自動停止させたときの荷物の動きを示す図である。 図13は、ブームの起伏動作を手動停止させたときの荷物の動きを示す図である。 図14は、フックの昇降動作を自動停止させたときの荷物の動きを示す図である。 図15は、フックの昇降動作を手動停止させたときの荷物の動きを示す図である。 図16は、キャビンの内部に設けられた調節ダイヤルを示す図である。
 本願に開示する技術的思想は、以下に説明するクレーン1のほか、種々のクレーンにも適用できる。
 まず、図1を用いて、クレーン1について説明する。
 クレーン1は、主に走行体2と旋回体3とで構成されている。
 走行体2は、左右一対のフロントタイヤ4と、リヤタイヤ5と、を備えている。また、走行体2は、荷物Wの運搬作業を行う際に接地させて安定を図るアウトリガ6を備えている。旋回体3は、走行体2の上部に支持されている。このような旋回体3は、アクチュエータによって旋回自在である。
 旋回体3は、その後部から前方へ突き出すようにブーム7を備えている。そのため、ブーム7は、アクチュエータによって旋回自在である(矢印A参照)。また、ブーム7は、アクチュエータによって伸縮自在である(矢印B参照)。
 更に、ブーム7は、アクチュエータによって起伏自在である(矢印C参照)。加えて、ブーム7には、ワイヤロープ8が架け渡されている。ブーム7の基端側には、ワイヤロープ8を巻き付けたウインチ9が配置され、ブーム7の先端側には、ワイヤロープ8によってフック10が垂下されている。
 ウインチ9は、アクチュエータと一体的に構成されており、ワイヤロープ8の巻き入れ及び巻き出しを可能としている。そのため、フック10は、アクチュエータによって昇降自在である(矢印D参照)。旋回体3は、ブーム7の側方にキャビン11を備えている。ウインチ9は、被操作機能部の一例に該当する。
 図2に示すように、キャビン11の内部には、後述する旋回操作具21、伸縮操作具22、起伏操作具23、及び、巻回操作具24が設けられている。更に、キャビン11には、切替スイッチ25が設けられている。これら各操作部21~24は、操作部の一例に該当する。操作部は、被操作機能部を操作するための操作入力を受け付ける。
 次に、図3を用いて、制御システムについて説明する。但し、本制御システムは、考え得る構成の一例であり、これに限定されない。
 制御システムは、主に制御装置20で構成されている。制御装置20には、各種操作具21~24が接続されている。また、制御装置20には、旋回用バルブ31、伸縮用バルブ32、起伏用バルブ33、及び、巻回用バルブ34が接続されている。
 更に、制御装置20には、重量センサ40、旋回用センサ41、伸縮用センサ42、起伏用センサ43、及び、巻回用センサ44が接続されている。なお、重量センサ40は、荷物Wの重さを検出することができる。そのため、制御装置20は、荷物Wの重さを認識することができる。
 前述したように、ブーム7は、アクチュエータによって旋回自在である(図1における矢印A参照)。本願においては、旋回用油圧モータ51は、アクチュエータの一例に該当する。旋回用油圧モータ51は、電磁比例切換弁である旋回用バルブ31によって適宜に稼動される。
 つまり、旋回用油圧モータ51は、旋回用バルブ31が作動油の流動方向を切り替えたり作動油の流量を調節したりすることで適宜に稼動される。なお、ブーム7の旋回角度や旋回速度は、旋回用センサ41によって検出される。そのため、制御装置20は、ブーム7の旋回角度や旋回速度を認識することができる。
 また、前述したように、ブーム7は、アクチュエータによって伸縮自在である(図1における矢印B参照)。伸縮用油圧シリンダ52はアクチュエータの一例に該当する。伸縮用油圧シリンダ52は、電磁比例切換弁である伸縮用バルブ32によって適宜に稼動される。
 つまり、伸縮用油圧シリンダ52は、伸縮用バルブ32が作動油の流動方向を切り替えたり作動油の流量を調節したりすることで適宜に稼動される。なお、ブーム7の伸縮長さや伸縮速度は、伸縮用センサ42によって検出される。そのため、制御装置20は、ブーム7の伸縮長さや伸縮速度を認識することができる。
 更に、前述したように、ブーム7は、アクチュエータによって起伏自在である(図1における矢印C参照)。起伏用油圧シリンダ53は、アクチュエータの一例に該当する。起伏用油圧シリンダ53は、電磁比例切換弁である起伏用バルブ33によって適宜に稼動される。
 つまり、起伏用油圧シリンダ53は、起伏用バルブ33が作動油の流動方向を切り替えたり作動油の流量を調節したりすることで適宜に稼動される。なお、ブーム7の起伏角度や起伏速度は、起伏用センサ43によって検出される。そのため、制御装置20は、ブーム7の起伏角度や起伏速度を認識することができる。
 加えて、前述したように、フック10は、アクチュエータによって昇降自在である(図1における矢印D参照)。巻回用油圧モータ54は、アクチュエータの一例に該当する。巻回用油圧モータ54は、電磁比例切換弁である巻回用バルブ34によって適宜に稼動される。
 つまり、巻回用油圧モータ54は、巻回用バルブ34が作動油の流動方向を切り替えたり作動油の流量を調節したりすることで適宜に稼動される。なお、フック10の吊下長さL(図1参照)や昇降速度は、巻回用センサ44によって検出される。そのため、制御装置20は、フック10の吊下長さLや昇降速度を認識することができる。
 ところで、制御装置20は、各種バルブ31~34を介して各アクチュエータ(51、52、53、54)を制御する。制御装置20は、基本制御信号作成部20aと、共振周波数算出部20bと、フィルタ係数算出部20cと、フィルタリング制御信号作成部20dと、を有する。フィルタリング制御信号作成部20dは、第一フィルタ部及び第二フィルタ部の一例に該当すると捉えてよい。第一フィルタ部は、第一制御信号をフィルタリングして第二制御信号を生成する。第二フィルタ部は、第三制御信号をフィルタリングして、第四制御信号を生成する。第一フィルタ部と、第二フィルタ部とは、異なるフィルタ特性を有してよい。つまり、第一フィルタ部のフィルタ係数と、第二フィルタ部のフィルタ係数とは、異なってよい。なお、第一フィルタ部と、第二フィルタ部とは、同じフィルタ特性を有してもよい。
 基本制御信号作成部20aは、各アクチュエータ(51、52、53、54)の速度指令である基本制御信号Sを作成する(図5参照)。基本制御信号作成部20aは、オペレータによる各種操作具21~24の操作量や操作速度を認識し、状況毎に基本制御信号Sを作成する。
 具体的は、基本制御信号作成部20aは、旋回操作具21の操作量や操作速度に応じた基本制御信号S、伸縮操作具22の操作量や操作速度に応じた基本制御信号S、起伏操作具23の操作量や操作速度に応じた基本制御信号S、及び/又は、巻回操作具24の操作量や操作速度に応じた基本制御信号Sを作成する。基本制御信号作成部20aは、第一生成部の一例に該当する。
 共振周波数算出部20bは、各アクチュエータ(51、52、53、54)が作動することによって生じる荷物Wの振れの周波数である共振周波数ωを算出する。共振周波数算出部20bは、ブーム7の姿勢やワイヤロープ8の巻き出し量に基づいてフック10の吊下長さLを認識し、状況毎に共振周波数ωを算出する。
 具体的には、共振周波数算出部20bは、フック10の吊下長さLと、重力加速度gと、を用いた下記の数式に基づいて共振周波数ωを算出する。
Figure JPOXMLDOC01-appb-M000001
 フィルタ係数算出部20cは、後述するノッチフィルタFが有する伝達係数H(s)の中心周波数係数ωn、ノッチ幅係数ζ、及び、ノッチ深さ係数δを算出する。フィルタ係数算出部20cは、共振周波数算出部20bが算出した共振周波数ωを中心として対応する中心周波数係数ωnを算出する。
 また、フィルタ係数算出部20cは、それぞれの基本制御信号Sに対応するノッチ幅係数ζ及びノッチ深さ係数δを算出する。なお、伝達係数H(s)は、中心周波数係数ωn、ノッチ幅係数ζ、及び、ノッチ深さ係数δを用いた下記の数式で表される。伝達係数H(s)は、フィルタ特性とも称する。伝達係数H(s)のパラメータが異なれば、ノッチフィルタFのフィルタ特性が異なると捉えてよい。
Figure JPOXMLDOC01-appb-M000002
 フィルタリング制御信号作成部20dは、ノッチフィルタFを作成するとともに、基本制御信号Sに対してノッチフィルタFをかけてフィルタリング制御信号Sfを作成する(図5参照)。フィルタリング制御信号作成部20dは、フィルタ係数算出部20cから各種係数ωn、ζ、δを取得してノッチフィルタFを作成する。
 また、フィルタリング制御信号作成部20dは、基本制御信号作成部20aから基本制御信号Sを取得し、この基本制御信号Sに対してノッチフィルタFをかけてフィルタリング制御信号Sfを作成する。
 具体的に説明すると、フィルタリング制御信号作成部20dは、旋回操作具21の操作量等に応じた基本制御信号SとノッチフィルタFとからフィルタリング制御信号Sfを作成する。また、フィルタリング制御信号作成部20dは、伸縮操作具22の操作量等に応じた基本制御信号SとノッチフィルタFとに基づいてフィルタリング制御信号Sfを作成する。フィルタリング制御信号作成部20dは、起伏操作具23の操作量等に応じた基本制御信号SとノッチフィルタFとに基づいてフィルタリング制御信号Sfを作成する。また、フィルタリング制御信号作成部20dは、巻回操作具24の操作量等に応じた基本制御信号SとノッチフィルタFとに基づいてフィルタリング制御信号Sfを生成する。
 このような構成により、制御装置20は、フィルタリング制御信号Sfに基づいて各種バルブ31~34を制御する。ひいては、制御装置20は、フィルタリング制御信号Sfに基づいて各アクチュエータ(51、52、53、54)を制御する。
 次に、図4及び図5を用いて、ノッチフィルタF及びフィルタリング制御信号Sfについて説明する。
 ノッチフィルタFは、共振周波数ωを中心とする任意の範囲で共振周波数ωに近づく程に減衰率が高くなる特徴を有する。共振周波数ωを中心とする任意の範囲は、ノッチ幅Bnとして表される。ノッチ幅Bnにおける減衰量の差異は、ノッチ深さDnとして表される。
 このため、ノッチフィルタFは、共振周波数ω、ノッチ幅Bn、及び、ノッチ深さDnで特定される。なお、ノッチ深さDnは、ノッチ深さ係数δに基づいて定まる。従って、ノッチ深さ係数δ=0の場合は、共振周波数ωにおけるゲイン特性が-∞dBとなり、ノッチ深さ係数δ=1の場合は、共振周波数ωにおけるゲイン特性が0dBとなる。
 フィルタリング制御信号Sfは、各アクチュエータ(51、52、53、54)に伝達される速度指令である。ブーム7等の加速に対応したフィルタリング制御信号Sfは、基本制御信号Sよりも加速が穏やかであり、一時的に減速させてから再び加速していくような特徴を有する(図5におけるX部参照)。
 ここで、一時的に減速させるのは、加速時における荷物Wの振れを抑えるためである。また、ブーム7等の減速に対応したフィルタリング制御信号Sfは、基本制御信号Sよりも減速が穏やか又は同程度であり、一時的に増速させてから再び減速していくような特徴を有する(図5におけるY部参照)。ここで、一時的に増速させるのは、減速時における荷物Wの振れを抑えるためである。
 次に、図6を用いて、作業現場における運搬許容領域Rp及び運搬制限領域Rrについて説明する。
 運搬許容領域Rpは、荷物Wの運搬が認められた領域を表している。運搬許容領域Rpにおいては、ブーム7についても移動が認められている。そして、運搬許容領域Rpにおいては、ノッチ深さ係数δが0~1の範囲で選択自在となっている。
 ノッチ深さ係数δが0或いは0に近い数値のときは、オペレータの操作に対して緩慢な反応となり、荷物Wの振れを抑えることが可能となる。反対に、ノッチ深さ係数δが1或いは1に近い数値のときは、オペレータの操作に対して敏捷な反応となり、オペレータの操作感覚に合わせることが可能となる。
 運搬制限領域Rrは、荷物Wの運搬が認められていない領域を表している。運搬制限領域Rrにおいては、ブーム7についても移動(侵入)が認められていない。そして、運搬制限領域Rrにおいては、もとより荷物Wやブーム7が入らないので、ノッチ深さ係数δ等も定められない。
 また、運搬制限領域Rrは、障害物B等を囲うように設けられている。このため、荷物Wやブーム7が障害物B等に衝突するのを防ぐことができる。なお、運搬許容領域Rpにある荷物Wやブーム7が、運搬制限領域Rrに向かって移動している場合は、運搬動作を自動停止することとなる。
 以下に、図7を用いて、荷物Wの運搬動作を自動停止又は手動停止させる制御態様について説明する。
 まず、ブーム7の旋回動作によって荷物Wが運搬制限領域Rrに向かっている例について説明する。ここでは、図7とともに、図8及び図9を参照して説明する。本例において、ブーム7は、被操作機能部の一例に該当する。
 ステップS11において、制御装置20は、自動停止信号が入力されたか否かを判断する。自動停止信号は、荷物Wやブーム7が運搬制限領域Rrに近接した場合に作成される。自動停止信号が入力された場合(ステップS11において“YES”)、制御処理は、ステップS12へ移行し、自動停止信号が入力されていない場合(ステップS11において“NO”)、制御処理は、ステップS14へ移行する。
 ステップS12において、制御装置20は、旋回用油圧モータ51の自動制御信号Saを作成する(図8参照)。自動制御信号Saは、自動停止時に作成される基本制御信号Sである。自動制御信号Saは、第三制御信号の一例に該当する。自動制御信号Saは、ブーム7の旋回速度や荷物Wの重さ等に基づいて作成される。なお、自動制御信号Saは、自動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。制御装置20において、自動制御信号Saを生成する部分は、第二生成部の一例に該当すると捉えてよい。
 ステップS13において、制御装置20は、自動制御信号Sa(第三制御信号)に対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「自動フィルタリング制御信号Sfa」とする)を作成する(図8参照)。このときのノッチフィルタFは、任意に設定されたノッチ深さ係数δに基づいて作成される。自動フィルタリング制御信号Sfaは、第四制御信号の一例に該当する。
 そして、制御装置20は、自動フィルタリング制御信号Sfaに基づいて旋回用油圧モータ51を制御する。これにより、例えば荷物Wの振れを抑えることを優先させた制御内容を実現できる。この場合、ブーム7の旋回速度が減速すると、荷物Wが慣性によって振れ始める(図8における(A)参照)。
 そこで、ブーム7の旋回速度を一時的に増速させることで、ブーム7を追いつかせて荷物Wの振れを抑える(図8における(B)参照)。そして、その後は荷物Wの振れを抑えた状態で再び減速させていく(図8における(C)参照)。なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル26によって変更自在となっている。
 加えて、荷物Wやブーム7の流れ量(旋回動作を止める操作を行ってから止まるまでの移動距離)は、許容流れ量Pdに収まる量に決定される。許容流れ量Pdについては、オペレータが任意に設定できる。
 ところで、ステップS14において、制御装置20は、手動停止信号が入力されたか否かを判断する。手動停止信号は、オペレータが旋回操作具21を操作してブーム7の旋回動作を止めようとした場合に作成される。手動停止信号が入力された場合(ステップS14において“YES”)、制御処理は、ステップS15へ移行し、手動停止信号が入力されていない場合(ステップS14において“NO”)、制御処理は、はステップS11に戻される。
 ステップS15において、制御装置20は、旋回用油圧モータ51の手動制御信号Smを作成する(図9参照)。手動制御信号Smは、手動停止時に作成される基本制御信号Sを指す。手動制御信号Smは、オペレータによる旋回操作具21の操作量や操作速度に基づいて作成される。
 なお、手動制御信号Smは、手動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS16において、制御装置20は、切替スイッチ25が「ON」であるか「OFF」であるかを判断する。切替スイッチ25は、オペレータが自在に切り替えることができる。切替スイッチ25が「ON」である場合(ステップS16において“YES”)、制御処理は、ステップS17へ移行し、切替スイッチ25が「OFF」である場合(ステップS16において“NO”)、制御処理は、ステップS18へ移行する。
 なお、切替スイッチ25が「OFF」の状態を、切替スイッチ25の第一状態と定義する。一方、切替スイッチ25が「ON」の状態を、切替スイッチ25の第二状態と定義する。切替スイッチ25は、スイッチ部の一例に該当する。
 ステップS17において、制御装置20は、手動制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「手動フィルタリング制御信号Sfm」とする)を作成する(図9参照)。このときのノッチフィルタFについても、任意に設定されたノッチ深さ係数δに基づいて作成される。
 ステップS13で使用するノッチフィルタFと、ステップS17で使用するノッチフィルタFとは、同じフィルタであってもよいし、異なるフィルタであってもよい。一例として、ステップS17で使用するノッチフィルタFにより、手動制御信号Smから減衰させる周波数成分の割合は、ステップS13で使用するノッチフィルタFにより、自動制御信号Saから減衰させる周波数成分の割合よりも小さくてよい。換言すれば、手動制御によりアクチュエータを制御する場合(ステップS17の場合)に、手動制御信号Smから減衰させる周波数成分の割合は、自動制御によりアクチュエータを制御する場合(ステップS13の場合)に、自動制御信号Saから減衰させる周波数成分の割合よりも小さくてよい。
 そして、制御装置20は、手動フィルタリング制御信号Sfmに基づいて旋回用油圧モータ51を制御する。これにより、例えば荷物Wの振れを抑えることよりも、オペレータの操作感覚に合せることを優先させた制御内容を実現できる。
 この場合、ブーム7の旋回速度が減速すると、荷物Wが慣性によって振れ始める(図9における(A)参照)。そして、ブーム7の旋回速度を僅かに増速させる或いは増速させることなく、そのままブーム7の旋回速度を減速させていく(図9における(B)参照)。
 なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル27によって変更自在となっている。加えて、荷物Wの振れ量が許容振れ幅Pxに収まるものに決定される。許容振れ幅Pxについては、オペレータが任意に設定できる。
 他方、ステップS18において、制御装置20は、手動制御信号Smに基づいて旋回用油圧モータ51を制御する。つまり、制御装置20は、手動フィルタリング制御信号Sfmを作成せず、そのまま手動制御信号Smに基づいて旋回用油圧モータ51を制御する。
 これにより、荷物Wの振れを考慮せず、オペレータの操作感覚に合せることを最優先とした制御内容を実現できる。この場合、荷物Wの振れを抑えるためには、オペレータが旋回操作具21を操作してブーム7の旋回速度を一時的に増速させ、振れ始めた荷物Wにブーム7を追いつかせる必要がある。このような操作は、熟練のオペレータであれば可能である。
 以上のように、クレーン1は、荷物Wの運搬に供するアクチュエータ(旋回用油圧モータ51)と、アクチュエータ51の作動状態を指示する制御装置20と、制御装置20に接続されてアクチュエータ51の制御態様を切り替えるスイッチ(切替スイッチ25)と、を具備している。
 そして、スイッチ25が一方を選択している際(スイッチ25がOFFの状態であってスイッチの第一状態の場合)には、制御装置20がアクチュエータ51の基本制御信号S(手動制御信号Sm)に基づいてアクチュエータ51を制御して運搬動作を停止させる。
 また、スイッチ25が他方を選択している際(スイッチ25がONの状態であってスイッチの第二状態の場合)には、制御装置20がアクチュエータ51の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成する。そして、制御装置20は、作成したフィルタリング制御信号Sfmに基づいてアクチュエータ51を制御して運搬動作を停止させる。このようなクレーン1によれば、荷物Wの運搬動作を停止させる際の制御態様について動作特性を選択できる。
 具体的には、クレーン1においては、アクチュエータ(旋回用油圧モータ51)がブーム7を旋回させる油圧モータである。そして、スイッチ(切替スイッチ25)が一方を選択している際(切替スイッチ25がOFFの状態)には、制御装置20が油圧モータ51の基本制御信号S(手動制御信号Sm)に基づいて油圧モータ51を制御して旋回動作を停止させる。
 また、スイッチ25が他方を選択している際(切替スイッチ25がONの状態)には、制御装置20は、油圧モータ51の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成する。そして、制御装置20は、作成したフィルタリング制御信号Sfmに基づいて油圧モータ51を制御して旋回動作を停止させる。このようなクレーン1によれば、ブーム7の旋回動作を停止させる際の制御態様について動作特性を選択できる。
 クレーン1においては、ブーム7の旋回動作によって生じる荷物Wの振れを抑えるべく、荷物Wの振れの周波数を共振周波数ωとしている。しかし、ブーム7の旋回動作によって生じるブーム7自身の振れを抑えるべく、ブーム7の振れの周波数を共振周波数ωとしてもよい。また、荷物Wの振れの周波数とブーム7の振れの周波数を共に考慮した共振周波数ωとしてもよい。
 加えて、クレーン1においては、オペレータが切替スイッチ25を操作して制御態様を選択する構成としているが、これに限定するものではない。例えば、切替スイッチ25が制御装置20の演算装置に組み込まれており、所望の制御態様を選択するように予め設定できる構成であってもよい。
 或いは適宜な制御態様を状況に応じて自動的に選択する構成であってもよい。つまり、切替スイッチ25は、手動で操作されるものに限定されない。
 次に、ブーム7の伸縮動作によって荷物Wが運搬制限領域Rrに向かっている例について説明する。ここでは、図7とともに、図10及び図11を参照して説明する。なお、ブーム7の伸縮動作を伸長動作として説明するが、収縮動作についても同様である。本例において、ブーム7は、被操作機能部の一例に該当する。
 ステップS11において、制御装置20は、自動停止信号が入力されたか否かを判断する。自動停止信号は、荷物Wやブーム7が運搬制限領域Rrに近接した場合に作成される。自動停止信号が入力された場合(ステップS11において“YES”)、制御処理は、ステップS12へ移行し、自動停止信号が入力されていない場合(ステップS11において“NO”)、制御処理は、ステップS14へ移行する。
 ステップS12において、制御装置20は、伸縮用油圧シリンダ52の自動制御信号Saを作成する(図10参照)。自動制御信号Saは、自動停止時に作成される基本制御信号Sである。自動制御信号Saは、ブーム7の伸長速度や荷物Wの重さ等に基づいて作成される。
 なお、自動制御信号Saは、自動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS13において、制御装置20は、自動制御信号Saに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「自動フィルタリング制御信号Sfa」とする)を作成する(図10参照)。このときのノッチフィルタFは、任意に設定されたノッチ深さ係数δに基づいて作成される。
 そして、制御装置20は、自動フィルタリング制御信号Sfaに基づいて伸縮用油圧シリンダ52を制御する。これにより、例えば荷物Wの振れを抑えることを優先させた制御内容を実現できる。この場合、ブーム7の伸長速度が減速すると、荷物Wが慣性によって振れ始める(図10における(A)参照)。
 そこで、ブーム7の伸長速度を一時的に増速させることで、ブーム7を追いつかせて荷物Wの振れを抑える(図10における(B)参照)。そして、その後は荷物Wの振れを抑えた状態で再び減速させていく(図10における(C)参照)。
 なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル26によって変更自在である。加えて、荷物Wやブーム7の流れ量(伸長動作を止める操作を行ってから止まるまでの移動距離)は、許容流れ量Pdに収まる量に決定される。許容流れ量Pdについては、オペレータが任意に設定できる。
 ところで、ステップS14において、制御装置20は、手動停止信号が入力されたか否かを判断する。手動停止信号は、オペレータが伸縮操作具22を操作してブーム7の伸長動作を止めようとした場合に作成される。手動停止信号が入力された場合(ステップS14において“YES”)、制御処理は、ステップS15へ移行し、手動停止信号が入力されていない場合(ステップS14において、“NO”)、制御処理は、ステップS11に戻される。
 ステップS15において、制御装置20は、伸縮用油圧シリンダ52の手動制御信号Smを作成する(図11参照)。手動制御信号Smは、手動停止時に作成される基本制御信号Sである。手動制御信号Smは、オペレータによる伸縮操作具22の操作量や操作速度に基づいて作成される。
 なお、手動制御信号Smは、手動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS16において、制御装置20は、切替スイッチ25が「ON」であるか「OFF」であるかを判断する。切替スイッチ25は、オペレータが自在に切り替えることができる。切替スイッチ25が「ON」である場合(ステップS16において“YES”)、制御処理は、ステップS17へ移行し、切替スイッチ25が「OFF」である場合(ステップS16において“NO”)、制御処理は、ステップS18へ移行する。
 ステップS17において、制御装置20は、手動制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「手動フィルタリング制御信号Sfm」とする)を作成する(図11参照)。このときのノッチフィルタFについても、任意に設定されたノッチ深さ係数δに基づいて作成される。
 そして、制御装置20は、手動フィルタリング制御信号Sfmに基づいて伸縮用油圧シリンダ52を制御する。これにより、例えば荷物Wの振れを抑えることよりも、オペレータの操作感覚に合せることを優先させた制御内容を実現できる。
 この場合、ブーム7の伸長速度が減速すると、荷物Wが慣性によって振れ始める(図11における(A)参照)。そして、ブーム7の伸長速度を僅かに増速させる或いは増速させることなく、そのままブーム7の伸長速度を減速させる(図11における(B)参照)。
 なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル27によって変更自在となっている。加えて、荷物Wの振れ量は、許容振れ幅Pxに収まる量に決定される。許容振れ幅Pxについては、オペレータが任意に設定できる。
 他方、ステップS18において、制御装置20は、手動制御信号Smに基づいて伸縮用油圧シリンダ52を制御する。つまり、制御装置20は、手動フィルタリング制御信号Sfmを作成せず、そのまま手動制御信号Smに基づいて伸縮用油圧シリンダ52を制御する。これにより、荷物Wの振れを考慮せず、オペレータの操作感覚に合せることを最優先とした制御内容を実現できる。
 この場合、荷物Wの振れを抑えるためには、オペレータが伸縮操作具22を操作してブーム7の伸長速度を一時的に増速させ、振れ始めた荷物Wにブーム7を追いつかせる必要がある。このような操作は、熟練のオペレータであれば可能である。
 以上のように、本クレーン1は、荷物Wの運搬に供するアクチュエータ(伸縮用油圧シリンダ52)と、アクチュエータ52の作動状態を指示する制御装置20と、制御装置20に接続されてアクチュエータ52の制御態様を切り替えるスイッチ(切替スイッチ25)と、を具備している。
 そして、スイッチ25が一方を選択している際には、制御装置20がアクチュエータ52の基本制御信号S(手動制御信号Sm)に基づいてアクチュエータ52を制御して運搬動作を停止させる。
 また、スイッチ25が他方を選択している際には、制御装置20がアクチュエータ52の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成し、このフィルタリング制御信号Sfmに基づいてアクチュエータ52を制御して運搬動作を停止させる。クレーン1によれば、荷物Wの運搬動作を停止させる際の制御態様について動作特性を選択できる。
 具体的に説明すると、クレーン1においては、アクチュエータ(伸縮用油圧シリンダ52)がブーム7を伸縮させる油圧シリンダである。そして、スイッチ(切替スイッチ25)が一方を選択している際には、制御装置20が油圧シリンダ52の基本制御信号S(手動制御信号Sm)に基づいて油圧シリンダ52を制御して伸縮動作を停止させる。
 また、スイッチ25が他方を選択している際には、制御装置20が油圧シリンダ52の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成し、このフィルタリング制御信号Sfmに基づいて油圧シリンダ52を制御して伸縮動作を停止させる。このようなクレーン1によれば、ブーム7の伸縮動作を停止させる際の制御態様について動作特性を選択できる。
 クレーン1においては、ブーム7の伸縮動作によって生じる荷物Wの振れを抑えるべく、荷物Wの振れの周波数を共振周波数ωとしている。しかし、ブーム7の伸縮動作によって生じるブーム7自身の振れを抑えるべく、ブーム7の振れの周波数を共振周波数ωとしてもよい。また、荷物Wの振れの周波数とブーム7の振れの周波数を共に考慮した共振周波数ωとしてもよい。
 加えて、クレーン1においては、オペレータが切替スイッチ25を操作して制御態様を選択する構成としているが、これに限定されない。例えば、切替スイッチ25が制御装置20の演算装置に組み込まれており、所望の制御態様を選択するように予め設定できる構成であってもよい。或いは、適宜な制御態様を状況に応じて自動的に選択する構成であってもよい。つまり、切替スイッチ25は、手動で操作されるものに限定されない。
 次に、ブーム7の起伏動作によって荷物Wが運搬制限領域Rrに向かっている例について説明する。ここでは、図7とともに、図12及び図13を参照して説明する。なお、ブーム7の起伏動作を起立動作として説明するが、倒伏動作についても同様である。本例において、ブーム7は、被操作機能部の一例に該当する。
 ステップS11において、制御装置20は、自動停止信号が入力されたか否かを判断する。自動停止信号は、荷物Wやブーム7が運搬制限領域Rrに近接した場合に作成される。自動停止信号が入力された場合(ステップS11において“YES”)、制御処理は、ステップS12へ移行し、自動停止信号が入力されていない場合(ステップS11において“NO”)、制御処理は、ステップS14へ移行する。
 ステップS12において、制御装置20は、起伏用油圧シリンダ53の自動制御信号Saを作成する(図12参照)。自動制御信号Saは、自動停止時に作成される基本制御信号Sである。
 自動制御信号Saは、ブーム7の起立速度や荷物Wの重さ等に基づいて作成される。なお、自動制御信号Saは、自動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS13において、制御装置20は、自動制御信号Saに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「自動フィルタリング制御信号Sfa」とする)を作成する(図12参照)。このときのノッチフィルタFは、任意に設定されたノッチ深さ係数δに基づいて作成される。
 そして、制御装置20は、自動フィルタリング制御信号Sfaに基づいて起伏用油圧シリンダ53を制御する。これにより、例えば荷物Wの振れを抑えることを優先させた制御内容を実現できる。この場合、ブーム7の起立速度が減速すると、荷物Wが慣性によって振れ始める(ワイヤロープ8の撓みによって振れ始める:図12における(A)参照)。
 そこで、ブーム7の起立速度を一時的に増速させることで、ワイヤロープ8を張らせて荷物Wの振れを抑える(図12における(B)参照)。そして、その後は荷物Wの振れを抑えた状態で再び減速させていく(図12における(C)参照)。
 なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル26によって変更自在となっている。加えて、荷物Wやブーム7の流れ量(起立動作を止める操作を行ってから止まるまでの移動距離)は、許容流れ量Pdに収まる量に決定される。許容流れ量Pdについては、オペレータが任意に設定できる。
 ところで、ステップS14において、制御装置20は、手動停止信号が入力されたか否かを判断する。手動停止信号は、オペレータが起伏操作具23を操作してブーム7の起立動作を止めようとした場合に作成される。手動停止信号が入力された場合(ステップS14において“YES”)、制御処理は、ステップS15へ移行し、手動停止信号が入力されていない場合(ステップS14において“NO”)、制御処理は、ステップS11に戻される。
 ステップS15において、制御装置20は、起伏用油圧シリンダ53の手動制御信号Smを作成する(図13参照)。手動制御信号Smは、手動停止時に作成される基本制御信号Sである。手動制御信号Smは、オペレータによる起伏操作具23の操作量や操作速度に基づいて作成される。なお、手動制御信号Smは、手動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS16において、制御装置20は、切替スイッチ25が「ON」であるか「OFF」であるかを判断する。切替スイッチ25は、オペレータが自在に切り替えることができる。切替スイッチ25が「ON」である場合(ステップS16において“YES”)、制御処理は、ステップS17へ移行し、切替スイッチ25が「OFF」である場合(ステップS16において“NO”)、制御処理は、ステップS18へ移行する。
 ステップS17において、制御装置20は、手動制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「手動フィルタリング制御信号Sfm」とする)を作成する(図13参照)。このときのノッチフィルタFについても、任意に設定されたノッチ深さ係数δに基づいて作成される。
 そして、制御装置20は、手動フィルタリング制御信号Sfmに基づいて起伏用油圧シリンダ53を制御する。これにより、例えば荷物Wの振れを抑えることよりも、オペレータの操作感覚に合せることを優先させた制御内容を実現できる。
 この場合、ブーム7の起立速度が減速すると、荷物Wが慣性によって振れ始める(ワイヤロープ8の撓みによって振れ始める:図13における(A)参照)。そして、ブーム7の起立速度を僅かに増速させる或いは増速させることなく、そのままブーム7の起立速度を減速させていく(図13における(B)参照)。なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル27によって変更自在となっている。加えて、荷物Wの振れ量は、許容振れ幅Pxに収まる量に決定される。許容振れ幅Pxについては、オペレータが任意に設定できる。
 他方、ステップS18において、制御装置20は、手動制御信号Smに基づいて起伏用油圧シリンダ53を制御する。つまり、制御装置20は、手動フィルタリング制御信号Sfmを作成せず、そのまま手動制御信号Smに基づいて起伏用油圧シリンダ53を制御する。
 これにより、荷物Wの振れを考慮せず、オペレータの操作感覚に合せることを最優先とした制御内容を実現できる。この場合、荷物Wの振れを抑えるためには、オペレータが起伏操作具23を操作してブーム7の起立速度を一時的に増速させ、撓み始めたワイヤロープ8を張らせる必要がある。このような操作は、熟練のオペレータであれば可能である。
 以上のように、クレーン1は、荷物Wの運搬に供するアクチュエータ(起伏用油圧シリンダ53)と、アクチュエータ53の作動状態を指示する制御装置20と、制御装置20に接続されてアクチュエータ53の制御態様を切り替えるスイッチ(切替スイッチ25)と、を具備している。
 そして、スイッチ25が一方を選択している際には、制御装置20がアクチュエータ53の基本制御信号S(手動制御信号Sm)に基づいてアクチュエータ53を制御して運搬動作を停止させる。
 また、スイッチ25が他方を選択している際には、制御装置20がアクチュエータ53の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成し、このフィルタリング制御信号Sfmに基づいてアクチュエータ53を制御して運搬動作を停止させる。このようなクレーン1によれば、荷物Wの運搬動作を停止させる際の制御態様について動作特性を選択できる。
 具体的に説明すると、クレーン1においては、アクチュエータ(起伏用油圧シリンダ53)がブーム7を起伏させる油圧シリンダである。そして、スイッチ(切替スイッチ25)が一方を選択している際には、制御装置20が油圧シリンダ53の基本制御信号S(手動制御信号Sm)に基づいて油圧シリンダ53を制御して起伏動作を停止させる。
 また、スイッチ25が他方を選択している際には、制御装置20が油圧シリンダ53の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成し、このフィルタリング制御信号Sfmに基づいて油圧シリンダ53を制御して起伏動作を停止させる。クレーン1によれば、ブーム7の起伏動作を停止させる際の制御態様について動作特性を選択できる。
 クレーン1においては、ブーム7の起伏動作によって生じる荷物Wの振れを抑えるべく、荷物Wの振れの周波数を共振周波数ωとしている。しかし、ブーム7の起伏動作によって生じるブーム7自身の振れを抑えるべく、ブーム7の振れの周波数を共振周波数ωとしてもよい。また、荷物Wの振れの周波数とブーム7の振れの周波数を共に考慮した共振周波数ωとしてもよい。
 加えて、クレーン1においては、オペレータが切替スイッチ25を操作して制御態様を選択する構成としているが、これに限定されない。例えば、切替スイッチ25が制御装置20の演算装置に組み込まれており、所望の制御態様を選択するように予め設定できる構成であってもよい。或いは、適宜な制御態様を状況に応じて自動的に選択する構成であってもよい。つまり、切替スイッチ25は、手動で操作されるものに限定されない。
 次に、フック10の昇降動作によって荷物Wが運搬制限領域Rrに向かっている例について説明する。ここでは、図7とともに、図14及び図15を参照して説明する。なお、フック10の昇降動作を上昇動作として説明するが、降下動作についても同様である。本例において、フック10を昇降するためのウインチ9は、被操作機能部の一例に該当する。
 ステップS11において、制御装置20は、自動停止信号が入力されたか否かを判断する。自動停止信号は、荷物Wやブーム7が運搬制限領域Rrに近接した場合に作成される。自動停止信号が入力された場合はステップS12へ移行し、自動停止信号が入力されていない場合はステップS14へ移行する。
 ステップS12において、制御装置20は、巻回用油圧モータ54の自動制御信号Saを作成する(図14参照)。自動制御信号Saは、自動停止時に作成される基本制御信号Sである。自動制御信号Saは、フック10の上昇速度や荷物Wの重さ等に基づいて作成される。なお、自動制御信号Saは、自動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS13において、制御装置20は、自動制御信号Saに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「自動フィルタリング制御信号Sfa」とする)を作成する(図14参照)。このときのノッチフィルタFは、任意に設定されたノッチ深さ係数δに基づいて作成される。
 そして、制御装置20は、自動フィルタリング制御信号Sfaに基づいて巻回用油圧モータ54を制御する。これにより、例えば荷物Wの振れを抑えることを優先させた制御内容を実現できる。この場合、フック10の上昇速度が減速すると、荷物Wが慣性によって振れ始める(ワイヤロープ8の撓みによって振れ始める:図14における(A)参照)。
 そこで、フック10の上昇速度を一時的に増速させることで、ワイヤロープ8を張らせて荷物Wの振れを抑える(図14における(B)参照)。そして、その後は荷物Wの振れを抑えた状態で再び減速させる(図14における(C)参照)。
 なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル26によって変更自在となっている。加えて、荷物Wの流れ量(上昇動作を止める操作を行ってから止まるまでの移動距離)は、許容流れ量Pdに収まる量に決定される。許容流れ量Pdについては、オペレータが任意に設定できる。
 ところで、ステップS14において、制御装置20は、手動停止信号が入力されたか否かを判断する。手動停止信号は、オペレータが巻回操作具24を操作してフック10の上昇動作を止めようとした場合に作成される。手動停止信号が入力された場合(ステップS14において“YES”)、制御処理は、ステップS15へ移行し、手動停止信号が入力されていない場合(ステップS14において“NO”)、制御処理は、ステップS11に戻される。
 ステップS15において、制御装置20は、巻回用油圧モータ54の手動制御信号Smを作成する(図15参照)。手動制御信号Smは、手動停止時に作成される基本制御信号Sである。手動制御信号Smは、オペレータによる巻回操作具24の操作量や操作速度に基づいて作成される。なお、手動制御信号Smは、手動停止時に用いられるプログラムに基づいて作成される。プログラムは、制御装置20に予め格納されている。
 ステップS16において、制御装置20は、切替スイッチ25が「ON」であるか「OFF」であるかを判断する。切替スイッチ25は、オペレータが自在に切り替えることができる。切替スイッチ25が「ON」である場合(ステップS16において“YES”)、制御処理は、ステップS17へ移行し、切替スイッチ25が「OFF」である場合(ステップS16において“NO”)、制御処理は、ステップS18へ移行する。
 ステップS17において、制御装置20は、手動制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(以降「手動フィルタリング制御信号Sfm」とする)を作成する(図15参照)。このときのノッチフィルタFについても、任意に設定されたノッチ深さ係数δに基づいて作成される。そして、制御装置20は、手動フィルタリング制御信号Sfmに基づいて巻回用油圧モータ54を制御する。これにより、例えば荷物Wの振れを抑えることよりも、オペレータの操作感覚に合せることを優先させた制御内容を実現できる。
 この場合、フック10の上昇速度が減速すると、荷物Wが慣性によって振れ始める(ワイヤロープ8の撓みによって振れ始める:図15における(A)参照)。そして、フック10の上昇速度を僅かに増速させる或いは増速させることなく、そのままフック10の上昇速度を減速させていく(図15における(B)参照)。
 なお、ノッチフィルタFのノッチ深さ係数δは、後述する調節ダイヤル27によって変更自在となっている。加えて、荷物Wの振れ量は、許容振れ幅Pxに収まる量に決定される。許容振れ幅Pxについては、オペレータが任意に設定できる。
 他方、ステップS18において、制御装置20は、手動制御信号Smに基づいて巻回用油圧モータ54を制御する。つまり、制御装置20は、手動フィルタリング制御信号Sfmを作成せず、そのまま手動制御信号Smに基づいて巻回用油圧モータ54を制御する。
 これにより、荷物Wの振れを考慮せず、オペレータの操作感覚に合せることを最優先とした制御内容を実現できる。この場合、荷物Wの振れを抑えるためには、オペレータが巻回操作具24を操作してフック10の上昇速度を一時的に増速させ、撓み始めたワイヤロープ8を張らせる必要がある。このような操作は、熟練のオペレータであれば可能である。
 以上のように、クレーン1は、荷物Wの運搬に供するアクチュエータ(巻回用油圧モータ54)と、アクチュエータ54の作動状態を指示する制御装置20と、制御装置20に接続されてアクチュエータ54の制御態様を切り替えるスイッチ(切替スイッチ25)と、を具備している。
 そして、スイッチ25が一方を選択している際には、制御装置20がアクチュエータ54の基本制御信号S(手動制御信号Sm)に基づいてアクチュエータ54を制御して運搬動作を停止させる。また、スイッチ25が他方を選択している際には、制御装置20がアクチュエータ54の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成し、このフィルタリング制御信号Sfmに基づいてアクチュエータ54を制御して運搬動作を停止させる。クレーン1によれば、荷物Wの運搬動作を手動停止させる際の制御態様について動作特性を任意に調整できる。
 具体的に説明すると、クレーン1においては、アクチュエータ(巻回用油圧モータ54)がフック10を昇降させる油圧モータである。そして、スイッチ(切替スイッチ25)が一方を選択している際には、制御装置20が油圧モータ54の基本制御信号S(手動制御信号Sm)に基づいて油圧モータ54を制御して昇降動作を停止させる。
 また、スイッチ25が他方を選択している際には、制御装置20は、油圧モータ54の基本制御信号Smに対してノッチフィルタFをかけてフィルタリング制御信号Sf(手動フィルタリング制御信号Sfm)を作成する。そして、制御装置20は、このフィルタリング制御信号Sfmに基づいて油圧モータ54を制御して昇降動作を停止させる。このようなクレーン1によれば、フック10の昇降動作を停止させる際の制御態様について動作特性を選択できる。
 クレーン1においては、フック10の昇降動作によって生じる荷物Wの振れを抑えるべく、荷物Wの振れの周波数を共振周波数ωとしている。しかし、フック10の昇降動作によって生じるブーム7自身の振れを抑えるべく、ブーム7の振れの周波数を共振周波数ωとしてもよい。また、荷物Wの振れの周波数とブーム7の振れの周波数を共に考慮した共振周波数ωとしてもよい。
 加えて、クレーン1においては、オペレータが切替スイッチ25を操作して制御態様を選択する構成としているが、これに限定されない。例えば、切替スイッチ25が制御装置20の演算装置に組み込まれており、所望の制御態様を選択するように予め設定できる構成であってもよい。或いは、適宜な制御態様を状況に応じて自動的に選択する構成であってもよい。つまり、切替スイッチ25は、手動で操作されるものに限定されない。
 次に、クレーン1における他の特徴点について説明する。
 図16に示すように、クレーン1は、調節ダイヤル26、27を備えている。調節ダイヤル26、27は、オペレータの手が届く範囲に配置されている。このため、オペレータは、自在に調節ダイヤル26、27を回すことができる。なお、図2には、調節ダイヤル26のみが示されている。図2において、調節ダイヤル27は、調節ダイヤル26に離接する位置(例えば、図2中の右隣り隣り)に設けられてよい。
 調節ダイヤル26は、自動停止に関するノッチ深さ係数δを選択してノッチ深さDnを変更するものである。調節ダイヤル27は、手動停止に関するノッチ深さ係数δを選択してノッチ深さDnを変更するものである。調節ダイヤル26は、第二フィルタ特性設定部の一例に該当する。調節ダイヤル27は、第一フィルタ特性設定部の一例に該当する。
 制御装置20は、調節ダイヤル26によって設定されたノッチフィルタFを利用して自動フィルタリング制御信号Sfaを作成する。同じく、制御装置20は、調節ダイヤル27によって設定されたノッチフィルタFを利用して手動フィルタリング制御信号Sfmを作成する。
 なお、調節ダイヤル26は、ノッチ深さ係数δに1を選択することができる。この場合、制御装置20は、自動制御信号Saに基づいてアクチュエータ51~54を制御する。また、調節ダイヤル27も、ノッチ深さ係数δに1を選択することができる。この場合、制御装置20は、手動制御信号Smに基づいてアクチュエータ51~54を制御する。
 このように、クレーン1においては、調節具(調節ダイヤル26、27)を具備している。そして、調節具26、27の操作によってノッチフィルタFの強さを調節できる。クレーン1によれば、より細やかにオペレータの操作感覚に合せることができる。
 最後に、本願においては、フィルタリング制御信号Sfを作成するフィルタとしてノッチフィルタFを用いているが、これに限定するものではない。つまり、特定の周波数域だけ減衰又は削減できるバンドストップフィルタであればよい。例えば、バンドリミットフィルタやバンドエリミネーションフィルタ等である。
 2018年2月28日出願の特願2018-035210の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 1 クレーン
 2 走行体
 3 旋回体
 4 フロントタイヤ
 5 リヤタイヤ
 6 アウトリガ
 7 ブーム
 8 ワイヤロープ
 9 ウインチ
 10 フック
 11 キャビン
 20 制御装置
 20a 基本制御信号作成部
 20b 共振周波数算出部
 20c フィルタ係数算出部
 20d フィルタリング制御信号作成部
 21 旋回操作具
 22 伸縮操作具
 23 起伏操作具
 24 巻回操作具
 25 切替スイッチ(スイッチ)
 26 調節ダイヤル(調節具)
 27 調節ダイヤル(調節具)
 31 旋回用バルブ
 32 伸縮用バルブ
 33 起伏用バルブ
 34 巻回用バルブ
 40 重量センサ
 41 旋回用センサ
 42 伸縮用センサ
 43 起伏用センサ
 44 巻回用センサ
 51 旋回用油圧モータ(アクチュエータ)
 52 伸縮用油圧シリンダ(アクチュエータ)
 53 起伏用油圧シリンダ(アクチュエータ)
 54 巻回用油圧モータ(アクチュエータ)
 F ノッチフィルタ(フィルタ)
 S 基本制御信号
 Sa 自動制御信号
 Sm 手動制御信号
 Sf フィルタリング制御信号
 Sfa 自動フィルタリング制御信号
 Sfm 手動フィルタリング制御信号
 W 荷物

Claims (10)

  1.  被操作機能部と、
     前記被操作機能部を操作するための操作入力を受け付ける操作部と、
     前記被操作機能部を駆動するアクチュエータと、
     前記操作入力に基づいて前記アクチュエータの第一制御信号を生成する第一生成部と、
     第一状態と第二状態とを切り換え可能なスイッチ部と、
     前記スイッチ部の第二状態において、前記第一制御信号をフィルタリングして第二制御信号を生成する第一フィルタ部と、
     前記スイッチ部の第一状態において、前記第一制御信号に基づいて前記アクチュエータを制御し、前記スイッチ部の第二状態において、前記第二制御信号に基づいて、前記アクチュエータを制御する制御部と、を備える、
     クレーン。
  2.  前記制御部は、
     前記スイッチ部の第一状態において、前記アクチュエータを停止するための前記第一制御信号に基づいて、前記アクチュエータを停止し、
     前記スイッチ部の第二状態において、前記アクチュエータを停止するための前記第二制御信号に基づいて、前記アクチュエータを停止させる、請求項1に記載のクレーン。
  3.  自動操作モードにおいて、前記アクチュエータを停止するための第三制御信号を生成する第二生成部と、
     前記自動操作モードにおいて、前記第三制御信号をフィルタリングして第四制御信号を生成する第二フィルタ部と、をさらに備え、
     前記制御部は、前記自動操作モードにおいて、前記第四制御信号に基づいて、前記アクチュエータを停止させる、請求項1又は2に記載のクレーン。
  4.  前記第一フィルタ部と前記第二フィルタ部とは、異なるフィルタ特性を有する、請求項3に記載のクレーン。
  5.  前記自動操作モードにおいて、前記第三制御信号が入力されてから前記被操作機能部が停止するまでの、前記被操作機能部の移動距離を設定する距離設定部を、さらに備える、請求項3又は4に記載のクレーン。
  6.  前記第一フィルタ部のフィルタ特性を設定する第一フィルタ特性設定部と、
     前記第二フィルタ部のフィルタ特性を設定する第二フィルタ特性設定部と、をさらに備える、請求項3~5の何れか一項に記載のクレーン。
  7.  前記スイッチ部は、作業者の手動により切り換えられる、請求項1~6の何れか一項に記載のクレーン。
  8.  前記スイッチ部は、自動で切り換えられる、請求項1~6の何れか一項に記載のクレーン。
  9.  前記被操作機能部は、ブームであり、
     前記アクチュエータは、前記ブームの旋回動作、伸縮動作、及び、起伏動作のうちの少なくとも一つの動作を行うためのアクチュエータである、請求項1~8の何れか一項に記載のクレーン。
  10.  前記被操作機能部は、ブームの先端部にワイヤロープにより吊り下げられたフックを昇降させるためのウインチであり、
     前記アクチュエータは、前記ウインチを駆動するためのアクチュエータである、請求項1~8の何れか一項に記載のクレーン。
PCT/JP2019/007769 2018-02-28 2019-02-28 クレーン WO2019168087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980014584.9A CN111741922B (zh) 2018-02-28 2019-02-28 起重机
EP19760219.6A EP3760567A4 (en) 2018-02-28 2019-02-28 CRANE
US16/976,275 US11267681B2 (en) 2018-02-28 2019-02-28 Crane
JP2019523886A JP6551638B1 (ja) 2018-02-28 2019-02-28 クレーン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035210 2018-02-28
JP2018035210 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168087A1 true WO2019168087A1 (ja) 2019-09-06

Family

ID=67806192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007769 WO2019168087A1 (ja) 2018-02-28 2019-02-28 クレーン

Country Status (3)

Country Link
EP (1) EP3760567A4 (ja)
CN (1) CN111741922B (ja)
WO (1) WO2019168087A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336097B (zh) * 2021-06-30 2023-08-22 三一汽车起重机械有限公司 起重机回转控制的方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047691A (ja) * 2000-08-03 2002-02-15 Komatsu Ltd 作業用車両
US20070219662A1 (en) * 2006-03-14 2007-09-20 Oliver Sawodny Method for the automatic transfer of a load hanging at a load rope of a crane or excavator with a load oscillation damping an a trajectory planner
JP2015151211A (ja) 2014-02-12 2015-08-24 三菱電機株式会社 クレーン装置
JP2017101415A (ja) * 2015-11-30 2017-06-08 日立建機株式会社 作業機械の操作支援装置
JP2018035210A (ja) 2016-08-29 2018-03-08 株式会社カネカ 繊維強化複合材料用エポキシ樹脂組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785191A (en) * 1996-05-15 1998-07-28 Sandia Corporation Operator control systems and methods for swing-free gantry-style cranes
US6442439B1 (en) * 1999-06-24 2002-08-27 Sandia Corporation Pendulation control system and method for rotary boom cranes
CN2697060Y (zh) * 2003-04-29 2005-05-04 蒋贞荣 桥式起重设备上的变频电控装置
FI114980B (fi) * 2003-07-17 2005-02-15 Kci Konecranes Oyj Menetelmä nosturin ohjaamiseksi
CN100425520C (zh) * 2003-08-05 2008-10-15 新东工业株式会社 起重机及其控制器
CN101024471B (zh) * 2007-04-04 2012-06-27 Abb(中国)有限公司 一种具有防摇功能的桥式起重机控制装置
JP5536683B2 (ja) * 2011-01-21 2014-07-02 日立建機株式会社 ホイール式作業機の油圧駆動装置
CN102107820A (zh) * 2011-03-08 2011-06-29 武汉理工大学 轮胎起重机回转控制系统
KR101833603B1 (ko) * 2015-05-29 2018-02-28 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 제어 시스템 및 작업 기계

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047691A (ja) * 2000-08-03 2002-02-15 Komatsu Ltd 作業用車両
US20070219662A1 (en) * 2006-03-14 2007-09-20 Oliver Sawodny Method for the automatic transfer of a load hanging at a load rope of a crane or excavator with a load oscillation damping an a trajectory planner
JP2015151211A (ja) 2014-02-12 2015-08-24 三菱電機株式会社 クレーン装置
JP2017101415A (ja) * 2015-11-30 2017-06-08 日立建機株式会社 作業機械の操作支援装置
JP2018035210A (ja) 2016-08-29 2018-03-08 株式会社カネカ 繊維強化複合材料用エポキシ樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760567A4

Also Published As

Publication number Publication date
EP3760567A1 (en) 2021-01-06
EP3760567A4 (en) 2021-11-17
CN111741922A (zh) 2020-10-02
CN111741922B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US11649143B2 (en) Crane
JP6551638B1 (ja) クレーン
EP3763661B1 (en) Crane
US11434111B2 (en) Crane
US11518658B2 (en) Crane
WO2019168133A1 (ja) クレーン
WO2019168087A1 (ja) クレーン
US11434112B2 (en) Crane
JP7172206B2 (ja) クレーン
JP2019163155A (ja) クレーン
US11787668B2 (en) Crane
JP7020182B2 (ja) クレーン
JP6849144B2 (ja) クレーン及びクレーンの制御方法
JP6531527B2 (ja) 移動式クレーンの動作切替装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019523886

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019760219

Country of ref document: EP

Effective date: 20200928