WO2019167804A1 - Titanium cobble manufacturing method and manufacturing device - Google Patents

Titanium cobble manufacturing method and manufacturing device Download PDF

Info

Publication number
WO2019167804A1
WO2019167804A1 PCT/JP2019/006624 JP2019006624W WO2019167804A1 WO 2019167804 A1 WO2019167804 A1 WO 2019167804A1 JP 2019006624 W JP2019006624 W JP 2019006624W WO 2019167804 A1 WO2019167804 A1 WO 2019167804A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
crusher
crushing
particles
titanium
Prior art date
Application number
PCT/JP2019/006624
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 野村
圭吾 小林
一美 竹中
Original Assignee
株式会社メタルドゥ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタルドゥ filed Critical 株式会社メタルドゥ
Priority to GB1912383.5A priority Critical patent/GB2573257B/en
Priority to US16/483,355 priority patent/US10967386B2/en
Priority to KR1020197025331A priority patent/KR102137280B1/en
Publication of WO2019167804A1 publication Critical patent/WO2019167804A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/04Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
    • B03C1/08Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/02Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft
    • B02C13/04Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft with beaters hinged to the rotor; Hammer mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/282Shape or inner surface of mill-housings
    • B02C13/284Built-in screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/36Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens jigging or moving to-and-fro in more than one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/02Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using chambers or hoods covering the area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/248Binding; Briquetting ; Granulating of metal scrap or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1204Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1218Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2201/00Details applicable to machines for screening using sieves or gratings
    • B07B2201/04Multiple deck screening devices comprising one or more superimposed screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F2009/001Making metallic powder or suspensions thereof from scrap particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Definitions

  • This disclosure relates to a titanium cobble manufacturing method and manufacturing apparatus.
  • Patent Documents 1 and 2 Conventionally, a method of recycling by pulverizing and classifying wastes such as composite materials and iron-based waste raw materials has been known (see, for example, Patent Documents 1 and 2).
  • titanium is used for various general uses and industrial uses because of its light weight, high strength, and high corrosion resistance.
  • Such titanium has a limited production volume, and it is important to perform recycling.
  • Patent Documents 1 and 2 do not disclose a method for producing titanium cobble from scrap material containing titanium.
  • an object of the present disclosure is to provide a method and an apparatus for producing a large amount of titanium cobbles with a uniform particle size by pulverizing titanium scrap material while ensuring safety.
  • a titanium cobble manufacturing method includes a preparation step of preparing a scrap material containing 50% by mass or more of metal titanium, and the first crushing of the scrap material.
  • a first crushing step roughly crushing with a machine
  • a second crushing step crushing the scrap material roughly crushed in the first crushing step with a second crusher
  • the scrap material generated in the second crushing step A dust collection step for collecting fine dust, and a pulverized product of the scrap material generated in the second crushing step, medium particles having a particle size within a predetermined particle size range, and particles exceeding the particle size range
  • scrap material containing 50% by mass or more of metal titanium is pulverized in two stages, thereby suppressing excessive frictional heat due to contact between metals and igniting during pulverization. Can be suppressed.
  • fine dust that is easy to catch fire and can be the main cause of ignition in the dust collection process, it suppresses ignition of fine dust and reduces the temperature of fine dust even when sparks occur. Inflammation of the pulverized product or the like can be suppressed.
  • classifying the pulverized product obtained by the two-stage crushing process into three types in the first classification process it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
  • a second technique is the first technique, wherein the scrap material is at least one selected from the group of a plate material, a tube material, a side trimming material, and a punching material, and the scrap material has a thickness of 3 mm or less, It is a waste material having a length of 1 m or less.
  • the third technology is characterized in that, in the first or second technology, the first crusher is a biaxial crusher, and the second crusher is a hammer mill.
  • a titanium cobble having a uniform particle size can be produced in a large amount with a high yield by two-stage crushing using a combination of a twin-screw crusher and a hammer mill.
  • a first magnetic separation process for removing magnetized particles from the medium particles, and the large particles are returned to the second crushing process. And a return process.
  • high-quality titanium cobbles can be manufactured with high yield by removing magnetic particles in the first magnetic separation process.
  • the large particles obtained in the first classification step are returned again to the second crushing step, so that a sufficient amount of titanium cobble can be secured.
  • a fifth technique is the collection process of collecting the fine dust and the small particles collected in the dust collecting process according to any one of the first to fourth techniques, and the collection of the fine dust and the small particles. It is characterized by comprising a second magnetic separation step of removing magnetism from the objects, and a second classification step of classifying the aggregate into at least two kinds.
  • titanium cobbles having a smaller particle diameter can be obtained as a double product, and scrap materials can be effectively recycled.
  • the sixth technology is characterized in that, in any one of the first to fifth technologies, the predetermined particle size range is 3 mm or more and 50 mm or less.
  • a titanium cobble having a uniform particle size can be produced in a large amount with a high yield.
  • a titanium cobble manufacturing apparatus includes a first crusher that roughly crushes a scrap material containing 50% by mass or more of titanium metal, and a crusher that crushes the scrap material roughly crushed by the first crusher.
  • scrap material containing 50% by mass or more of metal titanium is pulverized in two stages of the first crusher and the second crusher, thereby suppressing the generation of excessive frictional heat.
  • ignition during pulverization can be suppressed.
  • fine dust that is easy to ignite and that can be the main cause of ignition with a dust collector, it suppresses the ignition of fine dust and reduces the temperature of fine dust even when sparks occur, and other pulverization Inflammation of products and the like can be suppressed.
  • by classifying the pulverized product obtained by the two-stage pulverization into three types with a sieving machine it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
  • An eighth technique includes the first magnetic separator that removes magnetism from the medium particles in the seventh technique, and a conveyor device that returns the large particles to the second crusher. It is characterized by that.
  • a sufficient production amount of titanium cobble can be ensured by returning the large particles obtained by the sieving machine to the second crusher again. Then, by removing the magnetic particles in the first magnetic separator, it is possible to manufacture high quality titanium cobbles with a high yield.
  • a ninth technique is the vibration sieve machine according to the seventh or eighth technique, wherein the sieving machine includes two types of mesh materials having different hole diameters in upper and lower stages, and the upper mesh material has a hole diameter of 50 mm.
  • the pore diameter of the lower mesh material is 3 mm, and the pulverized product is disposed on the upper mesh material.
  • the particles can be classified effectively by the upper and lower two-stage mesh material, titanium cobbles having a uniform particle size can be produced in large quantities with a high yield.
  • the scrap material containing 50% by mass or more of metal titanium is pulverized in two stages to suppress generation of excessive frictional heat due to contact between metals, and during pulverization. Can be suppressed.
  • fine dust that is easy to catch fire and can be the main cause of ignition in the dust collection process, it suppresses ignition of fine dust and reduces the temperature of fine dust even when sparks occur. Inflammation of the pulverized product or the like can be suppressed.
  • classifying the pulverized product obtained by the two-stage crushing process into three types in the first classification process it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
  • titanium cobble refers to titanium-containing particles having a longest diameter of 50 mm or less and a longest diameter divided by the shortest diameter and containing 50% by mass or more of metallic titanium.
  • longest diameter refers to the maximum width of the outer shape of the particle
  • shortest diameter refers to the minimum width of the outer shape of the particle
  • the “particle size” of particles such as titanium cobble means the longest diameter of the particles.
  • the titanium cobble manufacturing method includes a preparation step S1, a first crushing step S2, a second crushing step S3, a dust collection step S4, and a first classification step.
  • S5 1st magnetic separation process S6, return process S7, collection process S8, 2nd magnetic selection process S9, and 2nd classification process S10 are provided.
  • FIG. 2 shows an example of a manufacturing apparatus 1 for manufacturing titanium cobbles by the titanium cobble manufacturing method shown in FIG.
  • the scrap material 11 roughly crushed by the first crusher 21 is conveyed by the first conveyor device 22, and is put into the second crusher 23 and crushed (second crushing step S3). ).
  • a duct 27 a connected to the dust collector 27 is disposed on the upper part of the second crusher 23.
  • the fine dust 410 generated when the scrap material 11 is pulverized by the second crusher 23 is sucked by the dust collector 27 and collected through the duct 27a (dust collection step S4).
  • the fine dust 410 is sent to the collection part 27b arrange
  • the scrap material 11 crushed by the second crusher 23 is fed into the inlet 245 of the first sieving machine 24 (sieving machine) as indicated by an arrow A4. And as shown by arrow A5, it sends to the sieve part 244 of the 1st sieve machine 24.
  • FIG. The sieve portion 244 includes a first mesh 241 (upper mesh material), a second mesh 242 (lower mesh material), and a bottom portion 243.
  • the scrap material 11 thrown into the insertion port 245 is, as shown by arrows A51, A52, A53 in FIGS. 1 and 2, large particles 411, medium particles 412, by the first mesh 241 and the second mesh 242. And small particles 413 (first classification step S5).
  • the middle particles 412 are discharged from the second discharge port 24b of the first sieving machine 24 and input to the first magnetic separator 25 as indicated by an arrow A62. Then, the magnetic middle particle 51 having magnetism is removed from the middle particle 412 by the first magnetic separator 25, and the titanium cobble 41 as a product is obtained as indicated by an arrow A7 (first magnetic separation step S6). ).
  • the large particles 411 are discharged from the first discharge port 24a of the first sieving machine 24 as shown by an arrow A63, and are put into the middle of the first conveyor device 22 by the second conveyor device 30 (conveyor device). It inputs into the 2nd crusher 23, ie, returns to 2nd crushing process S3 (return process S7).
  • the small particles 413 are discharged from the third discharge port 24c of the first sieve 24 and sent to the collection unit 27b provided at the lower part of the dust collector 27 by the third conveyor device 26.
  • the fine dust 410 collected by the dust collector 27 is collected (collecting step S8).
  • the aggregate of the fine dust 410 and the small particles 413 is sent from the collecting unit 27b to the second magnetic separator 28 as indicated by an arrow A102. Then, as shown by the arrow A103, the magnetic assembly 52 having magnetism is removed from the assembly by the second magnetic separator 28 (second magnetic separation step S9).
  • the aggregate from which the magnetic aggregate 52 has been removed is sent to the second sieving machine 29 as shown by an arrow A104, and as shown by arrows A105 and A106, a fine titanium cobble 42 and a small titanium cobble 43 (Second classification step S10).
  • the preparation step S1 is a step of preparing the scrap material 11.
  • the scrap material 11 is a waste material such as used scraps or processing scraps generated at a processing factory of a manufacturer and the like containing metal titanium in an amount of 50% by mass or more, more preferably 60% by mass or more, particularly preferably 80% by mass or more. is there.
  • the type of the scrap material 11 is not particularly limited, and specific examples include a plate material, a tube material, a side trimming material, a punching material, a hole punching material, a coil material, and the like, preferably a plate material, a tube material, It is at least one selected from the group of side trimming materials and punching materials.
  • examples of the plate material include waste materials such as a strip-shaped remaining portion remaining as a processing yield at the time of product manufacture.
  • the tube material examples include waste materials generated when manufacturing parts for heat exchangers and seawater desalination plants.
  • the side trimming material is, for example, a waste material generated when a plate material or the like is manufactured by cutting off an end portion of a titanium coil.
  • the punched material is, for example, a remaining part after being punched, which is generated when a raw material plate or the like is punched into a closed product shape.
  • the punched material is, for example, a punched portion that is generated when a raw material plate or the like is punched into a shape that is closed all around.
  • the coil material is, for example, a waste material such as a defective product generated during cold rolling of a raw material plate material or a defective product having scratches, dents, or the like.
  • the scrap material 11 has a thickness of 3 mm or less, preferably 0.4 mm or more and 2 mm or less, and a length of 1 m from the viewpoint of manufacturing a large amount of titanium cobbles 41 having a uniform particle size with high yield while ensuring safety.
  • it is preferably 0.8 m (800 mm) or less.
  • a tube outer diameter is 20 mm or less.
  • the first crushing step S ⁇ b> 2 is a step of roughly crushing the scrap material 11 with the first crusher 21.
  • the first crusher 21 roughly crushes the scrap material 11 so that the longest diameter is 500 mm or less, preferably 300 mm or less, more preferably 200 mm or less.
  • the 1st crusher 21 if it is a crusher suitable for rough crushing of the scrap material 11, a well-known crusher can be utilized, for example, a uniaxial crusher, a biaxial crusher, a four axis
  • the first crusher 21 When a biaxial crusher is employed as the first crusher 21, it is not particularly limited.
  • the first crusher 21 includes a motor of 30 kW or more and 200 kW or less, and a horizontal sectional area of the crushing chamber (for example, a crushing chamber is If it is a rectangular parallelepiped, the thing of width x depth) is 0.2 m 2 or more and 6 m 2 or less, for example. Thereby, the crushing of the scrap material 11 can be performed effectively.
  • the second crushing step S3 is a step of crushing the scrap material 11 roughly crushed by the first crusher 21, and is performed by the second crusher 23.
  • the second crusher 23 crushes the scrap material 11 roughly crushed by the first crusher 21 so that the longest diameter is preferably 150 mm or less, more preferably 100 mm or less, and particularly preferably 80 mm or less.
  • any known crusher can be used as long as it is a crusher suitable for crushing the scrap material 11.
  • a hammer mill, a disc mill, a jet mill, a uniaxial A crusher, a biaxial crusher, a 4-axis crusher, etc. are mentioned. From the viewpoint of obtaining a titanium cobble 41 having a uniform particle size in a short time, it is particularly preferable to use a hammer mill as the second crusher 23.
  • the second crusher 23 has a motor of 50 kW or more and 150 kW or less and has a horizontal sectional area of the crushing chamber (for example, the crushing chamber is a rectangular parallelepiped If it exists, the thing of width x depth) is 0.2 m 2 or more and 3 m 2 or less, for example.
  • the hammer mill is provided with a mesh-like screen at the discharge portion of the pulverized product, and the mesh size of the screen is appropriately adjusted by replacing the screen according to the desired size of the pulverized product as described above.
  • the upper limit is preferably 150 mm or less, more preferably 100 mm or less, and particularly preferably 80 mm or less.
  • the lower limit of the mesh size of the screen is not particularly limited, but from the viewpoint of increasing the safety of the manufacturing apparatus 1 by shortening the pulverization time in the hammer mill, preferably 10 mm or more, more preferably 20 mm or more, Especially preferably, it is 30 mm or more.
  • the scrap material 11 can be charged into the hammer mill according to the processing capacity such as the size of the hammer mill blade, the state of the hammer mill, the capacity of the crushing chamber, and the output of the motor.
  • the horizontal sectional area 1 m 2 of the crushing chamber is preferably 5 kg / min or less, more preferably 3 kg / min or less, particularly preferably 2 kg / min or less. It is.
  • the scrap material 11 is pulverized in two stages by the first crushing step S2 and the second crushing step S3, so that the scrap materials 11 and the inner walls and scrap of the first crusher 21 and the second crusher 23 are scraped.
  • the amount of frictional heat generated due to contact with the material 11 can be suppressed, and safety during pulverization can be ensured.
  • a titanium cobble having a uniform particle size can be produced in a large amount with a high yield in a short time.
  • the time until the second crusher 23 is charged is the safety of the manufacturing apparatus 1 by suppressing the amount of frictional heat generated during crushing in the second crusher 23. From the viewpoint of enhancing the properties, it is preferably 2 minutes or longer, more preferably 3 minutes or longer, particularly preferably 4 minutes or longer.
  • the dust collection step S ⁇ b> 4 is a step of collecting fine dust generated when the scrap material 11 is pulverized by the second crusher 23, and is performed by the dust collector 27.
  • the dust collector 27 is, for example, a cyclone type dust collector that separates and collects fine dust by a swirling airflow or centrifugal force, a pulse jet type or a back filter type dust collector, and is preferably a cyclone type dust collector.
  • the fine dust generated in the second crusher 23 is collected by the dust collector 27 through the duct 27a.
  • the dust collector 27 When a cyclone type dust collector is adopted as the dust collector 27, among the fine dust 410 collected through the duct 27a, the one with a large specific gravity is sent to the collecting portion 27b, while the other fine dust with a small specific gravity is shown in FIG. It can be stored in an external dust bag.
  • the pulverized product of the scrap material 11 generated in the second crushing step S3 has medium particles 412 having a particle size within a predetermined particle size range and a particle size exceeding the particle size range. This is a step of classifying the large particles 411 into small particles 413 having a particle size smaller than the particle size range.
  • the predetermined particle size range can be appropriately set according to the desired particle size of the titanium cobble 41, but from the viewpoint of producing a large amount of titanium cobble with a uniform particle size with a high yield, the upper limit is preferably 50 mm or less. Is 30 mm or less, more preferably 25 mm or less, and the lower limit thereof is preferably 3 mm or more, more preferably 3.5 mm or more, and particularly preferably 4 mm or more.
  • the particle size of the large particles 411 is more than 50 mm, preferably more than 30 mm, more preferably more than 25 mm.
  • the particle size of the small particles 413 is preferably less than 3 mm, more preferably less than 3.5 mm, and particularly preferably less than 4 mm.
  • the predetermined particle size range is set to 3 mm or more and 50 mm or less, for example.
  • the large particles 411 have a particle size of more than 50 mm
  • the medium particles 412 have a particle size of 3 mm or more and 50 mm or less
  • the small particles 413 have a particle size of less than 3 mm.
  • the first sieving machine 24 is a vibration sieving machine
  • FIG. 3 is a schematic cross-sectional view showing an enlarged part of the sieving portion 244 of the first sieving machine 24.
  • the sieve part 244 includes a first mesh 241, a second mesh 242, and a bottom part 243.
  • the sieve portion 244 has a substantially U-shaped cross section in a direction perpendicular to the particle traveling direction (the direction of the arrow A51 in FIG. 2) and extends in the traveling direction, for example, an outer wall portion made of metal such as stainless steel. (Not shown), and the bottom portion 243 forms the bottom side of the outer wall portion.
  • the first mesh 241 and the second mesh 242 are for separating the pulverized products of the scrap material 11 according to the particle diameter, and are formed by punching holes with a desired hole diameter in a metal plate made of stainless steel or the like. It is.
  • the 1st mesh 241 and the 2nd mesh 242 are not restricted to such a structure, A metal net
  • the 1st mesh 241 and the 2nd mesh 242 are attached to the attachment part provided in the upper and lower two steps
  • the first mesh 241 and the second mesh 242 are two types of plate-shaped mesh materials having different hole diameters, and the sieve portion 244 includes the first mesh 241 and the second mesh 242 in two upper and lower stages.
  • the hole diameter of the first mesh 241 is 50 mm, and the hole diameter of the second mesh 242 is 3 mm.
  • the pulverized product charged into the inlet 245 of the first sieve 24 is sent onto the first mesh 241 as the first sieve 24 vibrates. Then, as shown in FIGS. 2 and 3, the large particles 411 having a longest diameter of 50 nm are sent out toward the first discharge port 24a while remaining on the first mesh 241.
  • Medium particles 412 having a longest diameter of 3 mm or more and 50 mm or less and small particles 413 having a longest diameter of less than 3 mm are arranged on the lower side through the holes of the first mesh 241 in accordance with the vibration of the first sieve machine 24, and on the second mesh 242. Placed in.
  • the medium particles 412 are sent out toward the second discharge port 24b while remaining on the second mesh 242.
  • the small particles 413 are disposed on the bottom 243 disposed further down through the hole of the second mesh 242 along with the vibration of the first sieve 24 and are sent out toward the third discharge port 24c.
  • the pulverized product can be classified effectively by the upper and lower two-stage first mesh 241 and second mesh 242.
  • the titanium cobble 41 having a uniform particle diameter can be manufactured in a large amount with a high yield.
  • the first discharge port 24 a on the terminal side of the first mesh 241 extends toward the second conveyor device 30.
  • the first discharge port 24 a may be connected to the second conveyor device 30.
  • the second discharge port 24 b on the terminal side of the second mesh 242 extends toward the first magnetic separator 25.
  • the second discharge port 24b may be connected to the first magnetic separator 25.
  • the hole diameters of the first mesh 241 and the second mesh 242 may be changed to those of the desired hole diameter.
  • the predetermined particle size range is, for example, 5 mm or more and 30 mm or less
  • the first mesh 241 and the second mesh 242 are changed from those having a hole diameter of 50 mm and 3 mm to those having a hole diameter of 30 mm and 5 mm, respectively. That's fine.
  • the particle size of the titanium cobble 41 can be adjusted by changing the first mesh 241 and the second mesh 242 to those having different hole diameters.
  • the first magnetic separation step S ⁇ b> 6 is a step of removing the magnetized particles from the medium particles 412 and is performed by the first magnetic separation machine 25.
  • the middle particle 412 is divided into a product titanium cobble 41 and a magnetic middle particle 51 having magnetism as a by-product.
  • the 1st magnetic separator 25 is not specifically limited, For example, general magnetic separators, such as a drum type and a counter-polar drum type, are employable.
  • the quality of the titanium cobble 41 can be improved by removing the magnetic middle particles 51.
  • the first magnetic separation step S6 is an optional step.
  • the first magnetic separation step S6 is omitted when the scrap material 11 does not reliably include magnetism. can do.
  • the medium particle 412 is obtained as a titanium cobble 41 as a product.
  • the return step S ⁇ b> 7 is a step of returning the large particles 411 to the second crusher 23, and is performed by the second conveyor device 30. Thereby, the sufficient production amount of the titanium cobble 41 can be ensured by returning the large particles to the second crushing step S3 again.
  • the return step S7 is an optional step and may not be provided, but is desirably provided from the viewpoint of sufficiently recycling the scrap material 11 and securing a sufficient production amount of the titanium cobble 41.
  • the terminal part of the 2nd conveyor apparatus 30 is arrange
  • the collection step S8 is a step of collecting the fine dust 410 collected in the dust collection step S4 and the small particles obtained in the first classification step S5.
  • the collection step S8 is an optional step and may not be provided.
  • the second magnetic separation step S ⁇ b> 9 is a step of removing the magnetized material from the aggregate of the fine dust 410 and the small particles 413, that is, the magnetic aggregate 52, and is performed by the second magnetic separator 28.
  • the 2nd magnetic separator 28 is not specifically limited, The magnetic separator similar to the 1st magnetic separator 25 is employable.
  • the first magnetic separator 25 and the second magnetic separator 28 may have the same configuration or different configurations.
  • the second magnetic separation step S9 is an optional step and may not be provided. However, when the fine dust 410 and the small particles 413 are classified by the second classification step S10 to be recycled products, the second magnetic separation step S9 is performed. It is desirable to do.
  • the second classification step S10 is a step of classifying the aggregate into at least two kinds, and is performed by the second sieve 29.
  • the second sieving machine 29 may be, for example, a vibration sieving machine having the same configuration as the first sieving machine 24 or a circular sieving machine. Moreover, an ultrasonic vibration sieving machine may be used.
  • the second classification step S10 is an optional step and may not be provided, but is desirably provided when the fine dust 410 and the small particles 413 are recycled as products.
  • titanium cobbles having a smaller particle diameter can be obtained as a double product, and the scrap material 11 can be effectively recycled.
  • 2nd classification process S10 although it is the structure classified into two types of fine titanium cobble 42 and the small titanium cobble 43, the structure classified into three or more types may be sufficient.
  • the titanium cobble 41 obtained as described above is used for applications such as titanium ingot raw materials, super alloys, additives for aluminum alloys, steels, and the like.
  • the yield of the titanium cobble 41 obtained by the manufacturing method according to the present embodiment is expressed as a percentage of the mass of the titanium cobble 41 to the mass of the scrap material 11, and is 70% or more, preferably 75% or more, particularly preferably 80% or more. It is. Further, the combined yield of the titanium cobble 41 and the fine titanium cobble 42 and the small titanium cobble 43 which are the products of the second classification step S10 is the ratio of the total mass of the titanium cobble 41, the fine titanium cobble 42 and the small titanium cobble 43 to the mass of the scrap material 11. Expressed as a percentage, it is 80% or more, preferably 85% or more, particularly preferably 90% or more.
  • the time from when the scrap material 11 is put into the first crusher 21 until the titanium cobble 41 is obtained is within 1 hour, preferably within 40 minutes, in particular. Preferably it is within 30 minutes.
  • the first sieving machine 24 is a vibration sieving machine.
  • the second sieving machine 29 similarly to the second sieving machine 29, it may be a circular or drum type sieving machine, an ultrasonic sieving machine, or the like.
  • the first sieving machine 24 includes a first mesh 241 and a second mesh 242 in two upper and lower stages, and the scrap material 11 crushed by the second crusher 23 is composed of large particles 411, medium particles 412, and small particles. Although it was the structure classified into 413, it is good also as a structure which is further provided with one or more mesh materials, for example, and classify
  • titanium cobble products of various sizes can be manufactured by classifying finely according to various sizes.
  • This disclosure is extremely useful because it can provide a method and an apparatus for pulverizing titanium scrap material and producing a large amount of titanium cobble with a uniform particle size with a high yield while ensuring safety.

Abstract

This titanium cobble manufacturing method is characterized by being provided with: a preparation step S1 of preparing scrap material 11 containing at least 50% by mass of metallic titanium; a first crushing step S2 of roughly crushing the scrap material 11 using a first crushing machine 21; a second crushing step S3 of using a second crushing machine 23 to crush the scrap material 11 that has been roughly crushed in the first crushing step S2; a dust collecting step S4 of collecting fine dust 410 of the scrap material 11, generated in the second crushing step S3; and a first classifying step S5 of classifying the crushed product of the scrap material 11, generated in the second crushing step S3, into medium particles 412 having a particle size within a prescribed particle size range, large particles 411 having a particle size exceeding the particle size range, and small particles 413 having a particle size smaller than the particle size range.

Description

チタンコブルの製造方法及び製造装置Titanium cobble manufacturing method and manufacturing apparatus
 本開示は、チタンコブルの製造方法及び製造装置に関するものである。 This disclosure relates to a titanium cobble manufacturing method and manufacturing apparatus.
 従来より、複合材料や鉄系廃棄物原料等の廃棄物を粉砕して分級することによりリサイクルする方法が知られている(例えば、特許文献1,2参照)。 Conventionally, a method of recycling by pulverizing and classifying wastes such as composite materials and iron-based waste raw materials has been known (see, for example, Patent Documents 1 and 2).
特許第3369234号公報Japanese Patent No. 3369234 特許第4907284号公報Japanese Patent No. 4907284
 ところで、チタンは、軽量且つ高強度であり、また高い耐腐食性等の特性から、種々の一般用途や産業用途で利用されている。このようなチタンは生産量に限りがあり、リサイクルを行うことが重要である。 By the way, titanium is used for various general uses and industrial uses because of its light weight, high strength, and high corrosion resistance. Such titanium has a limited production volume, and it is important to perform recycling.
 しかしながら、例えばチタンを含有するスクラップ材のリサイクル方法の一つとして、スクラップ材を粉砕してチタン含有粒子であるチタンコブルを製造する場合、スクラップ材の粉砕時における発火を抑えるために粉砕量が限られ、均一な粒径のチタンコブルを歩留まりよく大量に製造することは困難であるという問題があった。そして、特許文献1,2には、チタンを含有するスクラップ材からチタンコブルを製造する方法については、開示されていない。 However, for example, when manufacturing titanium cobbles, which are titanium-containing particles, by pulverizing scrap materials as one of the recycling methods of scrap materials containing titanium, the amount of pulverization is limited in order to suppress ignition during pulverization of scrap materials. There is a problem that it is difficult to manufacture a large amount of titanium cobbles with a uniform particle size with a high yield. Patent Documents 1 and 2 do not disclose a method for producing titanium cobble from scrap material containing titanium.
 そこで本開示では、安全性を確保しつつ、チタンスクラップ材を粉砕し、均一な粒径のチタンコブルを歩留まりよく大量に製造する方法、及び装置を提供することを課題とする。 Therefore, an object of the present disclosure is to provide a method and an apparatus for producing a large amount of titanium cobbles with a uniform particle size by pulverizing titanium scrap material while ensuring safety.
 上記の課題を解決するために、ここに開示する第1の技術に係るチタンコブルの製造方法は、金属チタンを50質量%以上含有するスクラップ材を準備する準備工程と、前記スクラップ材を第1破砕機で粗破砕する第1破砕工程と、前記第1破砕工程で粗破砕された前記スクラップ材を第2破砕機で粉砕する第2破砕工程と、前記第2破砕工程において生じた前記スクラップ材の微粉塵を集塵する集塵工程と、前記第2破砕工程において生じた前記スクラップ材の粉砕生成物を、所定の粒径範囲内の粒径を有する中粒子と、該粒径範囲を超える粒径を有する大粒子と、該粒径範囲よりも小さい粒径を有する小粒子とに分級する第1分級工程とを備えたことを特徴とする。 In order to solve the above-described problems, a titanium cobble manufacturing method according to the first technique disclosed herein includes a preparation step of preparing a scrap material containing 50% by mass or more of metal titanium, and the first crushing of the scrap material. A first crushing step roughly crushing with a machine, a second crushing step crushing the scrap material roughly crushed in the first crushing step with a second crusher, and the scrap material generated in the second crushing step A dust collection step for collecting fine dust, and a pulverized product of the scrap material generated in the second crushing step, medium particles having a particle size within a predetermined particle size range, and particles exceeding the particle size range And a first classification step of classifying into large particles having a diameter and small particles having a particle size smaller than the particle size range.
 第1の技術によれば、金属チタンを50質量%以上含有するスクラップ材を2段階に分けて粉砕することにより、金属同士の接触による過度な摩擦熱の発生を抑えて、粉砕時の発火を抑制することができる。また、引火しやすく発火の主原因となり得る微粉塵を集塵工程により集めることで、微粉塵への引火を抑制するとともに、火花が生じた場合であっても微粉塵の温度を低下させて他の粉砕生成物等に引火することを抑制することができる。そして、2段階の破砕工程により得られた粉砕生成物を第1分級工程で3種類に分級することにより、均一な粒径のチタンコブルを歩留まりよく大量に製造することができる。 According to the first technique, scrap material containing 50% by mass or more of metal titanium is pulverized in two stages, thereby suppressing excessive frictional heat due to contact between metals and igniting during pulverization. Can be suppressed. In addition, by collecting fine dust that is easy to catch fire and can be the main cause of ignition in the dust collection process, it suppresses ignition of fine dust and reduces the temperature of fine dust even when sparks occur. Inflammation of the pulverized product or the like can be suppressed. Then, by classifying the pulverized product obtained by the two-stage crushing process into three types in the first classification process, it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
 第2の技術は、第1の技術において、前記スクラップ材は、板材、チューブ材、サイドトリミング材、及び打ち抜き材の群から選ばれる少なくとも1種であり、前記スクラップ材は、厚さ3mm以下、長さ1m以下の廃材であることを特徴とする。 A second technique is the first technique, wherein the scrap material is at least one selected from the group of a plate material, a tube material, a side trimming material, and a punching material, and the scrap material has a thickness of 3 mm or less, It is a waste material having a length of 1 m or less.
 第2の技術によれば、粒径の均一なチタンコブルを歩留まりよく大量に製造することができる。 According to the second technique, it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
 第3の技術は、第1又は第2の技術において、前記第1破砕機は二軸破砕機であり、前記第2破砕機はハンマーミルであることを特徴とする。 The third technology is characterized in that, in the first or second technology, the first crusher is a biaxial crusher, and the second crusher is a hammer mill.
 第3の技術によれば、二軸破砕機とハンマーミルとの組合せによる2段階の粉砕により、粒径の均一なチタンコブルを歩留まりよく大量に製造することができる。 According to the third technique, a titanium cobble having a uniform particle size can be produced in a large amount with a high yield by two-stage crushing using a combination of a twin-screw crusher and a hammer mill.
 第4の技術は、第1~3の技術のいずれか1項において、前記中粒子の中から磁性を帯びたものを取り除く第1磁選工程と、前記大粒子を前記第2破砕工程にリターンするためのリターン工程とを備えたことを特徴とする。 In a fourth technique, in any one of the first to third techniques, a first magnetic separation process for removing magnetized particles from the medium particles, and the large particles are returned to the second crushing process. And a return process.
 第4の技術によれば、第1磁選工程において磁性を帯びた粒子を取り除くことにより、高品質のチタンコブルを歩留まりよく製造することができる。また、リターン工程において、第1分級工程で得られた大粒子を再度第2破砕工程にリターンすることで、チタンコブルの十分な製造量を確保することができる。 According to the fourth technique, high-quality titanium cobbles can be manufactured with high yield by removing magnetic particles in the first magnetic separation process. In the return step, the large particles obtained in the first classification step are returned again to the second crushing step, so that a sufficient amount of titanium cobble can be secured.
 第5の技術は、第1~4の技術のいずれか1項において、前記集塵工程で集塵した前記微粉塵と前記小粒子とを集める収集工程と、前記微粉塵と前記小粒子の集合物の中から磁性を帯びたものを取り除く第2磁選工程と、前記集合物を少なくとも2種以上に分級する第2分級工程とを備えたことを特徴とする。 A fifth technique is the collection process of collecting the fine dust and the small particles collected in the dust collecting process according to any one of the first to fourth techniques, and the collection of the fine dust and the small particles. It is characterized by comprising a second magnetic separation step of removing magnetism from the objects, and a second classification step of classifying the aggregate into at least two kinds.
 第5の技術によれば、微細な粒子を収集してさらに分級することで、さらに粒径の小さなチタンコブルを複製造物として得ることができ、スクラップ材を効果的にリサイクルすることができる。 According to the fifth technique, by collecting fine particles and further classifying them, titanium cobbles having a smaller particle diameter can be obtained as a double product, and scrap materials can be effectively recycled.
 第6の技術は、第1~5の技術のいずれか1項において、前記所定の粒径範囲は3mm以上50mm以下であることを特徴とする。 The sixth technology is characterized in that, in any one of the first to fifth technologies, the predetermined particle size range is 3 mm or more and 50 mm or less.
 第6の技術によれば、粒径の均一なチタンコブルを歩留まりよく大量に製造することができる。 According to the sixth technique, a titanium cobble having a uniform particle size can be produced in a large amount with a high yield.
 第7の技術に係るチタンコブルの製造装置は、金属チタンを50質量%以上含有するスクラップ材を粗破砕する第1破砕機と、前記第1破砕機で粗破砕された前記スクラップ材を粉砕する第2破砕機と、前記第2破砕機による前記スクラップ材の粉砕時に生じる微粉塵を集塵する集塵機と、前記第2破砕機による前記スクラップ材の粉砕により生じた粉砕生成物を、所定の粒径範囲内の粒径を有する中粒子と、該粒径範囲を超える粒径を有する大粒子と、該粒径範囲よりも小さい粒径を有する小粒子とに分級するふるい機とを備えたことを特徴とする。 A titanium cobble manufacturing apparatus according to a seventh technique includes a first crusher that roughly crushes a scrap material containing 50% by mass or more of titanium metal, and a crusher that crushes the scrap material roughly crushed by the first crusher. A pulverized product generated by pulverizing the scrap material by the second pulverizer, a dust collector for collecting fine dust generated when the scrap material is pulverized by the second pulverizer, And a sieve for classifying into medium particles having a particle size within a range, large particles having a particle size exceeding the particle size range, and small particles having a particle size smaller than the particle size range. Features.
 第7の技術によれば、金属チタンを50質量%以上含有するスクラップ材を、第1破砕機及び第2破砕機の2段階に分けて粉砕することにより、過度な摩擦熱の発生を抑えて、粉砕時の発火を抑制することができる。また、引火しやすく発火の主原因となり得る微粉塵を集塵機により集めることで、微粉塵への引火を抑制するとともに、火花が生じた場合であっても微粉塵の温度を低下させて他の粉砕生成物等に引火することを抑制することができる。さらに、2段階の粉砕により得られた粉砕生成物をふるい機で3種類に分級することにより、均一な粒径のチタンコブルを歩留まりよく大量に製造することができる。 According to the seventh technique, scrap material containing 50% by mass or more of metal titanium is pulverized in two stages of the first crusher and the second crusher, thereby suppressing the generation of excessive frictional heat. In addition, ignition during pulverization can be suppressed. In addition, by collecting fine dust that is easy to ignite and that can be the main cause of ignition with a dust collector, it suppresses the ignition of fine dust and reduces the temperature of fine dust even when sparks occur, and other pulverization Inflammation of products and the like can be suppressed. Furthermore, by classifying the pulverized product obtained by the two-stage pulverization into three types with a sieving machine, it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
 第8の技術は、第7の技術において、前記中粒子の中から磁性を帯びたものを取り除く第1磁選機と、前記大粒子を前記第2破砕機にリターンするためのコンベア装置とを備えたことを特徴とする。 An eighth technique includes the first magnetic separator that removes magnetism from the medium particles in the seventh technique, and a conveyor device that returns the large particles to the second crusher. It is characterized by that.
 第8の技術によれば、ふるい機で得られた大粒子を再度第2破砕機にリターンさせることで、チタンコブルの十分な製造量を確保することができる。そして、第1磁選機において磁性を帯びた粒子を取り除くことにより、高品質のチタンコブルを歩留まりよく製造することができる。 According to the eighth technique, a sufficient production amount of titanium cobble can be ensured by returning the large particles obtained by the sieving machine to the second crusher again. Then, by removing the magnetic particles in the first magnetic separator, it is possible to manufacture high quality titanium cobbles with a high yield.
 第9の技術は、第7又は第8の技術において、前記ふるい機は、異なる孔径の2種類のメッシュ材を上下2段に備えた振動ふるい機であり、上側のメッシュ材の孔径は50mmであり、下側のメッシュ材の孔径は3mmであり、前記粉砕生成物は前記上側のメッシュ材上に配置されるものであることを特徴とする。 A ninth technique is the vibration sieve machine according to the seventh or eighth technique, wherein the sieving machine includes two types of mesh materials having different hole diameters in upper and lower stages, and the upper mesh material has a hole diameter of 50 mm. In addition, the pore diameter of the lower mesh material is 3 mm, and the pulverized product is disposed on the upper mesh material.
 第9の技術によれば、上下2段のメッシュ材により効果的に粒子の分級を行うことができるから、粒径の均一なチタンコブルを歩留まりよく大量に製造することができる。 According to the ninth technique, since the particles can be classified effectively by the upper and lower two-stage mesh material, titanium cobbles having a uniform particle size can be produced in large quantities with a high yield.
 以上述べたように、本開示によると、金属チタンを50質量%以上含有するスクラップ材を2段階に分けて粉砕することにより、金属同士の接触による過度な摩擦熱の発生を抑えて、粉砕時の発火を抑制することができる。また、引火しやすく発火の主原因となり得る微粉塵を集塵工程により集めることで、微粉塵への引火を抑制するとともに、火花が生じた場合であっても微粉塵の温度を低下させて他の粉砕生成物等に引火することを抑制することができる。そして、2段階の破砕工程により得られた粉砕生成物を第1分級工程で3種類に分級することにより、均一な粒径のチタンコブルを歩留まりよく大量に製造することができる。 As described above, according to the present disclosure, the scrap material containing 50% by mass or more of metal titanium is pulverized in two stages to suppress generation of excessive frictional heat due to contact between metals, and during pulverization. Can be suppressed. In addition, by collecting fine dust that is easy to catch fire and can be the main cause of ignition in the dust collection process, it suppresses ignition of fine dust and reduces the temperature of fine dust even when sparks occur. Inflammation of the pulverized product or the like can be suppressed. Then, by classifying the pulverized product obtained by the two-stage crushing process into three types in the first classification process, it is possible to produce a large amount of titanium cobbles having a uniform particle size with a high yield.
本開示の一実施形態に係るチタンコブルの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the titanium cobble concerning one Embodiment of this indication. 図1に示すチタンコブルの製造方法によりチタンコブルを製造するための製造装置の一例を示す図である。It is a figure which shows an example of the manufacturing apparatus for manufacturing a titanium cobble by the manufacturing method of the titanium cobble shown in FIG. 図2の製造装置におけるふるい機のふるい部を概略的に示す部分断面図である。It is a fragmentary sectional view which shows roughly the sieve part of the sieve machine in the manufacturing apparatus of FIG.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the present disclosure, its application, or its application.
 (実施形態1)
 <定義>
 本明細書において、「チタンコブル」とは、金属チタンを50質量%以上含有する最長径50mm以下、最長径を最短径で除して得られるアスペクト比5以下のチタン含有粒子のことをいう。
(Embodiment 1)
<Definition>
In this specification, “titanium cobble” refers to titanium-containing particles having a longest diameter of 50 mm or less and a longest diameter divided by the shortest diameter and containing 50% by mass or more of metallic titanium.
 なお、本明細書において、「最長径」とは、粒子の外形における最大の幅のことをいい、「最短径」とは、粒子の外形の最小の幅のことをいう。 In the present specification, “longest diameter” refers to the maximum width of the outer shape of the particle, and “shortest diameter” refers to the minimum width of the outer shape of the particle.
 また、本明細書において、チタンコブル等の粒子の「粒径」とは、粒子の最長径のことをいう。 In the present specification, the “particle size” of particles such as titanium cobble means the longest diameter of the particles.
 <チタンコブルの製造方法及び製造装置>
 図1に示すように、本開示の一実施形態に係るチタンコブルの製造方法は、準備工程S1と、第1破砕工程S2と、第2破砕工程S3と、集塵工程S4と、第1分級工程S5と、第1磁選工程S6と、リターン工程S7と、収集工程S8と、第2磁選工程S9と、第2分級工程S10とを備えている。
<Titanium Cobble Manufacturing Method and Manufacturing Apparatus>
As shown in FIG. 1, the titanium cobble manufacturing method according to an embodiment of the present disclosure includes a preparation step S1, a first crushing step S2, a second crushing step S3, a dust collection step S4, and a first classification step. S5, 1st magnetic separation process S6, return process S7, collection process S8, 2nd magnetic selection process S9, and 2nd classification process S10 are provided.
 なお、図2は、図1に示すチタンコブルの製造方法によりチタンコブルを製造するための製造装置1の一例を示している。 2 shows an example of a manufacturing apparatus 1 for manufacturing titanium cobbles by the titanium cobble manufacturing method shown in FIG.
 以下、図1及び図2を参照して、本実施形態に係るチタンコブルの製造工程の概略を説明する。 Hereinafter, with reference to FIG. 1 and FIG. 2, an outline of the manufacturing process of the titanium cobble according to the present embodiment will be described.
 <チタンコブルの製造工程の概略>
 図2中矢印A1で示すように、図1の準備工程S1で準備されたスクラップ材11は、第1破砕機21に投入され、粗破砕される(第1破砕工程S2)。
<Outline of titanium cobble manufacturing process>
As shown by an arrow A1 in FIG. 2, the scrap material 11 prepared in the preparation step S1 in FIG. 1 is charged into the first crusher 21 and roughly crushed (first crushing step S2).
 第1破砕機21で粗破砕されたスクラップ材11は矢印A2,A3で示すように、第1コンベア装置22で運ばれ、第2破砕機23に投入されて粉砕される(第2破砕工程S3)。 As indicated by arrows A2 and A3, the scrap material 11 roughly crushed by the first crusher 21 is conveyed by the first conveyor device 22, and is put into the second crusher 23 and crushed (second crushing step S3). ).
 第2破砕機23の上部には、集塵機27に接続されたダクト27aが配設されている。第2破砕機23によるスクラップ材11の粉砕時に生じる微粉塵410は、矢印A91,A92で示すように、集塵機27により吸引され、ダクト27aを通じて集塵される(集塵工程S4)。そして、微粉塵410は、矢印A93に示すように、集塵機27の下部に配置された収集部27bに送られる。 A duct 27 a connected to the dust collector 27 is disposed on the upper part of the second crusher 23. As shown by arrows A91 and A92, the fine dust 410 generated when the scrap material 11 is pulverized by the second crusher 23 is sucked by the dust collector 27 and collected through the duct 27a (dust collection step S4). And the fine dust 410 is sent to the collection part 27b arrange | positioned under the dust collector 27, as shown by arrow A93.
 第2破砕機23で粉砕されたスクラップ材11は、矢印A4で示すように、第1ふるい機24(ふるい機)の投入口245に投入される。そして、矢印A5で示すように、第1ふるい機24のふるい部244に送られる。ふるい部244は、第1メッシュ241(上側のメッシュ材)と、第2メッシュ242(下側のメッシュ材)と、底部243とを備えている。そして、投入口245に投入されたスクラップ材11は、図1及び図2中矢印A51,A52,A53で示すように、第1メッシュ241及び第2メッシュ242により、大粒子411、中粒子412、及び小粒子413の3種類に分級される(第1分級工程S5)。 The scrap material 11 crushed by the second crusher 23 is fed into the inlet 245 of the first sieving machine 24 (sieving machine) as indicated by an arrow A4. And as shown by arrow A5, it sends to the sieve part 244 of the 1st sieve machine 24. FIG. The sieve portion 244 includes a first mesh 241 (upper mesh material), a second mesh 242 (lower mesh material), and a bottom portion 243. And the scrap material 11 thrown into the insertion port 245 is, as shown by arrows A51, A52, A53 in FIGS. 1 and 2, large particles 411, medium particles 412, by the first mesh 241 and the second mesh 242. And small particles 413 (first classification step S5).
 中粒子412は、矢印A62で示すように、第1ふるい機24の第2排出口24bから排出されるとともに、第1磁選機25に投入される。そうして、第1磁選機25により、中粒子412の中から磁性を帯びた磁性中粒子51が取り除かれ、矢印A7で示すように、製品としてのチタンコブル41が得られる(第1磁選工程S6)。 The middle particles 412 are discharged from the second discharge port 24b of the first sieving machine 24 and input to the first magnetic separator 25 as indicated by an arrow A62. Then, the magnetic middle particle 51 having magnetism is removed from the middle particle 412 by the first magnetic separator 25, and the titanium cobble 41 as a product is obtained as indicated by an arrow A7 (first magnetic separation step S6). ).
 大粒子411は、矢印A63で示すように、第1ふるい機24の第1排出口24aから排出されて、第2コンベア装置30(コンベア装置)により第1コンベア装置22の中腹に投入され、再度第2破砕機23に投入、すなわち第2破砕工程S3にリターンされるようになっている(リターン工程S7)。 The large particles 411 are discharged from the first discharge port 24a of the first sieving machine 24 as shown by an arrow A63, and are put into the middle of the first conveyor device 22 by the second conveyor device 30 (conveyor device). It inputs into the 2nd crusher 23, ie, returns to 2nd crushing process S3 (return process S7).
 小粒子413は、矢印A61,A101で示すように、第1ふるい機24の第3排出口24cから排出されて、第3コンベア装置26により集塵機27の下部に設けられた収集部27bに送られ、集塵機27で集塵された微粉塵410と纏められる(収集工程S8)。 As shown by arrows A61 and A101, the small particles 413 are discharged from the third discharge port 24c of the first sieve 24 and sent to the collection unit 27b provided at the lower part of the dust collector 27 by the third conveyor device 26. The fine dust 410 collected by the dust collector 27 is collected (collecting step S8).
 微粉塵410及び小粒子413の集合物は、矢印A102に示すように、収集部27bから第2磁選機28に送られる。そうして、矢印A103に示すように、第2磁選機28により、上記集合物の中から磁性を帯びた磁性集合物52が取り除かれる(第2磁選工程S9)。 The aggregate of the fine dust 410 and the small particles 413 is sent from the collecting unit 27b to the second magnetic separator 28 as indicated by an arrow A102. Then, as shown by the arrow A103, the magnetic assembly 52 having magnetism is removed from the assembly by the second magnetic separator 28 (second magnetic separation step S9).
 磁性集合物52が除去された集合物は、矢印A104に示すように、第2ふるい機29に送られ、矢印A105,A106で示すように、粒径に応じて微小チタンコブル42と小チタンコブル43とに分級される(第2分級工程S10)。 The aggregate from which the magnetic aggregate 52 has been removed is sent to the second sieving machine 29 as shown by an arrow A104, and as shown by arrows A105 and A106, a fine titanium cobble 42 and a small titanium cobble 43 (Second classification step S10).
 <各工程について>
 以下、図1~図3を参照して、チタンコブルの製造工程の各構成について説明する。
<About each process>
In the following, with reference to FIG. 1 to FIG. 3, each structure of the titanium cobble manufacturing process will be described.
 ≪準備工程≫
 準備工程S1は、スクラップ材11を準備する工程である。
≪Preparation process≫
The preparation step S1 is a step of preparing the scrap material 11.
 スクラップ材11は、金属チタンを50質量%以上、より好ましくは60質量%以上、特に好ましくは80質量%以上含有する、使用済み屑や製造メーカの加工工場等で発生する加工屑等の廃材である。スクラップ材11の種類は特に限定されるものではないが、具体的には例えば板材、チューブ材、サイドトリミング材、打ち抜き材、穴抜き材、コイル材等が挙げられ、好ましくは板材、チューブ材、サイドトリミング材、及び打ち抜き材の群から選ばれる少なくとも1種である。具体的に、板材は、例えば、製品製造時に加工歩留まりとして残る短冊状の残部等の廃材が挙げられる。チューブ材は、例えば、熱交換器用、海水淡水化プラント用の部品製造時に発生する廃材等が挙げられる。サイドトリミング材は、例えば、チタンコイルの端部を切り落として板材等を製造する際に生じる廃材である。打ち抜き材は、例えば、原料板材等について全周閉じた製品形状を打ち抜き加工した際に生じる打ち抜かれた後の残部である。穴抜き材は、例えば、原料板材等について全周閉じた形状を打ち抜き加工した際に生じる打ち抜き部分である。コイル材は、例えば、原料板材等の冷延加工時に発生する加工不良品や傷、凹み等が存在する不良品等の廃材である。 The scrap material 11 is a waste material such as used scraps or processing scraps generated at a processing factory of a manufacturer and the like containing metal titanium in an amount of 50% by mass or more, more preferably 60% by mass or more, particularly preferably 80% by mass or more. is there. The type of the scrap material 11 is not particularly limited, and specific examples include a plate material, a tube material, a side trimming material, a punching material, a hole punching material, a coil material, and the like, preferably a plate material, a tube material, It is at least one selected from the group of side trimming materials and punching materials. Specifically, examples of the plate material include waste materials such as a strip-shaped remaining portion remaining as a processing yield at the time of product manufacture. Examples of the tube material include waste materials generated when manufacturing parts for heat exchangers and seawater desalination plants. The side trimming material is, for example, a waste material generated when a plate material or the like is manufactured by cutting off an end portion of a titanium coil. The punched material is, for example, a remaining part after being punched, which is generated when a raw material plate or the like is punched into a closed product shape. The punched material is, for example, a punched portion that is generated when a raw material plate or the like is punched into a shape that is closed all around. The coil material is, for example, a waste material such as a defective product generated during cold rolling of a raw material plate material or a defective product having scratches, dents, or the like.
 スクラップ材11は、安全性を確保しつつ、粒径の均一なチタンコブル41を歩留まりよく大量に製造する観点から、厚さが3mm以下、好ましくは0.4mm以上2mm以下であり、長さが1m以下、好ましくは0.8m(800mm)以下とすることができる。なお、スクラップ材11のうち、チューブ材の場合は、チューブ外径が20mm以下であることが好ましい。廃材のサイズが上記範囲を超えて大きい場合は、上記サイズの範囲に入るように、予め廃材をシャー等で裁断してスクラップ材11を準備すればよい。 The scrap material 11 has a thickness of 3 mm or less, preferably 0.4 mm or more and 2 mm or less, and a length of 1 m from the viewpoint of manufacturing a large amount of titanium cobbles 41 having a uniform particle size with high yield while ensuring safety. Hereinafter, it is preferably 0.8 m (800 mm) or less. In addition, in the case of a tube material among the scrap materials 11, it is preferable that a tube outer diameter is 20 mm or less. When the size of the waste material exceeds the above range, the scrap material 11 may be prepared by cutting the waste material in advance with a shear or the like so as to fall within the above size range.
 ≪第1破砕工程≫
 第1破砕工程S2は、スクラップ材11を第1破砕機21で粗破砕する工程である。
≪First crushing process≫
The first crushing step S <b> 2 is a step of roughly crushing the scrap material 11 with the first crusher 21.
 第1破砕工程S2において、第1破砕機21はスクラップ材11を最長径500mm以下、好ましくは300mm以下、より好ましくは200mm以下になるように粗破砕する。 In the first crushing step S2, the first crusher 21 roughly crushes the scrap material 11 so that the longest diameter is 500 mm or less, preferably 300 mm or less, more preferably 200 mm or less.
 第1破砕機21としては、スクラップ材11の粗破砕に適した破砕機であれば公知の破砕機を利用することができ、具体的には例えば、一軸破砕機、二軸破砕機、四軸破砕機、アリゲーターシャー等が挙げられる。次工程の第2破砕機23によるスクラップ材11の粉砕の負担を軽減し、短時間で均一な粒径の粉砕生成物、延いてはチタンコブル41を得る観点から、特に第1破砕機21として二軸破砕機を用いることが好ましい。 As the 1st crusher 21, if it is a crusher suitable for rough crushing of the scrap material 11, a well-known crusher can be utilized, for example, a uniaxial crusher, a biaxial crusher, a four axis | shaft, for example. Examples thereof include a crusher and an alligator shear. From the viewpoint of reducing the burden of pulverization of the scrap material 11 by the second crusher 23 in the next step and obtaining a pulverized product having a uniform particle size in a short time, and thus the titanium cobble 41, the first crusher 21 is particularly suitable. It is preferable to use a shaft crusher.
 第1破砕機21として、二軸破砕機を採用する場合、特に限定されるものではないが、例えば30kW以上200kW以下のモータを備えるとともに、破砕室の水平方向の断面積(例えば、破砕室が直方体であれば、幅×奥行き)が例えば0.2m以上6m以下のものを採用することができる。これにより、スクラップ材11の効果的な破砕を行うことができる。 When a biaxial crusher is employed as the first crusher 21, it is not particularly limited. For example, the first crusher 21 includes a motor of 30 kW or more and 200 kW or less, and a horizontal sectional area of the crushing chamber (for example, a crushing chamber is If it is a rectangular parallelepiped, the thing of width x depth) is 0.2 m 2 or more and 6 m 2 or less, for example. Thereby, the crushing of the scrap material 11 can be performed effectively.
 ≪第2破砕工程≫
 第2破砕工程S3は、第1破砕機21で粗破砕されたスクラップ材11を粉砕する工程であり、第2破砕機23により行われる。
≪Second crushing process≫
The second crushing step S3 is a step of crushing the scrap material 11 roughly crushed by the first crusher 21, and is performed by the second crusher 23.
 第2破砕機23は、第1破砕機21で粗破砕されたスクラップ材11を最長径が好ましくは150mm以下、より好ましくは100mm以下、特に好ましくは80mm以下になるように粉砕する。 The second crusher 23 crushes the scrap material 11 roughly crushed by the first crusher 21 so that the longest diameter is preferably 150 mm or less, more preferably 100 mm or less, and particularly preferably 80 mm or less.
 第2破砕機23としては、スクラップ材11の粉砕に適した破砕機であればいずれの公知の破砕機も利用することができ、具体的には例えば、ハンマーミル、ディスクミル、ジェットミル、一軸破砕機、二軸破砕機、四軸破砕機等が挙げられる。短時間で粒径の均一なチタンコブル41を得る観点から、第2破砕機23として特にハンマーミルを用いることが好ましい。 As the second crusher 23, any known crusher can be used as long as it is a crusher suitable for crushing the scrap material 11. Specifically, for example, a hammer mill, a disc mill, a jet mill, a uniaxial A crusher, a biaxial crusher, a 4-axis crusher, etc. are mentioned. From the viewpoint of obtaining a titanium cobble 41 having a uniform particle size in a short time, it is particularly preferable to use a hammer mill as the second crusher 23.
 第2破砕機23として、ハンマーミルを採用する場合、特に限定されるものではないが、例えば50kW以上150kW以下のモータを有するとともに、破砕室の水平方向の断面積(例えば、破砕室が直方体であれば、幅×奥行き)が例えば0.2m以上3m以下のものを採用することができる。また、ハンマーミルは粉砕生成物の排出部にメッシュ状のスクリーンを備えており、当該スクリーンのメッシュサイズは、上述のごとく、粉砕生成物の所望サイズに併せてスクリーンを交換することにより適宜調整することができ、その上限値は、好ましくは150mm以下、より好ましくは100mm以下、特に好ましくは80mm以下である。スクリーンのメッシュサイズの下限値は、特に限定されるものではないが、ハンマーミルでの粉砕時間を短縮化して製造装置1の安全性を高める観点から、好ましくは10mm以上、より好ましくは20mm以上、特に好ましくは30mm以上である。また、ハンマーミルへのスクラップ材11の投入速度は、ハンマーミルの刃のサイズ、状態、破砕室の容量、モータの出力等の処理能力に応じて変更され得るが、粉砕時に発生する摩擦熱の発生量を抑えて製造装置1の安全性を高める観点から、破砕室の水平方向の断面積1m当たり、好ましくは5kg/分以下、より好ましくは3kg/分以下、特に好ましくは2kg/分以下である。 When adopting a hammer mill as the second crusher 23, it is not particularly limited. For example, the second crusher 23 has a motor of 50 kW or more and 150 kW or less and has a horizontal sectional area of the crushing chamber (for example, the crushing chamber is a rectangular parallelepiped If it exists, the thing of width x depth) is 0.2 m 2 or more and 3 m 2 or less, for example. Further, the hammer mill is provided with a mesh-like screen at the discharge portion of the pulverized product, and the mesh size of the screen is appropriately adjusted by replacing the screen according to the desired size of the pulverized product as described above. The upper limit is preferably 150 mm or less, more preferably 100 mm or less, and particularly preferably 80 mm or less. The lower limit of the mesh size of the screen is not particularly limited, but from the viewpoint of increasing the safety of the manufacturing apparatus 1 by shortening the pulverization time in the hammer mill, preferably 10 mm or more, more preferably 20 mm or more, Especially preferably, it is 30 mm or more. The scrap material 11 can be charged into the hammer mill according to the processing capacity such as the size of the hammer mill blade, the state of the hammer mill, the capacity of the crushing chamber, and the output of the motor. From the viewpoint of increasing the safety of the production apparatus 1 by suppressing the generation amount, the horizontal sectional area 1 m 2 of the crushing chamber is preferably 5 kg / min or less, more preferably 3 kg / min or less, particularly preferably 2 kg / min or less. It is.
 ここに、スクラップ材11を第1破砕工程S2及び第2破砕工程S3により、2段階に分けて粉砕することで、スクラップ材11同士や第1破砕機21及び第2破砕機23の内壁とスクラップ材11との接触に起因して生じる摩擦熱の発生量を抑えて、粉砕時の安全性を確保することができる。 Here, the scrap material 11 is pulverized in two stages by the first crushing step S2 and the second crushing step S3, so that the scrap materials 11 and the inner walls and scrap of the first crusher 21 and the second crusher 23 are scraped. The amount of frictional heat generated due to contact with the material 11 can be suppressed, and safety during pulverization can be ensured.
 特に、第1破砕機21として二軸破砕機を用い、第2破砕機23としてハンマーミルを用いる場合、短時間で粒径の均一なチタンコブルを歩留まりよく大量に製造することができる。 In particular, when a biaxial crusher is used as the first crusher 21 and a hammer mill is used as the second crusher 23, a titanium cobble having a uniform particle size can be produced in a large amount with a high yield in a short time.
 なお、第1破砕機21での粗破砕後、第2破砕機23に投入されるまでの時間は、第2破砕機23における粉砕時に発生する摩擦熱の発生量を抑えて製造装置1の安全性を高める観点から、好ましくは2分以上、より好ましくは3分以上、特に好ましくは4分以上である。 In addition, after the rough crushing in the first crusher 21, the time until the second crusher 23 is charged is the safety of the manufacturing apparatus 1 by suppressing the amount of frictional heat generated during crushing in the second crusher 23. From the viewpoint of enhancing the properties, it is preferably 2 minutes or longer, more preferably 3 minutes or longer, particularly preferably 4 minutes or longer.
 ≪集塵工程≫
 集塵工程S4は、第2破砕機23によるスクラップ材11の粉砕時に生じる微粉塵を集塵する工程であり、集塵機27により行われる。
≪Dust collection process≫
The dust collection step S <b> 4 is a step of collecting fine dust generated when the scrap material 11 is pulverized by the second crusher 23, and is performed by the dust collector 27.
 集塵機27は、例えば旋回気流・遠心力で微粉塵を分離・捕集するサイクロン型の集塵機や、パルスジェット型、バックフィルタ型の集塵機であり、好ましくはサイクロン型の集塵機である。第2破砕機23で発生した微粉塵は、ダクト27aを通じて集塵機27に集塵される。摩擦熱により引火しやすい微粉塵を集塵することにより、微粉塵への引火を抑制するとともに、火花が生じた場合であっても微粉塵の温度を低下させて他の粉砕生成物等に引火することを抑制して、製造装置1の安全性を高めることができる。なお、集塵機27としてサイクロン型の集塵機を採用する場合、ダクト27aを通じて集塵された微粉塵410のうち、比重が大きいものは収集部27bへ送られる一方、それ以外の比重の小さい微粉塵は図外の集塵袋に貯留され得る。 The dust collector 27 is, for example, a cyclone type dust collector that separates and collects fine dust by a swirling airflow or centrifugal force, a pulse jet type or a back filter type dust collector, and is preferably a cyclone type dust collector. The fine dust generated in the second crusher 23 is collected by the dust collector 27 through the duct 27a. By collecting fine dust that is easily ignited by frictional heat, the ignition of fine dust is suppressed, and even if a spark occurs, the temperature of the fine dust is lowered and other pulverized products are ignited. It can suppress doing and can improve the safety | security of the manufacturing apparatus 1. FIG. When a cyclone type dust collector is adopted as the dust collector 27, among the fine dust 410 collected through the duct 27a, the one with a large specific gravity is sent to the collecting portion 27b, while the other fine dust with a small specific gravity is shown in FIG. It can be stored in an external dust bag.
 ≪第1分級工程≫
 第1分級工程S5は、第2破砕工程S3において生じたスクラップ材11の粉砕生成物を、所定の粒径範囲内の粒径を有する中粒子412と、該粒径範囲を超える粒径を有する大粒子411と、該粒径範囲よりも小さい粒径を有する小粒子413とに分級する工程である。
≪First classification process≫
In the first classification step S5, the pulverized product of the scrap material 11 generated in the second crushing step S3 has medium particles 412 having a particle size within a predetermined particle size range and a particle size exceeding the particle size range. This is a step of classifying the large particles 411 into small particles 413 having a particle size smaller than the particle size range.
 所定の粒径範囲は、所望のチタンコブル41の粒径に対応して適宜設定することができるが、粒径の均一なチタンコブルを歩留まりよく大量に製造する観点から、その上限値は50mm以下、好ましくは30mm以下、より好ましくは25mm以下、その下限値は好ましくは3mm以上、より好ましくは3.5mm以上、特に好ましくは4mm以上とすることができる。そして、この場合、大粒子411の粒径は、50mm超、好ましくは30mm超、より好ましくは25mm超である。また、小粒子413の粒径は、好ましくは3mm未満、より好ましくは3.5mm未満、特に好ましくは4mm未満である。 The predetermined particle size range can be appropriately set according to the desired particle size of the titanium cobble 41, but from the viewpoint of producing a large amount of titanium cobble with a uniform particle size with a high yield, the upper limit is preferably 50 mm or less. Is 30 mm or less, more preferably 25 mm or less, and the lower limit thereof is preferably 3 mm or more, more preferably 3.5 mm or more, and particularly preferably 4 mm or more. In this case, the particle size of the large particles 411 is more than 50 mm, preferably more than 30 mm, more preferably more than 25 mm. The particle size of the small particles 413 is preferably less than 3 mm, more preferably less than 3.5 mm, and particularly preferably less than 4 mm.
 以下、所定の粒径範囲を例えば3mm以上50mm以下と設定した場合を想定して、説明する。 Hereinafter, description will be made assuming that the predetermined particle size range is set to 3 mm or more and 50 mm or less, for example.
 この場合、大粒子411は粒径50mm超、中粒子412は粒径3mm以上50mm以下、小粒子413は粒径3mm未満である。 In this case, the large particles 411 have a particle size of more than 50 mm, the medium particles 412 have a particle size of 3 mm or more and 50 mm or less, and the small particles 413 have a particle size of less than 3 mm.
 第1ふるい機24は、振動ふるい機であり、図3は、第1ふるい機24のふるい部244の一部を拡大して示す概略断面図である。図3に示すように、ふるい部244は、第1メッシュ241と、第2メッシュ242と、底部243とを備えている。ふるい部244は、粒子の進行方向(図2中矢印A51等の方向)に対して垂直な方向の断面が略コの字状であり且つ前記進行方向に延びる例えばステンレス製等金属製の外壁部(不図示)を有しており、底部243はその外壁部の底側を形成している。第1メッシュ241及び第2メッシュ242は、スクラップ材11の粉砕生成物を粒径に応じて分別するためのものであり、ステンレス製等の金属板に所望の孔径の穴をパンチングで形成したものである。なお、第1メッシュ241及び第2メッシュ242は、このような構成に限られるものではなく、金属製の網等であってもよい。第1メッシュ241及び第2メッシュ242は、前記外壁部の側壁に上下2段に設けられた取付部に着脱可能に取り付けられる。第1メッシュ241及び第2メッシュ242は、異なる孔径の2種類の板状のメッシュ材であり、ふるい部244は、当該第1メッシュ241及び第2メッシュ242を上下2段に備えている。第1メッシュ241の孔径は50mmであり、第2メッシュ242の孔径は3mmである。 The first sieving machine 24 is a vibration sieving machine, and FIG. 3 is a schematic cross-sectional view showing an enlarged part of the sieving portion 244 of the first sieving machine 24. As shown in FIG. 3, the sieve part 244 includes a first mesh 241, a second mesh 242, and a bottom part 243. The sieve portion 244 has a substantially U-shaped cross section in a direction perpendicular to the particle traveling direction (the direction of the arrow A51 in FIG. 2) and extends in the traveling direction, for example, an outer wall portion made of metal such as stainless steel. (Not shown), and the bottom portion 243 forms the bottom side of the outer wall portion. The first mesh 241 and the second mesh 242 are for separating the pulverized products of the scrap material 11 according to the particle diameter, and are formed by punching holes with a desired hole diameter in a metal plate made of stainless steel or the like. It is. In addition, the 1st mesh 241 and the 2nd mesh 242 are not restricted to such a structure, A metal net | network etc. may be sufficient. The 1st mesh 241 and the 2nd mesh 242 are attached to the attachment part provided in the upper and lower two steps | paragraphs at the side wall of the said outer wall part so that attachment or detachment is possible. The first mesh 241 and the second mesh 242 are two types of plate-shaped mesh materials having different hole diameters, and the sieve portion 244 includes the first mesh 241 and the second mesh 242 in two upper and lower stages. The hole diameter of the first mesh 241 is 50 mm, and the hole diameter of the second mesh 242 is 3 mm.
 図2に示すように、第1ふるい機24の投入口245に投入された粉砕生成物は、第1ふるい機24の振動に伴って第1メッシュ241の上に送られる。そして、図2及び図3に示すように、最長径50nmを超える大粒子411は第1メッシュ241上に残されたまま第1排出口24aに向かって送り出される。最長径3mm以上50mm以下の中粒子412及び最長径3mm未満の小粒子413は、第1ふるい機24の振動に伴って、第1メッシュ241の穴を通じて下側に配置され、第2メッシュ242上に配置される。そして、中粒子412は第2メッシュ242上に残されたまま第2排出口24bに向かって送り出される。一方、小粒子413は、第1ふるい機24の振動に伴って、第2メッシュ242の穴を通じてさらに下側に配置された底部243上に配置され、第3排出口24cに向かって送り出される。 As shown in FIG. 2, the pulverized product charged into the inlet 245 of the first sieve 24 is sent onto the first mesh 241 as the first sieve 24 vibrates. Then, as shown in FIGS. 2 and 3, the large particles 411 having a longest diameter of 50 nm are sent out toward the first discharge port 24a while remaining on the first mesh 241. Medium particles 412 having a longest diameter of 3 mm or more and 50 mm or less and small particles 413 having a longest diameter of less than 3 mm are arranged on the lower side through the holes of the first mesh 241 in accordance with the vibration of the first sieve machine 24, and on the second mesh 242. Placed in. The medium particles 412 are sent out toward the second discharge port 24b while remaining on the second mesh 242. On the other hand, the small particles 413 are disposed on the bottom 243 disposed further down through the hole of the second mesh 242 along with the vibration of the first sieve 24 and are sent out toward the third discharge port 24c.
 このように、第1ふるい機24では、上下2段の第1メッシュ241及び第2メッシュ242により、効果的に粉砕生成物の分級を行うことができる。そうして、最終的に、粒径の均一なチタンコブル41を歩留まりよく大量に製造することができる。 Thus, in the first sieving machine 24, the pulverized product can be classified effectively by the upper and lower two-stage first mesh 241 and second mesh 242. Thus, finally, the titanium cobble 41 having a uniform particle diameter can be manufactured in a large amount with a high yield.
 なお、図2に示すように、第1メッシュ241の終端側の第1排出口24aは第2コンベア装置30に向かって延びている。第1排出口24aは第2コンベア装置30に接続されていてもよい。第2メッシュ242の終端側の第2排出口24bは第1磁選機25に向かって延びている。第2排出口24bは第1磁選機25に接続されていてもよい。 In addition, as shown in FIG. 2, the first discharge port 24 a on the terminal side of the first mesh 241 extends toward the second conveyor device 30. The first discharge port 24 a may be connected to the second conveyor device 30. The second discharge port 24 b on the terminal side of the second mesh 242 extends toward the first magnetic separator 25. The second discharge port 24b may be connected to the first magnetic separator 25.
 また、所定の粒径範囲を変更する場合は、第1メッシュ241及び第2メッシュ242の孔径を所望の孔径のものに変更すればよい。具体的には、所定の粒径範囲を例えば5mm以上30mm以下とする場合は、第1メッシュ241及び第2メッシュ242を、それぞれ、孔径50mm及び3mmのものから、30mm及び5mmのものに変更すればよい。このように第1メッシュ241及び第2メッシュ242を異なる孔径のものに変更することにより、チタンコブル41の粒径を調整することができる。 Further, when changing the predetermined particle diameter range, the hole diameters of the first mesh 241 and the second mesh 242 may be changed to those of the desired hole diameter. Specifically, when the predetermined particle size range is, for example, 5 mm or more and 30 mm or less, the first mesh 241 and the second mesh 242 are changed from those having a hole diameter of 50 mm and 3 mm to those having a hole diameter of 30 mm and 5 mm, respectively. That's fine. Thus, the particle size of the titanium cobble 41 can be adjusted by changing the first mesh 241 and the second mesh 242 to those having different hole diameters.
 ≪第1磁選工程≫
 第1磁選工程S6は、中粒子412の中から磁性を帯びたものを取り除く工程であり、第1磁選機25により行われる。中粒子412は、本工程により、結果として、製品であるチタンコブル41と、副生成物として磁性を帯びた磁性中粒子51とに分けられる。第1磁選機25は、特に限定されるものではなく、例えばドラム型、対極式ドラム型等一般的な磁選機を採用することができる。
≪First magnetic selection process≫
The first magnetic separation step S <b> 6 is a step of removing the magnetized particles from the medium particles 412 and is performed by the first magnetic separation machine 25. As a result, the middle particle 412 is divided into a product titanium cobble 41 and a magnetic middle particle 51 having magnetism as a by-product. The 1st magnetic separator 25 is not specifically limited, For example, general magnetic separators, such as a drum type and a counter-polar drum type, are employable.
 本工程によれば、磁性中粒子51を取り除くことにより、チタンコブル41の品質を向上させることができる。 According to this step, the quality of the titanium cobble 41 can be improved by removing the magnetic middle particles 51.
 なお、第1磁選工程S6は、チタンコブル41の品質向上の観点から、設けることが望ましいものの、任意の工程であり、例えばスクラップ材11に磁性を帯びたものが確実に含まれない場合には省略することができる。この場合、中粒子412が、製品としてのチタンコブル41として得られる。 In addition, although it is desirable to provide the first magnetic separation step S6 from the viewpoint of improving the quality of the titanium cobble 41, the first magnetic separation step S6 is an optional step. For example, the first magnetic separation step S6 is omitted when the scrap material 11 does not reliably include magnetism. can do. In this case, the medium particle 412 is obtained as a titanium cobble 41 as a product.
 ≪リターン工程≫
 リターン工程S7は、大粒子411を第2破砕機23にリターンする工程であり、第2コンベア装置30により行われる。これにより、大粒子を再度第2破砕工程S3にリターンすることで、チタンコブル41の十分な製造量を確保することができる。
≪Return process≫
The return step S <b> 7 is a step of returning the large particles 411 to the second crusher 23, and is performed by the second conveyor device 30. Thereby, the sufficient production amount of the titanium cobble 41 can be ensured by returning the large particles to the second crushing step S3 again.
 なお、リターン工程S7は、任意の工程であり、設けなくてもよいが、スクラップ材11の十分なリサイクルを行い、チタンコブル41の十分な製造量を確保する観点から、設けることが望ましい。 Note that the return step S7 is an optional step and may not be provided, but is desirably provided from the viewpoint of sufficiently recycling the scrap material 11 and securing a sufficient production amount of the titanium cobble 41.
 また、リターン工程S7を設ける場合は、例えば手動等の他の方法で、大粒子411を第2破砕機23に投入するようにしてもよい。また、第2コンベア装置30の終端部は、第1コンベア装置22の中腹に搬送物を投入するように配置されているが、当該配置に限定されるものではなく、直接第2破砕機23に投入されるように配置されていてもよいし、第1コンベア装置22の始端部に搬送物を投入するように配置されていてもよい。 Moreover, when providing return process S7, you may make it throw the large particle 411 into the 2nd crusher 23 by other methods, such as manual operation, for example. Moreover, although the terminal part of the 2nd conveyor apparatus 30 is arrange | positioned so that a conveyed product may be thrown into the middle of the 1st conveyor apparatus 22, it is not limited to the said arrangement | positioning, It is directly in the 2nd crusher 23. You may arrange | position so that it may throw in, and you may arrange | position so that a conveyed product may be thrown into the starting end part of the 1st conveyor apparatus 22. FIG.
 ≪収集工程≫
 収集工程S8は、集塵工程S4で集塵した微粉塵410と第1分級工程S5で得られた小粒子とを集める工程である。収集工程S8は任意の工程であり設けなくてもよい。微粉塵410及び小粒子413を第2分級工程S10により分級してリサイクル製品とする場合は、収集工程S8を行うことが望ましい。なお、収集工程S8を設ける場合は、収集部27bにおいて、微粉塵410及び小粒子413を混合し、均一化しておく構成としてもよい。
≪Collection process≫
The collection step S8 is a step of collecting the fine dust 410 collected in the dust collection step S4 and the small particles obtained in the first classification step S5. The collection step S8 is an optional step and may not be provided. When the fine dust 410 and the small particles 413 are classified by the second classification step S10 to be recycled products, it is desirable to perform the collection step S8. In addition, when providing collection process S8, it is good also as a structure which mixes the fine dust 410 and the small particle 413 in the collection part 27b, and is made uniform.
 ≪第2磁選工程≫
 第2磁選工程S9は、微粉塵410及び小粒子413の集合物の中から磁性を帯びたもの、すなわち磁性集合物52を取り除く工程であり、第2磁選機28により行われる。第2磁選機28は、特に限定されるものではないが、第1磁選機25と同様の磁選機を採用することができる。なお、第1磁選機25及び第2磁選機28は同一の構成のものであってもよいし、異なる構成のものであってもよい。第2磁選工程S9は、任意の工程であり、設けなくてもよいが、微粉塵410及び小粒子413を第2分級工程S10により分級してリサイクル製品とする場合は、第2磁選工程S9を行うことが望ましい。
≪Second magnetic selection process≫
The second magnetic separation step S <b> 9 is a step of removing the magnetized material from the aggregate of the fine dust 410 and the small particles 413, that is, the magnetic aggregate 52, and is performed by the second magnetic separator 28. Although the 2nd magnetic separator 28 is not specifically limited, The magnetic separator similar to the 1st magnetic separator 25 is employable. The first magnetic separator 25 and the second magnetic separator 28 may have the same configuration or different configurations. The second magnetic separation step S9 is an optional step and may not be provided. However, when the fine dust 410 and the small particles 413 are classified by the second classification step S10 to be recycled products, the second magnetic separation step S9 is performed. It is desirable to do.
 ≪第2分級工程≫
 第2分級工程S10は、集合物を少なくとも2種以上に分級する工程であり、第2ふるい機29により行われる。第2ふるい機29は、例えば第1ふるい機24と同様の構成の振動ふるい機であってもよいし、円形振動ふるい機であってもよい。また超音波振動ふるい機であってもよい。
≪Second classification process≫
The second classification step S10 is a step of classifying the aggregate into at least two kinds, and is performed by the second sieve 29. The second sieving machine 29 may be, for example, a vibration sieving machine having the same configuration as the first sieving machine 24 or a circular sieving machine. Moreover, an ultrasonic vibration sieving machine may be used.
 第2分級工程S10は、任意の工程であり、設けなくてもよいが、微粉塵410及び小粒子413を製品としてリサイクルする場合は設けることが望ましい。 The second classification step S10 is an optional step and may not be provided, but is desirably provided when the fine dust 410 and the small particles 413 are recycled as products.
 第2分級工程S10により、微細な粒子を収集してさらに分級することで、さらに粒径の小さなチタンコブルを複製造物として得ることができ、スクラップ材11を効果的にリサイクルすることができる。 By collecting and further classifying fine particles in the second classification step S10, titanium cobbles having a smaller particle diameter can be obtained as a double product, and the scrap material 11 can be effectively recycled.
 なお、第2分級工程S10では、2種類の微小チタンコブル42と小チタンコブル43とに分級する構成であるが、3種類以上に分級される構成であってもよい。 In addition, in 2nd classification process S10, although it is the structure classified into two types of fine titanium cobble 42 and the small titanium cobble 43, the structure classified into three or more types may be sufficient.
 <チタンコブルについて>
 上述のごとく得られたチタンコブル41は、チタンインゴット原料、スーパアロイ、アルミニウム合金用や鉄鋼用等の添加材等の用途に使用される。
<About Titanium Cobble>
The titanium cobble 41 obtained as described above is used for applications such as titanium ingot raw materials, super alloys, additives for aluminum alloys, steels, and the like.
 本実施形態に係る製造方法により得られるチタンコブル41の歩留まりは、スクラップ材11の質量に対するチタンコブル41の質量の割合を百分率で表して、70%以上、好ましくは75%以上、特に好ましくは80%以上である。また、チタンコブル41並びに第2分級工程S10の生成物である微小チタンコブル42及び小チタンコブル43を合わせた歩留まりは、スクラップ材11の質量に対するチタンコブル41,微小チタンコブル42及び小チタンコブル43の合計質量の割合を百分率で表して、80%以上、好ましくは85%以上、特に好ましくは90%以上である。 The yield of the titanium cobble 41 obtained by the manufacturing method according to the present embodiment is expressed as a percentage of the mass of the titanium cobble 41 to the mass of the scrap material 11, and is 70% or more, preferably 75% or more, particularly preferably 80% or more. It is. Further, the combined yield of the titanium cobble 41 and the fine titanium cobble 42 and the small titanium cobble 43 which are the products of the second classification step S10 is the ratio of the total mass of the titanium cobble 41, the fine titanium cobble 42 and the small titanium cobble 43 to the mass of the scrap material 11. Expressed as a percentage, it is 80% or more, preferably 85% or more, particularly preferably 90% or more.
 本実施形態に係る製造方法及び製造装置1によれば、スクラップ材11を第1破砕機21に投入してから、チタンコブル41を得るまでの時間は、1時間以内、好ましくは40分以内、特に好ましくは30分以内である。 According to the manufacturing method and the manufacturing apparatus 1 according to the present embodiment, the time from when the scrap material 11 is put into the first crusher 21 until the titanium cobble 41 is obtained is within 1 hour, preferably within 40 minutes, in particular. Preferably it is within 30 minutes.
 (その他の実施形態)
 以下、本開示に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、実施形態1と同じ部分については同じ符号を付して詳細な説明を省略する。
(Other embodiments)
Hereinafter, other embodiments according to the present disclosure will be described in detail. In the description of these embodiments, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 実施形態1では、第1ふるい機24は振動ふるい機であったが、第2ふるい機29と同様に、円形やドラム式の振動ふるい機、超音波振動ふるい機等であってもよい。 In the first embodiment, the first sieving machine 24 is a vibration sieving machine. However, similarly to the second sieving machine 29, it may be a circular or drum type sieving machine, an ultrasonic sieving machine, or the like.
 また、第1ふるい機24は、上下2段の第1メッシュ241と第2メッシュ242とを備え、第2破砕機23で粉砕されたスクラップ材11を大粒子411、中粒子412、及び小粒子413に分級する構成であったが、例えばさらに1つ以上のメッシュ材を備え、4種類以上の粒子に分級する構成としてもよい。第1分級工程S5において、種々のサイズにより細かく分級することで、種々のサイズのチタンコブル製品を製造することができる。 The first sieving machine 24 includes a first mesh 241 and a second mesh 242 in two upper and lower stages, and the scrap material 11 crushed by the second crusher 23 is composed of large particles 411, medium particles 412, and small particles. Although it was the structure classified into 413, it is good also as a structure which is further provided with one or more mesh materials, for example, and classify | categorizes into 4 or more types of particle | grains. In the first classification step S5, titanium cobble products of various sizes can be manufactured by classifying finely according to various sizes.
 本開示は、安全性を確保しつつ、チタンスクラップ材を粉砕し、均一な粒径のチタンコブルを歩留まりよく大量に製造する方法、及び装置を提供することができるので、極めて有用である。 This disclosure is extremely useful because it can provide a method and an apparatus for pulverizing titanium scrap material and producing a large amount of titanium cobble with a uniform particle size with a high yield while ensuring safety.
1 製造装置(チタンコブルの製造装置)
11 スクラップ材
21 第1破砕機
23 第2破砕機
24 第1ふるい機(ふるい機)
25 第1磁選機
27 集塵機
27b 収集部
28 第2磁選機
29 第2ふるい機
30 第2コンベア装置(コンベア装置)
41 チタンコブル
42 微小チタンコブル
43 小チタンコブル
241 第1メッシュ(上側のメッシュ材)
242 第2メッシュ(下側のメッシュ材)
243 底部
410 微粉塵
411 大粒子
412 中粒子
413 小粒子
S1 準備工程
S2 第1破砕工程
S3 第2破砕工程
S4 集塵工程
S5 第1分級工程
S6 第1磁選工程
S7 リターン工程
S8 収集工程
S9 第2磁選工程
S10 第2分級工程
1 Manufacturing equipment (Titanium cobble manufacturing equipment)
11 scrap material 21 1st crusher 23 2nd crusher 24 1st sieve machine (sieving machine)
25 1st magnetic separator 27 Dust collector 27b Collection part 28 2nd magnetic separator 29 2nd sieve 30 Second conveyor device (conveyor device)
41 Titanium Cobble 42 Minute Titanium Cobble 43 Small Titanium Cobble 241 First Mesh (Upper Mesh Material)
242 2nd mesh (lower mesh material)
243 Bottom 410 Fine dust 411 Large particles 412 Medium particles 413 Small particles S1 Preparation step S2 First crushing step S3 Second crushing step S4 Dust collection step S5 First classification step S6 First magnetic separation step S7 Return step S8 Collection step S9 Second Magnetic separation process S10 2nd classification process

Claims (9)

  1.  金属チタンを50質量%以上含有するスクラップ材を準備する準備工程と、
     前記スクラップ材を第1破砕機で粗破砕する第1破砕工程と、
     前記第1破砕工程で粗破砕された前記スクラップ材を第2破砕機で粉砕する第2破砕工程と、
     前記第2破砕工程において生じた前記スクラップ材の微粉塵を集塵する集塵工程と、
     前記第2破砕工程において生じた前記スクラップ材の粉砕生成物を、所定の粒径範囲内の粒径を有する中粒子と、該粒径範囲を超える粒径を有する大粒子と、該粒径範囲よりも小さい粒径を有する小粒子とに分級する第1分級工程とを備えた
    ことを特徴とするチタンコブルの製造方法。
    A preparation step of preparing a scrap material containing 50% by mass or more of metal titanium;
    A first crushing step of roughly crushing the scrap material with a first crusher;
    A second crushing step of crushing the scrap material roughly crushed in the first crushing step with a second crusher;
    A dust collection step of collecting fine dust of the scrap material generated in the second crushing step;
    The pulverized product of the scrap material generated in the second crushing step includes medium particles having a particle size within a predetermined particle size range, large particles having a particle size exceeding the particle size range, and the particle size range. And a first classifying step of classifying the particles into smaller particles having a smaller particle size.
  2.  請求項1において、
     前記スクラップ材は、板材、チューブ材、サイドトリミング材、及び打ち抜き材の群から選ばれる少なくとも1種であり、
     前記スクラップ材は、厚さ3mm以下、長さ1m以下の廃材である
    ことを特徴とするチタンコブルの製造方法。
    In claim 1,
    The scrap material is at least one selected from the group of a plate material, a tube material, a side trimming material, and a punching material,
    The scrap material is a scrap material having a thickness of 3 mm or less and a length of 1 m or less.
  3.  請求項1又は請求項2において、
     前記第1破砕機は二軸破砕機であり、
     前記第2破砕機はハンマーミルである
    ことを特徴とするチタンコブルの製造方法。
    In claim 1 or claim 2,
    The first crusher is a biaxial crusher;
    The titanium cobble manufacturing method, wherein the second crusher is a hammer mill.
  4.  請求項1~3のいずれか1項において、
     前記中粒子の中から磁性を帯びたものを取り除く第1磁選工程と、
     前記大粒子を前記第2破砕工程にリターンするためのリターン工程とを備えた
    ことを特徴とするチタンコブルの製造方法。
    In any one of claims 1 to 3,
    A first magnetic separation step of removing the magnetic particles from the medium particles;
    And a return process for returning the large particles to the second crushing process.
  5.  請求項1~4のいずれか1項において、
     前記集塵工程で集塵した前記微粉塵と前記小粒子とを集める収集工程と、
     前記微粉塵と前記小粒子の集合物の中から磁性を帯びたものを取り除く第2磁選工程と、
     前記集合物を少なくとも2種以上に分級する第2分級工程とを備えた
    ことを特徴とするチタンコブルの製造方法。
    In any one of claims 1 to 4,
    A collecting step of collecting the fine dust and the small particles collected in the dust collecting step;
    A second magnetic separation process for removing magnetism from the aggregate of the fine dust and the small particles;
    And a second classifying step of classifying the aggregate into at least two types.
  6.  請求項1~5のいずれか1項において、
     前記所定の粒径範囲は3mm以上50mm以下である
    ことを特徴とするチタンコブルの製造方法。
    In any one of claims 1 to 5,
    The method for producing titanium cobbles, wherein the predetermined particle size range is 3 mm or more and 50 mm or less.
  7.  金属チタンを50質量%以上含有するスクラップ材を粗破砕する第1破砕機と、
     前記第1破砕機で粗破砕された前記スクラップ材を粉砕する第2破砕機と、
     前記第2破砕機による前記スクラップ材の粉砕時に生じる微粉塵を集塵する集塵機と、
     前記第2破砕機による前記スクラップ材の粉砕により生じた粉砕生成物を、所定の粒径範囲内の粒径を有する中粒子と、該粒径範囲を超える粒径を有する大粒子と、該粒径範囲よりも小さい粒径を有する小粒子とに分級するふるい機とを備えた
    ことを特徴とするチタンコブルの製造装置。
    A first crusher for roughly crushing scrap material containing 50 mass% or more of metal titanium;
    A second crusher for crushing the scrap material roughly crushed by the first crusher;
    A dust collector that collects fine dust generated when the scrap material is pulverized by the second crusher;
    The pulverized product produced by pulverizing the scrap material by the second crusher includes medium particles having a particle size within a predetermined particle size range, large particles having a particle size exceeding the particle size range, and the particles. An apparatus for producing a titanium cobble, comprising: a sieving machine for classifying into small particles having a particle size smaller than a diameter range.
  8.  請求項7において、
     前記中粒子の中から磁性を帯びたものを取り除く第1磁選機と、
     前記大粒子を前記第2破砕機にリターンするためのコンベア装置とを備えたことを特徴とするチタンコブルの製造装置。
    In claim 7,
    A first magnetic separator that removes magnetism from the medium particles;
    A titanium cobble manufacturing apparatus, comprising: a conveyor device for returning the large particles to the second crusher.
  9.  請求項7又は請求項8において、
     前記ふるい機は、異なる孔径の2種類のメッシュ材を上下2段に備えた振動ふるい機であり、
     上側のメッシュ材の孔径は50mmであり、
     下側のメッシュ材の孔径は3mmであり、
     前記粉砕生成物は前記上側のメッシュ材上に配置されるものである
    ことを特徴とするチタンコブルの製造装置。
    In claim 7 or claim 8,
    The sieve is a vibrating sieve equipped with two types of mesh materials with different pore sizes in upper and lower stages,
    The hole diameter of the upper mesh material is 50 mm,
    The hole diameter of the lower mesh material is 3 mm,
    The said crushing product is arrange | positioned on the said upper mesh material, The manufacturing apparatus of the titanium cobble characterized by the above-mentioned.
PCT/JP2019/006624 2018-02-27 2019-02-21 Titanium cobble manufacturing method and manufacturing device WO2019167804A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1912383.5A GB2573257B (en) 2018-02-27 2019-02-21 Method and machine for producing titanium cobbles
US16/483,355 US10967386B2 (en) 2018-02-27 2019-02-21 Method and machine for producing titanium cobbles
KR1020197025331A KR102137280B1 (en) 2018-02-27 2019-02-21 Manufacturing method and apparatus for titanium coble

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018033414A JP6469912B1 (en) 2018-02-27 2018-02-27 Titanium cobble manufacturing method and manufacturing apparatus
JP2018-033414 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167804A1 true WO2019167804A1 (en) 2019-09-06

Family

ID=65356166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006624 WO2019167804A1 (en) 2018-02-27 2019-02-21 Titanium cobble manufacturing method and manufacturing device

Country Status (5)

Country Link
US (1) US10967386B2 (en)
JP (1) JP6469912B1 (en)
KR (1) KR102137280B1 (en)
GB (1) GB2573257B (en)
WO (1) WO2019167804A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221960A (en) * 2020-09-23 2021-01-15 江西东坚农业发展有限公司 A screen scarifier for rice processing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169990B (en) * 2019-07-02 2023-10-24 重庆市易特杰机械制造有限公司 Dust-free crushing workstation and use method thereof
BE1028041B1 (en) * 2020-02-10 2021-09-06 Capiau Recycling Nv METHOD AND DEVICE FOR SEPARING MIXED ALUMINUM WASTE
KR102431948B1 (en) * 2020-05-08 2022-08-12 (주)동아특수금속 Manufacturing process technology of high quality-titanium cobble using titanium scrap
CN111659700A (en) * 2020-06-10 2020-09-15 江苏科盈选煤技术有限公司 Separation device and method for lithium battery recovery
CN113070145A (en) * 2021-03-29 2021-07-06 江苏中宏环保科技有限公司 Fine rubber powder production line
CN115007444B (en) * 2022-06-01 2023-06-23 安徽巢湖旺农业科技有限公司 Environment-friendly sling type cloth bag dust removal process applied to grain processing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568948A (en) * 1991-09-11 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Classification apparatus and crushing equipment equipped with the same
JP2001149911A (en) * 1999-11-30 2001-06-05 Ishikawajima Harima Heavy Ind Co Ltd Processing method of waste gypsum board and apparatus therefor
JP2002115005A (en) * 2000-10-05 2002-04-19 Daido Steel Co Ltd METHOD FOR PRODUCING Ti OR Ti ALLOY POWDER USING Ti OR Ti ALLOY SCRAP AS RAW MATERIAL
JP2008279422A (en) * 2007-05-11 2008-11-20 Katsuhiro Ito System and apparatus for converting asbestos-containing building material into non-asbestos building material
JP2009061357A (en) * 2007-09-04 2009-03-26 Kotobuki Giken Kogyo Kk Apparatus and method for manufacturing sand, and sand
JP2010234223A (en) * 2009-03-31 2010-10-21 Hitachi Zosen Corp Waste disposal facility
JP2017140555A (en) * 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497284B1 (en) 1970-07-14 1974-02-19
US3905556A (en) * 1974-05-20 1975-09-16 Air Prod & Chem Method and apparatus for recovery of metals from scrap
US4416688A (en) * 1980-09-02 1983-11-22 Raymond Kaiser Engineers, Inc. Direct reduction of ores and concentration of metallic values
US4363722A (en) * 1980-12-31 1982-12-14 Suisman & Blumenthal, Incorporated Process and apparatus for treating titanium machining scrap
JP3369234B2 (en) 1992-12-10 2003-01-20 同和鉱業株式会社 Method for separating and recovering valuable resources from composite materials
JP4608132B2 (en) * 2001-05-30 2011-01-05 太平洋セメント株式会社 Method for producing powdered cement dispersant
JP2005036637A (en) * 2003-06-27 2005-02-10 Sadayoshi Yoshida Drilling mud processing method and its processing apparatus
JP2005068948A (en) * 2003-08-28 2005-03-17 Daiwa House Ind Co Ltd Hinged door with door stopper function
CN100445398C (en) * 2004-08-02 2008-12-24 张维田 Steel slag super fine powder processing technique and system
JP2006104633A (en) * 2004-10-08 2006-04-20 Sanpo Shoko:Kk Treatment system and method for recycling waste paper
US7700038B2 (en) 2005-03-21 2010-04-20 Ati Properties, Inc. Formed articles including master alloy, and methods of making and using the same
US8109392B2 (en) * 2005-08-29 2012-02-07 Airstream Recycling Forces Pty Ltd Apparatus and method for removing impurities in crushed recycled material
JP4907284B2 (en) 2006-09-28 2012-03-28 住友大阪セメント株式会社 Method for processing ferrous waste materials
AU2008241422B2 (en) * 2007-04-18 2012-05-03 Thomas A. Valerio Method and system for sorting and processing recycled materials
JP5707051B2 (en) * 2010-04-16 2015-04-22 純二 多田 Waste material treatment equipment
JP5513435B2 (en) 2011-04-13 2014-06-04 株式会社アビヅ Manufacturing method of secondary materials for steel
JP6011327B2 (en) * 2012-12-27 2016-10-19 新日鐵住金株式会社 Vibrating sieve device and cleaning method thereof
CN108823412B (en) 2018-06-20 2020-02-11 河南明泰铝业股份有限公司 Processing and production process of secondary aluminum

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568948A (en) * 1991-09-11 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Classification apparatus and crushing equipment equipped with the same
JP2001149911A (en) * 1999-11-30 2001-06-05 Ishikawajima Harima Heavy Ind Co Ltd Processing method of waste gypsum board and apparatus therefor
JP2002115005A (en) * 2000-10-05 2002-04-19 Daido Steel Co Ltd METHOD FOR PRODUCING Ti OR Ti ALLOY POWDER USING Ti OR Ti ALLOY SCRAP AS RAW MATERIAL
JP2008279422A (en) * 2007-05-11 2008-11-20 Katsuhiro Ito System and apparatus for converting asbestos-containing building material into non-asbestos building material
JP2009061357A (en) * 2007-09-04 2009-03-26 Kotobuki Giken Kogyo Kk Apparatus and method for manufacturing sand, and sand
JP2010234223A (en) * 2009-03-31 2010-10-21 Hitachi Zosen Corp Waste disposal facility
JP2017140555A (en) * 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221960A (en) * 2020-09-23 2021-01-15 江西东坚农业发展有限公司 A screen scarifier for rice processing

Also Published As

Publication number Publication date
US10967386B2 (en) 2021-04-06
GB201912383D0 (en) 2019-10-16
US20210008568A1 (en) 2021-01-14
JP6469912B1 (en) 2019-02-13
KR102137280B1 (en) 2020-07-23
GB2573257A (en) 2019-10-30
JP2019147108A (en) 2019-09-05
GB2573257B (en) 2021-04-14
KR20190107733A (en) 2019-09-20

Similar Documents

Publication Publication Date Title
JP6469912B1 (en) Titanium cobble manufacturing method and manufacturing apparatus
JP2000051830A (en) Method for treating shredder dust
JPH10137610A (en) Method for sorting and crushing material unsuitable for crushing and crushing apparatus therefor
US7478770B2 (en) Mechanical granulation process
JPH0889932A (en) Method and device for treatment of waste
JP2019153561A (en) Method for processing lithium ion battery waste
JP2004000871A (en) System for treating waste and method for treating waste dry cell
JP6676000B2 (en) Method for grinding printed circuit board waste and method for recovering valuable metal from printed circuit board waste
JP2019037944A (en) Printed circuit board scrap crushing device and printed circuit board scrap crushing method
JP2017154083A (en) Crusher having striking member
JP6623127B2 (en) Method and apparatus for producing reduced iron
JP5488008B2 (en) Contamination separator
JP2019171267A (en) Device for and method of treating waste lithium-ion battery
JP6846972B2 (en) How to process printed circuit boards with parts and how to recover valuable metals from printed circuit boards with parts
EP4284615A1 (en) Method and system for recycling wind turbine blades
CN206810428U (en) A kind of titanium carbon alloy car considers recycle device to be worth doing
JP4813051B2 (en) Reusable plastic production method
JP6139474B2 (en) Recycling method and recycling system
US20240009682A1 (en) Recovery of valuable components from a waste stream
Hesham et al. Redesign and manufacture an impact crusher hammer mill using advanced iron casting
JP2004267821A (en) Waste treatment apparatus
JP6586210B2 (en) Method for producing chromium for powder metallurgy
JP4907284B2 (en) Method for processing ferrous waste materials
JP2022022907A (en) Method for producing high-purity silicon powder, high-purity silicon powder and system for producing high-purity silicon powder
CN206597623U (en) A kind of graphite crushing system of multi-stage crushing for machining graphite

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197025331

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201912383

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190221

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761708

Country of ref document: EP

Kind code of ref document: A1