WO2019167744A1 - Sensor electrode and planar sensor using same - Google Patents

Sensor electrode and planar sensor using same Download PDF

Info

Publication number
WO2019167744A1
WO2019167744A1 PCT/JP2019/006275 JP2019006275W WO2019167744A1 WO 2019167744 A1 WO2019167744 A1 WO 2019167744A1 JP 2019006275 W JP2019006275 W JP 2019006275W WO 2019167744 A1 WO2019167744 A1 WO 2019167744A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
yarn
sensor
electrode
insulating
Prior art date
Application number
PCT/JP2019/006275
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 邦夫
真治 飯尾
日比野 委茂
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to CN201980002313.1A priority Critical patent/CN110612437A/en
Priority to JP2020503431A priority patent/JPWO2019167744A1/en
Priority to DE112019000033.0T priority patent/DE112019000033T5/en
Publication of WO2019167744A1 publication Critical patent/WO2019167744A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays

Definitions

  • the present invention relates to a sensor electrode used for a flexible piezoelectric sensor, a capacitive sensor, and the like, and a planar sensor using the same.
  • a flexible capacitive sensor with an elastomeric dielectric layer between the electrodes has been developed.
  • the pressure is detected based on a change in capacitance caused by the dielectric layer being compressed by the load and the distance between the electrodes being reduced.
  • the electrode that constitutes the sensor is required to be flexible enough to follow the deformation of the dielectric layer.
  • a material for forming a flexible electrode for example, a conductive paint in which a conductive material such as carbon powder is blended into an elastomer can be cited (for example, see Patent Documents 1 and 2).
  • Patent Document 3 describes a cloth-like electrode in which an electrode portion is formed by sewing a plurality of conductive threads on a non-conductive cloth by sewing a sewing machine.
  • Patent Document 4 describes a conductive cloth obtained by plain weaving plated conductive fibers together with insulating fibers.
  • Patent Document 5 describes a modified conductive knitted fabric in which conductive yarn is knitted.
  • Patent Document 6 describes a metal-coated fabric in which a metal layer is formed on the surface of a fiber constituting the fabric.
  • JP2013-96716A Japanese Patent Laying-Open No. 2015-7756 JP 2009-42108 A JP 2007-262623 A JP-A-62-200701 JP 2008-266814 A
  • An electrode in which a conductive material is blended with an elastomer can be greatly expanded because the base elastomer is flexible.
  • the contact between the conductive materials is likely to be cut off as much as it can be extended, which tends to cause a decrease in conductivity and breakage.
  • the cost of the material is increased.
  • it is difficult to uniformly disperse the conductive material in the elastomer polymer and it is necessary to use a dispersant or a special dispersing device. For this reason, the process and labor required for manufacturing a conductive paint increase, and the manufacturing cost also increases. Furthermore, it is difficult to apply the conductive paint in a thin film with high dimensional accuracy.
  • Patent Document 3 according to the configuration in which the conductive thread is sewn on the non-conductive cloth, the conductive thread is alternately arranged up and down with the non-conductive cloth interposed therebetween. For this reason, when the cloth is arranged with a dielectric layer in between, the distance between the electrodes differs depending on the upper and lower positions of the conductive yarn, and the detection accuracy is reduced in the sensor that detects the capacitance based on the distance between the electrodes. To do. Further, since the conductive cloth or conductive knitted fabric described in Patent Documents 4 to 6 is entirely conductive, a sensor for measuring a load distribution that needs to specify a position where a load is applied. It is not suitable for an electrode.
  • the present invention has been made in view of such circumstances, and provides a sensor electrode that has flexibility and is less likely to cause an increase in electrical resistance and breakage when stretched, and a planar sensor that is flexible and highly durable.
  • the task is to do.
  • the sensor electrode of the present invention is a cloth-like sensor electrode made of a woven fabric or a knitted fabric using a conductive yarn and an insulating yarn, and includes the insulating yarn. And an electrically conductive portion that is formed to include the conductive yarn and is disposed with the insulating portion interposed therebetween.
  • the conductive yarn is a conductive yarn
  • the insulating yarn is an insulating yarn.
  • the electrical resistance value per 100 mm in one yarn is measured. If it is less than 1 ⁇ 10 10 ⁇ , it is a conductive yarn, and if it is 1 ⁇ 10 10 ⁇ or more, it is an insulating yarn. .
  • the conductive part is a part having a surface resistance value of less than 1 ⁇ 10 7 ⁇
  • the insulating part is a part having a surface resistance value of 1 ⁇ 10 7 ⁇ or more.
  • the value measured by the following measuring method is adopted as the surface resistance value.
  • a pair of electrodes (a front electrode and a back electrode) are arranged to face each other on the front and back surfaces of the measurement target part.
  • the front electrode has a 10 mm square shape
  • the back electrode has a 20 mm square shape.
  • the planar sensor of the present invention includes a dielectric layer, and a front side electrode and a back side electrode arranged with the dielectric layer sandwiched in the thickness direction.
  • the sensor electrode is characterized in that a detection portion is set at a portion where the conductive portion of the sensor electrode faces through the dielectric layer.
  • the sensor electrode of the present invention is made of a woven fabric or a knitted fabric. For this reason, although it is flexible, it is hard to expand
  • the heat resistance is higher than that of a conventional electrode using an elastomer as a base material.
  • no conductive paint is used, there is no need to consider the shape and dispersion method of the conductive material, problems during application of the conductive paint, and the like.
  • the sensor electrode of the present invention can be easily manufactured by weaving or knitting a conductive yarn and an insulating yarn.
  • the sensor electrode of the present invention can be used as an electrode for a piezoelectric sensor having a piezoelectric layer in addition to a capacitive sensor having a dielectric layer.
  • the sensor electrode of the present invention has a conductive portion formed including a conductive yarn and an insulating portion formed including an insulating yarn. That is, as in the conductive cloth or conductive knitted fabric described in Patent Documents 4 to 6, the whole is not conductive, but part (only the conductive part) is conductive. It is. Further, the conductive portion is disposed with the insulating portion interposed therebetween. That is, at least a part of the conductive part is separated by the insulating part. Thereby, a conductive pattern is formed on the sensor electrode of the present invention.
  • the sensor electrode of the present invention is suitable as a sensor electrode for measuring a load distribution that requires specifying a position where a load is applied.
  • the electrode for sensors of this invention is a textile fabric or a knitted fabric, an electroconductive part can be arrange
  • the planar sensor of the present invention includes the sensor electrode of the present invention as a front side electrode and a back side electrode. For this reason, even if it repeats a deformation
  • FIG. 4 is an enlarged view of a circle IV in FIG. 3.
  • FIG. 6 is an enlarged view of a circle VI in FIG. 5.
  • the sensor electrode of the present invention is embodied as a front side electrode and a back side electrode of a planar sensor.
  • the vertical direction corresponds to the thickness direction of the dielectric layer.
  • FIG. 1 the permeation
  • FIG. 2 shows a II-II cross-sectional view of the same surface sensor.
  • FIG. 3 shows a top view of the front electrode constituting the same surface sensor.
  • FIG. 4 shows an enlarged view of the circle IV in FIG.
  • the detection unit is shown with dotted hatching.
  • the planar sensor 1 includes a dielectric layer 10, a front side electrode 2, and a back side electrode 3.
  • the dielectric layer 10 is made of urethane foam (urethane rubber foam) and has a rectangular sheet shape with a thickness of 4 mm.
  • the dielectric layer 10 is substantially the same size as the front electrode 2 and the back electrode 3 except for the thickness.
  • the front electrode 2 is disposed on the upper surface of the dielectric layer 10.
  • the front-side electrode 2 is a rectangular twill fabric in which a conductive yarn and an insulating yarn are twilled.
  • the front electrode 2 has eight conductive portions 01X to 08X and an insulating portion 20.
  • the conductive portions are shown hatched.
  • the conductive portions 01X to 08X each have a strip shape with a width of 10 mm.
  • the conductive portions 01X to 08X each extend in the front-rear direction.
  • the conductive portions 01X to 08X are arranged in parallel to each other with a spacing of 3 mm in the left-right direction.
  • the surface resistance values of the conductive portions 01X to 08X are 1 ⁇ 10 2 to 10 3 ⁇ .
  • the warp yarns constituting the conductive portions 01X to 08X are conductive yarns, and the weft yarns are insulating yarns.
  • the conductive yarn is obtained by subjecting the surface of an acrylic fiber to copper sulfate plating, and has a thickness of 370 dtex.
  • the electric resistance value per 100 mm length of the conductive yarn is 1 ⁇ 10 4 to 10 5 ⁇ .
  • the insulating yarn is made of polyethylene terephthalate (PET) fiber and has a thickness of 333 dtex.
  • the electric resistance value per 100 mm length of the insulating yarn is 1 ⁇ 10 13 to 10 14 ⁇ . As shown in an enlarged view in FIG.
  • the conductive portions 01X to 08X have a single weft (insulating yarn) after the warp (conductive yarn) passes over two wefts (insulating yarn). It has a twill structure that passes under In FIG. 4, the insulating yarn is indicated by a thin line, and the warp passing over the weft is hatched. Of the warp yarns, the conductive yarn is indicated by a right-up hatching, and the insulating yarn is indicated by a right-down hatching.
  • the insulating part 20 is disposed on both sides in the left-right direction of the individual conductive parts 01X to 08X.
  • the conductive portions 01X to 08X are arranged so as to be separated from each other by the insulating portion 20 having a width of 3 mm.
  • the surface resistance value of the insulating portion 20 is 1 ⁇ 10 9 to 10 10 ⁇ .
  • the warp and weft constituting the insulating portion 20 are both made of the same PET fiber as the insulating yarn constituting the conductive portions 01X to 08X. As shown in FIG. 4 in an enlarged manner, in the insulating portion 20 as well as the conductive portions 01X to 08X, the warp yarn (insulating yarn) passes over the two weft yarns (insulating yarn). , Having a twill structure that passes under one weft (insulating thread).
  • Metal eyelets 21 are attached to the front ends of the conductive portions 01X to 08X, respectively.
  • the conductive portions 01X to 08X are connected to the front-side wirings 01x to 08x via the eyelet 21.
  • the front side wirings 01x to 08x are electrically connected to the control device via a connector (not shown).
  • the back electrode 3 is disposed on the lower surface of the dielectric layer 10.
  • the back side electrode 3 is a twill fabric having the same rectangular shape as that of the front side electrode 2, and has eight conductive portions 01 Y to 08 Y and an insulating portion 30.
  • the back side electrode 3 is arranged in a state in which the front side electrode 2 is rotated 90 ° clockwise.
  • the conductive portions 01Y to 08Y each have a strip shape with a width of 10 mm.
  • the conductive portions 01Y to 08Y each extend in the left-right direction.
  • the conductive portions 01Y to 08Y are arranged in parallel to each other with a spacing of 3 mm in the front-rear direction.
  • the insulating part 20 is disposed on both sides in the front-rear direction of the individual conductive parts 01Y to 08Y.
  • the conductive portions 01Y to 08Y are each separated by the insulating portion 30 having a width of 3 mm.
  • the configurations of the conductive portions 01Y to 08Y and the insulating portion 30 are the same as the configurations of the conductive portions 01X to 08X and the insulating portion 20 of the front side electrode 2.
  • the conductive portions 01X to 08X of the front electrode 2 and the conductive portions 01Y to 08Y of the back electrode 3 are arranged substantially orthogonally and are arranged in a lattice pattern.
  • a plurality of detection units D are set in a portion where the conductive portions 01X to 08X and the conductive portions 01Y to 08Y overlap (a portion facing through the dielectric layer 10).
  • a total of 64 detectors D are set.
  • a metal eyelet 31 is attached to the left end of each of the conductive portions 01Y to 08Y.
  • the conductive portions 01Y to 08Y are connected to the back side wirings 01y to 08y through the eyelet 31.
  • the back side wirings 01y to 08y are electrically connected to the control device via a connector (not shown).
  • the front-side electrode 2 is made of a twill fabric in which a conductive yarn and an insulating yarn are twilled. For this reason, it is flexible and highly flexible. In addition, the conductivity is not easily lowered or broken, and the durability is high. Furthermore, since the thread
  • the warp yarn is a conductive yarn and the weft yarn is an insulating yarn.
  • the conductive portions 01X to 08X and the insulating portion 20 can be woven by simply changing the warp from the conductive yarn to the insulating yarn (or vice versa). Therefore, even when the front electrode 2 has a large area, it can be easily manufactured using a loom.
  • the conductive portion can be arranged in various forms simply by changing the type of yarn. That is, various conductive patterns can be easily formed.
  • the front-side electrode 2 there is no need to consider the shape of the conductive material, the dispersion method, problems during application of the conductive paint, and the like due to the use of the conductive paint. Therefore, the front side electrode 2 and by extension, the planar sensor 1 can be manufactured at a lower cost.
  • the front electrode 2 is excellent in air permeability and moisture permeability. For this reason, even if it arrange
  • the conductive portions 01X to 08X are adjacent to each other with the insulating portion 20 interposed therebetween. Thereby, a conductive pattern having a vertical stripe pattern is formed on the front electrode 2.
  • the whole is not conductive, but only the region where the conductive portions 01X to 08X are disposed has conductivity.
  • the strip-shaped conductive portions 01X to 08X are arranged in parallel across the entire surface of the dielectric layer 10 with the insulating portion 20 interposed therebetween.
  • the strip-like conductive parts 01Y to 08Y are arranged in parallel across the entire surface of the dielectric layer 10 with the insulating part 30 interposed therebetween.
  • the detection unit D is arranged using the intersections of the front-side electrodes 01X to 08X and the back-side electrodes 01Y to 08Y. By doing so, the detection part D can be easily dispersed on the entire surface of the dielectric layer 10. Further, even when measuring the load distribution in a wide area, it is not necessary to dispose the conductive portion for each site where it is desired to detect the load.
  • the conductive portions 01X to 08X of the front electrode 2 and the front wirings 01x to 08x were connected using the eyelet 21.
  • the connection between the conductive portions 01X to 08X and the front-side wirings 01x to 08x can be performed easily, reliably, and at low cost.
  • FIG. 5 the top view of the back side electrode which comprises the planar sensor of this embodiment is shown.
  • FIG. 6 shows an enlarged view of the circle VI in FIG. 5 corresponds to FIG. 1 described above, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the insulating yarn is indicated by a thin dotted line.
  • the back side electrode 3 is disposed on the lower surface of the dielectric layer 10 (see FIG. 1).
  • the back-side electrode 3 is a rectangular flat knitted fabric in which conductive yarns 301 and insulating yarns 300 are alternately flat-knitted in the front-rear direction.
  • the back-side electrode 3 has eight conductive portions 01Y to 08Y and an insulating portion 30.
  • the conductive portions are hatched.
  • the conductive portions 01Y to 08Y each have a strip shape with a width of 10 mm.
  • the conductive portions 01Y to 08Y each extend in the left-right direction.
  • the conductive portions 01Y to 08Y are arranged in parallel to each other with a spacing of 3 mm in the front-rear direction.
  • the surface resistance values of the conductive portions 01Y to 08Y are 1 ⁇ 10 2 to 10 3 ⁇ .
  • the insulating part 30 is arranged on both sides in the front-rear direction of the individual conductive parts 01Y to 08Y. In other words, the conductive portions 01Y to 08Y are each separated by the insulating portion 30 having a width of 3 mm.
  • the surface resistance value of the insulating portion 30 is 1 ⁇ 10 9 to 10 10 ⁇ .
  • the conductive portions 01Y to 08Y have a flat knitting structure with the conductive yarn 301.
  • the conductive yarn 301 is obtained by performing copper sulfate plating on the back surface of the acrylic fiber and has a thickness of 370 dtex.
  • the electric resistance value per 100 mm length of the conductive yarn 301 is 1 ⁇ 10 4 to 10 5 ⁇ .
  • the insulating portion 30 has a flat knitting structure with the insulating yarn 300.
  • the insulating yarn 300 is made of PET fiber as in the first embodiment, and has a thickness of 333 dtex.
  • the electric resistance value per 100 mm length of the insulating yarn 300 is 1 ⁇ 10 13 to 10 14 ⁇ .
  • the front side electrode 2 is the same rectangular flat knitted fabric as the back side electrode 3, and is arranged on the upper surface of the dielectric layer 10 with the back side electrode 3 rotated 90 ° counterclockwise.
  • the configurations of the conductive portions 01X to 08X and the insulating portion 20 of the front side electrode 2 are the same as those of the back side electrode 3.
  • the planar sensor of the present embodiment has the same function and effect with respect to parts having the same configuration as the planar sensor of the first embodiment.
  • the front side electrode 2 and the back side electrode 3 consist of a flat knitted fabric.
  • the front side electrode 2 and the back side electrode 3 are more flexible and excellent in elasticity. Since the front-side electrode 2 and the back-side electrode 3 have the same configuration, when the back-side electrode 3 is described on behalf of both, only changing the knitting yarn from the conductive yarn 301 to the insulating yarn 300 (or vice versa)
  • the conductive portions 01Y to 08Y and the insulating portion 30 can be knitted separately. Therefore, even when the back side electrode 3 has a large area, it can be easily manufactured using a knitting machine. Further, since the conductive portions 01Y to 08Y can be arranged in various forms only by changing the type of yarn, various conductive patterns can be easily formed.
  • the sensor electrode of the present invention is a cloth-like electrode made of a woven fabric or a knitted fabric using a conductive yarn and an insulating yarn.
  • the weaving method is not particularly limited. What is necessary is just to select suitably the weaving method from which a desired characteristic is acquired from a plain weave, a twill weave, a satin weave, etc.
  • plain weave it is strong and excellent in durability, but the flexibility is slightly lowered.
  • twill weave there are many options for organization, and it is flexible and flexible.
  • the knitting method is not particularly limited.
  • a weaving method such as flat knitting, rubber knitting, pearl knitting, and knit knitting, or warp knitting such as tricot or double raschel knitting may be appropriately selected.
  • flat knitting has a structure in which loops are continuous in the weft direction. For this reason, it is easy to make it thin and excellent in the stretchability in the weft direction. Rubber knitting is more stretchable because the front and back are the same stitches.
  • the binding knitting has a structure in which two front and back knitted fabrics are connected by a binding yarn. Therefore, for example, when a knitted fabric having an electrode protection function is employed on at least one of the front and back surfaces, the electrode can be protected from the outside.
  • Double raschel knitting has a structure in which loops are continuous in the warp direction.
  • the knitted fabric is more flexible than the woven fabric. Whether it is woven or knitted, the weaving or knitting method may be changed in one electrode.
  • the conductive yarn may be any conductive yarn, and the material thereof is A) metal fiber, B) carbon fiber, C) synthetic fiber is subjected to plating treatment, coating treatment, sputtering treatment, etc. to make it conductive. Examples thereof include fibers provided, D) fibers obtained by kneading a conductive material in synthetic fibers, and E) conductive polymer fibers. Hereinafter, specific examples of each fiber, suitable materials, and the like are listed.
  • A) Metal fibers fibers such as gold, silver, copper, stainless steel, tungsten, molybdenum, beryllium, and amorphous wires.
  • C) Plating material aluminum, copper, silver, gold, palladium, copper sulfate, copper sulfide, copper nickel.
  • Coating material Carbon paint, metal oxide paint, conductive polymer paint in which carbon nanotubes or conductive carbon black are dispersed.
  • Sputtering materials chromium, copper, titanium, silver, platinum, gold, stainless steel, nickel-chromium alloy, copper-zinc alloy.
  • Conductive material conductive carbon black, carbon nanotube, metal powder.
  • polyester fibers such as PET, polytrimethylene terephthalate and polybutylene terephthalate
  • polyamide fibers such as nylon and aramid
  • polyimide fibers such as polyimide fibers
  • polyolefin fibers such as polyethylene and polypropylene
  • vinylon fibers and vinylidene fibers Polyvinyl chloride fiber
  • acrylic fiber polyurethane fiber
  • polyclar fiber fluor
  • a conductive thread when a synthetic fiber is plated, a conductive thread can be easily manufactured.
  • yarns having a copper sulfate plating layer or a copper sulfide plating layer have the advantages that they are softer and less likely to break than metal fibers and carbon fibers, and the plating layer suppresses oxidative degradation and has little change over time in conductivity. .
  • the conductive yarn may be a mixture of the conductive yarn made of the fiber and the insulating yarn.
  • a conductive yarn coated with resin may be used.
  • the conductive yarn may be one type or a combination of two or more types.
  • the insulating yarn may be an insulating yarn, and examples of the material include a) synthetic fiber, b) semi-synthetic fiber, c) regenerated cellulose fiber, d) natural fiber, e) inorganic fiber, and the like. . Specific examples of each fiber are listed below.
  • the synthetic fiber of a) is as having enumerated in description of an electroconductive thread
  • the insulating yarn may be one type or a combination of two or more types.
  • Semi-synthetic fiber acetate, triacetate, promix.
  • Regenerated cellulose fiber rayon, vorinosic.
  • Natural fibers plant fibers such as cotton, kabok, acund, hemp, kenaf, and animal fibers such as wool, silk, angora, cashmere, and mohair.
  • Inorganic fiber glass fiber, ceramic fiber.
  • the thickness of the conductive yarn and the insulating yarn is not particularly limited.
  • the thickness of the yarn may be 55.5 dtex (50 denier) or more and 1332 dtex (1200 denier) or less. It is more preferable to set it to 165 dtex (150 denier) or more and 660 dtex (600 denier) or less.
  • carbon fiber as the conductive yarn use a product of 1K (1000 filaments per bundle) or more and 60K (60,000 filaments per bundle) or less, more preferably 1K or more and 6K or less. Is desirable.
  • the cross-sectional shapes of the conductive yarn and the insulating yarn are not particularly limited, and various shapes such as a circle, an ellipse, a rectangle, a trapezoid, and a triangle can be adopted.
  • the conductive yarn and the insulating yarn may be hollow fibers.
  • the conductive yarn and the insulating yarn may be made of a single fiber, a blended yarn or a twisted yarn. In the case of a twisted yarn, since the strength of the yarn is high, there is an advantage that it is difficult to cut when making a woven fabric. Further, when making a woven fabric, a laundry paste or the like may be applied to the yarn. By doing so, friction can be reduced and cutting of the yarn can be suppressed.
  • the sensor electrode of the present invention has a conductive portion and an insulating portion.
  • the surface resistance value of the conductive portion is less than 1 ⁇ 10 7 ⁇ , more preferably less than 1 ⁇ 10 6 ⁇ .
  • the conductive portion is formed including the conductive yarn described above. That is, the conductive portion may be formed only from the conductive yarn, or may be formed using both the conductive yarn and the insulating yarn.
  • one of the warp and the weft can be a conductive yarn, and the other can be an insulating yarn to form the conductive portion.
  • the number and shape of the conductive portions are not particularly limited.
  • the arrangement form of the conductive part is not particularly limited as long as part or all of the conductive part is arranged via the insulating part.
  • the conductive portion may be arranged in an island shape only in the portion that becomes the detection portion.
  • positioned in parallel in 1st embodiment may be connected by the edge part of a longitudinal direction, and you may make it continue in one stroke.
  • a part of the conductive portion 22 is disposed with the insulating portion 20 interposed therebetween. Since the sensor electrode of the present invention is a woven fabric or a knitted fabric, the conductive portion can be arranged in various forms only by changing the type of the yarn. In other words, according to the sensor electrode of the present invention, it is easy to form various conductive patterns.
  • the surface resistance value of the insulating portion is 1 ⁇ 10 7 ⁇ or more, more preferably 1 ⁇ 10 8 ⁇ or more.
  • the insulating portion is formed including the above-described insulating yarn.
  • the number, shape, and arrangement form of the insulating portions are not particularly limited.
  • the planar sensor of the present invention includes a dielectric layer, and a front-side electrode and a back-side electrode that are arranged with the dielectric layer sandwiched in the thickness direction and are formed of the sensor electrode of the present invention.
  • a dielectric layer an elastomer or a resin (both including a foam) having a relatively high relative dielectric constant may be used.
  • Elastomers include cross-linked rubbers and thermoplastic elastomers. For example, those having a relative dielectric constant of 5 or more (measurement frequency 100 Hz) are suitable.
  • Such elastomers include urethane rubber, silicone rubber, nitrile rubber, hydrogenated nitrile rubber, acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene copolymer rubber, butyl rubber, styrene-butadiene rubber, fluorine rubber, epichlorohydrin rubber, Examples include chloroprene rubber, chlorinated polyethylene, and chlorosulfonated polyethylene.
  • the resin examples include polyethylene, polypropylene, polyurethane, polystyrene (including cross-linked foamed polystyrene), polyvinyl chloride, vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-acrylic ester copolymer, and the like. Can be mentioned.
  • the shape of the dielectric layer is not particularly limited, but it is desirable that the dielectric layer is thinner from the viewpoint of improving the sensitivity of the sensor.
  • the thickness of the dielectric layer is desirably 10 mm or less, and more desirably 5 mm or less.
  • a dielectric layer may be configured by laminating a plurality of layers having different materials and shapes.
  • Examples of the planar sensor using the sensor electrode of the present invention include a piezoelectric sensor in addition to the capacitive sensor of the above embodiment. Also in the case of a piezoelectric sensor, a configuration including a piezoelectric layer, and a front side electrode and a back side electrode that are arranged with the piezoelectric layer sandwiched in the thickness direction and are formed of the sensor electrode of the present invention may be used.
  • the piezoelectric layer may include an elastomer and piezoelectric particles.
  • the conductive portion and the wiring are connected using eyelets.
  • the connection form between the conductive portion and the wiring is not particularly limited. For example, you may connect by soldering, a conductive adhesive, etc. Moreover, you may use a part of electroconductive part as a part of wiring.
  • the planar sensor of the present invention may be used as it is in the first embodiment, but may be used by being housed in an exterior cover.
  • Suitable materials for the exterior cover include resins and elastomers such as vinyl chloride and thermoplastic polyurethane (TPU), elastic fabrics using elastic fibers such as polyurethane and polyester, and laminates of elastomers and elastic fabrics.
  • the sensor electrode and the outer cover of the present invention may be directly bonded together. However, when the outer cover is an insulating cloth, the sensor electrode and the outer cover are integrally woven by double face weaving. May be.
  • the sensor electrode and the surface sensor of the present invention can be applied to a stretched or bent part, it can be applied to mattresses for medical use, nursing care, etc., car or wheelchair seats, shoe soles, artificial skin of robots, etc. It is suitable for a pressure sensor to be arranged or a wearable biological information sensor. Moreover, it is suitable also for the use of sensing a motion by three-dimensionally winding a sensor around an arm or a leg.
  • 1 Planar sensor
  • 10 Dielectric layer
  • 2 Front side electrode
  • 20 Insulating part
  • 21 Eyelet
  • 22 Conductive part
  • 3 Back side electrode
  • 30 Insulating part
  • 31 Eyelet
  • 300 Insulation 301: conductive yarn
  • 01X to 08X conductive portion
  • 01x to 08x front side wiring
  • 01Y to 08Y conductive portion
  • 01y to 08y back side wiring
  • D detection portion.

Abstract

A sensor electrode according to the present invention is a fabric-like electrode comprising a woven fabric or knit fabric in which an electroconductive yarn and an insulating yarn are used, and has an insulating part formed including the insulating yarn, and electroconductive parts which are formed including the electroconductive yarn and which are disposed with the insulating part therebetween. The sensor electrode is flexible and not susceptible to breakage or an increase in electrical resistance when stretched. A planar sensor (1) is provided with a dielectric layer (10), and a front electrode (2) and a back electrode (3) disposed with the dielectric layer (10) therebetween in the thickness direction. The front electrode (2) and the back electrode (3) comprise sensor electrodes, and detection parts (D) are established in portions where electroconductive parts (01X-08X) of the front electrode (2) and electroconductive parts (01Y-08Y) of the back electrode (3) face each other via the dielectric layer (10).

Description

センサ用電極およびそれを用いた面状センサElectrode for sensor and planar sensor using the same
 本発明は、柔軟な圧電センサ、静電容量型センサなどに用いられるセンサ用電極、およびそれを用いた面状センサに関する。 The present invention relates to a sensor electrode used for a flexible piezoelectric sensor, a capacitive sensor, and the like, and a planar sensor using the same.
 電極間にエラストマー製の誘電層を介装した柔軟な静電容量型センサが開発されている。この種の静電容量型センサにおいては、荷重により誘電層が圧縮され電極間距離が小さくなることによる静電容量の変化に基づいて、圧力を検出する。センサを構成する電極には、誘電層の変形に追従できる程度の柔軟性が要求される。柔軟な電極を形成するための材料として、例えばエラストマーに炭素粉末などの導電材を配合した導電塗料が挙げられる(例えば、特許文献1、2参照)。 A flexible capacitive sensor with an elastomeric dielectric layer between the electrodes has been developed. In this type of capacitance type sensor, the pressure is detected based on a change in capacitance caused by the dielectric layer being compressed by the load and the distance between the electrodes being reduced. The electrode that constitutes the sensor is required to be flexible enough to follow the deformation of the dielectric layer. As a material for forming a flexible electrode, for example, a conductive paint in which a conductive material such as carbon powder is blended into an elastomer can be cited (for example, see Patent Documents 1 and 2).
 一方、導電性糸を用いた布状の電極が提案されている。例えば特許文献3には、非導電性の布に複数の導電性糸をミシンの本縫いで縫い付けて電極部を形成した布状電極が記載されている。特許文献4には、めっきされた導電性繊維を絶縁性繊維と共に平織りした導電性布が記載されている。特許文献5には、導電性糸を編んだ変形導電性編物が記載されている。特許文献6には、布帛を構成する繊維表面に金属層を形成した金属被覆布帛が記載されている。 On the other hand, cloth-like electrodes using conductive yarn have been proposed. For example, Patent Document 3 describes a cloth-like electrode in which an electrode portion is formed by sewing a plurality of conductive threads on a non-conductive cloth by sewing a sewing machine. Patent Document 4 describes a conductive cloth obtained by plain weaving plated conductive fibers together with insulating fibers. Patent Document 5 describes a modified conductive knitted fabric in which conductive yarn is knitted. Patent Document 6 describes a metal-coated fabric in which a metal layer is formed on the surface of a fiber constituting the fabric.
特開2013-96716号公報JP2013-96716A 特開2015-7566号公報Japanese Patent Laying-Open No. 2015-7756 特開2009-42108号公報JP 2009-42108 A 特開2007-262623号公報JP 2007-262623 A 特開昭62-200701号公報JP-A-62-200701 特開2008-266814号公報JP 2008-266814 A
 エラストマーに導電材が配合された電極は、母材のエラストマーが柔軟であるため、大きく伸張することが可能である。しかしながら、大きく伸張できる分、導電材同士の接触が断たれやすくなり、導電性の低下や破断を招きやすい。また、導電材同士を接触しやすくしたり、伸張してもその接触を維持するために、導電材の形状などを工夫する必要があることから、材料のコストが高くなる。加えて、エラストマーポリマーに導電材を均一に分散させることは難しく、分散剤や特殊な分散装置を用いる必要がある。このため、導電塗料を製造するのに必要な工程や手間が多くなり、製造コストも高くなる。さらに、導電塗料を薄膜状に寸法精度良く塗工するのも難しい。 An electrode in which a conductive material is blended with an elastomer can be greatly expanded because the base elastomer is flexible. However, the contact between the conductive materials is likely to be cut off as much as it can be extended, which tends to cause a decrease in conductivity and breakage. In addition, since it is necessary to devise the shape of the conductive material in order to facilitate contact between the conductive materials or to maintain the contact even when the conductive material is stretched, the cost of the material is increased. In addition, it is difficult to uniformly disperse the conductive material in the elastomer polymer, and it is necessary to use a dispersant or a special dispersing device. For this reason, the process and labor required for manufacturing a conductive paint increase, and the manufacturing cost also increases. Furthermore, it is difficult to apply the conductive paint in a thin film with high dimensional accuracy.
 また、特許文献3に記載されているように、非導電性の布に導電性糸を縫い付ける構成によると、非導電性布を挟んで上下交互に導電性糸が配置されることになる。このため、誘電層を挟んで当該布を配置した場合、導電性糸の上下の位置により電極間距離が異なることになり、電極間距離に基づく静電容量を検出するセンサにおいては検出精度が低下する。また、特許文献4~6に記載されている導電性布または導電性編物は、全体が導電性を有するものであるため、荷重が加わった位置を特定することが必要な荷重分布を測定するセンサ用電極には不向きである。 Further, as described in Patent Document 3, according to the configuration in which the conductive thread is sewn on the non-conductive cloth, the conductive thread is alternately arranged up and down with the non-conductive cloth interposed therebetween. For this reason, when the cloth is arranged with a dielectric layer in between, the distance between the electrodes differs depending on the upper and lower positions of the conductive yarn, and the detection accuracy is reduced in the sensor that detects the capacitance based on the distance between the electrodes. To do. Further, since the conductive cloth or conductive knitted fabric described in Patent Documents 4 to 6 is entirely conductive, a sensor for measuring a load distribution that needs to specify a position where a load is applied. It is not suitable for an electrode.
 本発明は、このような実情に鑑みてなされたものであり、柔軟性を有し、伸張時に電気抵抗の増加および破断が生じにくいセンサ用電極、および柔軟で耐久性が高い面状センサを提供することを課題とする。 The present invention has been made in view of such circumstances, and provides a sensor electrode that has flexibility and is less likely to cause an increase in electrical resistance and breakage when stretched, and a planar sensor that is flexible and highly durable. The task is to do.
 (1)上述した課題を解決するため、本発明のセンサ用電極は、導電性糸および絶縁性糸を用いた織物または編物からなる布状のセンサ用電極であって、該絶縁性糸を含んで形成される絶縁性部と、該導電性糸を含んで形成され該絶縁性部を挟んで配置される導電性部と、を有することを特徴とする。 (1) In order to solve the above-described problem, the sensor electrode of the present invention is a cloth-like sensor electrode made of a woven fabric or a knitted fabric using a conductive yarn and an insulating yarn, and includes the insulating yarn. And an electrically conductive portion that is formed to include the conductive yarn and is disposed with the insulating portion interposed therebetween.
 導電性糸は、導電性を有する糸であり、絶縁性糸は、絶縁性を有する糸である。本明細書においては、1本の糸における100mmあたりの電気抵抗値を測定し、それが1×1010Ω未満であれば導電性糸、1×1010Ω以上であれば絶縁性糸とする。 The conductive yarn is a conductive yarn, and the insulating yarn is an insulating yarn. In this specification, the electrical resistance value per 100 mm in one yarn is measured. If it is less than 1 × 10 10 Ω, it is a conductive yarn, and if it is 1 × 10 10 Ω or more, it is an insulating yarn. .
 導電性部は、表面抵抗値が1×10Ω未満である部位であり、絶縁性部は、表面抵抗値が1×10Ω以上である部位である。本明細書においては、表面抵抗値として、以下の測定方法により測定された値を採用する。まず、測定対象部位の表裏両面に一対の電極(表面電極、裏面電極)を対向させて配置する。表面電極は10mm角の正方形状、裏面電極は20mm角の正方形状を呈している。加えて、表面電極を囲むように、表面電極から2mm離間して、正方形枠状のガード電極を配置する。そして、ガード電極に電圧Vを印加し、ガード電極から表面電極に流れる電流Iを測定し、式Rs=V/Iより表面抵抗値Rsを算出する。 The conductive part is a part having a surface resistance value of less than 1 × 10 7 Ω, and the insulating part is a part having a surface resistance value of 1 × 10 7 Ω or more. In this specification, the value measured by the following measuring method is adopted as the surface resistance value. First, a pair of electrodes (a front electrode and a back electrode) are arranged to face each other on the front and back surfaces of the measurement target part. The front electrode has a 10 mm square shape, and the back electrode has a 20 mm square shape. In addition, a square frame-shaped guard electrode is disposed 2 mm away from the surface electrode so as to surround the surface electrode. Then, the voltage V is applied to the guard electrode, the current I flowing from the guard electrode to the surface electrode is measured, and the surface resistance value Rs is calculated from the equation Rs = V / I.
 (2)本発明の面状センサは、誘電層と、該誘電層を厚さ方向に挟んで配置される表側電極および裏側電極と、を備え、該表側電極および該裏側電極は、上記本発明のセンサ用電極であり、該センサ用電極の前記導電性部が該誘電層を介して対向する部分に検出部が設定されることを特徴とする。 (2) The planar sensor of the present invention includes a dielectric layer, and a front side electrode and a back side electrode arranged with the dielectric layer sandwiched in the thickness direction. The sensor electrode is characterized in that a detection portion is set at a portion where the conductive portion of the sensor electrode faces through the dielectric layer.
 (1)本発明のセンサ用電極は、織物または編物からなる。このため、柔軟であるが、エラストマーを母材とする従来の電極と比較して大きく伸張しにくい。よって、伸張時における導電性の低下や破断が生じにくく耐久性が高い。これにより、大荷重を検出する用途にも適用が可能である。加えて、エラストマーを母材とする従来の電極と比較して、耐熱性も高くなる。また、導電塗料を使用しないため、導電材の形状や分散方法、導電塗料の塗工時における問題などを考慮する必要はない。本発明のセンサ用電極は、導電性糸および絶縁性糸を織るまたは編むことにより容易に製造することができる。 (1) The sensor electrode of the present invention is made of a woven fabric or a knitted fabric. For this reason, although it is flexible, it is hard to expand | extend largely compared with the conventional electrode which uses an elastomer as a base material. Therefore, it is difficult to cause a decrease in electrical conductivity or breakage at the time of extension, and the durability is high. Thereby, it is applicable also to the use which detects a heavy load. In addition, the heat resistance is higher than that of a conventional electrode using an elastomer as a base material. In addition, since no conductive paint is used, there is no need to consider the shape and dispersion method of the conductive material, problems during application of the conductive paint, and the like. The sensor electrode of the present invention can be easily manufactured by weaving or knitting a conductive yarn and an insulating yarn.
 導電塗料を用いる場合、上述した特許文献1、2に記載されているように、樹脂製の基材上に導電塗料を塗工して電極としている。このため、センサを構成した場合に、通気性および透湿性が低くなり、ベッドのマットレスや車などのシートなどに配置すると、蒸れやすいという問題があった。また、電極間に配置されるウレタン製の層が加水分解しやすくなり、耐久性が低下するという問題があった。この点、本発明のセンサ用電極は、織物または編物からなるため、通気性、透湿性に優れる。したがって、蒸れや耐久性の低下といった従来の問題を低減することができる。 When a conductive paint is used, as described in Patent Documents 1 and 2 described above, a conductive paint is applied on a resin base material to form an electrode. For this reason, when the sensor is configured, the air permeability and the moisture permeability are lowered, and there is a problem that when the sensor is disposed on a bed mattress, a car seat or the like, it is easily stuffy. In addition, there is a problem that the urethane layer disposed between the electrodes is easily hydrolyzed and the durability is lowered. In this respect, since the sensor electrode of the present invention is made of a woven fabric or a knitted fabric, it has excellent breathability and moisture permeability. Therefore, it is possible to reduce conventional problems such as dampness and a decrease in durability.
 本発明のセンサ用電極は、誘電層を備える静電容量型センサの他、圧電層を備える圧電センサなどの電極としても用いることができる。ここで、本発明のセンサ用電極は、導電性糸を含んで形成される導電性部と、絶縁性糸を含んで形成される絶縁性部とを有する。すなわち、特許文献4~6に記載されている導電性布または導電性編物のように、全体が導電性を有しているのではなく、一部(導電性部のみ)が導電性を有するものである。また、導線性部は、絶縁性部を挟んで配置される。すなわち、導電性部の少なくとも一部は、絶縁性部により隔てられている。これにより、本発明のセンサ用電極には、導電パターンが形成される。したがって、本発明のセンサ用電極は、荷重が加わった位置を特定することが必要な荷重分布を測定するセンサ用電極として好適である。そして、本発明のセンサ用電極は、織物または編物であるため、糸の種類を変更するだけで導電性部を様々な形態で配置することができる。換言すると、本発明のセンサ用電極によると、種々の導電パターンを容易に形成することができる。 The sensor electrode of the present invention can be used as an electrode for a piezoelectric sensor having a piezoelectric layer in addition to a capacitive sensor having a dielectric layer. Here, the sensor electrode of the present invention has a conductive portion formed including a conductive yarn and an insulating portion formed including an insulating yarn. That is, as in the conductive cloth or conductive knitted fabric described in Patent Documents 4 to 6, the whole is not conductive, but part (only the conductive part) is conductive. It is. Further, the conductive portion is disposed with the insulating portion interposed therebetween. That is, at least a part of the conductive part is separated by the insulating part. Thereby, a conductive pattern is formed on the sensor electrode of the present invention. Therefore, the sensor electrode of the present invention is suitable as a sensor electrode for measuring a load distribution that requires specifying a position where a load is applied. And since the electrode for sensors of this invention is a textile fabric or a knitted fabric, an electroconductive part can be arrange | positioned with various forms only by changing the kind of thread | yarn. In other words, according to the sensor electrode of the present invention, various conductive patterns can be easily formed.
 (2)本発明の面状センサは、表側電極および裏側電極として本発明のセンサ用電極を備える。このため、変形を繰り返しても、電極における導電性の低下や破断が生じにくく耐久性に優れる。したがって、大荷重を検出する用途にも用いることができる。また、荷重分布を精度良く測定可能な面状センサを、より低コストで製造することができる。また、本発明の面状センサは、従来の樹脂シートを用いた面状センサと比較して、通気性、透湿性に優れる。このため、ベッドのマットレス、車や車椅子のシート、靴底などに配置する荷重分布センサとして好適である。 (2) The planar sensor of the present invention includes the sensor electrode of the present invention as a front side electrode and a back side electrode. For this reason, even if it repeats a deformation | transformation, the electroconductive fall in an electrode and a fracture | rupture do not produce easily and it is excellent in durability. Therefore, it can also be used for applications that detect large loads. In addition, a surface sensor capable of measuring the load distribution with high accuracy can be manufactured at a lower cost. Moreover, the planar sensor of this invention is excellent in air permeability and moisture permeability compared with the planar sensor using the conventional resin sheet. For this reason, it is suitable as a load distribution sensor disposed on a mattress of a bed, a seat of a car or wheelchair, a shoe sole, or the like.
第一実施形態の面状センサの透過上面図である。It is a permeation | transmission top view of the planar sensor of 1st embodiment. 同面状センサのII-II断面図である。It is II-II sectional drawing of the same surface sensor. 同面状センサを構成する表側電極の上面図である。It is a top view of the front side electrode which comprises the same surface sensor. 図3の円IVの拡大図である。FIG. 4 is an enlarged view of a circle IV in FIG. 3. 第二実施形態の面状センサを構成する裏側電極の上面図である。It is a top view of the back side electrode which comprises the planar sensor of 2nd embodiment. 図5の円VIの拡大図である。FIG. 6 is an enlarged view of a circle VI in FIG. 5. 導電性部の別の配置形態を示す表側電極の上面図である。It is a top view of the front side electrode which shows another arrangement | positioning form of an electroconductive part.
 次に、本発明のセンサ用電極および面状センサの実施の形態について説明する。第一、第二実施形態において、本発明のセンサ用電極は、面状センサの表側電極および裏側電極として具現化されている。以下の図においては、上下方向が誘電層の厚さ方向に対応している。 Next, embodiments of the sensor electrode and the planar sensor of the present invention will be described. In the first and second embodiments, the sensor electrode of the present invention is embodied as a front side electrode and a back side electrode of a planar sensor. In the following drawings, the vertical direction corresponds to the thickness direction of the dielectric layer.
 <第一実施形態>
 [面状センサの構成]
 まず、本実施形態の面状センサの構成について説明する。図1に、本実施形態の面状センサの透過上面図を示す。図2に、同面状センサのII-II断面図を示す。図3に、同面状センサを構成する表側電極の上面図を示す。図4に、図3の円IVの拡大図を示す。なお、説明の便宜上、図1においては、検出部に点線のハッチングを施して示している。
<First embodiment>
[Configuration of surface sensor]
First, the configuration of the planar sensor of this embodiment will be described. In FIG. 1, the permeation | transmission top view of the planar sensor of this embodiment is shown. FIG. 2 shows a II-II cross-sectional view of the same surface sensor. FIG. 3 shows a top view of the front electrode constituting the same surface sensor. FIG. 4 shows an enlarged view of the circle IV in FIG. For convenience of explanation, in FIG. 1, the detection unit is shown with dotted hatching.
 図1、図2に示すように、面状センサ1は、誘電層10と、表側電極2と、裏側電極3と、を備えている。誘電層10は、ウレタンフォーム(ウレタンゴムの発泡体)からなり、厚さ4mmの矩形シート状を呈している。誘電層10は、厚さを除いて表側電極2および裏側電極3と略同じ大きさである。 As shown in FIGS. 1 and 2, the planar sensor 1 includes a dielectric layer 10, a front side electrode 2, and a back side electrode 3. The dielectric layer 10 is made of urethane foam (urethane rubber foam) and has a rectangular sheet shape with a thickness of 4 mm. The dielectric layer 10 is substantially the same size as the front electrode 2 and the back electrode 3 except for the thickness.
 表側電極2は、誘電層10の上面に配置されている。表側電極2は、導電性糸および絶縁性糸が綾織りされてなる矩形状の綾織物である。図3に示すように、表側電極2は、八つの導電性部01X~08Xと、絶縁性部20と、を有している。説明の便宜上、図3においては、導電性部にハッチングを施して示している。導電性部01X~08Xは、各々、幅10mmの帯状を呈している。導電性部01X~08Xは、各々、前後方向に延在している。導電性部01X~08Xは、左右方向に3mmの間隔で離間して互いに平行に配置されている。導電性部01X~08Xの表面抵抗値は、1×10~10Ωである。 The front electrode 2 is disposed on the upper surface of the dielectric layer 10. The front-side electrode 2 is a rectangular twill fabric in which a conductive yarn and an insulating yarn are twilled. As shown in FIG. 3, the front electrode 2 has eight conductive portions 01X to 08X and an insulating portion 20. For convenience of explanation, in FIG. 3, the conductive portions are shown hatched. The conductive portions 01X to 08X each have a strip shape with a width of 10 mm. The conductive portions 01X to 08X each extend in the front-rear direction. The conductive portions 01X to 08X are arranged in parallel to each other with a spacing of 3 mm in the left-right direction. The surface resistance values of the conductive portions 01X to 08X are 1 × 10 2 to 10 3 Ω.
 導電性部01X~08Xを構成する経糸は導電性糸であり、緯糸は絶縁性糸である。導電性糸は、アクリル繊維の表面を硫酸銅めっき処理したものであり、太さは370デシテックス(dtex)である。導電性糸の長さ100mmあたりの電気抵抗値は、1×10~10Ωである。絶縁性糸は、ポリエチレンテレフタレート(PET)繊維からなり、太さは333dtexである。絶縁性糸の長さ100mmあたりの電気抵抗値は、1×1013~1014Ωである。図4に拡大して示すように、導電性部01X~08Xは、経糸(導電性糸)が二本の緯糸(絶縁性糸)の上を通過した後、一本の緯糸(絶縁性糸)の下をくぐる綾織組織を有している。なお、図4においては、絶縁性糸を細線で示すと共に、緯糸の上を通過する経糸にハッチングを施している。そして、経糸のうち導電性糸を右上がりのハッチング、絶縁性糸を右下がりのハッチングで示している。 The warp yarns constituting the conductive portions 01X to 08X are conductive yarns, and the weft yarns are insulating yarns. The conductive yarn is obtained by subjecting the surface of an acrylic fiber to copper sulfate plating, and has a thickness of 370 dtex. The electric resistance value per 100 mm length of the conductive yarn is 1 × 10 4 to 10 5 Ω. The insulating yarn is made of polyethylene terephthalate (PET) fiber and has a thickness of 333 dtex. The electric resistance value per 100 mm length of the insulating yarn is 1 × 10 13 to 10 14 Ω. As shown in an enlarged view in FIG. 4, the conductive portions 01X to 08X have a single weft (insulating yarn) after the warp (conductive yarn) passes over two wefts (insulating yarn). It has a twill structure that passes under In FIG. 4, the insulating yarn is indicated by a thin line, and the warp passing over the weft is hatched. Of the warp yarns, the conductive yarn is indicated by a right-up hatching, and the insulating yarn is indicated by a right-down hatching.
 絶縁性部20は、個々の導電性部01X~08Xの左右方向両側に配置されている。すなわち、導電性部01X~08Xは、各々、幅3mmの絶縁性部20により隔てられて配置されている。絶縁性部20の表面抵抗値は、1×10~1010Ωである。絶縁性部20を構成する経糸および緯糸は、いずれも導電性部01X~08Xを構成する絶縁性糸と同じPET繊維からなる。前出図4に拡大して示すように、絶縁性部20においても導電性部01X~08Xと同様に、経糸(絶縁性糸)が二本の緯糸(絶縁性糸)の上を通過した後、一本の緯糸(絶縁性糸)の下をくぐる綾織組織を有している。 The insulating part 20 is disposed on both sides in the left-right direction of the individual conductive parts 01X to 08X. In other words, the conductive portions 01X to 08X are arranged so as to be separated from each other by the insulating portion 20 having a width of 3 mm. The surface resistance value of the insulating portion 20 is 1 × 10 9 to 10 10 Ω. The warp and weft constituting the insulating portion 20 are both made of the same PET fiber as the insulating yarn constituting the conductive portions 01X to 08X. As shown in FIG. 4 in an enlarged manner, in the insulating portion 20 as well as the conductive portions 01X to 08X, the warp yarn (insulating yarn) passes over the two weft yarns (insulating yarn). , Having a twill structure that passes under one weft (insulating thread).
 導電性部01X~08Xの前端には、各々、金属製のハトメ21が取り付けられている。導電性部01X~08Xは、ハトメ21を介して、表側配線01x~08xに接続されている。表側配線01x~08xは、図示しないコネクタを介して制御装置に電気的に接続されている。 Metal eyelets 21 are attached to the front ends of the conductive portions 01X to 08X, respectively. The conductive portions 01X to 08X are connected to the front-side wirings 01x to 08x via the eyelet 21. The front side wirings 01x to 08x are electrically connected to the control device via a connector (not shown).
 裏側電極3は、誘電層10の下面に配置されている。裏側電極3は、表側電極2と同じ矩形状の綾織物であり、八つの導電性部01Y~08Yと、絶縁性部30と、を有している。裏側電極3は、表側電極2を右回りに90°回転させた状態で配置されている。導電性部01Y~08Yは、各々、幅10mmの帯状を呈している。導電性部01Y~08Yは、各々、左右方向に延在している。導電性部01Y~08Yは、前後方向に3mmの間隔で離間して互いに平行に配置されている。絶縁性部20は、個々の導電性部01Y~08Yの前後方向両側に配置されている。すなわち、導電性部01Y~08Yは、各々、幅3mmの絶縁性部30により隔てられて配置されている。導電性部01Y~08Yおよび絶縁性部30の構成は、表側電極2の導電性部01X~08Xおよび絶縁性部20の構成と同じである。上方から見て、表側電極2の導電性部01X~08Xと裏側電極3の導電性部01Y~08Yとは、略直交して配置されており格子状に並んでいる。導電性部01X~08Xと導電性部01Y~08Yとが重複する部分(誘電層10を介して対向する部分)には、複数の検出部Dが設定されている。検出部Dは、合計64個設定されている。 The back electrode 3 is disposed on the lower surface of the dielectric layer 10. The back side electrode 3 is a twill fabric having the same rectangular shape as that of the front side electrode 2, and has eight conductive portions 01 Y to 08 Y and an insulating portion 30. The back side electrode 3 is arranged in a state in which the front side electrode 2 is rotated 90 ° clockwise. The conductive portions 01Y to 08Y each have a strip shape with a width of 10 mm. The conductive portions 01Y to 08Y each extend in the left-right direction. The conductive portions 01Y to 08Y are arranged in parallel to each other with a spacing of 3 mm in the front-rear direction. The insulating part 20 is disposed on both sides in the front-rear direction of the individual conductive parts 01Y to 08Y. In other words, the conductive portions 01Y to 08Y are each separated by the insulating portion 30 having a width of 3 mm. The configurations of the conductive portions 01Y to 08Y and the insulating portion 30 are the same as the configurations of the conductive portions 01X to 08X and the insulating portion 20 of the front side electrode 2. When viewed from above, the conductive portions 01X to 08X of the front electrode 2 and the conductive portions 01Y to 08Y of the back electrode 3 are arranged substantially orthogonally and are arranged in a lattice pattern. A plurality of detection units D are set in a portion where the conductive portions 01X to 08X and the conductive portions 01Y to 08Y overlap (a portion facing through the dielectric layer 10). A total of 64 detectors D are set.
 導電性部01Y~08Yの左端には、各々、金属製のハトメ31が取り付けられている。導電性部01Y~08Yは、ハトメ31を介して、裏側配線01y~08yに接続されている。裏側配線01y~08yは、図示しないコネクタを介して制御装置に電気的に接続されている。 A metal eyelet 31 is attached to the left end of each of the conductive portions 01Y to 08Y. The conductive portions 01Y to 08Y are connected to the back side wirings 01y to 08y through the eyelet 31. The back side wirings 01y to 08y are electrically connected to the control device via a connector (not shown).
 [面状センサの動き]
 次に、本実施形態の面状センサ1の動きについて説明する。まず、面状センサ1に荷重が加わる前(初期状態)に、表側電極2の導電性部01X~08Xおよび裏側電極3の導電性部01Y~08Yに電圧を印加して、検出部Dごとに静電容量Cを算出する。続いて、面状センサ1に荷重が加わった後も同様に、検出部Dごとに静電容量Cを算出する。荷重が加わった部分の検出部Dにおいては、誘電層10を挟んで配置されている導電性部01X~08Xと導電性部01Y~08Yとの距離が小さくなる。これにより、当該検出部Dの静電容量Cは大きくなる。この静電容量Cの変化量ΔCに基づいて、検出部Dごとの面圧が算出される。このようにして、荷重分布を測定することができる。
[Motion of planar sensor]
Next, the movement of the planar sensor 1 of the present embodiment will be described. First, voltage is applied to the conductive portions 01X to 08X of the front-side electrode 2 and the conductive portions 01Y to 08Y of the back-side electrode 3 before a load is applied to the planar sensor 1 (initial state). The capacitance C is calculated. Subsequently, after the load is applied to the planar sensor 1, the electrostatic capacitance C is calculated for each detection unit D in the same manner. In the detection portion D at the portion where the load is applied, the distance between the conductive portions 01X to 08X and the conductive portions 01Y to 08Y arranged with the dielectric layer 10 interposed therebetween is small. Thereby, the electrostatic capacitance C of the said detection part D becomes large. Based on the change amount ΔC of the capacitance C, the surface pressure for each detection unit D is calculated. In this way, the load distribution can be measured.
 [作用効果]
 次に、本実施形態の表側電極2、裏側電極3、および面状センサ1の作用効果について説明する。なお、表側電極2と裏側電極3とは同じ構成を有するため、ここでは両者を代表して表側電極2について述べる。
[Function and effect]
Next, the function and effect of the front side electrode 2, the back side electrode 3, and the planar sensor 1 of this embodiment will be described. In addition, since the front side electrode 2 and the back side electrode 3 have the same structure, here, the front side electrode 2 is described on behalf of both.
 表側電極2は、導電性糸と絶縁性糸とを綾織りした綾織物からなる。このため、しなやかで柔軟性が高い。また、導電性の低下や破断が生じにくく耐久性も高い。さらに、導電性糸として硫酸銅めっき層を有する糸を使用しているため、導電性糸の酸化劣化が抑制され導電性の経時変化が小さい。表側電極2においては、経糸を導電性糸にし、緯糸を絶縁性糸にしている。このため、経糸を導電性糸から絶縁性糸(またはその反対)に変更するだけで、導電性部01X~08Xと絶縁性部20とを織り分けることができる。したがって、表側電極2が大面積になる場合でも、織機を用いて容易に製造することができる。また、糸の種類を変更するだけで、導電性部を様々な形態で配置することができる。すなわち、種々の導電パターンを容易に形成することができる。 The front-side electrode 2 is made of a twill fabric in which a conductive yarn and an insulating yarn are twilled. For this reason, it is flexible and highly flexible. In addition, the conductivity is not easily lowered or broken, and the durability is high. Furthermore, since the thread | yarn which has a copper sulfate plating layer is used as an electroconductive thread | yarn, the oxidative degradation of an electroconductive thread | yarn is suppressed and the time-dependent change of electroconductivity is small. In the front-side electrode 2, the warp yarn is a conductive yarn and the weft yarn is an insulating yarn. Therefore, the conductive portions 01X to 08X and the insulating portion 20 can be woven by simply changing the warp from the conductive yarn to the insulating yarn (or vice versa). Therefore, even when the front electrode 2 has a large area, it can be easily manufactured using a loom. In addition, the conductive portion can be arranged in various forms simply by changing the type of yarn. That is, various conductive patterns can be easily formed.
 表側電極2によると、導電塗料を使用することに起因する、導電材の形状や分散方法、導電塗料の塗工時における問題などを考慮する必要はない。よって、表側電極2、ひいては面状センサ1を、より低コストで製造することができる。 According to the front-side electrode 2, there is no need to consider the shape of the conductive material, the dispersion method, problems during application of the conductive paint, and the like due to the use of the conductive paint. Therefore, the front side electrode 2 and by extension, the planar sensor 1 can be manufactured at a lower cost.
 表側電極2は、通気性、透湿性に優れる。このため、面状センサ1をベッドのマットレスや車などのシートなどに配置しても蒸れにくい。また、誘電層10の加水分解が抑制されるため、耐久性が低下しにくい。 The front electrode 2 is excellent in air permeability and moisture permeability. For this reason, even if it arrange | positions the planar sensor 1 to seats, such as a mattress of a bed or a car, it is hard to be steamed. Further, since the hydrolysis of the dielectric layer 10 is suppressed, the durability is not easily lowered.
 導電性部01X~08Xは、各々、絶縁性部20を挟んで隣接している。これにより、表側電極2には、縦縞模様の導電パターンが形成されている。表側電極2においては、全体が導電性を有しているのではなく、導電性部01X~08Xが配置されている領域のみが導電性を有している。帯状の導線性部01X~08Xは、誘電層10の全面に亘って、絶縁性部20を挟んで並列配置されている。同様に、裏側電極3においても、帯状の導線性部01Y~08Yは、誘電層10の全面に亘って、絶縁性部30を挟んで並列配置されている。そして、検出部Dは、表側電極01X~08Xと裏側電極01Y~08Yとの交差部分を利用して配置されている。こうすることにより、検出部Dを、誘電層10の全面に分散させやすい。また、広い領域における荷重分布を測定する場合でも、荷重を検出したい部位ごとに導電性部を配置する必要はない。 The conductive portions 01X to 08X are adjacent to each other with the insulating portion 20 interposed therebetween. Thereby, a conductive pattern having a vertical stripe pattern is formed on the front electrode 2. In the front side electrode 2, the whole is not conductive, but only the region where the conductive portions 01X to 08X are disposed has conductivity. The strip-shaped conductive portions 01X to 08X are arranged in parallel across the entire surface of the dielectric layer 10 with the insulating portion 20 interposed therebetween. Similarly, in the back electrode 3, the strip-like conductive parts 01Y to 08Y are arranged in parallel across the entire surface of the dielectric layer 10 with the insulating part 30 interposed therebetween. The detection unit D is arranged using the intersections of the front-side electrodes 01X to 08X and the back-side electrodes 01Y to 08Y. By doing so, the detection part D can be easily dispersed on the entire surface of the dielectric layer 10. Further, even when measuring the load distribution in a wide area, it is not necessary to dispose the conductive portion for each site where it is desired to detect the load.
 面状センサ1においては、表側電極2の導電性部01X~08Xと表側配線01x~08xとを、ハトメ21を用いて接続した。これにより、導電性部01X~08Xと表側配線01x~08xとの接続を、容易、確実、かつ低コストに行うことができる。 In the planar sensor 1, the conductive portions 01X to 08X of the front electrode 2 and the front wirings 01x to 08x were connected using the eyelet 21. As a result, the connection between the conductive portions 01X to 08X and the front-side wirings 01x to 08x can be performed easily, reliably, and at low cost.
 <第二実施形態>
 本実施形態の面状センサと、第一実施形態の面状センサとの相違点は、表側電極および裏側電極が織物ではなく編物からなる点である。ここでは、相違点を中心に説明する。図5に、本実施形態の面状センサを構成する裏側電極の上面図を示す。図6に、図5の円VIの拡大図を示す。なお、図5は、前出の図1と対応しており、図1と同じ部位については同じ符号で示す。図6においては、絶縁性糸を細い点線で示す。
<Second embodiment>
The difference between the planar sensor of the present embodiment and the planar sensor of the first embodiment is that the front side electrode and the back side electrode are not woven but knitted. Here, the difference will be mainly described. In FIG. 5, the top view of the back side electrode which comprises the planar sensor of this embodiment is shown. FIG. 6 shows an enlarged view of the circle VI in FIG. 5 corresponds to FIG. 1 described above, and the same parts as those in FIG. 1 are denoted by the same reference numerals. In FIG. 6, the insulating yarn is indicated by a thin dotted line.
 裏側電極3は、誘電層10の下面に配置されている(図1参照)。裏側電極3は、導電性糸301と絶縁性糸300とが前後方向に交互に平編みされてなる矩形状の平編物である。図5に示すように、裏側電極3は、八つの導電性部01Y~08Yと、絶縁性部30と、を有している。説明の便宜上、図5においては、導電性部にハッチングを施して示している。導電性部01Y~08Yは、各々、幅10mmの帯状を呈している。導電性部01Y~08Yは、各々、左右方向に延在している。導電性部01Y~08Yは、前後方向に3mmの間隔で離間して互いに平行に配置されている。導電性部01Y~08Yの表面抵抗値は、1×10~10Ωである。絶縁性部30は、個々の導電性部01Y~08Yの前後方向両側に配置されている。すなわち、導電性部01Y~08Yは、各々、幅3mmの絶縁性部30により隔てられて配置されている。絶縁性部30の表面抵抗値は、1×10~1010Ωである。 The back side electrode 3 is disposed on the lower surface of the dielectric layer 10 (see FIG. 1). The back-side electrode 3 is a rectangular flat knitted fabric in which conductive yarns 301 and insulating yarns 300 are alternately flat-knitted in the front-rear direction. As shown in FIG. 5, the back-side electrode 3 has eight conductive portions 01Y to 08Y and an insulating portion 30. For convenience of explanation, in FIG. 5, the conductive portions are hatched. The conductive portions 01Y to 08Y each have a strip shape with a width of 10 mm. The conductive portions 01Y to 08Y each extend in the left-right direction. The conductive portions 01Y to 08Y are arranged in parallel to each other with a spacing of 3 mm in the front-rear direction. The surface resistance values of the conductive portions 01Y to 08Y are 1 × 10 2 to 10 3 Ω. The insulating part 30 is arranged on both sides in the front-rear direction of the individual conductive parts 01Y to 08Y. In other words, the conductive portions 01Y to 08Y are each separated by the insulating portion 30 having a width of 3 mm. The surface resistance value of the insulating portion 30 is 1 × 10 9 to 10 10 Ω.
 図6に拡大して示すように、導電性部01Y~08Yは、導電性糸301による平編み組織を有している。導電性糸301は、第一実施形態と同じ、アクリル繊維の裏面を硫酸銅めっき処理したものであり、太さは370dtexである。導電性糸301の長さ100mmあたりの電気抵抗値は、1×10~10Ωである。絶縁性部30は、絶縁性糸300による平編み組織を有している。絶縁性糸300は、第一実施形態と同じ、PET繊維からなり、太さは333dtexである。絶縁性糸300の長さ100mmあたりの電気抵抗値は、1×1013~1014Ωである。 As shown in FIG. 6 in an enlarged manner, the conductive portions 01Y to 08Y have a flat knitting structure with the conductive yarn 301. As in the first embodiment, the conductive yarn 301 is obtained by performing copper sulfate plating on the back surface of the acrylic fiber and has a thickness of 370 dtex. The electric resistance value per 100 mm length of the conductive yarn 301 is 1 × 10 4 to 10 5 Ω. The insulating portion 30 has a flat knitting structure with the insulating yarn 300. The insulating yarn 300 is made of PET fiber as in the first embodiment, and has a thickness of 333 dtex. The electric resistance value per 100 mm length of the insulating yarn 300 is 1 × 10 13 to 10 14 Ω.
 表側電極2は、裏側電極3と同じ矩形状の平編物であり、裏側電極3を左回りに90°回転させた状態で誘電層10の上面に配置されている。表側電極2の導電性部01X~08Xおよび絶縁性部20の構成は、裏側電極3のそれと同じである。 The front side electrode 2 is the same rectangular flat knitted fabric as the back side electrode 3, and is arranged on the upper surface of the dielectric layer 10 with the back side electrode 3 rotated 90 ° counterclockwise. The configurations of the conductive portions 01X to 08X and the insulating portion 20 of the front side electrode 2 are the same as those of the back side electrode 3.
 本実施形態の面状センサは、第一実施形態の面状センサと構成が共通する部分に関しては、同様の作用効果を有する。本実施形態によると、表側電極2および裏側電極3が平編物からなる。このため、表側電極2および裏側電極3は、より柔軟で伸縮性に優れる。表側電極2と裏側電極3とは同じ構成を有するため、両者を代表して裏側電極3について述べると、編み糸を導電性糸301から絶縁性糸300(またはその反対)に変更するだけで、導電性部01Y~08Yと絶縁性部30とを編み分けることができる。したがって、裏側電極3が大面積になる場合でも、編み機を用いて容易に製造することができる。また、糸の種類を変更するだけで、導電性部01Y~08Yを様々な形態で配置することができるため、種々の導電パターンを容易に形成することができる。 The planar sensor of the present embodiment has the same function and effect with respect to parts having the same configuration as the planar sensor of the first embodiment. According to this embodiment, the front side electrode 2 and the back side electrode 3 consist of a flat knitted fabric. For this reason, the front side electrode 2 and the back side electrode 3 are more flexible and excellent in elasticity. Since the front-side electrode 2 and the back-side electrode 3 have the same configuration, when the back-side electrode 3 is described on behalf of both, only changing the knitting yarn from the conductive yarn 301 to the insulating yarn 300 (or vice versa) The conductive portions 01Y to 08Y and the insulating portion 30 can be knitted separately. Therefore, even when the back side electrode 3 has a large area, it can be easily manufactured using a knitting machine. Further, since the conductive portions 01Y to 08Y can be arranged in various forms only by changing the type of yarn, various conductive patterns can be easily formed.
 <その他の形態>
 以上、本発明のセンサ用電極および面状センサの実施の形態について説明した。しかしながら、実施の形態は上記形態に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
<Other forms>
The embodiments of the sensor electrode and the planar sensor of the present invention have been described above. However, the embodiment is not limited to the above embodiment. Various modifications and improvements that can be made by those skilled in the art are also possible.
 [センサ用電極]
 本発明のセンサ用電極は、導電性糸および絶縁性糸を用いた織物または編物からなる布状の電極である。織物の場合、織り方は特に限定されない。平織り、綾織り、朱子織りなどから、所望の特性が得られる織り方を適宜選択すればよい。例えば、平織りの場合は、丈夫で耐久性に優れるが、柔軟性が若干低下する。綾織りの場合は、組織の選択肢が多く、しなやかで柔軟性が高くなる。編物の場合も、編み方は特に限定されない。平編み、ゴム編み、パール編み、接結編みなどの緯編み、あるいはトリコット、ダブルラッセル編みなどの経編みから、所望の特性が得られる編み方を適宜選択すればよい。例えば、平編みは、ループが緯(よこ)方向に連続する組織を有する。このため、薄くしやすく、緯方向の伸縮性に優れる。ゴム編みは、表裏が同じ編み目になるため、より伸縮性に優れる。接結編みは、表裏二つの編み地を結接糸で連結した構造を有する。よって、例えば表裏の少なくとも一方に、電極の保護機能を有する編み地を採用すると、外部から電極を保護することができる。ダブルラッセル編みは、ループが経(たて)方向に連続する組織を有する。このため、安定した編み地になり立体的な構造にすることができる。立体的な構造の場合、通気性が増加し布の弾力性が高まるため、導電性糸を保護することができる。編物によると、織物と比較してより柔軟性が高くなる。織物でも編物でも、一枚の電極の中で織り方または編み方を変えてもよい。
[Sensor electrode]
The sensor electrode of the present invention is a cloth-like electrode made of a woven fabric or a knitted fabric using a conductive yarn and an insulating yarn. In the case of a woven fabric, the weaving method is not particularly limited. What is necessary is just to select suitably the weaving method from which a desired characteristic is acquired from a plain weave, a twill weave, a satin weave, etc. For example, in the case of plain weave, it is strong and excellent in durability, but the flexibility is slightly lowered. In the case of twill weave, there are many options for organization, and it is flexible and flexible. In the case of a knitted fabric, the knitting method is not particularly limited. A weaving method such as flat knitting, rubber knitting, pearl knitting, and knit knitting, or warp knitting such as tricot or double raschel knitting may be appropriately selected. For example, flat knitting has a structure in which loops are continuous in the weft direction. For this reason, it is easy to make it thin and excellent in the stretchability in the weft direction. Rubber knitting is more stretchable because the front and back are the same stitches. The binding knitting has a structure in which two front and back knitted fabrics are connected by a binding yarn. Therefore, for example, when a knitted fabric having an electrode protection function is employed on at least one of the front and back surfaces, the electrode can be protected from the outside. Double raschel knitting has a structure in which loops are continuous in the warp direction. For this reason, it becomes a stable knitted fabric and can be made into a three-dimensional structure. In the case of a three-dimensional structure, the air permeability increases and the elasticity of the fabric increases, so that the conductive yarn can be protected. The knitted fabric is more flexible than the woven fabric. Whether it is woven or knitted, the weaving or knitting method may be changed in one electrode.
 導電性糸は、導電性を有する糸であればよく、その素材としては、A)金属繊維、B)炭素繊維、C)合成繊維にめっき処理、コーティング処理、スパッタリング処理などを施して導電性を付与した繊維、D)合成繊維の中に導電材を練り込んだ繊維、E)導電性ポリマー繊維などが挙げられる。以下、各繊維の具体例、好適な材料などを列挙する。
A)金属繊維:金、銀、銅、ステンレス鋼、タングステン、モリブデン、ベリリウムなどの繊維、アモルファスワイヤ。
B)炭素繊維:ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維。
C)めっき材料:アルミニウム、銅、銀、金、パラジウム、硫酸銅、硫化銅、銅ニッケル。
コーティング材料:カーボンナノチューブや導電性カーボンブラックなどが分散したカーボン塗料、金属酸化物塗料、導電性ポリマー塗料。
スパッタリング材料:クロム、銅、チタン、銀、白金、金、ステンレス鋼、ニッケル-クロム合金、銅-亜鉛合金。
D)導電材:導電性カーボンブラック、カーボンナノチューブ、金属粉末。
C)およびD)に用いられる合成繊維:PET、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル繊維、ナイロン、アラミドなどのポリアミド繊維、ポリイミド繊維、ポリエチレン、ポリプロピレンなどのポリオレフィン繊維、ビニロン繊維、ビニリデン繊維、ポリ塩化ビニル繊維、アクリル繊維、ポリウレタン繊維、ポリクラール繊維、フッ素繊維、ノボロイド繊維、ポリエーテルエステル繊維、ポリ乳酸繊維、ポリアリレート繊維、超高強力ポリエチレン繊維、ポリアセタール繊維。
The conductive yarn may be any conductive yarn, and the material thereof is A) metal fiber, B) carbon fiber, C) synthetic fiber is subjected to plating treatment, coating treatment, sputtering treatment, etc. to make it conductive. Examples thereof include fibers provided, D) fibers obtained by kneading a conductive material in synthetic fibers, and E) conductive polymer fibers. Hereinafter, specific examples of each fiber, suitable materials, and the like are listed.
A) Metal fibers: fibers such as gold, silver, copper, stainless steel, tungsten, molybdenum, beryllium, and amorphous wires.
B) Carbon fiber: Polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber.
C) Plating material: aluminum, copper, silver, gold, palladium, copper sulfate, copper sulfide, copper nickel.
Coating material: Carbon paint, metal oxide paint, conductive polymer paint in which carbon nanotubes or conductive carbon black are dispersed.
Sputtering materials: chromium, copper, titanium, silver, platinum, gold, stainless steel, nickel-chromium alloy, copper-zinc alloy.
D) Conductive material: conductive carbon black, carbon nanotube, metal powder.
Synthetic fibers used in C) and D): polyester fibers such as PET, polytrimethylene terephthalate and polybutylene terephthalate, polyamide fibers such as nylon and aramid, polyimide fibers, polyolefin fibers such as polyethylene and polypropylene, vinylon fibers and vinylidene fibers , Polyvinyl chloride fiber, acrylic fiber, polyurethane fiber, polyclar fiber, fluorine fiber, novoloid fiber, polyetherester fiber, polylactic acid fiber, polyarylate fiber, ultra high strength polyethylene fiber, polyacetal fiber.
 例えば、合成繊維にめっき処理を施すと、導電性を有する糸を容易に製造することができる。なかでも、硫酸銅めっき層または硫化銅めっき層を有する糸は、金属繊維、炭素繊維と比較して柔らかく折れにくい、めっき層により酸化劣化が抑制され導電性の経時変化が小さい、という利点を有する。 For example, when a synthetic fiber is plated, a conductive thread can be easily manufactured. Among these, yarns having a copper sulfate plating layer or a copper sulfide plating layer have the advantages that they are softer and less likely to break than metal fibers and carbon fibers, and the plating layer suppresses oxidative degradation and has little change over time in conductivity. .
 導電性糸は、長さ100mmあたりの電気抵抗値が1×1010Ω未満であれば、上記繊維からなる導電性を有する糸と絶縁性を有する糸とを混糸したものでもよい。また、導電性を有する糸を樹脂コーティングしたものでもよい。導電性糸は、一種類でも二種類以上の併用でも構わない。 As long as the electrical resistance value per 100 mm in length is less than 1 × 10 10 Ω, the conductive yarn may be a mixture of the conductive yarn made of the fiber and the insulating yarn. Alternatively, a conductive yarn coated with resin may be used. The conductive yarn may be one type or a combination of two or more types.
 絶縁性糸は、絶縁性を有する糸であればよく、その素材としては、a)合成繊維、b)半合成繊維、c)再生セルロース繊維、d)天然繊維、e)無機繊維などが挙げられる。以下、各繊維の具体例を列挙する。なお、a)の合成繊維は、導電性糸の説明において列挙したとおりである。絶縁性糸は、一種類でも二種類以上の併用でも構わない。
b)半合成繊維:アセテート、トリアセテート、プロミックス。
c)再生セルロース繊維:レーヨン、ボリノジック。
d)天然繊維:綿、カボック、アクンド、麻、ケナフなどの植物繊維、羊毛、絹、アンゴラ、カシミヤ、モヘアなどの動物繊維。
e)無機繊維:グラスファイバー、セラミック繊維。
The insulating yarn may be an insulating yarn, and examples of the material include a) synthetic fiber, b) semi-synthetic fiber, c) regenerated cellulose fiber, d) natural fiber, e) inorganic fiber, and the like. . Specific examples of each fiber are listed below. In addition, the synthetic fiber of a) is as having enumerated in description of an electroconductive thread | yarn. The insulating yarn may be one type or a combination of two or more types.
b) Semi-synthetic fiber: acetate, triacetate, promix.
c) Regenerated cellulose fiber: rayon, vorinosic.
d) Natural fibers: plant fibers such as cotton, kabok, acund, hemp, kenaf, and animal fibers such as wool, silk, angora, cashmere, and mohair.
e) Inorganic fiber: glass fiber, ceramic fiber.
 導電性糸および絶縁性糸の太さは、特に限定されない。糸が細い方が電極の厚さを薄くすることができ、センサの感度を向上させることができるが、切断しやすくなるという問題がある。例えば、糸の太さを、55.5dtex(50デニール)以上1332dtex(1200デニール)以下にするとよい。165dtex(150デニール)以上660dtex(600デニール)以下にするとより好適である。導電性糸として炭素繊維を用いる場合には、1K(1束あたり1000本のフィラメント)以上60K(1束あたり60,000本のフィラメント)以下、より好適には1K以上6K以下の製品を用いることが望ましい。 The thickness of the conductive yarn and the insulating yarn is not particularly limited. The thinner the thread, the thinner the electrode can be, and the sensitivity of the sensor can be improved, but there is a problem that it becomes easier to cut. For example, the thickness of the yarn may be 55.5 dtex (50 denier) or more and 1332 dtex (1200 denier) or less. It is more preferable to set it to 165 dtex (150 denier) or more and 660 dtex (600 denier) or less. When using carbon fiber as the conductive yarn, use a product of 1K (1000 filaments per bundle) or more and 60K (60,000 filaments per bundle) or less, more preferably 1K or more and 6K or less. Is desirable.
 導電性糸および絶縁性糸の断面形状は、特に限定されず、円形、楕円形、矩形状、台形状、三角形状など、種々の形状を採用することができる。また、導電性糸および絶縁性糸は、中空糸であってもよい。導電性糸および絶縁性糸は、単繊維からなるものでも、混紡糸、撚り糸でもよい。撚り糸の場合、糸の強度が高いため、織物にする際に切れにくいという利点がある。また、織物にする際に、糸に洗濯糊などを塗布してもよい。こうすることにより、摩擦が低減し、糸の切断を抑制することができる。 The cross-sectional shapes of the conductive yarn and the insulating yarn are not particularly limited, and various shapes such as a circle, an ellipse, a rectangle, a trapezoid, and a triangle can be adopted. The conductive yarn and the insulating yarn may be hollow fibers. The conductive yarn and the insulating yarn may be made of a single fiber, a blended yarn or a twisted yarn. In the case of a twisted yarn, since the strength of the yarn is high, there is an advantage that it is difficult to cut when making a woven fabric. Further, when making a woven fabric, a laundry paste or the like may be applied to the yarn. By doing so, friction can be reduced and cutting of the yarn can be suppressed.
 本発明のセンサ用電極は、導電性部と絶縁性部とを有する。導電性部の表面抵抗値は1×10Ω未満、より好適には1×10Ω未満である。導電性部は、上述した導電性糸を含んで形成される。すなわち、導電性部は、導電性糸のみから形成してもよく、導電性糸と絶縁性糸の両方を用いて形成してもよい。例えばセンサ用電極が織物である場合、経糸および緯糸の一方を導電性糸にし、他方を絶縁性糸にして、導電性部を形成することができる。導電性部の数、形状は特に限定されない。導電性部の配置形態も、導電性部の一部または全部が絶縁性部を介して配置されれば、特に限定されない。例えば、センサを構成した際、検出部になる部分にのみ、導電性部を島状に配置してもよい。あるいは、図7に導電性部22として示すように、第一実施形態において並列配置された帯状の導電性部同士を、長手方向の端部で連結し、一筆書き状に連続させてもよい。図7において、導電性部22の一部は、絶縁性部20を挟んで配置されている。本発明のセンサ用電極は、織物または編物であるため、糸の種類を変更するだけで導電性部を様々な形態で配置することができる。換言すると、本発明のセンサ用電極によると、種々の導電パターンの形成が容易である。 The sensor electrode of the present invention has a conductive portion and an insulating portion. The surface resistance value of the conductive portion is less than 1 × 10 7 Ω, more preferably less than 1 × 10 6 Ω. The conductive portion is formed including the conductive yarn described above. That is, the conductive portion may be formed only from the conductive yarn, or may be formed using both the conductive yarn and the insulating yarn. For example, when the sensor electrode is a woven fabric, one of the warp and the weft can be a conductive yarn, and the other can be an insulating yarn to form the conductive portion. The number and shape of the conductive portions are not particularly limited. The arrangement form of the conductive part is not particularly limited as long as part or all of the conductive part is arranged via the insulating part. For example, when the sensor is configured, the conductive portion may be arranged in an island shape only in the portion that becomes the detection portion. Or as shown as the electroconductive part 22 in FIG. 7, the strip | belt-shaped electroconductive parts arrange | positioned in parallel in 1st embodiment may be connected by the edge part of a longitudinal direction, and you may make it continue in one stroke. In FIG. 7, a part of the conductive portion 22 is disposed with the insulating portion 20 interposed therebetween. Since the sensor electrode of the present invention is a woven fabric or a knitted fabric, the conductive portion can be arranged in various forms only by changing the type of the yarn. In other words, according to the sensor electrode of the present invention, it is easy to form various conductive patterns.
 絶縁性部の表面抵抗値は1×10Ω以上、より好適には1×10Ω以上である。絶縁性部は、上述した絶縁性糸を含んで形成される。絶縁性部の数、形状、配置形態は特に限定されない。 The surface resistance value of the insulating portion is 1 × 10 7 Ω or more, more preferably 1 × 10 8 Ω or more. The insulating portion is formed including the above-described insulating yarn. The number, shape, and arrangement form of the insulating portions are not particularly limited.
 [面状センサ]
 本発明の面状センサは、誘電層と、該誘電層を厚さ方向に挟んで配置され、本発明のセンサ用電極からなる表側電極および裏側電極と、を備える。誘電層には、比誘電率が比較的大きいエラストマーまたは樹脂(いずれも発泡体を含む)を用いればよい。エラストマーには、架橋ゴムおよび熱可塑性エラストマーが含まれる。例えば、比誘電率が5以上(測定周波数100Hz)のものが好適である。このようなエラストマーとしては、ウレタンゴム、シリコーンゴム、ニトリルゴム、水素化ニトリルゴム、アクリルゴム、天然ゴム、イソプレンゴム、エチレン-プロピレン共重合ゴム、ブチルゴム、スチレン-ブタジエンゴム、フッ素ゴム、エピクロルヒドリンゴム、クロロプレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレンなどが挙げられる。樹脂としては、ポリエチレン、ポリプロピレン、ポリウレタン、ポリスチレン(架橋発泡ポリスチレンを含む)、ポリ塩化ビニル、塩化ビニリデン共重合体、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-アクリル酸エステル共重合体などが挙げられる。
[Surface sensor]
The planar sensor of the present invention includes a dielectric layer, and a front-side electrode and a back-side electrode that are arranged with the dielectric layer sandwiched in the thickness direction and are formed of the sensor electrode of the present invention. For the dielectric layer, an elastomer or a resin (both including a foam) having a relatively high relative dielectric constant may be used. Elastomers include cross-linked rubbers and thermoplastic elastomers. For example, those having a relative dielectric constant of 5 or more (measurement frequency 100 Hz) are suitable. Such elastomers include urethane rubber, silicone rubber, nitrile rubber, hydrogenated nitrile rubber, acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene copolymer rubber, butyl rubber, styrene-butadiene rubber, fluorine rubber, epichlorohydrin rubber, Examples include chloroprene rubber, chlorinated polyethylene, and chlorosulfonated polyethylene. Examples of the resin include polyethylene, polypropylene, polyurethane, polystyrene (including cross-linked foamed polystyrene), polyvinyl chloride, vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-acrylic ester copolymer, and the like. Can be mentioned.
 誘電層の形状などは特に限定されないが、センサの感度を向上させるという観点から、誘電層は薄い方が望ましい。例えば、誘電層の厚さを10mm以下、さらには5mm以下にすることが望ましい。また、材質、形状などが異なる複数の層を積層して誘電層を構成してもよい。 The shape of the dielectric layer is not particularly limited, but it is desirable that the dielectric layer is thinner from the viewpoint of improving the sensitivity of the sensor. For example, the thickness of the dielectric layer is desirably 10 mm or less, and more desirably 5 mm or less. Further, a dielectric layer may be configured by laminating a plurality of layers having different materials and shapes.
 本発明のセンサ用電極を用いた面状センサとしては、上記実施形態の静電容量型センサの他に、圧電センサも挙げられる。圧電センサの場合にも、圧電層と、該圧電層を厚さ方向に挟んで配置され、本発明のセンサ用電極からなる表側電極および裏側電極と、を備える構成にすればよい。圧電層は、エラストマーおよび圧電粒子を含んで構成するとよい。 Examples of the planar sensor using the sensor electrode of the present invention include a piezoelectric sensor in addition to the capacitive sensor of the above embodiment. Also in the case of a piezoelectric sensor, a configuration including a piezoelectric layer, and a front side electrode and a back side electrode that are arranged with the piezoelectric layer sandwiched in the thickness direction and are formed of the sensor electrode of the present invention may be used. The piezoelectric layer may include an elastomer and piezoelectric particles.
 上記実施形態においては、導電性部と配線とをハトメを用いて接続した。しかし、導電性部と配線との接続形態は、特に限定されない。例えば、はんだ付け、導電性接着剤などにより接続してもよい。また、導電性部の一部を配線の一部として用いてもよい。 In the above embodiment, the conductive portion and the wiring are connected using eyelets. However, the connection form between the conductive portion and the wiring is not particularly limited. For example, you may connect by soldering, a conductive adhesive, etc. Moreover, you may use a part of electroconductive part as a part of wiring.
 本発明の面状センサは、上記第一実施形態のまま使用してもよいが、外装カバーに収容して使用してもよい。外装カバーに収容すると、面状センサが人の体に接触した時の違和感を低減することができる他、安全性、防汚性、意匠性が向上する。外装カバーの材質としては、塩化ビニル、熱可塑性ポリウレタン(TPU)などの樹脂およびエラストマー、ポリウレタンやポリエステルなどの弾性繊維を用いた伸縮布、エラストマーと伸縮布との積層体などが好適である。本発明のセンサ用電極と外装カバーとは、直接貼り合わせてもよいが、外装カバーが絶縁性の布である場合には、ダブルフェイス織りにより、センサ用電極と外装カバーとを一体的に織り上げてもよい。 The planar sensor of the present invention may be used as it is in the first embodiment, but may be used by being housed in an exterior cover. When housed in the exterior cover, it is possible to reduce a sense of incongruity when the planar sensor contacts the human body, and safety, antifouling properties, and design are improved. Suitable materials for the exterior cover include resins and elastomers such as vinyl chloride and thermoplastic polyurethane (TPU), elastic fabrics using elastic fibers such as polyurethane and polyester, and laminates of elastomers and elastic fabrics. The sensor electrode and the outer cover of the present invention may be directly bonded together. However, when the outer cover is an insulating cloth, the sensor electrode and the outer cover are integrally woven by double face weaving. May be.
 本発明のセンサ用電極および面状センサは、伸びたり曲がったりする部位に適用することができるため、医療用、介護用などのマットレス、車や車椅子のシート、靴底、ロボットの人工皮膚などに配置される圧力センサ、あるいはウエアラブルな生体情報センサなどに好適である。また、腕や足にセンサを立体的に巻き付けて動きをセンシングする用途にも好適である。 Since the sensor electrode and the surface sensor of the present invention can be applied to a stretched or bent part, it can be applied to mattresses for medical use, nursing care, etc., car or wheelchair seats, shoe soles, artificial skin of robots, etc. It is suitable for a pressure sensor to be arranged or a wearable biological information sensor. Moreover, it is suitable also for the use of sensing a motion by three-dimensionally winding a sensor around an arm or a leg.
1:面状センサ、10:誘電層、2:表側電極、20:絶縁性部、21:ハトメ、22:導電性部、3:裏側電極、30:絶縁性部、31:ハトメ、300:絶縁性糸、301:導電性糸、01X~08X:導電性部、01x~08x:表側配線、01Y~08Y:導電性部、01y~08y:裏側配線、D:検出部。 1: Planar sensor, 10: Dielectric layer, 2: Front side electrode, 20: Insulating part, 21: Eyelet, 22: Conductive part, 3: Back side electrode, 30: Insulating part, 31: Eyelet, 300: Insulation 301: conductive yarn, 01X to 08X: conductive portion, 01x to 08x: front side wiring, 01Y to 08Y: conductive portion, 01y to 08y: back side wiring, D: detection portion.

Claims (11)

  1.  導電性糸および絶縁性糸を用いた織物または編物からなる布状のセンサ用電極であって、
     該絶縁性糸を含んで形成される絶縁性部と、
     該導電性糸を含んで形成され該絶縁性部を挟んで配置される導電性部と、
    を有することを特徴とするセンサ用電極。
    A cloth-like sensor electrode comprising a woven fabric or a knitted fabric using a conductive yarn and an insulating yarn,
    An insulating portion formed including the insulating yarn;
    A conductive portion formed including the conductive yarn and disposed across the insulating portion;
    A sensor electrode characterized by comprising:
  2.  前記織物は、平織り、綾織り、朱子織りから選ばれる少なくとも一つの組織を有する請求項1に記載のセンサ用電極。 The sensor electrode according to claim 1, wherein the fabric has at least one structure selected from a plain weave, a twill weave, and a satin weave.
  3.  前記織物は、平織物、綾織物または朱子織物である請求項1に記載のセンサ用電極。 The sensor electrode according to claim 1, wherein the woven fabric is a plain woven fabric, a twill woven fabric, or a satin woven fabric.
  4.  前記織物からなり、
     前記導電性部における経糸および緯糸の一方は前記導電性糸であり、他方は前記絶縁性糸である請求項1ないし請求項3のいずれかに記載のセンサ用電極。
    Made of the fabric,
    4. The sensor electrode according to claim 1, wherein one of the warp and the weft in the conductive portion is the conductive yarn, and the other is the insulating yarn. 5.
  5.  前記編物は、平編み、ゴム編み、接結編み、ダブルラッセル編みから選ばれる少なくとも一つの組織を有する請求項1に記載のセンサ用電極。 2. The sensor electrode according to claim 1, wherein the knitted fabric has at least one structure selected from flat knitting, rubber knitting, binding knitting, and double raschel knitting.
  6.  前記編物は、平編物、ゴム編物、接結編物、またはダブルラッセル編物である請求項1に記載のセンサ用電極。 2. The sensor electrode according to claim 1, wherein the knitted fabric is a flat knitted fabric, a rubber knitted fabric, a bound knitted fabric, or a double raschel knitted fabric.
  7.  前記導電性糸は、表面にめっき層を有する糸を含む請求項1ないし請求項6のいずれかに記載のセンサ用電極。 The sensor electrode according to any one of claims 1 to 6, wherein the conductive yarn includes a yarn having a plating layer on a surface thereof.
  8.  前記めっき層は、硫酸銅めっき層または硫化銅めっき層である請求項7に記載のセンサ用電極。 The sensor electrode according to claim 7, wherein the plating layer is a copper sulfate plating layer or a copper sulfide plating layer.
  9.  帯状を呈し前記絶縁性部を挟んで並列配置される複数の前記導電性部を有する請求項1ないし請求項8のいずれかに記載のセンサ用電極。 The sensor electrode according to any one of claims 1 to 8, wherein the sensor electrode has a plurality of the conductive portions that are band-shaped and arranged in parallel with the insulating portion interposed therebetween.
  10.  誘電層と、
     該誘電層を厚さ方向に挟んで配置される表側電極および裏側電極と、
    を備え、
     該表側電極および該裏側電極は、請求項1ないし請求項9のいずれかに記載のセンサ用電極であり、該センサ用電極の前記導電性部が該誘電層を介して対向する部分に検出部が設定される面状センサ。
    A dielectric layer;
    A front-side electrode and a back-side electrode arranged with the dielectric layer sandwiched in the thickness direction;
    With
    The front-side electrode and the back-side electrode are sensor electrodes according to any one of claims 1 to 9, and a detection unit is provided at a portion where the conductive portion of the sensor electrode faces through the dielectric layer. Is a planar sensor.
  11.  前記表側電極および前記裏側電極は、各々、帯状を呈し前記絶縁性部を挟んで並列配置される複数の前記導電性部を有し、
     前記誘電層の厚さ方向から見た場合に、該表側電極の該導電性部と該裏側電極の該導電性部とは略直交して配置される請求項10に記載の面状センサ。
    The front-side electrode and the back-side electrode each have a plurality of the conductive portions arranged in parallel with each other having a strip shape and sandwiching the insulating portion,
    The planar sensor according to claim 10, wherein the conductive portion of the front electrode and the conductive portion of the back electrode are disposed substantially orthogonal to each other when viewed from the thickness direction of the dielectric layer.
PCT/JP2019/006275 2018-02-28 2019-02-20 Sensor electrode and planar sensor using same WO2019167744A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980002313.1A CN110612437A (en) 2018-02-28 2019-02-20 Sensor electrode and planar sensor using same
JP2020503431A JPWO2019167744A1 (en) 2018-02-28 2019-02-20 Sensor electrode and planar sensor using the same
DE112019000033.0T DE112019000033T5 (en) 2018-02-28 2019-02-20 Sensor electrode and flat sensor using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-034897 2018-02-28
JP2018034897 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167744A1 true WO2019167744A1 (en) 2019-09-06

Family

ID=67806142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006275 WO2019167744A1 (en) 2018-02-28 2019-02-20 Sensor electrode and planar sensor using same

Country Status (4)

Country Link
JP (1) JPWO2019167744A1 (en)
CN (1) CN110612437A (en)
DE (1) DE112019000033T5 (en)
WO (1) WO2019167744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246022A1 (en) * 2020-06-01 2021-12-09 株式会社村田製作所 Sensor device
EP4062992A4 (en) * 2019-11-18 2023-12-20 LG Electronics Inc. Air purifying filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102457A (en) * 2009-10-15 2011-05-26 Tsuchiya Co Ltd Electroconductive woven fabric, and touch sensor device by using electroconductive woven fabric
JP2012031550A (en) * 2010-07-09 2012-02-16 Asahi Kasei Fibers Corp Conductive three-layer structured fabric
JP2013178895A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Cloth-like pressure sensor heater
US20150294756A1 (en) * 2012-10-22 2015-10-15 Enhanced Surface Dynamics, Inc. Flexible conducting materials and methods for the manufacture thereof
US20160018274A1 (en) * 2012-02-16 2016-01-21 Peter Seitz Textile pressure sensor
JP2016031269A (en) * 2014-07-28 2016-03-07 住江織物株式会社 Body pressure distribution measurement device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200701A (en) 1986-02-28 1987-09-04 旭化成株式会社 Deformed conductive knitting
JP2007262623A (en) 2006-03-29 2007-10-11 Nippon Ceramic Co Ltd Electrode for contact sensor
JP2008266814A (en) 2007-04-17 2008-11-06 Seiren Co Ltd Metal-covered fabric and method for producing the same
JP4780058B2 (en) 2007-08-09 2011-09-28 株式会社日本マイクロシステム Pressure sensor
US8161826B1 (en) * 2009-03-05 2012-04-24 Stryker Corporation Elastically stretchable fabric force sensor arrays and methods of making
JP5815369B2 (en) 2011-10-28 2015-11-17 住友理工株式会社 Capacitive sensor
JP6030841B2 (en) * 2012-03-26 2016-11-24 住友理工株式会社 Capacitive sensor
JP6082665B2 (en) 2013-06-25 2017-02-15 住友理工株式会社 Capacitive sensor
KR20160148530A (en) * 2014-04-16 2016-12-26 데이진 가부시키가이샤 Transducer which uses fibers and uses electric signal as output or input
CN107290082B (en) * 2016-04-11 2019-12-20 刘垚 Capacitive touch sensor
CN107121226A (en) * 2017-04-11 2017-09-01 东华大学 A kind of evaluation method of the study on pressure comfort of clothing based on fiber grating sensing technology
CN107144379A (en) * 2017-04-28 2017-09-08 东华大学 A kind of resistive pressure is distributed fabric sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102457A (en) * 2009-10-15 2011-05-26 Tsuchiya Co Ltd Electroconductive woven fabric, and touch sensor device by using electroconductive woven fabric
JP2012031550A (en) * 2010-07-09 2012-02-16 Asahi Kasei Fibers Corp Conductive three-layer structured fabric
US20160018274A1 (en) * 2012-02-16 2016-01-21 Peter Seitz Textile pressure sensor
JP2013178895A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Cloth-like pressure sensor heater
US20150294756A1 (en) * 2012-10-22 2015-10-15 Enhanced Surface Dynamics, Inc. Flexible conducting materials and methods for the manufacture thereof
JP2016031269A (en) * 2014-07-28 2016-03-07 住江織物株式会社 Body pressure distribution measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4062992A4 (en) * 2019-11-18 2023-12-20 LG Electronics Inc. Air purifying filter
WO2021246022A1 (en) * 2020-06-01 2021-12-09 株式会社村田製作所 Sensor device
JPWO2021246022A1 (en) * 2020-06-01 2021-12-09
JP7439920B2 (en) 2020-06-01 2024-02-28 株式会社村田製作所 sensor device

Also Published As

Publication number Publication date
CN110612437A (en) 2019-12-24
JPWO2019167744A1 (en) 2020-05-28
DE112019000033T5 (en) 2019-12-24

Similar Documents

Publication Publication Date Title
JP5754946B2 (en) Conductive three-layer fabric
CN107710432B (en) Piezoelectric element and device using the same
JP4273233B2 (en) Pressure-sensitive sensor sheet
US9448127B2 (en) Device for measuring pressure from a flexible, pliable, and/or extensible object made from a textile material comprising a measurement device
US8925393B2 (en) Device intended for measuring pressure from a flexible, foldable, and/or extendable object made of a textile material and comprising a measurement device
JP6271959B2 (en) Fabric with fiber electrode, method for producing fabric with fiber electrode, and belt for measuring electrical impedance
EP2173244A2 (en) Electrode for acquiring physiological signals of a recipient
CN112888817B (en) Cloth with electrode wiring
CN112771358A (en) Pressure-sensitive element and electronic device
WO2019167744A1 (en) Sensor electrode and planar sensor using same
JP2013019064A (en) Conductive fabric
WO2016118746A1 (en) Stretchable electric conductive paths narrow fabrics for smart textiles/garments
JPWO2019230730A1 (en) Cloth material with electrode wiring
JP6902507B2 (en) Pressure sensor
JP7068569B2 (en) Tension sensor
JP2012193467A (en) Electroconductive fabric
JP7086011B2 (en) Pressure sensor
JP2017068780A (en) Capacitive touch sensor
US20230148077A1 (en) Motion detection member
JP7046114B2 (en) Pressure sensor
KR20180103482A (en) Intergrated sensor
JP2020190535A (en) Displacement sensor
WO2020213505A1 (en) Pressure-sensitive sensor
KR20160114482A (en) Intergrated sensor
LV14920B (en) Textile transducer device (ttd) for strain and pressure measurements, system of ttd devices used for skin and muscle control and stimulation, and method of ttd production from conductive piezoresistive yarn using tuft or terry weaving or knitting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503431

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19761146

Country of ref document: EP

Kind code of ref document: A1