JP2011102457A - Electroconductive woven fabric, and touch sensor device by using electroconductive woven fabric - Google Patents

Electroconductive woven fabric, and touch sensor device by using electroconductive woven fabric Download PDF

Info

Publication number
JP2011102457A
JP2011102457A JP2010176276A JP2010176276A JP2011102457A JP 2011102457 A JP2011102457 A JP 2011102457A JP 2010176276 A JP2010176276 A JP 2010176276A JP 2010176276 A JP2010176276 A JP 2010176276A JP 2011102457 A JP2011102457 A JP 2011102457A
Authority
JP
Japan
Prior art keywords
conductive
yarn
yarns
fabric
touch sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010176276A
Other languages
Japanese (ja)
Other versions
JP5668966B2 (en
Inventor
Sakura Hoshiya
さくら 星屋
Koya Ohara
鉱也 大原
Hirotaka Mizuno
寛隆 水野
Masato Hoshino
正人 星野
Akihisa Suzuki
陽久 鈴木
Tatsuji Ikeguchi
達治 池口
Yuki Shimagami
祐樹 島上
Shoji Yamamoto
昌治 山本
Takahiro Horiba
隆広 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Prefecture
Tsuchiya KK
Original Assignee
Aichi Prefecture
Tsuchiya KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Prefecture, Tsuchiya KK filed Critical Aichi Prefecture
Priority to JP2010176276A priority Critical patent/JP5668966B2/en
Publication of JP2011102457A publication Critical patent/JP2011102457A/en
Application granted granted Critical
Publication of JP5668966B2 publication Critical patent/JP5668966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a flexible and low cost electroconductive woven fabric capable of sensing pressure in a high sensitivity, also to provide the electroconductive woven fabric having a woven structure easily detecting a touching position, and a touch sensor device including a signal detection circuit suitable for the structure of the electroconductive woven fabric and using the electroconductive woven fabric as the touch sensor. <P>SOLUTION: The electroconductive woven fabric 10 includes a spacial configuration that an electroconductive upper cloth 20 and an electroconductive lower cloth 22 woven with electroconductive yarns 12 are overlapped vertically and linked with pile yarns. Either one side of warp yarns and weft yarns forming each of the electroconductive clothes 20, 22 is provided by having a constitution that an electroconductive yarn region 16 obtained by aligning the electroconductive yarns 12 and an insulating yarn region 18 obtained by aligning an insulating yarns 14 are aligned alternately, and the other side yarns have a constitution of aligning only the insulating yarns. By overlapping each of the electroconductive clothes in the direction of crossing the electroconductive yarns 12 with each other so as to function a cell 24 which is a zone of crossing the electroconductive yarn regions 16, as the touch sensor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は導電性織物及び導電性織物を使用したタッチセンサ装置に関する。さらに詳しくは、高感度に圧力を検出できるように工夫された構造を有する導電性織物、及び、該導電性織物をタッチセンサに使用し、該導電性織物の構造に適した信号検出回路を備えたフレキシブルなタッチセンサ装置に関する。   The present invention relates to a conductive fabric and a touch sensor device using the conductive fabric. More specifically, a conductive fabric having a structure designed to detect pressure with high sensitivity, and a signal detection circuit suitable for the structure of the conductive fabric, using the conductive fabric as a touch sensor. The present invention relates to a flexible touch sensor device.

球面や自由曲面に追随することができ、かつ、大面積のものを低コストで実現できるセンサとして、布製のタッチセンサが提案されており、特許文献1には導電糸を織り込んだ布をタッチセンサとして使用することが記載されている。特許文献1に記載の布は、導電性繊維を絶縁体で覆った導電糸、所謂カバリング糸を縦横に織り込んだ平織物であり、布に圧力が加わった時に導電繊維の回りにある絶縁体自体の変形や歪みによる静電容量の変化を検出し、圧力を検知するタッチセンサとして動作する。   A cloth touch sensor has been proposed as a sensor that can follow a spherical surface or a free-form surface and can realize a large area at a low cost. Patent Document 1 discloses a touch sensor that uses a cloth woven with conductive yarn. It is described to be used as. The fabric described in Patent Document 1 is a plain woven fabric in which conductive fibers covered with an insulating material, so-called covering yarns, are woven vertically and horizontally, and the insulator itself around the conductive fibers when pressure is applied to the fabric. It operates as a touch sensor that detects a change in capacitance due to deformation or distortion of the sensor and detects pressure.

特開2006−234716号公報JP 2006-234716 A

しかしながら、特許文献1に記載の布によるセンサでは、カバリング糸自体が細いため圧力による絶縁体の変形量が小さく、高感度に圧力を検出することが難しいという問題がある。   However, the cloth sensor described in Patent Document 1 has a problem that since the covering yarn itself is thin, the amount of deformation of the insulator due to pressure is small, and it is difficult to detect the pressure with high sensitivity.

そこで、本発明が解決しようとする課題は、汎用の導電糸を利用した低コストでかつ高感度に圧力を検知できる、導電性繊維を織り込んだ導電性織物を実現することである。また、高感度であり、かつ、タッチ位置の検出が容易な織り構造を有する導電性織物を提供するとともに、該導電性織物の構造に適した信号検出回路を備え、該導電性織物をタッチセンサとして使用するタッチセンサ装置を提供することである。   Therefore, the problem to be solved by the present invention is to realize a conductive fabric in which conductive fibers are woven, which can detect pressure with high sensitivity at low cost using a general-purpose conductive yarn. The present invention also provides a conductive fabric having a woven structure that is highly sensitive and that allows easy detection of the touch position, and includes a signal detection circuit suitable for the structure of the conductive fabric, and the conductive fabric is a touch sensor. It is providing the touch sensor apparatus used as.

上記課題を解決するため、本発明にかかる導電性織物及び導電性織物を使用したタッチセンサ装置は次の手段をとる。
本発明の第1の発明は、導電糸が織り込まれた導電性織物であって、
導電糸が織り込まれた少なくとも2枚の導電布が面合わせに重ね合わされて一体化された導電性織物である。
この第1の発明によれば、導電布を2枚重ねることにより、平織物に比べて、各布の導電糸間の距離が平均して大きくなるので、導電性織物に圧力が加わった時の導電糸の歪み量を平織物に比べて大きくすることができ、その結果大きな静電容量の変化を得ることができるので、高感度に圧力を検知することができる。そして、一般的な導電糸を用いることができる構造なので、球面や自由曲面へ追随できるフレキシブル性を有している。また、各導電布には、導電性繊維を絶縁体で覆った導電糸等、一般的な導電糸を用いることができるので、低コストで導電性織物を実現することができる。
In order to solve the above-described problems, the conductive fabric and the touch sensor device using the conductive fabric according to the present invention take the following means.
The first invention of the present invention is a conductive fabric woven with conductive yarn,
It is a conductive fabric in which at least two conductive cloths in which conductive yarns are woven are superposed on each other and integrated.
According to the first invention, by stacking the two conductive cloths, the distance between the conductive yarns of each cloth is increased on average as compared to the plain cloth, so that when the pressure is applied to the conductive cloth, Since the amount of distortion of the conductive yarn can be increased as compared with a plain woven fabric, and as a result, a large change in capacitance can be obtained, pressure can be detected with high sensitivity. And since it is the structure which can use a general electrically conductive thread | yarn, it has the flexibility which can follow a spherical surface or a free-form surface. In addition, since each conductive cloth can be a general conductive thread such as a conductive thread in which conductive fibers are covered with an insulator, a conductive fabric can be realized at low cost.

本発明の第2の発明は、上記第1の発明に係る導電性織物であって、
前記導電糸は導電性繊維を絶縁体で覆った導電糸であり、この導電糸を使って少なくとも2枚の導電布を織り、それらの導電布を面合わせに重ね合わせ、各布の導電糸が互いに重なる部分の少なくとも一部を除いて、各導電布を絶縁糸で結束して一体化したことを特徴とする。
第2の発明によれば、導電性繊維を絶縁体で覆った導電糸を使って導電布が織られており、上記第1発明に比べて、導電性織物に圧力が加わった時各布の導電糸間の距離の変化に基づく静電容量の変化の他に、導電繊維の回りにある絶縁体の変形による静電容量の変化も加わるので、大きな静電容量の変化を得ることができ、高感度に圧力を検知することができる。
A second invention of the present invention is the conductive fabric according to the first invention,
The conductive yarn is a conductive yarn in which conductive fibers are covered with an insulator, and at least two conductive cloths are woven using the conductive yarn, and the conductive yarns are superposed on each other. Except at least a part of the overlapping portions, the respective conductive cloths are bundled and integrated with insulating yarns.
According to the second invention, the conductive cloth is woven using the conductive yarn in which the conductive fiber is covered with the insulator. Compared with the first invention, when the pressure is applied to the conductive fabric, In addition to the change in capacitance based on the change in the distance between the conductive yarns, a change in capacitance due to deformation of the insulator around the conductive fiber is also added, so a large change in capacitance can be obtained, Pressure can be detected with high sensitivity.

本発明の第3の発明は、上記第1の発明に係る導電性織物であって、
前記各導電布がパイル糸で結びつけられて、立体構造とされたことを特徴とする。
この第3の発明によれば、導電性織物は、各導電布がパイル糸で結びつけられて立体構造とされているので、導電性織物に圧力が加わった時、圧力によりパイル糸がたわみ、各布の導電糸間の距離及び静電容量が大きく変化し、より高感度に圧力を検知することができる。そして、導電布をパイル糸で結びつけた立体構造なので、球面や自由曲面へ追随できるフレキシブル性は保たれている。
A third invention of the present invention is the conductive fabric according to the first invention,
The conductive cloths are connected with pile yarns to form a three-dimensional structure.
According to the third aspect of the invention, the conductive fabric has a three-dimensional structure in which the conductive fabrics are connected with pile yarns. Therefore, when pressure is applied to the conductive fabric, the pile yarns bend due to the pressure, The distance between the conductive yarns of the cloth and the electrostatic capacitance are greatly changed, and the pressure can be detected with higher sensitivity. And since it is the three-dimensional structure which tied the conductive cloth with the pile thread | yarn, the flexibility which can follow a spherical surface or a free-form surface is maintained.

本発明の第4の発明は、上記第1の発明ないし第3の発明のいずれかに係る導電性織物であって、前記導電性織物の表面または前記各導電布の間に樹脂を含浸させたことを特徴とする。
この第4の発明によれば、導電性織物の表面に樹脂を含浸させることにより、導電性織物の耐水性の向上をはかることができる。そして、導電性織物の内部の導電布の間に樹脂を含浸させることにより、導電性織物の強度や復元性の向上をはかることができる。また、含浸させた樹脂の化学物質吸収性などの特性を、導電性織物の特性として付加することができる。
A fourth invention of the present invention is a conductive fabric according to any one of the first to third inventions, wherein a resin is impregnated on a surface of the conductive fabric or between the conductive fabrics. It is characterized by that.
According to the fourth aspect of the present invention, the water resistance of the conductive fabric can be improved by impregnating the surface of the conductive fabric with the resin. And by impregnating resin between the conductive cloths inside the conductive fabric, it is possible to improve the strength and resilience of the conductive fabric. In addition, characteristics such as chemical substance absorbability of the impregnated resin can be added as characteristics of the conductive fabric.

本発明の第5の発明は、上記第1の発明ないし第4の発明のいずれかの発明に係る導電性織物であって、
前記各導電布を形成する縦糸と横糸のうちいずれか一方の糸は、複数の導電糸を並べた導電糸域と、複数の絶縁糸を並べた絶縁糸域とが、交互に並べられた構成とされ、縦糸と横糸の内の他方の糸は絶縁糸のみが並べられた構成とされており、
前記各導電布は導電糸が互いに交差する方向で面合わせに重ね合わされて一体化されており、該各導電布の導電糸域が交差する領域であるセルを、タッチセンサとして機能させることを特徴とする。
この第5の発明によれば、各導電布の導電糸域が交差する領域のセルでは、縦横2方向の導電糸同士が他の部分に比べて導電布の面方向で接近しているので、セルにタッチした場合は他の部位にタッチした場合に比べて静電容量の変化が大きい。この導電性織物の構造による容量変化特性を利用して、導電性織物のセルをタッチセンサとして機能させることが可能となる。
A fifth invention of the present invention is a conductive woven fabric according to any one of the first to fourth inventions,
Any one of the warp and weft forming each conductive cloth has a configuration in which conductive yarn regions in which a plurality of conductive yarns are arranged and insulating yarn regions in which a plurality of insulating yarns are arranged alternately. And the other of the warp and weft yarns has a configuration in which only insulating yarns are arranged,
The conductive cloths are integrated by overlapping the conductive yarns in a direction in which the conductive yarns intersect with each other, and a cell that is an area where the conductive yarn regions of the conductive cloths intersect is made to function as a touch sensor. And
According to the fifth invention, in the cells in the region where the conductive yarn regions of the respective conductive cloths intersect, the conductive yarns in the two vertical and horizontal directions are closer to each other in the surface direction of the conductive cloth than the other parts. When the cell is touched, the change in capacitance is larger than when the other part is touched. By utilizing the capacitance change characteristic due to the structure of the conductive fabric, the cell of the conductive fabric can function as a touch sensor.

本発明の第6の発明は、上記第5の発明に係る導電性織物をタッチセンサとして使用するタッチセンサ装置であって、
前記各導電布のいずれかの導電布の導電糸域の導電糸に導電糸域毎に相互に区別が可能な周期信号を印加し、
周期信号を印加した導電布の導電糸域毎の導電糸との間の静電容量を介して周期信号を印加しなかった導電布の導電糸域の導電糸から出力される信号を取出し、
取出した信号と印加信号との信号差を検出することにより、タッチされたセルを検出する信号検出回路を備えたことを特徴とする。
この第6の発明によれば、各セルにおける正確な静電容量の変化の信号が得られる。よって、導電性織物の各セルについてタッチされたか否かを検出することが可能となり、導電性織物をタッチセンサとして使用するタッチセンサ装置を提供することができる。
A sixth invention of the present invention is a touch sensor device using the conductive fabric according to the fifth invention as a touch sensor,
Applying a periodic signal that can be distinguished from each other for each conductive yarn region to the conductive yarn of the conductive yarn region of any one of the conductive fabrics,
Taking out the signal output from the conductive yarn in the conductive yarn area of the conductive cloth not applying the periodic signal via the electrostatic capacitance between the conductive yarn of each conductive yarn area of the conductive cloth to which the periodic signal was applied,
A signal detection circuit for detecting a touched cell by detecting a signal difference between the extracted signal and the applied signal is provided.
According to the sixth aspect of the invention, an accurate change signal of capacitance in each cell can be obtained. Therefore, it is possible to detect whether or not each cell of the conductive fabric is touched, and it is possible to provide a touch sensor device that uses the conductive fabric as a touch sensor.

本発明の第7の発明は、上記第6の発明に係るタッチセンサ装置であって、前記各導電布のいずれかの導電布の導電糸域の導電糸に印加される周期信号は、導電糸域毎に周波数が異なっていることを特徴とする。
この第7の発明によれば、周期信号を印加しなかった導電布の導電糸域の導電糸から出力される信号を取出し、周波数毎に信号差を検出することで、各導電布の導電糸域が交差する各セルにおける正確な静電容量の変化の信号を得ることができ、各セルへのタッチの有無を検出することができる。
7th invention of this invention is a touch sensor apparatus which concerns on the said 6th invention, Comprising: The periodic signal applied to the conductive yarn of the conductive yarn area | region of any one of said each conductive cloth is conductive yarn. The frequency is different for each region.
According to the seventh aspect of the present invention, the signal output from the conductive yarn in the conductive yarn region of the conductive cloth to which the periodic signal is not applied is taken out, and the signal difference is detected for each frequency, so that the conductive yarn of each conductive cloth is detected. It is possible to obtain an accurate capacitance change signal in each cell where the areas intersect, and to detect the presence or absence of a touch on each cell.

本発明の第8の発明は、上記第6の発明に係るタッチセンサ装置であって、前記各導電布のいずれかの導電布の導電糸域の導電糸に印加される周期信号は、各導電糸域に対して時分割で印加されることを特徴とする。
この第8の発明によれば、周期信号を印加しなかった導電布の導電糸域の導電糸から出力される信号を取出し、時分割で信号差を検出することで、各導電布の導電糸域が交差する各セルにおける正確な静電容量の変化の信号を得ることができ、各セルへのタッチの有無を検出することができる。
An eighth invention of the present invention is the touch sensor device according to the sixth invention, wherein the periodic signal applied to the conductive yarn in the conductive yarn region of any one of the conductive fabrics is the conductive It is applied to the yarn area in a time division manner.
According to the eighth aspect of the invention, by extracting a signal output from the conductive yarn in the conductive yarn region of the conductive cloth to which the periodic signal is not applied and detecting the signal difference in a time division manner, the conductive yarn of each conductive cloth is obtained. It is possible to obtain an accurate capacitance change signal in each cell where the areas intersect, and to detect the presence or absence of a touch on each cell.

実施例1における導電性織物を写真で示す図である。It is a figure which shows the electroconductive textile fabric in Example 1 with a photograph. 実施例1における導電性織物の構造を説明する図である。It is a figure explaining the structure of the electroconductive textile fabric in Example 1. FIG. 実施例1における導電性織物の断面を示す図である。1 is a view showing a cross section of a conductive fabric in Example 1. FIG. 各実施例における導電性織物の圧力検出特性を示す図である。It is a figure which shows the pressure detection characteristic of the electroconductive textile fabric in each Example. 実施例1におけるタッチセンサ装置の構成を示す図である。It is a figure which shows the structure of the touch sensor apparatus in Example 1. FIG. 実施例1のタッチセンサ装置を用いて導電性織物のセル位置に対応したLEDが圧力印加により点灯するタッチセンサを実現した図である。It is the figure which implement | achieved the touch sensor which the LED corresponding to the cell position of an electroconductive textile fabric lights by pressure application using the touch sensor apparatus of Example 1. FIG. 実施例2におけるタッチセンサ装置の構成を示す図である。It is a figure which shows the structure of the touch sensor apparatus in Example 2. FIG. 実施例3におけるタッチセンサ装置の主要部の構成を分解して示す平面説明図である。FIG. 10 is an explanatory plan view illustrating an exploded configuration of a main part of a touch sensor device according to a third embodiment. 図8と同様のタッチセンサ装置の主要部の構成を組立状態で示す平面説明図である。FIG. 9 is an explanatory plan view showing the configuration of the main part of the touch sensor device similar to FIG. 8 in an assembled state. 図9のX−X線拡大断面図である。FIG. 10 is an enlarged sectional view taken along line XX in FIG. 9. 実施例4におけるタッチセンサ装置の主要部の構成を分解して示す平面説明図である。FIG. 10 is an explanatory plan view illustrating an exploded configuration of a main part of a touch sensor device according to a fourth embodiment. 図11と同様のタッチセンサ装置の主要部の構成を組立状態で示す平面説明図である。FIG. 12 is an explanatory plan view showing the configuration of the main part of the touch sensor device similar to FIG. 11 in an assembled state. 図12のXIII−XIII線拡大断面図である。It is the XIII-XIII line expanded sectional view of FIG. 実施例5におけるタッチセンサ装置の主要部の構成を組立状態で示す平面説明図である。It is a plane explanatory view showing the composition of the principal part of the touch sensor device in Example 5 in an assembled state. 実施例5のタッチセンサ装置における一つのセルの等価回路図である。FIG. 10 is an equivalent circuit diagram of one cell in the touch sensor device according to the fifth embodiment. 図14のXV−XV線拡大断面図である。It is the XV-XV line expanded sectional view of FIG.

以下、本発明を実施するための形態について実施例にしたがって説明する。   Hereinafter, modes for carrying out the present invention will be described according to examples.

[導電性織物の構成]
始めに、本発明の実施例1におけるタッチセンサ装置30(図5参照)で使用する導電性織物10の構成について説明する。
図1に導電性織物10の写真を示す。導電性織物10は、導電糸12が織り込まれた2枚の導電布(導電上布20と導電下布22)が上下に面合わせに重ね合わされて、パイル糸で結びつけられた立体構造とされている。導電糸12は図1では灰色で表されており、絶縁糸14は図1では白色で表されている。
導電性織物10を構成する各導電布20、22を形成する縦糸は、複数の導電糸12を並べた導電糸域16と、複数の絶縁糸14を並べた絶縁糸域18とが、交互に並べられた構成とされ、横糸は絶縁糸14のみが並べられた構成とされている。なお、横糸を導電糸域16と絶縁糸域18が交互に並べられた構成として、縦糸を絶縁糸14のみが並べられた構成としても良い。縦糸に導電糸12を配する場合は、横糸には絶縁糸14のみを用いるので、布を織る過程で横糸を取り換える必要がない。また、横糸に導電糸12を配する場合は、布を織る過程で、導電糸域16の幅を調整することが可能となる。
なお、製織方法については、ドビー織機、ジャガード織機による製織方法が挙げられるが、これらに限定されるものではない。
[Configuration of conductive fabric]
First, the configuration of the conductive fabric 10 used in the touch sensor device 30 (see FIG. 5) according to the first embodiment of the present invention will be described.
FIG. 1 shows a photograph of the conductive fabric 10. The conductive fabric 10 has a three-dimensional structure in which two conductive cloths (conductive upper cloth 20 and conductive lower cloth 22) woven with conductive thread 12 are superposed on each other in a face-to-face manner and are connected with pile threads. Yes. The conductive yarn 12 is represented in gray in FIG. 1, and the insulating yarn 14 is represented in white in FIG.
The warp yarns forming the respective conductive fabrics 20 and 22 constituting the conductive fabric 10 are composed of conductive yarn regions 16 in which a plurality of conductive yarns 12 are arranged and insulating yarn regions 18 in which a plurality of insulating yarns 14 are arranged alternately. The weft yarn is configured such that only the insulating yarns 14 are arranged. In addition, it is good also as a structure by which only the insulating thread | yarn 14 was arranged for the warp yarn as a structure in which the conductive yarn area | region 16 and the insulating yarn area | region 18 were arranged alternately. When the conductive yarn 12 is arranged in the warp, only the insulating yarn 14 is used for the weft, so it is not necessary to replace the weft in the process of weaving the fabric. Further, when the conductive yarn 12 is arranged on the weft, the width of the conductive yarn region 16 can be adjusted in the process of weaving the cloth.
Examples of the weaving method include a weaving method using a dobby loom or a jacquard loom, but are not limited thereto.

そして、縦糸と横糸のうちいずれか一方の糸により導電糸域16が形成された導電布を適宜のサイズに切断して、導電上布20、及び導電下布22とする。実施例1では、図1に示すとおり、導電上布20には導電糸域16が横向きとなるように3箇所に形成された構成とされている。なお、導電上布20における導電糸域16の幅及び導電糸域16同士の間隔は、それぞれ、1センチメートルである。
そして、導電上布20の導電糸域16の右側端部には、マルチプレクサ32(図5参照)を取り付けるための上布電極21が形成されており、導電下布22の導電糸域16の下側端部には周期信号を印加するための下布電極23が形成されている。
なお、実施例1では、絶縁糸14としてポリプロピレン、導電糸12としてサンダーロン(日本蚕毛染色製)、パイル糸としてポリプロピレンを使用した。
Then, the conductive cloth in which the conductive yarn area 16 is formed by either one of the warp and the weft is cut into an appropriate size to obtain a conductive upper cloth 20 and a conductive lower cloth 22. In Example 1, as shown in FIG. 1, it is set as the structure formed in the conductive upper fabric 20 at three places so that the electroconductive yarn area 16 may turn sideways. In addition, the width | variety of the electrically conductive yarn area | region 16 and the space | interval of the electrically conductive yarn areas 16 in the electrically conductive upper cloth 20 are 1 centimeter, respectively.
An upper cloth electrode 21 for attaching a multiplexer 32 (see FIG. 5) is formed on the right end of the conductive yarn area 16 of the conductive upper cloth 20, and below the conductive yarn area 16 of the conductive lower cloth 22. A lower cloth electrode 23 for applying a periodic signal is formed at the side end.
In Example 1, polypropylene was used as the insulating yarn 14, Sanderlon (manufactured by Nippon Kashiwa Dye) as the conductive yarn 12, and polypropylene as the pile yarn.

そして、導電上布20及び導電下布22の2枚の導電布は、導電糸12が互いに交差する方向で上下に重ね合わされて、パイル糸で結びつけられている。図2は、導電性織物10において、導電上布20と導電下布22の導電糸域16が交差する態様で重ね合わされている様子を、模式的に示したものである。そして、図1に示すように、導電上布20の導電糸域16と導電下布22の導電糸域16が交差する領域をセル24と名付けている。
図3には、導電性織物10の断面を示す。導電性織物10の導電上布20と導電下布22の間には、導電上布20と導電下布22を結びつけるパイル糸によりパイル糸層26が形成されている。このパイル糸層26は、隙間を有し弾発性を備えた層である。
The two conductive cloths, that is, the conductive upper cloth 20 and the conductive lower cloth 22, are overlapped with each other in a direction in which the conductive yarns 12 cross each other and are connected by pile yarns. FIG. 2 schematically shows a state in which the conductive yarn regions 16 of the conductive upper cloth 20 and the conductive lower cloth 22 are overlapped with each other in the conductive fabric 10. As shown in FIG. 1, a region where the conductive yarn region 16 of the conductive upper fabric 20 and the conductive yarn region 16 of the conductive lower fabric 22 intersect is named a cell 24.
FIG. 3 shows a cross section of the conductive fabric 10. A pile yarn layer 26 is formed between the conductive upper fabric 20 and the conductive lower fabric 22 of the conductive fabric 10 by pile yarns connecting the conductive upper fabric 20 and the conductive lower fabric 22. The pile yarn layer 26 is a layer having a gap and elasticity.

[導電性織物の特性]
導電性織物10は、図1、図2、図3に示すように、導電糸域16が横向きとなるように形成されている導電上布20と、導電糸域16が縦向きとなるように形成された導電下布22がパイル糸層26で結びつけられている。
そのため、導電上布20の導電糸域16と導電下布22の導電糸域16が交差するセル24と名付けた領域では、導電性織物10の他の部分に比べて導電上布20の導電糸12と導電下布22の導電糸12が導電布20,22の面方向で接近しているので、導電性織物10の変形による静電容量の変化が大きい。そして、導電性織物10は導電上布20と導電下布22がパイル糸層26で結びつけられて立体構造とされているので、導電性織物10に圧力が加わった時、圧力によりパイル糸層26のパイル糸が歪み、導電上布20と導電下布22が接近して、導電上布20の導電糸12と導電下布22の導電糸12との間の静電容量が大きく変化する。よって、導電性織物10は、高感度に圧力を検知することができると考えられる。
[Characteristics of conductive fabric]
As shown in FIGS. 1, 2, and 3, the conductive fabric 10 has a conductive upper cloth 20 formed so that the conductive yarn area 16 is oriented horizontally, and the conductive yarn area 16 is oriented vertically. The formed conductive lower cloth 22 is bound by a pile yarn layer 26.
Therefore, in the region named cell 24 where the conductive yarn region 16 of the conductive upper fabric 20 and the conductive yarn region 16 of the conductive lower fabric 22 intersect, the conductive yarn of the conductive upper fabric 20 is compared with the other parts of the conductive fabric 10. 12 and the conductive yarn 12 of the conductive lower cloth 22 are close to each other in the surface direction of the conductive cloths 20, 22, so that the capacitance changes greatly due to the deformation of the conductive fabric 10. Since the conductive fabric 10 has a three-dimensional structure in which the conductive upper fabric 20 and the conductive lower fabric 22 are connected by the pile yarn layer 26, when the pressure is applied to the conductive fabric 10, the pile yarn layer 26 is caused by the pressure. The pile yarn is distorted, the conductive upper cloth 20 and the conductive lower cloth 22 approach, and the capacitance between the conductive yarn 12 of the conductive upper cloth 20 and the conductive yarn 12 of the conductive lower cloth 22 changes greatly. Therefore, it is considered that the conductive fabric 10 can detect pressure with high sensitivity.

[タッチセンサ装置の構成]
次に、実施例1におけるタッチセンサ装置について説明する。図5に実施例1における導電性織物10を使用したタッチセンサ装置30の構成を示す。
図5に示すように、タッチセンサ装置30を構成する導電性織物10の導電下布22の3箇所の導電糸域16a、導電糸域16b、導電糸域16cには、それぞれ、各導電糸域の導電糸に周期信号を印加する第1発振器40、第2発振器42、第3発振器44が接続されている。そして、導電性織物10の導電上布20の3箇所の導電糸域16d、導電糸域16e、導電糸域16fには、各導電糸域の導電糸から出力される信号を取出すマルチプレクサ32が接続されている。
そして、マルチプレクサ32には、導電上布20の導電糸から取出した信号と印加した周期信号との信号差を検出する信号差検出回路34が接続されている。そして信号差検出回路34は、周期信号を基準信号として取り込むために、第1発振器40、第2発振器42および第3発振器44に接続されるとともに、タッチパネル装置30の動作を制御する動作処理回路36に接続されている。
[Configuration of touch sensor device]
Next, the touch sensor device according to the first embodiment will be described. FIG. 5 shows a configuration of the touch sensor device 30 using the conductive fabric 10 in the first embodiment.
As shown in FIG. 5, each of the conductive yarn regions 16 a, the conductive yarn regions 16 b, and the conductive yarn regions 16 c of the conductive lower fabric 22 of the conductive fabric 10 constituting the touch sensor device 30 includes a conductive yarn region. A first oscillator 40, a second oscillator 42, and a third oscillator 44 for applying a periodic signal to the conductive yarn are connected. A multiplexer 32 that extracts signals output from the conductive yarns in the respective conductive yarn areas is connected to the three conductive yarn areas 16d, the conductive yarn areas 16e, and the conductive yarn areas 16f of the conductive upper cloth 20 of the conductive fabric 10. Has been.
The multiplexer 32 is connected to a signal difference detection circuit 34 that detects a signal difference between a signal extracted from the conductive yarn of the conductive upper cloth 20 and the applied periodic signal. The signal difference detection circuit 34 is connected to the first oscillator 40, the second oscillator 42, and the third oscillator 44 in order to take the periodic signal as a reference signal, and controls the operation of the touch panel device 30. It is connected to the.

[タッチされたセルの検出方法]
次に、タッチされたセル24の検出方法を説明する。第1発振器40からは、図5にf1で示した1メガヘルツのサイン波が導電下布22の導電糸域16aの導電糸に対して印加されると共に、信号差検出回路34に1メガヘルツのサイン波が基準信号として送られる。第2発振器42からは、図5にf2で示した1.5メガヘルツのサイン波が導電下布22の導電糸域16bの導電糸に対して印加されると共に、信号差検出回路34に1.5メガヘルツのサイン波が基準信号として送られる。そして、第3発振器44からは、図5にf3で示した3.9メガヘルツのサイン波が導電下布22の導電糸域16cの導電糸に対して印加されると共に、信号差検出回路34に3.9メガヘルツのサイン波が基準信号として送られる。なお、導電下布22の各導電糸域の導電糸に印加されるサイン波の周波数f1、f2、f3は、互いに干渉しない周波数が選択されている。
[Detection method of touched cell]
Next, a method for detecting the touched cell 24 will be described. A first megahertz sine wave indicated by f1 in FIG. 5 is applied from the first oscillator 40 to the conductive yarn in the conductive yarn region 16a of the conductive lower cloth 22, and the signal difference detecting circuit 34 is supplied with a sine of 1 megahertz. A wave is sent as a reference signal. From the second oscillator 42, a 1.5 MHz sine wave indicated by f 2 in FIG. 5 is applied to the conductive yarn in the conductive yarn region 16 b of the conductive lower cloth 22, and 1. A 5 MHz sine wave is sent as a reference signal. The third oscillator 44 applies a 3.9 megahertz sine wave indicated by f3 in FIG. 5 to the conductive yarns in the conductive yarn region 16c of the conductive lower cloth 22, and also applies to the signal difference detection circuit 34. A 3.9 MHz sine wave is sent as a reference signal. Note that the frequencies f1, f2, and f3 of the sine waves applied to the conductive yarns in the respective conductive yarn regions of the conductive lower cloth 22 are selected so as not to interfere with each other.

そして、マルチプレクサ32は、導電上布20の導電糸域16d、導電糸域16e及び導電糸域16cの導電糸から取出した信号を、導電糸域毎に分離した状態で、信号差検出回路34に送り出す。
セル24にタッチして、セル24の静電容量が変化すると、セル24に印加されている周期信号の位相及び振幅が変化する。そこで、セル24から取出した周期信号の位相あるいは振幅の、印加信号との差を調べることで静電容量の変化を生じたセルを知ることができる。
実施例1では、信号差検出回路34は、導電上布20の各導電糸域から取込んだ3系列の信号について、サイン波の周波数毎に各発振器から取込んだ基準信号との信号差から、位相差の検出を行う。そして、検出された位相差から、回路上の混線なく、各セル24毎の正確な静電容量の変化を検出し、タッチされたセル24を特定する。
The multiplexer 32 then supplies the signal difference detection circuit 34 with the signals taken out from the conductive yarns 16d, 16e and 16c of the conductive upper fabric 20 separated for each conductive yarn region. Send it out.
When the cell 24 is touched and the capacitance of the cell 24 changes, the phase and amplitude of the periodic signal applied to the cell 24 change. Therefore, by examining the difference between the phase or amplitude of the periodic signal extracted from the cell 24 and the applied signal, the cell in which the change in the capacitance has occurred can be known.
In the first embodiment, the signal difference detection circuit 34 uses the signal difference between the three series of signals taken from each conductive yarn area of the conductive upper fabric 20 and the reference signal taken from each oscillator for each sine wave frequency. The phase difference is detected. From the detected phase difference, an accurate change in capacitance for each cell 24 is detected without crosstalk on the circuit, and the touched cell 24 is specified.

例えば、導電上布20の各導電糸域から取込んだ3系列の信号について、サイン波の周波数毎に基準信号との位相差の検出を行った結果、導電糸域16fから取得した1メガヘルツのサイン波で位相差の変化に対応する静電容量の変化が最大であれば、タッチ信号が与えられたセル24は、導電糸域16f上のセル24であり、かつ、1メガヘルツのサイン波が印加された導電糸域16a上のセル24であることがわかるので、タッチ信号が与えられたセルは、導電糸域16aと導電糸域16fが交差する図5の左下のセル24であることが特定できる。
図6は、タッチセンサ装置30を用いて導電性織物10のセル24の位置に対応したLEDがタッチ信号により点灯するタッチ位置表示器48を実現した例である。
For example, as a result of detecting a phase difference with respect to a reference signal for each frequency of a sine wave with respect to three series of signals taken from each conductive yarn area of the conductive upper cloth 20, 1 MHz obtained from the conductive yarn area 16f If the change in capacitance corresponding to the change in phase difference is maximum in the sine wave, the cell 24 to which the touch signal is given is the cell 24 on the conductive yarn region 16f, and a 1 megahertz sine wave is generated. Since it is understood that the cell 24 is on the applied conductive yarn region 16a, the cell to which the touch signal is applied is the lower left cell 24 in FIG. 5 where the conductive yarn region 16a and the conductive yarn region 16f intersect. Can be identified.
FIG. 6 is an example in which a touch position indicator 48 in which an LED corresponding to the position of the cell 24 of the conductive fabric 10 is turned on by a touch signal is realized using the touch sensor device 30.

[変形例]
実施例1では、信号差検出回路34により、導電糸域から取込んだ信号と基準信号の信号差のうち、位相差を検出することで各セル24の静電容量の変化を検出したが、信号差検出回路34により、信号差のうちの振幅差を検出して、各セル24の静電容量の変化を検出しても良い。また、信号差検出回路34により、位相差と振幅差の双方を検出することで各セル24の静電容量の変化を検出しても良い。
また、実施例1では、周期信号としてサイン波を使用しているが、周期信号として矩形波を使用しても良い。
[Modification]
In Example 1, the signal difference detection circuit 34 detects the change in the capacitance of each cell 24 by detecting the phase difference of the signal difference between the signal captured from the conductive yarn area and the reference signal. The signal difference detection circuit 34 may detect an amplitude difference among the signal differences to detect a change in capacitance of each cell 24. Further, the change in capacitance of each cell 24 may be detected by detecting both the phase difference and the amplitude difference by the signal difference detection circuit 34.
In the first embodiment, a sine wave is used as the periodic signal, but a rectangular wave may be used as the periodic signal.

[効果]
実施例1で用いた導電性織物10によれば、導電糸12が織り込まれた2枚の導電布(導電上布20及び導電下布22)が上下に重ね合わされ、パイル糸で結びつけられて立体構造とされているので、導電性織物10に圧力が加わった時の導電糸12の歪み量を大きくすることができる。よって、高感度に圧力を検知することができる。そして、導電布をパイル糸で結びつけた立体構造なので、球面や自由曲面へ追随できるフレキシブル性を有している。また、各導電布には、サンダーロン(日本蚕毛染色製)のような導電性繊維を用いた、一般的な導電糸を用いることができるので、低コストで導電性織物10を実現することができる。
そして、2枚の導電布の導電糸域が交差する領域のセル24では、2方向の導電糸が他の部分に比べて導電布の面方向で接近しているので、セルにタッチした場合は他の部位にタッチした場合に比べて静電容量の変化が大きい。この、導電性織物10の構造による静電容量の変化特性を利用して、導電性織物10のセル24をタッチセンサとして機能させることが可能となる。
[effect]
According to the conductive fabric 10 used in Example 1, two conductive cloths (conductive upper cloth 20 and conductive lower cloth 22) woven with conductive thread 12 are stacked one above the other and tied together with pile threads. Because of the structure, the strain amount of the conductive yarn 12 when pressure is applied to the conductive fabric 10 can be increased. Therefore, the pressure can be detected with high sensitivity. And since it is the three-dimensional structure which tied the conductive cloth with the pile thread | yarn, it has the flexibility which can follow a spherical surface or a free-form surface. Moreover, since each conductive cloth can use general conductive yarns using conductive fibers such as Sanderon (manufactured by Nippon Shah Dye), the conductive fabric 10 can be realized at low cost. Can do.
And in the cell 24 in the region where the conductive yarn areas of the two conductive cloths intersect, the conductive yarns in the two directions are closer to each other in the surface direction of the conductive cloth than in other parts. The change in capacitance is larger than when touching other parts. Utilizing this capacitance change characteristic due to the structure of the conductive fabric 10, the cell 24 of the conductive fabric 10 can be made to function as a touch sensor.

そして、導電下布22の導電糸域の導電糸に導電糸域毎に周波数が異なる周期信号を印加し、周期信号を印加した導電下布22の導電糸域毎の導電糸との間の静電容量を介して周期信号を印加しなかった導電上布20の導電糸域の導電糸から出力される信号を取出す。そして、周期信号の周波数毎に、取出した信号と印加信号との信号差のうち位相差または振幅差、あるいは位相差と振幅差の双方を検出する。これにより、回路上の混線なく、各セル24における正確な静電容量の変化の信号が得られる。よって、導電性織物10の各セル24についてタッチされたか否かを検出することが可能となり、導電性織物10をタッチセンサとして使用するタッチセンサ装置30を提供することができる。   Then, a periodic signal having a different frequency for each conductive yarn region is applied to the conductive yarn in the conductive yarn region of the conductive lower cloth 22, and the static yarn between the conductive yarn in each conductive yarn region of the conductive lower fabric 22 to which the periodic signal is applied. A signal output from the conductive yarn in the conductive yarn region of the conductive upper cloth 20 to which no periodic signal is applied is taken out via the capacitance. Then, for each frequency of the periodic signal, a phase difference or an amplitude difference or both a phase difference and an amplitude difference are detected from the signal difference between the extracted signal and the applied signal. As a result, an accurate capacitance change signal in each cell 24 can be obtained without crosstalk on the circuit. Therefore, it becomes possible to detect whether or not each cell 24 of the conductive fabric 10 is touched, and it is possible to provide a touch sensor device 30 that uses the conductive fabric 10 as a touch sensor.

次に、実施例2について説明する。図7に、実施例2におけるタッチパネル装置30Aの構成を示す。実施例2の実施例1との違いは、周期信号として、発振器58が発生する単一の周波数の信号を、分配マルチプレクサ56により、時分割して、導電下布22の導電糸域16a、導電糸域16b及び導電糸域16cに印加している点にある。
そして、マルチプレクサ50は、導電上布20の導電糸域16d、導電糸域16e及び導電糸域16fから取出した信号を、導電糸域毎に3系列に分離した状態で、信号差検出回路52に送り出す。そして、信号差検出回路52では、導電糸域毎に取込んだ信号について、時分割された時間帯毎に発振器58から取込んだ基準信号との信号差から、位相差の検出を行い、回路上の混線なく、各セル24毎の正確な静電容量の変化を検出し、タッチされたセル24を特定する。
なお、信号差検出回路52に接続された動作処理回路54は、実施例1と同様に、タッチパネル装置30Aの動作を制御する。
なお、信号差から振幅差を検出しても良い点、周期信号が矩形波でも良い点は実施例1と同様である。
Next, Example 2 will be described. FIG. 7 shows a configuration of the touch panel device 30A according to the second embodiment. The difference between the second embodiment and the first embodiment is that a signal having a single frequency generated by the oscillator 58 is time-divided as a periodic signal by the distribution multiplexer 56, and the conductive yarn region 16a of the conductive lower cloth 22 is electrically conductive. It is in the point applied to the yarn area 16b and the conductive yarn area 16c.
Then, the multiplexer 50 supplies the signal taken out from the conductive yarn area 16d, the conductive yarn area 16e, and the conductive yarn area 16f of the conductive upper cloth 20 to the signal difference detection circuit 52 in a state where the signals are separated into three series for each conductive yarn area. Send it out. The signal difference detection circuit 52 detects the phase difference from the signal difference from the reference signal acquired from the oscillator 58 for each time-divided time zone for the signal acquired for each conductive yarn area, An accurate change in capacitance for each cell 24 is detected without the above crossing line, and the touched cell 24 is specified.
The operation processing circuit 54 connected to the signal difference detection circuit 52 controls the operation of the touch panel device 30A as in the first embodiment.
The point that the amplitude difference may be detected from the signal difference and the point that the periodic signal may be a rectangular wave are the same as in the first embodiment.

実施例2によれば、実施例1と同様に、導電性織物10を用いたフレキシブルで感度の高いタッチセンサ装置を提供することができる。また、発振器を1台で済ますことができるため、タッチパネル装置のコストを低減することができる。   According to the second embodiment, as in the first embodiment, a flexible and highly sensitive touch sensor device using the conductive fabric 10 can be provided. Further, since only one oscillator can be used, the cost of the touch panel device can be reduced.

[変形例]
上記の各実施例では、絶縁糸にポリプロピレンを用いたが、絶縁糸については、ポリエステル、ナイロン、レーヨン、ポリビニルアルコール、ポリアクリロニトリル、ポリプロピレン、ポリエチレン、ポリウレタン等の合成繊維を用いても良く、天然繊維のウールを用いても良い。
そして、導電糸については、銅、アルミ、鉄、ステンレス、ニクロム、金、銀、チタンニッケル合金等の金属繊維、PAN系、ピッチ系の炭素繊維を用いても良い。また、導電糸として、絶縁糸に使用するポリエステル、ナイロン、レーヨン等の樹脂に導電成分としてカーボン、グラファイト、カーボナノチューブ等を混練後に紡糸した糸を用いることもできる。また、導電糸として、絶縁糸の表面に導電成分として銅、アルミ、銀、金等を金属メッキ手法により被覆した糸を用いることもできる。また、導電糸として、導電糸に絶縁糸を撚糸した構造の導電糸や導電糸に絶縁性の樹脂をコーティングした構造の導電糸を用いることもできる。特に樹脂をコーティングした構造のものは、耐湿性・耐水性を向上することができるため、センサ性能の安定性向上や誤作動を防ぐことができる。
[Modification]
In each of the above examples, polypropylene was used for the insulating yarn, but for the insulating yarn, synthetic fibers such as polyester, nylon, rayon, polyvinyl alcohol, polyacrylonitrile, polypropylene, polyethylene, and polyurethane may be used. May be used.
For the conductive yarn, metal fibers such as copper, aluminum, iron, stainless steel, nichrome, gold, silver, and titanium nickel alloy, PAN-based, and pitch-based carbon fibers may be used. In addition, as a conductive yarn, a yarn obtained by spinning a carbon, graphite, carbon nanotube, or the like as a conductive component in a resin such as polyester, nylon, or rayon used for an insulating yarn can be used. Further, as the conductive yarn, a yarn obtained by coating the surface of the insulating yarn with copper, aluminum, silver, gold or the like as a conductive component by a metal plating method can be used. Further, as the conductive yarn, a conductive yarn having a structure in which an insulating yarn is twisted on the conductive yarn or a conductive yarn having a structure in which an insulating resin is coated on the conductive yarn can be used. In particular, a resin-coated structure can improve moisture resistance and water resistance, and thus can improve sensor performance stability and prevent malfunction.

上記の各実施例では、導電下布22の導電糸域の導電糸に周期信号を印加し、導電上布20の導電糸域の導電糸から信号を取出す構成としたが、導電上布20の導電糸域の導電糸に周期信号を印加し、導電下布22の導電糸域の導電糸から出力される信号を取出す構成としても良い。
そして、上記の各実施例では、導電性織物の各導電布には、導電糸域がそれぞれ3箇所形成された構成としているが、導電糸域の数はこれに限定されない。
そして、上記の各実施例について、導電性織物10の表面に樹脂を含浸させて、導電性織物の耐水性を向上させることができる。そして、パイル糸層26に樹脂を含浸させて、導電性織物10の強度や復元性を向上させることができる。また、含浸させる樹脂の化学物質吸収性などの特性を、導電性織物10の特性として付加することができる。
In each of the above embodiments, the periodic signal is applied to the conductive yarn in the conductive yarn region of the conductive lower cloth 22 and the signal is taken out from the conductive yarn in the conductive yarn region of the conductive upper fabric 20. A configuration may be adopted in which a periodic signal is applied to the conductive yarn in the conductive yarn region and a signal output from the conductive yarn in the conductive yarn region of the conductive lower cloth 22 is taken out.
And in each said Example, although it is set as the structure by which the conductive yarn area | region was formed in three places in each conductive cloth of a conductive textile fabric, the number of conductive yarn areas is not limited to this.
And about each said Example, the surface of the conductive fabric 10 can be impregnated with resin, and the water resistance of the conductive fabric can be improved. Then, the pile yarn layer 26 can be impregnated with a resin to improve the strength and resilience of the conductive fabric 10. Further, characteristics such as chemical substance absorbability of the resin to be impregnated can be added as characteristics of the conductive fabric 10.

上記の各実施例では、導電性織物は2枚の導電布を上下にパイル糸で結びつけた構成としているが、重ね合わせた2枚の導電布を、その周囲及び双方の絶縁糸域が交差する箇所でポリプロピレン等による絶縁糸で縫い合わせて横ずれを防止した構成としても良い。また、2枚の導電布を弾発性を有する樹脂で接着して導電性織物を構成しても良い。これらの構成によっても、導電性織物をタッチセンサとして機能させることができる。
また、タッチ位置の判定は不要でタッチ圧を高感度で検出する目的であれば、縦糸または横糸の少なくとも一方の糸の全てを導電糸で構成した導電布を、上下に重ね合わせて、普通の糸で要所を縫い合わせてずれ止めをするか、またはパイル糸で結びつけた構成とすることもできる。
In each of the above-described embodiments, the conductive fabric has a structure in which two conductive cloths are connected to each other with pile yarns. However, the two conductive cloths overlapped with each other and their insulating yarn regions intersect. It is good also as a structure which sewed with the insulation thread | yarn by a polypropylene etc. in the location and prevented the lateral shift. Alternatively, the conductive fabric may be formed by bonding two conductive cloths with a resin having elasticity. Also with these configurations, the conductive fabric can function as a touch sensor.
If the touch position determination is unnecessary and the touch pressure is to be detected with high sensitivity, conductive cloths composed of conductive threads consisting of at least one of the warp and weft threads are superposed one above the other. It is also possible to sew key points together with yarns to prevent misalignment or to connect them with pile yarns.

次に図8〜10に基づいて実施例3について説明する。実施例3の特徴は、導電布を構成する導電糸として導電性繊維を絶縁体で覆った、所謂カバリング糸を使用している点、並びに2枚の導電布をパイル糸を使用せず、一般的な絶縁糸で結合した点にある。実施例3の導電性織物60を構成する各導電布61、62は、実施例1の場合と同様に構成されており、各導電布61、62を形成する縦糸は、複数の導電糸を並べた導電糸域63と、複数の絶縁糸を並べた絶縁糸域64とが、交互に並べられた構成とされ、横糸は絶縁糸のみが並べられた構成とされている。各導電布61、62は、図8及び図9に示されるように両者の導電糸域63同士が互いに交差する態様で面合わせで重ね合わされている。そして導電糸域63同士が互いに交差する領域がセル65とされている。両導電布61、62はセル65以外の領域において一般的な絶縁糸で結束されて結合されている。図10には、セル65においてカバリング糸と絶縁糸とが平織された導電布同士が上下に重ね合わされ、セル65の両側に隣接する領域66では、カバリング糸と絶縁糸とが平織された導電布、並びに絶縁糸同士が平織された絶縁布が上下に重ね合わされ、更に絶縁糸67で両布が結束された様子が示されている。   Next, Example 3 is demonstrated based on FIGS. The feature of Example 3 is that a so-called covering yarn in which conductive fibers are covered with an insulator is used as a conductive yarn constituting the conductive cloth, and that two conductive cloths do not use a pile yarn. It is in the point which joined with a typical insulating thread. The conductive cloths 61 and 62 constituting the conductive fabric 60 of Example 3 are configured in the same manner as in Example 1, and the warp yarns forming the conductive cloths 61 and 62 are arranged with a plurality of conductive threads. The conductive yarn regions 63 and the insulating yarn regions 64 in which a plurality of insulating yarns are arranged are arranged alternately, and the weft yarn is configured such that only insulating yarns are arranged. As shown in FIG. 8 and FIG. 9, the conductive cloths 61 and 62 are overlapped with each other in such a manner that the conductive yarn areas 63 intersect with each other. A region where the conductive yarn regions 63 intersect with each other is a cell 65. Both conductive cloths 61 and 62 are bound and joined with a general insulating thread in a region other than the cell 65. In FIG. 10, conductive cloths in which covering yarns and insulating yarns are plain woven in the cells 65 are superposed one above the other. In regions 66 adjacent to both sides of the cells 65, conductive cloths in which covering yarns and insulating yarns are plain woven. In addition, the insulating cloth in which the insulating yarns are plain-woven with each other is superposed on top and bottom, and the two cloths are bound with the insulating thread 67.

以上の導電性織物60を使用してタッチセンサ装置とするための構成は実施例1の場合と全く同様である。図9に示されるように導電布61の導電糸域63a,63b,63cには、それぞれ周期信号を印加する第1〜第3発信器(不図示)が接続されている。また、導電布62の導電糸域63d,63e,63fには、各導電糸域の導電糸から出力される信号を取出すマルチプレクサ(不図示)が接続されている。
導電性織物60をタッチセンサ装置として機能させるための回路は、実施例1の場合と全く同一であり、説明は繰り返しとなるため、ここでは省略する。
The configuration for using the conductive fabric 60 as described above to form a touch sensor device is exactly the same as in the first embodiment. As shown in FIG. 9, first to third transmitters (not shown) for applying periodic signals are connected to the conductive yarn regions 63a, 63b, 63c of the conductive cloth 61, respectively. In addition, a multiplexer (not shown) that extracts a signal output from the conductive yarn in each conductive yarn region is connected to the conductive yarn regions 63d, 63e, and 63f of the conductive cloth 62.
The circuit for causing the conductive fabric 60 to function as a touch sensor device is exactly the same as in the case of the first embodiment, and the description thereof will be omitted.

以上の構成によれば、圧力が加えられたセル65の静電容量が変化し、それを実施例1と同様の処理回路により電気信号として取出すことができる。このセル65における静電容量の変化は低圧力域ではセル65における上下のカバリング糸同士の離間距離が短くなることにより生じる。また、高圧力域では、それに加えて導電糸やカバリング糸の導電性繊維を覆っている絶縁体の周りの絶縁糸の変形や歪みにより静電容量の変化が生じる。
実施例3によれば、カバリング糸を使って導電布が織られており、実施例1のようにパイル糸を使用していないため、タッチセンサとして使用したときにパイル糸の剛性の影響を受けることがなくなり、低圧力域でも高感度に圧力検出ができる。
According to the above configuration, the capacitance of the cell 65 to which pressure is applied changes, and can be taken out as an electrical signal by the same processing circuit as in the first embodiment. This change in capacitance in the cell 65 is caused by a decrease in the distance between the upper and lower covering yarns in the cell 65 in the low pressure region. In addition, in the high pressure region, capacitance changes due to deformation and distortion of the insulating yarn around the insulator covering the conductive fibers of the conductive yarn and covering yarn.
According to the third embodiment, since the conductive cloth is woven using the covering yarn, and the pile yarn is not used as in the first embodiment, it is affected by the stiffness of the pile yarn when used as a touch sensor. Therefore, pressure can be detected with high sensitivity even in a low pressure range.

実施例3において、絶縁糸64及び67は綿、カバリング糸の導電性繊維はサンダーロン(日本蚕毛染色製)、カバリング糸の絶縁体はポリエステルを使用した。絶縁糸は絶縁性のある糸であれば何を用いても良い。例えば、ポリプロピレン、ポリエステル、ナイロン、レーヨン、ポリビニルアルコール、ポリアクリロニトリル、ポリエチレン、ポリウレタン等の合成繊維でも良い。また、ウール等の天然繊維でも良い。
導電性繊維は導電性のある糸であれば何を用いても良い。例えば、銅、アルミニウム、鉄、ステンレス、ニクロム、金、銀、チタンニッケル合金等の金属繊維でも良い。また、PAN系、ピッチ系の炭素繊維でも良い。カーボン、グラファイト、カーボンナノチューブ等をポリエステル、ナイロン、レーヨン等に混練し紡糸した糸でも良い。
In Example 3, the insulating yarns 64 and 67 were made of cotton, the conductive fiber of the covering yarn was Sanderlon (manufactured by Nippon Ashi dyeing), and the insulating material of the covering yarn was polyester. Any insulating yarn may be used as long as it is an insulating yarn. For example, synthetic fibers such as polypropylene, polyester, nylon, rayon, polyvinyl alcohol, polyacrylonitrile, polyethylene, and polyurethane may be used. Natural fibers such as wool may also be used.
Any conductive fiber may be used as long as it is a conductive thread. For example, metal fibers such as copper, aluminum, iron, stainless steel, nichrome, gold, silver, and titanium nickel alloy may be used. Further, PAN-based and pitch-based carbon fibers may be used. A yarn obtained by kneading and spinning carbon, graphite, carbon nanotubes or the like in polyester, nylon, rayon or the like may be used.

次に図11〜13に基づいて実施例4について説明する。実施例4の特徴は、実施例3に比べて、カバリング糸を使った導電糸域73を互いに交差させて格子状に織り込んだ布71、72を、交差部であるセル75同士が重なるように面合わせで重ね合わされている点にある。重ね合わされた2枚の布71、72は、セル75以外の領域において一般的な絶縁糸で結束されて結合されている。図13には、セル75においてカバリング糸同士が平織された導電布同士が上下に重ね合わされ、セル75の両側に隣接する領域76では、カバリング糸と絶縁糸とが平織された導電布同士が上下に重ね合わされ、更に絶縁糸77で両布が結束された様子が示されている。   Next, Example 4 is demonstrated based on FIGS. The feature of the fourth embodiment is that, compared to the third embodiment, cloths 71 and 72 in which conductive yarn regions 73 using covering yarns are crossed and woven in a lattice shape are overlapped so that the cells 75 at the intersections overlap each other. It is in the point where it is overlapped by face-to-face. The two cloths 71 and 72 that are overlapped are bound and joined with a general insulating thread in a region other than the cell 75. In FIG. 13, the conductive cloths in which the covering yarns are plain-woven in the cell 75 are stacked one above the other. In the regions 76 adjacent to both sides of the cell 75, the conductive cloths in which the covering yarns and the insulating yarns are plain-woven are vertically aligned. A state in which the two fabrics are further bound by an insulating thread 77 is shown.

以上の導電性織物70を使用してタッチセンサ装置とするための構成は実施例1の場合と全く同様である。図12に示されるように導電布71と導電布72のそれぞれの導電糸域73a同士,導電糸域73b同士,導電糸域73c同士が互いに接続された状態で、各導電糸域73a,73b,73cには、それぞれ周期信号を印加する第1〜第3発信器(不図示)が接続されている。また、導電布71と導電布72のそれぞれの導電糸域73d同士,導電糸域73e同士,導電糸域73f同士が互いに接続された状態で、各導電糸域73d,73e,73fには、各導電糸域の導電糸から出力される信号を取出すマルチプレクサ(不図示)が接続されている。
導電性織物70をタッチセンサ装置として機能させるための回路は、実施例1の場合と全く同一であり、説明は繰り返しとなるため、ここでは省略する。
The configuration for using the conductive fabric 70 as described above to form a touch sensor device is exactly the same as in the first embodiment. As shown in FIG. 12, the conductive yarn areas 73a, 73b, 73c, 73b, 73b, and 73c are connected to each other. First to third transmitters (not shown) for applying periodic signals are connected to 73c. In addition, the conductive yarn areas 73d, 73e, and 73f of the conductive cloth 71 and the conductive cloth 72 are connected to each other with the conductive yarn areas 73d, the conductive yarn areas 73e, and the conductive yarn areas 73f connected to each other. A multiplexer (not shown) for extracting a signal output from the conductive yarn in the conductive yarn region is connected.
The circuit for causing the conductive fabric 70 to function as a touch sensor device is exactly the same as in the case of the first embodiment, and the description thereof will be omitted.

以上の構成によれば、圧力が加えられたセル75の静電容量が変化し、それを実施例1と同様の処理回路により電気信号として取出すことができる。このセル75における静電容量の変化は低圧力域ではセル75における上下のカバリング糸同士の離間距離が短くなることにより生じる。また、高圧力域では、それに加えてカバリング糸の導電性繊維を覆っている絶縁体の変形や歪みにより静電容量の変化が生じる。
実施例4において、タッチセンサ装置としての主要部を成すセル75部分の上下の導電布71、72は導電糸73同士が織り込まれたものであり、実施例3の対応部分が導電糸と絶縁糸とが織り込まれたものであるのに比べて、コンデンサとしての電極の面積が実質的に広くなるため、静電容量は大きくなり、その変化量も大きくなる。従って、実施例4の方が実施例3のセンサに比べて高感度とすることができる。
According to the above configuration, the capacitance of the cell 75 to which pressure is applied changes and can be taken out as an electrical signal by the same processing circuit as in the first embodiment. This change in capacitance in the cell 75 is caused by a decrease in the distance between the upper and lower covering yarns in the cell 75 in the low pressure range. In addition, in the high pressure region, the capacitance changes due to deformation and distortion of the insulator covering the conductive fibers of the covering yarn.
In the fourth embodiment, the upper and lower conductive cloths 71 and 72 of the cell 75 constituting the main part of the touch sensor device are woven with conductive yarns 73, and the corresponding parts of the third embodiment are the conductive yarn and the insulating yarn. And the area of the electrode as a capacitor is substantially widened, the capacitance is increased and the amount of change is also increased. Therefore, the sensitivity of Example 4 can be made higher than that of the sensor of Example 3.

次に図14〜16に基づいて実施例5について説明する。実施例5の特徴は、実施例4
の上下の導電布の導電糸域間に別途用意されたカバリング糸を挿入した点にある。具体的には、図14に示されるように、上下の導電布の各導電糸域83d同士間,83e同士間,83f同士間に、それぞれカバリング糸86が複数本並べられた導電糸域86a,86b,86cが挿入されている。上下に重ね合わされた2枚の布は、セル85以外の領域において一般的な絶縁糸で結束されて結合されている。図16には、セル85においてカバリング糸同士が平織された導電布同士が上下に重ね合わされ、それらの導電布同士間にカバリング糸86が挿入された様子が示されている。また、セル75の両側に隣接する領域87では、カバリング糸と絶縁糸とが平織された導電布同士が上下に重ね合わされ、更に絶縁糸88で両布が結束された様子が示されている。
なお、カバリング糸86は上下の導電布の各導電糸域83a同士間,83b同士間,83c同士間に導電糸域86a,86b,86cが挿入される構成としても良い。また、カバリング糸86は絶縁糸と組合わせて平織された布とされても良い。
Next, Example 5 will be described with reference to FIGS. The characteristics of the fifth embodiment are the same as those of the fourth embodiment.
A covering yarn prepared separately is inserted between the conductive yarn areas of the upper and lower conductive cloths. Specifically, as shown in FIG. 14, conductive yarn regions 86a in which a plurality of covering yarns 86 are arranged between the conductive yarn regions 83d, 83e, and 83f of the upper and lower conductive fabrics. 86b and 86c are inserted. The two cloths stacked one above the other are bound and joined with a general insulating thread in a region other than the cell 85. FIG. 16 shows a state in which the conductive fabrics in which the covering yarns are plain-woven in the cell 85 are stacked one above the other and the covering yarns 86 are inserted between the conductive fabrics. Moreover, in the area | region 87 adjacent to the both sides of the cell 75, the mode that the conductive cloth by which the covering thread | yarn and the insulating thread | yarn were plain-woven was piled up and down was further shown, and both the cloths were bound by the insulating thread | yarn 88.
The covering yarn 86 may be configured such that the conductive yarn regions 86a, 86b, 86c are inserted between the conductive yarn regions 83a, 83b, and 83c of the upper and lower conductive cloths. Further, the covering yarn 86 may be a plain woven fabric combined with an insulating yarn.

以上の導電性織物80を使用してタッチセンサ装置とするための構成は実施例1の場合と全く同様である。図14に示されるように各導電糸域86a,86b,86cには、それぞれ周期信号を印加する第1〜第3発信器(不図示)が接続されている。また、上下の導電布の導電糸域83a同士,導電糸域83b同士,導電糸域83c同士が互いに接続された状態で、更に上下の導電布の導電糸域83f,導電糸域83e,導電糸域83dにそれぞれ接続され、それらの導電糸域には各導電糸域の導電糸から出力される信号を取出すマルチプレクサ(不図示)が接続されている。図15には一つのセル85の等価回路図が示されており、導電糸域86aには第1発信器40が接続され、上下の導電糸域83dが結合されたものと上下の導電糸域83aが結合されたものとが互いに接続された状態で、出力端子Voutを介してマルチプレクサ32に接続されている。図15において、C1は導電糸域86aと上の導電糸域83dとの間の静電容量、並びに導電糸域86aと下の導電糸域83dとの間の静電容量の合成静電容量を示し、C2は導電糸域86aと上の導電糸域83aとの間の静電容量、並びに導電糸域86aと下の導電糸域83aとの間の静電容量の合成静電容量を示している。
導電性織物80をタッチセンサ装置として機能させるための回路は、実施例1の場合と全く同一であり、説明は繰り返しとなるため、ここでは省略する。
The configuration for using the conductive fabric 80 as described above to form a touch sensor device is exactly the same as in the first embodiment. As shown in FIG. 14, first to third transmitters (not shown) for applying periodic signals are connected to the respective conductive yarn regions 86a, 86b, 86c. In addition, in a state where the conductive yarn regions 83a, the conductive yarn regions 83b, and the conductive yarn regions 83c of the upper and lower conductive fabrics are connected to each other, the conductive yarn regions 83f, the conductive yarn regions 83e, and the conductive yarns of the upper and lower conductive fabrics are further connected. Each of the conductive yarn regions is connected to a region (83d), and a multiplexer (not shown) for extracting a signal output from the conductive yarn of each conductive yarn region is connected to each of the regions 83d. FIG. 15 shows an equivalent circuit diagram of one cell 85, in which the first oscillator 40 is connected to the conductive yarn area 86a, and the upper and lower conductive yarn areas are combined with the upper and lower conductive yarn areas 83d. In a state in which the combination of 83a is connected to each other, it is connected to the multiplexer 32 via the output terminal Vout. In FIG. 15, C 1 is a combined capacitance of the capacitance between the conductive yarn region 86a and the upper conductive yarn region 83d, and the capacitance between the conductive yarn region 86a and the lower conductive yarn region 83d. C 2 is the combined capacitance of the capacitance between the conductive yarn region 86a and the upper conductive yarn region 83a and the capacitance between the conductive yarn region 86a and the lower conductive yarn region 83a. Show.
A circuit for causing the conductive fabric 80 to function as a touch sensor device is exactly the same as that in the first embodiment, and the description thereof will be omitted.

以上の構成によれば、圧力が加えられたセル85の静電容量が変化し、それを処理回路により電気信号として取出すことができる。このセル85における静電容量の変化は低圧力域ではセル85における上下のカバリング糸83と両者間に挿入されたカバリング糸86との各離間距離が短くなることにより生じる。また、高圧力域では、それに加えて各カバリング糸の導電性繊維を覆っている絶縁糸の変形や歪みにより静電容量の変化が生じる。
実施例5では、上側の導電布を構成するカバリング糸83と挿入されたカバリング糸86との間での容量変化と、下側の導電布を構成するカバリング糸83と挿入されたカバリング糸86との間での容量変化とが合成されるため、静電容量変化量は大きくなる。従って、実施例5の方が実施例1のセンサに比べて高感度とすることができる。
According to the above configuration, the capacitance of the cell 85 to which pressure is applied changes, and it can be taken out as an electrical signal by the processing circuit. This change in capacitance in the cell 85 is caused by a decrease in the distance between the upper and lower covering yarns 83 in the cell 85 and the covering yarns 86 inserted therebetween in the low pressure range. In addition, in the high pressure region, the capacitance changes due to deformation and distortion of the insulating yarn covering the conductive fiber of each covering yarn.
In Example 5, the capacity change between the covering yarn 83 constituting the upper conductive cloth and the inserted covering yarn 86, and the covering yarn 83 constituting the lower conductive cloth and the inserted covering yarn 86, Therefore, the capacitance change amount increases. Therefore, the sensitivity of Example 5 can be made higher than that of the sensor of Example 1.

実施例1及び実施例3〜5の導電性織物10、60、70及び80の圧力検出特性を評価する試験を行った。試験は、導電性織物10、60、70及び80の中央のセル24、65、75及び85に静電容量を検出するようにLCRメーターを接続し、中央のセル24、65、75及び85に加える圧力を変化させながら、中央のセル24、65、75及び85の静電容量を測定した。そして、比較のために、特許文献1に記載されたものと同等の導電性の平織物についても、圧力検出特性を評価する試験を行った。図4に、圧力検査特性を評価した結果を示す。図中の横軸は加えた圧力を示し、縦軸は静電容量の変化量を示している。
図4の白三角(△)印は特許文献1に記載されたものと同等の導電性の平織物の特性を示し、白四角(□)印は実施例1の導電性織物10の特性を示している。また、黒三角(▲)印は実施例3、黒四角(■)印は実施例4、黒丸(●)印は実施例5のそれぞれ導電性織物60、70、80の各特性を示している。図4から、導電性織物10、60、70及び80では、圧力が増加するに連れて、静電容量が大きく変化することが確認できる。一方、特許文献1に記載されたものと同等の導電性の平織物では、圧力の変化により静電容量の変化は各実施例のものに比べて僅かである。このグラフから、導電性織物10、60、70及び80は、導電性の平織物に比べて、布にかかる圧力を高感度で検出できることが確認できる。
The test which evaluates the pressure detection characteristic of the electroconductive textiles 10, 60, 70 and 80 of Example 1 and Examples 3-5 was done. The test consists in connecting an LCR meter to the central cells 24, 65, 75 and 85 of the conductive fabrics 10, 60, 70 and 80 to detect the capacitance, and in the central cells 24, 65, 75 and 85. The capacitance of the central cells 24, 65, 75 and 85 was measured while changing the applied pressure. And for the comparison, the test which evaluates a pressure detection characteristic was done also about the electroconductive plain fabric equivalent to what was described in patent document 1. FIG. FIG. 4 shows the results of evaluating the pressure inspection characteristics. The horizontal axis in the figure indicates the applied pressure, and the vertical axis indicates the amount of change in capacitance.
The white triangle (Δ) mark in FIG. 4 shows the characteristics of a conductive plain fabric equivalent to that described in Patent Document 1, and the white square (□) mark shows the characteristics of the conductive fabric 10 of Example 1. ing. Further, the black triangle (▲) mark indicates the characteristics of the conductive fabrics 60, 70, and 80 of Example 3, the black square (■) mark of Example 4, and the black circle (●) marks of Example 5, respectively. . From FIG. 4, it can be confirmed that in the conductive fabrics 10, 60, 70 and 80, the capacitance changes greatly as the pressure increases. On the other hand, in the conductive plain woven fabric equivalent to that described in Patent Document 1, the change in capacitance due to the change in pressure is small compared to that in each example. From this graph, it can be confirmed that the conductive fabrics 10, 60, 70 and 80 can detect the pressure applied to the fabric with higher sensitivity than the conductive plain fabric.

以上、本発明を実施するための形態について各実施例に従って説明したが、本発明に係る導電性織物及び導電性織物を使用したタッチセンサ装置は、その発明の思想の範囲で、各種の形態で実施できるものである。例えば、各実施例の導電性織物は、導電布が2枚重ねられた2重織、若しくは2重織の布間に導電糸を挿入した3重織としたが、4重織、5重織のような多重織とすることができる。また、布の織り方は、平織に限らず、綾織、朱子織など各種のものが採用できる。   As mentioned above, although the form for implementing this invention was demonstrated according to each Example, the touch sensor apparatus using the conductive fabric and conductive fabric which concern on this invention is a range of the thought of the invention with various forms. It can be implemented. For example, the conductive fabric of each example is a double woven fabric in which two conductive cloths are stacked, or a triple woven fabric in which conductive yarns are inserted between the double woven fabrics. It is possible to make a multiple weave like Further, the weaving method of the cloth is not limited to plain weave, and various kinds such as twill weave and satin weave can be adopted.

10、60、70、80 導電性織物
12 導電糸
14 絶縁糸
16 導電糸域
18 絶縁糸域
20 導電上布
21 上布電極
22 導電下布
23 下布電極
24 セル
26 パイル糸層
30 タッチセンサ装置
32 マルチプレクサ
34 信号差検出回路
36 動作処理回路
40 第1発振器
42 第2発振器
44 第3発振器
48 タッチ位置表示器
50 マルチプレクサ
52 信号差検出回路
54 動作処理回路
56 分配マルチプレクサ
58 発振器
63、73、83 カバリング糸(導電糸)
10, 60, 70, 80 Conductive fabric 12 Conductive thread 14 Insulated thread 16 Conductive thread area 18 Insulated thread area 20 Conductive upper cloth 21 Upper cloth electrode 22 Conductive lower cloth 23 Lower cloth electrode 24 Cell 26 Pile thread layer 30 Touch sensor device 32 multiplexer 34 signal difference detection circuit 36 operation processing circuit 40 first oscillator 42 second oscillator 44 third oscillator 48 touch position indicator 50 multiplexer 52 signal difference detection circuit 54 operation processing circuit 56 distribution multiplexer 58 oscillators 63, 73, 83 covering Thread (conductive thread)

Claims (8)

導電糸が織り込まれた導電性織物であって、
導電糸が織り込まれた少なくとも2枚の導電布が面合わせに重ね合わされて一体化された導電性織物。
A conductive fabric woven with conductive yarn,
A conductive fabric in which at least two conductive cloths in which conductive yarns are woven are superposed on each other and integrated.
請求項1に記載の導電性織物であって、
前記導電糸は導電性繊維を絶縁体で覆った導電糸であり、この導電糸を使って少なくとも2枚の導電布を織り、それらの導電布を面合わせに重ね合わせ、各布の導電糸が互いに重なる部分の少なくとも一部を除いて、各導電布を絶縁糸で結束して一体化したことを特徴とする導電性織物。
The conductive fabric according to claim 1,
The conductive yarn is a conductive yarn in which conductive fibers are covered with an insulator, and at least two conductive cloths are woven using the conductive yarn, and the conductive yarns are superposed on each other. A conductive woven fabric characterized in that each conductive cloth is bundled and integrated with an insulating thread except for at least a part of the overlapping portions.
請求項1に記載の導電性織物であって、
前記各導電布がパイル糸で結びつけられて、立体構造とされたことを特徴とする導電性織物。
The conductive fabric according to claim 1,
A conductive fabric characterized in that each of the conductive cloths is connected with pile yarn to form a three-dimensional structure.
請求項1ないし請求項3のいずれかに記載の導電性織物であって、
前記導電性織物の表面または前記各導電布の間に樹脂を含浸させたことを特徴とする導電性織物。
The conductive fabric according to any one of claims 1 to 3,
A conductive fabric, wherein a surface of the conductive fabric or each conductive fabric is impregnated with a resin.
請求項1ないし請求項4のいずれかの請求項に記載の導電性織物であって、
前記各導電布を形成する縦糸と横糸のうちいずれか一方の糸は、複数の導電糸を並べた導電糸域と、複数の絶縁糸を並べた絶縁糸域とが、交互に並べられた構成とされ、縦糸と横糸の内の他方の糸は絶縁糸のみが並べられた構成とされており、
前記各導電布は導電糸が互いに交差する方向で面合わせに重ね合わされて一体化されており、該各導電布の導電糸域が交差する領域であるセルを、タッチセンサとして機能させることを特徴とする導電性織物。
The conductive fabric according to any one of claims 1 to 4, wherein
Any one of the warp and weft forming each conductive cloth has a configuration in which conductive yarn regions in which a plurality of conductive yarns are arranged and insulating yarn regions in which a plurality of insulating yarns are arranged alternately. And the other of the warp and weft yarns has a configuration in which only insulating yarns are arranged,
The conductive cloths are integrated by overlapping the conductive yarns in a direction in which the conductive yarns intersect with each other, and a cell that is an area where the conductive yarn regions of the conductive cloths intersect is made to function as a touch sensor. Conductive fabric.
請求項5に記載の導電性織物に形成されたセルをタッチセンサとして使用するタッチセンサ装置であって、
前記各導電布のいずれかの導電布の導電糸域の導電糸に導電糸域毎に相互に区別が可能な周期信号を印加し、
周期信号を印加した導電布の導電糸域毎の導電糸との間の静電容量を介して周期信号を印加しなかった導電布の導電糸域の導電糸から出力される信号を取出し、
取出した信号と印加信号との信号差を検出することにより、タッチされたセルを検出する信号検出回路を備えたタッチセンサ装置。
A touch sensor device using a cell formed on the conductive fabric according to claim 5 as a touch sensor,
Applying a periodic signal that can be distinguished from each other for each conductive yarn region to the conductive yarn of the conductive yarn region of any one of the conductive fabrics,
Taking out the signal output from the conductive yarn in the conductive yarn area of the conductive cloth not applying the periodic signal via the electrostatic capacitance between the conductive yarn of each conductive yarn area of the conductive cloth to which the periodic signal was applied,
A touch sensor device including a signal detection circuit that detects a touched cell by detecting a signal difference between an extracted signal and an applied signal.
請求項6に記載のタッチセンサ装置であって、
前記各導電布のいずれかの導電布の導電糸域の導電糸に印加される周期信号は、導電糸域毎に周波数が異なっていることを特徴とするタッチセンサ装置。
The touch sensor device according to claim 6,
The touch sensor device according to claim 1, wherein the frequency of the periodic signal applied to the conductive yarn in the conductive yarn region of any one of the conductive fabrics is different for each conductive yarn region.
請求項6に記載のタッチセンサ装置であって、
前記各導電布のいずれかの導電布の導電糸域の導電糸に印加される周期信号は、各導電糸域に対して時分割で印加されることを特徴とするタッチセンサ装置。
The touch sensor device according to claim 6,
The touch sensor device according to claim 1, wherein the periodic signal applied to the conductive yarn in the conductive yarn region of any one of the conductive fabrics is applied to each conductive yarn region in a time-sharing manner.
JP2010176276A 2009-10-15 2010-08-05 Conductive fabric and touch sensor device using conductive fabric Active JP5668966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176276A JP5668966B2 (en) 2009-10-15 2010-08-05 Conductive fabric and touch sensor device using conductive fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009238399 2009-10-15
JP2009238399 2009-10-15
JP2010176276A JP5668966B2 (en) 2009-10-15 2010-08-05 Conductive fabric and touch sensor device using conductive fabric

Publications (2)

Publication Number Publication Date
JP2011102457A true JP2011102457A (en) 2011-05-26
JP5668966B2 JP5668966B2 (en) 2015-02-12

Family

ID=44192899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176276A Active JP5668966B2 (en) 2009-10-15 2010-08-05 Conductive fabric and touch sensor device using conductive fabric

Country Status (1)

Country Link
JP (1) JP5668966B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031550A (en) * 2010-07-09 2012-02-16 Asahi Kasei Fibers Corp Conductive three-layer structured fabric
JP2013178185A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Cloth-like pressure sensor heater
KR101326796B1 (en) 2012-01-10 2013-11-11 상명대학교서울산학협력단 Textile touch sensor
KR20140014767A (en) * 2012-07-26 2014-02-06 한국전자통신연구원 Sensor for measuring tilt base on electronic textile and method thereof
CN104076909A (en) * 2013-03-25 2014-10-01 联想(北京)有限公司 Input device and electronic equipment
WO2015119211A1 (en) * 2014-02-06 2015-08-13 独立行政法人科学技術振興機構 Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
WO2016025554A1 (en) * 2014-08-15 2016-02-18 Google Inc. Interactive textiles
JP2016031269A (en) * 2014-07-28 2016-03-07 住江織物株式会社 Body pressure distribution measurement device
CN105615425A (en) * 2015-12-18 2016-06-01 南方寝饰科技有限公司 Sheet having automatic water-wetting alarming function
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
KR101711754B1 (en) * 2015-09-30 2017-03-02 숭실대학교산학협력단 Textile type controller
KR101711753B1 (en) * 2015-09-30 2017-03-02 숭실대학교산학협력단 Textile type slide controller
JP2017068780A (en) * 2015-10-02 2017-04-06 グンゼ株式会社 Capacitive touch sensor
JP2017071862A (en) * 2015-10-05 2017-04-13 株式会社槌屋 Body pressure measuring wear
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
EP3201744A1 (en) * 2014-09-30 2017-08-09 Apple Inc. Fabric sensing device
CN107066128A (en) * 2015-09-15 2017-08-18 新益先创科技股份有限公司 Wearable device with capacitance sensing function and interactive robot pet
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
WO2017174505A1 (en) * 2016-04-04 2017-10-12 Pilz Gmbh & Co. Kg Woven fabric having a plurality of woven fabric layers
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
JP2017201507A (en) * 2016-03-18 2017-11-09 ▲蘇▼州椒▲圖▼▲電▼子有限公司JIAOTU Co., Ltd Sensing circuit, method for processing sensing circuit, and method for measuring curved surface profile
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
KR20180001530A (en) * 2017-12-13 2018-01-04 전남대학교산학협력단 Rollable touch screen
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
JP2018508848A (en) * 2015-03-26 2018-03-29 グーグル エルエルシー 2-layer interactive textile
JP2018105827A (en) * 2016-12-28 2018-07-05 株式会社槌屋 Pressure distribution detector
WO2018165703A1 (en) 2017-03-13 2018-09-20 Imagine Intelligent Materials Ltd Piezocapacitive textile using graphene
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US10139916B2 (en) 2015-04-30 2018-11-27 Google Llc Wide-field radar-based gesture recognition
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
US10228806B2 (en) 2016-04-15 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Flexible touch sensor and method of manufacturing the same
US10241581B2 (en) 2015-04-30 2019-03-26 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
JP2019511642A (en) * 2016-04-04 2019-04-25 ピルツ ゲーエムベーハー アンド コー.カーゲー Sensor fabric having multiple fabric layers and method of making the same
US10300370B1 (en) 2015-10-06 2019-05-28 Google Llc Advanced gaming and virtual reality control using radar
US10310620B2 (en) 2015-04-30 2019-06-04 Google Llc Type-agnostic RF signal representations
WO2019167744A1 (en) * 2018-02-28 2019-09-06 住友理工株式会社 Sensor electrode and planar sensor using same
JP2019183348A (en) * 2018-04-14 2019-10-24 株式会社レジナ Woven fabric and textile product using the same
US10492302B2 (en) 2016-05-03 2019-11-26 Google Llc Connecting an electronic component to an interactive textile
US10579150B2 (en) 2016-12-05 2020-03-03 Google Llc Concurrent detection of absolute distance and relative movement for sensing action gestures
CN110945170A (en) * 2017-04-21 2020-03-31 皮尔茨有限及两合公司 Shaped knitted fabric and use of the shaped knitted fabric
CN111108341A (en) * 2017-07-20 2020-05-05 畅想智能材料有限公司 Geosynthetic sensor array
US10664059B2 (en) 2014-10-02 2020-05-26 Google Llc Non-line-of-sight radar-based gesture recognition
CN111251668A (en) * 2018-12-03 2020-06-09 东华镜月(苏州)纺织技术研究有限公司 Intelligent knitted fabric and control system
US10908034B2 (en) 2016-11-25 2021-02-02 Panasonic Intellectual Property Management Co., Ltd. Pressure-sensitive element and steering device
CN113358249A (en) * 2021-06-11 2021-09-07 中国科学技术大学 Fabric type piezoresistive sensor array and intelligent object
CN113588144A (en) * 2021-07-23 2021-11-02 南方科技大学 Stress distribution detection system, method and device
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
JP2022531063A (en) * 2019-03-05 2022-07-06 グーグル エルエルシー Touch sensor type braid cord
WO2022181254A1 (en) * 2021-02-25 2022-09-01 パナソニックIpマネジメント株式会社 Load sensor
US11740141B2 (en) 2019-01-24 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Pressure-sensitive element
EP4293331A1 (en) * 2022-06-17 2023-12-20 Satab Textile sensor, detection device comprising such a sensor and associated detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630709A (en) 2018-01-23 2020-09-04 松下知识产权经营株式会社 Secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266008A (en) * 1988-08-31 1990-03-06 Nippon Filcon Co Ltd Non-electrified belt provided with non-conductive protecting layer
JPH06238790A (en) * 1993-02-16 1994-08-30 Toray Ind Inc Upholstery material
JPH07216690A (en) * 1994-01-25 1995-08-15 Toray Ind Inc Connected pile web for conductive material
JP2005525481A (en) * 2002-05-10 2005-08-25 サーノフ・コーポレーション Electronic woven fabric having multiple layers, woven fabric and method of woven it
JP2006234716A (en) * 2005-02-28 2006-09-07 Aichi Prefecture Sheet-like sensor device
JP2008249409A (en) * 2007-03-29 2008-10-16 Fukui Prefecture Fiber structure for sensing pressure
JP4273233B2 (en) * 2005-03-31 2009-06-03 福井県 Pressure-sensitive sensor sheet
JP2009191398A (en) * 2008-02-14 2009-08-27 Toray Ind Inc Polyester fiber and fiber product produced by using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266008A (en) * 1988-08-31 1990-03-06 Nippon Filcon Co Ltd Non-electrified belt provided with non-conductive protecting layer
JPH06238790A (en) * 1993-02-16 1994-08-30 Toray Ind Inc Upholstery material
JPH07216690A (en) * 1994-01-25 1995-08-15 Toray Ind Inc Connected pile web for conductive material
JP2005525481A (en) * 2002-05-10 2005-08-25 サーノフ・コーポレーション Electronic woven fabric having multiple layers, woven fabric and method of woven it
JP2006234716A (en) * 2005-02-28 2006-09-07 Aichi Prefecture Sheet-like sensor device
JP4273233B2 (en) * 2005-03-31 2009-06-03 福井県 Pressure-sensitive sensor sheet
JP2008249409A (en) * 2007-03-29 2008-10-16 Fukui Prefecture Fiber structure for sensing pressure
JP2009191398A (en) * 2008-02-14 2009-08-27 Toray Ind Inc Polyester fiber and fiber product produced by using the same

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031550A (en) * 2010-07-09 2012-02-16 Asahi Kasei Fibers Corp Conductive three-layer structured fabric
KR101326796B1 (en) 2012-01-10 2013-11-11 상명대학교서울산학협력단 Textile touch sensor
JP2013178185A (en) * 2012-02-29 2013-09-09 Nissan Motor Co Ltd Cloth-like pressure sensor heater
KR20140014767A (en) * 2012-07-26 2014-02-06 한국전자통신연구원 Sensor for measuring tilt base on electronic textile and method thereof
KR101940492B1 (en) 2012-07-26 2019-04-10 한국전자통신연구원 Sensor for measuring tilt base on electronic textile and method thereof
CN104076909A (en) * 2013-03-25 2014-10-01 联想(北京)有限公司 Input device and electronic equipment
US10401240B2 (en) 2014-02-06 2019-09-03 Japan Science And Technology Agency Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
WO2015119211A1 (en) * 2014-02-06 2015-08-13 独立行政法人科学技術振興機構 Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
JPWO2015119211A1 (en) * 2014-02-06 2017-03-23 国立研究開発法人科学技術振興機構 Pressure sensor sheet, pressure sensor, and method of manufacturing pressure sensor sheet
US9971415B2 (en) 2014-06-03 2018-05-15 Google Llc Radar-based gesture-recognition through a wearable device
US10948996B2 (en) 2014-06-03 2021-03-16 Google Llc Radar-based gesture-recognition at a surface of an object
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US10509478B2 (en) 2014-06-03 2019-12-17 Google Llc Radar-based gesture-recognition from a surface radar field on which an interaction is sensed
JP2016031269A (en) * 2014-07-28 2016-03-07 住江織物株式会社 Body pressure distribution measurement device
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US10642367B2 (en) 2014-08-07 2020-05-05 Google Llc Radar-based gesture sensing and data transmission
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
JP2019061692A (en) * 2014-08-15 2019-04-18 グーグル エルエルシー Interactive textiles
KR101980327B1 (en) * 2014-08-15 2019-05-20 구글 엘엘씨 Interactive textiles
KR20180110183A (en) * 2014-08-15 2018-10-08 구글 엘엘씨 Interactive textiles
DE112015002332B4 (en) 2014-08-15 2023-02-02 Google LLC (n.d.Ges.d. Staates Delaware) Interactive textiles
KR101904370B1 (en) * 2014-08-15 2018-10-05 구글 엘엘씨 Interactive textiles
WO2016025554A1 (en) * 2014-08-15 2016-02-18 Google Inc. Interactive textiles
KR20180050440A (en) * 2014-08-15 2018-05-14 구글 엘엘씨 Interactive textiles
US9933908B2 (en) 2014-08-15 2018-04-03 Google Llc Interactive textiles
US10409385B2 (en) 2014-08-22 2019-09-10 Google Llc Occluded gesture recognition
US11221682B2 (en) 2014-08-22 2022-01-11 Google Llc Occluded gesture recognition
US10936081B2 (en) 2014-08-22 2021-03-02 Google Llc Occluded gesture recognition
US11816101B2 (en) 2014-08-22 2023-11-14 Google Llc Radar recognition-aided search
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
EP3201744B1 (en) * 2014-09-30 2022-06-08 Apple Inc. Fabric sensing device
US10338755B2 (en) * 2014-09-30 2019-07-02 Apple Inc. Fabric sensing device
JP7162583B2 (en) 2014-09-30 2022-10-28 アップル インコーポレイテッド fabric sensing device
JP2020057398A (en) * 2014-09-30 2020-04-09 アップル インコーポレイテッドApple Inc. Fabric sensing device
US10739924B2 (en) 2014-09-30 2020-08-11 Apple Inc. Fabric sensing device
EP3201744A1 (en) * 2014-09-30 2017-08-09 Apple Inc. Fabric sensing device
US11204656B2 (en) 2014-09-30 2021-12-21 Apple Inc. Fabric sensing device
US20170249033A1 (en) * 2014-09-30 2017-08-31 Apple Inc. Fabric sensing device
US11656697B2 (en) 2014-09-30 2023-05-23 Apple Inc. Fabric sensing device
JP2017536607A (en) * 2014-09-30 2017-12-07 アップル インコーポレイテッド This application claims priority to US Provisional Application No. 62 / 058,027, filed Sep. 30, 2014, which is hereby incorporated by reference in its entirety. Incorporated in.
US10664059B2 (en) 2014-10-02 2020-05-26 Google Llc Non-line-of-sight radar-based gesture recognition
US11163371B2 (en) 2014-10-02 2021-11-02 Google Llc Non-line-of-sight radar-based gesture recognition
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
JP2018508848A (en) * 2015-03-26 2018-03-29 グーグル エルエルシー 2-layer interactive textile
US10241581B2 (en) 2015-04-30 2019-03-26 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US11709552B2 (en) 2015-04-30 2023-07-25 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US10139916B2 (en) 2015-04-30 2018-11-27 Google Llc Wide-field radar-based gesture recognition
US10664061B2 (en) 2015-04-30 2020-05-26 Google Llc Wide-field radar-based gesture recognition
US10310620B2 (en) 2015-04-30 2019-06-04 Google Llc Type-agnostic RF signal representations
US10496182B2 (en) 2015-04-30 2019-12-03 Google Llc Type-agnostic RF signal representations
US10817070B2 (en) 2015-04-30 2020-10-27 Google Llc RF-based micro-motion tracking for gesture tracking and recognition
US10155274B2 (en) 2015-05-27 2018-12-18 Google Llc Attaching electronic components to interactive textiles
US10936085B2 (en) 2015-05-27 2021-03-02 Google Llc Gesture detection and interactions
US10203763B1 (en) 2015-05-27 2019-02-12 Google Inc. Gesture detection and interactions
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US10572027B2 (en) 2015-05-27 2020-02-25 Google Llc Gesture detection and interactions
CN107066128A (en) * 2015-09-15 2017-08-18 新益先创科技股份有限公司 Wearable device with capacitance sensing function and interactive robot pet
KR101711754B1 (en) * 2015-09-30 2017-03-02 숭실대학교산학협력단 Textile type controller
KR101711753B1 (en) * 2015-09-30 2017-03-02 숭실대학교산학협력단 Textile type slide controller
JP2017068780A (en) * 2015-10-02 2017-04-06 グンゼ株式会社 Capacitive touch sensor
JP2017071862A (en) * 2015-10-05 2017-04-13 株式会社槌屋 Body pressure measuring wear
US10300370B1 (en) 2015-10-06 2019-05-28 Google Llc Advanced gaming and virtual reality control using radar
US10823841B1 (en) 2015-10-06 2020-11-03 Google Llc Radar imaging on a mobile computing device
US11080556B1 (en) 2015-10-06 2021-08-03 Google Llc User-customizable machine-learning in radar-based gesture detection
US10540001B1 (en) 2015-10-06 2020-01-21 Google Llc Fine-motion virtual-reality or augmented-reality control using radar
US10459080B1 (en) 2015-10-06 2019-10-29 Google Llc Radar-based object detection for vehicles
US11656336B2 (en) 2015-10-06 2023-05-23 Google Llc Advanced gaming and virtual reality control using radar
US11592909B2 (en) 2015-10-06 2023-02-28 Google Llc Fine-motion virtual-reality or augmented-reality control using radar
US10503883B1 (en) 2015-10-06 2019-12-10 Google Llc Radar-based authentication
US11481040B2 (en) 2015-10-06 2022-10-25 Google Llc User-customizable machine-learning in radar-based gesture detection
US11385721B2 (en) 2015-10-06 2022-07-12 Google Llc Application-based signal processing parameters in radar-based detection
US10401490B2 (en) 2015-10-06 2019-09-03 Google Llc Radar-enabled sensor fusion
US10379621B2 (en) 2015-10-06 2019-08-13 Google Llc Gesture component with gesture library
US11175743B2 (en) 2015-10-06 2021-11-16 Google Llc Gesture recognition using multiple antenna
US11256335B2 (en) 2015-10-06 2022-02-22 Google Llc Fine-motion virtual-reality or augmented-reality control using radar
US10705185B1 (en) 2015-10-06 2020-07-07 Google Llc Application-based signal processing parameters in radar-based detection
US10908696B2 (en) 2015-10-06 2021-02-02 Google Llc Advanced gaming and virtual reality control using radar
US10768712B2 (en) 2015-10-06 2020-09-08 Google Llc Gesture component with gesture library
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
US10310621B1 (en) 2015-10-06 2019-06-04 Google Llc Radar gesture sensing using existing data protocols
US11132065B2 (en) 2015-10-06 2021-09-28 Google Llc Radar-enabled sensor fusion
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
CN105615425A (en) * 2015-12-18 2016-06-01 南方寝饰科技有限公司 Sheet having automatic water-wetting alarming function
JP2017201507A (en) * 2016-03-18 2017-11-09 ▲蘇▼州椒▲圖▼▲電▼子有限公司JIAOTU Co., Ltd Sensing circuit, method for processing sensing circuit, and method for measuring curved surface profile
WO2017174505A1 (en) * 2016-04-04 2017-10-12 Pilz Gmbh & Co. Kg Woven fabric having a plurality of woven fabric layers
JP2019513992A (en) * 2016-04-04 2019-05-30 ピルツ ゲーエムベーハー アンド コー.カーゲー Sensor fabric having multiple fabric layers
US11150147B2 (en) 2016-04-04 2021-10-19 Pilz Gmbh & Co. Kg Woven fabric having a plurality of woven fabric layers
JP2019511642A (en) * 2016-04-04 2019-04-25 ピルツ ゲーエムベーハー アンド コー.カーゲー Sensor fabric having multiple fabric layers and method of making the same
US10228806B2 (en) 2016-04-15 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Flexible touch sensor and method of manufacturing the same
US11140787B2 (en) 2016-05-03 2021-10-05 Google Llc Connecting an electronic component to an interactive textile
US10492302B2 (en) 2016-05-03 2019-11-26 Google Llc Connecting an electronic component to an interactive textile
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
WO2018037855A1 (en) * 2016-08-25 2018-03-01 グンゼ株式会社 Wearable device for detection of human body motion and human body motion monitoring device
JPWO2018037855A1 (en) * 2016-08-25 2019-06-20 グンゼ株式会社 Mounting tool for human body movement detection and human body movement monitoring device
US10908034B2 (en) 2016-11-25 2021-02-02 Panasonic Intellectual Property Management Co., Ltd. Pressure-sensitive element and steering device
US10579150B2 (en) 2016-12-05 2020-03-03 Google Llc Concurrent detection of absolute distance and relative movement for sensing action gestures
JP2018105827A (en) * 2016-12-28 2018-07-05 株式会社槌屋 Pressure distribution detector
EP3619354A4 (en) * 2017-03-13 2021-03-03 Imagine Intelligent Materials Ltd Piezocapacitive textile using graphene
WO2018165703A1 (en) 2017-03-13 2018-09-20 Imagine Intelligent Materials Ltd Piezocapacitive textile using graphene
CN110945170A (en) * 2017-04-21 2020-03-31 皮尔茨有限及两合公司 Shaped knitted fabric and use of the shaped knitted fabric
CN111108341A (en) * 2017-07-20 2020-05-05 畅想智能材料有限公司 Geosynthetic sensor array
EP3655720A4 (en) * 2017-07-20 2021-03-31 Imagine Intelligent Materials Limited Geosynthetic sensor array
KR101900618B1 (en) * 2017-12-13 2018-11-08 전남대학교산학협력단 Rollable touch screen
KR20180001530A (en) * 2017-12-13 2018-01-04 전남대학교산학협력단 Rollable touch screen
JPWO2019167744A1 (en) * 2018-02-28 2020-05-28 住友理工株式会社 Sensor electrode and planar sensor using the same
WO2019167744A1 (en) * 2018-02-28 2019-09-06 住友理工株式会社 Sensor electrode and planar sensor using same
JP2019183348A (en) * 2018-04-14 2019-10-24 株式会社レジナ Woven fabric and textile product using the same
CN111251668A (en) * 2018-12-03 2020-06-09 东华镜月(苏州)纺织技术研究有限公司 Intelligent knitted fabric and control system
US11740141B2 (en) 2019-01-24 2023-08-29 Panasonic Intellectual Property Management Co., Ltd. Pressure-sensitive element
JP2022531063A (en) * 2019-03-05 2022-07-06 グーグル エルエルシー Touch sensor type braid cord
US11809666B2 (en) 2019-03-05 2023-11-07 Google Llc Touch-sensitive braided cord
JP7398473B2 (en) 2019-03-05 2023-12-14 グーグル エルエルシー Touch-sensitive braided cord
WO2022181254A1 (en) * 2021-02-25 2022-09-01 パナソニックIpマネジメント株式会社 Load sensor
CN113358249A (en) * 2021-06-11 2021-09-07 中国科学技术大学 Fabric type piezoresistive sensor array and intelligent object
CN113358249B (en) * 2021-06-11 2022-09-30 中国科学技术大学 Fabric type piezoresistive sensor array and intelligent object
CN113588144A (en) * 2021-07-23 2021-11-02 南方科技大学 Stress distribution detection system, method and device
CN113588144B (en) * 2021-07-23 2023-08-18 南方科技大学 Stress distribution detection system, method and device
EP4293331A1 (en) * 2022-06-17 2023-12-20 Satab Textile sensor, detection device comprising such a sensor and associated detection method
FR3136850A1 (en) * 2022-06-17 2023-12-22 Satab Textile sensor, detection device comprising such a sensor and associated detection method

Also Published As

Publication number Publication date
JP5668966B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5668966B2 (en) Conductive fabric and touch sensor device using conductive fabric
JP5493070B2 (en) Conductive fabric
KR102630881B1 (en) Piezoelectric element and device using same
US11150147B2 (en) Woven fabric having a plurality of woven fabric layers
JP6956735B2 (en) Sensor woven fabric with multiple woven fabric layers and its manufacturing method
JP7033063B2 (en) Textile structure with capacitive grid implemented
JP5754946B2 (en) Conductive three-layer fabric
US8393282B2 (en) Sewn product and clothes
Dhawan et al. Woven fabric-based electrical circuits: Part I: Evaluating interconnect methods
JP4273233B2 (en) Pressure-sensitive sensor sheet
JP6572420B2 (en) Conductive fabric and pressure sensor using conductive fabric
CN107385623A (en) A kind of flexible strain sensing woven fabric and its manufacture craft
JP2010203809A (en) Pressure-sensitive sheet and pressure-sensitive sensor using the same
JP2016031269A (en) Body pressure distribution measurement device
CN112304477A (en) Pressure sensor, pressure sensing system and fabric article
JP2022541623A (en) stitched sensor
JP2013147765A (en) Fabric structure
JP3187096U (en) Sewing products
JP6671910B2 (en) Capacitive touch sensor
KR101770141B1 (en) Electric textile
CN113358249B (en) Fabric type piezoresistive sensor array and intelligent object
WO2009053872A1 (en) Robust connections in a multi-layer woven fabric
KR101836009B1 (en) Manufacturing method of high-gauge circular knitted fabrics with minimizing needle line defects
KR20190072488A (en) Fiber-based capacitive pressure sensor
CN210163604U (en) Double-sided special-shaped series fabric weaving structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5668966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250