JP2007262623A - Electrode for contact sensor - Google Patents

Electrode for contact sensor Download PDF

Info

Publication number
JP2007262623A
JP2007262623A JP2006090892A JP2006090892A JP2007262623A JP 2007262623 A JP2007262623 A JP 2007262623A JP 2006090892 A JP2006090892 A JP 2006090892A JP 2006090892 A JP2006090892 A JP 2006090892A JP 2007262623 A JP2007262623 A JP 2007262623A
Authority
JP
Japan
Prior art keywords
fiber
metal
electrode
conductive
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006090892A
Other languages
Japanese (ja)
Inventor
Teruo Okamoto
照男 岡本
Shinichi Taniguchi
真一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2006090892A priority Critical patent/JP2007262623A/en
Publication of JP2007262623A publication Critical patent/JP2007262623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)
  • Chemically Coating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the linearity of a load-resistance change, since a conventional contact sensor using a material obtained by laminating a metal thin plate, metal mesh or metal foil on a synthetic resin plate or synthetic resin film has no problem in contact sensing for a machine, apparatus, etc., but in the case of detecting or sensing by direct contact with a human body or an animal, touch feeling, incompatible feeling on a long time contact, flexibility, etc., become problems. <P>SOLUTION: This material produced by weaving an electroconductive fiber plated with a thin electroconductive metal on the surface of a synthetic resin fiber, which is excellent in suppleness and flexibility, and an insulation fiber at a fixed interval into a cloth form, or an electroconductive non-woven fabric obtained by mixing and bonding the metal-plated electroconductive fiber with the insulation synthetic resin fiber are used as the electrodes of the contact sensor so as to improve suppleness, flexibility, touch, incompatibility, the linearity of the load-resistance change, etc. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、センサシートにエラストマ−系感圧導電性シ−トを使用した接触検出に関するセンサで、人体や動物との接触がソフトで長時間の接触に対しても違和感が少なく柔軟性、荷重−抵抗変化の直線性の良好な接触センサの電極に関するものである。   The present invention is a sensor for contact detection using an elastomer-based pressure-sensitive conductive sheet as a sensor sheet. The contact with a human body or an animal is soft, and there is little discomfort even for a long-time contact. -It relates to an electrode of a contact sensor having good resistance change linearity.

エラストマ−系感圧導電性シ−トとしては非導電性エラストマ−中に導電性の微粒子、黒鉛微粒子、カーボンブラック、金属微粒子等を混合してなる導電性ゴムをあらかじめ架橋させ、しかる後に該導電性ゴムと相溶性を有する不揮発性オイルを吸収させることによって、該導電性ゴム内部の該導電性の微粒子が、微少な間隔で均等あるいは好適に分散した状態に加工したもの(開示例、昭59−11343、平6−192485 )、非導電性エラストマ−の中に導電性のカ−ボン微粒子を組成物の全容積当たり45〜55容量%の割合で配合して該ゴム内部へ該導電微粒子が微少な間隔で均等あるいは好適に分散した状態に架橋成形したもの(開示例、平2−196836、平4−253109 )を加圧変形することにより電気抵抗が好適に連続的に変化するものがあげられる。   As the elastomer-based pressure-sensitive conductive sheet, a conductive rubber obtained by mixing conductive fine particles, graphite fine particles, carbon black, metal fine particles, etc. in a non-conductive elastomer is previously crosslinked, and then the conductive The conductive fine particles inside the conductive rubber are processed to be evenly or suitably dispersed at a minute interval by absorbing a non-volatile oil compatible with the conductive rubber (disclosed example, Sho 59) -11343, Hei 6-192485), conductive carbon fine particles are blended in a non-conductive elastomer at a ratio of 45 to 55% by volume with respect to the total volume of the composition, and the conductive fine particles are incorporated into the rubber. Electrical resistance is improved by pressurizing and deforming a cross-linked product (disclosed example, Hei 2-196936, Hei 4-253109) uniformly or suitably dispersed at minute intervals. There are those that change appropriately and continuously.

近年 国内において少子高齢化が進み、高齢化に対応した介護、医療、リハビリ機器が開発されている。また、徘徊老人に対する監視機器も必要とされ、人体に直接接触して長時間検出する人体との接触に違和感が少なく、接触がソフトで感触が良く荷重−抵抗変化の直線性の良い接触センサが望まれている。   In recent years, with the aging population declining in Japan, nursing care, medical care, and rehabilitation equipment corresponding to the aging have been developed. In addition, a monitoring device for elderly people is also required, and a contact sensor that is in direct contact with the human body and has a sense of incongruity in contact with the human body that is detected for a long time, is soft in touch, has a good feel, and has a good load-resistance change linearity. It is desired.

屋内で猫、犬、等の動物をペットとして飼う場合や自動車に同乗させる場合の保護、監視用として動物の接触検出のニ−ズが高まっている。   There is a growing need for detection of contact with animals for the purpose of protection and monitoring when animals such as cats and dogs are kept indoors as pets or in the car.

パソコン、音楽、映像機器等を小型、薄型、軽量化して人体に身に付けるウエアラブル電子機器が開発され、人体に装着する接触センサにおいても接触がソフトで柔軟性があり違和感が少ないものが望まれている。   Wearable electronic devices that can be worn on the human body by reducing the size, thickness, and weight of personal computers, music, video equipment, etc. have been developed, and contact sensors that are worn on the human body are also desired to have soft, flexible, and uncomfortable feelings. ing.

これらの接触センサに使用する、感触が良く柔軟性、変形、屈曲性に優れ永久変形のおきにくい荷重−抵抗変化の直線性が良い電極が望まれている。   There is a demand for an electrode that is used for these contact sensors and has good feel, flexibility, deformation, flexibility, and excellent linearity of load-resistance change that hardly causes permanent deformation.

特開 昭59−11343号公報JP 59-11343 A 特開 平2−196836号公報JP 2-19636 A 特開 平4−253109号公報Japanese Patent Laid-Open No. 4-253109 特開 平6−192485号公報JP-A-6-192485

従来の接触センサは、電極部材が金属薄板、金属メッシュ、や厚さが35ミクロン〜18ミクロンの銅箔を合成樹脂板やフイルムへ張り付けたプリント基板、等の材料により構成されているため、特に人体や動物などが接触した場合に固く冷たい感触であるため違和感が強く、特に長時間接触しての使用は困難であり、また柔軟性に乏しく変形、屈曲して使用する場合には永久変形してしまい無荷重時にノイズの発生や、荷重に対する抵抗変化が急峻になる等の問題があった。また薄いポリエステルフイルムへ銀ペーストで電極を印刷しその上に感圧樹脂を印刷した接触センサは薄く製作可能であるが、鋭角の変形に弱く破損しやすい問題があった。   In the conventional contact sensor, the electrode member is made of a material such as a thin metal plate, a metal mesh, or a printed circuit board in which a copper foil having a thickness of 35 to 18 microns is attached to a synthetic resin plate or film. It feels uncomfortable because it feels hard and cold when it comes into contact with the human body or animals.It is difficult to use for a long time, especially when it is used for a long time. As a result, there are problems such as generation of noise when there is no load, and steep changes in resistance to the load. In addition, a contact sensor in which an electrode is printed on a thin polyester film with a silver paste and a pressure-sensitive resin is printed thereon can be manufactured thinly, but there is a problem that it is easily damaged by an acute angle deformation.

金、銀、銅、ニッケル、スズ、インジュウム、クロム、亜鉛等の導電性金属をポリイミド、ポリアミド、ポリエステル、アクリル、ポリウレタン等の合成樹脂繊維の表面へ真空蒸着、スパッタリング等で膜厚が0.1ミクロン〜0.2ミクロンで単体あるいは多層膜にして薄く無電解メッキした永久変形の起きにくい金属メッキ導電性繊維を絶縁性合成樹脂繊維と一緒に布状に織り込む。   A conductive metal such as gold, silver, copper, nickel, tin, indium, chromium, zinc is deposited on the surface of synthetic resin fibers such as polyimide, polyamide, polyester, acrylic, and polyurethane by vacuum deposition, sputtering, etc. Metal plated conductive fibers that are thin and electrolessly plated in micron to 0.2 microns and are electrolessly plated are woven together with insulating synthetic resin fibers in a cloth shape.

金属メッキ導電性繊維の布への織り込みが縦糸、横糸の片方あるいは両方で一定の間隔で織り込んで布状にしたものを電極に採用する。   For the electrode, a metal-plated conductive fiber is woven into a cloth by weaving warp and / or weft at regular intervals.

あるいは金属メッキ導電性繊維と絶縁性合成繊維を混合し熱溶着、あるいは接着剤を用いて接着して導電性を有する不織布状にしたものも電極として採用する。   Alternatively, a metal-plated conductive fiber and insulating synthetic fiber are mixed and heat-welded, or a non-woven fabric having conductivity by bonding with an adhesive is also used as the electrode.

上記電極の採用によりエラストマー系感圧導電性シートとの接触がゆるやかになり荷重に対する抵抗の変化を和らげ、荷重―抵抗変化の特性が急峻になることを防止しする。
By adopting the above electrode, the contact with the elastomer pressure-sensitive conductive sheet is loosened, the resistance change with respect to the load is moderated, and the characteristics of the load-resistance change are prevented from becoming steep.

荷重−抵抗変化の直線性の改善は縦、横の織り込む金属メッキ繊維の本数、間隔を調整しエラストマー系感圧導電性シートとの接触面積の変化を緩やかにすることにより行う。   The linearity of the load-resistance change is improved by adjusting the number and interval of the metal plating fibers to be woven in the vertical and horizontal directions to moderate the change in the contact area with the elastomeric pressure-sensitive conductive sheet.

センサシートにエラストマ−系感圧導電性シ−トを採用する接触センサにおいて、柔軟性が優れ、人体や動物との接触がソフトで、長時間の接触使用においても違和感が少なく荷重−抵抗変化の直線性が改善される接触センサの電極の提供が可能となる。   A contact sensor that uses an elastomer-based pressure-sensitive conductive sheet for the sensor sheet has excellent flexibility, soft contact with the human body and animals, and less discomfort even when used for long periods of time. It is possible to provide a contact sensor electrode with improved linearity.

合成樹脂繊維の太さが20〜30デニ−ルのポリエステル樹脂繊維の表面へ銀を0.1〜0.2ミクロンの厚さで無電解メッキして導電性を付与し、この銀メッキ導電性繊維1〜12本を太さが40〜50デニ−ルの絶縁性ポリエステル繊維と一緒にしたものを1本の糸にし、縦糸には3本おき、横糸は2本おきにして平織り布に加工した厚さ0.1〜0.2mmの導電性布を構成し、中間は50〜75デニ−ルの絶縁性ポリエステル繊維20〜36本を1本の糸にして縦糸、横糸に使用して導電性の布状の織物にしたものを電極に使用する。   The surface of the polyester resin fiber having a thickness of 20 to 30 denier synthetic resin fibers is electrolessly plated with silver to a thickness of 0.1 to 0.2 microns to impart conductivity. 1 to 12 fibers combined with 40 to 50 denier insulating polyester fiber into one yarn, every three warp yarns and every other weft yarn, processed into a plain weave fabric The conductive cloth having a thickness of 0.1 to 0.2 mm is formed, and 20 to 36 insulating polyester fibers of 50 to 75 denier are used as a single thread for the middle and used for warp and weft. The material made into a cloth-like fabric is used for the electrode.

太さが30デニ−ルのポリエステル樹脂繊維の表面へ銀を0.1ミクロンの厚さで無電解メッキして導電性を付与した銀メッキ導電性繊維12本を、太さが50デニ−ルの絶縁性ポリエステル繊維24本と一緒にしたものを1本の糸にした。   Twelve silver-plated conductive fibers that are electrolessly plated with 0.1 micron thick silver on the surface of a polyester resin fiber having a thickness of 30 denier and having a thickness of 50 denier. A combination of 24 insulating polyester fibers was made into one thread.

上記の糸を縦糸には3本おき、横糸は2本おきにして平織り布に加工した厚さ0.15mmの導電性布を構成し、中間は75デニ−ルの絶縁性ポリエステル繊維36本を1本の糸にして縦糸、及び横糸に使用して布状の織物にした導電性布(三ツ富士繊維工業株式会社製 M20048)を縦80mm、横80mm、の寸法に裁断して上下の電極に採用した。   Each of the above-mentioned yarns is used for every three warp yarns and every two weft yarns to form a plain cloth with a thickness of 0.15 mm. The middle part is composed of 36 75-denier insulating polyester fibers. A conductive cloth (M20048, manufactured by Mitsufuji Textile Industry Co., Ltd.) made into a woven fabric using warp and weft as a single thread is cut into dimensions of 80 mm in length and 80 mm in width. Adopted.

両端を5mmストリップした長さ100mmのイラックスHF電線(住友電工株式会社製 UL3302 AWG32)の片側と上記導電性布電極を接触させその上から導電性ペ−スト(藤倉化成株式会社製 ド−タイトD−362)を塗布、乾燥させてリード線と導電性布電極を接続固定した。   One side of an Irax HF electric wire (UL3302 AWG32 manufactured by Sumitomo Electric Co., Ltd.) having a length of 5 mm stripped at both ends is brought into contact with the conductive cloth electrode, and a conductive paste (Fujikura Kasei Co., Ltd., Dortite D) is formed thereon. -362) was applied and dried to connect and fix the lead wire and the conductive cloth electrode.

この導電性布状電極を上下が接触しないようにして、シリコーンゴム中に導電性のカーボンブラックを混合してなる導電性ゴムをあらかじめ架橋させ、しかる後に該導電性ゴムと相溶性を有する不揮発性オイルを吸収させることによって得た、エラストマ−系感圧導電性シ−ト、縦90mm、横90mm、厚さ0.5mmの上下の中心へ配置した。   This conductive cloth-like electrode is not in contact with the upper and lower sides, and a conductive rubber obtained by mixing conductive carbon black in silicone rubber is previously cross-linked, and then non-volatile that is compatible with the conductive rubber. An elastomer-based pressure-sensitive conductive sheet obtained by absorbing oil was disposed at the center of the top and bottom of 90 mm in length, 90 mm in width, and 0.5 mm in thickness.

更にその上下の中心に太さが50デニ−ルのポリエステル合成樹脂繊維を平織りした縦100mm、横100mm、厚さ0.15mmの布を絶縁性表面保護シ−トとして配置し、外周をオーバーロック縫いにて縫製加工して固定した接触センサを製作した。   In addition, a cloth of 100mm length, 100mm width and 0.15mm thickness plain weave of 50 denier polyester synthetic resin fibers is placed at the top and bottom as an insulating surface protection sheet, and the outer periphery is overlocked. A contact sensor was manufactured by sewing and fixing.

この接触センサを厚さ10mmのフェノ−ル樹脂板の上に水平に置き、上から荷重を加えて荷重−抵抗変化を測定した結果を図6のAに示す。比較例1として開口寸法1.0mm太さ0.1mmのステンレスメッシュを上下電極に使用した場合の荷重(横軸―等間隔目盛)−抵抗(縦軸―対数目盛)変化特性を図6のBに示す。また接触センサに荷重を加えない状態で一端を固定し他端を左右にア−ルを付けて屈曲させ屈曲半径と抵抗値の変化を表1に、電極の永久変形の有無を表2に示す。   FIG. 6A shows the result of placing the contact sensor horizontally on a phenol resin plate having a thickness of 10 mm and applying a load from above to measure the load-resistance change. As a comparative example 1, the load (horizontal axis—equal interval scale) —resistance (vertical axis—logarithmic scale) change characteristic when a stainless steel mesh having an opening size of 1.0 mm and a thickness of 0.1 mm is used for the upper and lower electrodes is shown in FIG. Shown in Table 1 shows changes in the bending radius and resistance, and Table 2 shows whether the electrode is permanently deformed. One end is fixed with no load applied to the contact sensor and the other end is bent with left and right alarms. .

太さが30デニ−ルのナイロン繊維の表面へ銀を0.1ミクロンの厚さでメッキして導電性を付与し、この導電性繊維1本を太さが40デニ−ルの絶縁性ポリエステル樹脂繊維1本を撚ったものと、70デニ−ルのポリエステル樹脂繊維4本一緒にして縦糸にした。   Silver is plated on the surface of a nylon fiber having a thickness of 30 denier to a thickness of 0.1 micron to impart conductivity, and one conductive fiber is insulated polyester having a thickness of 40 denier. One twisted resin fiber and four 70 denier polyester resin fibers were combined into a warp.

横糸には太さ40デニ−ルのポリエステル樹脂繊維90%、銀メッキしたナイロン繊維10%を使用して平織りの布状にした厚さ0.15mmの導電性布を構成したもの(カネボウ繊維株式会社製、エックスエイジ AG−01)縦30mm、横100mmの寸法に裁断し上下の電極に採用した。   The weft is composed of 90% polyester resin fiber with a thickness of 40 denier and 10% silver-plated nylon fiber to form a plain-woven cloth with a thickness of 0.15 mm (Kanebo Fibers Co., Ltd.) X-Age AG-01, manufactured by company, cut to 30 mm length and 100 mm width and used for the upper and lower electrodes.

両端を5mmストリップした長さ80mmのイラックスHF電線(住友電工株式会社製 UL3302 AWG30)の片側と上記導電性布電極を接触させその上から導電性ペ−スト(藤倉化成株式会社製 ド−タイトD−362)を塗布、乾燥させてリード線と導電性布電極を接続固定した。   One side of an Irax HF electric wire (UL3302 AWG30, manufactured by Sumitomo Electric Co., Ltd.) having a length of 5 mm stripped at both ends is brought into contact with the conductive cloth electrode, and a conductive paste (Dotite D, manufactured by Fujikura Kasei Co., Ltd.) is formed thereon. -362) was applied and dried to connect and fix the lead wire and the conductive cloth electrode.

この導電性布状電極の上下が接触しないようにして、シリコーンゴムに導電性のカ−ボン微粒子を組成物の全容積当たり45〜55容量%の割合で配合して得たエラストマ−系感圧導電性シ−ト、縦40mm、横110mm、厚さ0.5mmの上下へ配置した。   Elastomer-based pressure sensitivity obtained by blending conductive carbon fine particles with silicone rubber at a ratio of 45 to 55% by volume with respect to the total volume of the composition so that the upper and lower sides of the conductive cloth electrode are not in contact with each other. A conductive sheet, 40 mm long, 110 mm wide, and 0.5 mm thick was placed up and down.

更にその上下を太さが50デニ−ルのポリエステル合成樹脂繊維を平織りした縦50mm、横120mm、厚さ0.15mmの布を絶縁性表面保護シ−トとして配置し、外周をオーバーロック縫いで縫製加工して固定した接触センサを製作した。   Furthermore, a 50 mm long, 120 mm wide, 0.15 mm thick cloth with a polyester synthetic resin fiber having a thickness of 50 denier is placed on the top and bottom as an insulating surface protection sheet, and the outer periphery is sewn with overlock. A contact sensor fixed by sewing was manufactured.

この接触センサを厚さ10mmのフェノ−ル樹脂板の上に水平に置き、上から荷重を加えて荷重(横軸―等間隔目盛)−抵抗(縦軸―対数目盛)変化を測定した結果を図6のCに示す。接触センサへ荷重を加えない状態で一端を固定し他端を左右にア−ルを付けて屈曲させ屈曲半径と抵抗値の変化を表1の実施例2に、電極の永久変形の有無を表2の実施例2に示す。比較例2として厚さ25ミクロンのポリイミドフイルムの片面へ厚さ35ミクロンの銅箔を張り合わせたフレキシブルプリント基板で導パターン幅が0.5mm、繰り返しピッチが1.0mmの格子状の電極を使用した場合の結果を図6のD、表1と表2に示す。   This contact sensor is placed horizontally on a phenol resin plate with a thickness of 10 mm, and the load (horizontal axis-equally spaced scale)-resistance (vertical axis-logarithmic scale) change is measured by applying a load from above. This is shown in FIG. One end is fixed in a state where no load is applied to the contact sensor, and the other end is bent by attaching an alarm to the left and right. Changes in the bending radius and the resistance value are shown in Example 2 of Table 1, and the presence or absence of permanent deformation of the electrode is shown. 2 of Example 2. As Comparative Example 2, a flexible printed circuit board in which a 35-micron-thick copper foil was bonded to one side of a 25-micron-thick polyimide film was used as a grid-like electrode having a conductive pattern width of 0.5 mm and a repeating pitch of 1.0 mm. The results are shown in FIG. 6D, Table 1 and Table 2.

Figure 2007262623
Figure 2007262623

Figure 2007262623
Figure 2007262623

本発明の実施例1、の接触センサの電極を使用したセンサの斜視図である。It is a perspective view of the sensor which uses the electrode of the contact sensor of Example 1 of this invention. 同実施例1、の接触センサの電極の斜視図である。It is a perspective view of the electrode of the contact sensor of Example 1. 同実施例1、の電極の拡大図である。It is an enlarged view of the electrode of Example 1. 同実施例1、の電極に使用する金属メッキ繊維の拡大斜視図である。It is an expansion perspective view of the metal plating fiber used for the electrode of the Example 1. 同実施例1、の電極を使用したセンサのA−A断面の模式図である。It is a schematic diagram of the AA cross section of the sensor using the electrode of Example 1. 同実施例1、実施例2、比較例1、比較例2、の荷重―抵抗の変化を示す図である。It is a figure which shows the change of the load-resistance of the Example 1, Example 2, the comparative example 1, and the comparative example 2. FIG.

符号の説明Explanation of symbols

1 接触センサ
2 リード線
3 電極
4 導電性ペースト
5 金属メッキ導電性繊維
6 合成樹脂繊維
7 合成樹脂繊維の素繊維
8 金属メッキ膜
9 合成樹脂繊維で織った布状表面保護シート
10 リード線の付いた電極
11 センサシート
12 表面保護シートの縫製加工固定部分
DESCRIPTION OF SYMBOLS 1 Contact sensor 2 Lead wire 3 Electrode 4 Conductive paste 5 Metal plating conductive fiber 6 Synthetic resin fiber 7 Elementary fiber of synthetic resin fiber 8 Metal plating film 9 Cloth-like surface protection sheet woven with synthetic resin fiber 10 With lead wire 11 Electrode 11 Sensor sheet 12 Sewing process fixing part of the surface protection sheet

Claims (4)

合成樹脂繊維の表面へ導電性の金属をメッキして、柔軟性、屈曲性に優れた導電性繊維を形成し、この金属メッキ導電性繊維を絶縁性繊維から成る布状の織物へ一定の間隔で織り込んで導電性を有する布状にしたこと、金属メッキ導電性繊維と絶縁性繊維の両方の繊維を混合接着し不織布状にしたことを特徴とする接触センサ用電極。
Conductive metal is plated on the surface of synthetic resin fiber to form conductive fiber with excellent flexibility and flexibility, and this metal-plated conductive fiber is separated into a cloth-like woven fabric made of insulating fibers at regular intervals. An electrode for a contact sensor, characterized in that it is woven into a cloth shape having conductivity, and a metal-plated conductive fiber and an insulating fiber are mixed and bonded to form a nonwoven fabric.
合成樹脂繊維がポリイミド、ポリアミド、ポリエステル、アクリル、ポリウレタンであることを特徴とする、請求項1に記載の接触センサ用電極。
The electrode for a contact sensor according to claim 1, wherein the synthetic resin fiber is polyimide, polyamide, polyester, acrylic, or polyurethane.
導電性の金属が金、銀、銅、ニッケル、クロム、亜鉛、スズ、インジュウム、アルミニュウムの単体あるいは複数で多層の薄膜または合金薄膜を形成していることを特徴とする、請求項1に記載の接触センサ用電極。
2. The conductive metal according to claim 1, wherein the conductive metal forms a multi-layer thin film or an alloy thin film of a single or a plurality of gold, silver, copper, nickel, chromium, zinc, tin, indium, and aluminum. Contact sensor electrode.
金属メッキ導電性繊維の布への織り込みが縦糸、横糸の片方あるいは両方であることを特徴とする、請求項1に記載の接触センサ用電極。
2. The electrode for a contact sensor according to claim 1, wherein the metal-plated conductive fiber is woven into one or both of warp and weft.
JP2006090892A 2006-03-29 2006-03-29 Electrode for contact sensor Pending JP2007262623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090892A JP2007262623A (en) 2006-03-29 2006-03-29 Electrode for contact sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090892A JP2007262623A (en) 2006-03-29 2006-03-29 Electrode for contact sensor

Publications (1)

Publication Number Publication Date
JP2007262623A true JP2007262623A (en) 2007-10-11

Family

ID=38635874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090892A Pending JP2007262623A (en) 2006-03-29 2006-03-29 Electrode for contact sensor

Country Status (1)

Country Link
JP (1) JP2007262623A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101862A (en) * 2008-10-27 2010-05-06 Toyota Boshoku Corp Sitting detection system
CN106175764A (en) * 2016-07-08 2016-12-07 深圳市汇思科电子科技有限公司 Bioelectrical impedance analysis instrument
WO2017203685A1 (en) 2016-05-27 2017-11-30 国立研究開発法人科学技術振興機構 Electronic functional member, electronic component, and wearable device
KR20180083220A (en) * 2017-01-12 2018-07-20 주식회사 소프트로닉스 Pressure-measurable fabric and pressure detecting apparatus using the same
DE112019000033T5 (en) 2018-02-28 2019-12-24 Sumitomo Riko Company Limited Sensor electrode and flat sensor using it
WO2020066121A1 (en) 2018-09-26 2020-04-02 住友理工株式会社 Capacitance sensor, method for manufacturing same, and reticulated soft electrode for capacitance sensor
CN112888817A (en) * 2018-10-23 2021-06-01 琳得科株式会社 Cloth with electrode wiring

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101862A (en) * 2008-10-27 2010-05-06 Toyota Boshoku Corp Sitting detection system
WO2017203685A1 (en) 2016-05-27 2017-11-30 国立研究開発法人科学技術振興機構 Electronic functional member, electronic component, and wearable device
US11547338B2 (en) 2016-05-27 2023-01-10 Japan Science And Technology Agency Electronic functional member, electronic component, and wearable device
CN106175764A (en) * 2016-07-08 2016-12-07 深圳市汇思科电子科技有限公司 Bioelectrical impedance analysis instrument
CN106175764B (en) * 2016-07-08 2024-02-06 深圳市汇思科电子科技有限公司 Human body composition analyzer
KR20180083220A (en) * 2017-01-12 2018-07-20 주식회사 소프트로닉스 Pressure-measurable fabric and pressure detecting apparatus using the same
DE112019000033T5 (en) 2018-02-28 2019-12-24 Sumitomo Riko Company Limited Sensor electrode and flat sensor using it
WO2020066121A1 (en) 2018-09-26 2020-04-02 住友理工株式会社 Capacitance sensor, method for manufacturing same, and reticulated soft electrode for capacitance sensor
US11912331B2 (en) 2018-09-26 2024-02-27 Sumitomo Riko Company Limited Capacitance sensor, method for manufacturing same, and reticulated soft electrode for capacitance sensor
CN112888817A (en) * 2018-10-23 2021-06-01 琳得科株式会社 Cloth with electrode wiring
CN112888817B (en) * 2018-10-23 2023-11-10 琳得科株式会社 Cloth with electrode wiring

Similar Documents

Publication Publication Date Title
JP2007262623A (en) Electrode for contact sensor
CN107432083B (en) Retractable cable and retractable circuit board
JP7335163B2 (en) Electrode member for measuring biological information, device for measuring biological information, method for attaching electrode member for measuring biological information, and method for measuring biological information
US10228806B2 (en) Flexible touch sensor and method of manufacturing the same
TWI336738B (en) Fabric for detecting electrical signals from body skins
CN112771358A (en) Pressure-sensitive element and electronic device
CN1732029A (en) Electrode arrangement
WO2020208932A1 (en) Load distribution sensor sheet and load distribution sensor
CN110996783A (en) Biological contact electrode and clothing for measuring physiological information
JP7017067B2 (en) Clothes for measuring biometric information
JP2017113088A (en) Biological sensor device
JP2019068901A (en) Bioelectrode and garment having the same
CN208541301U (en) A kind of biological fabric pyroelectric monitor electrode
JP2018169315A (en) Capacitance type pressure sensor
CN113383219A (en) Pressure-sensitive sensor
JP2021094147A (en) Biomedical electrode sheet
JP2007263833A (en) Contact sensor
JPH02304824A (en) Planar switch
JP7218049B2 (en) Electrode connection structure for conductive knitted fabric and electrode connection method for conductive knitted fabric
CN110678120B (en) Clothing for measuring physiological information
JP2019129938A (en) Sensor sheet, and clothing with sensor
US11105660B2 (en) Washable physiological state sensing device
WO2021145370A1 (en) Biological information monitoring device
WO2021241308A1 (en) Wearable device and detection method
KR20180103482A (en) Intergrated sensor