WO2019167447A1 - Substrate conveyance device and substrate conveyance method - Google Patents

Substrate conveyance device and substrate conveyance method Download PDF

Info

Publication number
WO2019167447A1
WO2019167447A1 PCT/JP2019/000740 JP2019000740W WO2019167447A1 WO 2019167447 A1 WO2019167447 A1 WO 2019167447A1 JP 2019000740 W JP2019000740 W JP 2019000740W WO 2019167447 A1 WO2019167447 A1 WO 2019167447A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
holding
period
holding unit
Prior art date
Application number
PCT/JP2019/000740
Other languages
French (fr)
Japanese (ja)
Inventor
英司 深津
小河 豊
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201980015141.1A priority Critical patent/CN111788668A/en
Priority to KR1020207017812A priority patent/KR102468631B1/en
Publication of WO2019167447A1 publication Critical patent/WO2019167447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67775Docking arrangements

Definitions

  • the present invention relates to a substrate transfer apparatus and a substrate transfer method for transferring a substrate.
  • the substrate is transferred by a transfer robot or the like.
  • a transfer robot In transporting a substrate, it is required that the substrate is correctly placed on the placement portion of the processing unit for processing the substrate, and that the processed substrate is correctly stored in the storage container. For this reason, for example, it is necessary to check each substrate with a sensor whether or not the substrate has been normally transported to the placement unit or the like by a transport robot or the like.
  • the substrate transfer apparatus described in Patent Document 1 includes a pick (hand) that holds a substrate when the substrate is transferred by the transfer unit.
  • the transport unit fixes and holds the substrate on the pick with the pressing body, and detects the holding state of the substrate based on the position of the pressing body.
  • the transfer unit releases the fixed holding by the pressing body when the substrate is transferred to a predetermined position such as the placement unit.
  • the substrate In the substrate detection operation by the pressing body described in Patent Document 1, the substrate is not detected when the pick retreats after passing the substrate to a predetermined position. For this reason, it is impossible to detect a state in which the substrate remains on the pick, for example, on the retreating pick. In this case, even though the substrate cannot be transferred to the predetermined position, this cannot be detected. As described above, in the technique described in Patent Document 1, since it is not possible to detect that the substrate has been transferred to a predetermined position by the transport unit, it may not be possible to detect a transport failure.
  • an embodiment of the present invention provides a substrate transfer apparatus and a substrate transfer method that can reliably detect that a substrate has been transferred to a predetermined position.
  • the substrate transport apparatus includes a holding unit that holds a substrate, a reciprocating mechanism that reciprocates the holding unit with respect to a predetermined position, and an optical sensor that forms a sensor area on a path along which the holding unit moves by the reciprocating mechanism. And a control unit.
  • the controller determines a conveyance abnormality in the substrate transfer operation.
  • the substrate transfer operation includes an outward operation in which the holding unit is moved toward a predetermined position by the reciprocating mechanism and a return operation in which the holding unit is moved away from the predetermined position by the reciprocating mechanism.
  • the control unit detects a first passage period (duration) in which the holding unit or a substrate held by the holding unit (hereinafter referred to as a “holding substrate”) passes through the sensor area in a substrate transfer operation;
  • a first passage period in which the holding unit or a substrate held by the holding unit (hereinafter referred to as a “holding substrate”) passes through the sensor area in a substrate transfer operation;
  • the first passage period is different from a preset first normal period, it is determined that the conveyance is abnormal.
  • the predetermined position is a position in a substrate storage container for storing a substrate
  • the optical sensor forms the sensor area outside the substrate storage container.
  • the sensor area of the optical sensor is set to a position for detecting a substrate placed in a state of being shifted out of the substrate storage container.
  • the holding portion fixes the substrate by extending the contact portion that contacts one end portion of the substrate and the other end portion of the substrate toward the contact portion.
  • a position shift prevention mechanism that can be expanded and contracted, and an expansion / contraction detection unit that detects an expansion / contraction operation of the position shift prevention mechanism.
  • the positional deviation prevention mechanism fixes the substrate during the forward movement, and releases the fixation of the substrate during the backward movement.
  • the expansion / contraction detection unit detects the extension of the misalignment prevention mechanism when the misalignment prevention mechanism fixes the substrate, and detects the misalignment prevention mechanism when the misalignment prevention mechanism releases the fixation of the substrate. Detects contraction.
  • the holding portion is a flat plate-like member that is flat in the horizontal direction, and at least a portion of the plate-like member that overlaps the substrate when the substrate is held in a plan view is hollowed out.
  • the holding unit normally holds the substrate, the substrate overlaps all of the hollow regions of the plate-like member in a plan view, and the holding unit is moved by the reciprocating mechanism.
  • the hollow region of the holding portion passes through the path.
  • the optical sensor is a transmissive sensor that forms a linear sensor area along an optical axis
  • the control unit is configured to transmit the light projected by the transmissive sensor to the holding unit.
  • a period during which light is shielded by the holding substrate is detected as the first passage period.
  • the optical sensor is a reflective sensor that forms the sensor area with a light beam
  • the control unit is configured such that the light beam projected by the reflective sensor is transmitted by the holding unit or the holding substrate. A period in which the light is reflected and received by the reflective sensor is detected as the first passage period.
  • the control unit determines a conveyance abnormality during a receiving operation of receiving a substrate at a predetermined position by the holding unit.
  • the substrate receiving operation includes an outward operation in which the holding unit is moved toward a predetermined position by the reciprocating mechanism and a return operation in which the holding unit is moved away from the predetermined position by the reciprocating mechanism.
  • the control unit detects a second passage period in which the holding unit or the holding substrate passes through the sensor area, and the second passage period is different from a preset second normal period. It is determined that the conveyance is abnormal.
  • the first normal period and the second normal period have the same length.
  • control unit sets a first normal period or a second normal period according to a moving speed of the holding unit by the reciprocating mechanism.
  • control unit determines a moving speed of the holding unit by the reciprocating mechanism in the return path operation during the passing operation, and a moving speed of the holding unit by the reciprocating mechanism in the forward path operation. Make it slower.
  • the substrate transport method includes a first forward path step of moving a holding unit holding a substrate toward a predetermined position, a passing step of executing an operation of transferring the substrate from the holding unit to a predetermined position, and the holding unit after the passing step.
  • a first detection step for detecting a first passage period through which a substrate held by the holding unit (hereinafter referred to as “holding substrate”) passes, and a first passage period detected in the first detection step are set in advance.
  • the holding portion fixes the substrate by extending the contact portion that contacts one end portion of the substrate and the other end portion of the substrate toward the contact portion. And a retractable mechanism capable of extending and contracting. Then, in the first forward path step, the other end portion of the substrate is pushed toward the contact portion by the misalignment prevention mechanism to fix the substrate and prevent misalignment, and the misalignment prevention mechanism expands and contracts. Detect motion. In the first return path step, the fixing by the misalignment prevention mechanism is released.
  • the moving speed of the holding unit by the reciprocating mechanism in the first return path operation is slower than the moving speed of the holding unit by the reciprocating mechanism in the first forward path operation.
  • the method includes a second forward step of moving the holding unit toward the substrate at a predetermined position, and a receiving step of receiving the substrate at the predetermined position by the holding unit. And the holding part or the holding substrate passes through the sensor area in a period including a second return path process for retracting the holding part from a predetermined position after the receiving process, a second forward path process, and a second return path process.
  • the first normal period and the second normal period have the same length.
  • FIG. 1A is a plan view showing a schematic configuration of the substrate processing apparatus
  • FIG. 1B is a side view showing a schematic configuration of the substrate processing apparatus.
  • the substrate processing apparatus 1 is an apparatus for processing a substrate with a chemical solution.
  • the substrate processing apparatus 1 is a single wafer type apparatus for performing chemical treatment on the surface (upper surface) of the substrate W.
  • substrate W is a plate-shaped member by which the function part for implement
  • the chemical solution process is a process used in the main processes of the semiconductor manufacturing process, such as a cleaning process, an etching process, a resist coating process, and a development process.
  • the substrate processing apparatus 1 includes a load port LP, an indexer unit 2, a processing unit 3, a pass unit 4, and a controller 6.
  • the load port LP is disposed at one end of the substrate processing apparatus 1, and a plurality of load ports LP are disposed at intervals in the arrangement direction A in plan view.
  • Each load port LP is configured to hold the substrate storage container 5 that stores the substrate W, and is a substrate introduction unit that introduces the substrate W into the substrate processing apparatus 1.
  • the substrate storage container 5 is an example of a placement unit on which the substrate W is placed.
  • the substrate W is supplied from the substrate storage container 5 into the substrate processing apparatus 1.
  • the indexer unit 2 is a unit that is connected to the load port LP and carries the substrate W into / out of the substrate storage container 5.
  • the processing unit 3 includes a plurality of processing units 31 and performs a chemical process on the substrate W.
  • the pass unit 4 is a unit that holds the substrate W between the indexer unit 2 and the processing unit 3.
  • the control unit 6 controls the substrate processing apparatus 1.
  • the substrate processing apparatus 1 includes twelve processing units 12 in this embodiment. More specifically, the substrate processing apparatus 1 includes three sets of processing units 3 stacked in the vertical direction, and each processing unit 3 includes four processing units 31 arranged in a plane. . Furthermore, the substrate processing apparatus 1 includes a transport unit that transports the substrate. For example, the transport unit includes an indexer robot IR provided in the indexer unit 2 and a center robot CR provided in the processing unit 3.
  • the indexer unit 2 is disposed between the load port LP and the processing unit 3.
  • An indexer robot IR is installed inside the indexer unit 2.
  • a user interface 220 is attached to the side surface of the indexer unit 2.
  • the user interface 220 includes a display unit that displays the state of the substrate processing apparatus 1, and is configured to be able to operate the substrate processing apparatus 1 and input information using a touch panel provided in the display unit. ing. Operation and input to the substrate processing apparatus 1 are not limited to a touch panel, and may be performed with a keyboard or a mouse.
  • the indexer robot IR takes out the unprocessed substrate W stored in the substrate storage container 5 and transports it to the pass unit 4.
  • the unprocessed substrate W is held by the pass unit 4.
  • the indexer robot IR transports the substrate W from the pass unit 4 to the substrate storage container 5.
  • the indexer robot IR includes two hands H1 provided in a stacked state on the top and bottom (see FIG. 2), and these are examples of holding units.
  • Each hand H1 is a flat plate-like member that is flat in the horizontal direction in plan view, and has one end connected to the support portion 21 (see FIG. 3). The other end has a hollow shape in which at least a part of a portion overlapping the substrate W when the substrate W is held is hollowed out.
  • Each hand H1 can hold one substrate W in a horizontal posture.
  • the indexer robot IR moves the hand H1 in the horizontal direction and the vertical direction. Further, the indexer robot IR changes the direction of the hand H1 by rotating (spinning) around the vertical axis.
  • the indexer robot IR can move along the movement path M (see FIG. 1) in the indexer unit 2.
  • the movement path M is designed in parallel with the arrangement direction of the plurality of load ports LP.
  • the indexer robot IR can move along the movement path M to an indexer delivery position facing an arbitrary substrate storage container 5, and the hand H ⁇ b> 1 enters the inside of the opposing substrate storage container 5 at the indexer delivery position. Can be made.
  • the indexer robot IR moves the hand H1 in the horizontal direction at the indexer delivery position, thereby causing the hand H1 to enter and retreat with respect to the substrate storage container 5.
  • the indexer robot IR moves the hand H1 into the substrate storage container 5 while holding the substrate W, and performs a carry-in operation (passing operation) that moves backward after placing the substrate W on the substrate storage container 5. Further, the indexer robot IR performs a carry-out operation (reception operation) in which the substrate storage container 5 enters the hand H1 and retreats after holding the substrate W stored in the substrate storage container 5.
  • the indexer robot IR is a substrate transfer device that delivers the substrate W to a predetermined position in the substrate storage container 5.
  • the indexer robot IR performs the same operation on the pass unit 4.
  • the center robot CR has a structure similar to that of the indexer robot IR, and includes two hands H2 provided in a stacked state in the vertical direction, and these are examples of holding units.
  • Each hand H2 is a flat plate member that is flat in the horizontal direction when seen in a plan view, and has one end connected to the support portion 21 (see FIG. 3).
  • the other end of the hand H2 has a hollow shape in which at least a part of a portion that overlaps the substrate W when the substrate W is held is hollowed out.
  • Each hand H2 can hold one substrate W in a horizontal posture.
  • the center robot CR moves the hand H2 in the horizontal direction and the vertical direction. Further, the center robot CR changes the direction of the hand H2 by rotating (spinning) about the vertical axis.
  • the center robot CR is surrounded by a plurality of processing units 31 in plan view.
  • the center robot CR makes the hand H2 face the arbitrary processing unit 31 when carrying the substrate.
  • the center robot CR moves (rotates) to a processing unit delivery position where the hand H2 can enter the processing unit 31 at a position where any processing unit 31 and the hand H2 face each other.
  • the center robot CR moves the hand H2 in the horizontal direction at the processing unit delivery position to enter and retreat the processing unit 31.
  • the center robot CR performs a carry-in operation (passing operation) in which the hand H2 enters the processing unit 31 while holding the substrate W, and retreats after the substrate W is placed on the processing unit 31.
  • the center robot CR performs a carry-out operation (reception operation) in which the processing unit 31 enters the hand H1 and moves backward after holding the substrate W placed on the processing unit 31.
  • the center robot CR is a substrate transfer device that delivers the substrate W to a predetermined position in the processing unit 31.
  • the center robot CR performs the same operation on the pass unit 4.
  • the center robot CR transports unprocessed substrates W held in the pass unit 4 to each processing unit 31 one by one.
  • the center robot CR transports the substrate W between the plurality of processing units 31 as necessary.
  • the center robot CR transports the substrate W processed by the processing unit 31 from the processing unit 31 to the pass unit 4.
  • the processing unit 31 processes the substrate W.
  • the process performed by the processing unit 31 is, for example, a cleaning process.
  • the processing performed by the processing unit 31 may be other processing instead of the cleaning processing.
  • the other treatment is, for example, a chemical treatment such as an etching treatment, a coating treatment, and a development treatment, or a heat treatment such as a heating treatment and a cooling treatment.
  • FIG. 2 is a side view showing a schematic configuration of the load port and the indexer unit.
  • the same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the substrate storage container 5 which is a mounting portion of the substrate W is a container configured to store a plurality of substrates W.
  • the substrate storage container 5 is, for example, a FOUP (FRONT Opening Unified Pod) that stores the substrate W in a sealed state.
  • the substrate storage container 5 may be a SMIF (Standard Mechanical InterFace) pod, OC (Open Cassette), or the like instead of the FOUP.
  • the substrate storage container 5 when the substrate storage container 5 is installed in the load port LP, a plurality of horizontal substrates W are stacked vertically in the substrate storage container 5 with a space therebetween.
  • the substrate storage container 5 stores, for example, 25 substrates W. However, in FIG. 2, a part of the substrate W is not shown for convenience.
  • the substrate storage container 5 has a housing 5a, a lid 5b, and a plurality of substrate guide portions 5c.
  • the lid 5b is removable on the front surface of the housing 5a, and the inside of the housing 5a is sealed by attaching the lid 5b to the front surface of the housing 5a. When the lid 5b is removed, an opening B is formed on the front surface of the housing 5a.
  • 25-stage substrate guide portions 5c are provided.
  • the substrate guide portions 5c at each stage are provided as a pair on the left and right inner walls of the substrate storage container 5 as viewed from the lid 5b side, and extend horizontally in the front-rear direction.
  • the substrate guide portion 5c supports the substrate W by supporting the end portion on the lower surface side of the substrate W.
  • the load port LP is connected to the indexer unit 2 and is installed on the side opposite to the processing unit 3.
  • the load port LP includes an installation table 35, a stage 32, and a load port opening / closing mechanism 34.
  • the installation base 35 is disposed on the side of the partition wall 7 and houses a driving mechanism such as an electric motor in the lower part. This drive mechanism is connected to the shutter drive unit 34b and drives it.
  • the stage 32 is disposed on the upper horizontal surface 35a of the installation base 35, and is provided so as to be movable in the horizontal direction so as to be close to and away from the indexer unit 2 (see a two-dot chain line C).
  • the substrate storage container 5 is placed on the stage 32, and is connected to the indexer unit 2 when the stage 32 moves close to the indexer unit 2.
  • a load port opening L communicating with the partition wall passage hole 7a is provided in the upper vertical surface 35b of the installation table 35.
  • the load port opening / closing mechanism 34 includes a shutter member 34a and a shutter drive unit 34b.
  • the shutter member 34 a closes the load port opening L by fitting into the load port opening L.
  • the shutter member 34a has a mechanism for holding the lid 5b. Normally, the shutter member 34a is fitted in the load port opening L and closes the load port opening L.
  • the shutter drive unit 34b is connected to the shutter member 34a.
  • the shutter drive unit 34b moves the shutter member 34a in the horizontal direction and the vertical direction.
  • the shutter member 34a has a mechanism for holding the lid 5b.
  • the shutter drive unit 34b moves the shutter member 34a from the load port LP to the indexer unit 2 side (refer to the two-dot chain line arrow D) while the shutter member 34a holds the lid 5b, so that the lid 5b is removed from the substrate storage container 5. To leave. Further, when the shutter member 34a moves vertically downward (see the two-dot chain line arrow E), the substrate storage container 5 and the indexer unit 2 communicate with each other, and the hand H1 of the indexer robot IR enters the substrate storage container 5. It becomes possible.
  • the shutter drive unit 34 b is driven by a drive mechanism housed in the lower part of the installation table 35.
  • the drive mechanism is typically composed of an electric motor and a ball screw, but is not limited thereto, and may be a drive mechanism using a cylinder.
  • the optical sensor 8 is a sensor that optically detects the presence or absence of an object.
  • the optical sensor 8 may be a transmissive sensor.
  • the optical sensor 8 forms a sensor area on the path along which the hand H1 moves.
  • the optical sensor 8 having the form of a transmissive sensor has a light projecting unit 8a and a light receiving unit 8b.
  • the light projecting unit 8a and the light receiving unit 8b are installed with their optical axes aligned so as to face each other in the vertical position of the load port opening L.
  • the optical sensor 8 forms a linear sensor area along the optical axis between the light projecting unit 8a and the light receiving unit 8b.
  • the optical sensor 8 having the form of a transmissive sensor detects a light projection state and a light shielding state.
  • the light projecting state refers to a state in which light projected from the light projecting unit 8a is received by the light receiving unit 8b without being blocked.
  • the light blocking state refers to a state in which light projected from the light projecting unit 8a is blocked by an object passing through the sensor area and is not received by the light receiving unit 8b.
  • the indexer robot IR transports the substrate W to the substrate storage container 5
  • the hand H1 main body or the substrate W held by the hand H1 is an optical path (sensor area) between the light projecting unit 8a and the light receiving unit 8b. Block.
  • the detection state of the optical sensor 8 is switched between the light projection state and the light shielding state depending on whether the hand H1 main body or the substrate W is in the sensor area.
  • the optical sensor 8 outputs an ON / OFF signal for turning on the light projection state and turning off the light shielding state to the determination unit 62 (see FIG. 4).
  • the optical sensor 8 may have the form of a reflective sensor.
  • the optical sensor 8 in the form of a reflective sensor has a light projecting portion 8c and a light receiving portion 8d, which are installed at the lower position or the upper position of the load port opening L (in FIG. Shows an example of installation at a location).
  • the optical sensor 8 having the form of a reflective sensor is arranged so that the optical axis of the light projecting unit 8c and the optical axis of the light receiving unit 8d intersect in the sensor area.
  • the sensor area is set in the load port opening L on the passage of the hand H1 or the substrate W held by the hand H1.
  • a sensor area is defined by a light beam projected from the light projecting unit 8c, reflected by an object in the passage path, and received by the light receiving unit 8d.
  • the optical sensor 8 having the form of a reflective sensor detects a light projection state and a reflection state.
  • the light projection state refers to a state in which the light projected from the light projecting unit 8c is not received by the light receiving unit 8d.
  • the reflection state refers to a state in which light projected from the light projecting unit 8c is reflected by an object passing through the sensor area, and the reflected light is received by the light receiving unit 8d.
  • the hand H1 main body or the substrate W held by the hand H1 reflects the light projected from the light projecting unit 8c and reflects the reflected light. Is received by the light receiving unit 8d.
  • the optical sensor 8 switches between the light projection state and the reflection state depending on whether the hand H1 or the substrate W is in the sensor area. For example, the optical sensor 8 outputs an ON / OFF signal for turning on the light projection state and turning off the reflection state to the determination unit 62 (see FIG. 4).
  • the passing object passing through the space can be accurately detected from the ON / OFF signal without blocking the passage route of the passing object passing through the space.
  • the indexer unit 2 is covered with a partition wall 7. Thereby, the inside of the indexer unit 2 is isolated from the external atmosphere and maintained in a clean environment.
  • the partition wall 7 connected to the load port LP is provided with a partition wall passage hole 7a for allowing the substrate W to pass therethrough.
  • An indexer robot IR is disposed on the bottom 7 b of the indexer unit 2.
  • the indexer robot IR has two hands H1, a base unit 25, an elevating unit 26, a connecting unit 27, and a pair of extendable units 28.
  • the base portion 25 is fixed to the bottom portion 7b of the indexer unit and forms a base for the indexer robot IR.
  • the elevating part 26 extends vertically upward from the base part 25 and has an elevating mechanism inside.
  • the lifting mechanism is typically composed of a motor, an encoder, and a ball screw, but may be composed of a cylinder.
  • the elevating part 26 can change the stop position of the hand H1 in the vertical direction. Specifically, the elevating unit 26 can adjust the height position of the hand H1 to the pickup position (lower position) and the place position (upper position).
  • the pickup position is a height position at which the uppermost portion of the claw guide portion 22 (see FIG. 3B) of the hand H1 is lower than the lower surface of the substrate W to be unloaded when the substrate W is unloaded from the substrate storage container 5.
  • the place position is a height position where the lower surface of the hand H1 is higher than the upper surface of the substrate guide portion 5c when the substrate W is carried into the substrate storage container 5. Details of the configuration of the hand H1 will be described later.
  • the connecting part 27 connects the elevating part 26 and the extendable part 28, and transmits the elevating operation of the elevating part 26 to the extendable part 28.
  • the connecting part 27 connects the two stretchable parts 28 to the upper part thereof.
  • Each expansion / contraction part 28 has connected the support part 21 which supports the hand H1 to the upper part.
  • the two extendable portions 28 and the two corresponding support portions 21 are respectively connected to the two hands H1, and the two hands H1 can be individually moved forward and backward.
  • the expansion / contraction part 28 has a plurality of joints, and performs expansion / contraction operation by rotationally driving the joint parts.
  • the expansion / contraction part 28 can change the horizontal position of the hand H1 by an expansion / contraction operation.
  • the position (solid line) where the joint of the expansion / contraction part 28 is contracted in the horizontal direction is the home position HM (regression position), and the position where the joint is extended in the horizontal direction (two-dot chain line F) is the forward position. FW (advance position).
  • the home position HM is a reference position in the horizontal direction of the hand H1.
  • the expansion / contraction part 28 can reduce an installation space by expanding and contracting a plurality of joints. The same applies to the lower hand H1.
  • the expansion / contraction part 28 comprises the reciprocation mechanism which reciprocates the hand H1.
  • the indexer unit 2 acquires the unprocessed substrate W from the substrate storage container 5 by the indexer robot IR and passes it to the pass unit 4.
  • the substrate W processed by the processing unit 31 is placed on the pass unit 4.
  • the processed substrate W can be transported and stored in the substrate storage container 5 by the indexer robot IR.
  • FIG. 3A is a plan view showing a schematic configuration of the hand
  • FIG. 3B is a side view showing a schematic configuration of the hand. Detailed description will be omitted by giving the same reference numerals to the above-described configuration.
  • the hand H1 includes a main body 20, a support portion 21, a claw guide portion 22, a back guide portion 23, and a pusher portion 24.
  • the main body 20 is a flat plate member that is flat in the horizontal direction in plan view (top view), and has one end connected to the support portion 21.
  • the other end has a hollow shape in which at least a part of a portion overlapping the substrate W when the substrate W is held is hollowed out.
  • the main body 20 can hold the substrate W in a horizontal posture.
  • the hollow shape is a V-shape.
  • the main body 20 is made of a lightweight and strong material such as ceramics or aluminum.
  • the optical sensor 8 can easily detect whether or not the substrate W is on the hand H1 because the hand H1 has a hollow shape. Specifically, when the hand H1 is holding the substrate W, the substrate W overlaps the hollow area of the hand H1. By detecting the overlapping portion of the substrate W with the optical sensor 8, it can be easily detected that the substrate W is held on the hand H1. As will be described later, even when the substrate W exists on the hand H1, the substrate W overlaps the hollow area of the hand H1. By detecting the overlapping portion of the substrate W with the optical sensor 8, it can be easily detected that the substrate W is on the hand H1.
  • the nail guide portion 22 is installed at each V-shaped tip of the main body 20 and has an L-shape when viewed from the side.
  • the claw guide portion 22 has a structure in which the substrate W is supported from below by the flat surface portion 22a and the peripheral end portion of the substrate W is supported by the side surface portion 22b.
  • the back guide part 23 is installed on the support part 21 side from the claw guide part 22 on the surface of the main body 20 and is arranged at a certain distance from the claw guide part 22 so as to support the substrate W.
  • the back guide portion 23 has a substantially cylindrical shape, and includes an inclined portion having an inclination that becomes narrower upward from the middle stage of the cylinder, and is configured to support the peripheral end portion of the substrate W at the inclined portion. Has been.
  • the substrate W is supported at four points of two claw guide portions 22 and two back guide portions 23. Thereby, compared with the case where it is directly supported by the whole surface of the main body 20, the contact area with the back surface and edge part of the board
  • substrate W can be reduced according to it.
  • the upper surface of the substrate W held by the claw guide portion 22 and the back guide portion 23 is lower than the uppermost portions of the claw guide portion 22 and the back guide portion 23. Therefore, the substrate W cannot be easily detached from the hand H1.
  • the pusher part 24 has a movable part 24a and a fixed part 24b.
  • the movable portion 24a is connected to the fixed portion 24b, and the fixed portion 24b is fixed to the support portion 21.
  • the movable part 24a is an extendable part that can be expanded and contracted in a direction (a two-dot chain line arrow G in FIG. 3A) extending horizontally in the main body 20.
  • the movable portion 24a expands and contracts by being driven by, for example, a spring, a cylinder, a motor, or the like.
  • the substrate W is placed on the hand H1
  • the substrate W is supported by the claw guide portion 22 and the back guide portion 23.
  • the movable portion 24a extends toward the substrate W, whereby the substrate W can be sandwiched and held.
  • the movable portion 24a extends toward the substrate W, the end portion of the substrate W is pushed in, the end portion of the substrate W is pressed against the side surface portion 22b of the claw guide portion 22, and the movable portion 24a and the claw guide portion 22 are pressed.
  • the substrate W is sandwiched between and fixedly held.
  • the movable portion 24a contracts, the movable portion 24a is separated from the end portion of the substrate W to release the fixed holding.
  • the indexer robot IR or the center robot CR transports the substrate W, if the linear movement operation or the rotation operation is performed at a high speed, the substrate W may be dropped due to vibration or inertia force.
  • the pusher portion 24 functions as a misalignment prevention mechanism that prevents misalignment of the substrate W by fixing and holding the substrate W on the hand H1. Therefore, even when the indexer robot IR or the center robot CR is moving straight ahead or rotating at a high speed, the positional deviation of the substrate W can be prevented. Since the substrate W is fixed and held, there is no possibility of dropping the substrate W, and therefore the indexer robot IR and the center robot CR can perform high-speed movement similar to the state in which the hand H1 does not hold the substrate W.
  • the pusher unit 24 has a pusher detection unit 29 (expansion / contraction detection unit).
  • the pusher detection unit 29 detects the extension amount of the movable unit 24a. If the movable part 24a extends beyond a certain extension amount, the movable part 24a can hold the substrate W in a fixed manner. For example, the pusher detection unit 29 detects a stretched state when the movable portion 24a is equal to or greater than a certain extension amount, and detects a contraction state when the movable portion 24a is less than a certain stretch amount.
  • the pusher detection unit 29 outputs, for example, an ON / OFF signal to the determination unit 62 in which the expanded state is an ON signal and the contracted state is an OFF signal.
  • the determination unit 62 determines that the substrate W is in the fixed holding state if the signal output from the pusher detection unit 29 is ON, and determines that the substrate W is in the fixed release state if the signal is OFF.
  • the certain amount of expansion is determined from design data, past results, and the like, and is stored in the storage unit 61. For example, instead of detecting the extension amount by the pusher detection unit 29, the extension amount may be detected from an image captured by camera photography.
  • FIG. 4 is a block diagram of the control system. As shown in FIG. 4, the control unit 6 controls each component of the substrate processing apparatus 1.
  • the control unit 6 includes a determination unit 62, a storage unit 61, a drive control unit 63, and a process control unit 64.
  • the storage unit 61 stores information necessary for controlling each component of the substrate processing apparatus 1. For example, in the substrate passing operation in which the indexer robot IR passes the substrate W held by the hand H1 to the substrate storage container 5, the storage unit 61 receives an OFF signal output from the optical sensor 8 when the substrate W is normally passed. The duration is stored as a normal period.
  • the indexer robot IR moves the hand H1 holding the substrate W from the home position HM to the forward position FW, and moves the hand H1 from the place position to the pickup position vertically downward and holds it in the hand H1.
  • the substrate W is composed of a placement movement for placing the substrate W on the substrate guide portion 5c and a return path movement for moving the hand H1 from the forward position FW to the home position HM.
  • the normal period is a period in which the substrate W is normally transported, which is determined based on design data, evaluation data, past results, and the like, and can be arbitrarily changed according to the moving distance and moving speed of the hand H1. Further, in the normal period, in consideration of a minute time lag due to operation variation, a certain margin may be provided on the plus side and / or the minus side.
  • the storage unit 61 stores, as a normal timing signal, an ON signal output from the pusher detection unit 29 at the start of the forward movement (home position HM) in the board transfer operation. Further, the storage unit 61 stores, as a normal timing signal, an OFF signal output from the pusher detection unit 29 at the end of the forward movement (forward position FW) in the substrate transfer operation.
  • These normal timing signals are determined from design data, evaluation data, past results, and the like.
  • the normal timing signal may have a certain margin on the plus side and / or the minus side in consideration of a minute time lag due to operational variations.
  • the storage unit 61 uses, as the normal fixed holding pattern NHP, the ON / OFF signal pattern output in time series from the pusher detecting unit 29 when the substrate W is normally fixed and held and released in the substrate transfer operation.
  • the normal fixed holding pattern NHP is determined until the indexer robot IR moves forward from the home position HM to the forward position FW in a state where the substrate W is fixedly held by the hand H1, and the fixing of the hand H1 is released. This represents switching of time-series ON / OFF signals output from the pusher detection unit 29 during the period.
  • the normal fixed holding pattern NHP is determined from design data, evaluation data, past results, and the like.
  • the normal fixed holding pattern NHP may have a certain margin on the plus side and / or the minus side in consideration of a minute time lag due to operational variations.
  • the storage unit 61 stores various recipes representing a series of device operations.
  • the storage unit 61 stores an abnormal recipe.
  • the determination unit 62 determines that there is an abnormality based on the ON / OFF signal detected by the optical sensor 8 during the substrate transfer operation
  • the abnormality time recipe is used when the control operation is performed on each component of the substrate processing apparatus 1. used.
  • the storage unit 61 immediately stops, for example, the indexer robot IR and the shutter drive unit 34b as an abnormality recipe, further stops the processing unit 31 after processing, stops the center robot CR after carrying the substrate, and indicates an abnormality. It remembers a series of device operations that generate an alarm. The same applies to an abnormal recipe based on an ON / OFF signal from the pusher detection unit 29.
  • the recipe at the time of abnormality that is, the operation of the apparatus when the abnormality occurs can be arbitrarily changed.
  • the determination unit 62 sets the duration of the OFF signal output from the optical sensor 8 accompanying the movement of the hand H ⁇ b> 1 as the passing period for the transport operation of the substrate W.
  • the determination unit 62 sets the timing at which the signal input from the optical sensor 8 changes from ON to OFF as the measurement start point, and then sets the timing at which the signal changes from OFF to ON as the measurement end point. If the signal of the optical sensor 8 does not change from OFF to ON even after a predetermined period has elapsed from the measurement start point, the determination unit 62 sets the time when the predetermined period has elapsed as the measurement end point.
  • the determination unit 62 compares the passage period with the normal period stored in the storage unit 61.
  • the determination unit 62 determines that the transfer operation of the substrate W is normal when the passage period and the normal period coincide with each other, and determines that the transfer operation of the substrate W is not normal (transfer abnormality) when they are different.
  • the control part 6 controls each structure part of the substrate processing apparatus 1, and performs a recipe at the time of abnormality.
  • a specific normal period can be selected according to the moving speed of the hand H1.
  • the control unit 6 automatically selects a specific normal period based on the correspondence table in which the moving speed of the hand H1 is associated with the normal period.
  • the specific normal period may be selectively designated by the user by an input from an input unit (not shown).
  • the ON / OFF signal detected by the pusher detection unit 29 is input to the determination unit 62.
  • the determination unit 62 interprets an ON signal output from the pusher detection unit 29 when the movable unit 24a reaches a certain extension amount or more as detection of the fixed holding state of the substrate W. Further, the determination unit 62 interprets the OFF signal output from the pusher detection unit 29 when the movable unit 24a is less than a certain amount of extension as detection of the fixed release state of the substrate W.
  • the determination unit 62 compares the ON / OFF signal output from the pusher detection unit 29 at a specific timing with the information of the normal ON / OFF signal stored at the specific timing stored in the storage unit 61. When the ON / OFF signal output from the pusher detection unit 29 at a specific timing matches the normal ON / OFF signal information stored at the specific timing stored in the storage unit 61, the determination unit 62 It is determined that the fixed holding state and / or the fixed release state of W are normal, and when they are different, the fixed holding state and / or the fixed release state of the substrate W are determined to be abnormal (abnormal). When it determines with it being abnormal, the control part 6 controls each component of the substrate processing apparatus 1, and performs a recipe at the time of abnormality.
  • the determination unit 62 switches the time series ON / OFF signal output from the pusher detection unit 29 (actual fixed holding pattern RHP) and the normal time series ON / OFF signal stored in the storage unit 61. (Normal fixed holding pattern NHP) may be compared.
  • the determination unit 62 determines that the fixed holding state and / or the unlocking state of the substrate W are normal, and when they are different, the fixed holding state of the substrate W is determined. And / or it is determined that the fixed release state is not normal (abnormal).
  • the control part 6 controls each component of the substrate processing apparatus 1, and performs a recipe at the time of abnormality.
  • the drive control unit 63 controls the drive of the indexer robot IR, the center robot CR, and the shutter drive unit 34b. If the determination unit 62 determines that there is an abnormality, the drive control unit 63 immediately stops the indexer robot IR and the shutter drive unit 34b based on the abnormality recipe, and stops the center robot CR after the substrate is transferred.
  • the processing control unit 64 controls the processing of the processing unit 31. Specific processing follows the processing recipe stored in the storage unit 61. If the determination unit 62 determines that the process is abnormal, the process control unit 64 continues the process of the process unit 31 based on the abnormality recipe, and stops the operation of the process unit 31 after the process is completed.
  • the control unit 6 includes a central processing unit (CPU), a ROM (Read-only Memory), a RAM (Random-Access Memory), a storage medium such as a fixed disk and an SSD (Solid State Drive), a drive circuit, a communication circuit, and the like. It is configured.
  • the communication circuit includes a circuit for performing communication such as RS-232C and Ethernet (registered trademark), and a circuit for performing digital or analog signal input / output.
  • the communication circuit communicates and transmits input / output signals between the control unit 6, the optical sensor 8, the pusher detection unit 29, various driving units, and the processing unit 31, as well as peripheral devices such as a load port LP and an external control device. It also communicates with devices and transmits input / output signals.
  • FIG. 5 is a flowchart showing the substrate transfer operation (delivery operation).
  • 6A to 6E are diagrams showing an operation example when the substrate is normally placed on the substrate storage container.
  • FIG. 8A is a chart showing the detection signal of the optical sensor 8 and the detection signal of the pusher detection unit 29 in time series in the substrate transfer operation. The same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a time-series ON / OFF signal output from the optical sensor 8 when the substrate passing operation is normal is an optical signal RLS1.
  • Step S ⁇ Step S ⁇ b>1>
  • the substrate storage container 5 is placed.
  • the substrate storage container 5 is placed on the stage 32.
  • the lid 5b closes the opening B.
  • the stage 32 moves the substrate storage container 5 on the stage 32 close to the indexer unit 2 and brings the lid 5b into contact with the shutter member 34a.
  • the load port opening / closing mechanism 34 holds the lid 5b on the shutter member 34a, and moves the shutter driving unit 34b from the substrate storage container 5 toward the indexer unit 2. By this operation, the lid 5b can be detached from the substrate storage container 5. Further, the load port opening / closing mechanism 34 moves the shutter drive unit 34b vertically downward to cause the substrate storage container 5 and the indexer unit 2 to communicate with each other, and the hand H1 of the indexer robot IR enters the substrate storage container 5. Make it possible.
  • the indexer robot IR performs the receiving operation of the substrate W.
  • the substrate receiving operation includes an outward movement (second outward process), an acquisition movement, and a backward movement (second backward process).
  • the indexer robot IR standing by at the indexer delivery position moves the vertical position of the hand H1 to the pickup position. Thereafter, the indexer robot IR moves the hand H1 from the home position HM to the forward position FW in order to move the hand H1 into the lower portion of the substrate guide portion 5c holding the substrate W in the substrate storage container 5. I do.
  • the indexer robot IR After the hand H1 reaches the forward position FW, the indexer robot IR performs an acquisition movement that raises the hand H1 from the pickup position to the place position.
  • the substrate W placed on the substrate guide portion 5 c is lifted by the hand H ⁇ b> 1 and supported by the claw guide portion 22 and the back guide portion 23.
  • the movable portion 24a extends to the substrate W side and presses the substrate W against the claw guide portion 22.
  • substrate W will be in the state pinched
  • the pusher detection unit 29 detects an ON signal when the movable unit 24 a reaches a certain extension amount or more, and outputs the detected ON signal to the determination unit 62.
  • the indexer robot IR performs a backward movement to move the hand H1 from the forward position FW to the home position HM in order to retract the hand H1 from the substrate storage container 5 in a state where the hand H1 holds and holds the substrate W.
  • Step S Processing the Substrate
  • the indexer robot IR moves the hand H ⁇ b> 1 into the pass unit 4 and places the substrate W on the pass unit 4 with the substrate W fixed and held. After placement, the indexer robot IR retracts the hand H1 to the outside of the pass unit 4. The substrate W placed on the pass unit 4 is transferred to the processing unit 31 by the center robot CR. Similarly to the indexer robot IR, the center robot CR carries the substrate W in a fixed state.
  • Chemical processing is performed on the substrate W transported to the processing unit 31.
  • the chemical liquid process is, for example, a cleaning process.
  • a chemical liquid is supplied to the substrate W to clean the substrate W.
  • an etching process, a coating process, a developing process, or the like may be performed.
  • the treatment may be different from the chemical treatment, for example, heat treatment such as heat treatment or cooling treatment.
  • the substrate W processed by the processing unit 31 is taken out from the processing unit 31 by the center robot CR and placed on the pass unit 4.
  • the substrate is transferred to the substrate storage container.
  • the indexer robot IR performs the transfer operation of the substrate W.
  • the substrate transfer operation includes an outward movement (first outward process), a placement movement, and a backward movement (first backward process).
  • the substrate W placed on the pass unit 4 is fixedly held by the hand H1.
  • the indexer robot IR moves to the indexer delivery position of the substrate storage container 5 that is the storage target of the substrate W while the substrate W is fixedly held on the hand H1.
  • the hand H1 rotates in the direction facing the opening B, and moves the vertical position to the place position (time t1).
  • time t1 since the optical sensor 8 is in a light projection state, it outputs an ON signal, and since the movable portion 24a is in an extended state, the pusher detection unit 29 outputs an ON signal.
  • the indexer robot IR moves the home H1 from the home position HM in a state where the substrate W is fixed and held.
  • the forward movement to move to the forward position FW is started (time t2).
  • the determination unit 62 compares the signal output from the pusher detection unit 29 with the normal timing signal at the first monitoring point SP1 stored in the storage unit 61, with the start of forward movement as the first monitoring point SP1. Since the substrate W needs to be fixedly held at the first monitoring point SP1, the normal timing signal at the first monitoring point SP1 stored in the storage unit 61 is an ON signal.
  • the determination unit 62 continues the process when the two signals match each other, and executes the abnormal recipe when they are different (NO in step S5).
  • the first monitoring point SP1 does not have to be immediately before the start of the outward movement, but may be a certain period before the start of the outward movement. Further, the determination unit 62 may start acquiring the ON / OFF signal in order to acquire the time series pattern of the signal output from the pusher detection unit 29 (signal acquisition period SGP).
  • the signal output from the optical sensor 8 to the determination unit 62 is an ON signal.
  • the determination unit 62 starts measuring the duration of the OFF signal with the switching from the ON signal input from the optical sensor 8 to the OFF signal as the starting point of the passage period.
  • the hand H1 reaches the forward position FW.
  • the control unit 6 releases the pressing to the substrate W by contracting the movable unit 24a.
  • the substrate W can be placed on the substrate guide portion 5c. Since the movable unit 24a is in the contracted state, the signal output from the pusher detection unit 29 to the determination unit 62 is switched from the ON signal to the OFF signal (time t4).
  • the determination unit 62 compares the signal output from the pusher detection unit 29 with the normal timing signal at the second monitoring point SP2 stored in the storage unit 61 with the end of the forward movement as the second monitoring point SP2.
  • the normal timing signal at the second monitoring point SP2 stored in the storage unit 61 is an OFF signal.
  • the determination unit 62 continues the process, and when they differ (NO in S5), the determination unit 62 executes the abnormal recipe.
  • the second monitoring point SP2 need not be immediately after the end of the forward movement, but may be after a certain period of time after the end of the forward movement.
  • the determination unit 62 ends the acquisition of the ON / OFF signal when the time series pattern (actual fixed holding pattern RHP) of the signal output from the pusher detection unit 29 is acquired.
  • the determination unit 62 compares the acquired actual fixed holding pattern RHP with the normal fixed holding pattern NHP stored in the storage unit 61. As a result of the comparison, when the two patterns match (YES in step S5), the determination unit 62 continues the process, and when they differ (NO in step S5), the determination unit 62 executes the abnormal recipe.
  • the indexer robot IR picks up the vertical position of the hand H1 from the place position while keeping the forward position FW. Placement movement to move down to the position is performed. By the placement movement, the substrate W held inside the claw guide portion 22 and the back guide portion 23 is placed on the substrate guide portion 5c.
  • the indexer robot IR moves the hand H1 from the forward position FW to the home position HM in order to retract the hand H1 from the substrate storage container 5. Move. If the substrate W is normally placed on the substrate guide portion 5c, the substrate W does not exist on the hand H1. Therefore, when the hollow region of the hand H1 (the region between the V-shaped portions where no member is present) reaches the optical axis while passing through the optical axis of the optical sensor 8, the optical sensor 8 projects from the light shielding state. Change to light state. In response, the signal output from the optical sensor 8 changes from an ON signal to an OFF signal (time t5).
  • the determination unit 62 ends the measurement of the duration of the OFF signal output from the optical sensor 8 when the signal output from the optical sensor 8 changes from the OFF signal to the ON signal. After passing through the hollow area of the hand H1, the output of the optical sensor 8 is switched from the OFF signal to the ON signal. When the hand H1 reaches the home position HM, the backward movement is finished (FIG. 6E, time t6). When the substrate W is normally transferred, the period from the time t3 when the signal output from the optical sensor 8 changes from the ON signal to the OFF signal to the time t5 when the signal changes from the OFF signal to the ON signal is the first passage period PP1. It becomes.
  • the indexer robot IR can be set to a speed slower than the transfer speed during the backward movement when the hand H1 moves backward from the inside of the substrate storage container 5. By reducing the speed during the backward movement, the detection accuracy of the optical sensor 8 during the backward movement can be improved.
  • the determination unit 62 compares the first passage period PP ⁇ b> 1 measured during the transfer operation of the substrate W with the first normal period NP ⁇ b> 1 stored in the storage unit 61.
  • the first normal period NP1 is a period in which the OFF signal output from the optical sensor 8 is from time t3 to t5.
  • the determination unit 62 compares the first passage period PP1 with the first normal period NP1 set in advance and stored in the storage unit 61. As a result of the comparison, the determination unit 62 determines that it is normal (YES in S7) and continues the process.
  • the abnormality recipe is executed.
  • the determination may be made with a margin of about ⁇ 10% with respect to the first normal period NP1.
  • the stored first normal period NP1 is 2.8 seconds or less. From the design value and the experiment, an appropriate value is around 2.5 seconds, and when there is an abnormality, if it becomes 3.0 seconds or more, a margin of about 10% is added to 2.5 seconds, and the first normal period NP1 is 2.8 or less.
  • the first normal period NP1 can be arbitrarily changed according to the moving distance and the moving speed, and is not limited to these values.
  • the first normal period NP1 may have an upper and lower limit range such as 2.2 seconds or more and 2.8 seconds or less. In this way, by providing a margin, it is possible to prevent a minute operation variation that does not cause a problem from being detected as an error.
  • the determination unit 62 determines that the first passage period PP1 is normal, a series of substrate passing operations by the indexer robot IR is completed.
  • the substrate W may be warped in a concave shape through a manufacturing process. After the substrate W is placed on the substrate guide portion 5c, a part of the lower surface of the substrate W is moved to the upper end of the side surface portion 22b of the hand H1 even though the hand H1 is lowered to the pickup position due to the warpage of the substrate W. There exists a possibility that it may become equal height or lower than the upper end of the side part 22b of the hand H1.
  • FIG. 7A to 7B are diagrams for explaining the operation when the substrate is not normally placed on the substrate storage container.
  • FIG. 8B is a chart showing the detection signal of the optical sensor and the detection signal of the pusher detection unit in chronological order according to normality and abnormality in the substrate passing operation. Until the hand H1 enters the forward position and descends to the pickup position, the description is omitted because it is the same as FIG. 6A to FIG. 6C. The description of the same parts as in FIG. 8A is also omitted.
  • a time-series ON / OFF signal output from the optical sensor 8 when an abnormality occurs in the substrate transfer operation is referred to as an optical signal RLS2.
  • the determination part 62 determines that the OFF signal output from the pusher detection part 29 is normal (FIG. 6C, time t4). Therefore, even when the substrate W is placed in an unstable state on the hand H1, the pusher detection unit 29 cannot detect the abnormality.
  • the optical sensor 8 does not change from the light shielding state to the light projecting state, and the signal output is maintained at the OFF signal.
  • the hand H1 continues to move in the backward direction, and the output of the optical sensor 8 changes to an ON signal with the substrate W passing through the optical axis (time t5a).
  • the determination unit 62 ends the measurement of the duration of the OFF signal of the optical sensor 8 when the signal output from the optical sensor 8 changes from the OFF signal to the ON signal.
  • the determination unit 62 compares the measured second passage period PP2 with the first normal period NP1 stored in the storage unit 61 for the transfer operation of the substrate W. As a result of comparing the second passage period PP2 and the first normal period NP1 stored in the storage unit 61, the determination unit 62 compares the second passage period PP2 and the first passage period PP2 stored in the storage unit 61 as shown in FIG. 8B. Since it is different from the normal period NP1, the abnormality recipe is executed.
  • the determination unit 62 determines that there is an abnormality, it causes each component of the substrate processing apparatus 1 to execute the abnormal recipe stored in the storage unit 61.
  • the abnormal-time recipe defines a series of operations including an immediate stop of the indexer robot IR and the shutter drive unit 34b, a stop after the processing of the processing unit 31, a stop after the substrate transfer of the center robot CR, and an alarm.
  • the alarm includes warning display on the main screen of the substrate processing apparatus 1, generation of sound, display command output of a pop-up message to the host computer through the communication line, and the like. By generating an alarm, the apparatus user can be notified that the substrate processing apparatus 1 is abnormal. Even when the execution of the abnormal recipe is completed, the determination unit 62 ends the series of transport operations.
  • a series of substrate W transfer operations when the hand H1 places the substrate W on the substrate guide portion 5c of the substrate storage container 5 are optical sensors.
  • the detection signal of 8 can be used to determine whether the state is normal or abnormal. More specifically, the passage period is measured from the duration of the OFF signal generated by the optical sensor 8 detecting the hand H1 body or the substrate W. By comparing whether or not the passage period and the normal period stored in the storage unit 61 coincide with each other, it is possible to determine whether the transfer operation of the substrate W is normal or abnormal.
  • the substrate W is not accurately placed on the substrate guide portion 5c of the substrate storage container 5.
  • the substrate W is positioned on the right side of the state shown in FIG. A state in which W is placed so as to be shifted out of the substrate storage container 5 will be described.
  • the sensor area of the optical sensor 8 is set at a position where the substrate W placed in a state of being shifted out of the substrate storage container 5 can be detected. Therefore, it can be detected by the optical sensor 8 that the substrate W is placed in a shifted state. In this case as well, another abnormal state is detected.
  • Whether the hand H1 receives a substrate W placed on the substrate guide portion 5c of the substrate storage container 5 or not is determined based on the output of the optical sensor 8 as to whether it is in a normal state or an abnormal state. May be.
  • the second passage period is measured from the duration of the OFF signal generated by detecting the hand H1 or the substrate W by the optical sensor 8. It may be determined whether the receiving operation of the substrate W is normal or abnormal by comparing whether or not the second passage period and the second normal period stored in the storage unit 61 match.
  • the hand W1 main body that does not hold the substrate W passes through the sensor area of the optical sensor 8 in the second forward pass process, the hand W1 main body and the substrate W held by the hand H1 in the second return pass process.
  • a second passage period until passing through the sensor area is measured.
  • the determination unit 62 determines whether or not the second passage period is different from the second normal period set in advance and stored in the storage unit 61.
  • the determination unit 62 determines that the state is normal if they are not different, and determines that the conveyance is abnormal if they are different.
  • the substrate W is warped, a part of the lower surface of the substrate W is a side surface portion of the hand H1 even though the hand H1 is lowered to the pickup position after the substrate W is placed on the substrate guide portion 5c.
  • the height is equal to the upper end of 22b or lower than the upper end of the side surface portion 22b of the hand H1. In this case, when the hand H1 moves backward from the forward position FW to the home position HM, the upper end of the side surface portion 22b of the hand H1 catches the end portion or the lower surface of the substrate W.
  • the substrate W is not held by the claw guide portion 22 and the back guide portion 23, and a part of the substrate W rides on the upper end of the side surface portion 22b and is placed in an unstable state on the hand H1.
  • an abnormality may not be detected from the ON / OFF signal from the pusher detection unit 29. Even in such a situation, an abnormality can be detected because the determination unit 62 determines an abnormality based on the ON / OFF signal from the optical sensor 8.
  • the determination unit 62 causes each component of the substrate processing apparatus 1 to execute an abnormal recipe.
  • the conveyance operation stops due to the execution of the abnormal recipe.
  • an alarm is issued, and the user of the substrate processing apparatus 1 can immediately know that the substrate processing apparatus 1 is in an abnormal state. As a result, the transfer of the substrate W can be stopped early, and the influence on the subsequent process can be reduced.
  • FIG. 9 is a side view showing a schematic configuration of the processing unit. About the same structure as the above, detailed description is abbreviate
  • the processing unit 31 is a single wafer processing unit for performing liquid processing such as cleaning processing and etching processing on the substrate W.
  • the processing unit 31 has a chamber 802 that divides a sealed space surrounded by a side wall 801 into the inside.
  • a spin chuck 803 that holds and rotates the substrate W
  • a treatment liquid nozzle 804 that holds and rotates the substrate W
  • a rinse liquid nozzle 804 that holds and rotates the substrate W
  • an organic solvent nozzle (not shown)
  • a processing cup 808 having a shape.
  • the processing liquid nozzle 804 supplies the processing liquid supplied from the processing liquid supply unit to the surface (upper surface) of the substrate W held by the spin chuck 803.
  • the rinse liquid nozzle supplies the rinse liquid supplied from the rinse liquid supply unit to the surface (upper surface) of the substrate W held by the spin chuck 803.
  • the organic solvent nozzle supplies the organic solvent supplied from the organic solvent supply unit to the surface (upper surface) of the substrate W held by the spin chuck 803.
  • An opening 811 is formed in the side wall 801 of the chamber 802 so that the substrate W can be carried in and out of the chamber 802.
  • the center robot CR (see FIG. 1) arranged outside the chamber 802 allows the hand H2 (see FIG. 1) to access the chamber 802 through the opening 811.
  • the center robot CR can place an unprocessed substrate W on the spin chuck 803 and can extract a processed substrate W from the spin chuck 803.
  • a shutter 812 for opening and closing the opening 811 in the vertical direction is provided outside the side wall 801.
  • a shutter elevating mechanism 813 is coupled to the shutter 812.
  • the shutter lifting / lowering mechanism 813 moves the shutter 812 up and down between an open position and a closed position (not shown).
  • the shutter lifting / lowering mechanism 813 is controlled by the processing control unit 64.
  • the spin chuck 803 is a suction chuck that sucks the substrate W in the horizontal direction and holds the substrate W horizontally.
  • the spin chuck 803 is connected to a spin shaft 815 that is integrated with a drive shaft of the spin motor 814.
  • the holding method of the substrate W may be a holding method in which the substrate W is held horizontally with the substrate W held in the horizontal direction. That is, a mechanical chuck may be used as the spin chuck 803 instead of the suction chuck.
  • the spin shaft 815 is rotated around a predetermined rotation axis (vertical axis) A1 by the driving force.
  • the substrate W is rotated around the rotation axis A1 together with the spin chuck 803 while maintaining a substantially horizontal posture.
  • the processing liquid nozzle 804 is connected to the processing liquid supply unit by a supply pipe 805.
  • a processing liquid valve 806 is disposed in the middle of the supply pipe 805 and is controlled to be opened and closed by a signal from the control unit 6. By opening the processing liquid valve 806, the processing liquid nozzle 804 and the processing liquid supply unit are in communication with each other, and the processing liquid is discharged from the processing liquid nozzle 804. By closing the processing liquid valve 806, the discharge of the processing liquid from the processing liquid nozzle 804 can be stopped.
  • the processing cup 808 is coupled to a cup lifting mechanism 807 for moving the processing cup 808 up and down between a retracted position (solid line) and a processing position (two-dot chain line).
  • the cup elevating mechanism 807 is controlled by the processing control unit 64, and thereby the vertical position of the processing cup 808 is controlled.
  • the processing control unit 64 In order to receive the substrate W on the spin chuck 803, the processing control unit 64 lowers the processing cup 808 to the retracted position when the substrate W is loaded. The processing control unit 64 raises the processing cup 808 to the processing position when processing the substrate W.
  • the processing control unit 64 releases the adsorption of the substrate W by the spin chuck 803 and lowers the processing cup 808 to the retracted position.
  • the substrate W on the spin chuck 803 is held by the hand H2 of the center robot CR, and the held substrate W is carried out of the chamber 802.
  • the treatment liquid is hydrofluoric acid, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide, organic acid (eg, citric acid, oxalic acid, etc.), organic alkali (eg, TMAH, etc.), surfactant, or A corrosion inhibitor may be included.
  • the processing liquid nozzle 804 is, for example, a straight nozzle that discharges the processing liquid in a continuous flow state.
  • the processing liquid nozzle 804 is attached to a processing liquid nozzle arm (not shown) with the discharge port facing substantially downward.
  • the treatment liquid nozzle arm is a swing arm extending in the horizontal direction, and a treatment liquid nozzle 804 is attached to the swing end portion thereof.
  • a base end portion of the swing arm is coupled to an arm rotation mechanism (not shown).
  • the arm rotation mechanism swings the treatment liquid nozzle arm around a predetermined rotation axis (not shown) along the vertical direction.
  • the processing liquid nozzle arm swings, the processing liquid nozzle 804 moves horizontally along an arcuate path passing through the center of the upper surface of the substrate W in plan view. Accordingly, it is possible to perform a process in which the processing liquid nozzle 804 moves horizontally on the substrate W while the processing liquid is discharged.
  • the center robot CR transports the substrates W transported from the substrate storage container 5 to the pass unit 4 to each processing unit 31 one by one.
  • the center robot CR includes an elevating part 26A, a connecting part 27A, and a pair of extendable parts 28A. These have the same structure as the elevating part 26, the connecting part 27, and the telescopic part 28 of the indexer robot IR.
  • the elevating part 26A can adjust the vertical position of the hand H2. Specifically, the elevating unit 26A can adjust the height position of the hand H2 to the pickup position (lower position) and the place position (upper position).
  • the pickup position is a height position at which the uppermost portion of the claw guide portion 22 (see FIG. 3B) of the hand H2 is lower than the lower surface of the substrate W to be unloaded when the substrate W is unloaded from the processing unit 31.
  • the place position is a height position where the lower surface of the hand H ⁇ b> 2 is higher than the upper surface of the spin chuck 803 when the substrate W is carried into the processing unit 31.
  • the expansion / contraction part 28A which is a reciprocating mechanism has a plurality of joints, and performs expansion / contraction operation by rotationally driving the joint parts.
  • the extension / contraction part 28A can adjust the horizontal position of the hand H2 by an extension / contraction operation. Specifically, the extension / contraction part 28A can adjust the horizontal position of the hand H2 to the home position HM (solid line) and the forward position FW (two-dot chain line).
  • the home position HM (solid line) is a horizontal position in a state where the joint of the expansion / contraction part 28A is contracted.
  • the forward position FW two-dot chain line
  • the home position HM is a reference position in the horizontal direction of the hand H2.
  • the opening 811 of the chamber 802 is provided with a detection unit (sensor) that detects the presence or absence of an object passing through the opening 811.
  • a detection unit sensor
  • an optical sensor 81 is used.
  • the optical sensor 81 is a transmissive sensor and includes a light projecting unit 81a and a light receiving unit 81b.
  • the light projecting unit 81a and the light receiving unit 81b are installed with their optical axes aligned so as to face each other at the upper and lower positions of the opening 811, and an object that passes through the optical axis between the light projecting unit 81a and the light receiving unit 81b. Is detected.
  • the optical axis is interrupted (shielded).
  • the optical sensor 81 detects the presence or absence of the hand H2 or the substrate W by detecting the light projection state and the light shielding state.
  • an ON / OFF signal for turning on the light shielded state and turning off the light projection state is output from the optical sensor 81 to the determination unit 62.
  • the optical sensor 81 may have the form of a reflective sensor. The details of the reflection type sensor are the same as in the case of the optical sensor 8 described above, and a description thereof will be omitted.
  • FIG. 10 is a flowchart showing the substrate transfer operation in the substrate processing apparatus.
  • FIG. 11 is a chart showing the detection signals of the optical sensors related to normality and abnormality in the substrate passing operation in time series.
  • an optical signal RLS3 represents an example of a time-series ON / OFF signal output from the optical sensor 8 when the substrate passing operation is normal.
  • the optical signal RLS4 represents an example of a time-series ON / OFF signal output from the optical sensor 8 when the substrate passing operation is abnormal.
  • the description of the pusher detection unit 29 (see FIGS. 3A and 3B) in the hand H2 is the same as described above, and will be omitted.
  • the center robot CR performs a substrate receiving operation. Since the receiving operation of the substrate of the center robot CR is the same as the receiving operation of the substrate of the indexer robot IR, detailed description is omitted.
  • the center robot CR acquires the substrate W placed on the pass unit 4 by the indexer robot IR and transports it to the processing unit 31. As with the indexer robot IR, the center robot CR carries the substrate W in a fixed state.
  • the center robot CR performs a substrate transfer operation. Since the substrate transfer operation of the center robot CR is the same as the substrate transfer operation of the indexer robot IR, detailed description thereof is omitted.
  • the center robot CR rotates to the processing unit delivery position of the target processing unit 31 that processes the substrate W while the substrate W is fixedly held on the hand H2.
  • the shutter 812 is lowered from the closed position to the open position by the shutter lifting / lowering mechanism 813, and the hand H2 faces the opening 811.
  • the vertical position is moved to the place position (time t11). At time t11, since the optical sensor 8 is in the light projection state, it outputs an ON signal.
  • the center robot CR starts the forward movement to move the hand H2 from the home position HM to the forward position FW in order to allow the hand H2 to enter the processing unit 31 while holding the substrate W (time t12). .
  • the signal output from the optical sensor 81 to the determination unit 62 is turned off from the ON signal. Switching to a signal (time t13).
  • the determination unit 62 starts measuring the duration of the OFF signal with the switching from the ON signal input from the optical sensor 81 to the OFF signal as the starting point of the passage period.
  • the hand H2 reaches the forward position FW.
  • the control unit 6 releases the pressing to the substrate W by contracting the movable unit 24a of the pusher unit 24 (time t14).
  • the substrate W can be placed on the spin chuck 803.
  • the center robot CR executes a placement movement that moves the vertical position of the hand H2 downward from the place position to the pickup position.
  • the substrate W held inside the claw guide portion 22 and the back guide portion 23 is placed on the spin chuck 803.
  • the determination unit 62 ends the measurement of the duration of the OFF signal output from the optical sensor 81 when the signal output from the optical sensor 81 changes from the OFF signal to the ON signal. Even after the hollow region passes the optical axis of the optical sensor 81, the state of the OFF signal is maintained, and when the hand H2 reaches the home position HM, the backward movement is completed (time t16). When the substrate is transported normally, a period from time t13 when the signal output from the optical sensor 81 changes from the ON signal to the OFF signal to time t15 when the signal changes from the OFF signal to the ON signal becomes the third passage period PP3. .
  • the center robot CR can be set to a speed slower than the normal transport speed during the forward movement when the backward movement moves the hand H2 back from the processing unit 31, and the optical sensor during the forward movement is reduced by reducing the speed during the forward movement.
  • the detection accuracy of 81 can be improved.
  • Optical sensor signal coincidence comparison The determination unit 62 compares the third passage period PP3 measured during the transfer operation of the substrate W with the second normal period NP2 stored in the storage unit 61. As a result of comparing the third passage period PP3 and the second normal period NP2 stored in the storage unit 61, the determination unit 62 determines that they are normal (YES in S14), continues the process, and differs. When it does, it judges with it being abnormal (NO of S14), and performs the recipe at the time of abnormality. When comparing the third passage period PP3 and the second normal period NP2, the determination may be made with a margin of about ⁇ 10% with respect to the second normal period NP2.
  • the stored second normal period NP2 is 2.8 seconds or less. From the design value and the experiment, an appropriate value is around 2.5 seconds, and when there is an abnormality, if it becomes 3.0 seconds or more, a margin of about 10% is added to 2.5 seconds, and the second normal period NP2 is 2.8 or less.
  • the second normal period NP2 can be arbitrarily changed according to the moving distance and the moving speed, and thus is not limited to these values and may have an upper and lower limit range. In this way, by providing a margin, it is possible to prevent a minute operation variation that does not cause a problem from being detected as an error.
  • the determination unit 62 determines that the third passage period PP3 is normal, a series of substrate passing operations by the center robot CR is completed.
  • Step S15 Processing Substrate
  • Various processes are performed on the substrate W transported to the processing unit 31. For example, a cleaning process using a chemical solution, an etching process, a resist coating process, or a development process is performed.
  • the substrate W is not normally placed on the spin chuck 803 by the hand H2.
  • the substrate W may be warped in a concave shape through a manufacturing process. After the substrate W is placed on the spin chuck 803, a part of the lower surface of the substrate W is equal to the upper end of the side surface portion 22b of the hand H2 even though the hand H2 is lowered to the pickup position due to the warpage of the substrate W. Or there exists a possibility that it may become lower than the upper end of the side part 22b of the hand H2.
  • the determination unit 62 determines that the OFF signal output from the pusher detection unit 29 is normal. Therefore, even when the substrate W is placed in an unstable state on the hand H2, the pusher detection unit 29 cannot detect the abnormality.
  • the optical sensor 81 does not change from the light shielding state to the light projecting state, and its output signal is maintained as an OFF signal.
  • the hand H2 continues to move backward and changes to an ON signal when the substrate W passes the optical axis (time t15a).
  • the determination unit 62 ends the measurement of the duration of the OFF signal of the optical sensor 81 when the signal output from the optical sensor 81 changes from the OFF signal to the ON signal.
  • the backward movement is finished (time t16).
  • the period from the time t13 when the signal output from the optical sensor 81 changes from the ON signal to the OFF signal to the time t15a when the signal changes from the OFF signal to the ON signal is the fourth passage period PP4. It becomes.
  • the determination unit 62 compares the measured fourth passage period PP4 with the second normal period NP2 stored in the storage unit 61 for the transfer operation of the substrate W. As a result of comparing the fourth passage period PP4 and the second normal period NP2 stored in the storage unit 61, the determination unit 62 compares the fourth passage period PP4 and the fourth passage period PP4 and the second passage stored in the storage unit 61 as shown in FIG. 2 Since it is different from the normal period NP2, the abnormal time recipe is executed.
  • the determination unit 62 determines that there is an abnormality, it causes each component of the substrate processing apparatus 1 to execute the abnormal recipe stored in the storage unit 61.
  • the abnormal recipe is the stop after the substrate transfer of the indexer robot IR, the immediate stop of the target processing unit 31 determined to be abnormal, the stop after the processing units 31 other than the abnormal processing unit are completed, the immediate stop of the center robot CR, It defines a series of actions including alarm generation.
  • the alarm includes warning display on the main screen of the substrate processing apparatus 1, generation of sound, display command output of a pop-up message to the host computer through the communication line, and the like. By generating an alarm, the apparatus user can be notified that the substrate processing apparatus 1 is abnormal. Even when the execution of the abnormal recipe is completed, the determination unit 62 ends the series of transport operations.
  • the detection signal of the optical sensor 81 can be used to determine whether the state is normal or abnormal. More specifically, the passage period is measured from the duration of the OFF signal in the detection time of the hand H2 or the substrate W detected by the optical sensor 81. By comparing whether or not the passage period and the normal period stored in the storage unit 61 coincide with each other, it is possible to determine whether the transfer operation of the substrate W is normal or abnormal.
  • the substrate W is warped, a part of the lower surface of the substrate W is the same height as the upper end of the side surface portion 22b of the hand H2 or the side surface portion of the hand H2 even though the hand H2 is lowered to the pickup position. There is a possibility that it will be lower than the upper end of 22b. In this case, when the hand H2 moves backward from the forward position FW to the home position HM, the upper end of the side surface portion 22b of the hand H2 catches the end portion or the lower surface of the substrate W. At this time, the substrate W is not held by the claw guide portion 22 and the back guide portion 23, and a part of the substrate W rides on the side surface portion 22b and is placed in an unstable state on the hand H2.
  • the determination unit 62 causes each component of the substrate processing apparatus 1 to execute an abnormal recipe. Due to the execution of the abnormal recipe, the transfer operation is stopped, and the subsequent transfer of the substrate W is stopped. Further, an alarm is issued and the user of the substrate processing apparatus 1 can immediately know that the substrate processing apparatus 1 is in an abnormal state. As a result, the transfer of the substrate W can be stopped early, and the influence on the subsequent process can be reduced.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the third embodiment of the present invention will be described in detail.
  • the substrate W placed on the substrate storage container 5 may be shifted from the normal position to the indexer unit 2 side, that is, the substrate W may be protruded from the substrate storage container 5.
  • the optical sensor 8 can detect the jumping out of the substrate W.
  • the transmissive sensor the optical axis is shielded by the protruding substrate W and the light is shielded.
  • the reflective sensor the projected light is reflected by the substrate W in a state in which the projected light has jumped out to be in a reflective state. In either type of sensor, an OFF signal is output, and the substrate W that has jumped out is stationary, so the OFF signal is continued.
  • the determination unit 62 sets the measurement end point when the predetermined period has elapsed, and sets the predetermined period as the fifth passage period PP5.
  • the predetermined period is preferably set to be equal to or longer than the OFF signal duration assumed when there is an abnormality in the transfer operation of the substrate W, for example, 3 seconds or longer.
  • the determination unit 62 compares the fifth passage period PP5 obtained by measuring the duration of the OFF signal detected by the optical sensor 8 with the third normal period NP3 stored in the storage unit 61.
  • the third normal period NP3 is an arbitrary period determined by the user.
  • the determination unit 62 determines that they are normal, and determines that they are abnormal, and determines that they are abnormal if they are different.
  • the determination unit 62 executes an arbitrary abnormality recipe.
  • the first normal period NP1 and the third normal period may be the same period (same length). By setting it as the same period, it becomes unnecessary for a user to manage several settings, and also the data processing load and communication load of the substrate processing apparatus 1 can be reduced.
  • the present invention is not limited to the above embodiment, and can be further modified as illustrated below.
  • the hollow shape in the hand H1 is a shape including a V shape, but may be a shape including a Y shape or a U shape.
  • the degree of freedom in designing the hand shape can be expanded.
  • the attachment position of the reflection member may be any position where the light beam projected from the light projecting portion 8c of the reflection sensor and reflected by the reflection member can be received by the light receiving portion 8d, either on the front or back surface of the hand H1 (H2). Good.
  • optical sensor 8 there is one optical sensor 8, 81.
  • a plurality of optical sensors may be installed. The detection accuracy can be improved by installing a plurality of optical sensors.
  • the optical sensor 8 is disposed opposite to the upper and lower positions of the load port opening L.
  • the arrangement is not limited to the arrangement facing the load port opening L, and is provided in the partition 7 of the indexer unit 2.
  • An arrangement facing the partition wall passage hole 7a or the like may be employed. Thereby, the freedom degree of design can be expanded.
  • the optical sensor 81 is installed at the upper and lower positions inside the opening 811 of the processing unit 31.
  • the processing unit 31 is not limited to being installed inside the opening 811 but may be installed outside the opening 811. . Thereby, the freedom degree of design can be expanded.
  • a normal period can be provided for the operation period of the receiving operation in which the indexer robot IR receives the substrate W from the substrate storage container 5. The same applies to the center robot CR.
  • the indexer robot IR is designed and / or controlled to have the same period (same length) as the operation period for receiving the substrate W from the substrate storage container 5 and the operation period for transferring the substrate W to the substrate storage container 5. May be.
  • the same operation period it is not necessary to provide separate normal periods for the operation period for taking the substrate W and the operation period for transferring the substrate W, and the normal period can be made common.
  • the data processing load and the communication load of the substrate processing apparatus 1 can be reduced as compared with the case where the normal period is provided individually. The same applies to the center robot CR.
  • the first normal period NP1 and the second normal period NP2 may be the same period (same length). Furthermore, the first normal period NP1, the second normal period NP2, and the third normal period NP3 may be the same period (same length). By setting the same period, it is not necessary for the user to manage a plurality of settings, and the man-hours for management are reduced. Furthermore, the data processing load and communication load of the substrate processing apparatus 1 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided are a substrate conveyance device and a substrate conveyance method which make it possible to reliably detect when a substrate has been transferred to a prescribed position. This substrate conveyance device includes: a holding part for holding the substrate; a reciprocating mechanism that causes the holding part to be reciprocated relative to the prescribed position; an optical sensor for forming a sensor area on a path where the holding part is moved by the reciprocating mechanism; and a control unit. The control unit determines whether there is a conveyance abnormality in a substrate transfer operation. The substrate transfer operation includes a forward operation in which the holding part is moved towards the prescribed position by the reciprocating mechanism, and a return operation in which the holding part is separated from the prescribed position. During the substrate transfer operation, the control unit detects a first passing period in which the holding part or the substrate held on the holding part passes through the sensor area, and the control unit determines that there is a conveyance abnormality when the first passing period differs from a preset first normal period.

Description

基板搬送装置および基板搬送方法Substrate transport apparatus and substrate transport method
 この出願は、2018年2月28日提出の日本国特許出願2018-035510号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。
 本発明は、基板を搬送する基板搬送装置および基板搬送方法に関する。
This application claims priority based on Japanese Patent Application No. 2018-035510 filed on Feb. 28, 2018, the entire contents of which are incorporated herein by reference.
The present invention relates to a substrate transfer apparatus and a substrate transfer method for transferring a substrate.
 半導体基板の製造工程や半導体デバイスの製造工程などにおいては、搬送ロボット等によって基板が搬送される。基板の搬送においては、基板を処理するための処理ユニットの載置部へ基板を正しく載置すること、および処理された基板を正しく収納容器へ収納することが求められる。このため、例えば、搬送ロボット等により基板が載置部等に正常に搬送されているか否かをセンサで一枚毎に確認することが必要とされている。 In the semiconductor substrate manufacturing process and semiconductor device manufacturing process, the substrate is transferred by a transfer robot or the like. In transporting a substrate, it is required that the substrate is correctly placed on the placement portion of the processing unit for processing the substrate, and that the processed substrate is correctly stored in the storage container. For this reason, for example, it is necessary to check each substrate with a sensor whether or not the substrate has been normally transported to the placement unit or the like by a transport robot or the like.
 例えば、特許文献1に記載される基板搬送装置は、搬送部により基板を搬送する際に基板を保持するピック(ハンド)を備える。この搬送部は、ピック上にある基板を押圧体により固定保持し、押圧体の位置により基板の保持状態を検出する。また、搬送部は、載置部等の所定位置に基板を渡す際には、押圧体による固定保持を解除する。 For example, the substrate transfer apparatus described in Patent Document 1 includes a pick (hand) that holds a substrate when the substrate is transferred by the transfer unit. The transport unit fixes and holds the substrate on the pick with the pressing body, and detects the holding state of the substrate based on the position of the pressing body. In addition, the transfer unit releases the fixed holding by the pressing body when the substrate is transferred to a predetermined position such as the placement unit.
特開2012-74485公報JP 2012-74485 A
 特許文献1に記載された押圧体による基板検出動作では、基板を所定位置に渡した後にピックが退行するときには、基板を検出していない。そのため、退行するピック上に基板が乗り上げるなどしてピック上に基板が残っている状態を検出することができない。この場合には、基板を所定位置に渡すことができなかったにも拘わらず、そのことを検出することができない。このように、特許文献1に記載された技術では、搬送部により基板が所定位置に渡されたことを検出することができないため、搬送不良を検出できない場合がある。 In the substrate detection operation by the pressing body described in Patent Document 1, the substrate is not detected when the pick retreats after passing the substrate to a predetermined position. For this reason, it is impossible to detect a state in which the substrate remains on the pick, for example, on the retreating pick. In this case, even though the substrate cannot be transferred to the predetermined position, this cannot be detected. As described above, in the technique described in Patent Document 1, since it is not possible to detect that the substrate has been transferred to a predetermined position by the transport unit, it may not be possible to detect a transport failure.
 本発明の一実施形態は、上述のような点に鑑み、所定位置に基板を渡したことを確実に検知することができる基板搬送装置および基板搬送方法を提供する。 In view of the above points, an embodiment of the present invention provides a substrate transfer apparatus and a substrate transfer method that can reliably detect that a substrate has been transferred to a predetermined position.
 この発明の一実施形態は、所定位置に基板を受け渡す基板搬送装置を提供する。この基板搬送装置は、基板を保持する保持部と、前記保持部を所定位置に対して往復移動させる往復機構と、前記往復機構により前記保持部が移動する経路上にセンサエリアを形成する光学センサと、制御部と、を含む。前記制御部は、基板の渡し動作において、搬送異常を判断する。基板の渡し動作は、前記往復機構により前記保持部が所定位置に向かって移動される往路動作と、前記往復機構により前記保持部が所定位置から離れるように移動される復路動作とを含む。前記制御部は、基板の渡し動作において、前記保持部または当該保持部に保持された基板(以下、「保持基板」という)が前記センサエリアを通過する第1通過期間(duration)を検出し、当該第1通過期間が、予め設定された第1正常期間と相違するときに、搬送異常と判断する。 One embodiment of the present invention provides a substrate transfer apparatus that delivers a substrate to a predetermined position. The substrate transport apparatus includes a holding unit that holds a substrate, a reciprocating mechanism that reciprocates the holding unit with respect to a predetermined position, and an optical sensor that forms a sensor area on a path along which the holding unit moves by the reciprocating mechanism. And a control unit. The controller determines a conveyance abnormality in the substrate transfer operation. The substrate transfer operation includes an outward operation in which the holding unit is moved toward a predetermined position by the reciprocating mechanism and a return operation in which the holding unit is moved away from the predetermined position by the reciprocating mechanism. The control unit detects a first passage period (duration) in which the holding unit or a substrate held by the holding unit (hereinafter referred to as a “holding substrate”) passes through the sensor area in a substrate transfer operation; When the first passage period is different from a preset first normal period, it is determined that the conveyance is abnormal.
 この発明の一実施形態では、前記所定位置は、基板を収納する基板収納容器内の位置であって、前記光学センサは前記基板収納容器外に前記センサエリアを形成する。 In one embodiment of the present invention, the predetermined position is a position in a substrate storage container for storing a substrate, and the optical sensor forms the sensor area outside the substrate storage container.
 この発明の一実施形態では、前記光学センサの前記センサエリアは、前記基板収納容器外へずれた状態で載置された基板を検出する位置に設定されている。 In one embodiment of the present invention, the sensor area of the optical sensor is set to a position for detecting a substrate placed in a state of being shifted out of the substrate storage container.
 この発明の一実施形態では、前記保持部は、基板の一端部に当接する当接部と、基板の他の端部を前記当接部に向けて押すように伸張して前記基板を固定する、伸縮可能な位置ずれ防止機構と、前記位置ずれ防止機構の伸縮動作を検出する伸縮検出部と、を有する。前記位置ずれ防止機構は、前記往路移動中は基板を固定し、前記復路移動中は基板の固定を解除する。前記伸縮検出部は、前記位置ずれ防止機構が基板を固定した状態では、前記位置ずれ防止機構の伸張を検出し、前記位置ずれ防止機構が基板の固定を解除した状態では、前記位置ずれ防止機構の収縮を検出する。 In one embodiment of the present invention, the holding portion fixes the substrate by extending the contact portion that contacts one end portion of the substrate and the other end portion of the substrate toward the contact portion. A position shift prevention mechanism that can be expanded and contracted, and an expansion / contraction detection unit that detects an expansion / contraction operation of the position shift prevention mechanism. The positional deviation prevention mechanism fixes the substrate during the forward movement, and releases the fixation of the substrate during the backward movement. The expansion / contraction detection unit detects the extension of the misalignment prevention mechanism when the misalignment prevention mechanism fixes the substrate, and detects the misalignment prevention mechanism when the misalignment prevention mechanism releases the fixation of the substrate. Detects contraction.
 この発明の一実施形態では、前記保持部は、水平方向に平坦な板状部材であって、平面視で前記板状部材は基板を保持した際に基板と重なる部分の少なくとも一部分が中抜きされた中抜き領域を有しており、前記保持部が正常に基板を保持しているときに平面視で基板が前記板状部材の前記中抜き領域のすべてと重なり、前記往復機構により前記保持部を往復移動させるときに、前記保持部の前記中抜き領域が前記経路を通過する。 In one embodiment of the present invention, the holding portion is a flat plate-like member that is flat in the horizontal direction, and at least a portion of the plate-like member that overlaps the substrate when the substrate is held in a plan view is hollowed out. When the holding unit normally holds the substrate, the substrate overlaps all of the hollow regions of the plate-like member in a plan view, and the holding unit is moved by the reciprocating mechanism. When reciprocating, the hollow region of the holding portion passes through the path.
 この発明の一実施形態では、前記光学センサは光軸に沿う直線状の前記センサエリアを形成する透過型センサであり、前記制御部は、前記透過型センサにより投光された光線が前記保持部または前記保持基板により遮光される期間を前記第1通過期間として検出する。 In one embodiment of the present invention, the optical sensor is a transmissive sensor that forms a linear sensor area along an optical axis, and the control unit is configured to transmit the light projected by the transmissive sensor to the holding unit. Alternatively, a period during which light is shielded by the holding substrate is detected as the first passage period.
 この発明の一実施形態では、前記光学センサは光線により前記センサエリアを形成する反射型センサであり、前記制御部は、前記反射型センサにより投光された光線が前記保持部または前記保持基板により反射して当該反射型センサに受光される期間を前記第1通過期間として検出する。 In one embodiment of the present invention, the optical sensor is a reflective sensor that forms the sensor area with a light beam, and the control unit is configured such that the light beam projected by the reflective sensor is transmitted by the holding unit or the holding substrate. A period in which the light is reflected and received by the reflective sensor is detected as the first passage period.
 この発明の一実施形態では、前記制御部は、所定位置にある基板を前記保持部により受け取る受け動作の際に、搬送異常を判断する。基板の受け動作は、前記往復機構により前記保持部が所定位置に向かって移動される往路動作と、前記往復機構により前記保持部が所定位置から離れるように移動される復路動作とを含む。前記制御部は、基板の受け動作において、前記保持部または前記保持基板が前記センサエリアを通過する第2通過期間を検出し、当該第2通過期間が、予め設定された第2正常期間と相違するときに、搬送異常と判断する。 In one embodiment of the present invention, the control unit determines a conveyance abnormality during a receiving operation of receiving a substrate at a predetermined position by the holding unit. The substrate receiving operation includes an outward operation in which the holding unit is moved toward a predetermined position by the reciprocating mechanism and a return operation in which the holding unit is moved away from the predetermined position by the reciprocating mechanism. In the substrate receiving operation, the control unit detects a second passage period in which the holding unit or the holding substrate passes through the sensor area, and the second passage period is different from a preset second normal period. It is determined that the conveyance is abnormal.
 この発明の一実施形態では、前記第1正常期間と前記第2正常期間とが同じ長さである。 In one embodiment of the present invention, the first normal period and the second normal period have the same length.
 この発明の一実施形態では、前記制御部は、前記往復機構による前記保持部の移動速度に応じて、第1正常期間または第2正常期間を設定する。 In one embodiment of the present invention, the control unit sets a first normal period or a second normal period according to a moving speed of the holding unit by the reciprocating mechanism.
 この発明の一実施形態では、前記制御部は、前記渡し動作の際に、前記復路動作における前記往復機構による前記保持部の移動速度を、前記往路動作における前記往復機構による前記保持部の移動速度より遅くする。 In one embodiment of the present invention, the control unit determines a moving speed of the holding unit by the reciprocating mechanism in the return path operation during the passing operation, and a moving speed of the holding unit by the reciprocating mechanism in the forward path operation. Make it slower.
 この発明の一実施形態は、所定位置に基板を受け渡す基板搬送方法を提供する。この基板搬送方法は、基板を保持した保持部を所定位置に向けて移動させる第1往路工程と、前記保持部から所定位置に基板を渡す動作を実行する渡し工程と、渡し工程後に前記保持部を所定位置から退行させる第1復路工程と、第1往路工程および第1復路工程を含む期間にて、前記保持部が移動する経路上に光学センサが形成するセンサエリアを、前記保持部または当該保持部に保持された基板(以下、「保持基板」という)が通過する第1通過期間を検出する第1検出工程と、第1検出工程にて検出された第1通過期間が予め設定された第1正常期間と相違するときに、搬送異常と判断する第1判断工程と、を含む。 One embodiment of the present invention provides a substrate transfer method for delivering a substrate to a predetermined position. The substrate transport method includes a first forward path step of moving a holding unit holding a substrate toward a predetermined position, a passing step of executing an operation of transferring the substrate from the holding unit to a predetermined position, and the holding unit after the passing step. A sensor area formed by an optical sensor on a path along which the holding unit moves during a period including a first return path step in which the holding unit moves backward from a predetermined position, a first forward path step, and a first return path step. A first detection step for detecting a first passage period through which a substrate held by the holding unit (hereinafter referred to as “holding substrate”) passes, and a first passage period detected in the first detection step are set in advance. And a first determination step of determining a conveyance abnormality when it is different from the first normal period.
 この発明の一実施形態では、前記保持部は、基板の一端部に当接する当接部と、基板の他の端部を前記当接部に向けて押すように伸張して前記基板を固定する、伸縮可能な位置ずれ防止機構とを含む。そして、第1往路工程にて、前記位置ずれ防止機構により前記基板の他の端部を前記当接部に向けて押して前記基板を固定して位置ずれ防止し、かつ前記位置ずれ防止機構の伸縮動作を検出する。第1復路工程では、前記位置ずれ防止機構による固定を解除する。 In one embodiment of the present invention, the holding portion fixes the substrate by extending the contact portion that contacts one end portion of the substrate and the other end portion of the substrate toward the contact portion. And a retractable mechanism capable of extending and contracting. Then, in the first forward path step, the other end portion of the substrate is pushed toward the contact portion by the misalignment prevention mechanism to fix the substrate and prevent misalignment, and the misalignment prevention mechanism expands and contracts. Detect motion. In the first return path step, the fixing by the misalignment prevention mechanism is released.
 この発明の一実施形態では、前記第1復路動作における前記往復機構による前記保持部の移動速度が、前記第1往路動作における前記往復機構による前記保持部の移動速度より遅い。 In one embodiment of the present invention, the moving speed of the holding unit by the reciprocating mechanism in the first return path operation is slower than the moving speed of the holding unit by the reciprocating mechanism in the first forward path operation.
 この発明の一実施形態では、前記方法は、前記保持部を所定位置にある基板に向けて移動させる第2往路工程と、所定位置にある基板を前記保持部が受け取る受け動作を実行する受け工程と、前記受け工程後に前記保持部を所定位置から退行させる第2復路工程と、第2往路工程および第2復路工程を含む期間にて、前記保持部または前記保持基板が前記センサエリアを通過する第2通過期間を検出する第2検出工程と、第2検出工程にて検出された第2通過期間が予め設定された第2正常期間と相違するときに、搬送異常と判断する第2判断工程と、をさらに含む。 In one embodiment of the present invention, the method includes a second forward step of moving the holding unit toward the substrate at a predetermined position, and a receiving step of receiving the substrate at the predetermined position by the holding unit. And the holding part or the holding substrate passes through the sensor area in a period including a second return path process for retracting the holding part from a predetermined position after the receiving process, a second forward path process, and a second return path process. A second detection step for detecting a second passage period, and a second determination step for determining a conveyance abnormality when the second passage period detected in the second detection step is different from a preset second normal period. And further including.
 この発明の一実施形態では、前記第1正常期間と前記第2正常期間とが同じ長さである。 In one embodiment of the present invention, the first normal period and the second normal period have the same length.
 本発明の実施形態によれば、搬送部により搬送される基板が所定位置に渡されたことを確実に検知することができる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
According to the embodiment of the present invention, it is possible to reliably detect that the substrate transported by the transport unit has been passed to a predetermined position.
The above-mentioned or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
基板処理装置の概略構成を示す平面図である。It is a top view which shows schematic structure of a substrate processing apparatus. 基板処理装置の概略構成を示す側面図である。It is a side view which shows schematic structure of a substrate processing apparatus. ロードポートおよびインデクサユニットの概略構成を示す側面図である。It is a side view which shows schematic structure of a load port and an indexer unit. ハンドの概略構成を示す平面図である。It is a top view which shows schematic structure of a hand. ハンドの概略構成を示す側面図である。It is a side view which shows schematic structure of a hand. 制御系のブロック図である。It is a block diagram of a control system. 基板の搬送動作を示すフローチャートである。It is a flowchart which shows the conveyance operation of a board | substrate. 正常に基板が基板収納容器に載置された場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is normally mounted in the board | substrate storage container. 正常に基板が基板収納容器に載置された場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is normally mounted in the board | substrate storage container. 正常に基板が基板収納容器に載置された場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is normally mounted in the board | substrate storage container. 正常に基板が基板収納容器に載置された場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is normally mounted in the board | substrate storage container. 正常に基板が基板収納容器に載置された場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is normally mounted in the board | substrate storage container. 正常に基板が基板収納容器に載置されなかった場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is not normally mounted in a board | substrate storage container. 正常に基板が基板収納容器に載置されなかった場合の動作例を示す図である。It is a figure which shows the operation example when a board | substrate is not normally mounted in a board | substrate storage container. 基板渡し動作における正常に係る光学センサの検出信号とプッシャ検出部の検出信号とを時系列に示すチャート図である。It is a chart figure which shows the detection signal of the optical sensor which concerns normally in board | substrate delivery operation | movement, and the detection signal of a pusher detection part in a time series. 基板渡し動作における正常と異常とに係る光学センサの検出信号とプッシャ検出部の検出信号とを時系列に示すチャート図である。It is a chart figure which shows in a time series the detection signal of the optical sensor and the detection signal of a pusher detection part which concern on normality and abnormality in board | substrate delivery operation | movement. 処理ユニットの概略構成を示す側面図である。It is a side view which shows schematic structure of a processing unit. 基板処理装置における基板の搬送動作を示すフローチャートである。It is a flowchart which shows the conveyance operation of the board | substrate in a substrate processing apparatus. 基板渡し動作における正常と異常に係る光学センサの検出信号を時系列に示すチャート図である。It is a chart figure which shows the detection signal of the optical sensor which concerns on normality and abnormality in board transfer operation in time series.
 以下では、本発明の第1実施形態を、添付図面を参照して詳細に説明する。 Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
 図1Aは基板処理装置の概略構成を示す平面図であり、図1Bは基板処理装置の概略構成を示す側面図である。 FIG. 1A is a plan view showing a schematic configuration of the substrate processing apparatus, and FIG. 1B is a side view showing a schematic configuration of the substrate processing apparatus.
 基板処理装置1は、基板を薬液で処理する装置である。例えば、基板処理装置1は、基板Wの表面(上面)に対して、薬液処理を施すための枚葉型の装置である。基板Wは、特定の機能を実現するための機能部が配置される板状の部材である。より具体的には、基板Wは、半導体素子(半導体装置)の製造に使用される基板であって、円形状のシリコンウェハであってもよい。薬液処理とは、例えば、洗浄処理、エッチング処理、レジスト塗布処理、現像処理などのように、半導体製造工程の主な工程で用いられる処理である。 The substrate processing apparatus 1 is an apparatus for processing a substrate with a chemical solution. For example, the substrate processing apparatus 1 is a single wafer type apparatus for performing chemical treatment on the surface (upper surface) of the substrate W. The board | substrate W is a plate-shaped member by which the function part for implement | achieving a specific function is arrange | positioned. More specifically, the substrate W is a substrate used for manufacturing a semiconductor element (semiconductor device), and may be a circular silicon wafer. The chemical solution process is a process used in the main processes of the semiconductor manufacturing process, such as a cleaning process, an etching process, a resist coating process, and a development process.
 図1Aおよび図1Bに示すように、基板処理装置1は、ロードポートLP、インデクサユニット2、処理部3、パスユニット4、および制御部(controller)6を備える。 As shown in FIGS. 1A and 1B, the substrate processing apparatus 1 includes a load port LP, an indexer unit 2, a processing unit 3, a pass unit 4, and a controller 6.
 ロードポートLPは、基板処理装置1の一端に配置され、平面視において、配列方向Aに間隔を空けて複数配置されている。各ロードポートLPは、基板Wを収納する基板収納容器5を保持するように構成されており、基板処理装置1に基板Wを導入する基板導入部である。基板収納容器5は、基板Wが載置される載置部の一例である。基板収納容器5から基板処理装置1の内部へと基板Wが供給される。
 インデクサユニット2は、ロードポートLPと連結し基板収納容器5に対して基板Wを搬出/搬入するユニットである。処理部3は、複数の処理ユニット31を有し、基板Wに対して薬液処理を実行する。パスユニット4は、インデクサユニット2と処理部3との間で基板Wを保持するユニットである。制御部6は、基板処理装置1の制御を行う。
The load port LP is disposed at one end of the substrate processing apparatus 1, and a plurality of load ports LP are disposed at intervals in the arrangement direction A in plan view. Each load port LP is configured to hold the substrate storage container 5 that stores the substrate W, and is a substrate introduction unit that introduces the substrate W into the substrate processing apparatus 1. The substrate storage container 5 is an example of a placement unit on which the substrate W is placed. The substrate W is supplied from the substrate storage container 5 into the substrate processing apparatus 1.
The indexer unit 2 is a unit that is connected to the load port LP and carries the substrate W into / out of the substrate storage container 5. The processing unit 3 includes a plurality of processing units 31 and performs a chemical process on the substrate W. The pass unit 4 is a unit that holds the substrate W between the indexer unit 2 and the processing unit 3. The control unit 6 controls the substrate processing apparatus 1.
 基板処理装置1は、この実施形態では、12個の処理ユニット12を含む。より具体的には、基板処理装置1は、上下方向に積層された3組の処理部3を含み、各処理部3は、平面的に配置されている4つの処理ユニット31で構成されている。さらに基板処理装置1は、基板の搬送を行う搬送部を含む。例えば、搬送部は、インデクサユニット2に備えられたインデクサロボットIR、および処理部3に備えられたセンターロボットCRを含む。 The substrate processing apparatus 1 includes twelve processing units 12 in this embodiment. More specifically, the substrate processing apparatus 1 includes three sets of processing units 3 stacked in the vertical direction, and each processing unit 3 includes four processing units 31 arranged in a plane. . Furthermore, the substrate processing apparatus 1 includes a transport unit that transports the substrate. For example, the transport unit includes an indexer robot IR provided in the indexer unit 2 and a center robot CR provided in the processing unit 3.
 インデクサユニット2は、ロードポートLPと処理部3との間に配置されている。インデクサユニット2の内部にインデクサロボットIRが設置されている。インデクサユニット2の側面にはユーザーインターフェイス220が取り付けられている。ユーザーインターフェイス220は、基板処理装置1の状態を表示する表示部を有し、表示部に備えられたタッチパネルで基板処理装置1を操作したり、情報を入力したりすることができるように構成されている。基板処理装置1に対する操作および入力は、タッチパネルに限られず、キーボードやマウスで行われてもよい。 The indexer unit 2 is disposed between the load port LP and the processing unit 3. An indexer robot IR is installed inside the indexer unit 2. A user interface 220 is attached to the side surface of the indexer unit 2. The user interface 220 includes a display unit that displays the state of the substrate processing apparatus 1, and is configured to be able to operate the substrate processing apparatus 1 and input information using a touch panel provided in the display unit. ing. Operation and input to the substrate processing apparatus 1 are not limited to a touch panel, and may be performed with a keyboard or a mouse.
 インデクサロボットIRは、基板収納容器5に収容された未処理の基板Wを取り出してパスユニット4へ搬送する。その未処理の基板Wはパスユニット4に保持される。また、インデクサロボットIRは、パスユニット4に処理ユニット31で処理された処理済み基板Wが保持されているとき、その基板Wをパスユニット4から基板収納容器5へ搬送する。 The indexer robot IR takes out the unprocessed substrate W stored in the substrate storage container 5 and transports it to the pass unit 4. The unprocessed substrate W is held by the pass unit 4. In addition, when the processed substrate W processed by the processing unit 31 is held in the pass unit 4, the indexer robot IR transports the substrate W from the pass unit 4 to the substrate storage container 5.
 インデクサロボットIRは、上下に積層状態で設けられた2つのハンドH1を備えており(図2参照)、これらは保持部の例である。各ハンドH1は、平面視において、水平方向に平坦な板状部材であって、一端が支持部21(図3参照)と連結している。他端は、基板Wを保持した際に基板Wと重なる部分の少なくとも一部分が中抜きされた中抜き形状を有している。各ハンドH1は、1枚の基板Wを水平な姿勢で保持することができる。インデクサロボットIRは、ハンドH1を水平方向および鉛直方向に移動させる。さらに、インデクサロボットIRは、鉛直線軸まわりに回転(自転)することにより、ハンドH1の向きを変更する。 The indexer robot IR includes two hands H1 provided in a stacked state on the top and bottom (see FIG. 2), and these are examples of holding units. Each hand H1 is a flat plate-like member that is flat in the horizontal direction in plan view, and has one end connected to the support portion 21 (see FIG. 3). The other end has a hollow shape in which at least a part of a portion overlapping the substrate W when the substrate W is held is hollowed out. Each hand H1 can hold one substrate W in a horizontal posture. The indexer robot IR moves the hand H1 in the horizontal direction and the vertical direction. Further, the indexer robot IR changes the direction of the hand H1 by rotating (spinning) around the vertical axis.
 インデクサロボットIRは、インデクサユニット2内の移動経路M(図1参照)に沿って移動可能である。移動経路Mは、複数のロードポートLPの配列方向と平行に設計されている。インデクサロボットIRは、移動経路Mに沿って、任意の基板収納容器5に対向するインデクサ受渡し位置に移動することができ、当該インデクサ受渡位置において、対向する基板収納容器5の内部へハンドH1を進入させることができる。 The indexer robot IR can move along the movement path M (see FIG. 1) in the indexer unit 2. The movement path M is designed in parallel with the arrangement direction of the plurality of load ports LP. The indexer robot IR can move along the movement path M to an indexer delivery position facing an arbitrary substrate storage container 5, and the hand H <b> 1 enters the inside of the opposing substrate storage container 5 at the indexer delivery position. Can be made.
 インデクサロボットIRは、インデクサ受渡し位置において、ハンドH1を水平方向に移動させることにより、当該ハンドH1を基板収納容器5に対して進入および退行させる。インデクサロボットIRは、基板Wを保持した状態でハンドH1を基板収納容器5に進入させ、基板収納容器5に基板Wを載置した後に退行する搬入動作(渡し動作)を行う。また、インデクサロボットIRは、基板収納容器5にハンドH1に進入させ、基板収納容器5に収納されている基板Wを保持した後に退行する搬出動作(受け動作)を行う。このように、インデクサロボットIRは、基板収納容器5内の所定位置に対して基板Wを受け渡す基板搬送装置である。インデクサロボットIRは、パスユニット4に対しても同様の動作を行う。 The indexer robot IR moves the hand H1 in the horizontal direction at the indexer delivery position, thereby causing the hand H1 to enter and retreat with respect to the substrate storage container 5. The indexer robot IR moves the hand H1 into the substrate storage container 5 while holding the substrate W, and performs a carry-in operation (passing operation) that moves backward after placing the substrate W on the substrate storage container 5. Further, the indexer robot IR performs a carry-out operation (reception operation) in which the substrate storage container 5 enters the hand H1 and retreats after holding the substrate W stored in the substrate storage container 5. Thus, the indexer robot IR is a substrate transfer device that delivers the substrate W to a predetermined position in the substrate storage container 5. The indexer robot IR performs the same operation on the pass unit 4.
 センターロボットCRは、インデクサロボットIRと同様の構造であり、上下方向に積層状態で設けられた2つのハンドH2を備えており、これらは保持部の例である。各ハンドH2は、平面視において、水平方向に平坦な板状部材であって、一端が支持部21(図3参照)と連結している。ハンドH2の他端は、基板Wを保持した際に基板Wと重なる部分の少なくとも一部分が中抜きされた中抜き形状を有している。各ハンドH2は、1枚の基板Wを水平な姿勢で保持することができる。センターロボットCRは、ハンドH2を水平方向および鉛直方向に移動させる。さらに、センターロボットCRは、鉛直線軸まわりに回転(自転)することにより、ハンドH2の向きを変更する。 The center robot CR has a structure similar to that of the indexer robot IR, and includes two hands H2 provided in a stacked state in the vertical direction, and these are examples of holding units. Each hand H2 is a flat plate member that is flat in the horizontal direction when seen in a plan view, and has one end connected to the support portion 21 (see FIG. 3). The other end of the hand H2 has a hollow shape in which at least a part of a portion that overlaps the substrate W when the substrate W is held is hollowed out. Each hand H2 can hold one substrate W in a horizontal posture. The center robot CR moves the hand H2 in the horizontal direction and the vertical direction. Further, the center robot CR changes the direction of the hand H2 by rotating (spinning) about the vertical axis.
 センターロボットCRは、平面視において、複数の処理ユニット31に取り囲まれている。センターロボットCRは、基板搬送を行うとき、任意の処理ユニット31にハンドH2を対向させる。例えば、センターロボットCRは、任意の処理ユニット31とハンドH2とが対向した位置において、ハンドH2が処理ユニット31内部へ進入できる処理ユニット受渡し位置へ移動(回転)する。 The center robot CR is surrounded by a plurality of processing units 31 in plan view. The center robot CR makes the hand H2 face the arbitrary processing unit 31 when carrying the substrate. For example, the center robot CR moves (rotates) to a processing unit delivery position where the hand H2 can enter the processing unit 31 at a position where any processing unit 31 and the hand H2 face each other.
 センターロボットCRは、処理ユニット受渡し位置において、ハンドH2を水平方向に移動させることにより、処理ユニット31に進入および退行させる。センターロボットCRは、基板Wを保持した状態でハンドH2を処理ユニット31に進入させ、処理ユニット31に基板Wを載置した後に退行する搬入動作(渡し動作)を行う。また、センターロボットCRは、処理ユニット31にハンドH1に進入させ、処理ユニット31に載置されている基板Wを保持した後に退行する搬出動作(受け動作)を行う。このように、センターロボットCRは、処理ユニット31内の所定位置に対して基板Wを受け渡す基板搬送装置である。センターロボットCRは、パスユニット4に対しても同様の動作を行う。 The center robot CR moves the hand H2 in the horizontal direction at the processing unit delivery position to enter and retreat the processing unit 31. The center robot CR performs a carry-in operation (passing operation) in which the hand H2 enters the processing unit 31 while holding the substrate W, and retreats after the substrate W is placed on the processing unit 31. In addition, the center robot CR performs a carry-out operation (reception operation) in which the processing unit 31 enters the hand H1 and moves backward after holding the substrate W placed on the processing unit 31. Thus, the center robot CR is a substrate transfer device that delivers the substrate W to a predetermined position in the processing unit 31. The center robot CR performs the same operation on the pass unit 4.
 センターロボットCRは、パスユニット4に保持されている未処理の基板Wを各処理ユニット31へ一枚ずつ搬送する。また、センターロボットCRは、必要に応じて複数の処理ユニット31の間で基板Wを搬送する。センターロボットCRは、処理ユニット31で処理された基板Wを当該処理ユニット31からパスユニット4へ搬送する。 The center robot CR transports unprocessed substrates W held in the pass unit 4 to each processing unit 31 one by one. The center robot CR transports the substrate W between the plurality of processing units 31 as necessary. The center robot CR transports the substrate W processed by the processing unit 31 from the processing unit 31 to the pass unit 4.
 処理ユニット31は基板Wに処理を行う。処理ユニット31が行う処理は、例えば、洗浄処理である。処理ユニット31が行う処理は、洗浄処理にかえて、他の処理でもよい。他の処理とは、例えば、エッチング処理、塗布処理、および現像処理などの薬液処理や、加熱処理、および冷却処理などの熱処理である。 The processing unit 31 processes the substrate W. The process performed by the processing unit 31 is, for example, a cleaning process. The processing performed by the processing unit 31 may be other processing instead of the cleaning processing. The other treatment is, for example, a chemical treatment such as an etching treatment, a coating treatment, and a development treatment, or a heat treatment such as a heating treatment and a cooling treatment.
 図2は、ロードポートおよびインデクサユニットの概略構成を示す側面図である。図2において、上述と同様の構成については同符号を付すことにより詳細な説明については省略する。 FIG. 2 is a side view showing a schematic configuration of the load port and the indexer unit. In FIG. 2, the same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted.
 基板Wの載置部である基板収納容器5は、複数の基板Wを収納可能に構成された容器である。基板収納容器5は、例えば、基板Wを密閉した状態で収納するFOUP(FRONT Opening Unified Pod)である。基板収納容器5は、FOUPに代えて、SMIF(Standard Mechanical InterFace)ポッド、OC(Open Cassette)等であってもよい。 The substrate storage container 5 which is a mounting portion of the substrate W is a container configured to store a plurality of substrates W. The substrate storage container 5 is, for example, a FOUP (FRONT Opening Unified Pod) that stores the substrate W in a sealed state. The substrate storage container 5 may be a SMIF (Standard Mechanical InterFace) pod, OC (Open Cassette), or the like instead of the FOUP.
 例えば、基板収納容器5をロードポートLPに設置したとき、基板収納容器5内では、水平姿勢の複数枚の基板Wが互いに間隔を開けて鉛直方向に積層された状態となる。基板収納容器5は、例えば25枚の基板Wを収納する。ただし、図2では、便宜上、基板Wの図示の一部を省略している。 For example, when the substrate storage container 5 is installed in the load port LP, a plurality of horizontal substrates W are stacked vertically in the substrate storage container 5 with a space therebetween. The substrate storage container 5 stores, for example, 25 substrates W. However, in FIG. 2, a part of the substrate W is not shown for convenience.
 基板収納容器5は、筐体5a、蓋5b、および複数の基板ガイド部5cを有している。蓋5bは筐体5aの前面に取り外し可能であり、蓋5bが筐体5aの前面に付けられることにより、筐体5aの内部が密閉される。蓋5bを外すと筐体5aの前面に開口Bが形成される。 The substrate storage container 5 has a housing 5a, a lid 5b, and a plurality of substrate guide portions 5c. The lid 5b is removable on the front surface of the housing 5a, and the inside of the housing 5a is sealed by attaching the lid 5b to the front surface of the housing 5a. When the lid 5b is removed, an opening B is formed on the front surface of the housing 5a.
 25枚の基板Wを収納するために、25段の基板ガイド部5cが設けられている。各段の基板ガイド部5cは、蓋5b側から見て基板収納容器5の左右の内壁に一対で、かつ前後方向に水平に延びて設けられている。基板ガイド部5cは基板Wの下面側の端部を支持することで、基板Wを支持する。 In order to accommodate 25 substrates W, 25-stage substrate guide portions 5c are provided. The substrate guide portions 5c at each stage are provided as a pair on the left and right inner walls of the substrate storage container 5 as viewed from the lid 5b side, and extend horizontally in the front-rear direction. The substrate guide portion 5c supports the substrate W by supporting the end portion on the lower surface side of the substrate W.
 ロードポートLPは、インデクサユニット2と連結しており、処理部3とは反対側に設置されている。ロードポートLPは、設置台35、ステージ32、およびロードポート開閉機構34を備える。 The load port LP is connected to the indexer unit 2 and is installed on the side opposite to the processing unit 3. The load port LP includes an installation table 35, a stage 32, and a load port opening / closing mechanism 34.
 設置台35は、隔壁7の側部に配置され、下部には電動モータなどの駆動機構を収納している。この駆動機構は、シャッター駆動部34bと連結されており、それを駆動する。ステージ32は設置台35の上部水平面35aに配置され、インデクサユニット2に対して近接および離隔するように、水平方向に移動可能に設けられている(二点矢印鎖線C参照)。基板収納容器5は、ステージ32に載置され、ステージ32がインデクサユニット2に近接移動することによりインデクサユニット2と連結される。設置台35の上部垂直面35bには、隔壁通過孔7aと連通するロードポート開口Lが設けられている。 The installation base 35 is disposed on the side of the partition wall 7 and houses a driving mechanism such as an electric motor in the lower part. This drive mechanism is connected to the shutter drive unit 34b and drives it. The stage 32 is disposed on the upper horizontal surface 35a of the installation base 35, and is provided so as to be movable in the horizontal direction so as to be close to and away from the indexer unit 2 (see a two-dot chain line C). The substrate storage container 5 is placed on the stage 32, and is connected to the indexer unit 2 when the stage 32 moves close to the indexer unit 2. A load port opening L communicating with the partition wall passage hole 7a is provided in the upper vertical surface 35b of the installation table 35.
 ロードポート開閉機構34は、シャッター部材34aとシャッター駆動部34bとを備えている。シャッター部材34aは、ロードポート開口Lに嵌まり込むことでロードポート開口Lを閉じる。シャッター部材34aは、蓋5bを保持する機構を有している。通常、シャッター部材34aは、ロードポート開口Lに嵌まり込んだ状態であり、ロードポート開口Lを閉じている。 The load port opening / closing mechanism 34 includes a shutter member 34a and a shutter drive unit 34b. The shutter member 34 a closes the load port opening L by fitting into the load port opening L. The shutter member 34a has a mechanism for holding the lid 5b. Normally, the shutter member 34a is fitted in the load port opening L and closes the load port opening L.
 シャッター駆動部34bは、シャッター部材34aと連結している。シャッター駆動部34bは、シャッター部材34aを水平方向および垂直方向に移動させる。 The shutter drive unit 34b is connected to the shutter member 34a. The shutter drive unit 34b moves the shutter member 34a in the horizontal direction and the vertical direction.
 シャッター部材34aは、蓋5bを保持する機構を有している。シャッター駆動部34bは、シャッター部材34aが蓋5bを保持した状態でシャッター部材34aをロードポートLPからインデクサユニット2側(二点鎖線矢印D参照)へ移動することで、基板収納容器5から蓋5bを離脱させる。さらに、シャッター部材34aが垂直下方向(二点鎖線矢印E参照)に移動することで、基板収納容器5とインデクサユニット2とが連通し、インデクサロボットIRのハンドH1が基板収納容器5内部へ進入可能な状態となる。シャッター駆動部34bは、設置台35の下部に収納された駆動機構によって駆動される。駆動機構は、典型的には、電動モータとボールネジで構成されるが、これに限らず、シリンダーを用いた駆動機構でもよい。基板収納容器5を閉口するときは、前述の動作と逆の動作を行い、蓋5bで開口Bを閉じ、シャッター部材34aでロードポート開口Lを閉じる。 The shutter member 34a has a mechanism for holding the lid 5b. The shutter drive unit 34b moves the shutter member 34a from the load port LP to the indexer unit 2 side (refer to the two-dot chain line arrow D) while the shutter member 34a holds the lid 5b, so that the lid 5b is removed from the substrate storage container 5. To leave. Further, when the shutter member 34a moves vertically downward (see the two-dot chain line arrow E), the substrate storage container 5 and the indexer unit 2 communicate with each other, and the hand H1 of the indexer robot IR enters the substrate storage container 5. It becomes possible. The shutter drive unit 34 b is driven by a drive mechanism housed in the lower part of the installation table 35. The drive mechanism is typically composed of an electric motor and a ball screw, but is not limited thereto, and may be a drive mechanism using a cylinder. When closing the substrate storage container 5, the operation opposite to the above-described operation is performed, the opening B is closed by the lid 5b, and the load port opening L is closed by the shutter member 34a.
 光学センサ8は、物体の有無を光学的に検出するセンサである。例えば、光学センサ8は、透過型センサであってもよい。また、光学センサ8は、ハンドH1が移動する経路上にセンサエリアを形成する。透過型センサの形態を有する光学センサ8は、投光部8aと受光部8bとを有している。投光部8aと受光部8bとは、ロードポート開口Lの上下位置に互いに対向するように光軸を整合させて設置される。光学センサ8は、投光部8aと受光部8bとの間で光軸に沿って直線状のセンサエリアを形成する。透過型センサの形態を有する光学センサ8は、投光状態と遮光状態とを検出する。投光状態とは、投光部8aから投光された光が遮られずに受光部8bで受光される状態をいう。遮光状態とは、投光部8aから投光された光が、センサエリアを通過する物体により遮られて受光部8bで受光されない状態をいう。例えば、インデクサロボットIRが基板収納容器5に基板Wを搬送するとき、ハンドH1本体、またはハンドH1に保持された基板Wは、投光部8aと受光部8bとの間の光路(センサエリア)を遮る。それに応じて、光学センサ8の検出状態は、ハンドH1本体または基板Wがセンサエリアに有るか否かにより、投光状態と遮光状態との間で切り替わる。例えば、光学センサ8は、投光状態をON、遮光状態をOFFとするON/OFF信号を判定部62(図4参照)に出力する。 The optical sensor 8 is a sensor that optically detects the presence or absence of an object. For example, the optical sensor 8 may be a transmissive sensor. Further, the optical sensor 8 forms a sensor area on the path along which the hand H1 moves. The optical sensor 8 having the form of a transmissive sensor has a light projecting unit 8a and a light receiving unit 8b. The light projecting unit 8a and the light receiving unit 8b are installed with their optical axes aligned so as to face each other in the vertical position of the load port opening L. The optical sensor 8 forms a linear sensor area along the optical axis between the light projecting unit 8a and the light receiving unit 8b. The optical sensor 8 having the form of a transmissive sensor detects a light projection state and a light shielding state. The light projecting state refers to a state in which light projected from the light projecting unit 8a is received by the light receiving unit 8b without being blocked. The light blocking state refers to a state in which light projected from the light projecting unit 8a is blocked by an object passing through the sensor area and is not received by the light receiving unit 8b. For example, when the indexer robot IR transports the substrate W to the substrate storage container 5, the hand H1 main body or the substrate W held by the hand H1 is an optical path (sensor area) between the light projecting unit 8a and the light receiving unit 8b. Block. Accordingly, the detection state of the optical sensor 8 is switched between the light projection state and the light shielding state depending on whether the hand H1 main body or the substrate W is in the sensor area. For example, the optical sensor 8 outputs an ON / OFF signal for turning on the light projection state and turning off the light shielding state to the determination unit 62 (see FIG. 4).
 光学センサ8は反射型センサの形態を有していてもよい。反射型センサの形態を有する光学センサ8は、投光部8cと受光部8dとを有しており、これらは、ロードポート開口Lの下位置または上位置に設置される(図2には下位置に設置した例を示す)。反射型センサの形態を有する光学センサ8は、投光部8cの光軸と受光部8dの光軸とがセンサエリアで交差するように配置されている。センサエリアは、ロードポート開口Lにおいて、ハンドH1またはそれに保持された基板Wの通過経路上に設定されている。換言すれば、投光部8cから投光され、前記通過経路にある物体によって反射されて前記受光部8dで受光される光線によりセンサエリアが定義されている。反射型センサの形態を有する光学センサ8は、投光状態と反射状態とを検出する。投光状態とは、投光部8cから投光された光が受光部8dに受光されない状態をいう。反射状態とは、投光部8cから投光された光がセンサエリアを通過する物体により反射し、反射した光を受光部8dで受光する状態をいう。例えば、インデクサロボットIRが基板収納容器5に基板Wを搬送するとき、ハンドH1本体、またはハンドH1に保持された基板Wは、投光部8cから投光された光を反射し、反射した光が受光部8dに受光される。それに応じて、光学センサ8は、ハンドH1または基板Wがセンサエリアに有るか否かにより、投光状態と反射状態との間で切り替わる。例えば、光学センサ8は、投光状態をON、反射状態をOFFとするON/OFF信号を判定部62(図4参照)に出力する。 The optical sensor 8 may have the form of a reflective sensor. The optical sensor 8 in the form of a reflective sensor has a light projecting portion 8c and a light receiving portion 8d, which are installed at the lower position or the upper position of the load port opening L (in FIG. Shows an example of installation at a location). The optical sensor 8 having the form of a reflective sensor is arranged so that the optical axis of the light projecting unit 8c and the optical axis of the light receiving unit 8d intersect in the sensor area. The sensor area is set in the load port opening L on the passage of the hand H1 or the substrate W held by the hand H1. In other words, a sensor area is defined by a light beam projected from the light projecting unit 8c, reflected by an object in the passage path, and received by the light receiving unit 8d. The optical sensor 8 having the form of a reflective sensor detects a light projection state and a reflection state. The light projection state refers to a state in which the light projected from the light projecting unit 8c is not received by the light receiving unit 8d. The reflection state refers to a state in which light projected from the light projecting unit 8c is reflected by an object passing through the sensor area, and the reflected light is received by the light receiving unit 8d. For example, when the indexer robot IR transports the substrate W to the substrate storage container 5, the hand H1 main body or the substrate W held by the hand H1 reflects the light projected from the light projecting unit 8c and reflects the reflected light. Is received by the light receiving unit 8d. In response to this, the optical sensor 8 switches between the light projection state and the reflection state depending on whether the hand H1 or the substrate W is in the sensor area. For example, the optical sensor 8 outputs an ON / OFF signal for turning on the light projection state and turning off the reflection state to the determination unit 62 (see FIG. 4).
 光学センサ8を用いることにより、空間を通過する通過物の通過経路を遮ることなく、ON/OFF信号から、空間を通過する通過物を正確に検出することができる。 By using the optical sensor 8, the passing object passing through the space can be accurately detected from the ON / OFF signal without blocking the passage route of the passing object passing through the space.
 インデクサユニット2は、隔壁7に覆われている。それにより、インデクサユニット2の内部は、外部の雰囲気から隔離されており、クリーンな環境に維持されている。ロードポートLPと連結する隔壁7には、基板Wを通過させるための隔壁通過孔7aが設けられている。インデクサユニット2の底部7bには、インデクサロボットIRが配置されている。 The indexer unit 2 is covered with a partition wall 7. Thereby, the inside of the indexer unit 2 is isolated from the external atmosphere and maintained in a clean environment. The partition wall 7 connected to the load port LP is provided with a partition wall passage hole 7a for allowing the substrate W to pass therethrough. An indexer robot IR is disposed on the bottom 7 b of the indexer unit 2.
 インデクサロボットIRは、2つのハンドH1、ベース部25、昇降部26、連結部27、および一対の伸縮部28を有する。ベース部25はインデクサユニットの底部7bに固定されインデクサロボットIRの基台を形成している。 The indexer robot IR has two hands H1, a base unit 25, an elevating unit 26, a connecting unit 27, and a pair of extendable units 28. The base portion 25 is fixed to the bottom portion 7b of the indexer unit and forms a base for the indexer robot IR.
 昇降部26は、ベース部25から鉛直上方に延び、内部に昇降機構を有している。昇降機構は、典型的には、モータ、エンコーダ、およびボールねじで構成されるが、シリンダーで構成されてもよい。昇降部26は、ハンドH1の垂直方向における停止位置を変更することができる。具体的には、昇降部26は、ピックアップ位置(下位置)と、プレイス位置(上位置)とに、ハンドH1の高さ位置を調整できる。ピックアップ位置とは、基板Wを基板収納容器5から搬出するときに、ハンドH1の爪ガイド部22(図3B参照)の最上部が搬出対象の基板Wの下面より低くなる高さ位置である。プレイス位置とは、基板Wを基板収納容器5へ搬入するときに、ハンドH1の下面が基板ガイド部5cの上面より高くなる高さ位置である。ハンドH1の構成についての詳細は後述する。 The elevating part 26 extends vertically upward from the base part 25 and has an elevating mechanism inside. The lifting mechanism is typically composed of a motor, an encoder, and a ball screw, but may be composed of a cylinder. The elevating part 26 can change the stop position of the hand H1 in the vertical direction. Specifically, the elevating unit 26 can adjust the height position of the hand H1 to the pickup position (lower position) and the place position (upper position). The pickup position is a height position at which the uppermost portion of the claw guide portion 22 (see FIG. 3B) of the hand H1 is lower than the lower surface of the substrate W to be unloaded when the substrate W is unloaded from the substrate storage container 5. The place position is a height position where the lower surface of the hand H1 is higher than the upper surface of the substrate guide portion 5c when the substrate W is carried into the substrate storage container 5. Details of the configuration of the hand H1 will be described later.
 連結部27は、昇降部26と伸縮部28とを連結し、昇降部26の昇降動作を伸縮部28に伝達する。連結部27は、2つの伸縮部28をその上部に連結している。各伸縮部28は、ハンドH1を支持する支持部21をその上部に連結している。2つの伸縮部28およびそれぞれ対応する2つの支持部21は、2つのハンドH1にそれぞれ連結しており、2つのハンドH1を個別に進退動作させることができる。 The connecting part 27 connects the elevating part 26 and the extendable part 28, and transmits the elevating operation of the elevating part 26 to the extendable part 28. The connecting part 27 connects the two stretchable parts 28 to the upper part thereof. Each expansion / contraction part 28 has connected the support part 21 which supports the hand H1 to the upper part. The two extendable portions 28 and the two corresponding support portions 21 are respectively connected to the two hands H1, and the two hands H1 can be individually moved forward and backward.
 伸縮部28は、複数の関節を有し、関節部の回転駆動により伸縮動作を行う。伸縮部28は、伸縮動作によりハンドH1の水平方向の位置を変更することができる。例えば、上側のハンドH1について、水平方向に伸縮部28の関節を縮めた位置(実線)をホーム位置HM(退行位置)とし、水平方向に関節を伸ばした位置(二点鎖線F)をフォワード位置FW(進出位置)とする。ホーム位置HMはハンドH1の水平方向における基準位置である。伸縮部28は、複数の関節の伸縮することにより設置スペースを小さくすることができる。下側のハンドH1についても同様である。このように、伸縮部28は、ハンドH1を往復動させる往復機構を構成している。 The expansion / contraction part 28 has a plurality of joints, and performs expansion / contraction operation by rotationally driving the joint parts. The expansion / contraction part 28 can change the horizontal position of the hand H1 by an expansion / contraction operation. For example, for the upper hand H1, the position (solid line) where the joint of the expansion / contraction part 28 is contracted in the horizontal direction is the home position HM (regression position), and the position where the joint is extended in the horizontal direction (two-dot chain line F) is the forward position. FW (advance position). The home position HM is a reference position in the horizontal direction of the hand H1. The expansion / contraction part 28 can reduce an installation space by expanding and contracting a plurality of joints. The same applies to the lower hand H1. Thus, the expansion / contraction part 28 comprises the reciprocation mechanism which reciprocates the hand H1.
 インデクサユニット2は、インデクサロボットIRにより、未処理の基板Wを基板収納容器5から取得し、パスユニット4へ渡す。処理ユニット31で処理された基板Wは、パスユニット4に置かれる。その処理済みの基板Wは、インデクサロボットIRによって、基板収納容器5へ搬送して収納することができる。 The indexer unit 2 acquires the unprocessed substrate W from the substrate storage container 5 by the indexer robot IR and passes it to the pass unit 4. The substrate W processed by the processing unit 31 is placed on the pass unit 4. The processed substrate W can be transported and stored in the substrate storage container 5 by the indexer robot IR.
 図3Aは、ハンドの概略構成を示す平面図であり、図3Bは、ハンドの概略構成を示す側面図である。上述した構成については同符号を付すことにより詳細な説明を省略する。 FIG. 3A is a plan view showing a schematic configuration of the hand, and FIG. 3B is a side view showing a schematic configuration of the hand. Detailed description will be omitted by giving the same reference numerals to the above-described configuration.
 図3Aに示すように、ハンドH1は、本体20、支持部21、爪ガイド部22、バックガイド部23、およびプッシャ部24を有している。 3A, the hand H1 includes a main body 20, a support portion 21, a claw guide portion 22, a back guide portion 23, and a pusher portion 24.
 本体20は、平面視(上面視)において、水平方向に平坦な板状部材であって、一端が支持部21と連結している。他端は、基板Wを保持した際に基板Wと重なる部分の少なくとも一部分が中抜きされた中抜き形状を有している。本体20は、基板Wを水平な姿勢で保持することができる。例えば、中抜き形状は、V字型形状である。本体20は、例えば、セラミックスやアルミニウムなど、軽量で強度のある材料で形成されている。 The main body 20 is a flat plate member that is flat in the horizontal direction in plan view (top view), and has one end connected to the support portion 21. The other end has a hollow shape in which at least a part of a portion overlapping the substrate W when the substrate W is held is hollowed out. The main body 20 can hold the substrate W in a horizontal posture. For example, the hollow shape is a V-shape. The main body 20 is made of a lightweight and strong material such as ceramics or aluminum.
 ハンドH1が光学センサ8のセンサエリアを通過するとき、ハンドH1が中抜き形状を有することにより、基板WがハンドH1上にあるか否かについて、光学センサ8により容易に検出することができる。具体的には、ハンドH1が基板Wを保持しているときには、ハンドH1の中抜き領域に基板Wが重なっている。この基板Wが重なっている部分を光学センサ8により検出することにより、基板WがハンドH1上に保持されていることを容易に検出できる。後述するように、基板WがハンドH1上に乗り上げ状態で存在するときも、ハンドH1の中抜き領域に基板Wが重なっている。この基板Wが重なっている部分を光学センサ8により検出することにより、基板WがハンドH1上にあることを容易に検出できる。 When the hand H1 passes through the sensor area of the optical sensor 8, the optical sensor 8 can easily detect whether or not the substrate W is on the hand H1 because the hand H1 has a hollow shape. Specifically, when the hand H1 is holding the substrate W, the substrate W overlaps the hollow area of the hand H1. By detecting the overlapping portion of the substrate W with the optical sensor 8, it can be easily detected that the substrate W is held on the hand H1. As will be described later, even when the substrate W exists on the hand H1, the substrate W overlaps the hollow area of the hand H1. By detecting the overlapping portion of the substrate W with the optical sensor 8, it can be easily detected that the substrate W is on the hand H1.
 爪ガイド部22は、本体20のV字型形状の各先端にそれぞれ設置されており、側面視でL字型形状をしている。爪ガイド部22は、平面部22aで基板Wを下方から支持し、側面部22bで基板Wの周端部を支持する構造を有している。 The nail guide portion 22 is installed at each V-shaped tip of the main body 20 and has an L-shape when viewed from the side. The claw guide portion 22 has a structure in which the substrate W is supported from below by the flat surface portion 22a and the peripheral end portion of the substrate W is supported by the side surface portion 22b.
 バックガイド部23は、本体20の表面の爪ガイド部22より支持部21側に設置され、基板Wを支持できるように、爪ガイド部22から一定の距離を空けて配置されている。バックガイド部23は、この実施形態では略円柱形であり、円柱の中段から上方へ向かうほど細くなる傾斜を有する傾斜部分を備え、当該傾斜部分で基板Wの周端部を支持するように構成されている。 The back guide part 23 is installed on the support part 21 side from the claw guide part 22 on the surface of the main body 20 and is arranged at a certain distance from the claw guide part 22 so as to support the substrate W. In this embodiment, the back guide portion 23 has a substantially cylindrical shape, and includes an inclined portion having an inclination that becomes narrower upward from the middle stage of the cylinder, and is configured to support the peripheral end portion of the substrate W at the inclined portion. Has been.
 基板Wは、2つの爪ガイド部22と2つのバックガイド部23との4点で支持される。それにより、本体20の全面に直接支持される場合と比較して、基板Wの裏面および端部との接触面積が小さく、それに応じて、基板Wの裏面の傷や汚染の発生を低減できる。 The substrate W is supported at four points of two claw guide portions 22 and two back guide portions 23. Thereby, compared with the case where it is directly supported by the whole surface of the main body 20, the contact area with the back surface and edge part of the board | substrate W is small, and generation | occurrence | production of the damage | wound and contamination of the back surface of the board | substrate W can be reduced according to it.
 図3Bに示すように、爪ガイド部22およびバックガイド部23により保持された基板Wの上面は、爪ガイド部22およびバックガイド部23の最上部より低い。したがって、基板Wは、容易にはハンドH1から外れない。 3B, the upper surface of the substrate W held by the claw guide portion 22 and the back guide portion 23 is lower than the uppermost portions of the claw guide portion 22 and the back guide portion 23. Therefore, the substrate W cannot be easily detached from the hand H1.
 プッシャ部24は、可動部24a、および固定部24bを有している。可動部24aは固定部24bと連結しており、固定部24bは支持部21に固定されている。 The pusher part 24 has a movable part 24a and a fixed part 24b. The movable portion 24a is connected to the fixed portion 24b, and the fixed portion 24b is fixed to the support portion 21.
 可動部24aは、本体20の水平に延在する方向(図3Aの二点鎖線矢印G)に伸縮動作することができる伸縮部である。可動部24aは、例えば、バネ、シリンダー、モータ等により駆動されて伸縮する。基板WがハンドH1に載置されたとき、基板Wは爪ガイド部22およびバックガイド部23により支持される。この状態において、可動部24aが基板W側に伸長することにより、基板Wを挟み込んで固定保持できる。例えば、可動部24aが基板W側に伸長することにより、基板Wの端部を押し込み、爪ガイド部22の側面部22bに基板Wの端部が押し当てられ、可動部24aと爪ガイド部22とで基板Wを挟み込んで固定保持する。逆に、可動部24aが収縮することにより、基板Wの端部から離れ固定保持を解除する。
 インデクサロボットIRやセンターロボットCRが基板Wを搬送するとき、高速で直進動作や回転動作を行うと、振動や慣性力により、基板Wを落下させる恐れがある。しかし、プッシャ部24が、ハンドH1上で基板Wを固定保持することにより、基板Wの位置ずれを防止する位置ずれ防止機構として働く。したがって、インデクサロボットIRやセンターロボットCRが高速で直進動作や回転動作した場合であっても、基板Wの位置ずれを防止できる。基板Wを固定保持することにより、基板Wを落下させるおそれがなくなるため、インデクサロボットIRやセンターロボットCRは、ハンドH1が基板Wを保持していない状態と同様の高速移動を行うことができる。
The movable part 24a is an extendable part that can be expanded and contracted in a direction (a two-dot chain line arrow G in FIG. 3A) extending horizontally in the main body 20. The movable portion 24a expands and contracts by being driven by, for example, a spring, a cylinder, a motor, or the like. When the substrate W is placed on the hand H1, the substrate W is supported by the claw guide portion 22 and the back guide portion 23. In this state, the movable portion 24a extends toward the substrate W, whereby the substrate W can be sandwiched and held. For example, when the movable portion 24a extends toward the substrate W, the end portion of the substrate W is pushed in, the end portion of the substrate W is pressed against the side surface portion 22b of the claw guide portion 22, and the movable portion 24a and the claw guide portion 22 are pressed. The substrate W is sandwiched between and fixedly held. On the contrary, when the movable portion 24a contracts, the movable portion 24a is separated from the end portion of the substrate W to release the fixed holding.
When the indexer robot IR or the center robot CR transports the substrate W, if the linear movement operation or the rotation operation is performed at a high speed, the substrate W may be dropped due to vibration or inertia force. However, the pusher portion 24 functions as a misalignment prevention mechanism that prevents misalignment of the substrate W by fixing and holding the substrate W on the hand H1. Therefore, even when the indexer robot IR or the center robot CR is moving straight ahead or rotating at a high speed, the positional deviation of the substrate W can be prevented. Since the substrate W is fixed and held, there is no possibility of dropping the substrate W, and therefore the indexer robot IR and the center robot CR can perform high-speed movement similar to the state in which the hand H1 does not hold the substrate W.
 プッシャ部24は、プッシャ検出部29(伸縮検出部)を有している。プッシャ検出部29は、可動部24aの伸長量を検出する。可動部24aが一定の伸長量以上に伸長すれば、可動部24aが基板Wを固定保持できる。例えば、プッシャ検出部29は、可動部24aが一定の伸長量以上となったときを伸長状態と検出し、一定の伸長量未満となったときを収縮状態と検出する。プッシャ検出部29は、例えば、伸長状態をON信号、収縮状態をOFF信号とするON/OFF信号を判定部62に出力する。判定部62は、プッシャ検出部29から出力された信号がONであれば、基板Wの固定保持状態であり、OFFであれば、基板Wは固定解除状態であると判定する。一定の伸長量は、設計データや過去の実績などから定められており、記憶部61に保存されている。例えば、伸長量をプッシャ検出部29によって検出する代わりに、カメラ撮影による撮像画像から伸長量を検出してもよい。 The pusher unit 24 has a pusher detection unit 29 (expansion / contraction detection unit). The pusher detection unit 29 detects the extension amount of the movable unit 24a. If the movable part 24a extends beyond a certain extension amount, the movable part 24a can hold the substrate W in a fixed manner. For example, the pusher detection unit 29 detects a stretched state when the movable portion 24a is equal to or greater than a certain extension amount, and detects a contraction state when the movable portion 24a is less than a certain stretch amount. The pusher detection unit 29 outputs, for example, an ON / OFF signal to the determination unit 62 in which the expanded state is an ON signal and the contracted state is an OFF signal. The determination unit 62 determines that the substrate W is in the fixed holding state if the signal output from the pusher detection unit 29 is ON, and determines that the substrate W is in the fixed release state if the signal is OFF. The certain amount of expansion is determined from design data, past results, and the like, and is stored in the storage unit 61. For example, instead of detecting the extension amount by the pusher detection unit 29, the extension amount may be detected from an image captured by camera photography.
 図4は、制御系のブロック図である。図4に示すように、制御部6は、基板処理装置1の各構成部を制御する。制御部6は、判定部62、記憶部61、駆動制御部63、および処理制御部64を有している。 FIG. 4 is a block diagram of the control system. As shown in FIG. 4, the control unit 6 controls each component of the substrate processing apparatus 1. The control unit 6 includes a determination unit 62, a storage unit 61, a drive control unit 63, and a process control unit 64.
 記憶部61は、基板処理装置1の各構成部を制御するために必要な情報を記憶している。例えば、記憶部61は、インデクサロボットIRがハンドH1に保持された基板Wを基板収納容器5に渡す基板渡し動作において、基板Wが正常に渡されるときに光学センサ8から出力されるOFF信号の継続時間を正常期間として記憶している。基板渡し動作は、インデクサロボットIRが、基板Wを保持したハンドH1をホーム位置HMからフォワード位置FWへ移動する往路移動、ハンドH1をプレイス位置からピックアップ位置へ垂直下方に移動してハンドH1に保持された基板Wを基板ガイド部5cに載置する載置移動、およびフォワード位置FWからホーム位置HMへハンドH1を移動する復路移動から構成される。正常期間は、設計データ、評価データ、および過去の実績などに基づいて定められた、正常に基板Wが搬送される期間であり、ハンドH1の移動距離や移動速度に応じて任意に変更できる。また、正常期間は、動作ばらつきによる微小な時間ずれを考慮し、プラス側および/またはマイナス側に一定のマージンを持たせても良い。 The storage unit 61 stores information necessary for controlling each component of the substrate processing apparatus 1. For example, in the substrate passing operation in which the indexer robot IR passes the substrate W held by the hand H1 to the substrate storage container 5, the storage unit 61 receives an OFF signal output from the optical sensor 8 when the substrate W is normally passed. The duration is stored as a normal period. In the substrate transfer operation, the indexer robot IR moves the hand H1 holding the substrate W from the home position HM to the forward position FW, and moves the hand H1 from the place position to the pickup position vertically downward and holds it in the hand H1. The substrate W is composed of a placement movement for placing the substrate W on the substrate guide portion 5c and a return path movement for moving the hand H1 from the forward position FW to the home position HM. The normal period is a period in which the substrate W is normally transported, which is determined based on design data, evaluation data, past results, and the like, and can be arbitrarily changed according to the moving distance and moving speed of the hand H1. Further, in the normal period, in consideration of a minute time lag due to operation variation, a certain margin may be provided on the plus side and / or the minus side.
 例えば、記憶部61は、基板渡し動作において、往路移動の開始時(ホーム位置HM)にプッシャ検出部29から出力されるON信号を正常タイミング信号として記憶している。さらに、記憶部61は、基板渡し動作において、往路移動の終了時(フォワード位置FW)にプッシャ検出部29から出力されるOFF信号を正常タイミング信号として記憶している。これらの正常タイミング信号は、設計データ、評価データ、および過去の実績などから定められる。また、正常タイミング信号は、動作ばらつきによる微小な時間ずれを考慮し、プラス側および/またはマイナス側に一定のマージンを持たせても良い。 For example, the storage unit 61 stores, as a normal timing signal, an ON signal output from the pusher detection unit 29 at the start of the forward movement (home position HM) in the board transfer operation. Further, the storage unit 61 stores, as a normal timing signal, an OFF signal output from the pusher detection unit 29 at the end of the forward movement (forward position FW) in the substrate transfer operation. These normal timing signals are determined from design data, evaluation data, past results, and the like. In addition, the normal timing signal may have a certain margin on the plus side and / or the minus side in consideration of a minute time lag due to operational variations.
 例えば、記憶部61は、基板渡し動作において、基板Wが正常に固定保持、および固定解除されるときにプッシャ検出部29から時系列に従って出力されるON/OFF信号パターンを正常固定保持パターンNHPとして記憶している。具体的には、正常固定保持パターンNHPは、インデクサロボットIRが、ハンドH1に基板Wを固定保持させた状態でホーム位置HMからフォワード位置FWへ往路移動し、ハンドH1の固定を解除するまでの期間における、プッシャ検出部29から出力される時系列のON/OFF信号の切り替わりを表す。正常固定保持パターンNHPは、設計データ、評価データ、および過去の実績などから定められる。正常固定保持パターンNHPは、動作ばらつきによる微小な時間ずれを考慮し、プラス側および/またはマイナス側に一定のマージンを持たせても良い。 For example, the storage unit 61 uses, as the normal fixed holding pattern NHP, the ON / OFF signal pattern output in time series from the pusher detecting unit 29 when the substrate W is normally fixed and held and released in the substrate transfer operation. I remember it. Specifically, the normal fixed holding pattern NHP is determined until the indexer robot IR moves forward from the home position HM to the forward position FW in a state where the substrate W is fixedly held by the hand H1, and the fixing of the hand H1 is released. This represents switching of time-series ON / OFF signals output from the pusher detection unit 29 during the period. The normal fixed holding pattern NHP is determined from design data, evaluation data, past results, and the like. The normal fixed holding pattern NHP may have a certain margin on the plus side and / or the minus side in consideration of a minute time lag due to operational variations.
 また、記憶部61は、一連の装置動作を表す各種のレシピを記憶している。例えば、記憶部61は、異常時レシピを記憶している。異常時レシピは、基板の渡し動作において、光学センサ8で検出したON/OFF信号より判定部62が異常と判定した場合、基板処理装置1の各構成部に対し、制御動作を実行するときに使用される。記憶部61は、異常時レシピとして、例えば、インデクサロボットIR、およびシャッター駆動部34bを即時停止し、さらに処理ユニット31を処理後停止し、センターロボットCRを基板搬送後に停止し、かつ異常を表す警報を発する、一連の装置動作を記憶している。プッシャ検出部29からのON/OFF信号に基づく異常時レシピも同様である。異常時レシピ、すなわち異常発生時の装置動作は、任意に変更することができる。 In addition, the storage unit 61 stores various recipes representing a series of device operations. For example, the storage unit 61 stores an abnormal recipe. When the determination unit 62 determines that there is an abnormality based on the ON / OFF signal detected by the optical sensor 8 during the substrate transfer operation, the abnormality time recipe is used when the control operation is performed on each component of the substrate processing apparatus 1. used. The storage unit 61 immediately stops, for example, the indexer robot IR and the shutter drive unit 34b as an abnormality recipe, further stops the processing unit 31 after processing, stops the center robot CR after carrying the substrate, and indicates an abnormality. It remembers a series of device operations that generate an alarm. The same applies to an abnormal recipe based on an ON / OFF signal from the pusher detection unit 29. The recipe at the time of abnormality, that is, the operation of the apparatus when the abnormality occurs can be arbitrarily changed.
 判定部62には、光学センサ8で検出したON/OFFの信号が入力される。判定部62は、基板Wの搬送動作について、ハンドH1の移動に伴う光学センサ8から出力されるOFFの信号の継続時間を通過期間とする。判定部62は、光学センサ8から入力される信号がONからOFFに変わるタイミングを計測開始点とし、その後、OFFからONに変わるタイミングを計測終了点とする。判定部62は、計測開始点から予め定めた所定の期間を経過しても光学センサ8の信号がOFFからONに変わらない場合は、当該所定の期間が経過した時点を計測終了点とする。判定部62は、通過期間と記憶部61に記憶された正常期間とを比較する。判定部62は、通過期間と正常期間とが一致するとき、基板Wの搬送動作は正常であると判定し、相違するとき、基板Wの搬送動作は正常でない(搬送異常)と判定する。搬送異常と判定したときは、制御部6は、基板処理装置1の各構成部を制御して、異常時レシピを実行する。
 記憶部61に正常期間が複数記憶されているときは、ハンドH1の移動速度に応じ、特定の正常期間を選択することができる。制御部6は、ハンドH1の移動速度と正常期間とを対応付けた対応表に基づき、自動で特定の正常期間を選択する。特定の正常期間は、入力部(図示せず)からの入力により、ユーザーによって選択的に指定されてもよい。
An ON / OFF signal detected by the optical sensor 8 is input to the determination unit 62. The determination unit 62 sets the duration of the OFF signal output from the optical sensor 8 accompanying the movement of the hand H <b> 1 as the passing period for the transport operation of the substrate W. The determination unit 62 sets the timing at which the signal input from the optical sensor 8 changes from ON to OFF as the measurement start point, and then sets the timing at which the signal changes from OFF to ON as the measurement end point. If the signal of the optical sensor 8 does not change from OFF to ON even after a predetermined period has elapsed from the measurement start point, the determination unit 62 sets the time when the predetermined period has elapsed as the measurement end point. The determination unit 62 compares the passage period with the normal period stored in the storage unit 61. The determination unit 62 determines that the transfer operation of the substrate W is normal when the passage period and the normal period coincide with each other, and determines that the transfer operation of the substrate W is not normal (transfer abnormality) when they are different. When it determines with conveyance abnormality, the control part 6 controls each structure part of the substrate processing apparatus 1, and performs a recipe at the time of abnormality.
When a plurality of normal periods are stored in the storage unit 61, a specific normal period can be selected according to the moving speed of the hand H1. The control unit 6 automatically selects a specific normal period based on the correspondence table in which the moving speed of the hand H1 is associated with the normal period. The specific normal period may be selectively designated by the user by an input from an input unit (not shown).
 判定部62には、プッシャ検出部29で検出したON/OFFの信号が入力される。判定部62は、可動部24aが一定の伸長量以上となったときにプッシャ検出部29から出力されるONの信号を基板Wの固定保持状態検出と解釈する。また、判定部62は、可動部24aが一定の伸長量未満となったときにプッシャ検出部29から出力されるOFF信号を基板Wの固定解除状態検出と解釈する。 The ON / OFF signal detected by the pusher detection unit 29 is input to the determination unit 62. The determination unit 62 interprets an ON signal output from the pusher detection unit 29 when the movable unit 24a reaches a certain extension amount or more as detection of the fixed holding state of the substrate W. Further, the determination unit 62 interprets the OFF signal output from the pusher detection unit 29 when the movable unit 24a is less than a certain amount of extension as detection of the fixed release state of the substrate W.
 判定部62は、特定のタイミングでプッシャ検出部29から出力されたON/OFF信号と記憶部61に記憶された特定のタイミングでの正常なON/OFF信号の情報とを比較する。判定部62は、特定のタイミングでプッシャ検出部29から出力されたON/OFF信号と記憶部61に記憶された特定のタイミングでの正常なON/OFF信号の情報とが、一致するとき、基板Wの固定保持状態および/または固定解除状態は正常と判定し、相違するとき、基板Wの固定保持状態および/または固定解除状態は正常でない(異常)と判定する。異常と判定したときは、制御部6は、基板処理装置1の各構成部を制御して、異常時レシピを実行する。 The determination unit 62 compares the ON / OFF signal output from the pusher detection unit 29 at a specific timing with the information of the normal ON / OFF signal stored at the specific timing stored in the storage unit 61. When the ON / OFF signal output from the pusher detection unit 29 at a specific timing matches the normal ON / OFF signal information stored at the specific timing stored in the storage unit 61, the determination unit 62 It is determined that the fixed holding state and / or the fixed release state of W are normal, and when they are different, the fixed holding state and / or the fixed release state of the substrate W are determined to be abnormal (abnormal). When it determines with it being abnormal, the control part 6 controls each component of the substrate processing apparatus 1, and performs a recipe at the time of abnormality.
 また、判定部62は、プッシャ検出部29から出力される時系列のON/OFF信号の切り替わり(実固定保持パターンRHP)と記憶部61に記憶された正常な時系列のON/OFF信号の切り替わり(正常固定保持パターンNHP)とを比較してもよい。判定部62は、実固定保持パターンRHPと正常固定保持パターンNHPとが一致するとき、基板Wの固定保持状態および/または固定解除状態は正常と判定し、相違するとき、基板Wの固定保持状態および/または固定解除状態は正常でない(異常)と判定する。異常と判定したときは、制御部6は、基板処理装置1の各構成部を制御して、異常時レシピを実行する。 In addition, the determination unit 62 switches the time series ON / OFF signal output from the pusher detection unit 29 (actual fixed holding pattern RHP) and the normal time series ON / OFF signal stored in the storage unit 61. (Normal fixed holding pattern NHP) may be compared. When the actual fixed holding pattern RHP matches the normal fixed holding pattern NHP, the determination unit 62 determines that the fixed holding state and / or the unlocking state of the substrate W are normal, and when they are different, the fixed holding state of the substrate W is determined. And / or it is determined that the fixed release state is not normal (abnormal). When it determines with it being abnormal, the control part 6 controls each component of the substrate processing apparatus 1, and performs a recipe at the time of abnormality.
 駆動制御部63は、インデクサロボットIR、センターロボットCR、およびシャッター駆動部34bの駆動を制御する。駆動制御部63は、判定部62が異常と判定すると、異常時レシピに基づき、インデクサロボットIR、およびシャッター駆動部34bを即時停止させ、センターロボットCRを基板搬送後に停止させる。 The drive control unit 63 controls the drive of the indexer robot IR, the center robot CR, and the shutter drive unit 34b. If the determination unit 62 determines that there is an abnormality, the drive control unit 63 immediately stops the indexer robot IR and the shutter drive unit 34b based on the abnormality recipe, and stops the center robot CR after the substrate is transferred.
 処理制御部64は、処理ユニット31の処理を制御する。具体的な処理は、記憶部61に記憶された処理レシピに従う。処理制御部64は、判定部62が異常と判定すると、異常時レシピに基づき、処理ユニット31の処理を継続し、処理が完了した後、処理ユニット31の動作を停止させる。 The processing control unit 64 controls the processing of the processing unit 31. Specific processing follows the processing recipe stored in the storage unit 61. If the determination unit 62 determines that the process is abnormal, the process control unit 64 continues the process of the process unit 31 based on the abnormality recipe, and stops the operation of the process unit 31 after the process is completed.
 制御部6は、中央演算処理装置(CPU)、ROM(Read-only Memory)、RAM(Random-Access Memory)、固定ディスクやSSD(Solid State Drive)等の記憶媒体、駆動回路、通信回路等によって構成されている。通信回路は、RS-232Cやイーサネット(登録商標)などの通信を行うための回路、及びデジタル又はアナログの信号入出力を行うための回路を含む。通信回路は、制御部6と、光学センサ8、プッシャ検出部29、各種駆動部、および処理ユニット31との間の通信や入出力信号の伝達を行うほか、ロードポートLPや外部制御機器など周辺機器との通信や入出力信号の伝達も行う。 The control unit 6 includes a central processing unit (CPU), a ROM (Read-only Memory), a RAM (Random-Access Memory), a storage medium such as a fixed disk and an SSD (Solid State Drive), a drive circuit, a communication circuit, and the like. It is configured. The communication circuit includes a circuit for performing communication such as RS-232C and Ethernet (registered trademark), and a circuit for performing digital or analog signal input / output. The communication circuit communicates and transmits input / output signals between the control unit 6, the optical sensor 8, the pusher detection unit 29, various driving units, and the processing unit 31, as well as peripheral devices such as a load port LP and an external control device. It also communicates with devices and transmits input / output signals.
 図5は、基板の搬送動作(受け渡し動作)を示すフローチャートである。図6A~図6Eは、正常に基板が基板収納容器に載置される場合の動作例を示す図である。図8Aは、基板渡し動作における光学センサ8の検出信号とプッシャ検出部29の検出信号とを時系列に示すチャート図である。上述と同様の構成については同符号を付すことにより詳細な説明については省略する。図8Aにおいて、基板渡し動作が正常である場合に光学センサ8から出力される時系列のON/OFF信号を光信号RLS1とする。 FIG. 5 is a flowchart showing the substrate transfer operation (delivery operation). 6A to 6E are diagrams showing an operation example when the substrate is normally placed on the substrate storage container. FIG. 8A is a chart showing the detection signal of the optical sensor 8 and the detection signal of the pusher detection unit 29 in time series in the substrate transfer operation. The same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 8A, a time-series ON / OFF signal output from the optical sensor 8 when the substrate passing operation is normal is an optical signal RLS1.
 <ステップS1> 基板収納容器が載置される
 基板収納容器5は、ステージ32に載置される。蓋5bは、開口Bを閉塞している。ステージ32は、ステージ32上の基板収納容器5をインデクサユニット2に近接移動させ、蓋5bをシャッター部材34aに接触させる。
<Step S <b>1> The substrate storage container 5 is placed. The substrate storage container 5 is placed on the stage 32. The lid 5b closes the opening B. The stage 32 moves the substrate storage container 5 on the stage 32 close to the indexer unit 2 and brings the lid 5b into contact with the shutter member 34a.
 ロードポート開閉機構34は、シャッター部材34aに蓋5bを保持させ、シャッター駆動部34bを基板収納容器5からインデクサユニット2に向かって移動させる。この動作により、基板収納容器5から蓋5bを離脱させられる。さらに、ロードポート開閉機構34は、シャッター駆動部34bを垂直下方向へ移動させることにより、基板収納容器5とインデクサユニット2とを連通させ、インデクサロボットIRのハンドH1が基板収納容器5内部へ進入可能な状態とする。 The load port opening / closing mechanism 34 holds the lid 5b on the shutter member 34a, and moves the shutter driving unit 34b from the substrate storage container 5 toward the indexer unit 2. By this operation, the lid 5b can be detached from the substrate storage container 5. Further, the load port opening / closing mechanism 34 moves the shutter drive unit 34b vertically downward to cause the substrate storage container 5 and the indexer unit 2 to communicate with each other, and the hand H1 of the indexer robot IR enters the substrate storage container 5. Make it possible.
 <ステップS2> 基板を基板収納容器から取る
 インデクサロボットIRは基板Wの受け動作を行う。基板受け動作は、往路移動(第2往路工程)、取得移動、および復路移動(第2復路工程)で構成される。インデクサ受渡し位置で待機しているインデクサロボットIRは、ハンドH1の垂直位置をピックアップ位置へ移動する。この後、インデクサロボットIRは、基板収納容器5内の基板Wが保持されている基板ガイド部5cの下部へハンドH1を進入させるため、ハンドH1をホーム位置HMからフォワード位置FWへ移動させる往路移動を行う。
<Step S <b>2> Taking the substrate from the substrate storage container The indexer robot IR performs the receiving operation of the substrate W. The substrate receiving operation includes an outward movement (second outward process), an acquisition movement, and a backward movement (second backward process). The indexer robot IR standing by at the indexer delivery position moves the vertical position of the hand H1 to the pickup position. Thereafter, the indexer robot IR moves the hand H1 from the home position HM to the forward position FW in order to move the hand H1 into the lower portion of the substrate guide portion 5c holding the substrate W in the substrate storage container 5. I do.
 ハンドH1がフォワード位置FWに到達した後、インデクサロボットIRは、ハンドH1をピックアップ位置からプレイス位置へ上昇させる取得移動を行う。取得移動により、基板ガイド部5cに載置されている基板WはハンドH1に持ち上げられ、爪ガイド部22およびバックガイド部23により支持される。この状態で可動部24aが基板W側に伸長し、基板Wを爪ガイド部22に押し当てる。基板Wは、可動部24aと爪ガイド部22とにより挟み込まれた状態となり、固定保持される。プッシャ検出部29は、可動部24aが一定の伸長量以上となったときON信号を検出し、検出したON信号を判定部62に出力する。 After the hand H1 reaches the forward position FW, the indexer robot IR performs an acquisition movement that raises the hand H1 from the pickup position to the place position. By the acquisition movement, the substrate W placed on the substrate guide portion 5 c is lifted by the hand H <b> 1 and supported by the claw guide portion 22 and the back guide portion 23. In this state, the movable portion 24a extends to the substrate W side and presses the substrate W against the claw guide portion 22. The board | substrate W will be in the state pinched | interposed by the movable part 24a and the nail | claw guide part 22, and is fixedly held. The pusher detection unit 29 detects an ON signal when the movable unit 24 a reaches a certain extension amount or more, and outputs the detected ON signal to the determination unit 62.
 インデクサロボットIRは、ハンドH1が基板Wを固定保持した状態で、ハンドH1を基板収納容器5内から退行させるため、ハンドH1をフォワード位置FWからホーム位置HMへ移動させる復路移動を行う。 The indexer robot IR performs a backward movement to move the hand H1 from the forward position FW to the home position HM in order to retract the hand H1 from the substrate storage container 5 in a state where the hand H1 holds and holds the substrate W.
 <ステップS3> 基板を処理する
 インデクサロボットIRは、基板Wを固定保持した状態で、ハンドH1をパスユニット4に進入させ、基板Wをパスユニット4に載置する。載置後、インデクサロボットIRはハンドH1をパスユニット4の外部へ退行させる。パスユニット4に載置された基板WはセンターロボットCRにより処理ユニット31へ搬送される。センターロボットCRもインデクサロボットIRと同様に基板Wを固定保持した状態で搬送する。
<Step S <b>3> Processing the Substrate The indexer robot IR moves the hand H <b> 1 into the pass unit 4 and places the substrate W on the pass unit 4 with the substrate W fixed and held. After placement, the indexer robot IR retracts the hand H1 to the outside of the pass unit 4. The substrate W placed on the pass unit 4 is transferred to the processing unit 31 by the center robot CR. Similarly to the indexer robot IR, the center robot CR carries the substrate W in a fixed state.
 処理ユニット31に搬送された基板Wには、薬液処理が実行される。薬液処理は、例えば、洗浄処理であり、基板Wに薬液を供給し、基板Wを洗浄する。洗浄処理に代えて、エッチング処理、塗布処理、または現像処理などが行われてもよい。さらに、薬液処理とは異なる処理でもよく、例えば、加熱処理、または冷却処理などの熱処理でもよい。処理ユニット31にて処理された基板Wは、センターロボットCRによって処理ユニット31から取り出され、パスユニット4に載置される。 Chemical processing is performed on the substrate W transported to the processing unit 31. The chemical liquid process is, for example, a cleaning process. A chemical liquid is supplied to the substrate W to clean the substrate W. Instead of the cleaning process, an etching process, a coating process, a developing process, or the like may be performed. Further, the treatment may be different from the chemical treatment, for example, heat treatment such as heat treatment or cooling treatment. The substrate W processed by the processing unit 31 is taken out from the processing unit 31 by the center robot CR and placed on the pass unit 4.
 <ステップS4> 基板を基板収納容器へ渡す
 インデクサロボットIRは基板Wの渡し動作を行う。基板渡し動作は、往路移動(第1往路工程)、載置移動、および復路移動(第1復路工程)で構成される。パスユニット4に載置された基板Wは、ハンドH1に固定保持される。インデクサロボットIRは、ハンドH1に基板Wを固定保持した状態で、基板Wの収納対象である基板収納容器5のインデクサ受渡し位置に移動する。移動後、図6Aに示すように、ハンドH1が開口Bに対向する向きへ回転し、垂直位置をプレイス位置へ移動する(時間t1)。時間t1では、光学センサ8は投光状態であるのでON信号を出力しており、可動部24aは伸長状態であるので、プッシャ検出部29はON信号を出力している。
<Step S4> The substrate is transferred to the substrate storage container. The indexer robot IR performs the transfer operation of the substrate W. The substrate transfer operation includes an outward movement (first outward process), a placement movement, and a backward movement (first backward process). The substrate W placed on the pass unit 4 is fixedly held by the hand H1. The indexer robot IR moves to the indexer delivery position of the substrate storage container 5 that is the storage target of the substrate W while the substrate W is fixedly held on the hand H1. After the movement, as shown in FIG. 6A, the hand H1 rotates in the direction facing the opening B, and moves the vertical position to the place position (time t1). At time t1, since the optical sensor 8 is in a light projection state, it outputs an ON signal, and since the movable portion 24a is in an extended state, the pusher detection unit 29 outputs an ON signal.
 <ステップS5> プッシャ検出部信号一致比較
 次に図6Bに示すように、インデクサロボットIRは、基板Wを固定保持した状態で、ハンドH1を基板収納容器5内部へ進入させるため、ホーム位置HMからフォワード位置FWへ移動させる往路移動を開始する(時間t2)。判定部62は、往路移動開始を第1監視点SP1として、プッシャ検出部29から出力される信号と記憶部61に記憶されている第1監視点SP1での正常タイミング信号とを比較する。第1監視点SP1では基板Wは固定保持されている必要があるため、記憶部61に記憶されている第1監視点SP1での正常タイミング信号はON信号である。判定部62は、比較した結果、両信号が一致するときは処理を継続し、相違するときは(ステップS5のNO)、異常時レシピを実行する。第1監視点SP1は往路移動開始直前である必要はなく、往路移動開始の一定期間前でもよい。また、判定部62は、プッシャ検出部29から出力される信号の時系列パターンを取得するため、ON/OFF信号の取得を開始してもよい(信号取得期間SGP)。
<Step S5> Pusher Detection Unit Signal Match Comparison Next, as shown in FIG. 6B, the indexer robot IR moves the home H1 from the home position HM in a state where the substrate W is fixed and held. The forward movement to move to the forward position FW is started (time t2). The determination unit 62 compares the signal output from the pusher detection unit 29 with the normal timing signal at the first monitoring point SP1 stored in the storage unit 61, with the start of forward movement as the first monitoring point SP1. Since the substrate W needs to be fixedly held at the first monitoring point SP1, the normal timing signal at the first monitoring point SP1 stored in the storage unit 61 is an ON signal. As a result of the comparison, the determination unit 62 continues the process when the two signals match each other, and executes the abnormal recipe when they are different (NO in step S5). The first monitoring point SP1 does not have to be immediately before the start of the outward movement, but may be a certain period before the start of the outward movement. Further, the determination unit 62 may start acquiring the ON / OFF signal in order to acquire the time series pattern of the signal output from the pusher detection unit 29 (signal acquisition period SGP).
 往路移動を開始後、ハンドH1がロードポート開口Lに到達し、固定保持された基板Wが光学センサ8の光軸を遮断すると、光学センサ8から判定部62へ出力されている信号はON信号からOFF信号へ切り替わる(時間t3)。判定部62は、光学センサ8から入力されたON信号からOFF信号へ切り替わりを通過期間の起点として、OFF信号の継続時間の計測を開始する。 After starting the forward movement, when the hand H1 reaches the load port opening L and the substrate W fixedly held blocks the optical axis of the optical sensor 8, the signal output from the optical sensor 8 to the determination unit 62 is an ON signal. To the OFF signal (time t3). The determination unit 62 starts measuring the duration of the OFF signal with the switching from the ON signal input from the optical sensor 8 to the OFF signal as the starting point of the passage period.
 次に図6Cに示すように、ハンドH1は、フォワード位置FWに到達する。フォワード位置FWに到達した後、制御部6は、可動部24aを収縮させることにより基板Wへの押し当てを解除する。基板Wへの押し当てを解除することにより、基板ガイド部5cへ基板Wを載置することが可能となる。可動部24aは、収縮状態となるため、プッシャ検出部29から判定部62へ出力されている信号はON信号からOFF信号へ切り替わる(時間t4)。判定部62は、往路移動終了を第2監視点SP2として、プッシャ検出部29から出力される信号と記憶部61に記憶されている第2監視点SP2での正常タイミング信号とを比較する。第2監視点SP2では基板Wは固定解除されている必要があるため、記憶部61に記憶されている第2監視点SP2での正常タイミング信号はOFF信号である。判定部62は、比較した結果、両信号が一致するときは(ステップS5のYES)、処理を継続し、相違するときは(S5のNO)、異常時レシピを実行する。第2監視点SP2は往路移動終了直後である必要はなく、往路移動終了後、一定期間後でもよい。 Next, as shown in FIG. 6C, the hand H1 reaches the forward position FW. After reaching the forward position FW, the control unit 6 releases the pressing to the substrate W by contracting the movable unit 24a. By releasing the pressing to the substrate W, the substrate W can be placed on the substrate guide portion 5c. Since the movable unit 24a is in the contracted state, the signal output from the pusher detection unit 29 to the determination unit 62 is switched from the ON signal to the OFF signal (time t4). The determination unit 62 compares the signal output from the pusher detection unit 29 with the normal timing signal at the second monitoring point SP2 stored in the storage unit 61 with the end of the forward movement as the second monitoring point SP2. Since the substrate W needs to be unfixed at the second monitoring point SP2, the normal timing signal at the second monitoring point SP2 stored in the storage unit 61 is an OFF signal. As a result of the comparison, when the two signals match (YES in step S5), the determination unit 62 continues the process, and when they differ (NO in S5), the determination unit 62 executes the abnormal recipe. The second monitoring point SP2 need not be immediately after the end of the forward movement, but may be after a certain period of time after the end of the forward movement.
 また、判定部62は、プッシャ検出部29から出力される信号の時系列パターン(実固定保持パターンRHP)を取得しているときは、ON/OFF信号の取得を終了する。判定部62は、取得した実固定保持パターンRHPと記憶部61に記憶されている正常固定保持パターンNHPとを比較する。判定部62は、比較した結果、両パターンが一致するときは(ステップS5のYES)、処理を継続し、相違するときは(ステップS5のNO)、異常時レシピを実行する。 Also, the determination unit 62 ends the acquisition of the ON / OFF signal when the time series pattern (actual fixed holding pattern RHP) of the signal output from the pusher detection unit 29 is acquired. The determination unit 62 compares the acquired actual fixed holding pattern RHP with the normal fixed holding pattern NHP stored in the storage unit 61. As a result of the comparison, when the two patterns match (YES in step S5), the determination unit 62 continues the process, and when they differ (NO in step S5), the determination unit 62 executes the abnormal recipe.
 プッシャ検出部29から出力される信号に基づき、判定部62が正常と判定したときは(ステップS5のYES)、フォワード位置FWのまま、インデクサロボットIRは、ハンドH1の垂直位置をプレイス位置からピックアップ位置に下降移動させる載置移動を行う。載置移動により、爪ガイド部22、およびバックガイド部23の内側に保持されていた基板Wが基板ガイド部5cに載置される。 When the determination unit 62 determines normal based on the signal output from the pusher detection unit 29 (YES in step S5), the indexer robot IR picks up the vertical position of the hand H1 from the place position while keeping the forward position FW. Placement movement to move down to the position is performed. By the placement movement, the substrate W held inside the claw guide portion 22 and the back guide portion 23 is placed on the substrate guide portion 5c.
 <ステップS6> ハンドH1を退行させる
 次に図6Dに示すように、インデクサロボットIRは、ハンドH1を基板収納容器5内から退行させるため、ハンドH1をフォワード位置FWからホーム位置HMへ移動させる復路移動を行う。基板Wが基板ガイド部5cに正常に載置されていれば、ハンドH1上に基板Wが存在しない。よって、光学センサ8の光軸を通過中にハンドH1の中抜き領域(部材非存在部分であるV字型部分の間の領域)が光軸に到達すると、光学センサ8は、遮光状態から投光状態に変化する。それに応じて、光学センサ8から出力される信号は、ON信号からOFF信号へ変化する(時間t5)。判定部62は、光学センサ8から出力される信号がOFF信号からON信号へ変化した時点で光学センサ8から出力されるOFF信号の継続時間の計測を終了する。ハンドH1の中抜き領域を通過後は、光学センサ8の出力は、OFF信号からON信号へ切り替わる。ハンドH1がホーム位置HMへ到達すると復路移動は終了となる(図6E、時間t6)。基板Wが正常に渡し動作された場合、光学センサ8から出力される信号がON信号からOFF信号へ変化した時間t3からOFF信号からON信号へ変化した時間t5までの期間が第1通過期間PP1となる。
<Step S6> Retreating Hand H1 Next, as shown in FIG. 6D, the indexer robot IR moves the hand H1 from the forward position FW to the home position HM in order to retract the hand H1 from the substrate storage container 5. Move. If the substrate W is normally placed on the substrate guide portion 5c, the substrate W does not exist on the hand H1. Therefore, when the hollow region of the hand H1 (the region between the V-shaped portions where no member is present) reaches the optical axis while passing through the optical axis of the optical sensor 8, the optical sensor 8 projects from the light shielding state. Change to light state. In response, the signal output from the optical sensor 8 changes from an ON signal to an OFF signal (time t5). The determination unit 62 ends the measurement of the duration of the OFF signal output from the optical sensor 8 when the signal output from the optical sensor 8 changes from the OFF signal to the ON signal. After passing through the hollow area of the hand H1, the output of the optical sensor 8 is switched from the OFF signal to the ON signal. When the hand H1 reaches the home position HM, the backward movement is finished (FIG. 6E, time t6). When the substrate W is normally transferred, the period from the time t3 when the signal output from the optical sensor 8 changes from the ON signal to the OFF signal to the time t5 when the signal changes from the OFF signal to the ON signal is the first passage period PP1. It becomes.
 インデクサロボットIRは、ハンドH1を基板収納容器5内から退行させる復路移動時、往路移動時の搬送速度より遅い速度とすることができる。復路移動時に速度を落とすことにより、復路移動時の光学センサ8の検出精度を向上させることができる。 The indexer robot IR can be set to a speed slower than the transfer speed during the backward movement when the hand H1 moves backward from the inside of the substrate storage container 5. By reducing the speed during the backward movement, the detection accuracy of the optical sensor 8 during the backward movement can be improved.
 <ステップS7> 光学センサ信号一致比較
 判定部62は、基板Wの渡し動作に際して計測した第1通過期間PP1と記憶部61に記憶された第1正常期間NP1とを比較する。例えば、第1正常期間NP1は、光学センサ8から出力されるOFF信号が時間t3からt5の期間である。判定部62は、第1通過期間PP1と予め設定され記憶部61に記憶された第1正常期間NP1とを比較した結果、一致するときは正常と判定して(S7のYES)、処理を継続し、相違するときは異常と判定し(S7のNO)、異常時レシピを実行する。第1通過期間PP1と第1正常期間NP1とを比較する場合、第1正常期間NP1に対し±10%程度のマージンを持たせて判定してもよい。
 例えば、記憶された第1正常期間NP1は2.8秒以下である。設計値および実験から2.5秒付近が適切な値であり、異常があるときには3.0秒以上となるとすれば、2.5秒に約10%のマージンを加え、第1正常期間NP1は2.8秒以下とする。前述の通り、第1正常期間NP1は移動距離や移動速度に応じて任意に変更できるため、これらの値に限定されない。さらに、第1正常期間NP1は2.2秒以上2.8秒以下のように上下限の範囲を持っても良い。このように、マージンを持たせることで、問題とならない程度の微小な動作ばらつきなどをエラーとして検出することを防止できる。判定部62により第1通過期間PP1が正常と判定されると、インデクサロボットIRによる一連の基板渡し動作が終了する。
<Step S <b>7> Optical sensor signal coincidence comparison The determination unit 62 compares the first passage period PP <b> 1 measured during the transfer operation of the substrate W with the first normal period NP <b> 1 stored in the storage unit 61. For example, the first normal period NP1 is a period in which the OFF signal output from the optical sensor 8 is from time t3 to t5. The determination unit 62 compares the first passage period PP1 with the first normal period NP1 set in advance and stored in the storage unit 61. As a result of the comparison, the determination unit 62 determines that it is normal (YES in S7) and continues the process. If they are different, it is determined that there is an abnormality (NO in S7), and the abnormality recipe is executed. When comparing the first passage period PP1 and the first normal period NP1, the determination may be made with a margin of about ± 10% with respect to the first normal period NP1.
For example, the stored first normal period NP1 is 2.8 seconds or less. From the design value and the experiment, an appropriate value is around 2.5 seconds, and when there is an abnormality, if it becomes 3.0 seconds or more, a margin of about 10% is added to 2.5 seconds, and the first normal period NP1 is 2.8 or less. As described above, the first normal period NP1 can be arbitrarily changed according to the moving distance and the moving speed, and is not limited to these values. Further, the first normal period NP1 may have an upper and lower limit range such as 2.2 seconds or more and 2.8 seconds or less. In this way, by providing a margin, it is possible to prevent a minute operation variation that does not cause a problem from being detected as an error. When the determination unit 62 determines that the first passage period PP1 is normal, a series of substrate passing operations by the indexer robot IR is completed.
 ここで、基板WがハンドH1により、基板ガイド部5cに正常に載置されない場合、換言すれば、基板Wが所定位置である基板ガイド部5cに正常に渡されなかった場合について説明する。例えば、基板Wは、製造プロセスを経ることにより凹型に反っていることがある。基板Wが基板ガイド部5cに載置された後、基板Wの反りにより、ハンドH1がピックアップ位置へ下降したにもかかわらず、基板Wの下面の一部がハンドH1の側面部22bの上端と同等の高さまたはハンドH1の側面部22bの上端より低くなるおそれがある。 Here, a case where the substrate W is not normally placed on the substrate guide portion 5c by the hand H1, in other words, a case where the substrate W is not normally delivered to the substrate guide portion 5c at a predetermined position will be described. For example, the substrate W may be warped in a concave shape through a manufacturing process. After the substrate W is placed on the substrate guide portion 5c, a part of the lower surface of the substrate W is moved to the upper end of the side surface portion 22b of the hand H1 even though the hand H1 is lowered to the pickup position due to the warpage of the substrate W. There exists a possibility that it may become equal height or lower than the upper end of the side part 22b of the hand H1.
 図7A~図7Bは、基板が基板収納容器に正常に載置されなかった場合の動作を説明する図である。図8Bは、基板渡し動作における正常と異常とに係る光学センサの検出信号とプッシャ検出部の検出信号とを時系列に示すチャート図である。ハンドH1がフォワード位置に進入し、ピックアップ位置へ下降するまでは図6A~図6Cと同様のため説明を省略する。図8Aと同様の部分についても説明を省略する。図8Bにおいて、基板渡し動作における異常が生じた場合に光学センサ8から出力される時系列のON/OFF信号を光信号RLS2とする。 7A to 7B are diagrams for explaining the operation when the substrate is not normally placed on the substrate storage container. FIG. 8B is a chart showing the detection signal of the optical sensor and the detection signal of the pusher detection unit in chronological order according to normality and abnormality in the substrate passing operation. Until the hand H1 enters the forward position and descends to the pickup position, the description is omitted because it is the same as FIG. 6A to FIG. 6C. The description of the same parts as in FIG. 8A is also omitted. In FIG. 8B, a time-series ON / OFF signal output from the optical sensor 8 when an abnormality occurs in the substrate transfer operation is referred to as an optical signal RLS2.
 図7Aに示すように、インデクサロボットIRが基板Wを基板ガイド部5cに載置するために載置移動した後、ハンドH1がフォワード位置FWからホーム位置HMへ復路移動するとき、ハンドH1の側面部22bの上端が基板Wの端部や下面などをひっかけてしまう場合がある。ひっかけた状態では基板Wは爪ガイド部22およびバックガイド部23により支持されず、基板Wの一部が側面部22b上に乗り上げ、ハンドH1上に不安定な状態で載置されてしまう。載置移動後は、可動部24aを縮めた状態が正常であるため、判定部62は、プッシャ検出部29から出力されるOFF信号が正常な状態と判定する(図6C、時間t4)。そのため、基板WがハンドH1上に不安定な状態で載置された場合であっても、プッシャ検出部29によりその異常を検出することはできない。 As shown in FIG. 7A, after the indexer robot IR moves to place the substrate W on the substrate guide portion 5c, when the hand H1 moves back from the forward position FW to the home position HM, the side surface of the hand H1 There is a case where the upper end of the portion 22b catches an end portion or a lower surface of the substrate W. In the hooked state, the substrate W is not supported by the claw guide portion 22 and the back guide portion 23, and a part of the substrate W rides on the side surface portion 22b and is placed in an unstable state on the hand H1. After the placement movement, since the movable part 24a is contracted normally, the determination part 62 determines that the OFF signal output from the pusher detection part 29 is normal (FIG. 6C, time t4). Therefore, even when the substrate W is placed in an unstable state on the hand H1, the pusher detection unit 29 cannot detect the abnormality.
 一方、光学センサ8の光軸を通過中にハンドH1の中抜き領域(部材非存在部分であるV字型部分の間の領域)が光軸に到達(時間t5)しても、ハンドH1上に基板Wが存在するため、光学センサ8は遮光状態から投光状態へ変化せず、その信号出力はOFF信号に維持される。図7Aに示すように、ハンドH1は復路移動を続け、基板Wが光軸を通過した状態で光学センサ8の出力がON信号に変化する(時間t5a)。判定部62は、光学センサ8から出力される信号がOFF信号からON信号へ変化した時点で、光学センサ8のOFF信号の継続時間の計測を終了する。ハンドH1がホーム位置HMへ到達すると、復路移動は終了となる(図7B、時間t6)。基板Wが正常に搬送されなかった場合、光学センサ8から出力される信号がON信号からOFF信号へ変化した時間t3からOFF信号からON信号へ変化した時間t5aまでの期間が第2通過期間PP2となる。 On the other hand, even if the hollow region of the hand H1 (the region between the V-shaped portion where no member is present) reaches the optical axis (time t5) while passing through the optical axis of the optical sensor 8, it remains on the hand H1. Therefore, the optical sensor 8 does not change from the light shielding state to the light projecting state, and the signal output is maintained at the OFF signal. As shown in FIG. 7A, the hand H1 continues to move in the backward direction, and the output of the optical sensor 8 changes to an ON signal with the substrate W passing through the optical axis (time t5a). The determination unit 62 ends the measurement of the duration of the OFF signal of the optical sensor 8 when the signal output from the optical sensor 8 changes from the OFF signal to the ON signal. When the hand H1 reaches the home position HM, the backward movement is finished (FIG. 7B, time t6). When the substrate W is not transported normally, the period from the time t3 when the signal output from the optical sensor 8 changes from the ON signal to the OFF signal to the time t5a when the signal changes from the OFF signal to the ON signal is the second passage period PP2. It becomes.
 判定部62は、基板Wの渡し動作について、計測した第2通過期間PP2と記憶部61に記憶された第1正常期間NP1とを比較する。判定部62は、第2通過期間PP2と記憶部61に記憶された第1正常期間NP1とを比較した結果、図8Bに示すように第2通過期間PP2と記憶部61に記憶された第1正常期間NP1とは相違するため、異常時レシピを実行する。 The determination unit 62 compares the measured second passage period PP2 with the first normal period NP1 stored in the storage unit 61 for the transfer operation of the substrate W. As a result of comparing the second passage period PP2 and the first normal period NP1 stored in the storage unit 61, the determination unit 62 compares the second passage period PP2 and the first passage period PP2 stored in the storage unit 61 as shown in FIG. 8B. Since it is different from the normal period NP1, the abnormality recipe is executed.
 <ステップS8> 異常時レシピの実行
 判定部62は、異常であると判定したとき、基板処理装置1の各構成部に対し、記憶部61に記憶されている異常時レシピを実行させる。例えば、異常時レシピは、インデクサロボットIRおよびシャッター駆動部34bは即時停止、処理ユニット31の処理後停止、センターロボットCRの基板搬送後停止、警報の発生を含む一連の動作を規定している。警報は、基板処理装置1のメイン画面への警告表示、音の発生、通信回線を通じてホストコンピュータへのポップアップメッセージの表示指令出力などである。警報を発生することにより、基板処理装置1が異常であることを装置使用者に知らせることができる。異常時レシピの実行が完了した場合も、判定部62は一連の搬送動作を終了とする。
<Step S8> Execution of Abnormal Recipe When the determination unit 62 determines that there is an abnormality, it causes each component of the substrate processing apparatus 1 to execute the abnormal recipe stored in the storage unit 61. For example, the abnormal-time recipe defines a series of operations including an immediate stop of the indexer robot IR and the shutter drive unit 34b, a stop after the processing of the processing unit 31, a stop after the substrate transfer of the center robot CR, and an alarm. The alarm includes warning display on the main screen of the substrate processing apparatus 1, generation of sound, display command output of a pop-up message to the host computer through the communication line, and the like. By generating an alarm, the apparatus user can be notified that the substrate processing apparatus 1 is abnormal. Even when the execution of the abnormal recipe is completed, the determination unit 62 ends the series of transport operations.
 上述した本発明の第1の実施形態における基板搬送装置によれば、ハンドH1が基板収納容器5の基板ガイド部5cに基板Wを載置するときの一連の基板Wの渡し動作について、光学センサ8の検出信号を用いて、正常状態であるか異常状態であるかを判定できる。より具体的には、光学センサ8がハンドH1本体または基板Wを検出して生成するOFF信号の継続時間から通過期間が計測される。この通過期間と記憶部61に記憶された正常期間とが一致するか否かを比較することで、基板Wの渡し動作が正常か異常かを判定できる。 According to the substrate transport apparatus in the first embodiment of the present invention described above, a series of substrate W transfer operations when the hand H1 places the substrate W on the substrate guide portion 5c of the substrate storage container 5 are optical sensors. The detection signal of 8 can be used to determine whether the state is normal or abnormal. More specifically, the passage period is measured from the duration of the OFF signal generated by the optical sensor 8 detecting the hand H1 body or the substrate W. By comparing whether or not the passage period and the normal period stored in the storage unit 61 coincide with each other, it is possible to determine whether the transfer operation of the substrate W is normal or abnormal.
 次に、図6Eに示されるように基板収納容器5の基板ガイド部5cに基板Wが正確に載置されず、例えば、図6Eに図示された状態よりも右側に基板Wが位置し、基板Wが基板収納容器5から飛び出すようにずれて載置された状態について説明する。光学センサ8のセンサエリアは、基板収納容器5外へずれた状態で載置された基板Wを検出できる位置に設定されている。そのため、基板Wがずれた状態で載置されていることを光学センサ8により検出することができる。この場合も別の異常状態として検出されることとなる。 Next, as shown in FIG. 6E, the substrate W is not accurately placed on the substrate guide portion 5c of the substrate storage container 5. For example, the substrate W is positioned on the right side of the state shown in FIG. A state in which W is placed so as to be shifted out of the substrate storage container 5 will be described. The sensor area of the optical sensor 8 is set at a position where the substrate W placed in a state of being shifted out of the substrate storage container 5 can be detected. Therefore, it can be detected by the optical sensor 8 that the substrate W is placed in a shifted state. In this case as well, another abnormal state is detected.
 ハンドH1が基板収納容器5の基板ガイド部5cに載置された基板Wを受け取るときの一連の基板Wの受け動作について、光学センサ8の出力に基づいて、正常状態か異常状態かを判定してもよい。具体的には、光学センサ8がハンドH1または基板Wを検出して生成するOFF信号の継続時間から第2通過期間が計測される。この第2通過期間と記憶部61に記憶された第2正常期間とが一致するか否かを比較することで、基板Wの受け動作が正常か異常状態かを判定してもよい。 Whether the hand H1 receives a substrate W placed on the substrate guide portion 5c of the substrate storage container 5 or not is determined based on the output of the optical sensor 8 as to whether it is in a normal state or an abnormal state. May be. Specifically, the second passage period is measured from the duration of the OFF signal generated by detecting the hand H1 or the substrate W by the optical sensor 8. It may be determined whether the receiving operation of the substrate W is normal or abnormal by comparing whether or not the second passage period and the second normal period stored in the storage unit 61 match.
 さらに具体的には、第2往路工程において、基板Wを保持しないハンドH1本体が光学センサ8のセンサエリアを通過した後、第2復路工程においてハンドH1本体とハンドH1に保持された基板Wがセンサエリアを通過するまでの第2通過期間が計測される。この第2通過期間と予め設定され記憶部61に記憶された第2正常期間とが相違しているか否かが判定部62により判定される。判定部62は、それらが相違しない場合は正常と判断し、相違する場合は搬送異常と判断する。 More specifically, after the hand H1 main body that does not hold the substrate W passes through the sensor area of the optical sensor 8 in the second forward pass process, the hand W1 main body and the substrate W held by the hand H1 in the second return pass process. A second passage period until passing through the sensor area is measured. The determination unit 62 determines whether or not the second passage period is different from the second normal period set in advance and stored in the storage unit 61. The determination unit 62 determines that the state is normal if they are not different, and determines that the conveyance is abnormal if they are different.
 基板Wに反りが生じていると、基板Wが基板ガイド部5cに載置された後、ハンドH1がピックアップ位置へ下降したにもかかわらず、基板Wの下面の一部がハンドH1の側面部22bの上端と同等の高さまたはハンドH1の側面部22bの上端より低くなるおそれがある。この場合、ハンドH1がフォワード位置FWからホーム位置HMへ復路移動するとき、ハンドH1の側面部22bの上端が基板Wの端部や下面などをひっかけてしまう。このとき、基板Wは爪ガイド部22およびバックガイド部23により保持されず、基板Wの一部が側面部22bの上端に乗り上げ、ハンドH1上に不安定な状態で載置されてしまう。このように基板WがハンドH1上に不安定な状態で載置されてしまった場合、プッシャ検出部29からのON/OFF信号からは異常が検出できないおそれがある。このような状況であっても、光学センサ8からのON/OFF信号に基づき、判定部62により異常判定がされるため、異常を検出することができる。 If the substrate W is warped, a part of the lower surface of the substrate W is a side surface portion of the hand H1 even though the hand H1 is lowered to the pickup position after the substrate W is placed on the substrate guide portion 5c. There is a possibility that the height is equal to the upper end of 22b or lower than the upper end of the side surface portion 22b of the hand H1. In this case, when the hand H1 moves backward from the forward position FW to the home position HM, the upper end of the side surface portion 22b of the hand H1 catches the end portion or the lower surface of the substrate W. At this time, the substrate W is not held by the claw guide portion 22 and the back guide portion 23, and a part of the substrate W rides on the upper end of the side surface portion 22b and is placed in an unstable state on the hand H1. As described above, when the substrate W is placed in an unstable state on the hand H1, an abnormality may not be detected from the ON / OFF signal from the pusher detection unit 29. Even in such a situation, an abnormality can be detected because the determination unit 62 determines an abnormality based on the ON / OFF signal from the optical sensor 8.
 さらに、判定部62は基板処理装置1の各構成部に対し、異常時レシピを実行させる。異常時レシピの実行により、搬送動作は停止する。異常時レシピが実行されたときは、警報が発せられ、基板処理装置1のユーザーは基板処理装置1が異常状態であることをすぐに知ることができる。この結果、基板Wの搬送を早期に停止することができて、後工程への影響を低減することができる。 Further, the determination unit 62 causes each component of the substrate processing apparatus 1 to execute an abnormal recipe. The conveyance operation stops due to the execution of the abnormal recipe. When the abnormality recipe is executed, an alarm is issued, and the user of the substrate processing apparatus 1 can immediately know that the substrate processing apparatus 1 is in an abnormal state. As a result, the transfer of the substrate W can be stopped early, and the influence on the subsequent process can be reduced.
 本発明は、上記実施形態に限られることはなく、以下のように変形して実施することができる。以下では、本発明の第2実施形態を、添付図面を参照して詳細に説明する。 The present invention is not limited to the above-described embodiment, and can be implemented with the following modifications. Hereinafter, a second embodiment of the present invention will be described in detail with reference to the accompanying drawings.
 図9は、処理ユニットの概略構成を示す側面図である。上述と同様の構成については同符号を付すことにより詳細な説明を省略する。処理ユニット31は、基板Wに対して、洗浄処理やエッチング処理などの液処理を施すための枚葉型処理部である。 FIG. 9 is a side view showing a schematic configuration of the processing unit. About the same structure as the above, detailed description is abbreviate | omitted by attaching | subjecting a same sign. The processing unit 31 is a single wafer processing unit for performing liquid processing such as cleaning processing and etching processing on the substrate W.
 処理ユニット31は、側壁801で取り囲まれた密閉空間を内部に区画するチャンバ802を有している。チャンバ802内には、基板Wを保持して回転させるスピンチャック803と、処理液ノズル804と、リンス液ノズル(不図示)と、有機溶剤ノズル(不図示)と、スピンチャック803を収容する筒状の処理カップ808と、が備えられている。処理液ノズル804は、スピンチャック803に保持されている基板Wの表面(上面)に、処理液供給部より供給された処理液を供給する。リンス液ノズルは、スピンチャック803に保持されている基板Wの表面(上面)に、リンス液供給部より供給されたリンス液を供給する。有機溶剤ノズルは、スピンチャック803に保持されている基板Wの表面(上面)に、有機溶剤供給部より供給された有機溶剤を供給する。 The processing unit 31 has a chamber 802 that divides a sealed space surrounded by a side wall 801 into the inside. In the chamber 802, a spin chuck 803 that holds and rotates the substrate W, a treatment liquid nozzle 804, a rinse liquid nozzle (not shown), an organic solvent nozzle (not shown), and a cylinder that houses the spin chuck 803. And a processing cup 808 having a shape. The processing liquid nozzle 804 supplies the processing liquid supplied from the processing liquid supply unit to the surface (upper surface) of the substrate W held by the spin chuck 803. The rinse liquid nozzle supplies the rinse liquid supplied from the rinse liquid supply unit to the surface (upper surface) of the substrate W held by the spin chuck 803. The organic solvent nozzle supplies the organic solvent supplied from the organic solvent supply unit to the surface (upper surface) of the substrate W held by the spin chuck 803.
 チャンバ802の側壁801には、チャンバ802内に対して基板Wを搬出入できるように、開口811が形成されている。チャンバ802の外側に配置されたセンターロボットCR(図1参照)は、開口811を通してチャンバ802内にハンドH2(図1参照)をアクセスさせる。それにより、センターロボットCRは、未処理の基板Wをスピンチャック803上に載置したり、スピンチャック803上から処理済の基板Wを取り出したりできる。側壁801の外側には、開口811を上下方向に開閉するためのシャッター812が設けられている。シャッター812には、シャッター昇降機構813が結合されている。シャッター昇降機構813は、シャッター812を開位置と閉位置(不図示)との間で上下動させる。シャッター昇降機構813は処理制御部64により制御される。 An opening 811 is formed in the side wall 801 of the chamber 802 so that the substrate W can be carried in and out of the chamber 802. The center robot CR (see FIG. 1) arranged outside the chamber 802 allows the hand H2 (see FIG. 1) to access the chamber 802 through the opening 811. As a result, the center robot CR can place an unprocessed substrate W on the spin chuck 803 and can extract a processed substrate W from the spin chuck 803. A shutter 812 for opening and closing the opening 811 in the vertical direction is provided outside the side wall 801. A shutter elevating mechanism 813 is coupled to the shutter 812. The shutter lifting / lowering mechanism 813 moves the shutter 812 up and down between an open position and a closed position (not shown). The shutter lifting / lowering mechanism 813 is controlled by the processing control unit 64.
 スピンチャック803は、この実施形態では、基板Wを水平方向に吸着して基板Wを水平に保持する吸着式のチャックである。具体的には、スピンチャック803は、スピンモータ814の駆動軸と一体化されたスピン軸815に連結されている。基板Wの保持方式は、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式でもよい。すなわち、吸着式チャックに代えて、メカニカルチャックをスピンチャック803として用いてもよい。 In this embodiment, the spin chuck 803 is a suction chuck that sucks the substrate W in the horizontal direction and holds the substrate W horizontally. Specifically, the spin chuck 803 is connected to a spin shaft 815 that is integrated with a drive shaft of the spin motor 814. The holding method of the substrate W may be a holding method in which the substrate W is held horizontally with the substrate W held in the horizontal direction. That is, a mechanical chuck may be used as the spin chuck 803 instead of the suction chuck.
 スピンチャック803により基板Wが吸着されて保持されているときに、スピンモータ814が駆動されると、その駆動力によってスピン軸815が所定の回転軸線(鉛直軸線)A1まわりに回転される。これにより、スピンチャック803と共に、基板Wが略水平な姿勢を保った状態で回転軸線A1まわりに回転される。 When the spin motor 814 is driven while the substrate W is attracted and held by the spin chuck 803, the spin shaft 815 is rotated around a predetermined rotation axis (vertical axis) A1 by the driving force. As a result, the substrate W is rotated around the rotation axis A1 together with the spin chuck 803 while maintaining a substantially horizontal posture.
 処理液ノズル804は供給管805により処理液供給部と連結している。処理液バルブ806が供給管805途中に配設されており、制御部6の信号により開閉制御される。処理液バルブ806を開くことにより、処理液ノズル804と処理液供給部とが連通状態となり、処理液ノズル804から処理液が吐出される。処理液バルブ806を閉じることにより、処理液ノズル804からの処理液の吐出を停止できる。 The processing liquid nozzle 804 is connected to the processing liquid supply unit by a supply pipe 805. A processing liquid valve 806 is disposed in the middle of the supply pipe 805 and is controlled to be opened and closed by a signal from the control unit 6. By opening the processing liquid valve 806, the processing liquid nozzle 804 and the processing liquid supply unit are in communication with each other, and the processing liquid is discharged from the processing liquid nozzle 804. By closing the processing liquid valve 806, the discharge of the processing liquid from the processing liquid nozzle 804 can be stopped.
 処理カップ808は、処理カップ808を退避位置(実線)と処理位置(二点鎖線)との間で上下動させるためのカップ昇降機構807に結合されている。カップ昇降機構807は処理制御部64により制御され、それにより、処理カップ808の上下位置が制御される。処理制御部64は、スピンチャック803上に基板Wを受け入れるため、基板Wの搬入時、処理カップ808を退避位置まで下降させる。処理制御部64は、基板Wの処理時、処理カップ808を処理位置まで上昇させる。処理カップ808を処理位置に配置することにより、基板Wへ供給され、回転により振り切られる処理液を処理カップ808で受け止めることができ、処理ユニット31内での処理液の飛散を抑制できる。処理制御部64は、基板処理後、スピンチャック803による基板Wの吸着を解除し、処理カップ808を退避位置まで下降させる。スピンチャック803上の基板WはセンターロボットCRのハンドH2により保持され、保持された基板Wはチャンバ802外へと搬出される。 The processing cup 808 is coupled to a cup lifting mechanism 807 for moving the processing cup 808 up and down between a retracted position (solid line) and a processing position (two-dot chain line). The cup elevating mechanism 807 is controlled by the processing control unit 64, and thereby the vertical position of the processing cup 808 is controlled. In order to receive the substrate W on the spin chuck 803, the processing control unit 64 lowers the processing cup 808 to the retracted position when the substrate W is loaded. The processing control unit 64 raises the processing cup 808 to the processing position when processing the substrate W. By disposing the processing cup 808 at the processing position, the processing liquid supplied to the substrate W and shaken off by the rotation can be received by the processing cup 808, and scattering of the processing liquid in the processing unit 31 can be suppressed. After the substrate processing, the processing control unit 64 releases the adsorption of the substrate W by the spin chuck 803 and lowers the processing cup 808 to the retracted position. The substrate W on the spin chuck 803 is held by the hand H2 of the center robot CR, and the held substrate W is carried out of the chamber 802.
 処理液は、フッ酸、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(例えばクエン酸、蓚酸など)、有機アルカリ(例えばTMAHなど)、界面活性剤、または腐食防止剤を含んでいてもよい。 The treatment liquid is hydrofluoric acid, sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide, organic acid (eg, citric acid, oxalic acid, etc.), organic alkali (eg, TMAH, etc.), surfactant, or A corrosion inhibitor may be included.
 処理液ノズル804は、例えば、連続流の状態で処理液を吐出するストレートノズルである。処理液ノズル804は、吐出口を略下方に向けた状態で、処理液ノズルアーム(図示しない)に取り付けられている。処理液ノズルアームは、水平方向に延びる揺動アームであり、その揺動端部に処理液ノズル804が取り付けられている。揺動アームの基端部は、図示しないアーム回動機構に結合されている。アーム回動機構は、鉛直方向に沿う所定の回転軸線(図示しない)回りに処理液ノズルアームを揺動させる。処理液ノズルアームの揺動により、平面視で基板Wの上面中央部を通る円弧状の軌跡に沿って処理液ノズル804が水平に移動する。これにより、処理液を吐出した状態で処理液ノズル804が基板W上を水平に移動する処理を行うことができる。 The processing liquid nozzle 804 is, for example, a straight nozzle that discharges the processing liquid in a continuous flow state. The processing liquid nozzle 804 is attached to a processing liquid nozzle arm (not shown) with the discharge port facing substantially downward. The treatment liquid nozzle arm is a swing arm extending in the horizontal direction, and a treatment liquid nozzle 804 is attached to the swing end portion thereof. A base end portion of the swing arm is coupled to an arm rotation mechanism (not shown). The arm rotation mechanism swings the treatment liquid nozzle arm around a predetermined rotation axis (not shown) along the vertical direction. As the processing liquid nozzle arm swings, the processing liquid nozzle 804 moves horizontally along an arcuate path passing through the center of the upper surface of the substrate W in plan view. Accordingly, it is possible to perform a process in which the processing liquid nozzle 804 moves horizontally on the substrate W while the processing liquid is discharged.
 センターロボットCRは、基板収納容器5からパスユニット4へ搬送された基板Wを各処理ユニット31へ一枚ずつ搬送する。センターロボットCRについて、インデクサロボットIRと同様の構造については、説明を省略する。センターロボットCRは、昇降部26A、連結部27A、および一対の伸縮部28Aを有する。これらは、インデクサロボットIRの昇降部26、連結部27および伸縮部28とそれぞれ同様の構造を有している。 The center robot CR transports the substrates W transported from the substrate storage container 5 to the pass unit 4 to each processing unit 31 one by one. Regarding the center robot CR, the description of the same structure as that of the indexer robot IR is omitted. The center robot CR includes an elevating part 26A, a connecting part 27A, and a pair of extendable parts 28A. These have the same structure as the elevating part 26, the connecting part 27, and the telescopic part 28 of the indexer robot IR.
 昇降部26Aは、ハンドH2の垂直方向の位置を調整することができる。具体的には、昇降部26Aは、ピックアップ位置(下位置)と、プレイス位置(上位置)とに、ハンドH2の高さ位置を調整できる。ピックアップ位置とは、基板Wを処理ユニット31から搬出するとき、ハンドH2の爪ガイド部22(図3B参照)の最上部が搬出対象の基板Wの下面より低くなる高さ位置である。プレイス位置とは、基板Wを処理ユニット31へ搬入するとき、ハンドH2の下面がスピンチャック803の上面より高くなる高さ位置である。 The elevating part 26A can adjust the vertical position of the hand H2. Specifically, the elevating unit 26A can adjust the height position of the hand H2 to the pickup position (lower position) and the place position (upper position). The pickup position is a height position at which the uppermost portion of the claw guide portion 22 (see FIG. 3B) of the hand H2 is lower than the lower surface of the substrate W to be unloaded when the substrate W is unloaded from the processing unit 31. The place position is a height position where the lower surface of the hand H <b> 2 is higher than the upper surface of the spin chuck 803 when the substrate W is carried into the processing unit 31.
 往復機構である伸縮部28Aは、複数の関節を有し、関節部の回転駆動により伸縮動作を行う。伸縮部28Aは、伸縮動作によりハンドH2の水平方向の位置を調整することができる。具体的には、伸縮部28Aは、ハンドH2の水平位置を、ホーム位置HM(実線)と、フォワード位置FW(二点鎖線)とに調整することができる。ホーム位置HM(実線)とは、伸縮部28Aの関節を縮めた状態の水平位置である。フォワード位置FW(二点鎖線)とは、関節を伸ばし基板収納容器5内で基板Wを載置できる水平位置である。ホーム位置HMはハンドH2の水平方向における基準位置である。 The expansion / contraction part 28A which is a reciprocating mechanism has a plurality of joints, and performs expansion / contraction operation by rotationally driving the joint parts. The extension / contraction part 28A can adjust the horizontal position of the hand H2 by an extension / contraction operation. Specifically, the extension / contraction part 28A can adjust the horizontal position of the hand H2 to the home position HM (solid line) and the forward position FW (two-dot chain line). The home position HM (solid line) is a horizontal position in a state where the joint of the expansion / contraction part 28A is contracted. The forward position FW (two-dot chain line) is a horizontal position where the joint can be extended and the substrate W can be placed in the substrate storage container 5. The home position HM is a reference position in the horizontal direction of the hand H2.
 チャンバ802の開口811には、開口811を通る物体の有無を検出する検出部(センサ)が設けられており、本実施形態では光学センサ81が用いられている。光学センサ81は、透過型センサであり、投光部81aと受光部81bとを有している。投光部81aと受光部81bとは、開口811の上下位置に互いに対向するように光軸を整合させて設置されおり、投光部81aと受光部81bとの間で光軸を通過する物体を検出する。具体的には、ハンドH2またはそれに保持された基板Wが投光部81aと受光部81bとの間を通過するとき、光軸をさえぎる(遮光)。光学センサ81は、投光状態と遮光状態とを検出することにより、ハンドH2または基板Wの有無を検出する。本実施形態においては、遮光した状態をONとし、投光状態をOFFとするON/OFF信号が、光学センサ81から判定部62に出力される。光学センサ81は反射型センサの形態を有していてもよい。反射型センサの詳細は、前述の光学センサ8の場合と同様であるので説明を省略する。 The opening 811 of the chamber 802 is provided with a detection unit (sensor) that detects the presence or absence of an object passing through the opening 811. In this embodiment, an optical sensor 81 is used. The optical sensor 81 is a transmissive sensor and includes a light projecting unit 81a and a light receiving unit 81b. The light projecting unit 81a and the light receiving unit 81b are installed with their optical axes aligned so as to face each other at the upper and lower positions of the opening 811, and an object that passes through the optical axis between the light projecting unit 81a and the light receiving unit 81b. Is detected. Specifically, when the hand H2 or the substrate W held by the hand H2 passes between the light projecting unit 81a and the light receiving unit 81b, the optical axis is interrupted (shielded). The optical sensor 81 detects the presence or absence of the hand H2 or the substrate W by detecting the light projection state and the light shielding state. In the present embodiment, an ON / OFF signal for turning on the light shielded state and turning off the light projection state is output from the optical sensor 81 to the determination unit 62. The optical sensor 81 may have the form of a reflective sensor. The details of the reflection type sensor are the same as in the case of the optical sensor 8 described above, and a description thereof will be omitted.
 図10は、基板処理装置における基板の搬送動作を示すフローチャートである。図11は、基板渡し動作における正常と異常とに係る光学センサの検出信号を時系列に示すチャート図である。図11において、光信号RLS3は、基板渡し動作が正常である場合に光学センサ8から出力される時系列のON/OFF信号の例を表す。また、光信号RLS4は、基板渡し動作に異常がある場合に光学センサ8から出力される時系列のON/OFF信号の例を表す。ハンドH2におけるプッシャ検出部29(図3A,3B参照)についての説明は、上述と同様のため省略する。 FIG. 10 is a flowchart showing the substrate transfer operation in the substrate processing apparatus. FIG. 11 is a chart showing the detection signals of the optical sensors related to normality and abnormality in the substrate passing operation in time series. In FIG. 11, an optical signal RLS3 represents an example of a time-series ON / OFF signal output from the optical sensor 8 when the substrate passing operation is normal. The optical signal RLS4 represents an example of a time-series ON / OFF signal output from the optical sensor 8 when the substrate passing operation is abnormal. The description of the pusher detection unit 29 (see FIGS. 3A and 3B) in the hand H2 is the same as described above, and will be omitted.
 <ステップS11> 基板を取得する
 センターロボットCRは、基板の受け動作を行う。センターロボットCRの基板の受け動作は、インデクサロボットIRの基板の受け動作と同様のため、詳細な説明は省略する。センターロボットCRは、インデクサロボットIRによりパスユニット4に載置された基板Wを取得し、処理ユニット31へ搬送する。センターロボットCRはインデクサロボットIRと同様に基板Wを固定保持した状態で搬送する。
<Step S11> Obtaining a Substrate The center robot CR performs a substrate receiving operation. Since the receiving operation of the substrate of the center robot CR is the same as the receiving operation of the substrate of the indexer robot IR, detailed description is omitted. The center robot CR acquires the substrate W placed on the pass unit 4 by the indexer robot IR and transports it to the processing unit 31. As with the indexer robot IR, the center robot CR carries the substrate W in a fixed state.
 <ステップS12> 基板を搬入・載置する
 センターロボットCRは、基板の渡し動作を行う。センターロボットCRの基板の渡し動作は、インデクサロボットIRの基板の渡し動作と同様のため、詳細な説明は省略する。センターロボットCRは、ハンドH2に基板Wを固定保持した状態で、基板Wを処理する対象処理ユニット31の処理ユニット受渡し位置に回転する。センターロボットCRの回転動作と並行して、シャッター昇降機構813によりシャッター812が閉位置から開位置へと下降し、ハンドH2が開口811と対向する。回転後、垂直位置をプレイス位置へ移動する(時間t11)。時間t11では光学センサ8は投光状態のため、ON信号を出力している。
<Step S12> Loading / Placing the Substrate The center robot CR performs a substrate transfer operation. Since the substrate transfer operation of the center robot CR is the same as the substrate transfer operation of the indexer robot IR, detailed description thereof is omitted. The center robot CR rotates to the processing unit delivery position of the target processing unit 31 that processes the substrate W while the substrate W is fixedly held on the hand H2. In parallel with the rotation operation of the center robot CR, the shutter 812 is lowered from the closed position to the open position by the shutter lifting / lowering mechanism 813, and the hand H2 faces the opening 811. After the rotation, the vertical position is moved to the place position (time t11). At time t11, since the optical sensor 8 is in the light projection state, it outputs an ON signal.
 次にセンターロボットCRは、基板Wを固定保持した状態で、ハンドH2を処理ユニット31内部へ進入させるため、ハンドH2をホーム位置HMからフォワード位置FWへ移動させる往路移動を開始させる(時間t12)。往路移動を開始後、ハンドH2が開口811に到達し、固定保持された基板Wが光学センサ81の光軸を遮光すると、光学センサ81から判定部62へ出力されている信号はON信号からOFF信号へ切り替わる(時間t13)。判定部62は、光学センサ81から入力されたON信号からOFF信号へ切り替わりを通過期間の起点として、OFF信号の継続時間の計測を開始する。 Next, the center robot CR starts the forward movement to move the hand H2 from the home position HM to the forward position FW in order to allow the hand H2 to enter the processing unit 31 while holding the substrate W (time t12). . After starting the forward movement, when the hand H2 reaches the opening 811 and the substrate W fixed and held blocks the optical axis of the optical sensor 81, the signal output from the optical sensor 81 to the determination unit 62 is turned off from the ON signal. Switching to a signal (time t13). The determination unit 62 starts measuring the duration of the OFF signal with the switching from the ON signal input from the optical sensor 81 to the OFF signal as the starting point of the passage period.
 次にハンドH2は、フォワード位置FWに到達する。フォワード位置FWに到達した後、制御部6は、プッシャ部24の可動部24aを縮めることにより基板Wへの押し当てを解除する(時間t14)。基板Wへの押し当てを解除することにより、スピンチャック803に基板Wを載置することが可能となる。フォワード位置FWのまま、センターロボットCRは、ハンドH2の垂直位置をプレイス位置からピックアップ位置に下降移動させる載置移動を実行する。載置移動により、爪ガイド部22、およびバックガイド部23の内側に保持されていた基板Wがスピンチャック803に載置される。 Next, the hand H2 reaches the forward position FW. After reaching the forward position FW, the control unit 6 releases the pressing to the substrate W by contracting the movable unit 24a of the pusher unit 24 (time t14). By releasing the pressing to the substrate W, the substrate W can be placed on the spin chuck 803. With the forward position FW, the center robot CR executes a placement movement that moves the vertical position of the hand H2 downward from the place position to the pickup position. By the placement movement, the substrate W held inside the claw guide portion 22 and the back guide portion 23 is placed on the spin chuck 803.
 <ステップS13> ハンドH2を退行させる
 次にセンターロボットCRは、ハンドH2を処理ユニット31内から退行させるため、ハンドH2をフォワード位置FWからホーム位置HMへ移動させる復路移動を行う。基板Wがスピンチャック803に正常に載置されていれば、ハンドH2上に基板Wが存在しない。よって、光学センサ81の光軸を通過中にハンドH2の中抜き領域(部材非存在部分であるV字型部分の間の領域)が光軸に到達すると、光学センサ8は、遮光状態から投光状態に変化する。それに応じて、光学センサ81から出力される信号は、ON信号からOFF信号へ変化する(時間t15)。判定部62は、光学センサ81から出力される信号がOFF信号からON信号へ変化した時点で光学センサ81から出力されるOFF信号の継続時間の計測を終了する。中抜き領域が光学センサ81の光軸を通過した後も、OFF信号の状態は維持され、ハンドH2がホーム位置HMへ到達すると復路移動は完了となる(時間t16)。基板が正常に搬送された場合、光学センサ81から出力される信号がON信号からOFF信号へ変化した時間t13からOFF信号からON信号へ変化した時間t15までの期間が第3通過期間PP3となる。
<Step S13> Retreating Hand H2 Next, the center robot CR performs a backward movement to move the hand H2 from the forward position FW to the home position HM in order to retract the hand H2 from the processing unit 31. If the substrate W is normally placed on the spin chuck 803, the substrate W does not exist on the hand H2. Therefore, when the hollow region of the hand H2 (the region between the V-shaped portions where no member is present) reaches the optical axis while passing through the optical axis of the optical sensor 81, the optical sensor 8 projects from the light shielding state. Change to light state. Accordingly, the signal output from the optical sensor 81 changes from the ON signal to the OFF signal (time t15). The determination unit 62 ends the measurement of the duration of the OFF signal output from the optical sensor 81 when the signal output from the optical sensor 81 changes from the OFF signal to the ON signal. Even after the hollow region passes the optical axis of the optical sensor 81, the state of the OFF signal is maintained, and when the hand H2 reaches the home position HM, the backward movement is completed (time t16). When the substrate is transported normally, a period from time t13 when the signal output from the optical sensor 81 changes from the ON signal to the OFF signal to time t15 when the signal changes from the OFF signal to the ON signal becomes the third passage period PP3. .
 センターロボットCRは、ハンドH2を処理ユニット31内から退行させる復路移動時、往路移動時の通常搬送速度より遅い速度とすることができ、往路移動時に速度を落とすことにより、往路移動時の光学センサ81の検出精度を向上させることができる。 The center robot CR can be set to a speed slower than the normal transport speed during the forward movement when the backward movement moves the hand H2 back from the processing unit 31, and the optical sensor during the forward movement is reduced by reducing the speed during the forward movement. The detection accuracy of 81 can be improved.
 <ステップS14> 光学センサ信号一致比較
 判定部62は、基板Wの渡し動作に際して計測した第3通過期間PP3と記憶部61に記憶された第2正常期間NP2とを比較する。判定部62は、第3通過期間PP3と記憶部61に記憶された第2正常期間NP2とを比較した結果、一致するときは正常と判定して(S14のYES)、処理を継続し、相違するときは異常と判定し(S14のNO)、異常時レシピを実行する。第3通過期間PP3と第2正常期間NP2とを比較する場合、第2正常期間NP2に対し±10%程度のマージンを持たせて判定してもよい。
 例えば、記憶された第2正常期間NP2は2.8秒以下である。設計値および実験から2.5秒付近が適切な値であり、異常があるときには3.0秒以上となるとすれば、2.5秒に約10%のマージンを加え、第2正常期間NP2は2.8秒以下とする。前述の通り、第2正常期間NP2は移動距離や移動速度に応じて任意に変更できるため、これら値に限定されず、上下限の範囲を持っても良い。このように、マージンを持たせることで、問題とならない程度の微小な動作ばらつきなどをエラーとして検出することを防止できる。判定部62により第3通過期間PP3が正常と判定されると、センターロボットCRによる一連の基板渡し動作が終了する。
<Step S14> Optical sensor signal coincidence comparison The determination unit 62 compares the third passage period PP3 measured during the transfer operation of the substrate W with the second normal period NP2 stored in the storage unit 61. As a result of comparing the third passage period PP3 and the second normal period NP2 stored in the storage unit 61, the determination unit 62 determines that they are normal (YES in S14), continues the process, and differs. When it does, it judges with it being abnormal (NO of S14), and performs the recipe at the time of abnormality. When comparing the third passage period PP3 and the second normal period NP2, the determination may be made with a margin of about ± 10% with respect to the second normal period NP2.
For example, the stored second normal period NP2 is 2.8 seconds or less. From the design value and the experiment, an appropriate value is around 2.5 seconds, and when there is an abnormality, if it becomes 3.0 seconds or more, a margin of about 10% is added to 2.5 seconds, and the second normal period NP2 is 2.8 or less. As described above, the second normal period NP2 can be arbitrarily changed according to the moving distance and the moving speed, and thus is not limited to these values and may have an upper and lower limit range. In this way, by providing a margin, it is possible to prevent a minute operation variation that does not cause a problem from being detected as an error. When the determination unit 62 determines that the third passage period PP3 is normal, a series of substrate passing operations by the center robot CR is completed.
 <ステップS15> 基板を処理する
 処理ユニット31に搬送された基板Wには、各種処理が実行される。例えば、薬液による洗浄処理、エッチング処理、レジスト塗布処理、または現像処理が実行される。
<Step S15> Processing Substrate Various processes are performed on the substrate W transported to the processing unit 31. For example, a cleaning process using a chemical solution, an etching process, a resist coating process, or a development process is performed.
 ここで、基板WがハンドH2により、スピンチャック803に正常に載置されない場合を想定する。例えば、基板Wは、製造プロセスを経ることにより凹型に反っていることがある。基板Wがスピンチャック803に載置された後、基板Wの反りにより、ハンドH2がピックアップ位置へ下降したにもかかわらず、基板Wの下面の一部がハンドH2の側面部22bの上端と同等またはハンドH2の側面部22bの上端より低くなるおそれがある。 Here, it is assumed that the substrate W is not normally placed on the spin chuck 803 by the hand H2. For example, the substrate W may be warped in a concave shape through a manufacturing process. After the substrate W is placed on the spin chuck 803, a part of the lower surface of the substrate W is equal to the upper end of the side surface portion 22b of the hand H2 even though the hand H2 is lowered to the pickup position due to the warpage of the substrate W. Or there exists a possibility that it may become lower than the upper end of the side part 22b of the hand H2.
 ハンドH2が載置移動して基板Wをスピンチャック803に載置した後、ハンドH2がフォワード位置FWからホーム位置HMへ復路移動するとき、ハンドH2の側面部22bの上端が基板Wの端部や下面などをひっかけてしまう場合がある。ひっかけた状態では基板Wは爪ガイド部22およびバックガイド部23により支持されず、基板Wの一部が側面部22b上に乗り上げ、ハンドH2上に不安定な状態で載置されてしまう。載置移動後は、可動部24aを縮めた状態が正常であるため、判定部62は、プッシャ検出部29から出力されるOFF信号が正常な状態と判定する。そのため、基板WがハンドH2上に不安定な状態で載置された場合であっても、プッシャ検出部29によりその異常を検出することはできない。 After the hand H2 is placed and moved and the substrate W is placed on the spin chuck 803, when the hand H2 moves backward from the forward position FW to the home position HM, the upper end of the side surface portion 22b of the hand H2 is the end portion of the substrate W. Or the lower surface may be caught. In the hooked state, the substrate W is not supported by the claw guide portion 22 and the back guide portion 23, and a part of the substrate W rides on the side surface portion 22b and is placed in an unstable state on the hand H2. After the placement movement, since the state in which the movable portion 24a is contracted is normal, the determination unit 62 determines that the OFF signal output from the pusher detection unit 29 is normal. Therefore, even when the substrate W is placed in an unstable state on the hand H2, the pusher detection unit 29 cannot detect the abnormality.
 一方、光学センサ81の光軸を通過中にハンドH2の中抜き領域(部材非存在部分であるV字型部分の間の領域)が光軸に到達(時間t15)しても、ハンドH2上に基板Wが存在するため、光学センサ81は遮光状態から投光状態へ変化せず、その出力信号はOFF信号に維持される。ハンドH2は復路移動を続け、基板Wが光軸を通過した時点でON信号に変化する(時間t15a)。判定部62は、光学センサ81から出力される信号がOFF信号からON信号へ変化した時点で光学センサ81のOFF信号の継続時間の計測を終了する。ハンドH2がホーム位置HMへ到達すると、復路移動は終了となる(時間t16)。基板Wが正常に搬送されなかった場合、光学センサ81から出力される信号がON信号からOFF信号へ変化した時間t13からOFF信号からON信号へ変化した時間t15aまでの期間が第4通過期間PP4となる。 On the other hand, even if the hollow region of the hand H2 (the region between the V-shaped portion where no member is present) reaches the optical axis (time t15) while passing through the optical axis of the optical sensor 81, it remains on the hand H2. Therefore, the optical sensor 81 does not change from the light shielding state to the light projecting state, and its output signal is maintained as an OFF signal. The hand H2 continues to move backward and changes to an ON signal when the substrate W passes the optical axis (time t15a). The determination unit 62 ends the measurement of the duration of the OFF signal of the optical sensor 81 when the signal output from the optical sensor 81 changes from the OFF signal to the ON signal. When the hand H2 reaches the home position HM, the backward movement is finished (time t16). When the substrate W is not normally transferred, the period from the time t13 when the signal output from the optical sensor 81 changes from the ON signal to the OFF signal to the time t15a when the signal changes from the OFF signal to the ON signal is the fourth passage period PP4. It becomes.
 判定部62は、基板Wの渡し動作について、計測した第4通過期間PP4と記憶部61に記憶された第2正常期間NP2とを比較する。判定部62は、第4通過期間PP4と記憶部61に記憶された第2正常期間NP2とを比較した結果、図11に示すように、第4通過期間PP4と記憶部61に記憶された第2正常期間NP2とは相違するため、異常時レシピを実行する。 The determination unit 62 compares the measured fourth passage period PP4 with the second normal period NP2 stored in the storage unit 61 for the transfer operation of the substrate W. As a result of comparing the fourth passage period PP4 and the second normal period NP2 stored in the storage unit 61, the determination unit 62 compares the fourth passage period PP4 and the fourth passage period PP4 and the second passage stored in the storage unit 61 as shown in FIG. 2 Since it is different from the normal period NP2, the abnormal time recipe is executed.
 <ステップS16> 異常時レシピの実行
 判定部62は、異常であると判定したとき、基板処理装置1の各構成部に対し、記憶部61に記憶されている異常時レシピを実行させる。例えば、異常時レシピは、インデクサロボットIRの基板搬送後停止、異常と判定された対象処理ユニット31の即時停止、異常処理ユニット以外の処理ユニット31の処理完了後停止、センターロボットCRの即時停止、警報の発生を含む一連の動作を規定している。警報は、基板処理装置1のメイン画面への警告表示、音の発生、通信回線を通じてホストコンピュータへのポップアップメッセージの表示指令出力などである。警報を発生することにより、基板処理装置1が異常であることを装置使用者に知らせることができる。異常時レシピの実行が完了した場合も、判定部62は一連の搬送動作を終了とする。
<Step S16> Execution of Abnormal Recipe When the determination unit 62 determines that there is an abnormality, it causes each component of the substrate processing apparatus 1 to execute the abnormal recipe stored in the storage unit 61. For example, the abnormal recipe is the stop after the substrate transfer of the indexer robot IR, the immediate stop of the target processing unit 31 determined to be abnormal, the stop after the processing units 31 other than the abnormal processing unit are completed, the immediate stop of the center robot CR, It defines a series of actions including alarm generation. The alarm includes warning display on the main screen of the substrate processing apparatus 1, generation of sound, display command output of a pop-up message to the host computer through the communication line, and the like. By generating an alarm, the apparatus user can be notified that the substrate processing apparatus 1 is abnormal. Even when the execution of the abnormal recipe is completed, the determination unit 62 ends the series of transport operations.
 上述した本発明の第2の実施形態における基板搬送装置によれば、判定部62により、ハンドH2が処理ユニット31のスピンチャック803に基板Wを載置するときの一連の基板Wの渡し動作について、光学センサ81の検出信号を用いて、正常状態であるか異常状態であるかを判定できる。より具体的には、光学センサ81が検出するハンドH2または基板Wの検出時間におけるOFF信号の継続時間から通過期間が計測される。この通過期間と記憶部61に記憶された正常期間とが一致するか否かを比較することで、基板Wの渡し動作が正常か異常かを判定できる。 According to the substrate transfer apparatus in the second embodiment of the present invention described above, a series of operations for transferring the substrate W when the hand H2 places the substrate W on the spin chuck 803 of the processing unit 31 by the determination unit 62. The detection signal of the optical sensor 81 can be used to determine whether the state is normal or abnormal. More specifically, the passage period is measured from the duration of the OFF signal in the detection time of the hand H2 or the substrate W detected by the optical sensor 81. By comparing whether or not the passage period and the normal period stored in the storage unit 61 coincide with each other, it is possible to determine whether the transfer operation of the substrate W is normal or abnormal.
 基板Wに反りが生じていると、ハンドH2がピックアップ位置へ下降したにもかかわらず、基板Wの下面の一部がハンドH2の側面部22bの上端と同等の高さまたはハンドH2の側面部22bの上端より低くなるおそれがある。この場合、ハンドH2がフォワード位置FWからホーム位置HMへ復路移動するとき、ハンドH2の側面部22bの上端が基板Wの端部や下面などをひっかけてしまう。このとき、基板Wは爪ガイド部22およびバックガイド部23により保持されず、基板Wの一部が側面部22bに乗り上げ、ハンドH2上に不安定な状態で載置されてしまう。このように、基板WがハンドH2上に不安定な状態で載置されてしまった場合、プッシャ検出部29からのON/OFF信号からは異常が検出できないおそれがある。このような状況であっても、光学センサ81からのON/OFF信号に基づき、判定部62により異常判定がされるため、異常を検出することができる。 If the substrate W is warped, a part of the lower surface of the substrate W is the same height as the upper end of the side surface portion 22b of the hand H2 or the side surface portion of the hand H2 even though the hand H2 is lowered to the pickup position. There is a possibility that it will be lower than the upper end of 22b. In this case, when the hand H2 moves backward from the forward position FW to the home position HM, the upper end of the side surface portion 22b of the hand H2 catches the end portion or the lower surface of the substrate W. At this time, the substrate W is not held by the claw guide portion 22 and the back guide portion 23, and a part of the substrate W rides on the side surface portion 22b and is placed in an unstable state on the hand H2. Thus, when the substrate W is placed on the hand H2 in an unstable state, there is a possibility that an abnormality cannot be detected from the ON / OFF signal from the pusher detection unit 29. Even in such a situation, an abnormality can be detected because the determination unit 62 determines the abnormality based on the ON / OFF signal from the optical sensor 81.
 さらに、判定部62は基板処理装置1の各構成部に対し、異常時レシピを実行させる。異常時レシピの実行により、搬送動作は停止し、その後の基板Wの搬送は停止される。さらに、警報が発せられ、基板処理装置1のユーザーは基板処理装置1が異常状態であることをすぐに知ることができる。この結果、基板Wの搬送を早期に停止することができて、後工程への影響を低減することができる。 Further, the determination unit 62 causes each component of the substrate processing apparatus 1 to execute an abnormal recipe. Due to the execution of the abnormal recipe, the transfer operation is stopped, and the subsequent transfer of the substrate W is stopped. Further, an alarm is issued and the user of the substrate processing apparatus 1 can immediately know that the substrate processing apparatus 1 is in an abnormal state. As a result, the transfer of the substrate W can be stopped early, and the influence on the subsequent process can be reduced.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。以下では、本発明の第3実施形態を詳細に説明する。 The present invention is not limited to the above embodiment, and can be modified as follows. Hereinafter, the third embodiment of the present invention will be described in detail.
 基板収納容器5に載置されている基板Wが、正常位置からインデクサユニット2側にずれた状態、すなわち、基板収納容器5から基板Wが飛び出した状態となっていることがある。この場合、光学センサ8は、基板Wの飛び出しを検出することができる。例えば、透過型センサでは、飛び出している基板Wにより光軸が遮光されて遮光状態となる。また、反射型センサでは、投光された光が飛び出した状態の基板Wで反射されて反射状態となる。どちらの形態のセンサであっても、OFF信号出力され、飛び出した基板Wは静止しているため、OFF信号が継続される。 The substrate W placed on the substrate storage container 5 may be shifted from the normal position to the indexer unit 2 side, that is, the substrate W may be protruded from the substrate storage container 5. In this case, the optical sensor 8 can detect the jumping out of the substrate W. For example, in the transmissive sensor, the optical axis is shielded by the protruding substrate W and the light is shielded. Further, in the reflective sensor, the projected light is reflected by the substrate W in a state in which the projected light has jumped out to be in a reflective state. In either type of sensor, an OFF signal is output, and the substrate W that has jumped out is stationary, so the OFF signal is continued.
 この場合、計測開始点から予め定めた所定の期間を経過しても光学センサ8の出力がOFFからONに変わらない。そこで、判定部62は、当該所定の期間が経過した時点を計測終了点とし、当該所定の期間を第5通過期間PP5とする。所定の期間は、基板Wの渡し動作に異常があるときに想定されるOFF信号継続時間以上に設定することが好ましく、例えば、3秒以上である。 In this case, the output of the optical sensor 8 does not change from OFF to ON even after a predetermined period has elapsed from the measurement start point. Therefore, the determination unit 62 sets the measurement end point when the predetermined period has elapsed, and sets the predetermined period as the fifth passage period PP5. The predetermined period is preferably set to be equal to or longer than the OFF signal duration assumed when there is an abnormality in the transfer operation of the substrate W, for example, 3 seconds or longer.
 判定部62は、光学センサ8が検出するOFF信号の継続時間を計測して得られる第5通過期間PP5と記憶部61に記憶された第3正常期間NP3とを比較する。例えば、第3正常期間NP3は、ユーザーが決めた任意の期間である。判定部62は、第5通過期間PP5と記憶部61に記憶された第3正常期間NP3とを比較した結果、一致するときは正常と判定し、相違するときは異常と判定する。判定部62は、異常判定の場合、任意の異常時レシピを実行する。第1正常期間NP1と第3正常期間とを同じ期間(同じ長さ)としてもよい。同じ期間とすることで、複数の設定をユーザーが管理する必要がなくなり、さらに、基板処理装置1のデータ処理負荷や通信負荷を低減することができる。 The determination unit 62 compares the fifth passage period PP5 obtained by measuring the duration of the OFF signal detected by the optical sensor 8 with the third normal period NP3 stored in the storage unit 61. For example, the third normal period NP3 is an arbitrary period determined by the user. As a result of comparing the fifth passage period PP5 and the third normal period NP3 stored in the storage unit 61, the determination unit 62 determines that they are normal, and determines that they are abnormal, and determines that they are abnormal if they are different. In the case of abnormality determination, the determination unit 62 executes an arbitrary abnormality recipe. The first normal period NP1 and the third normal period may be the same period (same length). By setting it as the same period, it becomes unnecessary for a user to manage several settings, and also the data processing load and communication load of the substrate processing apparatus 1 can be reduced.
 本発明は、上記実施形態に限られることはなく、さらに下記に例示するように変形して実施することができる。 The present invention is not limited to the above embodiment, and can be further modified as illustrated below.
 (1)前述の実施形態ではハンドH1(H2)における中抜き形状は、V字型を含む形状であるが、Y字型やU字型を含む形状でもよい。中抜き形状を変更可能とすることでハンド形状の設計自由度を広げることができる。また、ハンドH1(H2)に反射部材を取り付けてもよい。反射部材を取り付けることにより、反射型センサの検出感度を向上させることができる。反射部材の取り付け位置は反射センサの投光部8cから投光されて当該反射部材で反射された光線を受光部8dで受光できる位置であればよく、ハンドH1(H2)の表裏面のどちらでもよい。 (1) In the above-described embodiment, the hollow shape in the hand H1 (H2) is a shape including a V shape, but may be a shape including a Y shape or a U shape. By making the hollow shape changeable, the degree of freedom in designing the hand shape can be expanded. Moreover, you may attach a reflective member to the hand H1 (H2). By attaching the reflective member, the detection sensitivity of the reflective sensor can be improved. The attachment position of the reflection member may be any position where the light beam projected from the light projecting portion 8c of the reflection sensor and reflected by the reflection member can be received by the light receiving portion 8d, either on the front or back surface of the hand H1 (H2). Good.
 (2)前述実施形態では光学センサ8,81は1つである。しかし、複数の光学センサが設置されてもよい。複数の光学センサを設置することで検出精度を向上させることができる。 (2) In the above-described embodiment, there is one optical sensor 8, 81. However, a plurality of optical sensors may be installed. The detection accuracy can be improved by installing a plurality of optical sensors.
 (3)前述の実施形態では光学センサ8はロードポート開口Lの上下位置に対向設置されている。しかし、基板収納容器5から退行へする際、ハンドH1と保持した基板Wとが移動する経路上であれば、ロードポート開口Lに対向する配置に限られず、インデクサユニット2の隔壁7に設けられた隔壁通過孔7aなどに対向する配置が採用されてもよい。これにより設計の自由度を広げることができる。 (3) In the above-described embodiment, the optical sensor 8 is disposed opposite to the upper and lower positions of the load port opening L. However, when retreating from the substrate storage container 5, as long as it is on a path along which the hand H <b> 1 and the held substrate W move, the arrangement is not limited to the arrangement facing the load port opening L, and is provided in the partition 7 of the indexer unit 2. An arrangement facing the partition wall passage hole 7a or the like may be employed. Thereby, the freedom degree of design can be expanded.
 (4)前述の実施形態では光学センサ81は、処理ユニット31の開口811内側の上下位置に設置されている。しかし、処理ユニット31から退行する際、ハンドH2と保持した基板Wとが移動する経路上であれば、処理ユニット31の開口811内側への設置に限られず、開口811外側に設置されてもよい。これにより設計の自由度を広げることができる。 (4) In the above-described embodiment, the optical sensor 81 is installed at the upper and lower positions inside the opening 811 of the processing unit 31. However, when retreating from the processing unit 31, as long as it is on a path along which the hand H <b> 2 and the held substrate W move, the processing unit 31 is not limited to being installed inside the opening 811 but may be installed outside the opening 811. . Thereby, the freedom degree of design can be expanded.
 (5)インデクサロボットIRが基板収納容器5から基板Wを受け取る受け動作の動作期間についても、正常期間を設けることができる。センターロボットCRについても同様である。 (5) A normal period can be provided for the operation period of the receiving operation in which the indexer robot IR receives the substrate W from the substrate storage container 5. The same applies to the center robot CR.
 (6)インデクサロボットIRは、基板収納容器5から基板Wを受け取る動作期間と、基板収納容器5へ基板Wを渡す動作期間と同じ期間(同じ長さ)となるように設計および/または制御されてもよい。同じ動作期間とすることにより、基板Wを取る動作期間と基板Wを渡す動作期間とにそれぞれ個別の正常期間を設ける必要がなくなり、正常期間を共通化できる。正常期間を共通化することにより、正常期間を個別に設ける場合と比較して、基板処理装置1のデータ処理負荷や通信負荷を低減することができる。センターロボットCRについても同様である。 (6) The indexer robot IR is designed and / or controlled to have the same period (same length) as the operation period for receiving the substrate W from the substrate storage container 5 and the operation period for transferring the substrate W to the substrate storage container 5. May be. By setting the same operation period, it is not necessary to provide separate normal periods for the operation period for taking the substrate W and the operation period for transferring the substrate W, and the normal period can be made common. By sharing the normal period, the data processing load and the communication load of the substrate processing apparatus 1 can be reduced as compared with the case where the normal period is provided individually. The same applies to the center robot CR.
 (7)第1正常期間NP1と第2正常期間NP2とを同じ期間(同じ長さ)としてもよい。さらに、第1正常期間NP1、第2正常期間NP2、および第3正常期間NP3を同じ期間(同じ長さ)としてもよい。同じ期間とすることで、複数の設定をユーザーが管理する必要がなくなり管理の工数が軽減される。さらに、基板処理装置1のデータ処理負荷や通信負荷を低減することができる。 (7) The first normal period NP1 and the second normal period NP2 may be the same period (same length). Furthermore, the first normal period NP1, the second normal period NP2, and the third normal period NP3 may be the same period (same length). By setting the same period, it is not necessary for the user to manage a plurality of settings, and the man-hours for management are reduced. Furthermore, the data processing load and communication load of the substrate processing apparatus 1 can be reduced.
 (8)前述実施形態では基板Wの反りにより、異常状態が発生する場合について説明している。しかし、その他の原因で異常状態が発生する可能性もある。例えば、インデクサロボットIRの動作不良により基板Wの保持異常が生じた場合であっても、この保持異常を検出することができる。
 (9)前述の実施形態ではロードポートLPと処理ユニット31とについての実施形態を例示したが、これらに限られず、パスユニット4など、基板を載置するユニットに対して本発明を適用することができる。
(8) In the above-described embodiment, a case where an abnormal state occurs due to warpage of the substrate W has been described. However, abnormal conditions may occur due to other causes. For example, even if a holding abnormality of the substrate W occurs due to a malfunction of the indexer robot IR, this holding abnormality can be detected.
(9) In the above-described embodiment, the embodiments of the load port LP and the processing unit 31 are exemplified. However, the present invention is not limited to these, and the present invention is applied to a unit on which a substrate is placed, such as the pass unit 4. Can do.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. Should not. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1           基板処理装置
 2           インデクサユニット
 3           処理部
 4           パスユニット
 5           基板収納容器
 5a          筐体
 5b          蓋
 5c          基板ガイド部
 6           制御部
 8、81        光学センサ
 8a、8c、81a   投光部
 8b、8d、81b   受光部
 20          本体
 21          支持部
 22          爪ガイド部
 23          バックガイド部
 24          プッシャ部
 24a         可動部
 24b         固定部
 29          プッシャ検出部
 31          処理ユニット
 61          記憶部
 62          判定部
 63          駆動制御部
 64          処理制御部
 803         スピンチャック
 804         処理液ノズル
 LP          ロードポート
 IR          インデクサロボット
 CR          センターロボット
 H1,H2      ハンド
 HM          ホーム位置
 FW          フォワード位置
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 2 Indexer unit 3 Processing part 4 Pass unit 5 Substrate storage container 5a Case 5b Lid 5c Substrate guide part 6 Control part 8, 81 Optical sensor 8a, 8c, 81a Light projection part 8b, 8d, 81b Light reception part 20 Main unit 21 Support unit 22 Claw guide unit 23 Back guide unit 24 Pusher unit 24a Movable unit 24b Fixed unit 29 Pusher detection unit 31 Processing unit 61 Storage unit 62 Determination unit 63 Drive control unit 64 Processing control unit 803 Spin chuck 804 Processing liquid nozzle LP Loadport IR Indexer robot CR Center robot H1, H2 C HM Home position FW Forward position

Claims (16)

  1.  所定位置に基板を受け渡す基板搬送装置であって、
     基板を保持する保持部と、
     前記保持部を前記所定位置に対して往復移動させる往復機構と、
     前記往復機構により前記保持部が移動する経路上にセンサエリアを形成する光学センサと、
     前記往復機構により前記保持部が前記所定位置に向かう往路動作と、前記保持部が前記所定位置から離れる復路動作とを含む基板の渡し動作において、前記保持部または当該保持部に保持された基板(以下、「保持基板」という)が前記センサエリアを通過する第1通過期間を検出し、当該第1通過期間が、予め設定された第1正常期間と相違するときに、搬送異常と判断する制御部と、
    を備える基板搬送装置。
    A substrate transfer device that delivers a substrate to a predetermined position,
    A holding unit for holding the substrate;
    A reciprocating mechanism for reciprocating the holding portion with respect to the predetermined position;
    An optical sensor that forms a sensor area on a path along which the holding unit moves by the reciprocating mechanism;
    In the substrate transfer operation including the forward movement of the holding unit toward the predetermined position by the reciprocating mechanism and the return path operation of moving the holding unit away from the predetermined position, the holding unit or the substrate held by the holding unit ( (Hereinafter, referred to as “holding substrate”) detects a first passage period in which the sensor area passes through, and determines that the conveyance abnormality is detected when the first passage period is different from a preset first normal period. And
    A substrate transfer apparatus comprising:
  2.  前記所定位置は、基板を収納する基板収納容器内の位置であって、前記光学センサは前記基板収納容器外に前記センサエリアを形成する、請求項1に記載の基板搬送装置。 2. The substrate transfer apparatus according to claim 1, wherein the predetermined position is a position in a substrate storage container for storing a substrate, and the optical sensor forms the sensor area outside the substrate storage container.
  3.  前記光学センサの前記センサエリアは、前記基板収納容器外へずれた状態で載置された基板を検出する位置に設定されている、請求項2に記載の基板搬送装置。 3. The substrate transfer apparatus according to claim 2, wherein the sensor area of the optical sensor is set to a position for detecting a substrate placed in a state of being shifted out of the substrate storage container.
  4.  前記保持部は、基板の一端部に当接する当接部と、基板の他の端部を前記当接部に向けて押すように伸張して前記基板を固定する、伸縮可能な位置ずれ防止機構と、前記位置ずれ防止機構の伸縮動作を検出する伸縮検出部と、を有し、
     前記位置ずれ防止機構は、前記往路移動中は基板を固定し、前記復路移動中は基板の固定を解除し、
     前記伸縮検出部は、前記位置ずれ防止機構が基板を固定した状態では、前記位置ずれ防止機構の伸張を検出し、前記位置ずれ防止機構が基板の固定を解除した状態では、前記位置ずれ防止機構の収縮を検出する、請求項1~3のいずれか一項に記載の基板搬送装置。
    The holding portion is a contact portion that comes into contact with one end portion of the substrate, and a stretchable position shift prevention mechanism that fixes the substrate by extending the other end portion of the substrate toward the contact portion to fix the substrate. And an expansion / contraction detection unit for detecting an expansion / contraction operation of the positional deviation prevention mechanism,
    The displacement prevention mechanism fixes the substrate during the forward movement, and releases the fixation of the substrate during the backward movement,
    The expansion / contraction detection unit detects the extension of the misalignment prevention mechanism when the misalignment prevention mechanism fixes the substrate, and detects the misalignment prevention mechanism when the misalignment prevention mechanism releases the fixation of the substrate. The substrate transfer apparatus according to any one of claims 1 to 3, wherein the substrate contraction is detected.
  5.  前記保持部は、水平方向に平坦な板状部材であって、平面視で前記板状部材は基板を保持した際に基板と重なる部分の少なくとも一部分が中抜きされた中抜き領域を有しており、前記保持部が正常に基板を保持しているときに平面視で基板が前記板状部材の前記中抜き領域のすべてと重なり、
     前記往復機構により前記保持部を往復移動させるときに、前記保持部の前記中抜き領域が前記経路を通過する、請求項1~4のいずれか一項に記載の基板搬送装置。
    The holding portion is a flat plate-like member that is flat in the horizontal direction, and the plate-like member has a hollow region in which at least a portion of a portion that overlaps with the substrate is hollowed in a plan view. And when the holding part is normally holding the substrate, the substrate overlaps all of the hollow regions of the plate-like member in plan view,
    The substrate transfer apparatus according to any one of claims 1 to 4, wherein when the holding unit is reciprocated by the reciprocating mechanism, the hollow region of the holding unit passes through the path.
  6.  前記光学センサは光軸に沿う直線上の前記センサエリアを形成する透過型センサであり、
     前記制御部は、前記透過型センサにより投光された光線が前記保持部または前記保持基板により遮光される期間を前記第1通過期間として検出する、請求項1~5のいずれか一項に記載の基板搬送装置。
    The optical sensor is a transmissive sensor that forms the sensor area on a straight line along the optical axis,
    6. The control unit according to claim 1, wherein the control unit detects a period during which the light beam projected by the transmission sensor is shielded by the holding unit or the holding substrate as the first passing period. Substrate transfer device.
  7.  前記光学センサは光線により前記センサエリアを形成する反射型センサであり、
     前記制御部は、前記反射型センサにより投光された光線が前記保持部または前記保持基板により反射して当該反射型センサに受光される期間を前記第1通過期間として検出する、請求項1~5のいずれか一項に記載の基板搬送装置。
    The optical sensor is a reflective sensor that forms the sensor area with light rays;
    The control unit detects, as the first passage period, a period in which a light beam projected by the reflective sensor is reflected by the holding unit or the holding substrate and received by the reflective sensor. The substrate transfer apparatus according to claim 5.
  8.  前記制御部は、前記所定位置にある基板を前記保持部により受け取る基板の受け動作の際に、搬送異常を判断し、
     前記基板の受け動作は、前記往復機構により前記保持部が前記所定位置に向かって移動される往路動作と、前記往復機構により前記保持部が前記所定位置から離れる復路動作とを含み、
     前記制御部は、前記基板の受け動作において、前記保持部または前記保持基板が前記センサエリアを通過する第2通過期間を検出し、当該第2通過期間が、予め設定された第2正常期間と相違するときに、搬送異常と判断する、請求項1~7のいずれか一項に記載の基板搬送装置。
    The control unit determines a conveyance abnormality during a receiving operation of the substrate that receives the substrate at the predetermined position by the holding unit;
    The substrate receiving operation includes an outward operation in which the holding unit is moved toward the predetermined position by the reciprocating mechanism, and a return operation in which the holding unit is separated from the predetermined position by the reciprocating mechanism,
    In the receiving operation of the substrate, the control unit detects a second passage period in which the holding unit or the holding substrate passes through the sensor area, and the second passage period is a preset second normal period. The substrate transfer apparatus according to any one of claims 1 to 7, wherein when there is a difference, it is determined that the transfer is abnormal.
  9.  前記第1正常期間と前記第2正常期間とが同じ長さである、請求項8に記載の基板搬送装置。 The substrate transfer apparatus according to claim 8, wherein the first normal period and the second normal period have the same length.
  10.  前記制御部は、前記往復機構による前記保持部の移動速度に応じて、前記第1正常期間または前記第2正常期間を設定する、請求項1~9のいずれか一項に記載の基板搬送装置。 The substrate transfer apparatus according to any one of claims 1 to 9, wherein the control unit sets the first normal period or the second normal period according to a moving speed of the holding unit by the reciprocating mechanism. .
  11.  前記制御部は、前記渡し動作の際に、前記復路動作における前記往復機構による前記保持部の移動速度を、前記往路動作における前記往復機構による前記保持部の移動速度より遅くする、請求項1~10のいずれか一項に記載の基板搬送装置。 The control unit makes the moving speed of the holding unit by the reciprocating mechanism in the return path operation slower than the moving speed of the holding unit by the reciprocating mechanism in the forward path operation during the transfer operation. The substrate transfer apparatus according to claim 10.
  12.  所定位置に基板を受け渡す基板搬送方法であって、
     基板を保持した保持部を前記所定位置に向けて移動させる第1往路工程と、
     前記保持部から前記所定位置に基板を渡す動作を実行する渡し工程と、
     前記渡し工程後に前記保持部を前記所定位置から退行させる第1復路工程と、
     前記第1往路工程および前記第1復路工程を含む期間にて、前記保持部が移動する経路上に光学センサが形成するセンサエリアを、前記保持部または当該保持部に保持された基板(以下、「保持基板」という)が通過する第1通過期間を検出する第1検出工程と、
     前記第1検出工程にて検出された前記第1通過期間が予め設定された第1正常期間と相違するときに、搬送異常と判断する第1判断工程と、
    を含む基板搬送方法。
    A substrate carrying method for delivering a substrate to a predetermined position,
    A first forward step of moving the holding unit holding the substrate toward the predetermined position;
    A transfer step of performing an operation of transferring the substrate from the holding unit to the predetermined position;
    A first return path step of retracting the holding portion from the predetermined position after the passing step;
    In a period including the first forward path step and the first return path step, a sensor area formed by an optical sensor on a path along which the holding unit moves is set as the holding unit or a substrate held by the holding unit (hereinafter referred to as the holding unit). A first detection step of detecting a first passage period through which a "holding substrate") passes;
    A first determination step of determining a conveyance abnormality when the first passage period detected in the first detection step is different from a preset first normal period;
    A substrate transfer method including:
  13.  前記保持部は、基板の一端部に当接する当接部と、基板の他の端部を前記当接部に向けて押すように伸縮して前記基板を固定する、伸縮可能な位置ずれ防止機構とを含み、
     前記第1往路工程にて、前記位置ずれ防止機構により前記基板の他の端部を前記当接部に向けて押して前記基板を固定して位置ずれ防止し、かつ前記位置ずれ防止機構の伸縮動作を検出し、
     前記第1復路工程にて、前記位置ずれ防止機構による固定を解除する、請求項12に記載の基板搬送方法。
    The holding portion is a contact portion that comes into contact with one end portion of the substrate, and an extendable position shift prevention mechanism that fixes the substrate by extending and contracting the other end portion of the substrate toward the contact portion. Including
    In the first forward path step, the misalignment prevention mechanism pushes the other end of the substrate toward the contact portion to fix the substrate to prevent misalignment, and the misalignment prevention mechanism expands and contracts. Detect
    The substrate transfer method according to claim 12, wherein the fixing by the misalignment prevention mechanism is released in the first return path step.
  14.  前記第1復路動作における前記往復機構による前記保持部の移動速度が、前記第1往路動作における前記往復機構による前記保持部の移動速度より遅い、請求項12または13に記載の基板搬送方法。 14. The substrate transfer method according to claim 12, wherein a moving speed of the holding unit by the reciprocating mechanism in the first return path operation is slower than a moving speed of the holding unit by the reciprocating mechanism in the first forward path operation.
  15.  前記保持部を前記所定位置にある基板に向けて移動させる第2往路工程と、
     前記所定位置にある基板を前記保持部が受け取る受け動作を実行する受け工程と、
     前記受け工程後に前記保持部を前記所定位置から退行させる第2復路工程と、
     前記第2往路工程および前記第2復路工程を含む期間にて、前記保持部または前記保持基板が前記センサエリアを通過する第2通過期間を検出する第2検出工程と、
     前記第2検出工程にて検出された前記第2通過期間が予め設定された第2正常期間と相違するときに、搬送異常と判断する第2判断工程と、
    をさらに含む、請求項12~14のいずれか一項に記載の基板搬送方法。
    A second forward step of moving the holding portion toward the substrate at the predetermined position;
    A receiving step of performing a receiving operation in which the holding unit receives the substrate at the predetermined position;
    A second return path step of retracting the holding portion from the predetermined position after the receiving step;
    A second detection step of detecting a second passage period in which the holding unit or the holding substrate passes through the sensor area in a period including the second forward path step and the second return path step;
    A second determination step of determining a conveyance abnormality when the second passage period detected in the second detection step is different from a preset second normal period;
    The substrate transfer method according to any one of claims 12 to 14, further comprising:
  16.  前記第1正常期間と前記第2正常期間とが同じ長さである、請求項15に記載の基板搬送方法。 The substrate transfer method according to claim 15, wherein the first normal period and the second normal period have the same length.
PCT/JP2019/000740 2018-02-28 2019-01-11 Substrate conveyance device and substrate conveyance method WO2019167447A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980015141.1A CN111788668A (en) 2018-02-28 2019-01-11 Substrate conveying device and substrate conveying method
KR1020207017812A KR102468631B1 (en) 2018-02-28 2019-01-11 Substrate transport device and substrate transport method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035510 2018-02-28
JP2018035510A JP7007948B2 (en) 2018-02-28 2018-02-28 Board transfer device and board transfer method

Publications (1)

Publication Number Publication Date
WO2019167447A1 true WO2019167447A1 (en) 2019-09-06

Family

ID=67804892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000740 WO2019167447A1 (en) 2018-02-28 2019-01-11 Substrate conveyance device and substrate conveyance method

Country Status (5)

Country Link
JP (1) JP7007948B2 (en)
KR (1) KR102468631B1 (en)
CN (1) CN111788668A (en)
TW (1) TWI728306B (en)
WO (1) WO2019167447A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443141B2 (en) * 2020-04-10 2024-03-05 ニデックインスツルメンツ株式会社 Industrial robots and industrial robot control methods
US20240025052A1 (en) * 2020-09-03 2024-01-25 Kawasaki Jukogyo Kabushiki Kaisha Substrate holding hand and substrate conveying robot
TWI776412B (en) * 2021-03-03 2022-09-01 迅得機械股份有限公司 Transferring device for accommodating object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321165A (en) * 1994-05-24 1995-12-08 Tokyo Electron Ltd Probing apparatus
JPH11145241A (en) * 1997-11-06 1999-05-28 Toshiba Corp Multi-chamber system and wafer detection
JP2010283334A (en) * 2009-05-01 2010-12-16 Hitachi Kokusai Electric Inc Substrate processing apparatus, and semiconductor device manufacturing method
JP2018010992A (en) * 2016-07-14 2018-01-18 東京エレクトロン株式会社 Focus ring replacement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100852A (en) * 2001-09-25 2003-04-04 Dainippon Screen Mfg Co Ltd Substrate slip-out detector and substrate processing apparatus using the same
JP4276440B2 (en) * 2003-01-06 2009-06-10 東京エレクトロン株式会社 Substrate detection method and apparatus, and substrate processing apparatus
JP2008172160A (en) * 2007-01-15 2008-07-24 Dainippon Screen Mfg Co Ltd Device and method for processing substrate
JP2009064807A (en) * 2007-09-04 2009-03-26 Tokyo Electron Ltd Substrate positional misalignment detection system
JP2012074485A (en) 2010-09-28 2012-04-12 Tokyo Electron Ltd Substrate processing device, substrate transfer method, and recording medium storing program for implementing the same method
KR20120127220A (en) * 2011-05-12 2012-11-21 도쿄엘렉트론가부시키가이샤 Substrate transfer device, coating developing apparatus provided substrate transfer device, and substrate transfer method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321165A (en) * 1994-05-24 1995-12-08 Tokyo Electron Ltd Probing apparatus
JPH11145241A (en) * 1997-11-06 1999-05-28 Toshiba Corp Multi-chamber system and wafer detection
JP2010283334A (en) * 2009-05-01 2010-12-16 Hitachi Kokusai Electric Inc Substrate processing apparatus, and semiconductor device manufacturing method
JP2018010992A (en) * 2016-07-14 2018-01-18 東京エレクトロン株式会社 Focus ring replacement method

Also Published As

Publication number Publication date
CN111788668A (en) 2020-10-16
KR102468631B1 (en) 2022-11-17
JP2019153609A (en) 2019-09-12
TW201936471A (en) 2019-09-16
TWI728306B (en) 2021-05-21
KR20200083623A (en) 2020-07-08
JP7007948B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2019167447A1 (en) Substrate conveyance device and substrate conveyance method
JP6455239B2 (en) Door opener
JP6040883B2 (en) Substrate transport apparatus, substrate transport method, and storage medium
US20090245981A1 (en) Closed container, lid opening and closing system for closed container, wafer transfer system, and lid closing method for closed container
US8251636B2 (en) Lid closing method for closed container and lid opening/closing system for closed container
TWI540668B (en) Substrate processing device, method for the application of the substrate, and storage medium
KR20130086914A (en) Robot hand and robot
US11735448B2 (en) Container, container partition plate, substrate processing system, and substrate transfer method
US7470098B2 (en) Detecting apparatus and detecting method
TWI792004B (en) Substrate carrier apparatus and substrate carrying method
JP2006351751A (en) Apparatus and method for processing substrate
JP4279102B2 (en) Substrate processing apparatus and substrate processing method
KR20200036631A (en) System and method for examining equipment for manufacturing of semiconductor, and wafer for testing
JP5015729B2 (en) Substrate processing equipment
JP2013149902A (en) Wafer transfer device
JP2010040912A (en) System for opening and closing sealed container lid, and method for opening and closing lid
KR102628421B1 (en) A system for determining whether the transfer robot is normal, a method for determining whether the transfer robot is normal, and substrate treating appartus
US9594312B2 (en) Processing apparatus, processing method, and device manufacturing method
KR20070070435A (en) Apparatus for transferring a substrate
JP4279101B2 (en) Conveying apparatus, substrate processing apparatus, jig, and teaching method
JP2002164409A (en) Transfer apparatus, substrate processing apparatus and substrate processing system
KR20070089445A (en) Wafer loading apparatus
KR20070080510A (en) Apparatus for transfering semiconductor wafer
KR20240034990A (en) Substrate cleaning apparatus
KR20060028578A (en) Robot of semiconductor equipment for transferring semiconductor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207017812

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760171

Country of ref document: EP

Kind code of ref document: A1