WO2019165761A1 - 光学成像镜片组 - Google Patents

光学成像镜片组 Download PDF

Info

Publication number
WO2019165761A1
WO2019165761A1 PCT/CN2018/100483 CN2018100483W WO2019165761A1 WO 2019165761 A1 WO2019165761 A1 WO 2019165761A1 CN 2018100483 W CN2018100483 W CN 2018100483W WO 2019165761 A1 WO2019165761 A1 WO 2019165761A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
satisfy
Prior art date
Application number
PCT/CN2018/100483
Other languages
English (en)
French (fr)
Inventor
周鑫
杨健
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810167176.4A external-priority patent/CN108181701B/zh
Priority claimed from CN201820281478.XU external-priority patent/CN208076814U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019165761A1 publication Critical patent/WO2019165761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present application relates to an optical imaging lens set, and more particularly to an optical imaging lens set comprising seven lenses.
  • the imaging lens on the product side can also have a wide field of view.
  • the wide-angle lens has characteristics such as short focal length, long depth of field, and large angle of view. Under the same circumstances, it can acquire more information.
  • the present invention proposes an optical system having a large aperture, excellent imaging quality, wide angle and the like, and which is small in size and suitable for portable electronic products.
  • the present application provides an optical imaging lens set that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the maximum half angle of view HFOV of the optical imaging lens set can satisfy HFOV>50°.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens set may satisfy -3.0 ⁇ f1/f ⁇ -2.0.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -3.5 ⁇ f1/f2 ⁇ -2.0.
  • the effective focal length f6 of the sixth lens and the effective focal length f2 of the second lens may satisfy 0.8 ⁇ f6 / f2 ⁇ 2.0.
  • the combined effective focal length f of the optical imaging lens set and the combined focal length f45 of the fourth lens and the fifth lens may satisfy f/
  • the object side of the seventh lens may be convex; the total effective focal length f of the optical imaging lens group and the radius of curvature R13 of the object side of the seventh lens may satisfy 1.5 ⁇ f/R13 ⁇ 3.5.
  • the radius of curvature R13 of the object side of the seventh lens and the radius of curvature R14 of the image side of the seventh lens may satisfy 1.0 ⁇ R13/R14 ⁇ 2.0.
  • the radius of curvature R3 of the object side of the second lens and the radius of curvature R4 of the image side of the second lens may satisfy 1.8 ⁇ (R3-R4)/(R3+R4) ⁇ 3.8.
  • the sum of the center thicknesses of the first to seventh lenses on the optical axis ⁇ CT and the distance between the adjacent lenses of the first lens to the seventh lens on the optical axis ⁇ AT It can satisfy ⁇ CT/ ⁇ AT ⁇ 2.0.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 0.4 ⁇ CT1/CT2 ⁇ 1.0.
  • the separation distance T12 of the first lens and the second lens on the optical axis and the separation distance T67 of the sixth lens and the seventh lens on the optical axis may satisfy 1.0 ⁇ T12/T67 ⁇ 1.5.
  • the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT7 of the seventh lens on the optical axis may satisfy 1.0 ⁇ CT6/CT7 ⁇ 2.0.
  • the total effective focal length f of the optical imaging lens set and the center thickness CT6 of the sixth lens on the optical axis may satisfy 2 < f / CT6 <
  • the distance TTL of the center of the object side of the first lens to the imaging surface of the optical imaging lens group on the optical axis is half the ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens group. 1.5 ⁇ TTL / ImgH ⁇ 2.5.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the total effective focal length f of the optical imaging lens group and the central thickness CT6 of the sixth lens on the optical axis can satisfy 2 ⁇ f/CT6 ⁇ 7.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the effective focal length f6 of the sixth lens and the effective focal length f2 of the second lens may satisfy 0.8 ⁇ f6/f2 ⁇ 2.0.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the total effective focal length f of the optical imaging lens group and the radius of curvature R13 of the object side of the seventh lens can satisfy 1.5 ⁇ f / R13 ⁇ 3.5.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the radius of curvature R3 of the object side surface of the second lens and the curvature radius R4 of the image side surface of the second lens may satisfy 1.8 ⁇ (R3-R4)/(R3+R
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the radius of curvature R13 of the object side surface of the seventh lens and the curvature radius R14 of the image side surface of the seventh lens may satisfy 1.0 ⁇ R13/R14 ⁇ 2.0.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 0.4 ⁇ CT1/CT2 ⁇ 1.0.
  • the present application provides an optical imaging lens set including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power, and both the object side and the image side may be concave;
  • the second lens may have a positive power;
  • the third lens has a positive power or a negative power; and the fourth lens has a positive power Or negative power;
  • the fifth lens has a positive power or a negative power, the object side may be a convex surface;
  • the sixth lens may have a positive power;
  • the seventh lens has a positive power or a negative power, the image
  • the sides can be concave.
  • the separation distance T12 of the first lens and the second lens on the optical axis and the separation distance T67 of the sixth lens and the seventh lens on the optical axis may satisfy 1.0 ⁇ T12/T67 ⁇ 1.5
  • the optical imaging lens group has the above-mentioned optical imaging lens group by appropriately distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect such as miniaturization, wide angle, large aperture, and high image quality.
  • FIG. 1 is a schematic structural view of an optical imaging lens group according to Embodiment 1 of the present application.
  • 2A to 2D respectively show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens group of Example 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens group according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens group according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens group according to Embodiment 4 of the present application.
  • 8A to 8D respectively show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens group of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens group according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 5;
  • Figure 11 is a block diagram showing the structure of an optical imaging lens set according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 6;
  • Figure 13 is a schematic view showing the structure of an optical imaging lens group according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 7;
  • Figure 15 is a view showing the structure of an optical imaging lens group according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 8;
  • Figure 17 is a view showing the structure of an optical imaging lens group according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 9;
  • FIG. 19 is a schematic structural view of an optical imaging lens group according to Embodiment 10 of the present application.
  • 20A to 20D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens group of Example 10.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens group may include, for example, seven lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and The seventh lens. These seven lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a negative power
  • the object side may be a concave surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the third lens has a positive power or a negative optical focus Degree
  • the fourth lens has a positive power or a negative power
  • the fifth lens has a positive power or a negative power
  • the object side may be a convex surface
  • the sixth lens may have a positive power
  • the seventh lens has a positive power Degree or negative power
  • the image side may be concave.
  • the power of the first lens is negative, and the object side and the image side are both concave.
  • the object side of the second lens may be a convex surface
  • the image side may be a convex surface
  • the object side of the seventh lens may be convex.
  • the optical imaging lens set of the present application can satisfy the conditional HFOV > 50°, where HFOV is the maximum half angle of view of the optical imaging lens set. More specifically, HFOV can further satisfy 50.4 ° ⁇ HFOV ⁇ 51.9 °. Such a configuration facilitates selection of a maximum half-angle of view of the optical imaging lens set, enabling wide-angle characteristics to meet the field of view requirements of portable electronic products.
  • the optical imaging lens set of the present application may satisfy the conditional expression 0.8 ⁇ f6 / f2 ⁇ 2.0, where f6 is the effective focal length of the sixth lens and f2 is the effective focal length of the second lens. More specifically, f6 and f2 may further satisfy 0.9 ⁇ f6 / f2 ⁇ 1.9, for example, 0.97 ⁇ f6 / f2 ⁇ 1.86.
  • Reasonably setting the ratio of the effective focal length of the sixth lens and the second lens can effectively balance the curvature of field of the imaging system; and can effectively control the size of the system and achieve miniaturization.
  • the optical imaging lens set of the present application may satisfy the conditional expression -3.0 ⁇ f1/f ⁇ -2.0, where f1 is the effective focal length of the first lens and f is the total effective focal length of the optical imaging lens set. More specifically, f1 and f can further satisfy -2.9 ⁇ f1/f ⁇ -2.1, for example, -2.87 ⁇ f1/f ⁇ -2.21.
  • Properly setting the effective focal length of the first lens helps to improve the viewing angle of the imaging system and achieve wide-angle characteristics; it helps to improve the convergence of light, adjust the focus of the light, and shorten the total length of the system.
  • the optical imaging lens set of the present application may satisfy Conditional Formula ⁇ TTL / ImgH ⁇ 2.5, wherein TTL is the center of the object side of the first lens to the imaging surface of the optical imaging lens group on the optical axis
  • the distance, ImgH is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens set. More specifically, TTL and ImgH can further satisfy 1.7 ⁇ TTL / ImgH ⁇ 2.0, for example, 1.78 ⁇ TTL / ImgH ⁇ 1.94.
  • the optical imaging lens set of the present application may satisfy the conditional expression 1.5 ⁇ f/R13 ⁇ 3.5, where f is the total effective focal length of the optical imaging lens group, and R13 is the radius of curvature of the object side of the seventh lens. . More specifically, f and R13 may further satisfy 1.7 ⁇ f / R13 ⁇ 3.3, for example, 1.83 ⁇ f / R13 ⁇ 3.21. Reasonable selection of the radius of curvature of the side surface of the seventh lens can effectively balance the astigmatism of the imaging system, shorten the back focal length of the system, and further ensure the miniaturization of the optical system.
  • the optical imaging lens set of the present application may satisfy the conditional expression 1.8 ⁇ (R3-R4)/(R3+R4) ⁇ 3.8, where R3 is the radius of curvature of the object side of the second lens, and R4 is The radius of curvature of the image side of the second lens. More specifically, R3 and R4 may further satisfy 1.9 ⁇ (R3 - R4) / (R3 + R4) ⁇ 3.6, for example, 1.98 ⁇ (R3 - R4) / (R3 + R4) ⁇ 3.50.
  • Reasonably distributing the radius of curvature of the side surface of the second lens and the side of the image side enables the optical system to have a strong balance astigmatism.
  • the optical imaging lens set of the present application may satisfy the conditional expression -3.5 ⁇ f1/f2 ⁇ -2.0, where f1 is the effective focal length of the first lens and f2 is the effective focal length of the second lens. More specifically, f1 and f2 may further satisfy -3.1 ⁇ f1/f2 ⁇ -2.2, for example, -3.04 ⁇ f1/f2 ⁇ -2.26.
  • the effective focal lengths of the first lens and the second lens are reasonably distributed, and in the case where the first lens power is negative, the power of the second lens is ensured to be positive, thereby effectively controlling the volume of the optical system.
  • the first lens and the second lens have opposite powers, which enables the optical system to have a better balance aberration.
  • the optical imaging lens set of the present application may satisfy the conditional expression 1.0 ⁇ R13/R14 ⁇ 2.0, wherein R13 is the radius of curvature of the object side of the seventh lens, and R14 is the curvature of the image side of the seventh lens. radius. More specifically, R13 and R14 may further satisfy 1.1 ⁇ R13 / R14 ⁇ 1.9, for example, 1.20 ⁇ R13 / R14 ⁇ 1.78.
  • Reasonable control of the radius of curvature of the side surface and the image side of the seventh lens helps to reduce the power of the lens near the image side of the optical system, so that the optical system has better balance astigmatism and distortion.
  • the optical imaging lens set of the present application may satisfy the conditional expression 0.4 ⁇ CT1/CT2 ⁇ 1.0, where CT1 is the center thickness of the first lens on the optical axis, and CT2 is the second lens on the optical axis.
  • the thickness of the center More specifically, CT1 and CT2 can further satisfy 0.45 ⁇ CT1/CT2 ⁇ 0.65, for example, 0.49 ⁇ CT1/CT2 ⁇ 0.57.
  • Reasonably distributing the ratio of the center thickness of the first lens and the second lens can effectively reduce the size of the front end of the system and satisfy the wide-angle characteristics; and, it is advantageous to adjust the structure of the system and reduce the difficulty in processing and assembling the lens.
  • the optical imaging lens set of the present application may satisfy the conditional expression 1.0 ⁇ T12/T67 ⁇ 1.5, where T12 is the separation distance of the first lens and the second lens on the optical axis, and T67 is the sixth lens. And the distance between the seventh lens on the optical axis. More specifically, T12 and T67 can further satisfy 1.01 ⁇ T12 / T67 ⁇ 1.48. Reasonably controlling the ratio of the air spacing of the first lens and the second lens on the optical axis to the air spacing of the sixth lens and the seventh lens on the optical axis, so that there is sufficient space between the lenses, thereby making the lens surface change degree of freedom Higher to improve the system's ability to correct astigmatism and field curvature.
  • the optical imaging lens set of the present application may satisfy the conditional expression ⁇ CT6/CT7 ⁇ 2.0, where CT6 is the center thickness of the sixth lens on the optical axis, and CT7 is the seventh lens on the optical axis.
  • the thickness of the center More specifically, CT6 and CT7 can further satisfy 1.2 ⁇ CT6/CT7 ⁇ 1.8, for example, 1.31 ⁇ CT6/CT7 ⁇ 1.75.
  • Reasonably distributing the ratio of the thickness of the sixth lens to the center of the seventh lens can effectively reduce the size of the back end of the system, avoid excessive volume of the lens group of the optical system, and contribute to the assembly of the lens and achieve high space utilization.
  • the optical imaging lens set of the present application may satisfy the conditional expression f/
  • Reasonable selection of the combined focal length of the fourth lens and the fifth lens can increase the deflection angle of the light, correct the aberration, and achieve wide-angle characteristics; at the same time, it helps to appropriately shorten the total length of the optical system to meet the requirements of thinness and thinning.
  • the optical imaging lens set of the present application may satisfy the conditional formula ⁇ CT/ ⁇ AT ⁇ 2.0, where ⁇ CT is the sum of the center thicknesses of the first lens to the seventh lens on the optical axis, respectively.
  • AT is the sum of the separation distances of any two adjacent lenses of the first lens to the seventh lens on the optical axis. More specifically, ⁇ CT and ⁇ AT can further satisfy 1.52 ⁇ CT / ⁇ AT ⁇ 1.91.
  • the optical imaging lens set of the present application may satisfy conditional expression ⁇ /CT6 ⁇ 7, where f is the total effective focal length of the optical imaging lens group, and CT6 is the center of the sixth lens on the optical axis. thickness. More specifically, f and CT6 may further satisfy 5 ⁇ f / CT6 ⁇ 7, for example, 5.13 ⁇ f / CT6 ⁇ 6.42. Reasonably setting the center thickness of the sixth lens can effectively balance the astigmatism of the imaging system, which helps to shorten the total length of the imaging system and further improve system performance.
  • the optical imaging lens set may further include at least one aperture to enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the first lens and the second lens.
  • the optical imaging lens group described above may further include a filter for correcting color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens set according to the above-described embodiments of the present application may employ a plurality of lenses, such as the seven sheets described above.
  • a plurality of lenses such as the seven sheets described above.
  • the optical imaging lens set configured as described above also has characteristics such as a large aperture and a wide angle, and in the same shooting situation, more captured information can be obtained to meet the visual field requirements of the portable electronic product.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens group is not limited to including seven lenses.
  • the optical imaging lens set can also include other numbers of lenses if desired.
  • FIGS. 1 through 2D An optical imaging lens group according to Embodiment 1 of the present application will be described below with reference to FIGS. 1 through 2D.
  • 1 is a schematic view showing the structure of an optical imaging lens group according to Embodiment 1 of the present application.
  • an optical imaging lens set sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a stop STO, a second lens E2, and a third lens E3.
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 1, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S14 in the embodiment 1. .
  • Table 3 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens group, and the optical total length TTL (i.e., from the center of the object side S1 of the first lens E1 to the imaging plane S17 The distance on the optical axis) and the maximum half angle of view HFOV.
  • the optical imaging lens set of Example 1 satisfies:
  • F6/f2 1.13, where f6 is the effective focal length of the sixth lens E6, and f2 is the effective focal length of the second lens E2;
  • F1/f -2.26, where f1 is the effective focal length of the first lens E1, and f is the total effective focal length of the optical imaging lens group;
  • TTL/ImgH 1.85, where TTL is the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S17 on the optical axis, and ImgH is half the diagonal length of the effective pixel area on the imaging plane S17;
  • f/R13 2.41, where f is the total effective focal length of the optical imaging lens group, and R13 is the radius of curvature of the object side surface S13 of the seventh lens E7;
  • R3-R4)/(R3+R4) 2.23, where R3 is the radius of curvature of the object side surface S3 of the second lens E2, and R4 is the radius of curvature of the image side surface S4 of the second lens E2;
  • F1/f2 -2.26, where f1 is the effective focal length of the first lens E1, and f2 is the effective focal length of the second lens E2;
  • R13/R14 1.51, wherein R13 is a radius of curvature of the object side surface S13 of the seventh lens E7, and R14 is a radius of curvature of the image side surface S14 of the seventh lens E7;
  • CT1/CT2 0.57, wherein CT1 is the center thickness of the first lens E1 on the optical axis, and CT2 is the center thickness of the second lens E2 on the optical axis;
  • T12/T67 1.30, where T12 is the separation distance of the first lens E1 and the second lens E2 on the optical axis, and T67 is the separation distance of the sixth lens E6 and the seventh lens E7 on the optical axis;
  • CT6/CT7 1.75, wherein CT6 is the center thickness of the sixth lens E6 on the optical axis, and CT7 is the center thickness of the seventh lens E7 on the optical axis;
  • 0.04
  • f is the total effective focal length of the optical imaging lens group
  • f45 is the combined focal length of the fourth lens E4 and the fifth lens E5;
  • ⁇ CT/ ⁇ AT 1.77, where ⁇ CT is the sum of the center thicknesses of the first lens E1 to the seventh lens E7 on the optical axis, respectively, and ⁇ AT is any two adjacent to the first lens E1 to the seventh lens E7. The sum of the separation distances of the lenses on the optical axis;
  • f/CT6 5.13, where f is the total effective focal length of the optical imaging lens set and CT6 is the center thickness of the sixth lens E6 on the optical axis.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens group of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens group of Example 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens group of Example 1, which represents the distortion magnitude value in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 1, which shows the deviation of different image heights on the imaging surface after the light passes through the lens.
  • the optical imaging lens set given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a schematic view showing the structure of an optical imaging lens group according to Embodiment 2 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a stop STO, a second lens E2, and a third lens E3.
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 2, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens group of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens group of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4C shows a distortion curve of the optical imaging lens group of Example 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens group of Embodiment 2, which shows deviations of different image heights on the imaging surface after the light passes through the lens.
  • the optical imaging lens set given in Embodiment 2 can achieve good image quality.
  • FIG. 5 is a schematic view showing the structure of an optical imaging lens group according to Embodiment 3 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens group of Example 3, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens group of Example 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens group of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 3, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens group given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a schematic view showing the structure of an optical imaging lens group according to Embodiment 4 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a pupil STO, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the image plane S17.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 4, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens group of Example 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens group of Example 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens group of Example 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens set given in Example 4 can achieve good image quality.
  • FIG. 9 is a view showing the structure of an optical imaging lens group according to Embodiment 5 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 5, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 14 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens group of Example 5, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens group of Example 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens group of Example 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens set given in Example 5 can achieve good image quality.
  • FIGS. 11 through 12D An optical imaging lens set according to Embodiment 6 of the present application is described below with reference to FIGS. 11 through 12D.
  • Figure 11 is a block diagram showing the structure of an optical imaging lens set according to Embodiment 6 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 6, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens group of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens group of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens group of Example 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens set given in Example 6 can achieve good image quality.
  • FIG. 13 is a view showing the structure of an optical imaging lens group according to Embodiment 7 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a stop STO, a second lens E2, and a third lens E3.
  • the fourth lens E4 the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 7, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens group of Example 7, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens group of Example 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens group of Example 7, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens group given in Example 7 can achieve good image quality.
  • FIG. 15 is a view showing the structure of an optical imaging lens group according to Embodiment 8 of the present application.
  • an optical imaging lens group sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 8, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 8, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens group of Example 8, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 16B shows an astigmatism curve of the optical imaging lens group of Example 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging lens group of Example 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 16A to 16D, the optical imaging lens group given in Example 8 can achieve good image quality.
  • FIGS. 17 to 18D An optical imaging lens set according to Embodiment 9 of the present application is described below with reference to FIGS. 17 to 18D.
  • Figure 17 is a view showing the structure of an optical imaging lens group according to Embodiment 9 of the present application.
  • the optical imaging lens group sequentially includes, from the object side to the image side along the optical axis, a first lens E1, a pupil STO, a second lens E2, a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 9, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 26 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 27 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 9, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 18A shows an axial chromatic aberration curve of the optical imaging lens group of Example 9, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 18B shows an astigmatism curve of the optical imaging lens group of Example 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the optical imaging lens group of Example 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens group given in Embodiment 9 can achieve good image quality.
  • FIGS. 19 to 20D An optical imaging lens set according to Embodiment 10 of the present application is described below with reference to FIGS. 19 to 20D.
  • Figure 19 is a block diagram showing the structure of an optical imaging lens set according to Embodiment 10 of the present application.
  • an optical imaging lens group sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, The fourth lens E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 28 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens group of Example 10, in which the unit of curvature radius and thickness are all millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 29 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 10, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 30 gives the effective focal lengths f1 to f7 of the lenses in Embodiment 10, the total effective focal length f of the optical imaging lens group, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 20A shows an axial chromatic aberration curve of the optical imaging lens group of Example 10, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 20B shows an astigmatism curve of the optical imaging lens group of Example 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 20C shows a distortion curve of the optical imaging lens group of Example 10, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 20D shows a magnification chromatic aberration curve of the optical imaging lens group of Example 10, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens set given in Example 10 can achieve good image quality.
  • Embodiments 1 to 10 satisfy the relationship shown in Table 31, respectively.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens set described above.

Abstract

一种光学成像镜片组,沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7)。第一透镜(E1)具有负光焦度,其物侧面(S1)和像侧面(S2)均为凹面;第二透镜(E2)具有正光焦度;第三透镜(E3)具有正光焦度或负光焦度;第四透镜(E4)具有正光焦度或负光焦度;第五透镜(E5)具有正光焦度或负光焦度,其物侧面(S9)为凸面;第六透镜(E6)具有正光焦度;第七透镜(E7)具有正光焦度或负光焦度,其像侧面(S14)为凹面。光学成像镜片组的最大半视场角HFOV满足HFOV>50°。光学成像镜片组具有大孔径、成像优良、广角并兼顾小型化和便携性的特性。

Description

光学成像镜片组
相关申请的交叉引用
本申请要求于2018年2月28日提交于中国国家知识产权局(SIPO)的、专利申请号为201810167176.4的中国专利申请以及于2018年2月28日提交至SIPO的、专利申请号为201820281478.X的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜片组,更具体地,本申请涉及一种包括七片透镜的光学成像镜片组。
背景技术
近年来,随着手机、平板电脑等消费电子产品的快速更新换代,市场对产品端成像镜头的要求愈加多样化。除了要求成像镜头具有轻薄短小的外形并具备高像素、高分辨率等特性,还要求产品端的成像镜头可以具有较广的视场角度。广角镜头具有焦距短、景深长、视场角大等特性,在相同情况下,能够获取更多的信息量。
鉴于此,本发明提出了一种拥有大孔径、优良成像品质、广角等特性,并兼顾小型化,适用于便携式电子产品的光学系统。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜片组。
一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦 度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,光学成像镜片组的最大半视场角HFOV可满足HFOV>50°。
在一个实施方式中,第一透镜的有效焦距f1与光学成像镜片组的总有效焦距f可满足-3.0<f1/f<-2.0。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足-3.5<f1/f2<-2.0。
在一个实施方式中,第六透镜的有效焦距f6与第二透镜的有效焦距f2可满足0.8<f6/f2<2.0。
在一个实施方式中,光学成像镜片组的总有效焦距f与第四透镜和第五透镜的组合焦距f45可满足f/|f45|<0.4。
在一个实施方式中,第七透镜的物侧面可为凸面;光学成像镜片组的总有效焦距f与第七透镜的物侧面的曲率半径R13可满足1.5<f/R13<3.5。
在一个实施方式中,第七透镜的物侧面的曲率半径R13与第七透镜的像侧面的曲率半径R14可满足1.0<R13/R14<2.0。
在一个实施方式中,第二透镜的物侧面的曲率半径R3和第二透镜的像侧面的曲率半径R4可满足1.8<(R3-R4)/(R3+R4)<3.8。
在一个实施方式中,第一透镜至第七透镜分别于光轴上的中心厚度之和∑CT与第一透镜至第七透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT可满足∑CT/∑AT≤2.0。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足0.4<CT1/CT2<1.0。
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12与第六透镜和第七透镜在光轴上的间隔距离T67可满足1.0≤T12/T67≤1.5。
在一个实施方式中,第六透镜于光轴上的中心厚度CT6与第七透镜于光轴上的中心厚度CT7可满足1.0<CT6/CT7<2.0。
在一个实施方式中,光学成像镜片组的总有效焦距f与第六透镜 于光轴上的中心厚度CT6可满足2<f/CT6<7。
在一个实施方式中,第一透镜的物侧面的中心至光学成像镜片组的成像面在光轴上的距离TTL与光学成像镜片组的成像面上有效像素区域对角线长的一半ImgH可满足1.5<TTL/ImgH<2.5。
另一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,光学成像镜片组的总有效焦距f与第六透镜于光轴上的中心厚度CT6可满足2<f/CT6<7。
又一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,第六透镜的有效焦距f6与第二透镜的有效焦距f2可满足0.8<f6/f2<2.0。
又一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,光学成像镜片组的总有效焦距f与第七透镜的物侧面 的曲率半径R13可满足1.5<f/R13<3.5。
又一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,第二透镜的物侧面的曲率半径R3和第二透镜的像侧面的曲率半径R4可满足1.8<(R3-R4)/(R3+R4)<3.8。
又一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,第七透镜的物侧面的曲率半径R13与第七透镜的像侧面的曲率半径R14可满足1.0<R13/R14<2.0。
又一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足0.4<CT1/CT2<1.0。
又一方面,本申请提供了这样一种光学成像镜片组,该光学成像镜片组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三 透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。其中,第一透镜和第二透镜在光轴上的间隔距离T12与第六透镜和第七透镜在光轴上的间隔距离T67可满足1.0≤T12/T67≤1.5。
本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜片组具有小型化、广角、大孔径、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜片组的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜片组的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜片组的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜片组的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜片组的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜片组的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜片组的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜片组的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜片组的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像镜片组的结构示意图;
图20A至图20D分别示出了实施例10的光学成像镜片组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作 第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜片组可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧 依序排列。
在示例性实施方式中,第一透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凹面;第二透镜可具有正光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度,其物侧面可为凸面;第六透镜可具有正光焦度;第七透镜具有正光焦度或负光焦度,其像侧面可为凹面。第一透镜的光焦度为负,且其物侧面和像侧面同为凹面,这样的设置可校正第一透镜产生的像差,提升光学系统的性能。
在示例性实施方式中,第二透镜的物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第七透镜的物侧面可为凸面。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式HFOV>50°,其中,HFOV为光学成像镜片组的最大半视场角。更具体地,HFOV进一步可满足50.4°≤HFOV≤51.9°。这样的配置有利于选择光学成像镜片组的最大半视场角,实现广角的特性,满足便携式电子产品的视野需求。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0.8<f6/f2<2.0,其中,f6为第六透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f6和f2进一步可满足0.9<f6/f2<1.9,例如,0.97≤f6/f2≤1.86。合理设置第六透镜和第二透镜有效焦距的比值,能有效平衡成像系统的场曲;并且能有效控制系统尺寸,实现小型化。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式-3.0<f1/f<-2.0,其中,f1为第一透镜的有效焦距,f为光学成像镜片组的总有效焦距。更具体地,f1和f进一步可满足-2.9<f1/f<-2.1,例如,-2.87≤f1/f≤-2.21。合理设置第一透镜的有效焦距,有助于提高成像系统的视场角,实现广角的特性;有助于提升对光线的会聚能力,调整光线聚焦位置,缩短系统总长。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.5<TTL/ImgH<2.5,其中,TTL为第一透镜的物侧面的中心至光学成像镜片组的成像面在光轴上的距离,ImgH为光学成像镜片组的成像面 上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.7<TTL/ImgH<2.0,例如,1.78≤TTL/ImgH≤1.94。合理设置第一透镜物侧面至成像面的轴上距离和成像面上有效像素区域对角线长的一半的比值,可确保光学系统具有轻薄以及广角的特性,使得该镜片组能够应用于高性能的便携式电子产品。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.5<f/R13<3.5,其中,f为光学成像镜片组的总有效焦距,R13为第七透镜的物侧面的曲率半径。更具体地,f和R13进一步可满足1.7<f/R13<3.3,例如,1.83≤f/R13≤3.21。合理选择第七透镜物侧面的曲率半径,能有效平衡成像系统的像散,缩短系统的后焦距,进一步确保光学系统的小型化。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.8<(R3-R4)/(R3+R4)<3.8,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足1.9<(R3-R4)/(R3+R4)<3.6,例如,1.98≤(R3-R4)/(R3+R4)≤3.50。合理分配第二透镜物侧面和像侧面的曲率半径,可使得光学系统具备较强的平衡像散的能力。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式-3.5<f1/f2<-2.0,其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f1和f2进一步可满足-3.1<f1/f2<-2.2,例如,-3.04≤f1/f2≤-2.26。合理分配第一透镜和第二透镜的有效焦距,在第一透镜光焦度为负的情况下,确保第二透镜的光焦度为正,从而有效控制光学系统的体积。第一透镜和第二透镜具有相反的光焦度,能使光学系统具有较好的平衡像差的能力。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.0<R13/R14<2.0,其中,R13为第七透镜的物侧面的曲率半径,R14为第七透镜的像侧面的曲率半径。更具体地,R13和R14进一步可满足1.1<R13/R14<1.9,例如,1.20≤R13/R14≤1.78。合理控制第七透镜物侧面和像侧面的曲率半径,有助于降低靠近光学系统像侧的透镜的光焦度,使光学系统具备较好的平衡像散和畸变的能力。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式0.4<CT1/CT2<1.0,其中,CT1为第一透镜于光轴上的中心厚度,CT2为第二透镜于光轴上的中心厚度。更具体地,CT1和CT2进一步可满足0.45<CT1/CT2<0.65,例如,0.49≤CT1/CT2≤0.57。合理分配第一透镜和第二透镜中心厚度的比值,能有效降低系统前端尺寸,满足广角的特性;并且,有利于调整系统的结构,降低镜片加工和组装的难度。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.0≤T12/T67≤1.5,其中,T12为第一透镜和第二透镜在光轴上的间隔距离,T67为第六透镜和第七透镜在光轴上的间隔距离。更具体地,T12和T67进一步可满足1.01≤T12/T67≤1.48。合理控制第一透镜和第二透镜在光轴上的空气间隔与第六透镜和第七透镜在光轴上的空气间隔的比值,使透镜间具有足够的间隔空间,从而使透镜表面变化自由度更高,以此来提升系统校正像散和场曲的能力。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式1.0<CT6/CT7<2.0,其中,CT6为第六透镜于光轴上的中心厚度,CT7为第七透镜于光轴上的中心厚度。更具体地,CT6和CT7进一步可满足1.2<CT6/CT7<1.8,例如,1.31≤CT6/CT7≤1.75。合理分配第六透镜和第七透镜中心厚度的比值,能有效降低系统后端尺寸,避免光学系统镜片组的体积过大,有助于镜片的组装和实现较高的空间利用率。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式f/|f45|<0.4,其中,f为光学成像镜片组的总有效焦距,f45为第四透镜和第五透镜的组合焦距。更具体地,f和f45进一步可满足0≤f/|f45|≤0.31。合理选择第四透镜与第五透镜的组合焦距,可以增大光线的偏转角,校正像差,实现广角的特性;同时,有助于适当缩短光学系统的总长,满足轻薄化的要求。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式∑CT/∑AT≤2.0,其中,∑CT为第一透镜至第七透镜分别于光轴上的中心厚度之和,∑AT为第一透镜至第七透镜中任意相邻两透镜在光轴上 的间隔距离之和。更具体地,∑CT和∑AT进一步可满足1.52≤CT/∑AT≤1.91。合理控制各透镜在光轴上的中心厚度之和以及相邻各透镜在光轴上的空气间隔之和的比值,使得透镜与透镜之间的间距在一个相对平衡的状态,提升空间利用率;同时,还可以在保证镜头小型化的同时,提升系统的像差校正能力。
在示例性实施方式中,本申请的光学成像镜片组可满足条件式2<f/CT6<7,其中,f为光学成像镜片组的总有效焦距,CT6为第六透镜于光轴上的中心厚度。更具体地,f和CT6进一步可满足5<f/CT6<7,例如,5.13≤f/CT6≤6.42。合理设置第六透镜的中心厚度,能有效地平衡成像系统的象散,有助于缩短成像系统总长,进一步提升系统性能。
在示例性实施方式中,光学成像镜片组还可包括至少一个光阑,以提升镜头的成像质量。例如,光阑可设置在第一透镜与第二透镜之间。
可选地,上述光学成像镜片组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜片组可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜片组的体积、降低镜片组的敏感度并提高镜片组的可加工性,使得光学成像镜片组更有利于生产加工并且可适用于便携式电子产品。
通过上述配置的光学成像镜片组,还具有大孔径、广角等特性,在相同的拍摄情况下,可以获得更多的被摄信息,满足便携式电子产品的视野需求。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜片组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜片组不限于包括七个透镜。如果需要,该光学成像镜片组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜片组的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜片组。图1示出了根据本申请实施例1的光学成像镜片组的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000001
Figure PCTCN2018100483-appb-000002
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018100483-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.5932E-01 -8.7128E-01 2.0821E+00 -5.4300E+00 1.1505E+01 -1.7054E+01 1.5679E+01 -7.9991E+00 1.7228E+00
S2 9.3327E-01 5.3496E-01 -1.9141E+01 2.0891E+02 -1.3107E+03 5.1454E+03 -1.2343E+04 1.6382E+04 -9.2107E+03
S3 2.0300E-03 -6.8558E-01 1.0207E+01 -1.9786E+02 2.1421E+03 -1.4472E+04 5.8946E+04 -1.3255E+05 1.2532E+05
S4 -3.7857E-01 1.9355E+00 -2.9681E+00 -6.5059E+01 5.3442E+02 -2.1403E+03 4.8645E+03 -5.9534E+03 2.9887E+03
S5 -5.2603E-01 1.9288E+00 -6.6792E+00 1.0450E+01 7.3027E+00 -7.3283E+01 1.4576E+02 -1.1000E+02 1.4930E+01
S6 9.4990E-03 -8.5555E-01 5.3107E+00 -2.1231E+01 5.7074E+01 -9.9853E+01 1.0856E+02 -6.5223E+01 1.6152E+01
S7 2.1083E-01 -1.5856E-01 -1.3053E+00 5.5833E+00 -1.3126E+01 2.1743E+01 -2.4008E+01 1.5515E+01 -4.4264E+00
S8 -8.3201E-01 2.8924E+00 -9.1098E+00 1.7540E+01 -2.1035E+01 1.5799E+01 -6.9478E+00 1.5375E+00 -1.1423E-01
S9 -8.0867E-01 2.7221E+00 -8.9818E+00 1.8821E+01 -2.5020E+01 2.1020E+01 -1.0523E+01 2.7950E+00 -2.9392E-01
S10 -9.8931E-01 3.8188E+00 -1.5060E+01 3.8277E+01 -6.0735E+01 5.9806E+01 -3.5141E+01 1.1226E+01 -1.4964E+00
S11 -5.8300E-01 2.6963E+00 -9.0200E+00 1.7067E+01 -1.9397E+01 1.2489E+01 -3.7624E+00 9.5620E-02 1.4303E-01
S12 -2.4095E-01 1.6435E+00 -4.0218E+00 5.5798E+00 -4.9160E+00 2.7960E+00 -9.9044E-01 1.9771E-01 -1.6880E-02
S13 -8.0658E-01 2.6936E-02 1.9693E+00 -3.6025E+00 3.1541E+00 -1.5831E+00 4.8194E-01 -8.5720E-02 6.8660E-03
S14 -8.9744E-01 1.3361E+00 -1.2969E+00 8.4057E-01 -3.7159E-01 1.1069E-01 -2.1170E-02 2.3150E-03 -1.1000E-04
表2
表3给出实施例1中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离)以及最大半视场角HFOV。
f1(mm) -4.06 f6(mm) 2.03
f2(mm) 1.80 f7(mm) -3.27
f3(mm) -4.55 f(mm) 1.80
f4(mm) -28.23 TTL(mm) 4.23
f5(mm) 70.27 HFOV(°) 51.9
表3
实施例1中的光学成像镜片组满足:
f6/f2=1.13,其中,f6为第六透镜E6的有效焦距,f2为第二透镜E2的有效焦距;
f1/f=-2.26,其中,f1为第一透镜E1的有效焦距,f为光学成像镜片组的总有效焦距;
TTL/ImgH=1.85,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离,ImgH为成像面S17上有效像素区域对角线长的一半;
f/R13=2.41,其中,f为光学成像镜片组的总有效焦距,R13为第七透镜E7的物侧面S13的曲率半径;
(R3-R4)/(R3+R4)=2.23,其中,R3为第二透镜E2的物侧面S3的曲率半径,R4为第二透镜E2的像侧面S4的曲率半径;
f1/f2=-2.26,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距;
R13/R14=1.51,其中,R13为第七透镜E7的物侧面S13的曲率半径,R14为第七透镜E7的像侧面S14的曲率半径;
CT1/CT2=0.57,其中,CT1为第一透镜E1于光轴上的中心厚度,CT2为第二透镜E2于光轴上的中心厚度;
T12/T67=1.30,其中,T12为第一透镜E1和第二透镜E2在光轴上的间隔距离,T67为第六透镜E6和第七透镜E7在光轴上的间隔距离;
CT6/CT7=1.75,其中,CT6为第六透镜E6于光轴上的中心厚度,CT7为第七透镜E7于光轴上的中心厚度;
f/|f45|=0.04,其中,f为光学成像镜片组的总有效焦距,f45为第四透镜E4和第五透镜E5的组合焦距;
∑CT/∑AT=1.77,其中,∑CT为第一透镜E1至第七透镜E7分别于光轴上的中心厚度之和,∑AT为第一透镜E1至第七透镜E7中任意相邻两透镜在光轴上的间隔距离之和;
f/CT6=5.13,其中,f为光学成像镜片组的总有效焦距,CT6为第六透镜E6于光轴上的中心厚度。
图2A示出了实施例1的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜片组能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜片组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜片组的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000004
Figure PCTCN2018100483-appb-000005
表4
由表4可知,在实施例2中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.8755E-01 -6.6047E-01 1.2973E+00 -2.9057E+00 5.6939E+00 -8.2704E+00 7.6150E+00 -3.9453E+00 8.6893E-01
S2 8.5456E-01 4.7978E-02 -9.4988E+00 1.0296E+02 -6.2454E+02 2.4132E+03 -5.7929E+03 7.7868E+03 -4.4746E+03
S3 -3.2240E-02 -4.8824E-01 5.1347E+00 -1.0942E+02 1.2657E+03 -9.2163E+03 4.0047E+04 -9.4945E+04 9.3609E+04
S4 -9.7533E-01 3.8601E+00 7.1487E+00 -1.9869E+02 1.2036E+03 -3.9482E+03 7.4492E+03 -7.5117E+03 3.0565E+03
S5 -2.5632E-01 -3.2912E+00 3.7348E+01 -2.2734E+02 8.6050E+02 -2.0433E+03 2.9108E+03 -2.2206E+03 6.6811E+02
S6 3.5087E-01 -4.5347E+00 2.6865E+01 -1.1338E+02 3.3184E+02 -6.3173E+02 7.4209E+02 -4.8740E+02 1.3660E+02
S7 2.9853E-01 4.6547E-01 -6.2887E+00 1.9530E+01 -3.8556E+01 7.1381E+01 -1.0588E+02 9.0233E+01 -3.1387E+01
S8 -9.0421E-01 3.6293E+00 -1.3464E+01 3.0002E+01 -4.1038E+01 3.4945E+01 -1.7789E+01 4.8833E+00 -5.4691E-01
S9 -7.8644E-01 3.0993E+00 -1.1402E+01 2.5963E+01 -3.6852E+01 3.2554E+01 -1.7133E+01 4.8693E+00 -5.7054E-01
S10 -1.2075E+00 6.7810E+00 -2.9659E+01 7.7853E+01 -1.2611E+02 1.2672E+02 -7.6354E+01 2.5175E+01 -3.4861E+00
S11 -8.2364E-01 4.8536E+00 -1.8318E+01 3.8816E+01 -4.8888E+01 3.5994E+01 -1.4395E+01 2.5224E+00 -5.3060E-02
S12 -3.8463E-01 1.9815E+00 -4.9310E+00 7.5781E+00 -7.5756E+00 4.8632E+00 -1.9163E+00 4.1974E-01 -3.9000E-02
S13 -7.6026E-01 -9.1650E-02 1.1861E+00 -2.3941E-01 -2.5838E+00 3.4882E+00 -1.9385E+00 5.0575E-01 -5.1210E-02
S14 -9.3085E-01 1.3150E+00 -1.1758E+00 6.9264E-01 -2.7916E-01 7.6982E-02 -1.3900E-02 1.4510E-03 -6.3000E-05
表5
表6给出实施例2中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.84 f6(mm) 1.93
f2(mm) 1.99 f7(mm) -2.37
f3(mm) 499.89 f(mm) 1.80
f4(mm) -5.83 TTL(mm) 4.09
f5(mm) 86.52 HFOV(°) 51.8
表6
图4A示出了实施例2的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜片组的畸变曲线,其表示不同视 角情况下的畸变大小值。图4D示出了实施例2的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜片组能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜片组。图5示出了根据本申请实施例3的光学成像镜片组的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000006
Figure PCTCN2018100483-appb-000007
表7
由表7可知,在实施例3中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.3524E-01 -7.5652E-01 1.5108E+00 -3.2973E+00 6.1082E+00 -8.3658E+00 7.2030E+00 -3.4612E+00 7.0722E-01
S2 8.4166E-01 5.8680E-01 -1.7912E+01 1.8028E+02 -1.0579E+03 3.8901E+03 -8.7460E+03 1.0904E+04 -5.7739E+03
S3 -1.9500E-03 -2.4881E-01 -2.1439E+00 1.5257E+01 1.1490E+01 -1.4636E+03 1.1121E+04 -3.4820E+04 4.0050E+04
S4 -7.0442E-01 4.5583E+00 -1.5813E+01 -3.2874E+01 5.8303E+02 -2.7423E+03 6.6329E+03 -8.2968E+03 4.1908E+03
S5 -5.5482E-01 2.8768E+00 -1.5518E+01 5.0657E+01 -6.9760E+01 -1.1690E+02 6.1895E+02 -9.1584E+02 4.8355E+02
S6 1.0655E-02 -5.2316E-01 2.1304E+00 -1.2516E+01 6.1377E+01 -1.7339E+02 2.7524E+02 -2.2924E+02 7.8006E+01
S7 2.1715E-01 4.7189E-01 -5.9968E+00 2.1726E+01 -4.8144E+01 7.9113E+01 -9.6669E+01 7.5664E+01 -2.7108E+01
S8 -7.3669E-01 2.4613E+00 -7.5722E+00 1.3526E+01 -1.4465E+01 9.2868E+00 -3.1535E+00 3.4391E-01 4.1909E-02
S9 -8.6423E-01 3.0241E+00 -1.0306E+01 2.2493E+01 -3.0974E+01 2.6755E+01 -1.3764E+01 3.7859E+00 -4.2027E-01
S10 -8.9756E-01 3.1968E+00 -1.3281E+01 3.5229E+01 -5.6650E+01 5.5412E+01 -3.1992E+01 9.9875E+00 -1.2972E+00
S11 -4.4628E-01 1.7613E+00 -6.3089E+00 1.2340E+01 -1.4222E+01 9.0957E+00 -2.5577E+00 -8.0470E-02 1.4266E-01
S12 -1.5977E-01 1.0731E+00 -2.3821E+00 2.5937E+00 -1.4035E+00 2.0737E-01 1.6051E-01 -8.4720E-02 1.2517E-02
S13 -7.1083E-01 -7.3646E-01 4.4089E+00 -9.2918E+00 1.2262E+01 -1.0983E+01 6.2875E+00 -2.0024E+00 2.6453E-01
S14 -9.3992E-01 1.4491E+00 -1.5125E+00 1.1007E+00 -5.5885E-01 1.9131E-01 -4.1570E-02 5.1120E-03 -2.7000E-04
表8
表9给出实施例3中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.87 f6(mm) 2.18
f2(mm) 2.02 f7(mm) -2.76
f3(mm) -10.00 f(mm) 1.86
f4(mm) 500.00 TTL(mm) 4.15
f5(mm) -17.47 HFOV(°) 50.9
表9
图6A示出了实施例3的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜片组能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜片组。图7示出了根据本申请实施例4的光学成像镜片组的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的 光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000008
表10
由表10可知,在实施例4中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.3324E-01 -7.3014E-01 1.3986E+00 -2.8937E+00 5.1830E+00 -7.0740E+00 6.0952E+00 -2.9140E+00 5.8817E-01
S2 8.3287E-01 6.6373E-01 -1.9636E+01 1.9869E+02 -1.1640E+03 4.2392E+03 -9.4039E+03 1.1548E+04 -6.0114E+03
S3 -2.0910E-02 -1.4443E-01 -6.1193E+00 7.7558E+01 -6.5328E+02 2.9519E+03 -5.9337E+03 -5.9269E+02 1.3108E+04
S4 -4.1148E-01 3.5420E+00 -2.1842E+01 6.8124E+01 -8.0629E+01 -2.6552E+02 1.2634E+03 -2.0459E+03 1.1821E+03
S5 -6.0511E-01 3.5193E+00 -2.1635E+01 9.8682E+01 -3.3755E+02 8.2273E+02 -1.3270E+03 1.2602E+03 -5.3068E+02
S6 -4.8770E-02 -1.5748E-01 1.0265E+00 -4.7417E+00 1.4088E+01 -2.4097E+01 2.3707E+01 -1.1615E+01 1.8011E+00
S7 1.7936E-01 1.0789E-01 -3.2527E+00 1.4799E+01 -4.0420E+01 7.2242E+01 -8.1022E+01 5.1838E+01 -1.4582E+01
S8 -7.5783E-01 2.8973E+00 -9.9304E+00 2.0453E+01 -2.6180E+01 2.1020E+01 -1.0061E+01 2.5609E+00 -2.5825E-01
S9 -8.4975E-01 2.9592E+00 -9.9575E+00 2.1155E+01 -2.8330E+01 2.3894E+01 -1.2020E+01 3.2203E+00 -3.4399E-01
S10 -8.4015E-01 2.0265E+00 -8.0408E+00 2.3300E+01 -4.0586E+01 4.2144E+01 -2.5376E+01 8.1507E+00 -1.0780E+00
S11 -3.4206E-01 1.0277E+00 -3.8023E+00 7.7315E+00 -9.7592E+00 7.5597E+00 -3.4247E+00 8.1766E-01 -7.1790E-02
S12 -6.6610E-02 9.3669E-01 -2.2878E+00 2.2212E+00 -4.6541E-01 -8.9079E-01 8.3600E-01 -2.9878E-01 4.0195E-02
S13 -5.7736E-01 -1.4721E+00 7.3412E+00 -1.4825E+01 1.7525E+01 -1.3079E+01 6.0485E+00 -1.5663E+00 1.7184E-01
S14 -9.3124E-01 1.4788E+00 -1.4750E+00 9.5045E-01 -3.9918E-01 1.0567E-01 -1.6120E-02 1.1120E-03 -7.0000E-06
表11
表12给出实施例4中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.87 f6(mm) 2.07
f2(mm) 1.77 f7(mm) -2.80
f3(mm) -4.32 f(mm) 1.83
f4(mm) -35.23 TTL(mm) 4.14
f5(mm) -500.00 HFOV(°) 50.7
表12
图8A示出了实施例4的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜片组能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜片组。图9示出了根据本申请实施例5的光学成像镜片组的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表13
由表13可知,在实施例5中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施 例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.6343E-01 -9.8010E-01 2.4447E+00 -6.2193E+00 1.2645E+01 -1.8237E+01 1.6619E+01 -8.4797E+00 1.8289E+00
S2 9.1454E-01 -6.0000E-02 -1.3037E+01 1.5299E+02 -9.5859E+02 3.6861E+03 -8.6164E+03 1.1147E+04 -6.1156E+03
S3 -4.4040E-02 2.8035E-01 -1.8696E+01 2.8108E+02 -2.6192E+03 1.4525E+04 -4.6283E+04 7.5151E+04 -4.5286E+04
S4 -3.4178E-01 2.8743E+00 -2.0375E+01 8.6431E+01 -2.7836E+02 6.3829E+02 -9.4866E+02 7.5108E+02 -2.5095E+02
S5 -5.6080E-01 3.1449E+00 -2.0488E+01 1.0605E+02 -4.1847E+02 1.1407E+03 -1.9644E+03 1.9014E+03 -7.8416E+02
S6 -4.2190E-02 1.0588E-01 -2.6735E+00 1.9611E+01 -7.6987E+01 1.7961E+02 -2.4693E+02 1.8494E+02 -5.8131E+01
S7 1.4860E-01 8.3922E-01 -8.9806E+00 3.7070E+01 -8.9268E+01 1.3392E+02 -1.2252E+02 6.2379E+01 -1.3538E+01
S8 -9.1132E-01 4.0761E+00 -1.3975E+01 2.8345E+01 -3.5784E+01 2.8517E+01 -1.3725E+01 3.5818E+00 -3.8175E-01
S9 -7.5474E-01 1.7252E+00 -3.3942E+00 2.8582E+00 1.2850E+00 -5.0103E+00 4.7616E+00 -2.1174E+00 3.7208E-01
S10 -7.2585E-01 1.1051E+00 -4.6733E+00 1.5699E+01 -2.9453E+01 3.1744E+01 -1.9427E+01 6.2521E+00 -8.1876E-01
S11 -6.0533E-01 3.1001E+00 -1.0502E+01 2.0799E+01 -2.7243E+01 2.3787E+01 -1.3267E+01 4.2652E+00 -5.9418E-01
S12 -7.2099E-01 4.1476E+00 -1.0837E+01 1.6041E+01 -1.4856E+01 8.8391E+00 -3.2909E+00 6.9742E-01 -6.3980E-02
S13 -6.4784E-01 -1.3172E+00 6.6923E+00 -1.3315E+01 1.5215E+01 -1.0664E+01 4.5267E+00 -1.0651E+00 1.0609E-01
S14 -1.2092E+00 2.0558E+00 -2.3346E+00 1.7666E+00 -8.8972E-01 2.9309E-01 -6.0350E-02 6.9940E-03 -3.4000E-04
表14
表15给出实施例5中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.28 f6(mm) 3.29
f2(mm) 1.77 f7(mm) 501.63
f3(mm) -3.91 f(mm) 1.79
f4(mm) -86.34 TTL(mm) 4.24
f5(mm) 99.41 HFOV(°) 50.7
表15
图10A示出了实施例5的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜片组能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜片组。图11示出了根据本申请实施例6的光学成像镜片组的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000010
Figure PCTCN2018100483-appb-000011
表16
由表16可知,在实施例6中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.2545E-01 -7.3796E-01 1.5551E+00 -3.5510E+00 6.7467E+00 -9.3914E+00 8.2452E+00 -4.0579E+00 8.5108E-01
S2 8.4076E-01 2.7797E-01 -1.4193E+01 1.5579E+02 -9.5618E+02 3.6251E+03 -8.3456E+03 1.0618E+04 -5.7257E+03
S3 -2.5670E-02 -2.1726E-01 -3.1047E+00 1.5647E+01 6.3188E+01 -2.0638E+03 1.4796E+04 -4.6676E+04 5.5312E+04
S4 -1.2236E-01 -3.3370E-02 4.9176E+00 -8.2597E+01 5.6556E+02 -2.2759E+03 5.4660E+03 -7.2082E+03 3.9352E+03
S5 -3.4631E-01 8.1537E-01 -5.8301E+00 3.5390E+01 -1.5889E+02 4.8066E+02 -8.7026E+02 8.4624E+02 -3.4413E+02
S6 -9.9150E-02 6.1982E-01 -5.2248E+00 1.9787E+01 -3.6698E+01 1.6735E+01 6.5282E+01 -1.1789E+02 6.0089E+01
S7 1.0331E-01 1.4781E+00 -1.0790E+01 3.5020E+01 -6.2981E+01 5.3008E+01 9.8922E+00 -5.1871E+01 2.6813E+01
S8 -8.2516E-01 3.7530E+00 -1.4483E+01 3.3281E+01 -4.7356E+01 4.2070E+01 -2.2431E+01 6.5150E+00 -7.8796E-01
S9 -8.4722E-01 3.1440E+00 -1.1153E+01 2.3554E+01 -2.9883E+01 2.3073E+01 -1.0308E+01 2.3345E+00 -1.8614E-01
S10 -7.9852E-01 1.7704E+00 -5.8106E+00 1.4078E+01 -2.0586E+01 1.7659E+01 -8.3825E+00 1.9201E+00 -1.4089E-01
S11 -3.1394E-01 1.1504E+00 -4.1724E+00 8.5481E+00 -1.2053E+01 1.1622E+01 -7.1321E+00 2.4682E+00 -3.5923E-01
S12 -1.1590E-02 9.8463E-01 -2.9620E+00 4.1322E+00 -3.7700E+00 2.5605E+00 -1.2302E+00 3.5210E-01 -4.3350E-02
S13 -3.8757E-01 -2.0060E+00 8.4559E+00 -1.7857E+01 2.3540E+01 -2.0042E+01 1.0524E+01 -3.0454E+00 3.6755E-01
S14 -8.1073E-01 1.1883E+00 -1.1480E+00 7.4025E-01 -3.1834E-01 8.7423E-02 -1.3970E-02 1.0370E-03 -1.2000E-05
表17
表18给出实施例6中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -5.01 f6(mm) 2.12
f2(mm) 1.65 f7(mm) -2.83
f3(mm) -4.33 f(mm) 1.85
f4(mm) -12.09 TTL(mm) 4.20
f5(mm) 141.41 HFOV(°) 51.1
表18
图12A示出了实施例6的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜片组能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜片组。图13示出了根据本申请实施例7的光学成像镜片组的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000012
表19
由表19可知,在实施例7中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.8361E-01 -1.0621E+00 2.8251E+00 -7.4685E+00 1.5142E+01 -2.1123E+01 1.8406E+01 -8.9875E+00 1.8690E+00
S2 9.2438E-01 7.2466E-01 -2.3149E+01 2.3547E+02 -1.3962E+03 5.2118E+03 -1.1958E+04 1.5295E+04 -8.3549E+03
S3 3.8094E-02 -3.1894E+00 8.4986E+01 -1.4259E+03 1.4175E+04 -8.6249E+04 3.1368E+05 -6.2537E+05 5.2402E+05
S4 -2.7271E-01 2.9736E-01 1.1973E+01 -1.5446E+02 8.7595E+02 -2.9472E+03 6.0111E+03 -6.8786E+03 3.3314E+03
S5 -5.4437E-01 2.6995E+00 -2.1754E+01 1.6045E+02 -8.6959E+02 3.0130E+03 -6.2135E+03 6.9484E+03 -3.2459E+03
S6 -4.0680E-02 -4.0061E-01 3.6500E+00 -1.9684E+01 6.8661E+01 -1.7499E+02 3.2022E+02 -3.4222E+02 1.5220E+02
S7 2.1327E-01 4.5073E-01 -7.6753E+00 4.4477E+01 -1.5811E+02 3.4008E+02 -4.2197E+02 2.7723E+02 -7.4577E+01
S8 -8.2267E-01 3.0023E+00 -1.0422E+01 2.2678E+01 -3.1465E+01 2.7760E+01 -1.4747E+01 4.2373E+00 -4.9973E-01
S9 -8.3141E-01 2.8580E+00 -8.9912E+00 1.6951E+01 -1.9054E+01 1.2651E+01 -4.4253E+00 5.3683E-01 4.2806E-02
S10 -9.0113E-01 3.1393E+00 -1.1584E+01 2.7928E+01 -4.2192E+01 3.9446E+01 -2.1843E+01 6.5113E+00 -8.0027E-01
S11 -5.4046E-01 2.5517E+00 -8.3997E+00 1.5747E+01 -1.8202E+01 1.2775E+01 -5.1172E+00 1.0065E+00 -5.7400E-02
S12 -2.6360E-01 1.8418E+00 -4.6101E+00 6.3274E+00 -5.2849E+00 2.7204E+00 -8.2695E-01 1.3180E-01 -7.9100E-03
S13 -8.1552E-01 -8.8500E-03 1.8338E+00 -2.9228E+00 1.5283E+00 3.9583E-01 -7.5162E-01 2.9377E-01 -3.9090E-02
S14 -9.0449E-01 1.4083E+00 -1.4252E+00 9.4441E-01 -4.1031E-01 1.1386E-01 -1.8830E-02 1.5770E-03 -4.0000E-05
表20
表21给出实施例7中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.14 f6(mm) 2.06
f2(mm) 1.67 f7(mm) -2.94
f3(mm) -8.65 f(mm) 1.88
f4(mm) -5.55 TTL(mm) 4.44
f5(mm) 57.65 HFOV(°) 50.7
表21
图14A示出了实施例7的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜片组能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜片组。图15示出了根据本申请实施例8的光学成像镜片组的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8 为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000013
表22
由表22可知,在实施例8中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.3284E-01 -7.2487E-01 1.4444E+00 -3.2546E+00 6.3610E+00 -9.2283E+00 8.3207E+00 -4.1159E+00 8.5125E-01
S2 7.9737E-01 6.2710E-01 -1.8035E+01 1.7615E+02 -1.0015E+03 3.5488E+03 -7.6746E+03 9.2005E+03 -4.6779E+03
S3 -3.6500E-02 -1.7070E-02 -1.1096E+01 1.7603E+02 -1.7502E+03 1.0218E+04 -3.4156E+04 5.8639E+04 -3.8477E+04
S4 -4.0159E-01 3.2180E+00 -1.6672E+01 2.2352E+01 1.7921E+02 -1.1925E+03 3.2623E+03 -4.4029E+03 2.3453E+03
S5 -5.9533E-01 3.2197E+00 -1.8585E+01 7.8769E+01 -2.4771E+02 5.5884E+02 -8.5196E+02 7.9093E+02 -3.3879E+02
S6 -5.7250E-02 -1.9268E-01 1.2589E+00 -5.4236E+00 1.6529E+01 -3.0901E+01 3.4963E+01 -2.1405E+01 5.2755E+00
S7 1.8933E-01 2.3743E-01 -3.6585E+00 1.3355E+01 -2.8566E+01 3.9012E+01 -3.1597E+01 1.2855E+01 -1.6768E+00
S8 -8.1454E-01 3.5358E+00 -1.2805E+01 2.7647E+01 -3.7182E+01 3.1491E+01 -1.6085E+01 4.4721E+00 -5.1434E-01
S9 -8.8976E-01 3.5331E+00 -1.3373E+01 3.0882E+01 -4.3661E+01 3.8093E+01 -1.9740E+01 5.5074E+00 -6.2959E-01
S10 -8.3933E-01 2.3056E+00 -9.9838E+00 2.8393E+01 -4.7408E+01 4.7115E+01 -2.7181E+01 8.3504E+00 -1.0501E+00
S11 -3.5719E-01 1.2576E+00 -5.1157E+00 1.1766E+01 -1.7924E+01 1.8202E+01 -1.1681E+01 4.2360E+00 -6.5084E-01
S12 6.8420E-03 5.4267E-01 -9.6146E-01 -7.1784E-01 3.5085E+00 -4.1224E+00 2.3805E+00 -6.9842E-01 8.3358E-02
S13 -5.0573E-01 -1.9277E+00 8.7973E+00 -1.7611E+01 2.1005E+01 -1.5922E+01 7.4798E+00 -1.9627E+00 2.1762E-01
S14 -9.2624E-01 1.4524E+00 -1.4196E+00 8.9424E-01 -3.6599E-01 9.3352E-02 -1.3260E-02 7.3100E-04 1.5200E-05
表23
表24给出实施例8中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -5.27 f6(mm) 2.18
f2(mm) 1.74 f7(mm) -2.72
f3(mm) -4.36 f(mm) 1.84
f4(mm) -26.88 TTL(mm) 4.10
f5(mm) -701.50 HFOV(°) 50.4
表24
图16A示出了实施例8的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜片组能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜片组。图17示出了根据本申请实施例9的光学成像镜片组的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表25示出了实施例9的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000014
Figure PCTCN2018100483-appb-000015
表25
由表25可知,在实施例9中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.4670E-01 -7.7791E-01 1.6201E+00 -3.7723E+00 7.4964E+00 -1.0859E+01 9.7729E+00 -4.8470E+00 1.0094E+00
S2 8.5453E-01 6.5112E-01 -1.9598E+01 1.9965E+02 -1.1828E+03 4.3741E+03 -9.8736E+03 1.2343E+04 -6.5390E+03
S3 -1.5100E-02 -3.4856E-01 -1.2929E+00 1.3949E+01 -1.4752E+02 5.3381E+02 7.3959E+02 -1.0164E+04 1.8419E+04
S4 -4.9432E-01 4.4325E+00 -2.7457E+01 8.7242E+01 -8.4078E+01 -4.9870E+02 2.1268E+03 -3.3651E+03 1.9422E+03
S5 -6.4186E-01 3.9964E+00 -2.4638E+01 1.0709E+02 -3.2911E+02 6.9253E+02 -9.5490E+02 7.9040E+02 -3.0161E+02
S6 -5.7300E-02 -9.9410E-02 1.4883E+00 -1.1765E+01 4.9945E+01 -1.2032E+02 1.6810E+02 -1.2601E+02 3.9046E+01
S7 1.7955E-01 9.9349E-02 -1.9619E+00 5.1320E+00 -8.0817E+00 1.2547E+01 -1.8730E+01 1.8292E+01 -7.7142E+00
S8 -8.1398E-01 3.2909E+00 -1.1175E+01 2.2441E+01 -2.7836E+01 2.1611E+01 -9.9828E+00 2.4349E+00 -2.3037E-01
S9 -9.0410E-01 3.7020E+00 -1.3428E+01 2.9615E+01 -4.0438E+01 3.4460E+01 -1.7567E+01 4.8345E+00 -5.4458E-01
S10 -8.7977E-01 2.7566E+00 -1.1388E+01 3.1321E+01 -5.2247E+01 5.2757E+01 -3.1281E+01 9.9863E+00 -1.3223E+00
S11 -3.9443E-01 1.4838E+00 -5.6023E+00 1.1530E+01 -1.4538E+01 1.1110E+01 -4.8322E+00 1.0319E+00 -6.3680E-02
S12 -9.1200E-02 1.1184E+00 -2.9754E+00 3.7399E+00 -2.5366E+00 8.8105E-01 -8.6950E-02 -3.2470E-02 7.6770E-03
S13 -6.0747E-01 -1.2363E+00 6.5706E+00 -1.3596E+01 1.6531E+01 -1.2775E+01 6.1358E+00 -1.6488E+00 1.8720E-01
S14 -9.3893E-01 1.5079E+00 -1.5624E+00 1.0728E+00 -4.9469E-01 1.4986E-01 -2.8180E-02 2.9060E-03 -1.2000E-04
表26
表27给出实施例9中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.70 f6(mm) 2.13
f2(mm) 1.78 f7(mm) -2.93
f3(mm) -4.41 f(mm) 1.81
f4(mm) 27.85 TTL(mm) 4.14
f5(mm) -18.48 HFOV(°) 51.1
表27
图18A示出了实施例9的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜片组的畸变曲线,其表示不 同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜片组能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜片组。图19示出了根据本申请实施例10的光学成像镜片组的结构示意图。
如图19所示,根据本申请示例性实施方式的光学成像镜片组沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表28示出了实施例10的光学成像镜片组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100483-appb-000016
Figure PCTCN2018100483-appb-000017
表28
由表28可知,在实施例10中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.4443E-01 -7.5308E-01 1.4738E+00 -3.2289E+00 6.1501E+00 -8.7812E+00 7.8837E+00 -3.9259E+00 8.2416E-01
S2 8.4308E-01 5.7338E-01 -1.7988E+01 1.8349E+02 -1.0841E+03 3.9861E+03 -8.9259E+03 1.1055E+04 -5.7997E+03
S3 -1.4310E-02 -1.8729E-01 -4.9822E+00 6.5410E+01 -5.7671E+02 2.7194E+03 -6.0395E+03 2.1600E+03 8.0309E+03
S4 -5.7044E-01 5.5432E+00 -3.6087E+01 1.2925E+02 -2.1457E+02 -2.3365E+02 1.7654E+03 -3.0193E+03 1.7591E+03
S5 -6.9802E-01 4.8889E+00 -3.1289E+01 1.3921E+02 -4.3919E+02 9.5948E+02 -1.3877E+03 1.2103E+03 -4.8536E+02
S6 -6.0930E-02 -1.4588E-01 2.5747E+00 -1.9274E+01 7.7932E+01 -1.8487E+02 2.6076E+02 -2.0158E+02 6.5555E+01
S7 2.3449E-01 -5.4715E-01 1.5100E+00 -7.3650E+00 2.4160E+01 -4.6255E+01 5.2256E+01 -3.1616E+01 7.4886E+00
S8 -6.5474E-01 2.3007E+00 -7.5497E+00 1.4183E+01 -1.6084E+01 1.1201E+01 -4.4241E+00 8.0147E-01 -2.7950E-02
S9 -9.7383E-01 3.2471E+00 -1.0274E+01 2.1271E+01 -2.8032E+01 2.3226E+01 -1.1371E+01 2.9072E+00 -2.8399E-01
S10 -1.0531E+00 5.2730E+00 -2.4407E+01 6.7665E+01 -1.1259E+02 1.1378E+02 -6.8091E+01 2.2146E+01 -3.0141E+00
S11 -6.1146E-01 4.7308E+00 -2.1500E+01 5.2809E+01 -7.8283E+01 7.1498E+01 -3.9305E+01 1.1929E+01 -1.5301E+00
S12 -4.3849E-01 2.9009E+00 -8.1183E+00 1.2807E+01 -1.2367E+01 7.4753E+00 -2.7617E+00 5.7007E-01 -5.0320E-02
S13 -6.2815E-01 -1.7170E-02 1.6532E+00 -3.3001E+00 3.3030E+00 -2.0203E+00 7.8778E-01 -1.7949E-01 1.7818E-02
S14 -7.9297E-01 1.1702E+00 -1.1244E+00 6.9855E-01 -2.7873E-01 6.7576E-02 -8.5000E-03 2.4400E-04 3.5300E-05
表29
表30给出实施例10中各透镜的有效焦距f1至f7、光学成像镜片组的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) -4.75 f6(mm) 2.48
f2(mm) 1.77 f7(mm) -2.66
f3(mm) -4.41 f(mm) 1.85
f4(mm) -59.39 TTL(mm) 4.23
f5(mm) 9.09 HFOV(°) 50.6
表30
图20A示出了实施例10的光学成像镜片组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例10的光学成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像镜片组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像镜片组能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表31中所示的关系。
Figure PCTCN2018100483-appb-000018
表31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是 诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜片组。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 光学成像镜片组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度或负光焦度;
    所述第五透镜具有正光焦度或负光焦度,其物侧面为凸面;
    所述第六透镜具有正光焦度;
    所述第七透镜具有正光焦度或负光焦度,其像侧面为凹面;
    所述光学成像镜片组的最大半视场角HFOV满足HFOV>50°。
  2. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜片组的总有效焦距f满足-3.0<f1/f<-2.0。
  3. 根据权利要求2所述的光学成像镜片组,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-3.5<f1/f2<-2.0。
  4. 根据权利要求3所述的光学成像镜片组,其特征在于,所述第六透镜的有效焦距f6与所述第二透镜的有效焦距f2满足0.8<f6/f2<2.0。
  5. 根据权利要求1所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述第四透镜和所述第五透镜的组合焦距f45满足f/|f45|<0.4。
  6. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第七透镜的物侧面为凸面;
    所述光学成像镜片组的总有效焦距f与所述第七透镜的物侧面的曲率半径R13满足1.5<f/R13<3.5。
  7. 根据权利要求6所述的光学成像镜片组,其特征在于,所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足1.0<R13/R14<2.0。
  8. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第二透镜的物侧面的曲率半径R3和所述第二透镜的像侧面的曲率半径R4满足1.8<(R3-R4)/(R3+R4)<3.8。
  9. 根据权利要求1所述的光学成像镜片组,其特征在于,所述第一透镜至所述第七透镜分别于所述光轴上的中心厚度之和∑CT与所述第一透镜至所述第七透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT满足∑CT/∑AT≤2.0。
  10. 根据权利要求9所述的光学成像镜片组,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足0.4<CT1/CT2<1.0。
  11. 根据权利要求9所述的光学成像镜片组,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67满足1.0≤T12/T67≤1.5。
  12. 根据权利要求9所述的光学成像镜片组,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第七透镜于所述光轴上的中心厚度CT7满足1.0<CT6/CT7<2.0。
  13. 根据权利要求12所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述第六透镜于所述光轴上的中心厚度CT6满足2<f/CT6<7。
  14. 根据权利要求1至13中任一项所述的光学成像镜片组,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜片组的成像面在所述光轴上的距离TTL与所述光学成像镜片组的成像面上有效像素区域对角线长的一半ImgH满足1.5<TTL/ImgH<2.5。
  15. 光学成像镜片组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第二透镜具有正光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度或负光焦度;
    所述第五透镜具有正光焦度或负光焦度,其物侧面为凸面;
    所述第六透镜具有正光焦度;
    所述第七透镜具有正光焦度或负光焦度,其像侧面为凹面;
    所述光学成像镜片组的总有效焦距f与所述第六透镜于所述光轴上的中心厚度CT6满足2<f/CT6<7。
  16. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第六透镜的有效焦距f6与所述第二透镜的有效焦距f2满足0.8<f6/f2<2.0。
  17. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜片组的总有效焦距f满足 -3.0<f1/f<-2.0。
  18. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-3.5<f1/f2<-2.0。
  19. 根据权利要求15所述的光学成像镜片组,其特征在于,所述光学成像镜片组的总有效焦距f与所述第四透镜和所述第五透镜的组合焦距f45满足f/|f45|<0.4。
  20. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第七透镜的物侧面为凸面;
    所述光学成像镜片组的总有效焦距f与所述第七透镜的物侧面的曲率半径R13满足1.5<f/R13<3.5。
  21. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足1.0<R13/R14<2.0。
  22. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第二透镜的物侧面的曲率半径R3和所述第二透镜的像侧面的曲率半径R4满足1.8<(R3-R4)/(R3+R4)<3.8。
  23. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足0.4<CT1/CT2<1.0。
  24. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67满足1.0≤T12/T67≤ 1.5。
  25. 根据权利要求15所述的光学成像镜片组,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第七透镜于所述光轴上的中心厚度CT7满足1.0<CT6/CT7<2.0。
  26. 根据权利要求15至25中任一项所述的光学成像镜片组,其特征在于,所述第一透镜至所述第七透镜分别于所述光轴上的中心厚度之和∑CT与所述第一透镜至所述第七透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT满足∑CT/∑AT≤2.0。
  27. 根据权利要求15至25中任一项所述的光学成像镜片组,其特征在于,所述光学成像镜片组的最大半视场角HFOV满足HFOV>50°。
  28. 根据权利要求15至25中任一项所述的光学成像镜片组,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜片组的成像面在所述光轴上的距离TTL与所述光学成像镜片组的成像面上有效像素区域对角线长的一半ImgH满足1.5<TTL/ImgH<2.5。
PCT/CN2018/100483 2018-02-28 2018-08-14 光学成像镜片组 WO2019165761A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820281478.X 2018-02-28
CN201810167176.4 2018-02-28
CN201810167176.4A CN108181701B (zh) 2018-02-28 2018-02-28 光学成像镜片组
CN201820281478.XU CN208076814U (zh) 2018-02-28 2018-02-28 光学成像镜片组

Publications (1)

Publication Number Publication Date
WO2019165761A1 true WO2019165761A1 (zh) 2019-09-06

Family

ID=67804837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100483 WO2019165761A1 (zh) 2018-02-28 2018-08-14 光学成像镜片组

Country Status (1)

Country Link
WO (1) WO2019165761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011541A1 (en) * 2020-07-09 2022-01-13 Aac Optics (Changzhou) Co., Ltd. Camera optical lens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139372A1 (en) * 2014-11-17 2016-05-19 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN106291882A (zh) * 2016-09-06 2017-01-04 浙江舜宇光学有限公司 摄像镜头
CN206725834U (zh) * 2017-05-17 2017-12-08 武汉赫天光电股份有限公司 一种广角摄像头
CN206757163U (zh) * 2017-05-18 2017-12-15 浙江舜宇光学有限公司 成像镜头
CN107664810A (zh) * 2016-07-28 2018-02-06 大立光电股份有限公司 光学取像系统镜组、取像装置及电子装置
CN108181701A (zh) * 2018-02-28 2018-06-19 浙江舜宇光学有限公司 光学成像镜片组
CN208076814U (zh) * 2018-02-28 2018-11-09 浙江舜宇光学有限公司 光学成像镜片组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139372A1 (en) * 2014-11-17 2016-05-19 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN107664810A (zh) * 2016-07-28 2018-02-06 大立光电股份有限公司 光学取像系统镜组、取像装置及电子装置
CN106291882A (zh) * 2016-09-06 2017-01-04 浙江舜宇光学有限公司 摄像镜头
CN206725834U (zh) * 2017-05-17 2017-12-08 武汉赫天光电股份有限公司 一种广角摄像头
CN206757163U (zh) * 2017-05-18 2017-12-15 浙江舜宇光学有限公司 成像镜头
CN108181701A (zh) * 2018-02-28 2018-06-19 浙江舜宇光学有限公司 光学成像镜片组
CN208076814U (zh) * 2018-02-28 2018-11-09 浙江舜宇光学有限公司 光学成像镜片组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220011541A1 (en) * 2020-07-09 2022-01-13 Aac Optics (Changzhou) Co., Ltd. Camera optical lens

Similar Documents

Publication Publication Date Title
WO2019192180A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019101052A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2019210672A1 (zh) 光学成像系统
WO2020010879A1 (zh) 光学成像系统
WO2019210739A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2020010878A1 (zh) 光学成像系统
WO2020007069A1 (zh) 光学成像镜片组
WO2018153012A1 (zh) 摄像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019137246A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020088024A1 (zh) 光学成像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2020042765A1 (zh) 影像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907915

Country of ref document: EP

Kind code of ref document: A1