WO2019165654A1 - 双面显示面板及双面显示装置 - Google Patents

双面显示面板及双面显示装置 Download PDF

Info

Publication number
WO2019165654A1
WO2019165654A1 PCT/CN2018/079572 CN2018079572W WO2019165654A1 WO 2019165654 A1 WO2019165654 A1 WO 2019165654A1 CN 2018079572 W CN2018079572 W CN 2018079572W WO 2019165654 A1 WO2019165654 A1 WO 2019165654A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
anode
sided display
cathode
display panel
Prior art date
Application number
PCT/CN2018/079572
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/981,633 priority Critical patent/US20190267442A1/en
Publication of WO2019165654A1 publication Critical patent/WO2019165654A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present application relates to the field of display technologies, and in particular, to a double-sided display panel and a double-sided display device.
  • OLEDs Organic light-emitting diodes
  • the use of OLEDs to fabricate double-sided display panels is a trend in OLED applications.
  • the double-sided display technology can effectively expand the display area of the OLED panel and take advantage of the thinness of the OLED panel.
  • Existing double-sided display OLED panels mostly adopt a transparent cathode and a transparent anode, and a single sub-pixel emits light up and down.
  • the OLED panel adopting the similar technology has the characteristics of being completely transparent, but because it transmits light up and down, it also has a defect of low contrast.
  • the display contrast is higher, but the circuit layout is more complex, more traces limit the increase in pixel density
  • the number of pixels on one side is half of all pixels, so the pixel density itself is lower, and the influence of wiring on the pixel density is more significant.
  • the present application provides a double-sided display panel and a double-sided display device, which can effectively reduce the number of wires in the manufacturing process of the panel, thereby reducing the influence of the excessive number of wires on the pixel density.
  • a technical solution adopted by the present application is to provide a double-sided display panel
  • the double-sided display panel includes a plurality of pixel units arranged in an array, each of the pixel units including a thin film transistor, a front display pixel and a reverse display pixel;
  • the front display pixel includes a first anode, a first luminescent layer, and a first cathode;
  • the reverse display pixel includes a second anode, a second luminescent layer, and a second cathode;
  • the anode and the second anode are electrically connected to the drain of the thin film transistor, respectively, wherein the first cathode is an opaque or translucent cathode for preventing light of the first luminescent layer from being displayed from the double sided
  • the opposite side of the panel exits, the second anode being an opaque or translucent anode for preventing light from the second luminescent layer from exiting the front side of the double sided display panel.
  • the double-sided display panel includes a plurality of pixel units arranged in an array, and each of the pixel units includes a thin film transistor.
  • a front display pixel and a reverse display pixel the front display pixel includes a first anode, a first luminescent layer, and a first cathode
  • the reverse display pixel includes a second anode, a second luminescent layer, and a second cathode;
  • An anode and the second anode are electrically connected to drains of the thin film transistors, respectively.
  • a double-sided display device comprising a double-sided display panel, the double-sided display panel comprising a plurality of pixels arranged in an array a unit, each of the pixel units includes a thin film transistor, a front display pixel, and a reverse display pixel;
  • the front display pixel includes a first anode, a first luminescent layer, and a first cathode;
  • the reverse display pixel includes a second anode, a second luminescent layer and a second cathode; the first anode and the second anode are electrically connected to drains of the thin film transistors, respectively.
  • the utility model has the beneficial effects of providing a double-sided display panel and a double-sided display device, which can reduce the thickness of the display panel while realizing double-sided display by controlling two adjacent sub-pixels by using a single thin film transistor, and Effectively reduce the number of wires in the manufacturing process of the panel, which can reduce the influence of the excessive number of wires on the pixel density.
  • FIG. 1 is a schematic structural view of an embodiment of a double-sided display panel of the present application.
  • FIG. 2 is a schematic structural view of an embodiment of a first luminescent layer of the present application
  • FIG. 3 is a circuit configuration diagram of an embodiment of a pixel unit of the present application.
  • FIG. 4 is a schematic structural view of an embodiment of a double-sided display device of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a double-sided display panel of the present application.
  • the double-sided display panel 10 provided in the present application includes a plurality of pixel units arranged in an array, and each of the pixel units includes a thin film transistor 11 , a front display pixel 12 , and a reverse display pixel 13 .
  • the front display pixel 12 includes a first anode A1, a first luminescent layer B1, and a first cathode C1.
  • the first luminescent layer B1 is disposed between the first anode A1 and the first cathode C1.
  • the first cathode C1 is an opaque or translucent cathode for preventing light of the first luminescent layer B1 from exiting from the reverse side of the double-sided display, and the first cathode C1 can be further used for blocking from both sides.
  • the ambient light on the reverse side of the display panel 10 is incident to improve display contrast.
  • the first anode A1 is a transparent anode, that is, the first anode A1 is a fully transparent structure, which may be made of a transparent material, specifically, indium tin oxide (ITO, Indium Tin). Made from Oxide).
  • ITO indium tin oxide
  • Oxide Oxide
  • FIG. 2 is a schematic structural diagram of an embodiment of a first luminescent layer of the present application.
  • the first luminescent layer B1 may be an organic light emitting diode, and specifically includes an electron injection layer b1, an electron transport layer b2, an OLED functional layer b3, a hole transport layer b4, and a hole injection layer b5 which are sequentially stacked downward.
  • the first cathode C1 covers the electron injection layer b1, and the first anode A1 covers the lower side of the hole injection layer b5.
  • the voltage between the first anode A1 and the first cathode C1 may cause holes to be injected into the OLED functional layer b3 from the hole injection layer b5 and the hole transport layer b4, while electrons are injected from the electron injection layer b1 and the electron transport layer b2.
  • the OLED functional layer b3, the holes and the electrons meet at the OLED functional layer b3, and the organic material of the OLED functional layer b3 is excited to emit light.
  • the structure of the PM-OLED is only schematically illustrated in the present application, and other types of OLEDs may also be used in other embodiments.
  • the reverse display pixel 13 includes a second anode A2, a second luminescent layer B2, and a second cathode C2.
  • the second luminescent layer B2 is disposed between the second anode A2 and the second cathode C2.
  • the second anode A2 is an opaque or translucent anode for preventing light of the second luminescent layer B2 from exiting from the front side of the double-sided display, and the second anode A2 can be further used for blocking from both sides.
  • the ambient light on the front side of the display panel 10 is incident to improve display contrast.
  • the second luminescent layer B2 may be an organic light emitting diode, and is similar to the structure of the first luminescent layer B1 in FIG. 2.
  • FIG. 2 For detailed structure, please refer to FIG. 2 and the above detailed description thereof, and details are not described herein again.
  • the first anode A1 and the second anode A2 are electrically connected to the drain D of the thin film transistor 11, respectively.
  • the front display pixel 112 and the reverse display pixel 13 are respectively driven by the same thin film transistor. Both have the same drive current, so that the luminance of the two is uniform.
  • the thickness of the display panel can be reduced while the double-sided display is realized, and the area of the double-sided display can be effectively improved.
  • FIG. 3 is a circuit structural diagram of an embodiment of a pixel unit of the present application.
  • each pixel unit in the present application includes a thin film transistor 11, a front display pixel 12, and a reverse display pixel 13.
  • the thin film transistor 11 includes a gate G, a source S, and a drain D.
  • the gate G of the thin film transistor 11 is connected to the scanning line 14, the source S of the thin film transistor 11 is connected to the data line 15, and the drain D of the thin film transistor 11 is connected to the front display pixel 12 and the reverse display pixel 13, respectively.
  • the scan signal of the scan line 14 causes the gate G of the thin film transistor 11 to be turned on, and the data line 15 writes the data signal to the front display pixel 12 and the reverse display pixel 13 respectively, so that the front display pixel 12 and the first anode in the reverse display pixel 13
  • a voltage difference is generated between A1 and the first cathode C1, the second anode A2, and the second cathode C2 to respectively illuminate the first luminescent layer B1 and the second luminescent layer B2
  • the first cathode C1 is opaque or a semi-transparent cathode for preventing light from the first luminescent layer B1 from exiting from the opposite side of the double-sided display
  • the second anode A2 being opaque or translucent anode, which can be further used to block ambient light incident from the front surface of the double-sided display panel 10,
  • This double-sided display panel enables double-sided display.
  • the front display pixel 12 and the reverse display pixel 13 are driven by the same thin film transistor 11, and the currents flowing into the front display pixel 12 and the reverse display pixel 13 are the same, so that the brightness of both is the same and has a good contrast.
  • the number of wirings of the panel in the manufacturing process can be effectively reduced, thereby reducing the influence of the excessive number of wiring on the pixel density.
  • FIG. 4 is a schematic structural diagram of an embodiment of a double-sided display device according to the present application.
  • the double-sided display device 20 in the present application includes the double-sided display panel 10 described above in any one of the embodiments.
  • the double-sided display panel 10 includes a plurality of pixel units 11 arranged in an array, and each of the pixel units includes a thin film transistor 11 , a front display pixel 12 , and a reverse display pixel 13 .
  • the front display pixel 12 includes a first anode A1, a first luminescent layer B1, and a first cathode C1.
  • the first cathode C1 is an opaque or translucent cathode for preventing light of the first luminescent layer B1 from exiting from the reverse side of the double-sided display, and the first cathode C1 can be further used for blocking from both sides.
  • the ambient light on the reverse side of the display panel 10 is incident to improve display contrast.
  • the reverse display pixel 13 includes a second anode A2, a second luminescent layer B2, and a second cathode C2.
  • the second luminescent layer B2 is disposed between the second anode A2 and the second cathode C2.
  • the second anode A2 is an opaque or translucent anode for preventing light of the second luminescent layer B2 from exiting from the front side of the double-sided display, and the second anode A2 can be further used for blocking from both sides.
  • the ambient light on the front side of the display panel 10 is incident to improve display contrast.
  • the first anode A1 and the second anode A2 are electrically connected to the drain D of the thin film transistor 11, respectively.
  • the front display pixel 12 and the reverse display pixel 13 are respectively driven by the same thin film transistor, so that the two have the same
  • the driving current is such that the luminances of the two are uniform.
  • the front display pixel and the reverse display pixel are integrated on the same driving back plate, thereby achieving double-sided display and reducing the thickness of the display panel, and Effectively reduce the number of wires in the manufacturing process of the panel, which can reduce the influence of the excessive number of wires on the pixel density.
  • the present application provides a double-sided display panel and a double-sided display device, which can control two adjacent sub-pixels by using a single thin film transistor, and can realize double-sided display while reducing
  • the thickness of the small display panel and the effective reduction of the number of wires in the manufacturing process of the panel can reduce the influence of the excessive number of wires on the pixel density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种双面显示面板(10)及双面显示装置,该双面显示面板(10)包括阵列排布的多个像素单元,每一像素单元包括一薄膜晶体管(11)、正面显示像素(12)以及反面显示像素(13);正面显示像素(12)包括第一阳极(A1)、第一发光层(B1)、第一阴极(C1);反面显示像素(13)包括第二阳极(A2)、第二发光层(B2)及第二阴极(C2);第一阳极(A1)及第二阳极(A2)分别和薄膜晶体管(11)的漏极电连接。通过上述方式,能够有效的减少面板在制作进程中的布线数量,从而可以减小因布线数量过多对像素密度的影响。

Description

双面显示面板及双面显示装置
【技术领域】
本申请涉及显示技术领域,特别是涉及一种双面显示面板及双面显示装置。
【背景技术】
有机发光二极管(OLED)具有色域广、对比度高、自发光、轻薄可折叠的优点,在显示和照明等应用领域引起了广泛的关注。
利用OLED制作双面显示面板是OLED应用的趋势。双面显示技术可以有效地扩大OLED面板的显示面积,并发挥出OLED面板轻薄的优势。已有的双面显示OLED面板多采用透明阴极和透明阳极、单个子像素上下出光的方案。采用类似技术的OLED面板具有全透明的特点,然而由于它上下透光,所以同时也具有对比度较低的缺陷。另外,还有使用相互独立的顶出光和底出光OLED器件来达到双面显示的目的,这种方式获得的显示对比度较高,但是线路布局较为复杂,较多的走线限制了像素密度的提高,且此方案里单面的像素数量是所有像素的一半,所以像素密度本身就较低,布线对像素密度的影响因而更加显著。
【发明内容】
本申请提供一种双面显示面板及双面显示装置,能够有效的减少面板在制作进程中的布线数量,从而可以减小因布线数量过多对像素密度的影响。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种双面显示面板,所述双面显示面板包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管、正面显示像素以及反面显示像素;所述正面显示像素包括第一阳极、第一发光层、第一阴极;所述反面显示像素包括第二阳极、第二发光层及第二阴极;所述第一阳极及所述第二阳极分别和所述薄膜晶体管的漏极电连接,其中,所述第一阴极为不透明或半透明阴极,用于防止所述第一发光层的光从所述双面显示面板的反面出射,所述第二阳极为不透明或半透明阳极,用于防止所述第二发光层的光从所述双面显示面板的正面出射。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种双面显示面板,所述双面显示面板包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管、正面显示像素以及反面显示像素;所述正面显示像素包括第一阳极、第一发光层、第一阴极;所述反面显示像素包括第二阳极、第二发光层及第二阴极;所述第一阳极及所述第二阳极分别和所述薄膜晶体管的漏极电连接。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种双面显示装置,所述双面显示装置包括双面显示面板,所述双面显示面板包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管、正面显示像素以及反面显示像素;所述正面显示像素包括第一阳极、第一发光层、第一阴极;所述反面显示像素包括第二阳极、第二发光层及第二阴极;所述第一阳极及所述第二阳极分别和所述薄膜晶体管的漏极电连接。
本申请的有益效果是:提供一种双面显示面板及双面显示装置,通过采用单个薄膜晶体管控制两相邻的子像素,在实现双面显示的同时还可以减小显示面板的厚度,以及有效的减少面板在制作进程中的布线数量,从而可以减小因布线数量过多对像素密度的影响。
【附图说明】
图1是本申请双面显示面板一实施方式的结构示意图;
图2是本申请第一发光层一实施方式的结构示意图;
图3是本申请像素单元一实施方式的电路结构图;
图4是本申请双面显示装置一实施方式的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请双面显示面板一实施方式的结构示意图。如图1所示,本申请中提供的双面显示面板10包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管11、正面显示像素12以及反面显示像素13。
其中,正面显示像素12包括第一阳极A1、第一发光层B1、第一阴极C1。其中,第一发光层B1设置于第一阳极A1及第一阴极C1之间。在具体实施例中,第一阴极C1为不透明或半透明阴极,用于防止第一发光层B1的光从双面显示的反面出射,且该第一阴极C1还可以进一步用于阻隔来自双面显示面板10反面的环境光入射,提高显示对比度。
第一阳极A1为透明阳极,即该第一阳极A1为全透明结构,其可以采用透明材料制成,具体可以由氧化铟锡(ITO,Indium Tin Oxide)制成。
其中,可以参阅图2,图2为本申请第一发光层一实施方式的结构示意图。如图2,第一发光层B1可以为有机发光二极管,具体包括依次向下层叠设置的电子注入层b1、电子传输层b2、OLED功能层b3、空穴传输层b4以及空穴注入层b5。其中,第一阴极C1覆盖在电子注入层b1上,第一阳极A1覆盖在空穴注入层b5的下侧。第一阳极A1和第一阴极C1之间的电压可以使得空穴由空穴注入层b5以及空穴传输层b4注入到OLED功能层b3,同时电子由电子注入层b1以及电子传输层b2注入到OLED功能层b3,空穴和电子在OLED功能层b3相遇,激发OLED功能层b3的有机材料发光。当然,本申请中只是示意性的列举了PM-OLED的结构,在其他实施方式中也可以采用其他类型的OLED。
进一步参阅图1,反面显示像素13包括第二阳极A2、第二发光层B2、第二阴极C2。其中,第二发光层B2设置于第二阳极A2及第二阴极C2之间。在具体实施例中,第二阳极A2为不透明或半透明阳极,用于防止第二发光层B2的光从双面显示的正面出射,且该第二阳极A2还可以进一步用于阻隔来自双面显示面板10正面的环境光入射,提高显示对比度。
第二发光层B2可以为有机发光二极管,且和图2中第一发光层B1的结构类似,详细结构请参见图2及其上文的具体描述,此处不再赘述。
其中,上述的第一阳极A1及第二阳极A2分别和薄膜晶体管11的漏极D电连接,即在具体实施方式中,该正面显示像素112和反面显示像素13分别由同一薄膜晶体管驱动,因而二者具有相同的驱动电流,使得二者的发光亮度一致。
上述实施方式中,通过将正面显示像素和反面显示像素集成在同一驱动背板上,在实现双面显示的同时还可以减小显示面板的厚度,有效的提高双面显示的面积。
请进一步参阅图3,图3为本申请像素单元一实施方式的电路结构图。如图3所示,本申请中每一像素单元包括一薄膜晶体管11、正面显示像素12以及反面显示像素13。如图,薄膜晶体管11包括栅极G、源极S以及漏极D。其中,薄膜晶体管11的栅极G连接扫描线14,薄膜晶体管11的源极S连接数据线15,薄膜晶体管11的漏极D分别连接正面显示像素12以及反面显示像素13。
下面就上述实施方式中的工作原理做简单描述:
扫描线14的扫描信号使得薄膜晶体管11的栅极G打开,数据线15将数据信号分别写入正面显示像素12以及反面显示像素13,使得正面显示像素12以及反面显示像素13中的第一阳极A1及第一阴极C1、第二阳极A2及第二阴极C2之间产生电压差,以分别激发第一发光层B1及第二发光层B2发光,且本申请中因第一阴极C1为不透明或半透明阴极,用于防止第一发光层B1的光从双面显示的反面出射,第二阳极A2为不透明或半透明阳极,可以进一步用于阻隔来自双面显示面板10正面的环境光入射,使得该双面显示面板可以实现双面显示。
进一步,该正面显示像素12以及反面显示像素13由同一薄膜晶体管11驱动,流入该正面显示像素12以及反面显示像素13的电流相同,因此二者的亮度相同,且具有较好的对比度。
上述实施方式,通过采用单个薄膜晶体管控制两相邻的子像素,可以有效的减少面板在制作进程中的布线数量,从而可以减小因布线数量过多对像素密度的影响。
请参阅图4,图4为本申请双面显示装置一实施方式的结构示意图。图4所示,本申请中的双面显示装置20包括上述是实施方式中任一所述的双面显示面板10。
请参阅图1,该双面显示面板10包括阵列排布的多个像素单元11,每一所述像素单元包括一薄膜晶体管11、正面显示像素12以及反面显示像素13。
正面显示像素12包括第一阳极A1、第一发光层B1、第一阴极C1。在具体实施例中,第一阴极C1为不透明或半透明阴极,用于防止第一发光层B1的光从双面显示的反面出射,且该第一阴极C1还可以进一步用于阻隔来自双面显示面板10反面的环境光入射,提高显示对比度。
反面显示像素13包括第二阳极A2、第二发光层B2、第二阴极C2。其中,第二发光层B2设置于第二阳极A2及第二阴极C2之间。在具体实施例中,第二阳极A2为不透明或半透明阳极,用于防止第二发光层B2的光从双面显示的正面出射,且该第二阳极A2还可以进一步用于阻隔来自双面显示面板10正面的环境光入射,提高显示对比度。
第一阳极A1及第二阳极A2分别和薄膜晶体管11的漏极D电连接,即在具体实施方式中,该正面显示像素12和反面显示像素13分别由同一薄膜晶体管驱动,因而二者具有相同的驱动电流,使得二者的发光亮度一致。
上述实施方式中的正面显示像素及反面显示像素的具体结构以及工作原理请详见上述实施方式中的具体描述,此处不再赘述。
上述实施方式,通过采用单个薄膜晶体管控制两相邻的子像素,将正面显示像素和反面显示像素集成在同一驱动背板上,在实现双面显示的同时还可以减小显示面板的厚度,以及有效的减少面板在制作进程中的布线数量,从而可以减小因布线数量过多对像素密度的影响。
综上所述,本领域技术人员容易理解,本申请提供一种双面显示面板及双面显示装置,通过采用单个薄膜晶体管控制两相邻的子像素,在实现双面显示的同时还可以减小显示面板的厚度,以及有效的减少面板在制作进程中的布线数量,从而可以减小因布线数量过多对像素密度的影响。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种双面显示面板,其中,所述双面显示面板包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管、正面显示像素以及反面显示像素;
    所述正面显示像素包括第一阳极、第一发光层、第一阴极;所述反面显示像素包括第二阳极、第二发光层及第二阴极;所述第一阳极及所述第二阳极分别和所述薄膜晶体管的漏极电连接;
    其中,所述第一阴极为不透明或半透明阴极,用于防止所述第一发光层的光从所述双面显示面板的反面出射,所述第二阳极为不透明或半透明阳极,用于防止所述第二发光层的光从所述双面显示面板的正面出射。
  2. 根据权利要求1所述的双面显示面板,其中,所述第一阳极为透明阳极,所述第二阴极为透明阴极。
  3. 根据权利要求1所述的双面显示面板,其中,所述第一发光层及所述第二发光层为有机发光二极管。
  4. 一种双面显示面板,其中,所述双面显示面板包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管、正面显示像素以及反面显示像素;
    所述正面显示像素包括第一阳极、第一发光层、第一阴极;所述反面显示像素包括第二阳极、第二发光层及第二阴极;所述第一阳极及所述第二阳极分别和所述薄膜晶体管的漏极电连接。
  5. 根据权利要求4所述的双面显示面板,其中,所述第一阴极为不透明或半透明阴极,用于防止所述第一发光层的光从所述双面显示面板的反面出射。
  6. 根据权利要求4所述的双面显示面板,其中,所述第二阳极为不透明或半透明阳极,用于防止所述第二发光层的光从所述双面显示面板的正面出射。
  7. 根据权利要求4所述的双面显示面板,其中,所述第一阳极为透明阳极,所述第二阴极为透明阴极。
  8. 根据权利要求4所述的双面显示面板,其中,所述第一发光层及所述第二发光层为有机发光二极管。
  9. 一种双面显示装置,其中,所述双面显示装置包括双面显示面板,所述双面显示面板包括阵列排布的多个像素单元,每一所述像素单元包括一薄膜晶体管、正面显示像素以及反面显示像素;
    所述正面显示像素包括第一阳极、第一发光层、第一阴极;所述反面显示像素包括第二阳极、第二发光层及第二阴极;所述第一阳极及所述第二阳极分别和所述薄膜晶体管的漏极电连接。
  10. 根据权利要求9所述的双面显示装置,其中,所述第一阴极为不透明或半透明阴极,用于防止所述第一发光层的光从所述双面显示的反面出射。
  11. 根据权利要求9所述的双面显示装置,其中,所述第二阳极为不透明或半透明阳极,用于防止所述第二发光层的光从所述双面显示的正面出射。
  12. 根据权利要求9所述的双面显示装置,其中,所述第一阳极为透明阳极,所述第二阴极为透明阴极。
  13. 根据权利要求9所述的双面显示装置,其中,所述第一发光层及所述第二发光层为有机发光二极管。
PCT/CN2018/079572 2018-02-27 2018-03-20 双面显示面板及双面显示装置 WO2019165654A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/981,633 US20190267442A1 (en) 2018-02-27 2018-05-16 Double-face display panel and double-face display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810165690.4A CN108364990A (zh) 2018-02-27 2018-02-27 双面显示面板及双面显示装置
CN201810165690.4 2018-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/981,633 Continuation US20190267442A1 (en) 2018-02-27 2018-05-16 Double-face display panel and double-face display device

Publications (1)

Publication Number Publication Date
WO2019165654A1 true WO2019165654A1 (zh) 2019-09-06

Family

ID=63003208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079572 WO2019165654A1 (zh) 2018-02-27 2018-03-20 双面显示面板及双面显示装置

Country Status (2)

Country Link
CN (1) CN108364990A (zh)
WO (1) WO2019165654A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097286A (zh) * 2021-04-15 2021-07-09 京东方科技集团股份有限公司 一种阵列基板、双面显示装置以及制作方法
CN113555379A (zh) * 2021-07-26 2021-10-26 北京京东方光电科技有限公司 显示面板及其制备方法、显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112183A (zh) * 2019-04-12 2019-08-09 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法
CN110120404B (zh) * 2019-04-18 2021-04-27 深圳市华星光电半导体显示技术有限公司 双面白光有机发光二极管显示装置及其制造方法
CN110265437A (zh) * 2019-05-31 2019-09-20 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法、显示装置
CN112687724A (zh) * 2020-12-24 2021-04-20 联想(北京)有限公司 电子设备及双面显示屏的制作方法
CN112786668A (zh) * 2021-01-08 2021-05-11 武汉华星光电半导体显示技术有限公司 一种双面显示面板
CN113571560A (zh) * 2021-07-15 2021-10-29 Tcl华星光电技术有限公司 双面显示面板及显示装置
CN114203749B (zh) * 2021-12-10 2023-08-01 深圳市华星光电半导体显示技术有限公司 双面显示面板和双面显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037930A (ja) * 2003-06-27 2005-02-10 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
US20130193843A1 (en) * 2012-01-30 2013-08-01 Industrial Technology Research Institute Double-side light emitting display panel
CN103730484A (zh) * 2013-12-24 2014-04-16 京东方科技集团股份有限公司 一种双面显示面板
CN105226069A (zh) * 2015-09-22 2016-01-06 深圳市华星光电技术有限公司 一种双面显示面板及双面显示装置
CN107564940A (zh) * 2017-07-04 2018-01-09 深圳市华星光电半导体显示技术有限公司 双面oled显示器
CN107657922A (zh) * 2017-10-27 2018-02-02 朱秋华 一种双面oled显示面板及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700004B1 (ko) * 2004-11-10 2007-03-26 삼성에스디아이 주식회사 양면 발광 유기전계발광소자 및 그의 제조 방법
CN101707028B (zh) * 2009-11-13 2012-02-01 四川虹视显示技术有限公司 一种双面显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037930A (ja) * 2003-06-27 2005-02-10 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
US20130193843A1 (en) * 2012-01-30 2013-08-01 Industrial Technology Research Institute Double-side light emitting display panel
CN103730484A (zh) * 2013-12-24 2014-04-16 京东方科技集团股份有限公司 一种双面显示面板
CN105226069A (zh) * 2015-09-22 2016-01-06 深圳市华星光电技术有限公司 一种双面显示面板及双面显示装置
CN107564940A (zh) * 2017-07-04 2018-01-09 深圳市华星光电半导体显示技术有限公司 双面oled显示器
CN107657922A (zh) * 2017-10-27 2018-02-02 朱秋华 一种双面oled显示面板及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097286A (zh) * 2021-04-15 2021-07-09 京东方科技集团股份有限公司 一种阵列基板、双面显示装置以及制作方法
CN113097286B (zh) * 2021-04-15 2024-05-24 京东方科技集团股份有限公司 一种阵列基板、双面显示装置以及制作方法
CN113555379A (zh) * 2021-07-26 2021-10-26 北京京东方光电科技有限公司 显示面板及其制备方法、显示装置
CN113555379B (zh) * 2021-07-26 2023-12-26 北京京东方光电科技有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN108364990A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2019165654A1 (zh) 双面显示面板及双面显示装置
US20220036817A1 (en) Transparent display panels and display panels
WO2020093692A1 (zh) 显示屏及集成有该显示屏的显示装置、盖板
KR100834346B1 (ko) 능동행렬 유기전기발광소자
US8436376B2 (en) Organic light emitting diode display
CN106206673B (zh) Amoled显示装置
KR100461467B1 (ko) 능동행렬 유기전기발광소자
WO2004026004A1 (ja) 有機エレクトロルミネッセンス表示装置及びその製造方法
TW200536433A (en) Organic light-emitting diode, display device, and telecommunication employing the same
WO2020220463A1 (zh) Tft阵列基板及oled显示面板
US9960211B2 (en) Pixel element structure, array structure and display device
KR20140077120A (ko) 화소 구조, 화소 유닛 구조, 디스플레이 패널 및 디스플레이 장치
CN104851893B (zh) 一种阵列基板及其制备方法、显示装置
US11205357B2 (en) Display panel test circuit and display panel
JP2001035663A (ja) 有機エレクトロルミネッセンス素子表示装置及びその製造方法
KR20080054626A (ko) 유기 전계발광표시소자 및 그 제조방법
WO2015096356A1 (zh) 一种双面显示面板
WO2022205858A1 (zh) 显示面板及显示装置
WO2019178928A1 (zh) 一种显示面板的制作方法、显示面板及显示装置
CN104752461A (zh) 一种双面显示装置及其制备方法
US10109684B2 (en) Pixel element structure, array structure and display device
WO2019010759A1 (zh) 一种oled显示面板及oled显示器
WO2024022058A1 (zh) 显示面板以及显示装置
CN1784101A (zh) 双面显示有机电致发光装置
WO2024046040A1 (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908145

Country of ref document: EP

Kind code of ref document: A1