WO2019164061A1 - 크리프 강도가 우수한 단련용 Ni계 초내열합금 - Google Patents

크리프 강도가 우수한 단련용 Ni계 초내열합금 Download PDF

Info

Publication number
WO2019164061A1
WO2019164061A1 PCT/KR2018/005366 KR2018005366W WO2019164061A1 WO 2019164061 A1 WO2019164061 A1 WO 2019164061A1 KR 2018005366 W KR2018005366 W KR 2018005366W WO 2019164061 A1 WO2019164061 A1 WO 2019164061A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid phase
density
tungsten
molybdenum
nickel
Prior art date
Application number
PCT/KR2018/005366
Other languages
English (en)
French (fr)
Inventor
최백규
석진익
송영석
김영대
김인수
정중은
도정현
정인용
조창용
Original Assignee
한국기계연구원
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 두산중공업 주식회사 filed Critical 한국기계연구원
Publication of WO2019164061A1 publication Critical patent/WO2019164061A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • the present invention relates to a nickel (Ni) -based super heat-resistant alloy for annealing, and more particularly, to a nickel nickel for annealing having excellent low temperature creep characteristics and low segregation and casting defects generated when casting an ingot. It is about heat resistant alloys.
  • Nickel (Ni) -based super heat-resistant alloys may be classified into nickel (Ni) -based, iron (Fe) -based, cobalt (Co) -based alloy group.
  • Nickel (Ni) super heat resistant alloys use nickel (Ni) as a matrix, and chromium (Cr), cobalt (Co), aluminum (Al), tungsten (W), titanium (Ti), and molybdenum (Mo) It refers to a group of alloys in which 10 kinds of alloying elements such as) and carbon (C) are added to optimize high temperature mechanical properties and environmental resistance properties.
  • Nickel-based super heat-resistant alloys have been applied to many industries requiring excellent creep properties and high temperature corrosion resistance, but the most important applications are aircraft engines and power generation.
  • a large ingot is first manufactured through a casting process, and then a part having a specific shape is processed through a machining step such as a forging process.
  • a machining step such as a forging process.
  • the present invention is to solve the various problems including the above problems, by controlling the content of the alloying element in terms of minimizing the difference in the liquid density, while suppressing the macro segregation (macrosegregation) generated during casting to the maximum while at the same time excellent creep characteristics
  • An object of the present invention is to provide a nickel-based super heat-resistant alloy for annealing.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • the nickel-based super heat-resistant alloy for forging in weight percent, 10 to 12 cobalt (Co), 17 to 19 chromium (Cr), 4.7 to 5.7 molybdenum (Mo), 1.8 to Tungsten (W) of 3.2, carbon (C) of 0.05 to 0.1, aluminum (Al) of 0.5 to 2.0, titanium (Ti) of 0.8 to 2.0, niobium (Nb) of 0.1 to 1.0, boron greater than 0 and no more than 0.0008 (B), a nickel-based superheat-resistant alloy for tempering having a high creep life having a composition range containing zirconium (Zr) and a balance of more than 0 and not more than 0.005 and nickel (Ni) and other unavoidable impurities is provided.
  • the content ([Mo]) of the molybdenum (Mo) and the content ([W]) of the tungsten (W) satisfy the following Equation 1.
  • Equation 1 5.6 ⁇ [Mo] + [W] / 2 ⁇ 7.3
  • Equation 2 45000 ⁇ CL / ⁇ ⁇ ⁇ 54870
  • the unit of creep life is hours, and the unit of ⁇ is g / cm 3 .
  • the nickel-based forgings that can have excellent creep characteristics while at the same time suppressing macro segregation generated during casting It is possible to provide heat-resistant alloys.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 conceptually illustrates liquid phase density differences at an interface between a solid phase and a liquid phase according to positions of dendrites produced in the process of casting a nickel-based superheat-resistant alloy.
  • Macroscopic segregation in which the quality of the cast ingot becomes uneven, may be generated due to the difference in density of the liquid phase caused by the solute element discharged from the solid phase to the liquid phase due to the difference in the solid solubility of solid and liquid solutes.
  • the solute elements discharged from the solid phase to the liquid phase the liquid composition near the solid phase is different from that of the original alloy, and the difference in composition causes a density difference between the liquid phases.
  • Macroscopic segregation is known to occur due to the flow of the liquid phase due to the density difference in the liquid phase and thereby the broken dendrite branches, that is, the solid phase flow.
  • FIG. 1 schematically shows the shape of a dendrite formed during a casting process using molten metal.
  • nickel is a molten alloy in which various alloying elements are added as a solute from the main component, and the composition of the molten metal is C 0 .
  • the liquid is injected into a mold having a predetermined shape during the casting process, as shown in FIG. 1, solidification starts from the wall of the mold M having a relatively low temperature (region A in FIG. 1), Phase transformation into solid phase.
  • the solid phase phase transformation region grows into a dendritic branch in the form of a region distant from the wall of the mold (region B of FIG. 1).
  • the solubility of the solute element with respect to the thermodynamically based nickel has different values when the nickel is in the solid phase and in the liquid phase. Therefore, during the process of phase transformation from the liquid phase to the solid phase, the area of the original liquid phase is solidified and redistribution of the solutes discharged into the surrounding liquid phase due to the difference in the solubility of the solute atoms existing in the area occurs. Therefore, the solute concentration in the liquid phase near the interface between the solid phase and the liquid phase has a value different from the solute concentration in the original liquid phase. Due to the difference in solute concentration in the liquid phase, a difference in density of the liquid phase occurs, and a flow in the liquid phase occurs using the difference in density as a driving force.
  • the "-" portion of the dendritic portion indicates that the solute concentration is reduced, and the "+” in the liquid phase portion means that the concentration is increased due to the solute discharged from the dendritic phase.
  • 1 shows that the concentration of the solute in the liquid phase decreases from the region A to the region B by using the “+” symbol.
  • the liquid phase density of the initial melt in the region where the solidification has not yet occurred region B
  • the liquid phase density ⁇ 1 is higher or lower than ⁇ 0 depending on the type of solute atom.
  • the present inventors consider that one of the causes of casting defects of nickel-based super heat-resistant alloys is the flow of the liquid phase due to the difference in the density of the liquid phase, thereby changing the added alloying elements to reduce the difference in the liquid phase density around the solidified solid phase. It was confirmed that the possibility of occurrence of casting defects can be suppressed by doing so.
  • C 0 is the composition of the alloy
  • k is the distribution coefficient calculated from the state diagram as C S / C L
  • f S and f L are the solid and liquid fractions, respectively
  • the distribution coefficients of alloying elements can be known and the composition of solid and liquid phases can be calculated as the solidification progresses, that is, according to the solid phase fraction or temperature.
  • the density of the liquid phase is calculated by considering the density and composition of each alloying element.
  • the density calculation of the liquid phase was derived by the following method. The molar volume MV i L of the alloying element i with melting point T i mp in the liquid phase at T is given by
  • ⁇ i L is the coefficient of thermal expansion in the liquid state of the alloying element i
  • T Liq is the liquidus temperature of the alloy.
  • the density of the liquid phase adjacent to the solid phase is set to ⁇ i and the liquidus temperature.
  • the density difference of the liquid phase ( ⁇ ) according to the composition change was calculated using the density of the liquid phase having the composition of the original alloy in ⁇ o .
  • a parameter P obtained by combining the creep life (CL) and ⁇ of the alloy having the corresponding composition was derived.
  • Creep life CL is a result at 750 degreeC and 350 Mpa conditions, and a unit is an hour.
  • the super-heat-resistant alloy for annealing is, by weight, 10 to 12 cobalt (Co), 17 to 19 chromium (Cr), 4.7 to 5.7 molybdenum (Mo), 1.8 to 3.2 Tungsten (W), carbon (C) of 0.05 to 0.1, aluminum (Al) of 0.5 to 2.0, titanium (Ti) of 0.8 to 2.0, niobium (Nb) of 0.1 to 1.0, boron (B) greater than 0 and less than 0.0008 ), Zirconium (Zr) above 0 and below 0,05 and the balance include nickel (Ni) and other unavoidable impurities.
  • the composition of cobalt (Co) may satisfy 10 wt% to 12 wt%.
  • Cobalt (Co) is employed in Ni bases to enhance the strength and creep properties by acting as a solid solution to strengthen the bases. If the amount of cobalt (Co) is added less than 10% by weight, the creep properties are lowered, and if it exceeds 12% by weight, it is easy to form intermetallic compounds by combining with other alloying elements, and it is necessary to suppress the cost.
  • Chromium (Cr) plays a role of improving corrosion resistance and oxidation resistance in super heat-resistant alloys, whereas TCP (Topologically Close Packed) may degrade mechanical properties when carbide, tungsten (W) or molybdenum (Mo) is added. ) May promote the formation of a phase.
  • the addition of less than 17.0% may cause problems in corrosion resistance, and the addition of more than 19.0% may produce TCP phase which adversely affects the mechanical properties upon prolonged exposure at high temperatures.
  • Carbon combines with Ti, W, Mo, Cr, and the like to form carbides of the MC, M 6 C, or M 23 C 6 type to contribute to grain size refinement, and by forming carbides at grain boundaries, grain strength is improved. If the carbon content is less than 0.05%, sufficient carbides are not formed. If the carbon content exceeds 0.1%, too much carbide is formed and ductility and workability are reduced, so the content is set at 0.05 to 0.1%.
  • Aluminum is an element absolutely necessary for improving high temperature creep characteristics because aluminum is a constituent element of ⁇ 'which is the main reinforcing phase of nickel-based superheat-resistant alloys. It also contributes to the improvement of oxidation resistance. However, when it is less than 0.5%, it is difficult to see the effect of strength improvement by the formation of precipitated phase, and when it is more than 2.0%, the ductility is lowered by excessive precipitation of ⁇ 'phase and the hot working temperature is increased by increasing the solid solution temperature of ⁇ '.
  • Titanium like aluminum, is a member of the ⁇ 'phase, which helps to improve the high temperature strength and contributes to the improvement of corrosion resistance, so it is added more than 0.8%. However, when added excessively, the ductility decreases and it can generate unnecessary phase such as eta phase, so it is limited to 2.0%.
  • Niobium (Nb) is mainly dissolved in the ⁇ 'phase, which is a super-hard alloy main reinforcement phase, and serves to reinforce the ⁇ ' phase.
  • ⁇ 'phase which is a super-hard alloy main reinforcement phase
  • the ductility and toughness are lowered and the workability is lowered, so it is limited to 1.0% or less.
  • Boron (B) segregates at grain boundaries to improve grain boundary strength and suppress grain growth.
  • the melting point of the matrix is lowered to reduce hot workability, and the ductility is lowered, so the content is limited to 0.008% or less.
  • Zirconium (Zr) segregates at grain boundaries to improve grain strength. However, excessive addition lowers the toughness of the alloy and limits the content to 0.05% or less.
  • Molybdenum (Mo) and tungsten (W) are solid solution strengthening elements, and serve to improve high temperature creep characteristics of nickel-based superheat-resistant alloys.
  • the composition of molybdenum (Mo) has a range of 4.7% by weight to 5.7% by weight
  • tungsten (W) has a range of 1.8% by weight to 3.2% by weight.
  • the content ([Mo]) of the molybdenum (Mo) and the content ([W]) of the tungsten (W) satisfy the following equation (1).
  • Equation 1 5.6 ⁇ [Mo] + [W] / 2 7.3
  • Equation 2 45000 ⁇ CL / ⁇ ⁇ ⁇ 54870
  • Table 1 shows the alloy composition used in the experimental examples of the present invention
  • Table 2 shows the CL, ⁇ and parameter P values according to each experimental example.
  • the alloy composition of Table 1 is by weight.
  • FIG. 2 shows a change in creep life time according to ([Mo] + [W] / 2)
  • FIG. 3 shows a change in ⁇ value according to ([Mo] + [W] / 2).
  • parameter P has a critical significance section for ([Mo] + [W] / 2) in the alloy composition, which is illustrated in FIG. 4. It was.
  • the value of parameter P represents a range of 35000 to 55000 when the value of ([Mo] + [W] / 2) is in the range of more than 5.5 and less than 7.5. More specifically, when the value of ([Mo] + [W] / 2) is in the range of 5.6 to 7.3, the value of parameter P represents the range of 45000 to 54870.
  • the creep life is relatively low in the range of 267 to 336, and ⁇ is relatively high as 0.00940 to 0.0010. In other words, this range means that the occurrence of casting defects is high while having a relatively low creep life.
  • the creep life is excellent as 600 or more, while ⁇ is high as 0.0175 or more.
  • the alloy of the present composition range is excellent in creep properties due to the high molybdenum and tungsten content, but because of the large difference in density of the liquid phase, this means that the possibility of macro segregation during casting increases.
  • the content of molybdenum and tungsten can be controlled in terms of securing creep life and minimizing the difference in liquid density, thereby minimizing macro segregation or local casting defects during casting, and at the same time having excellent creep characteristics. It is possible to provide a nickel-based super heat resistant alloy for annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

본 발명의 일 관점에 따르면, 단련용 니켈계 초내열합금으로서, 중량%로, 10 내지 12의 코발트(Co), 17 내지 19의 크롬(Cr), 4.7 내지 5.7의 몰리브덴(Mo), 1.8 내지 3.2의 텅스텐(W), 0.05 내지 0.1의 탄소(C), 0.5 내지 2.0의 알루미늄(Al), 0.8 내지 2.0의 티타늄(Ti), 0.1 내지 1.0의 나이오븀(Nb), 0 초과 0.0008 이하의 붕소(B), 0초과 0.005 이하의 지르코늄(Zr) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함하는 조성범위를 가지는, 크리프 강도가 우수한 단련용 Ni계 초내열합금이 제공된다.

Description

크리프 강도가 우수한 단련용 Ni계 초내열합금
본 발명은 단련용 니켈(Ni)계 초내열합금에 대한 것으로, 더 상세하게는 우수한 고온 크리프 특성을 가지고면서도 잉곳을 주조하는 경우에 발생되는 편석과 주조결함의 발생 가능성이 낮은 단련용 니켈계 초내열합금에 대한 것이다.
초내열합금은 니켈(Ni)계, 철(Fe)계, 코발트(Co)계 합금군으로 분류될 수 있다. 이중에서도 산업적으로 가장 중요하면서도 널리 사용되고 있는 것은 니켈(Ni)계 초내열합금이다. 니켈(Ni)계 초내열합금은 기지(matrix)로 니켈(Ni)을 사용하며, 크롬(Cr), 코발트(Co), 알루미늄(Al), 텅스텐(W), 티타늄 (Ti), 몰리브덴(Mo) 및 탄소(C) 등 10여 가지의 합금원소를 첨가하여 고온 기계적 특성과 내환경 특성을 최적화한 합금군을 말한다. 니켈(Ni)계 초내열합금은 우수한 크리프 특성와 고온 내식성이 요구되는 많은 산업분야에 적용되고 있지만 가장 중요한 응용분야는 항공기용 엔진과 발전용 분야이다.
발전용 스팀터빈 로터와 같은 대형 부품을 제조하는 경우에는 먼저 주조 공정을 통해 대형 잉곳을 제조한 후 단조 공정 등과 같은 가공 단계를 통해 특정 형상을 가지는 부품으로 제조하게 된다. 가공 단계에서 대형 잉곳이 안정적으로 가공되고 균일한 특성을 얻기 위해서는 주조 과정에서 부분적으로 조성이 다른 거시적 편석이나 주조결함의 발생이 가능한 억제되어야 한다. 이러한 편석이나 주조결함으로 인해 기계적, 물리적 특성이 불균일해져 제품의 품질에 영향을 줄 수 있다.
따라서 항공기 엔진 또는 발전용 가스터빈용 대형 부품의 소재로 사용되는 단련용 니켈계 초내열합금의 경우, 우수한 크리프수명을 가지고 있으면서도 동시에 주조 과정 중에 편석과 주조결함의 발생이 가능한 억제되어야 한다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 합금원소의 함량을 액상 밀도 차이의 최소화 관점에서 제어하여 주조 중에 발생되는 거시적 편석(macrosegregation)을 최대한 억제하면서도 동시에 우수한 크리프 특성을 가질 수 있는 단련용 니켈계 초내열합금의 제공을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 단련용 니켈계 초내열합금으로서, 중량%로, 10 내지 12의 코발트(Co), 17 내지 19의 크롬(Cr), 4.7 내지 5.7의 몰리브덴(Mo), 1.8 내지 3.2의 텅스텐(W), 0.05 내지 0.1의 탄소(C), 0.5 내지 2.0의 알루미늄(Al), 0.8 내지 2.0의 티타늄(Ti), 0.1 내지 1.0의 나이오븀(Nb), 0 초과 0.0008 이하의 붕소(B), 0초과 0.005 이하의 지르코늄(Zr) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함하는 조성범위를 가지는, 고크리프수명을 가지는 단련용 니켈계 초내열합금이 제공된다.
또는 상기 단련용 니켈계 초내열합금에 있어서, 상기 몰리브덴(Mo)의 함량([Mo]) 및 상기 텅스텐(W)의 함량([W])은 하기 수학식 1을 만족한다.
수학식 1 : 5.6 ≤[Mo]+[W]/2≤ 7.3
([Mo] 및 [W]는 각각 몰리브덴(Mo) 및 텅스텐(W)의 함량(중량%))
상기 단련용 니켈계 초내열합금에 있어서, 상기 조성범위를 가지는 합금 용탕을 이용한 주조공정 중 고상분율(fs)이 0.35일때 고상에 인접한 액상의 밀도(ρi)와 액상선 온도에서의 액상의 밀도(ρo) 차이인 △ρ와, 크리프수명(Creep Life) CL 간에 하기 수학식 2를 만족한다.
수학식 2 : 45000 ≤CL / △ρ≤54870
여기서 크리프수명의 단위는 시간(hour), △ρ의 단위는 g/cm3 이다.
상기한 바와 같이 이루어진 본 발명의 실시예에 따르면, 합금원소의 함량을 액상 밀도 차이의 최소화 관점에서 제어하여 주조 중에 발생되는 거시적 편석을 최대한 억제하면서도 동시에 우수한 크리프 특성을 가질 수 있는 단련용 니켈계 초내열합금의 제공을 가능하게 한다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 니켈계 초내열합금을 주조하는 과정에서 생성되는 수지상(dendrite)의 위치에 따른 고상과 액상의 계면에서의 액상 밀도 차이를 개념적으로 도시한 것이다.
도 2는 몰리브덴과 텅스텐의 함량([Mo]+[W]/2)에 따른 크리프수명의 변화를 나타낸 그래프이다.
도 3은 몰리브덴과 텅스텐의 함량([Mo]+[W]/2)에 따른 △ρ의 변화를 나타낸 그래프이다.
도 4는 몰리브덴과 텅스텐의 함량([Mo]+[W]/2)에 따른 파라메터 P의 변화를 나타낸 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
상술한 바와 같이 단련용 니켈계 초내열합금은 잉곳을 제조하는 과정에서 발생될 수 있는 거시적 편석의 발생가능성을 가능한 한 최소화할 할 필요가 있다. 이하 잉곳을 주조하는 단계에서 액상의 밀도 차이에 기인한 거시적 편석의 발생 원인에 대해서 기술한다.
주조된 잉곳의 품질이 불균일해지는 거시적 편석은 주조 시 응고가 진행됨에 고상과 액상의 용질원소의 고용도 차이로 인하여 고상으로부터 액상으로 배출되는 용질원소로 인해 발생한 액상의 밀도 차이로 인하여 생성될 수 있다고 알려져 있다. 즉, 고상으로부터 액상으로 배출되는 용질원소로 인하여 고상 부근의 액상 조성은 원래 합금의 조성과 달라지고 이러한 조성의 차이는 액상 간의 밀도차이를 유발한다. 이러한 액상에서의 밀도 차이에 기인한 액상의 유동과 이로 인해 파단된 수지상(dendrite) 가지 즉, 고상의 유동에 의해 거시적 편석이 발생하는 것으로 알려져 있다.
따라서 고온용 대형 부품을 위한 소재 개발 시 이러한 거시적 편석의 발생 가능성을 줄이기 위하여 응고중에 형성된 수지상(즉, 고상)부근의 액상밀도 (ρi) 와 원래 합금 조성의 액상 밀도 (ρo), 즉 해당 합금조성의 액상선 온도에서의 밀도의 차이 (△ρ)를 감소시킬 필요가 있다.
도 1은 용탕을 이용하여 주조하는 과정에 중에 형성되는 수지상(dendrite)의 형상을 대략적으로 도시한 것이다. 우선 니켈을 주성분으로부터 여러 종의 합금원소가 용질로서 첨가된 합금의 용탕으로서, 용탕의 조성은 C0라고 가정한다. 주조 과정 중에 이러한 액상을 소정의 형상을 가지는 몰드 내부로 주입할 경우, 도 1에 도시된 바와 같이 상대적으로 온도가 낮은 몰드(M)의 벽(도 1의 영역 A)에서부터 응고가 시작되어 액상에서 고상으로 상변태된다. 이렇게 고상으로 상변태 되는 영역은 몰드의 벽으로부터 먼 영역(도 1의 영역 B)으로 나무가지 모양의 수지상으로 성장된다. 열역학적으로 모재인 니켈에 대한 용질원소의 고용도는 니켈이 고상일 때와 액상일때 서로 상이한 값을 갖는다. 따라서 액상에서 고상으로 상변태되는 과정 중에 원래 액상이었던 영역이 고상화되면서 그 영역에 존재하던 용질원자가 고용도 차이에 의해 주변의 액상으로 배출되는 용질의 재분배가 일어나게 된다. 따라서 고상과 액상의 계면 부근에 존재하는 액상에서의 용질 농도는 원래 최초 액상에서의 용질 농도와 상이한 값을 가지게 된다. 이러한 액상에서의 용질 농도의 차이로 인하여 액상의 밀도 차이가 발생되며, 이러한 밀도의 차이를 구동력으로 하여 액상에서의 유동이 발생하게 된다.
도 1에서 수지상 부분의 “-” 부분은 용질 농도가 감소된 것을 나타내며, 액상 부분의 “+”는 수지상으로부터 배출된 용질로 인하여 농도가 증가된 것을 의미한다. 도 1에는 “+” 기호를 이용하여 액상 내 용질의 농도가 영역 A에서 영역 B로 갈수록 감소하는 것을 표시하고 있다, 예를 들어, 아직 응고가 일어나지 않은 영역(영역 B)에서는 최초 용탕의 액상 밀도 ρ0를 유지하나 응고가 일어나고 있는 수지상간 영역에서는 용질원자의 종류에 따라 ρ0에 비해 더 높거나 낮은 액상 밀도 ρ1을 가지게 된다.
이렇게 니켈계 초내열합금을 주조하는 과정 중에 발생되는 ρ1과 ρ0의 차이인 △ρ의 값을 최소화할 경우 액상의 밀도 차이에 기인한 액상의 유동이 억제됨에 따라 거시적 편석의 발생이 억제되게 된다.
본 발명자는 니켈계 초내열합금의 주조결함의 발생원인 중의 하나가 액상의 밀도차이에 기인한 액상의 유동이라는 점을 고려하여 첨가되는 합금원소를 변화시켜 응고되는 고상 주변의 액상밀도의 차이를 감소시킴으로써 주조결함의 발생 가능성을 억제할 수 있음을 확인하였다.
특히 크리프수명 및 액상의 밀도차이를 변수로 하는 파라메터를 도출하고, 이러한 파라메터가 몰리브덴 및 텅스텐의 함량에 따라 어떻게 변화되는지를 분석함으로써 우수한 크리프수명과 함께 낮은 액상 밀도이 차이 을 가질 수 있는 최적의 텅스텐과 몰리브덴의 함량 범위를 도출하였다.
응고가 진행됨에 따라 달라지는 고상과 액상의 조성을 산출하는 모델인 샤일의 식(Scheil‘s equation)에 따르면 응고 도중 고상의 조성(CS) 및 액상의 조성(CL)은 아래 식과 같이 나타낸다.
CL=C0 (fL)(k-1), CS= kCo(1-fs)k-1
(C0는 합금의 조성, k는 CS/CL로 상태도에서 계산되는 분배계수, fS와 fL은 각각 고상 분율과 액상 분율임)
열역학 계산 프로그램인 JMatPro를 이용하면 합금원소들의 분배계수를 알 수 있고 위의 식을 바탕으로 응고가 진행됨에 따른 즉, 고상분율 또는 온도에 따른 고상 및 액상의 조성을 계산할 수 있다. 액상의 조성이 결정되면 각 합금원소의 밀도와 조성을 고려하여 액상의 밀도를 산출한다. 액상의 밀도 계산은 다음과 같은 방법으로 도출하였다. 온도가 T 일때 액상에서 융점이 Ti mp인 합금원소 i 의 몰부피(molar volume) MVi L 는 다음 식과 같이 주어진다.
Figure PCTKR2018005366-appb-I000001
Figure PCTKR2018005366-appb-I000002
여기서 αi L 은 합금원소 i의 액체상태에서의 열팽창계수, TLiq는 합금의 액상선 온도(liquidus temperature) 이다. 주어진 중량의 조성을 알고 있는 합금의 경우 각 합금원소의 몰 수 ai를 알 수 있고 주어진 온도 T에서의 합금의 액상 밀도는 다음과 같이 구해질 수 있다.
Figure PCTKR2018005366-appb-I000003
본 발명에서는 열역학 계산 프로그램인 JMatPro를 이용하여 샤일의 식(Scheil‘s equation)에 적용되는 고상 분율이 35% (fs=0.35)일 때 고상에 인접한 액상의 밀도를 ρi 로 하고 액상선(liquidus) 온도에서의 원래 합금의 조성을 가진 액상의 밀도를 ρo로 하여 조성 변화에 따른 액상의 밀도차 (△ρ)를 계산하였다. 또한 해당 조성을 가지는 합금의 크리프수명(CL)와 △ρ를 조합한 파라메터 P를 도출하였다.
파라메터 P = CL / △ρ
CL: 크리프수명(hour)
△ρ: 조성 변화에 따른 액상의 밀도차(g/cm3)
크리프수명(CL)은 750℃, 350MPa 조건에서의 결과로서, 단위는 시간(hour)이다.
본 발명의 일 실시예를 따르는 단련용 초내열합금은, 중량%로, 10 내지 12의 코발트(Co), 17 내지 19의 크롬(Cr), 4.7 내지 5.7의 몰리브덴(Mo), 1.8 내지 3.2의 텅스텐(W), 0.05 내지 0.1의 탄소(C), 0.5 내지 2.0의 알루미늄(Al), 0.8 내지 2.0의 티타늄(Ti), 0.1 내지 1.0의 나이오븀(Nb), 0 초과 0.0008 이하의 붕소(B), 0초과 0.005 이하의 지르코늄(Zr) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함한다.
코발트(Co)의 조성은 10중량% 내지 12중량%를 만족할 수 있다. 코발트(Co)는 Ni 기지에 고용되어 기지를 강화하는 고용강화 역할을 하여 강도와 크리프 특성을 향상시킨다. 코발트(Co) 양이 10중량% 보다 적게 첨가되면 크리프 특성이 저하되고 12중량%를 넘어서면 다른 합금원소들과 결합하여 금속간 화합물을 형성하기 쉬우며 가격측면에서도 억제가 필요하다.
크롬(Cr)은 초내열합금에서 내식성과 내산화성을 향상시켜 주는 역할을 하는 반면, 탄화물이나 텅스텐(W)이나 몰리브덴(Mo)이 첨가되어 있는 경우 기계적 특성을 저하시킬 수 있는 TCP(Topologically Close Packed) 상의 생성을 촉진시킬 수 있다. 17.0% 보다 적게 첨가되면 내식성에 문제가 발생하고, 19.0%보다 많이 첨가되면 고온에서 장시간 노출 시 기계적 특성에 나쁜 영향을 주는 TCP상이 생성될 수 있다.
탄소는 Ti, W, Mo, Cr 등과 결합하여 MC, M6C 또은 M23C6 형태의 탄화물을 형성하여 결정립계 미세화에 기여하며, 탄화물을 입계에 형성시킴으로써 결정립계 강도를 향상시킨다. 탄소함량이 0.05% 이하에서는 충분한 탄화물이 형성되지 않고 0.1%를 넘어서면 지나치게 많은 탄화물이 형성되어 연성, 가공성등이 저하되므로 함량을 0.05~0.1%로 정했다.
알루미늄은 니켈계 초내열합금의 주 강화상인 γ'의 구성 원소이므로, 고온 크리프 특성 향상에 절대적으로 필요한 원소이다. 또한, 내산화성 향상에도 기여한다. 하지만, 0.5% 보다 작을 때는 석출상 형성에 의한 강도향상 효과를 보기 어렵고 2.0% 보다 많으면 과도한 γ' 상의 석출로 연성을 저하 저하시키고 γ'의 고용온도를 높여 열간가공을 어렵게 한다.
티타늄은 알루미늄과 마찬가지로 γ' 상의 구성원소로 고온 강도 향상에 도움을 주며 내식성 향상에도 기여하므로 0.8% 이상 첨가한다. 그러나 과도하게 첨가될 경우 연성이 감소하고, eta상과 같은 불필요한 상을 생성 시킬 수 있으므로 2.0%로 제한된다.
나이오븀(Nb)은 주로 초내열합금 주 강화상인 γ' 상에 고용되어 γ' 상을 강화시키는 역할을 하며, 이를 통해 고온 강도의 향상에 기여하므로 0.1%이상 첨가한다. 그러나 과도하게 첨가될 경우 연성과 인성을 저하시키고 가공성이 저하되므로 1.0%이하로 제한한다.
붕소(B)는 결정립계에 편석되어 입계 강도를 향상시키고 결정립 성장을 억제시킨다. 그러나 과도하게 첨가되면 기지의 융점을 저하시켜서 열간 가공성을 저하시키고, 연성이 저하되므로 0.008%이하로 함량을 제한한다.
지르코늄(Zr)은 결정립계에 편석하여 입계강도를 향상시킨다. 그러나 과도하게 첨가되면 합금의 인성을 저하시키기 때문에 0.05% 이하로 함량을 제한한다.
몰리브덴(Mo)은 및 텅스텐(W)은 고용강화 원소로 니켈계 초내열합금의 고온 크리프 특성을 향상시키는 역할을 한다.
그러나 소정의 함량을 초과할 경우 밀도가 높아지고 TCP상이 많이 생성되어 상안정성이 저하된다. 텅스텐(W)의 경우는 거시적 편석이나 프렉클(freckle)과 같은 주조 결함의 발생 가능성이 증가시킨다. 따라서 본 발명에서 몰리브덴(Mo)의 조성은 4.7중량% 내지 5.7중량% 범위을 가지며, 텅스턴(W)은 1.8중량% 내지 3.2중량%의 범위를 가진다. 또한 상기 몰리브덴(Mo)의 함량([Mo]) 및 상기 텅스텐(W)의 함량([W])은 하기 수학식 1을 만족한다.
수학식 1 : 5.6 ≤[Mo]+[W]/2≤7.3
([Mo] 및 [W]는 각각 몰리브덴(Mo) 및 텅스텐(W)의 함량(중량%))
또한 상기 조성 범위를 가지는 합금 용탕을 이용한 주조공정 중 고상분율(fs)이 0.35일때 고상에 인접한 액상의 밀도(ρi)와 액상선 온도에서의 액상의 밀도(ρo) 차이인 △ρ와, 크리프수명 CL 간에 하기 수학식 2를 만족한다.
수학식 2 : 45000 ≤CL / △ρ≤54870
(CL의 단위는 시간 , △ρ의 단위는 g/cm3)
이하에서는 서로 다른 조성을 가지는 니켈계 초내열합금의 실험예들에 따른 CL , △ρ 및 파라메터 P의 결과를 설명하고, 이로부터 본 발명에서 제시한 몰리브덴(Mo) 및 텅스텐(W) 함량의 한정 이유에 대해서 구체적으로 설명한다.
표 1에는 본 발명의 실험예들에 사용된 합금조성이 나타나 있으며, 표 2에는 각 실험예에 따른 CL , △ρ 및 파라메터 P 값이 도시되어 있다. 표 1의 합금조성은 중량%이다.
실험예 Cr Co Mo W Mo+W/2 Al Ti Nb C B Zr Ni
1 18 11 3.7 1.4 4.4 1.2 1.8 0.5 0.08 0.004 0.04 잔부
2 18 11 4 2 5 1.2 1.8 0.5 0.08 0.004 0.04 잔부
3 18 11 4 3 5.5 1.2 1.8 0.5 0.08 0.004 0.04 잔부
4 18 11 4.7 1.8 5.6 1.2 1.8 0.5 0.08 0.004 0.04 잔부
5 18 11 5 2 6 1.2 1.8 0.5 0.08 0.004 0.04 잔부
6 18 11 5.5 2.5 6.75 1.2 1.8 0.5 0.08 0.004 0.04 잔부
7 18 11 5.7 3.2 7.3 1.2 1.8 0.5 0.08 0.004 0.04 잔부
8 18 11 5 5 7.5 1.2 1.8 0.5 0.08 0.004 0.04 잔부
9 18 11 5.5 5 8 1.2 1.8 0.5 0.08 0.004 0.04 잔부
10 18 11 5.9 6.5 9.15 1.2 1.8 0.5 0.08 0.004 0.04 잔부
실험예 △ρ(g/cm3) CL(hours) P (hours·cm3/g)
1 0.00940 267 28457
2 0.01003 311 31024
3 0.00956 336 35134
4 0.00736 334 45404
5 0.00666 361 54195
6 0.00770 422 54870
7 0.00996 489 49086
8 0.01757 603 34299
9 0.01895 641 33845
10 0.02117 848 40067
도 2에는 ([Mo]+[W]/2)에 따른 크리프수명의 변화가 나타나 있으며, 도 3에는 ([Mo]+[W]/2)에 따른 △ρ 값의 변화가 나타나 있다.
도 2를 참조하면, ([Mo]+[W]/2)가 증가함에 따라 거의 선형적으로 크리프수명이 증가되는 것을 확인할 수 있다. 도 3을 참조하면, 상대적으로 낮은 △ρ값을 보이는 구간이 5. 5 내지 7.5 범위 내에 존재함을 확인할 수 있다.
이러한 결과로부터, 본 발명자는 파라메터 P(parameter P)는 합금의 조성 중 ([Mo]+[W]/2)에 대해서 뚜렷한 임계적 의의를 가지는 구간이 존재함을 확인하였으며, 이를 도 4에 도시하였다.
도 4를 참조하면, ([Mo]+[W]/2)의 값이 5.5 초과 7.5 미만의 범위일 때 파라메터 P의 값이 35000 내지 55000의 범위를 나타낸다. 보다 구체적으로는, ([Mo]+[W]/2)의 값이 5.6 내지 7.3의 범위일 때 파라메터 P의 값은 45000 내지 54870의 범위를 나타낸다.
즉, 이는 ([Mo]+[W]/2)가 상술한 범위의 값을 가질 경우, 크리프수명 및 거시적 편석의 발생가능성이 최적으로 조합된 합금을 얻을 수 있다는 것을 의미한다.
즉, 몰리브덴의 함량이 4중량% 이하이고 텅스텐의 함량이 3중량% 이하일 경우 크리프수명은 267 내지 336 범위로 비교적 낮은 값을 가지며, △ρ는 0.00940 내지 0.0010으로서 비교적 높은 값을 가진다. 즉, 이 범위는 상대적으로 낮은 크리프수명을 가지면서도 주조 결함의 발생 가능성이 높다는 것을 의미한다.
또한 몰리브덴 및 텅스텐의 함량이 5보다 클 경우에는 크리프수명은 600 이상으로서 우수한 값을 나타내나 △ρ는 0.0175 이상으로서 높은 값을 나타낸다. 즉, 본 조성범위의 합금은 높은 몰리브덴 및 텅스텐 함량으로 인하여 크리프 특성은 우수해지지만 액상의 밀도 차이가 커서 이로 인해 주조시 거시적 편석의 발생 가능성이 커진다는 것을 의미한다.
종합적으로 본 발명에 의하면, 몰리브덴 및 텅스텐의 함량을 크리프수명 확보 및 액상 밀도 차이의 최소화 관점에서 제어하여 주조 중에 발생되는 거시적인 편석이나 국부적인 주조결함을 최대한 억제하면서도 동시에 우수한 크리프 특성을 가질 수 있는 단련용 니켈계 초내열합금을 제공할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (2)

  1. 단련용 니켈계 초내열합금으로서,
    중량%로, 10 내지 12의 코발트(Co), 17 내지 19의 크롬(Cr), 4.7 내지 5.7의 몰리브덴(Mo), 1.8 내지 3.2의 텅스텐(W), 0.05 내지 0.1의 탄소(C), 0.5 내지 2.0의 알루미늄(Al), 0.8 내지 2.0의 티타늄(Ti), 0.1 내지 1.0의 나이오븀(Nb), 0 초과 0.0008 이하의 붕소(B), 0초과 0.005 이하의 지르코늄(Zr) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함하는 조성범위를 가지며,
    상기 몰리브덴(Mo)의 함량([Mo]) 및 상기 텅스텐(W)의 함량([W])은 하기 수학식 1을 만족하는,
    크리프 강도가 우수한 단련용 Ni계 초내열합금.
    수학식 1 : 5.6 ≤[Mo]+[W]/2≤7.3
    ([Mo] 및 [W]는 각각 몰리브덴(Mo) 및 텅스텐(W)의 함량(중량%))
  2. 제 1 항에 있어서,
    상기 조성 범위를 가지는 합금 용탕을 이용한 주조공정 중 고상분율(fs)이 0.35일때 고상에 인접한 액상의 밀도(ρi)와 액상선 온도에서의 액상의 밀도(ρo) 차이인 △ρ와, 크리프수명 CL 간에 하기 수학식 2를 만족하는,
    크리프 강도가 우수한 단련용 Ni계 초내열합금.
    수학식 2 : 45000 ≤CL / △ρ≤54870
    (CL의 단위는 시간(hour), △ρ의 단위는 g/cm3)
PCT/KR2018/005366 2018-02-26 2018-05-10 크리프 강도가 우수한 단련용 Ni계 초내열합금 WO2019164061A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0022716 2018-02-26
KR1020180022716A KR102114253B1 (ko) 2018-02-26 2018-02-26 크리프 강도가 우수한 Ni계 초내열합금 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2019164061A1 true WO2019164061A1 (ko) 2019-08-29

Family

ID=67687125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005366 WO2019164061A1 (ko) 2018-02-26 2018-05-10 크리프 강도가 우수한 단련용 Ni계 초내열합금

Country Status (2)

Country Link
KR (1) KR102114253B1 (ko)
WO (1) WO2019164061A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150277A (ja) * 1993-07-09 1995-06-13 Inco Alloys Internatl Inc 優れた応力破断強度および結晶粒度制御性を有するニッケル基合金
KR20060050963A (ko) * 2004-09-03 2006-05-19 헤인스 인터내셔널, 인코포레이티드 개선된 가스 터빈 엔진을 위한 Ni-Cr-Co 합금
KR20100108431A (ko) * 2008-02-13 2010-10-06 더 재팬 스틸 워크스 엘티디 우수한 편석 성질을 갖는 니켈기 초합금
KR20110114928A (ko) * 2010-04-14 2011-10-20 한국기계연구원 크리프 특성이 우수한 단결정 니켈기 초내열합금
KR20120105693A (ko) * 2011-03-16 2012-09-26 한국기계연구원 크리프 특성이 향상된 단결정 니켈기 초내열합금

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725624B1 (ko) 2005-12-28 2007-06-08 한국기계연구원 니켈기 단결정 초내열합금

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150277A (ja) * 1993-07-09 1995-06-13 Inco Alloys Internatl Inc 優れた応力破断強度および結晶粒度制御性を有するニッケル基合金
KR20060050963A (ko) * 2004-09-03 2006-05-19 헤인스 인터내셔널, 인코포레이티드 개선된 가스 터빈 엔진을 위한 Ni-Cr-Co 합금
KR20100108431A (ko) * 2008-02-13 2010-10-06 더 재팬 스틸 워크스 엘티디 우수한 편석 성질을 갖는 니켈기 초합금
KR20110114928A (ko) * 2010-04-14 2011-10-20 한국기계연구원 크리프 특성이 우수한 단결정 니켈기 초내열합금
KR20120105693A (ko) * 2011-03-16 2012-09-26 한국기계연구원 크리프 특성이 향상된 단결정 니켈기 초내열합금

Also Published As

Publication number Publication date
KR20190102393A (ko) 2019-09-04
KR102114253B1 (ko) 2020-05-22

Similar Documents

Publication Publication Date Title
US5759301A (en) Monocrystalline nickel-base superalloy with Ti, Ta, and Hf carbides
US9856553B2 (en) Ni-based superalloy with excellent unsusceptibility to segregation
CN110512116A (zh) 一种多组元高合金化高Nb-TiAl金属间化合物
CN108441741B (zh) 一种航空航天用高强度耐腐蚀镍基高温合金及其制造方法
JP2013129880A (ja) Ni基鍛造合金と、それを用いたガスタービン
CN113265564B (zh) 一种长时稳定性好的高温合金及其制备方法
CN108396200A (zh) 一种钴基高温合金及其制备方法和在重型燃气轮机中的应用
JPH0239573B2 (ko)
EP0560070B1 (en) Titanium aluminide for precision casting and casting method using the same
CN114182140A (zh) 一种700℃机组用含钽铸造镍基高温合金及其制备方法
WO2019164061A1 (ko) 크리프 강도가 우수한 단련용 Ni계 초내열합금
EP0387976A2 (en) New superalloys and the methods for improving the properties of superalloys
US4092183A (en) Directionally solidified castings
US20050000603A1 (en) Nickel base superalloy and single crystal castings
JP2014051698A (ja) Ni基鍛造合金と、それを用いたガスタービン
CN107630152A (zh) 一种含钇和铪的镍基等轴晶合金及其热处理工艺和应用
US8241560B2 (en) Nickel base superalloy and single crystal castings
US10415423B2 (en) Austenite steel, and austenite steel casting using same
WO2019240460A1 (ko) 고온 크리프 특성과 내산화성이 우수한 니켈기 초내열 합금 및 그 제조방법
TWI663263B (zh) 高抗潛變等軸晶鎳基超合金
JP2020015049A (ja) 合金の製造方法
JP7160305B2 (ja) TiAl鋳造合金およびその製造方法
EP2913417B1 (en) Article and method for forming article
JPH0841566A (ja) 耐酸化ニッケル基単結晶合金及びその製造方法
JP4223627B2 (ja) ニッケル基単結晶耐熱超合金、その製造方法及びニッケル基単結晶耐熱超合金を用いたタービン翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906824

Country of ref document: EP

Kind code of ref document: A1