WO2019164012A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2019164012A1
WO2019164012A1 PCT/JP2019/007251 JP2019007251W WO2019164012A1 WO 2019164012 A1 WO2019164012 A1 WO 2019164012A1 JP 2019007251 W JP2019007251 W JP 2019007251W WO 2019164012 A1 WO2019164012 A1 WO 2019164012A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
electrical steel
oriented electrical
groove
Prior art date
Application number
PCT/JP2019/007251
Other languages
English (en)
French (fr)
Inventor
濱村 秀行
新井 聡
隆史 片岡
俊介 奥村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980014946.4A priority Critical patent/CN111742068B/zh
Priority to BR112020017171-9A priority patent/BR112020017171B1/pt
Priority to RU2020129393A priority patent/RU2765033C1/ru
Priority to JP2019526341A priority patent/JP6614398B1/ja
Priority to PL19758237.2T priority patent/PL3760746T3/pl
Priority to KR1020207026301A priority patent/KR102478773B1/ko
Priority to US16/971,617 priority patent/US11393612B2/en
Priority to EP19758237.2A priority patent/EP3760746B1/en
Publication of WO2019164012A1 publication Critical patent/WO2019164012A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet. This application claims priority based on Japanese Patent Application No. 2018-032552 filed in Japan on February 26, 2018, the contents of which are incorporated herein by reference.
  • This grain-oriented electrical steel sheet in which magnetic domains are subdivided by grooves formed on the surface by laser processing (see, for example, Patent Document 1).
  • This grain-oriented electrical steel sheet is used for, for example, a wound core of a wound transformer (transformer).
  • the wound iron core is wound in a state where a plurality of grain-oriented electrical steel sheets are laminated.
  • strain relief annealing is performed to remove the deformation strain (bending strain) of the wound core.
  • the wound iron core is heated to about 800 ° C.
  • the wound iron core formed by the grain-oriented electrical steel sheet having grooves formed on the surface by laser processing is subjected to strain relief annealing, the iron loss of the wound iron core (directional magnetic steel sheet) may deteriorate (increase). .
  • the inventor of the present application has studied a wound core made of a grain-oriented electrical steel sheet in which a groove has been formed.
  • a distortion occurs in the steel sheet structure at the bottom of the groove, and this distortion is finally applied to the wound core. It was found that it affects iron loss. Furthermore, the present inventor has found that the iron loss of the wound core can be reduced by controlling this strain, and has reached the present invention.
  • an object of the present invention is to suppress the deterioration of the core loss of the wound core due to the strain relief annealing in the manufacturing process of the wound transformer.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the grain-oriented electrical steel sheet according to the first aspect is a grain-oriented electrical steel sheet having a groove formed on a surface thereof, wherein a cross-section of the grain-oriented electrical steel sheet orthogonal to the groove has a thickness direction of the grain-oriented electrical steel sheet with respect to the groove.
  • the KAM value in the region on the center side and in which the one side is in contact with the groove bottom of the groove and the length of one side is surrounded by a square of 50 ⁇ m is 0.1 or more and 3.0 or less.
  • the groove is preferably a laser groove.
  • the KAM value is preferably 0.1 or more and 2.0 or less.
  • FIG. 1 is a cross-sectional photograph including a portion where grooves are formed in the surface layer portion of a grain-oriented electrical steel sheet constituting a wound iron core subjected to strain relief annealing.
  • FIG. 2 is a graph showing the result of analyzing the crystal orientation difference at the analysis position of the grain-oriented electrical steel sheet shown in FIG. 1 by EBSD (Electron Back Scatter Diffraction).
  • FIG. 3 is a cross-sectional view schematically showing the structure of the groove peripheral region in the grain-oriented electrical steel sheet before being subjected to strain relief annealing (before SRA).
  • FIG. 4 is a schematic diagram showing pixels used for EBSD mapping.
  • FIG. 1 is a cross-sectional photograph including a portion where grooves are formed in the surface layer portion of a grain-oriented electrical steel sheet constituting a wound iron core subjected to strain relief annealing.
  • FIG. 2 is a graph showing the result of analyzing the crystal orientation difference at the analysis position of the grain-oriented electrical steel
  • FIG. 5 shows the KAM value in the region around the groove of the grain-oriented electrical steel sheet before the strain relief annealing, the iron loss improvement rate of the wound core after the strain relief annealing, and the iron loss of the single plate before the strain relief annealing. It is a graph which shows the relationship with an improvement rate (SST improvement rate).
  • FIG. 6 shows the relationship between the threading plate tension in the laser groove forming process, the iron loss improvement rate of the wound core after the strain relief annealing, and the iron loss improvement rate (SST improvement rate) of the single plate before the strain relief annealing. It is a graph which shows.
  • FIG. 7 shows the KAM value in the region around the groove of the grain-oriented electrical steel sheet before the strain relief annealing, the iron loss improvement rate of the wound core after the strain relief annealing, and the iron loss of the single plate before the strain relief annealing. It is a graph which shows the relationship with an improvement rate (SST improvement rate).
  • FIG. 8 shows the relationship between the cooling rate in the insulating film forming process, the iron loss improvement rate of the wound iron core after the strain relief annealing, and the iron loss improvement rate (SST improvement rate) of the single plate before the strain relief annealing. It is a graph to show.
  • FIG. 8 shows the relationship between the cooling rate in the insulating film forming process, the iron loss improvement rate of the wound iron core after the strain relief annealing, and the iron loss improvement rate (SST improvement rate) of the single plate before the strain relief annealing. It is a graph to show.
  • the grain-oriented electrical steel sheet of this embodiment is an electrical steel sheet in which the easy axis of crystal grains (the ⁇ 100> direction of body-centered cubic crystals) is substantially aligned in the rolling direction described later. Further, the grain-oriented electrical steel sheet has a plurality of magnetic domains whose magnetization is oriented in the rolling direction.
  • a plurality of grooves are formed on the surface of the grain-oriented electrical steel sheet of the present embodiment by laser processing.
  • the plurality of grooves extend in the width direction of the grain-oriented electrical steel sheet and are arranged at intervals in the rolling direction.
  • the magnetic domains of the grain-oriented electrical steel sheet are subdivided by these grooves.
  • This grain-oriented electrical steel sheet is easily magnetized in the rolling direction described later. Therefore, it is suitable for a wound core (iron core material) of a wound transformer in which the direction of flow of magnetic lines of force is substantially constant.
  • a wound iron core for example, a plurality of grain-oriented electrical steel sheets are wound in a stacked state.
  • the steel sheet main body of the grain-oriented electrical steel sheet of this embodiment is made of an iron alloy containing Si.
  • the composition of the steel sheet main body is Si: 2.0% by mass or more and 4.0% by mass or less, C: 0.003% by mass or less, Mn: 0.05% by mass or more and 0.15% by mass or less, acid-soluble Al: 0.003% by mass or more and 0.040% by mass or less, N: 0.002% by mass or less, S: 0.020% by mass or less, and the balance is Fe and impurities.
  • the thickness of the steel plate body is, for example, not less than 0.15 mm and not more than 0.35 mm.
  • the surface of the steel plate body is coated with a glass coating.
  • the glass coating is composed of a composite oxide such as forsterite (Mg 2 SiO 4 ), spinel (MgAl 2 O 4 ), and cordierite (Mg 2 Al 4 Si 5 O 18 ).
  • the thickness of this glass coating is, for example, 1 ⁇ m.
  • the glass coating is further coated with an insulating coating.
  • the insulating coating is, for example, an insulating coating agent (coating solution) mainly composed of colloidal silica and phosphate (magnesium phosphate, aluminum phosphate, etc.), or an insulating coating agent (coating solution) in which alumina sol and boric acid are mixed. It is constituted by.
  • the production method of grain-oriented electrical steel sheet includes, for example, a casting process, a hot rolling process, an annealing process, a cold rolling process, a decarburizing annealing process, an annealing separating agent coating process, a final finish annealing process, an insulating coating agent coating process, and a flatness.
  • a slab is formed by continuous casting.
  • the slab is hot rolled to form a hot rolled steel sheet having a predetermined thickness.
  • the annealing step the hot-rolled steel sheet is annealed at a predetermined temperature, for example, 1100 ° C.
  • a rolling direction corresponds with the longitudinal direction of a cold rolled steel plate (directional magnetic steel plate).
  • the cold-rolled steel sheet is decarburized and annealed (continuous annealing) at a predetermined temperature (for example, 700 ° C. to 900 ° C.).
  • a predetermined temperature for example, 700 ° C. to 900 ° C.
  • the cold-rolled steel sheet is decarburized and primary recrystallization (crystal grain size: 10 to 30 ⁇ m) occurs in the cold-rolled steel sheet.
  • the steel sheet can be nitrided by heat treatment in an ammonia-containing atmosphere during or after decarburization annealing (for example, 150 to 300 ppm).
  • an annealing separator containing MgO as a main component is applied to the surface of the cold-rolled steel sheet. Thereafter, the cold rolled steel sheet is wound in a coil shape.
  • the cold rolled steel sheet wound in a coil shape is annealed (batch annealing) at a predetermined temperature (for example, about 1200 ° C.) and for a predetermined time (for example, about 20 hours). .
  • a predetermined temperature for example, about 1200 ° C.
  • a predetermined time for example, about 20 hours.
  • the cold-rolled steel sheet contains inhibitors such as MnS and AlN, for example.
  • inhibitors such as MnS and AlN, for example.
  • crystal grains of Goth orientation in which easy axes of magnetization are substantially aligned in the rolling direction preferentially grow.
  • a grain-oriented electrical steel sheet having high crystal orientation is formed.
  • an insulating coating agent (coating liquid) that has electrical insulation and can impart a predetermined tension to the surface of the grain-oriented electrical steel sheet is applied to the surface of the grain-oriented electrical steel sheet.
  • the grain-oriented electrical steel sheet is annealed at a predetermined temperature (for example, 800 ° C. to 850 ° C.) and for a predetermined time (for example, 10 seconds to 120 seconds) while being transported by the transport device.
  • a predetermined temperature for example, 800 ° C. to 850 ° C.
  • a predetermined time for example, 10 seconds to 120 seconds
  • tensile_strength sheet feeding tension
  • tenstrength is provided to a directional electromagnetic steel plate from the conveying apparatus to the rolling direction (longitudinal direction) of a directional electromagnetic steel plate.
  • the insulating coating agent is baked on the surface of the grain-oriented electrical steel sheet, and the surface of the grain-oriented electrical steel sheet is insulated by the insulating coating agent. Thereafter, the grain-oriented electrical steel sheet is cooled.
  • a plurality of grooves are formed by laser processing on the surface of the grain-oriented electrical steel sheet conveyed by the conveying device.
  • the grain-oriented electrical steel sheet is transported to a laser irradiation apparatus by a transport device.
  • a tension (threading plate tension) of 2 MPa or more and 15 MPa or less is applied to the grain-oriented electrical steel sheet in the rolling direction (longitudinal direction) of the grain-oriented electrical steel sheet from the conveying device.
  • the laser beam emitted from the laser irradiation device is irradiated (scanned) onto the surface of the directional electromagnetic steel sheet along the width direction of the directional electromagnetic steel sheet.
  • the plate tension is more preferably in the range of 2 MPa to 9 MPa.
  • the laser grooves are formed at a predetermined interval (pitch) in the rolling direction of the grain-oriented electrical steel sheet.
  • the type of the laser beam is, for example, a fiber laser, a YAG laser, or a CO 2 laser.
  • the wavelength of the laser beam is, for example, 1070 to 1090 nm or 10.6 ⁇ m.
  • the depth of each groove is, for example, 20 ⁇ m.
  • the width of the groove is set to 50 ⁇ m, for example.
  • the interval (pitch) of the grooves is 3 mm, for example.
  • an insulating coating agent (coating liquid) that has electrical insulation and can apply a predetermined tension to the surface of the steel sheet is applied to the surface of the grain-oriented electrical steel sheet.
  • the grain-oriented electrical steel sheet coated with the insulating coating agent is heated to a predetermined temperature (for example, 800 ° C. to 850 ° C.) and then cooled. Thereby, the insulating coating agent is baked on the surface of the grain-oriented electrical steel sheet, and the surface of the grain-oriented electrical steel sheet is insulated by the insulating coating agent. As a result, a grain-oriented electrical steel sheet is manufactured.
  • the re-insulating film forming process is an example of the insulating film forming process.
  • the grain-oriented electrical steel sheet is cooled at, for example, 20 ° C./s or more and 100 ° C./s or less. Thereby, a grain-oriented electrical steel sheet is manufactured.
  • a grain-oriented electrical steel sheet having a KAM value in the groove peripheral region of 0.1 or more and 0.3 or less by cooling at 20 ° C./s or more and 100 ° C./s or less. can get.
  • the cooling rate of the grain-oriented electrical steel sheet is adjusted by, for example, the amount of coolant or cooling air sprayed on the grain-oriented electrical steel sheet, or the conveyance speed of the grain-oriented electrical steel sheet.
  • the reinsulating film forming step is an example of an insulating film forming step.
  • the grain-oriented electrical steel sheet manufactured by the grain-oriented electrical steel sheet manufacturing method according to the present embodiment is used, for example, for a wound core of a winding transformer.
  • the wound iron core is wound in a state where a plurality of grain-oriented electrical steel sheets are laminated.
  • strain relief annealing is performed to remove deformation strain (bending strain) of the wound core.
  • the wound iron core is heated to about 800 ° C.
  • the iron loss of the wound iron core directional electromagnetic steel sheet
  • FIG. 1 shows a cross-sectional structure of the wound core 20 that has been subjected to strain relief annealing at 800 ° C. for 2 hours in the manufacturing process of the wound transformer.
  • the wound iron core 20 is formed of the grain-oriented electrical steel sheet 10 in which the grooves 12 are formed on the surface 10A in the laser groove forming step.
  • FIG. 1 has shown the structure
  • the thickness direction of the grain-oriented electrical steel sheet 10 with respect to the grooves 12 is increased.
  • a subgrain boundary 14 is generated on the center side (arrow X side).
  • the subgrain boundary means a low-angle grain boundary having a misorientation (crystal misorientation) of 15 ° or less.
  • FIG. 2 shows the analysis result of the crystal orientation difference on the center side in the thickness direction of the grain-oriented electrical steel sheet 10 with respect to the groove 12.
  • a cross section perpendicular to the steel sheet surface including the rolling direction of the grain-oriented electrical steel sheet 10 shown in FIG. 1 is polished almost undistorted with colloidal silica or colloidal alumina, and at a plurality of analysis points on the analysis position P, The crystal orientation difference was analyzed by EBSD (Electron Back Scatter Diffraction).
  • EBSD Electro Back Scatter Diffraction
  • the horizontal axis of the graph shown in FIG. 2 is the measurement point number from the left side of the crystal orientation measurement points arranged at equal intervals on the analysis position P in FIG.
  • the vertical axis of the graph shown in FIG. 2 is the crystal orientation difference (deg) at each analysis point.
  • the crystal orientation difference was an integrated value from a reference point (origin) where the subgrain boundary 14 does not exist.
  • the measurement points at which these integrated values were obtained were at a depth position 5 ⁇ m apart from the groove bottom shown in FIG. 1 in the X direction (the direction toward the center in the thickness direction of the directional electromagnetic steel sheet) from the groove bottom.
  • 29 measurement points were set at equal intervals (2 ⁇ m intervals) with respect to the range corresponding to the groove width along the direction parallel to the steel plate surface.
  • the leftmost measurement point of these measurement points is the subgrain boundary. 14 is determined as a reference point that does not exist.
  • the crystal orientation difference is 3 to 5 (deg). From this, it can be seen that the subgrain boundary 14 (see FIG. 1) has occurred on the center side (arrow X side) in the thickness direction of the grain-oriented electrical steel sheet 10 with respect to the groove 12. And when the subgrain boundary 14 generate
  • FIG. 3 schematically shows a cross section of the grain-oriented electrical steel sheet 10 before being subjected to strain relief annealing.
  • Grooves 12 are formed on the surface 10A of the grain-oriented electrical steel sheet 10 by laser processing.
  • the KAM value in the region (hereinafter referred to as “groove peripheral area”) 16 on the center side (arrow X side) in the thickness direction of the directional electromagnetic steel sheet 10 with respect to the groove 12 increases.
  • FIG. 1 is a cross section orthogonal to the groove 12 of the surface 10A of the grain-oriented electrical steel sheet 10. As shown in FIG. That is, FIG. 1 is a cross section of the grain-oriented electrical steel sheet 10 cut along the width direction. Further, the groove peripheral region 16 is, for example, a region on the center side (arrow X side) in the thickness direction of the directional electromagnetic steel sheet 10 with respect to the groove 12 in the cross section of the directional electromagnetic steel sheet 10 shown in FIG. Means a region surrounded by a square having a side length of 50 ⁇ m and in contact with the groove bottom 12A of the groove 12.
  • the groove bottom 12A of the groove 12 here means the deepest part (deepest part) of the groove 12.
  • the fact that one side of the square is in contact with the groove bottom 12A of the groove 12 means that the one side is parallel to the surface 10A of the directional electromagnetic steel sheet 10 and the one side is the groove bottom 12A (deepest part). It means the state of contact.
  • the measurement of the KAM (Kernel Average Misorientation) value is performed by subjecting the above-mentioned cross-section of the grain-oriented electrical steel sheet 10 to a non-strained cross-section by ion milling or the like, and an FE-SEM (Field Emission-Scanning Electron Microscope) EBSD (The crystal orientation difference can be analyzed and obtained by Electron BackScatter Diffraction.
  • the hexagonal pixel C is used, and the groove peripheral region 16 shown in FIG. 3 is mapped.
  • an average value of orientation differences between a specific pixel C A and six pixels C B adjacent to the pixel can be calculated, and this average value can be used as the KAM value of the predetermined pixel C A.
  • a step size of, for example, about 0.1 to 1 ⁇ m is defined in the groove peripheral region 16, set to a probe diameter of 10 nm, etc., and a considerable number, for example, 10,000 KAM values are calculated in the groove peripheral region 16, By adopting the maximum value among them, the KAM value of the groove peripheral region 16 can be determined.
  • the pixel to be used is not limited to the hexagonal pixel C shown in FIG. 4, and a pixel having another shape such as a square may be used.
  • the wound iron core formed by the grain-oriented electrical steel sheet 10 whose KAM value in the groove peripheral region 16 exceeds 3.0 is subjected to strain relief annealing in the manufacturing process of the winding transformer.
  • the wound iron core formed by the directional electrical steel sheet 10 having a KAM value of the groove peripheral region 16 of 0.1 or more and 3.0 or less is subjected to strain relief annealing in the manufacturing process of the winding transformer, the direction with respect to the groove 12 The grain boundary generated on the center side in the thickness direction of the magnetic steel sheet 10 is reduced, and the iron loss of the wound core is not deteriorated.
  • the directional electromagnetic steel sheet 10 has a pressure of 2 MPa or more so that the KAM value in the groove peripheral region 16 of the directional electromagnetic steel sheet 10 is 0.1 or more and 3.0 or less. , A plate tension of 15 MPa or less is applied.
  • the cooling rate of the grain-oriented electrical steel sheet 10 in the flattening annealing process so that the KAM value in the groove peripheral region 16 of the grain-oriented electrical steel sheet 10 is 0.1 or more and 3.0 or less. Is adjusted to 20 ° C./s or more and 100 ° C./s or less.
  • the KAM value in the groove peripheral region of the grain-oriented electrical steel sheet having grooves formed on the surface by laser processing was measured.
  • a 25 KVA single-layer wound core was produced from the grain-oriented electrical steel sheet whose KAM value was measured. And the produced wound iron core was strain-relief-annealed and the iron loss of the wound iron core (directional magnetic steel sheet) was measured.
  • the transformer iron loss was 36 W. The iron loss of the wound iron core due to the grain-oriented electrical steel sheet in which the groove is not formed is used as a reference value, and compared with the iron loss of the wound iron core due to the grain-oriented electrical steel sheet in which the KAM value is measured. %).
  • the grain-oriented electrical steel sheet was manufactured by the same manufacturing method as in the above embodiment.
  • the heating temperature (baking temperature) of the grain-oriented electrical steel sheet was set to 800 ° C. to 850 ° C.
  • the cooling rate of the grain-oriented electrical steel sheet was set to 20 ° C./s or more and 100 ° C./s or less.
  • B8 means the magnetic flux density [T] generated in the directional electrical steel sheet when the directional electrical steel sheet is magnetized in the rolling direction by a magnetizing force of 800 A / m.
  • the processing conditions for the grooves (laser grooves) formed on the surface of the grain-oriented electrical steel sheet are as follows.
  • Laser beam type Fiber laser Laser beam wavelength: 1080 nm
  • Laser beam output 1000W
  • Laser beam diameter 0.1 ⁇ 0.3 mm
  • Laser beam scanning speed 30 m / s Groove spacing (pitch): 3 mm
  • Groove depth 20 ⁇ m
  • Groove width 50 ⁇ m
  • Plate tension of grain-oriented electrical steel sheet 2 MPa or more and 15 MPa or less
  • FIG. 3 shows a cross section of the grain-oriented electrical steel sheet 10 in which the grooves 12 are formed on the surface 10A by laser processing.
  • the KAM value in the groove peripheral region 16 on the center side (arrow X side) in the thickness direction of the directional electromagnetic steel sheet 10 with respect to the groove 12 was measured.
  • the KAM value is an index that represents the degree of relative difference between the orientations of adjacent crystal grains in a predetermined cross section of the grain-oriented electrical steel sheet.
  • the cross-section of the grain-oriented electrical steel sheet 10 is subjected to non-strained cross-section processing by ion milling or the like, and by FE-SEM (Field Emission-Scanning Electron Microscope) The crystal orientation difference was analyzed.
  • the hexagonal pixel C was used to map the groove peripheral region 16.
  • an average value of orientation differences between the predetermined pixel C A and the six pixels C B adjacent to the pixel C A was calculated, and this average value was used as the KAM value of the predetermined pixel C A.
  • the maximum value of the KAM value of the pixel C in the groove peripheral region 16 is set as the KAM value of the groove peripheral region 16.
  • the step size S of the pixel C is, for example, 0.1 to 1 ⁇ m.
  • the probe diameter was 10 nm.
  • the step size is 0.5 ⁇ m. Therefore, 10,000 KAM values were calculated for the groove peripheral region 16 described above, and the maximum values were used as the KAM values of the groove peripheral region 16.
  • the iron loss improvement rate ⁇ of the wound iron core is the iron loss W0 of the wound iron core formed by the directional electromagnetic steel sheet in which no groove is formed, and the wound iron core formed by the directional electromagnetic steel sheet in which the groove is formed by laser processing.
  • (W0 ⁇ Wg) / W0 ⁇ 100 (1)
  • the iron losses W0 and Wg of the wound core were measured by a wattmeter after winding a primary winding (excitation winding) and a secondary winding (search coil) around the wound core.
  • FIG. 5 shows the KAM value in the region around the groove of the grain-oriented electrical steel sheet before strain relief annealing, the iron loss improvement rate ⁇ of the wound core (orientated electrical steel sheet) after strain relief annealing, and strain relief annealing.
  • SST improvement rate improvement rate based on the iron loss value measured by Single Sheet Test (JIS C2556 specification) of the previous single plate is shown.
  • the plot (symbol ⁇ ) indicated by reference sign D1 in FIG. 5 is the iron loss improvement rate ⁇ of the wound core formed on the grain-oriented electrical steel sheet having grooves formed on the surface by laser processing and subjected to strain relief annealing. is there.
  • symbol D2 in FIG. 5 is the iron loss improvement rate (eta) of the wound iron core by which the groove
  • the plot indicated by the symbol D0 (symbol ⁇ ) in FIG. 5 is the iron loss improvement rate (SST improvement rate) of the single plate before the strain relief annealing.
  • the iron loss improvement rate ⁇ of the grain-oriented electrical steel sheet is a well-known iron loss measurement based on the iron loss W0 of the grain-oriented electrical steel sheet in which no groove is formed and the iron loss Wg of the grain-oriented electrical steel sheet in which the groove is formed by laser processing. Each was measured by the SST (Single Sheet Tester) method, which was a method, and calculated from the formula (1). Therefore, when the iron loss improvement rate ⁇ of the wound core is lower than the iron loss improvement rate of the single plate before the strain relief annealing, the iron loss is deteriorated by the strain relief annealing.
  • the iron loss improvement rate ⁇ is an improvement in iron loss of a single plate. Since it is lower than the rate, it can be determined that the iron loss of the wound core has deteriorated.
  • the wound iron core formed of the grain-oriented electrical steel sheet in which the KAM value in the groove peripheral region exceeds 3.0 and subjected to strain relief annealing for example, as shown in FIG.
  • the subgrain boundaries 14 occurred on the center side (arrow X side) in the thickness direction.
  • the iron loss improvement rate ⁇ is The iron loss improvement rate of the single plate was equal to or higher than that of the single plate, and the iron loss of the wound core was reduced.
  • the cause of the deterioration of the iron loss of the wound iron core subjected to strain relief annealing is considered to be a sub-grain boundary generated on the central side in the thickness direction of the grain-oriented electrical steel sheet with respect to the groove in the wound iron core subjected to strain relief annealing.
  • the amount of subgrain boundaries is correlated with the KAM value in the groove peripheral region of the grain-oriented electrical steel sheet before being subjected to strain relief annealing.
  • the iron loss of the wound iron core deteriorates in the strain relief annealing of the winding transformer based on the KAM value in the groove peripheral region of the grain-oriented electrical steel sheet before the strain relief annealing. be able to. And in the manufacturing process of a grain-oriented electrical steel sheet, the iron loss of the wound iron core which carried out the strain relief annealing can be efficiently reduced by making small the KAM value of the groove peripheral area of a grain-oriented electrical steel sheet.
  • the KAM value in the groove peripheral region of the grain-oriented electrical steel sheet becomes smaller, subgrain boundaries generated in the wound iron core subjected to strain relief annealing decrease, and the iron loss of the wound iron core decreases. Is reduced. Therefore, it is preferable that the KAM value in the groove peripheral region is as small as possible.
  • laser processing can produce a KAM value of at least 0.1 due to its properties. Therefore, in this embodiment, the lower limit value of the KAM value is set to 0.1.
  • the etching method has aspects such as manufacturing cost and productivity. There is a problem. Therefore, the laser processing method is superior to the etching method in consideration of manufacturing cost, productivity, and the like.
  • FIG. 6 shows a graph showing the relationship between the threading tension of the grain-oriented electrical steel sheet in the laser groove forming step and the iron loss improvement rate ⁇ of the wound core subjected to strain relief annealing.
  • the iron loss improvement rate ⁇ of the wound iron core subjected to strain relief annealing becomes lower than the iron loss improvement rate (SST improvement rate) of the single plate. The iron loss of the wound iron core has deteriorated.
  • the plate tension of the grain-oriented electrical steel sheet is more preferably 9 MPa or less.
  • the threading plate tension in the laser groove forming step is preferably 2 MPa or more. This is because if the sheet passing tension is less than 2 MPa, the directional electromagnetic steel sheet being conveyed is likely to vibrate, and processing defects in laser processing are likely to occur.
  • FIG. 7 is a graph showing the relationship between the KAM value in the region around the groove of the grain-oriented electrical steel sheet before strain relief annealing and the iron loss improvement rate ⁇ of the wound iron core after strain relief annealing.
  • the KAM value in the groove peripheral region is 3.0 or less
  • the iron loss improvement rate ⁇ of the wound core is equal to or higher than the single plate iron loss improvement rate (SST improvement rate).
  • SST improvement rate single plate iron loss improvement rate
  • the KAM value in the groove peripheral region is more preferably 2.0 or less.
  • the cooling rate of the grain-oriented electrical steel sheet is changed, and the KAM value in the peripheral area of the grain-oriented electrical steel sheet is measured.
  • the iron loss improvement rate ⁇ of the wound iron core subjected to strain relief annealing was determined.
  • FIG. 8 shows a graph showing the relationship between the cooling rate of the grain-oriented electrical steel sheet in the reinsulating film forming process performed after the laser groove formation and the iron loss improvement rate ⁇ of the wound iron core subjected to strain relief annealing.
  • the iron loss improvement rate ⁇ of the wound core is the iron loss improvement rate of the single plate (SST improvement rate). Equal or higher.
  • the cooling rate exceeded 100 ° C./s, the iron loss improvement rate ⁇ of the wound core was lower than the iron loss improvement rate of the single plate, and the iron loss of the wound core was deteriorated.
  • the cooling rate of the grain-oriented electrical steel sheet is 75 ° C./s or less, the iron loss improvement rate ⁇ of the wound core was reliably higher than the iron loss improvement rate of the single plate, and the iron loss of the wound core was reduced. Therefore, the cooling rate of the grain-oriented electrical steel sheet is more preferably 75 ° C./s or less.
  • the cooling rate of the grain-oriented electrical steel sheet in the reinsulating film forming step performed after the laser groove formation is preferably 20 ° C./s or more. This is because when the cooling rate is less than 20 ° C./s, the manufacturability (cooling efficiency) of the grain-oriented electrical steel sheet decreases.
  • FIG. 9 is a graph showing the relationship between the KAM value in the region around the groove of the grain-oriented electrical steel sheet before the strain relief annealing and the iron loss improvement rate ⁇ of the wound core after the strain relief annealing.
  • the KAM value in the groove peripheral region is 3.0 or less
  • the iron loss improvement rate ⁇ of the wound core becomes higher than the iron loss improvement rate (SST improvement rate) of the single plate, and the iron loss is reduced. I was able to confirm that.
  • the measuring method of the KAM value in the groove peripheral area of the grain-oriented electrical steel sheet can be changed as appropriate. Further, for example, the size of the pixel C (see FIG. 4) when mapping the groove peripheral region can be changed as appropriate.
  • coating process and the planarization annealing process were performed between the final finish annealing process and the laser groove formation process.
  • the insulating coating agent coating step and the planarization annealing step may be performed after the laser groove forming step. That is, the final finish annealing step, the laser groove forming step, the heat treatment step, the insulating coating agent coating step, and the planarization annealing step may be performed in this order. In this case, since the re-insulating film forming step is not necessary, the number of steps in the production process of the grain-oriented electrical steel sheet is reduced.
  • the present invention is not limited to these embodiments, and one embodiment and various modifications may be appropriately combined and the gist of the present invention. Needless to say, the present invention can be implemented in various forms without departing from the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本実施形態に係る方向性電磁鋼板は、表面に溝が形成された方向性電磁鋼板であって、前記溝と直交する前記方向性電磁鋼板の断面において、前記溝に対する前記方向性電磁鋼板の厚み方向の中央側の領域で、かつ、一辺が前記溝の溝底に接するとともに一辺の長さが50μmの正方形で囲まれた領域内のKAM値が、0.1以上、3.0以下であることを特徴とする。

Description

方向性電磁鋼板
 本発明は、方向性電磁鋼板に関する。
 本願は、2018年2月26日に、日本に出願された特願2018-032552号に基づき優先権を主張し、その内容をここに援用する。
 レーザ加工によって表面に形成された溝により、磁区が細分化された方向性電磁鋼板がある(例えば、特許文献1参照)。この方向性電磁鋼板は、例えば、巻トランス(変圧器)の巻鉄心に用いられる。巻鉄心では、複数の方向性電磁鋼板が積層された状態で巻かれる。
 巻トランスの製造工程では、巻鉄心の変形ひずみ(曲げひずみ)を取り除くひずみ取り焼鈍が行われる。ひずみ取り焼鈍では、例えば、巻鉄心が約800℃に加熱される。
日本国特許第5234222号公報
 しかしながら、レーザ加工によって表面に溝を形成した方向性電磁鋼板によって形成された巻鉄心がひずみ取り焼鈍されると、巻鉄心(方向性電磁鋼板)の鉄損が劣化(増加)する可能性がある。
本願の発明者は、溝を形成した方向性電磁鋼板による巻鉄心について研究したところ、レーザ加工によって溝を形成すると、溝底部の鋼板組織に歪が発生し、この歪が最終的に巻鉄心の鉄損に影響することを知見した。さらに本発明者は、この歪を制御することで巻鉄心の鉄損を低減できることを知見し、本願発明に到達した。
本発明は、前記の事実を考慮し、巻トランスの製造工程において、ひずみ取り焼鈍による巻鉄心の鉄損の劣化を抑制することを目的とする。
本発明は、以上の知見に基づいて完成したものであり、その要旨は以下の通りである。
第1態様に係る方向性電磁鋼板は、表面に溝が形成された方向性電磁鋼板において、前記溝と直交する前記方向性電磁鋼板の断面において、前記溝に対する前記方向性電磁鋼板の厚み方向の中央側の領域で、かつ、一辺が前記溝の溝底に接するとともに一辺の長さが50μmの正方形で囲まれた領域内のKAM値が、0.1以上、3.0以下であることを特徴とする。
本形態に係る方向性電磁鋼板において、前記溝がレーザ溝であることが好ましい。
 本形態に係る方向性電磁鋼板において、前記KAM値が、0.1以上、2.0以下であることが好ましい。
 前記態様によれば、巻トランスの製造工程において、ひずみ取り焼鈍による巻鉄心の鉄損の劣化を抑制することができる。
図1は、ひずみ取り焼鈍された巻鉄心を構成する方向性電磁鋼板の表層部において、溝を形成した部分を含む断面写真である。 図2は、図1に示される方向性電磁鋼板の解析位置における結晶方位差について、EBSD(Electron BackScatter Diffraction)によって解析した結果を示すグラフである。 図3は、ひずみ取り焼鈍される前(SRA前)の方向性電磁鋼板における溝周辺領域の組織を模式的に示す断面図である。 図4は、EBSDのマッピングに用いたピクセルを示す模式図である。 図5は、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率と、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率)との関係を示すグラフである。 図6は、レーザ溝形成工程の通板張力と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率と、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率)との関係を示すグラフである。 図7は、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率と、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率)との関係を示すグラフである。 図8は、絶縁被膜形成工程の冷却速度と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率と、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率)との関係を示すグラフである。 図9は、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率と、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率)との関係を示すグラフである。
以下、本発明に係る方向性電磁鋼板の実施形態について説明する。なお、以下に記載する実施形態は、本発明の趣旨をより良く理解させるために記載するものであり、本発明に係る方向性電磁鋼板は以下の実施形態の記載に制限されるものではない。
 以下、図面を参照しながら、一実施形態について説明する。
(方向性電磁鋼板)
 本形態の方向性電磁鋼板は、結晶粒の磁化容易軸(体心立方晶の<100>方向)が、後述する圧延方向に略揃った電磁鋼板である。また、方向性電磁鋼板は、圧延方向に磁化が向いた複数の磁区を有している。
 本形態の方向性電磁鋼板の表面には、レーザ加工によって複数の溝が形成されている。複数の溝は、方向性電磁鋼板の幅方向に延びるとともに、圧延方向に間隔を空けて配列されている。これらの溝によって、方向性電磁鋼板の磁区が細分化されている。この方向性電磁鋼板は、後述する圧延方向に磁化し易い。そのため、磁力線が流れる方向が略一定な巻トランスの巻鉄心(鉄心材料)に適している。巻鉄心では、例えば、複数の方向性電磁鋼板が積層された状態で巻かれる。
 本形態の方向性電磁鋼板の鋼板本体は、Siを含有する鉄合金で構成されている。
鋼板本体の組成は、一例として、Si;2.0質量%以上4.0質量%以下、C;0.003質量%以下、Mn;0.05質量%以上0.15質量%以下、酸可溶性Al;0.003質量%以上0.040質量%以下、N;0.002質量%以下、S;0.020質量%以下、残部がFe及び不純物である。鋼板本体の厚さは、例えば0.15mm以上で、かつ0.35mm以下である。
 鋼板本体の表面は、グラス被膜で被膜されている。グラス被膜は、例えば、フォルステライト(MgSiO)、スピネル(MgAl)及びコージライト(MgAlSi18)、といった複合酸化物によって構成されている。このグラス被膜の厚さは、例えば1μmである。
 グラス被膜は、絶縁被膜でさらに被膜されている。絶縁被膜は、例えば、コロイド状シリカとリン酸塩(リン酸マグネシウム、リン酸アルミニウムなど)を主体とする絶縁被膜剤(コーティング液)、又はアルミナゾルとホウ酸を混合した絶縁被膜剤(コーティング液)によって構成されている。
(方向性電磁鋼板の製造方法)
 次に、方向性電磁鋼板の製造方法の一例について説明する。方向性電磁鋼板の製造方法は、例えば、鋳造工程、熱間圧延工程、焼鈍工程、冷間圧延工程、脱炭焼鈍工程、焼鈍分離剤塗布工程、最終仕上げ焼鈍工程、絶縁被膜剤塗布工程、平坦化焼鈍工程、レーザ溝形成工程、熱処理工程、及び再絶縁被膜形成工程を備える。
(鋳造工程~焼鈍工程)
 先ず、鋳造工程(連続鋳造工程)において、連続鋳造によりスラブが形成される。
次に、熱間圧延工程において、スラブが熱間圧延され、所定厚さの熱間圧延鋼板が形成される。次に、焼鈍工程において、熱間圧延鋼板が所定温度、例えば、1100℃で焼鈍される。
(冷間圧延工程)
 次に、冷間圧延工程において、熱間圧延鋼板が所定方向(以下、「圧延方向」という)に引き延ばされ、所定厚さの鋼板(冷間圧延鋼板)が形成される。なお、圧延方向は、冷間圧延鋼板(方向性電磁鋼板)の長手方向と一致する。
(脱炭焼鈍工程)
 次に、脱炭焼鈍工程において、冷間圧延鋼板が所定温度(例えば、700℃~900℃)で脱炭焼鈍(連続焼鈍)される。これにより、冷間圧延鋼板が脱炭されるとともに、冷間圧延鋼板内に、一次再結晶(結晶粒径:10~30μm)が生じる。また、必要に応じて、脱炭焼鈍中あるいは脱炭焼鈍後に、含アンモニア雰囲気での熱処理によって鋼板を窒化することもできる(例えば150~300ppm)。
(焼鈍分離剤塗布工程)
 次に、焼鈍分離剤塗布工程において、主成分としてMgOを含む焼鈍分離剤が、冷間圧延鋼板の表面に塗布される。その後、冷間圧延鋼板は、コイル状に巻かれる。
(最終仕上げ焼鈍工程)
 次に、最終仕上げ焼鈍工程において、コイル状に巻かれた冷間圧延鋼板が、所定温度(例えば、約1200℃)、かつ、所定時間(例えば、約20時間)で焼鈍(バッチ焼鈍)される。これにより、冷間圧延鋼板内に二次再結晶が生じて、磁化容易軸が圧延方向に略揃った結晶方位が生じるとともに、冷間圧延鋼板の表面上にグラス被膜が形成される。この結果、方向性電磁鋼板が形成される。その後、コイル状の方向性電磁鋼板は、巻き解かれる。
 ここで、冷間圧延鋼板は、例えば、MnSやAlN等のインヒビターを含む。これにより、最終仕上げ焼鈍工程では、圧延方向に磁化容易軸が略揃ったゴス方位の結晶粒が優先的に結晶成長する。この結果、結晶方位性(結晶配向性)の高い方向性電磁鋼板が形成される。
(絶縁被膜剤塗布工程)
 次に、絶縁被膜剤塗布工程において、電気絶縁性を有するとともに、方向性電磁鋼板の表面に所定の張力を付与可能な絶縁被膜剤(コーティング液)が、方向性電磁鋼板の表面に塗布される。
(平坦化焼鈍工程)
 次に、平坦化焼鈍工程において、方向性電磁鋼板は、搬送装置によって搬送されながら、所定温度(例えば、800℃~850℃)、かつ、所定時間(例えば、10秒以上120秒以下)で焼鈍(平坦化焼鈍)される。この際、方向性電磁鋼板には、搬送装置から方向性電磁鋼板の圧延方向(長手方向)に張力(通板張力)が付与される。これにより、最終仕上げ焼鈍時の冷間圧延鋼板の巻癖やひずみが除去され、方向性電磁鋼板が平坦化される。
 また、平坦化焼鈍工程において、方向性電磁鋼板が焼鈍されると、方向性電磁鋼板の表面に絶縁被膜剤が焼き付けられ、絶縁被膜剤によって方向性電磁鋼板の表面が絶縁被膜される。その後、方向性電磁鋼板は、冷却される。
(レーザ溝形成工程)
 次に、レーザ溝形成工程において、搬送装置によって搬送される方向性電磁鋼板の表面に、レーザ加工によって複数の溝(レーザ溝)が形成される。具体的には、方向性電磁鋼板は、搬送装置によってレーザ照射装置へ搬送される。
この際、方向性電磁鋼板には、搬送装置から方向性電磁鋼板の圧延方向(長手方向)に、2MPa以上、15MPa以下の張力(通板張力)が付与される。この状態で、レーザ照射装置から出射されたレーザビームが、方向性電磁鋼板の幅方向に沿って方向性電磁鋼板の表面に照射(走査)される。前記通板張力については、2MPa以上、9MPa以下の範囲がより好ましい。
 また、レーザ溝は、方向性電磁鋼板の圧延方向に所定の間隔(ピッチ)で形成される。これにより、複数のレーザ溝によって、方向性電磁鋼板の磁区が細分化され、方向性電磁鋼板の鉄損が低減される。
 なお、レーザビームの種類は、例えば、ファイバーレーザ、YAGレーザ、又はCOレーザとされる。また、レーザビームの波長は、例えば、1070~1090nm、又は10.6μmとされる。さらに、各溝の深さは、例えば20μmとされる。また、溝の幅は、例えば50μmとされる。さらに、溝の間隔(ピッチ)は、例えば3mmとされる。
(再絶縁被膜形成工程)
 前述したレーザ溝形成工程では、方向性電磁鋼板の表面を被膜する絶縁被膜が部分的に除去される。そこで、再絶縁被膜形成工程において、方向性電磁鋼板の表面を再び絶縁被膜する。
 具体的には、電気絶縁性を有するとともに、鋼板の表面に所定の張力を付与可能な絶縁被膜剤(コーティング液)が、方向性電磁鋼板の表面に塗布される。絶縁被膜剤が塗布された方向性電磁鋼板は、所定温度(例えば800℃~850℃)に加熱された後、冷却される。これにより、絶縁被膜剤が方向性電磁鋼板の表面に焼き付けられ、絶縁被膜剤によって方向性電磁鋼板の表面が絶縁被膜される。この結果、方向性電磁鋼板が製造される。なお、再絶縁被膜形成工程は、絶縁被膜形成工程の一例である。
 その後、方向性電磁鋼板は、例えば、20℃/s以上、100℃/s以下で冷却される。これにより、方向性電磁鋼板が製造される。
 この再絶縁被膜形成工程において、20℃/s以上、100℃/s以下で冷却することにより、上述の溝周辺領域のKAM値を0.1以上、0.3以下とした方向性電磁鋼板が得られる。
 なお、方向性電磁鋼板の冷却速度は、例えば、方向性電磁鋼板に噴射する冷却液や冷却風の量、又は方向性電磁鋼板の搬送速度によって調整される。また、再絶縁被膜形成工程は、絶縁被膜形成工程の一例である。
(効果)
 次に、本実施形態の効果について説明する。
 本実施形態に係る方向性電磁鋼板の製造方法によって製造された方向性電磁鋼板は、例えば、巻トランスの巻鉄心に用いられる。巻鉄心では、複数の方向性電磁鋼板が積層された状態で巻かれる。
 巻トランスの製造工程では、巻鉄心の変形ひずみ(曲げひずみ)を取り除くひずみ取り焼鈍(SRA:Stress Relief Anealing)が行われる。ひずみ取り焼鈍では、例えば、巻鉄心が約800℃に加熱される。
しかしながら、レーザ加工によって表面に溝が形成された方向性電磁鋼板によって形成された巻鉄心がひずみ取り焼鈍されると、巻鉄心(方向性電磁鋼板)の鉄損が劣化(増加)する。
 具体的に説明すると、図1に、巻トランスの製造工程において800℃で2時間ひずみ取り焼鈍された巻鉄心20の断面組織を示す。この巻鉄心20は、レーザ溝形成工程において、表面10Aに溝12を形成した方向性電磁鋼板10により形成されている。なお、図1は、巻鉄心20を構成する方向性電磁鋼板10において、その表面10Aに形成した溝12と直交する断面の組織写真を示している。
 図1に示されるように、レーザ加工で表面10Aに溝12を形成した方向性電磁鋼板10によって形成した巻鉄心20がひずみ取り焼鈍されると、溝12に対する方向性電磁鋼板10の厚み方向の中央側(矢印X側)に亜粒界14が発生する。なお、亜粒界とは、方位差(結晶方位差)が15°以下の小角粒界(low-angle grain boundary)を意味する。
 また、図2に、溝12に対する方向性電磁鋼板10の厚み方向中央側の結晶方位差の解析結果を示した。本解析では、図1に示される方向性電磁鋼板10の圧延方向を含む鋼板面と垂直な断面をコロイダルシリカあるいはコロイダルアルミナでほぼ無歪に研磨し、解析位置P上の複数の解析点で、EBSD(Electron BackScatter Diffraction)によって結晶方位差を解析した。
 図2に示されるグラフの横軸は、図1の解析位置P上に等間隔に並んだ結晶方位の測定点の左側からの測定点番号である。また、図2に示されるグラフの縦軸は、各解析点での結晶方位差(deg)である。なお、結晶方位差は、亜粒界14が存在しない基準点(原点)からの積分値とした。
 これらの積分値を求めた測定点は、図1に示す凹型の溝12に対し、溝底からX方向(方向性電磁鋼板の厚さ方向中央側に向く方向)に5μm離間した深さ位置に設定した。また、この深さ位置において、鋼板表面に平行な方向に沿って溝幅に相当する範囲に対し、等間隔(2μm間隔)で29箇所を測定点とした。
なお、図1に示すように溝12の下方に亜粒界14と思われる、周囲と色相の異なる領域が生成しているので、これらの測定点の一番左側の測定点は、亜粒界14が存在しない基準点と判断している。
 図2に示されるように、二点鎖線で囲まれた領域Rでは、結晶方位差が3~5(deg)となっている。このことから、溝12に対する方向性電磁鋼板10の厚み方向の中央側(矢印X側)に、亜粒界14(図1参照)が発生したことが分かる。
そして、溝12に対する方向性電磁鋼板10の厚み方向の中央側に亜粒界14が発生すると、後述する試験結果から分かるように、巻鉄心20(方向性電磁鋼板10)の鉄損が劣化する。
一方、図3には、ひずみ取り焼鈍される前の方向性電磁鋼板10の断面が模式的に示されている。方向性電磁鋼板10の表面10Aには、レーザ加工によって溝12が形成されている。この方向性電磁鋼板10では、溝12に対する方向性電磁鋼板10の厚み方向の中央側(矢印X側)の領域(以下、「溝周辺領域」という)16内のKAM値が増加する。
なお、図1は、方向性電磁鋼板10の表面10Aの溝12と直交する断面である。すなわち、図1は、方向性電磁鋼板10を幅方向に沿って切断した断面である。また、溝周辺領域16は、例えば、図3に示される方向性電磁鋼板10の断面において、溝12に対する方向性電磁鋼板10の厚み方向の中央側(矢印X側)の領域で、かつ、一辺が溝12の溝底12Aに接するとともに一辺の長さが50μmの正方形で囲まれた領域を意味する。
 また、ここでいう溝12の溝底12Aとは、溝12の最も深い部位(最深部)を意味する。さらに、溝12の溝底12Aに正方形の一辺が接するとは、正方形の一辺を方向性電磁鋼板10の表面10Aに平行にした状態で、当該一辺を溝12の溝底12A(最深部)に接触させた状態を意味する。
 KAM(Kernel Average Misorientation)値の測定は、一例として、方向性電磁鋼板10の上述の断面にイオンミリング等によって無ひずみの断面加工を施し、FE-SEM(Field Emission-Scanning Electron Microscope)のEBSD(Electron BackScatter Diffraction)によって結晶方位差を解析し、求めることができる。
この際、例えば、図4に示されるように、6角形のピクセルCを使用し、図3に示す溝周辺領域16をマッピングすることにより求めることができる。
例えば、特定のピクセルCと、当該ピクセルに隣接する6つのピクセルCとの間の方位差の平均値を算出し、この平均値を所定のピクセルCのKAM値とすることができる。そして、溝周辺領域16内で例えば0.1~1μm程度のステップサイズを規定し、プローブ径10nmなどに設定し、溝周辺領域16において相当数、例えば、10000箇所のKAM値を算出し、その中の最大値を採用することで溝周辺領域16のKAM値を決定することができる。
このようにKAM値を決定の場合、用いるピクセルは、図4に示す6角形のピクセルCに限らず、正方形などの他の形状のピクセルを用いても良い。
 ここで、後述する試験結果から分かるように、溝周辺領域16のKAM値が3.0を超えた方向性電磁鋼板10によって形成された巻鉄心が、巻トランスの製造工程においてひずみ取り焼鈍されると、溝12に対する方向性電磁鋼板10の厚み方向の中央側に亜粒界14が発生し、巻鉄心の鉄損が劣化する可能性がある。
 一方、溝周辺領域16のKAM値が0.1以上、3.0以下の方向性電磁鋼板10によって形成された巻鉄心が、巻トランスの製造工程においてひずみ取り焼鈍されても、溝12に対する方向性電磁鋼板10の厚み方向の中央側に発生する亜粒界が低減され、巻鉄心の鉄損が劣化しない。
 そこで、本実施形態では、方向性電磁鋼板10の溝周辺領域16内のKAM値が0.1以上、3.0以下になるように、レーザ溝形成工程において、方向性電磁鋼板10に2MPa以上、15MPa以下の通板張力を付与する。
 また、本実施形態では、方向性電磁鋼板10の溝周辺領域16内のKAM値が0.1以上、3.0以下になるように、平坦化焼鈍工程において、方向性電磁鋼板10の冷却速度を、20℃/s以上、100℃/s以下に調節する。
 これにより、巻トランスの製造工程において、巻鉄心がひずみ取り焼鈍されても、巻鉄心(方向性電磁鋼板10)における鉄損の劣化を抑制できる。
 次に、実施例について説明する。
 本実施例では、レーザ加工によって表面に溝が形成された方向性電磁鋼板の溝周辺領域のKAM値を測定した。
 次に、KAM値を測定した方向性電磁鋼板より、25KVAの単層の巻鉄心を作製した。そして、製作された巻鉄心をひずみ取り焼鈍し、巻鉄心(方向性電磁鋼板)の鉄損を測定した。表面に溝が形成されていない方向性電磁鋼板で同様の巻鉄心を作製したところ、トランス鉄損は36Wであった。この溝を形成していない方向性電磁鋼板による巻鉄心の鉄損を基準値とし、KAM値を測定した方向性電磁鋼板よる前記巻き鉄心の鉄損と対比し、後述する如く鉄損改善率(%)を求めた。
 次に、ひずみ取り焼鈍された巻鉄心の断面を解析し、亜粒界の有無を確認した。
(方向性電磁鋼板)
 方向性電磁鋼板は、前記実施形態と同様の製造方法により製造した。なお、再絶縁被膜形成工程において、方向性電磁鋼板の加熱温度(焼付け温度)を800℃~850℃とし、方向性電磁鋼板の冷却速度を20℃/s以上、100℃/s以下とした。
 方向性電磁鋼板は、Si量3.3%、板厚0.23mmでB8が1.930Tであり、W17/50=0.860w/kgである。なお、B8は、800A/mの磁化力によって方向性電磁鋼板が圧延方向に磁化されたときに、方向性電磁鋼板に発生する磁束密度[T]を意味する。
(レーザ溝の加工条件)
 また、レーザ溝形成工程において、方向性電磁鋼板の表面に形成する溝(レーザ溝)の加工条件は、次のとおりである。
 レーザビームの種類:ファイバーレーザ
 レーザビームの波長:1080nm
 レーザビームの出力:1000W
 レーザビームの直径:0.1×0.3mm
 レーザビームの走査速度:30m/s
 溝の間隔(ピッチ):3mm
 溝の深さ:20μm
 溝の幅:50μm
 方向性電磁鋼板の通板張力:2MPa以上、15MPa以下
(KAM値の測定)
 前述したように、図3には、レーザ加工によって表面10Aに溝12が形成された方向性電磁鋼板10の断面が示されている。この方向性電磁鋼板10の断面において、溝12に対する方向性電磁鋼板10の厚み方向の中央側(矢印X側)の溝周辺領域16内のKAM値を測定した。なお、KAM値とは、方向性電磁鋼板の所定断面において、隣り合う結晶粒の方位の相対的な差の度合いを表す指標である。
 KAM(Kernel Average Misorientation)値の測定では、方向性電磁鋼板10の断面にイオンミリング等によって無ひずみの断面加工を施し、FE-SEM(Field Emission-Scanning Electron Microscope)のEBSD(Electron BackScatter Diffraction)によって結晶方位差を解析した。この際、図4に示されるように、6角形のピクセルCを使用し、溝周辺領域16をマッピングした。
次に、所定のピクセルCと、当該ピクセルCと隣接する6つのピクセルCとの間の方位差の平均値を計算し、この平均値を所定のピクセルCのKAM値とした。そして、溝周辺領域16内のピクセルCのKAM値の最大値を溝周辺領域16のKAM値とした。
 なお、ピクセルCのステップサイズSは、例えば0.1~1μmである。また、プローブ径は、10nmとした。本実施例においてはステップサイズを0.5μmとした。よって、上述の溝周辺領域16に対し、10000箇所のKAM値を算出し、それらの最大値を溝周辺領域16のKAM値とした。
(巻鉄心の鉄損改善率)
 巻鉄心の鉄損改善率ηは、溝が形成されていない方向性電磁鋼板によって形成された巻鉄心の鉄損W0、及びレーザ加工によって溝が形成された方向性電磁鋼板によって形成された巻鉄心の鉄損Wgを求め、下記式(1)から算出した。
 η=(W0-Wg)/W0×100 ・・・式(1)
 巻鉄心の鉄損W0,Wgは、巻鉄心に一次巻線(励磁巻線)及び二次巻線(サーチコイル)をそれぞれ巻き付け、電力計によって測定した。
(試験結果)
 図5に、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と、ひずみ取り焼鈍された後の巻鉄心(方向性電磁鋼板)の鉄損改善率ηと、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率:Single Sheet Test(JIS C2556規定)により測定した鉄損値に基づく改善率)との関係を示す。
 なお、図5に符号D1で示されるプロット(記号では◇)は、レーザ加工によって表面に溝が形成された方向性電磁鋼板に形成され、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηである。また、図5に符号D2で示されるプロットは、後述するエッチング法によって表面に溝が形成され、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηである。
 また、図5に符号D0(記号では□)で示されるプロットは、ひずみ取り焼鈍前の単板の鉄損改善率(SST改善率)である。方向性電磁鋼板の鉄損改善率ηは、溝が形成されていない方向性電磁鋼板の鉄損W0、及びレーザ加工によって溝が形成された方向性電磁鋼板の鉄損Wgを周知の鉄損測定方法であるSST(Single Sheet Tester)法によってそれぞれ測定し、式(1)から算出した。したがって、巻鉄心の鉄損改善率ηがひずみ取り焼鈍前の単板の鉄損改善率より低い場合は、ひずみ取り焼鈍によって鉄損が劣化したこととなる。
 図5に示されるように、溝周辺領域のKAM値が3.0を超えた方向性電磁鋼板によって形成され、ひずみ取り焼鈍された巻鉄心では、鉄損改善率ηが単板の鉄損改善率より低いことから、巻鉄心の鉄損が劣化したと判断できる。
 また、溝周辺領域のKAM値が3.0を超える方向性電磁鋼板によって形成され、ひずみ取り焼鈍された巻鉄心には、例えば、図1に示されるように、溝12に対する方向性電磁鋼板10の厚み方向の中央側(矢印X側)に亜粒界14が発生した。
 一方、図5に示されるように、溝周辺領域のKAM値が0.1以上、3.0以下の方向性電磁鋼板によって形成され、ひずみ取り焼鈍された巻鉄心では、鉄損改善率ηが単板の鉄損改善率と同等か、より高くなり、巻鉄心の鉄損が低減された。
 また、溝周辺領域のKAM値が0.1以上、3.0以下の方向性電磁鋼板によって形成され、ひずみ取り焼鈍された巻鉄心では、溝12に対する方向性電磁鋼板の厚み方向の中央側に亜粒界が発生しないか、若しくは亜粒界が低減された。
 以上のことから、溝周辺領域のKAM値が3.0を超えた方向性電磁鋼板によって形成され、ひずみ取り焼鈍された巻鉄心では、溝12に対する方向性電磁鋼板の厚み方向の中央側の領域に亜粒界が発生し、巻鉄心の鉄損が劣化することが分かった。
 一方、溝周辺領域のKAM値が0.1以上、3.0以下の方向性電磁鋼板によって形成された巻鉄心は、ひずみ取り焼鈍されても、溝12に対する方向性電磁鋼板の厚み方向の中央側に亜粒界が発生することが抑制され、巻鉄心の鉄損が劣化しないことが分かった。
 ここで、ひずみ取り焼鈍された巻鉄心の鉄損が劣化する原因は、ひずみ取り焼鈍された巻鉄心において、溝に対する方向性電磁鋼板の厚み方向の中央側に発生する亜粒界と考えられる。この亜粒界の発生量は、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と相関関係にある。
 つまり、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値が大きくなると、ひずみ取り焼鈍された後の巻鉄心において、溝に対する方向性電磁鋼板の厚み方向の中央側に発生する亜粒界の発生量が増加する。一方、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値が小さくなると、ひずみ取り焼鈍された後の巻鉄心において、溝に対する方向性電磁鋼板の厚み方向の中央側に発生する亜粒界の発生量が減少する。
 そのため、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域内のKAM値に基づいて、巻トランスのひずみ取り焼鈍において、巻鉄心の鉄損が劣化するか否かを推測(評価)することができる。そして、方向性電磁鋼板の製造工程において、方向性電磁鋼板の溝周辺領域のKAM値を小さくすることにより、ひずみ取り焼鈍された巻鉄心の鉄損を効率的に低減することができる。
 ここで、KAM値の下限値について補足すると、方向性電磁鋼板の溝周辺領域のKAM値が小さくなるに従って、ひずみ取り焼鈍された巻鉄心に発生する亜粒界が減少し、巻鉄心の鉄損が低減される。そのため、溝周辺領域のKAM値は、可能な限り小さい方が好ましい。しかしながら、レーザ加工では、その特性上、少なくとも0.1のKAM値が生じ得る。したがって、本実施形態では、KAM値の下限値を0.1に設定している。
 なお、エッチング法によって方向性電磁鋼板の表面に溝を形成する場合は、溝周辺領域のKAM値が略0[deg]になると想定されるが、エッチング法では、製造コスト及び生産性等の面で課題がある。そのため、製造コスト及び生産性等を考慮すると、エッチング法よりもレーザ加工法の方が優れている。
(レーザ溝形成工程の通板張力と巻鉄心の鉄損改善率との関係)
 次に、レーザ溝形成工程の方向性電磁鋼板の通板張力と、ひずみ取り焼鈍された巻鉄心の鉄損改善率との関係について説明する。
 本試験では、レーザ溝形成工程において、下記表1に示されるように、方向性電磁鋼板に付与する通板張力を変更し、方向性電磁鋼板の溝周辺領域のKAM値を測定するとともに、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηを求めた。
Figure JPOXMLDOC01-appb-T000001
 図6に、レーザ溝形成工程の方向性電磁鋼板の通板張力と、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηとの関係を示すグラフを示した。図6から分かるように、方向性電磁鋼板の通板張力が15MPaを超えると、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηが単板の鉄損改善率(SST改善率)より低くなり、巻鉄心の鉄損が劣化した。
 一方、方向性電磁鋼板の通板張力が9MPa以下では、巻鉄心の鉄損改善率ηが単板の鉄損改善率(SST改善率)より高くなり、巻鉄心の鉄損が低減された。したがって、方向性電磁鋼板の通板張力は、9MPa以下がより好ましい。
 なお、レーザ溝形成工程の通板張力は、2MPa以上が好ましい。通板張力が2MPa未満になると、搬送中の方向性電磁鋼板が振動し易くなり、レーザ加工の加工不良が発生し易くなるためである。
 また、図7に、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率ηとの関係を示すグラフを示す。図7から分かるように、溝周辺領域のKAM値が3.0以下では、巻鉄心の鉄損改善率ηが単板の鉄損改善率(SST改善率)と等しいか高くなり、特に、溝周辺領域のKAM値が2.0以下では、巻鉄心の鉄損改善率ηが単板の鉄損改善率より高くなり、鉄損が低減されることを確認できた。このため、溝周辺領域のKAM値は2.0以下がより好ましい。
(レーザ溝形成後に行う再絶縁被膜形成工程の冷却速度と巻鉄心の鉄損改善率との関係)
 次に、レーザ溝形成後に行う再絶縁被膜形成工程の方向性電磁鋼板の冷却速度と、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηとの関係について説明する。
 本実施例では、レーザ溝形成後に行う再絶縁被膜形成工程において、下記表2に示されるように、方向性電磁鋼板の冷却速度を変更し、方向性電磁鋼板の溝周辺領域のKAM値を測定するとともに、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηを求めた。
Figure JPOXMLDOC01-appb-T000002
 図8に、レーザ溝形成後に行う再絶縁被膜形成工程の方向性電磁鋼板の冷却速度と、ひずみ取り焼鈍された巻鉄心の鉄損改善率ηとの関係を示すグラフを示した。図8から分かるように、方向性電磁鋼板の冷却速度が20℃/s~100℃/sの範囲においては、巻鉄心の鉄損改善率ηが単板の鉄損改善率(SST改善率)と同等であるか、より高くなった。ところが、冷却速度が100℃/sを超えると、巻鉄心の鉄損改善率ηが単板の鉄損改善率より低くなり、巻鉄心の鉄損が劣化した。
 一方、方向性電磁鋼板の冷却速度が75℃/s以下では、巻鉄心の鉄損改善率ηが単板の鉄損改善率より確実に高くなり、巻鉄心の鉄損が低減された。したがって、方向性電磁鋼板の冷却速度は、75℃/s以下がより好ましい。
 なお、レーザ溝形成後に行う再絶縁被膜形成工程における方向性電磁鋼板の冷却速度は、20℃/s以上が好ましい。冷却速度が20℃/s未満になると、方向性電磁鋼板の製造性(冷却効率)が低下するためである。
 また、図9に、ひずみ取り焼鈍される前の方向性電磁鋼板の溝周辺領域のKAM値と、ひずみ取り焼鈍された後の巻鉄心の鉄損改善率ηとの関係を示すグラフを示す。図9から分かるように、溝周辺領域のKAM値が3.0以下では、巻鉄心の鉄損改善率ηが単板の鉄損改善率(SST改善率)より高くなり、鉄損が低減されることを確認できた。
(変形例)
 次に、前記実施形態の変形例について説明する。
 方向性電磁鋼板の溝周辺領域のKAM値の測定方法は、適宜変更可能である。また、例えば、溝周辺領域をマッピングする際のピクセルC(図4参照)の大きさ等は、適宜変更可能である。
 また、前記実施形態では、最終仕上げ焼鈍工程とレーザ溝形成工程との間に、絶縁被膜剤塗布工程及び平坦化焼鈍工程が行われた。しかしながら、絶縁被膜剤塗布工程及び平坦化焼鈍工程は、レーザ溝形成工程の後に行われても良い。つまり、最終仕上げ焼鈍工程、レーザ溝形成工程、熱処理工程、絶縁被膜剤塗布工程、平坦化焼鈍工程の順に行われても良い。この場合、再絶縁被膜形成工程が不要になるため、方向性電磁鋼板の製造工程の工程数が低減される。
 以上、本発明の一実施形態について説明したが、本発明はこれらの実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
10  方向性電磁鋼板
10A 表面(方向性電磁鋼板の表面)
12  溝
12A 溝底(溝の溝底)
14  亜粒界
16  溝周辺領域(領域)
20  巻鉄心
C、C、C   ピクセル

Claims (3)

  1.  表面に溝が形成された方向性電磁鋼板において、
     前記溝と直交する前記方向性電磁鋼板の断面において、前記溝に対する前記方向性電磁鋼板の厚み方向の中央側の領域で、かつ、一辺が前記溝の溝底に接するとともに一辺の長さが50μmの正方形で囲まれた領域内のKAM値が、0.1以上、3.0以下である、方向性電磁鋼板。
  2.  前記溝がレーザ溝である請求項1に記載の方向性電磁鋼板。
  3.  前記KAM値が、0.1以上、2.0以下である請求項1または請求項2に記載の方向性電磁鋼板。
PCT/JP2019/007251 2018-02-26 2019-02-26 方向性電磁鋼板 WO2019164012A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201980014946.4A CN111742068B (zh) 2018-02-26 2019-02-26 方向性电磁钢板
BR112020017171-9A BR112020017171B1 (pt) 2018-02-26 2019-02-26 Chapa de aço elétrico de grão orientado
RU2020129393A RU2765033C1 (ru) 2018-02-26 2019-02-26 Электротехнический стальной лист с ориентированной зеренной структурой
JP2019526341A JP6614398B1 (ja) 2018-02-26 2019-02-26 方向性電磁鋼板
PL19758237.2T PL3760746T3 (pl) 2018-02-26 2019-02-26 Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych
KR1020207026301A KR102478773B1 (ko) 2018-02-26 2019-02-26 방향성 전자 강판
US16/971,617 US11393612B2 (en) 2018-02-26 2019-02-26 Grain-oriented electrical steel sheet
EP19758237.2A EP3760746B1 (en) 2018-02-26 2019-02-26 Grain-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032552 2018-02-26
JP2018-032552 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019164012A1 true WO2019164012A1 (ja) 2019-08-29

Family

ID=67687151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007251 WO2019164012A1 (ja) 2018-02-26 2019-02-26 方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11393612B2 (ja)
EP (1) EP3760746B1 (ja)
JP (1) JP6614398B1 (ja)
KR (1) KR102478773B1 (ja)
CN (1) CN111742068B (ja)
PL (1) PL3760746T3 (ja)
RU (1) RU2765033C1 (ja)
WO (1) WO2019164012A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4079877A4 (en) * 2019-12-20 2023-06-14 Posco CORNORATED ELECTROSTEEL SHEET AND MAGNETIC DOMAIN REFINING PROCESS THEREOF
JP7485954B2 (ja) 2020-10-26 2024-05-17 日本製鉄株式会社 巻鉄心

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234222B2 (ja) 1972-02-04 1977-09-02
WO2011125672A1 (ja) * 2010-04-01 2011-10-13 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
WO2012017690A1 (ja) * 2010-08-06 2012-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2012032792A1 (ja) * 2010-09-10 2012-03-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2013161863A1 (ja) * 2012-04-27 2013-10-31 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法
KR20170088246A (ko) * 2016-01-22 2017-08-01 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치
JP2018032552A (ja) 2016-08-25 2018-03-01 トヨタ自動車株式会社 リチウムイオン二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1096291A1 (ru) * 1983-01-10 1984-06-07 Научно-исследовательский институт металлургии Способ изготовлени анизотропной холоднокатаной электротехнической стали
SU1647030A1 (ru) * 1988-07-22 1991-05-07 Институт физики металлов Уральского отделения АН СССР Способ производства полосы анизотропной электротехнической стали
JP5871137B2 (ja) * 2012-12-12 2016-03-01 Jfeスチール株式会社 方向性電磁鋼板
SE542101C2 (en) * 2014-04-02 2020-02-25 Jfe Steel Corp Iron powder for iron powder cores and method for selecting iron powder for iron powder cores
WO2016105055A1 (ko) 2014-12-24 2016-06-30 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101719231B1 (ko) 2014-12-24 2017-04-04 주식회사 포스코 방향성 전기강판 및 그 제조방법
PL3287537T3 (pl) * 2015-04-20 2020-06-01 Nippon Steel Corporation Blacha cienka ze zorientowanej stali elektrotechnicznej
JP6575592B2 (ja) * 2015-04-20 2019-09-18 日本製鉄株式会社 方向性電磁鋼板
JP6455593B2 (ja) * 2015-04-20 2019-01-23 新日鐵住金株式会社 方向性電磁鋼板
EP3330388B1 (en) 2015-07-28 2021-09-01 JFE Steel Corporation Linear groove formation method and linear groove formation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234222B2 (ja) 1972-02-04 1977-09-02
WO2011125672A1 (ja) * 2010-04-01 2011-10-13 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
WO2012017690A1 (ja) * 2010-08-06 2012-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2012032792A1 (ja) * 2010-09-10 2012-03-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2013161863A1 (ja) * 2012-04-27 2013-10-31 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法
KR20170088246A (ko) * 2016-01-22 2017-08-01 주식회사 포스코 방향성 전기강판의 자구미세화 방법과 그 장치
JP2018032552A (ja) 2016-08-25 2018-03-01 トヨタ自動車株式会社 リチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760746A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4079877A4 (en) * 2019-12-20 2023-06-14 Posco CORNORATED ELECTROSTEEL SHEET AND MAGNETIC DOMAIN REFINING PROCESS THEREOF
JP7485954B2 (ja) 2020-10-26 2024-05-17 日本製鉄株式会社 巻鉄心

Also Published As

Publication number Publication date
EP3760746A4 (en) 2021-10-20
US20200381150A1 (en) 2020-12-03
JPWO2019164012A1 (ja) 2020-02-27
KR20200118202A (ko) 2020-10-14
CN111742068A (zh) 2020-10-02
EP3760746A1 (en) 2021-01-06
US11393612B2 (en) 2022-07-19
RU2765033C1 (ru) 2022-01-24
PL3760746T3 (pl) 2024-05-20
BR112020017171A2 (pt) 2020-12-22
JP6614398B1 (ja) 2019-12-04
CN111742068B (zh) 2022-05-13
EP3760746B1 (en) 2024-02-14
KR102478773B1 (ko) 2022-12-20

Similar Documents

Publication Publication Date Title
US9659693B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
US11469017B2 (en) Grain oriented electrical steel sheet
EP3751013B1 (en) Grain oriented electrical steel sheet and production method therefor
JP6614398B1 (ja) 方向性電磁鋼板
US11450460B2 (en) Grain-oriented electrical steel sheet
JP7188458B2 (ja) 方向性電磁鋼板およびその製造方法
JP7031364B2 (ja) 方向性電磁鋼板の製造方法
JP2001303261A (ja) 張力付与異方性被膜を有する低鉄損一方向性電磁鋼板
EP3913088B1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR102580249B1 (ko) 포르스테라이트 피막을 갖지 않는 절연 피막 밀착성이 우수한 방향성 전자 강판
JP7265186B2 (ja) 方向性電磁鋼板及びその製造方法
JP7200687B2 (ja) 方向性電磁鋼板及びその製造方法
JP2014019901A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板
US20220025494A1 (en) Electrical steel sheet and manufacturing method therefor
RU2776382C1 (ru) Лист анизотропной электротехнической стали и способ его производства
TWI834443B (zh) 晶粒取向性電氣片材及用於細化其中之磁域的方法
BR112020017171B1 (pt) Chapa de aço elétrico de grão orientado
JP2020111809A (ja) 方向性電磁鋼板
CN117321234A (zh) 方向性电磁钢板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526341

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207026301

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019758237

Country of ref document: EP

Effective date: 20200928

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017171

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020017171

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200821