WO2019163984A1 - METHOD FOR PREPARING CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND α,β-UNSATURATED CARBOXYLIC ACID ESTER - Google Patents

METHOD FOR PREPARING CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND α,β-UNSATURATED CARBOXYLIC ACID ESTER Download PDF

Info

Publication number
WO2019163984A1
WO2019163984A1 PCT/JP2019/007015 JP2019007015W WO2019163984A1 WO 2019163984 A1 WO2019163984 A1 WO 2019163984A1 JP 2019007015 W JP2019007015 W JP 2019007015W WO 2019163984 A1 WO2019163984 A1 WO 2019163984A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
unsaturated carboxylic
producing
catalyst
aqueous slurry
Prior art date
Application number
PCT/JP2019/007015
Other languages
French (fr)
Japanese (ja)
Inventor
悠 栗原
加藤 裕樹
拓朗 渡邉
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to SG11202007557WA priority Critical patent/SG11202007557WA/en
Priority to KR1020207027230A priority patent/KR102476427B1/en
Priority to CN201980015016.0A priority patent/CN111770795B/en
Priority to JP2020501082A priority patent/JP7001982B2/en
Publication of WO2019163984A1 publication Critical patent/WO2019163984A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • C07C69/653Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Abstract

Provided is a catalyst for producing an α,β-unsaturated carboxylic acid at a high yield. The present invention also provides a method for preparing a catalyst for producing an α,β-unsaturated carboxylic acid, the catalyst being used when producing an α,β-unsaturated carboxylic acid by gas-phase catalytic oxidation of an α,β-unsaturated aldehyde with molecular oxygen. The method is characterized by comprising (i) a step for obtaining an aqueous slurry comprising a heteropolyacid salt containing at least molybdenum and phosphorous, (ii) a step for continuously stirring the aqueous slurry at a temperature below 50°C for 2.5-24.5 hours, and (iii) a step for spray-drying the aqueous slurry obtained after the continuous stirring of step (ii).

Description

α,β-不飽和カルボン酸製造用触媒の製造方法、並びにα,β-不飽和カルボン酸及びα,β-不飽和カルボン酸エステルの製造方法Method for producing catalyst for producing α, β-unsaturated carboxylic acid, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid ester
 本発明は、α,β-不飽和カルボン酸製造用触媒の製造方法に関する。また、α,β-不飽和カルボン酸の製造方法及びα,β-不飽和カルボン酸エステルの製造方法に関する。 The present invention relates to a method for producing a catalyst for producing an α, β-unsaturated carboxylic acid. The present invention also relates to a method for producing an α, β-unsaturated carboxylic acid and a method for producing an α, β-unsaturated carboxylic acid ester.
 α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる触媒としては、リンモリブデン酸、リンモリブデン酸塩等のヘテロポリ酸又はその塩を主成分とする触媒が知られている。この触媒は通常、まず触媒を構成する各元素を含む水溶液又は水性スラリーを調製し、その後これを乾燥、焼成することで製造される。 Catalysts used in the production of α, β-unsaturated carboxylic acids by gas phase catalytic oxidation of α, β-unsaturated aldehydes with molecular oxygen include heteropolyacids such as phosphomolybdic acid and phosphomolybdate, Catalysts based on such salts are known. This catalyst is usually produced by first preparing an aqueous solution or slurry containing each element constituting the catalyst, and then drying and calcining it.
 触媒の製造方法の検討例として、例えば特許文献1には、調製した水性スラリーを毎分1.5℃以上の速度で冷却することで、メタクリル酸製造収率が高い触媒が得られることが記載されている。また、特許文献2には、アルカリ金属原料をMo元素12molあたり0.1~3.0mol/sの速度で添加することで、メタクリル酸製造収率が高い触媒が得られることが記載されている。また特許文献3には、単位体積当たりの撹拌所要動力0.01~4.00kW/mで撹拌しながらアルカリ金属化合物を水性スラリーに添加することで、メタクリル酸製造収率が高い触媒が得られることが記載されている。また特許文献4には、水性スラリーへの原料の添加温度及び撹拌時間を規定することで、メタクリル酸製造収率が高い触媒が得られることが記載されている。 As an example of studying a method for producing a catalyst, for example, Patent Document 1 describes that a catalyst having a high methacrylic acid production yield can be obtained by cooling the prepared aqueous slurry at a rate of 1.5 ° C. or more per minute. Has been. Patent Document 2 describes that a catalyst having a high methacrylic acid production yield can be obtained by adding an alkali metal raw material at a rate of 0.1 to 3.0 mol / s per 12 mol of Mo element. . Patent Document 3 discloses that a catalyst having a high methacrylic acid production yield can be obtained by adding an alkali metal compound to an aqueous slurry while stirring at a power required for stirring of 0.01 to 4.00 kW / m 3 per unit volume. It is described that Patent Document 4 describes that a catalyst having a high methacrylic acid production yield can be obtained by regulating the addition temperature and stirring time of the raw material to the aqueous slurry.
 しかしながらα,β-不飽和カルボン酸製造用触媒には、更なる高収率化が望まれている。 However, further higher yields are desired for catalysts for producing α, β-unsaturated carboxylic acids.
特開2013-192988号公報JP 2013-192988 A 特開2013-192989号公報JP 2013-192989 A 国際公開第2013/172414号公報International Publication No. 2013/172414 特開2005-230720号公報JP 2005-230720 A
 本発明は、高い収率でα,β-不飽和カルボン酸を製造できるα,β-不飽和カルボン酸製造用触媒を提供することを目的とする。 An object of the present invention is to provide a catalyst for producing an α, β-unsaturated carboxylic acid capable of producing an α, β-unsaturated carboxylic acid with a high yield.
 本発明は、以下の[1]から[12]である。
 [1]α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる、α,β-不飽和カルボン酸製造用触媒の製造方法であって、
(i)少なくともモリブデン及びリンを含有するヘテロポリ酸塩を含む水性スラリー(S2)を得る工程と、
(ii)前記水性スラリー(S2)を50℃未満で2.5~24.5時間撹拌保持して水性スラリー(S3)を得る工程と、
(iii)前記水性スラリー(S3)を噴霧乾燥する工程と、
を含むα,β-不飽和カルボン酸製造用触媒の製造方法。
 [2]前記工程(i)におけるヘテロポリ酸塩が、金属カチオン塩及びアンモニウム塩からなる群より選択される少なくとも1つである、[1]に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [3]前記工程(i)において、少なくともモリブデン及びリンを含有する水性スラリー又は水溶液(S1)を70~130℃に保持し、これを塩基含有化合物と混合することにより水性スラリー(S2)を得る、[1]又は[2]に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [4]前記工程(i)におけるヘテロポリ酸塩がケギン型構造を有する、[1]から[3]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [5]前記工程(ii)において、前記水性スラリー(S2)の前記撹拌保持を3.4時間以上15時間未満行う、[1]から[4]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [6]前記工程(ii)において、前記水性スラリー(S2)の前記撹拌保持を30℃より高く50℃未満で行う、[1]から[5]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
 [7]前記触媒が下記式(1)で表される組成を有する、[1]から[6]のいずれかに記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
  PMoCu(NH  (1)
(前記式(1)中、P、Mo、V、Cu、NH及びOは、それぞれ、リン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を示す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選択される少なくとも1種類の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選択される少なくとも1種の元素を表す。a~iは各成分のモル比率を表し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3、h=0~30、iは前記各成分の価数を満足するのに必要な酸素のモル比率である。)
 [8][1]から[7]のいずれかに記載の方法により製造された触媒の存在下で、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化するα,β-不飽和カルボン酸の製造方法。
 [9][1]から[7]のいずれかに記載の方法により触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化するα,β-不飽和カルボン酸の製造方法。
 [10][8]又は[9]に記載の方法により製造されたα,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。
 [11][8]又は[9]に記載の方法によりα,β-不飽和カルボン酸を製造し、該α,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。
The present invention includes the following [1] to [12].
[1] Production of a catalyst for production of α, β-unsaturated carboxylic acid, which is used in the production of α, β-unsaturated carboxylic acid by gas phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen A method,
(I) obtaining an aqueous slurry (S2) containing a heteropolyacid salt containing at least molybdenum and phosphorus;
(Ii) obtaining the aqueous slurry (S3) by stirring and holding the aqueous slurry (S2) at less than 50 ° C. for 2.5 to 24.5 hours;
(Iii) spray drying the aqueous slurry (S3);
A process for producing a catalyst for producing an α, β-unsaturated carboxylic acid comprising:
[2] The catalyst for producing an α, β-unsaturated carboxylic acid according to [1], wherein the heteropolyacid salt in the step (i) is at least one selected from the group consisting of a metal cation salt and an ammonium salt Manufacturing method.
[3] In the step (i), an aqueous slurry or aqueous solution (S1) containing at least molybdenum and phosphorus is maintained at 70 to 130 ° C. and mixed with a base-containing compound to obtain an aqueous slurry (S2). , [1] or [2], a method for producing a catalyst for producing an α, β-unsaturated carboxylic acid.
[4] The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to any one of [1] to [3], wherein the heteropolyacid salt in the step (i) has a Keggin type structure.
[5] The α, β-unsaturation according to any one of [1] to [4], wherein in the step (ii), the stirring and holding of the aqueous slurry (S2) is performed for 3.4 hours or more and less than 15 hours. A method for producing a catalyst for producing carboxylic acid.
[6] The α, β-unsaturation according to any one of [1] to [5], wherein in the step (ii), the stirring and holding of the aqueous slurry (S2) is performed at a temperature higher than 30 ° C. and lower than 50 ° C. A method for producing a catalyst for producing carboxylic acid.
[7] The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to any one of [1] to [6], wherein the catalyst has a composition represented by the following formula (1).
P a Mo b V c Cu d A e E f G g (NH 4) h O i (1)
(In the formula (1), P, Mo, V, Cu, NH 4 and O respectively represent phosphorus, molybdenum, vanadium, copper, ammonium root and oxygen. A represents antimony, bismuth, arsenic, germanium, zirconium. Represents at least one element selected from the group consisting of, tellurium, silver, selenium, silicon, tungsten and boron, where E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium And at least one element selected from the group consisting of titanium, tin, thallium, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, G is composed of lithium, sodium, potassium, rubidium and cesium Represents at least one element selected from the group a I represents the molar ratio of each component. When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0 -3, g = 0.01-3, h = 0-30, i is the molar ratio of oxygen necessary to satisfy the valence of each component.
[8] α, β-unsaturation in which α, β-unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst produced by the method according to any one of [1] to [7] A method for producing carboxylic acid.
[9] An α, β-unsaturated catalyst is produced by the method according to any one of [1] to [7], and α, β-unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen using the catalyst. A method for producing a saturated carboxylic acid.
[10] A method for producing an α, β-unsaturated carboxylic acid ester, wherein the α, β-unsaturated carboxylic acid produced by the method according to [8] or [9] is esterified.
[11] An α, β-unsaturated carboxylic acid ester produced by producing an α, β-unsaturated carboxylic acid by the method described in [8] or [9] and esterifying the α, β-unsaturated carboxylic acid Production method.
 本発明によれば、高収率でα,β-不飽和カルボン酸を製造できるα,β-不飽和カルボン酸製造用触媒を提供することができる。また本発明によれば、高収率でα,β-不飽和カルボン酸及びα,β-不飽和カルボン酸エステルを得ることができる。 According to the present invention, it is possible to provide a catalyst for producing an α, β-unsaturated carboxylic acid capable of producing an α, β-unsaturated carboxylic acid with a high yield. Further, according to the present invention, α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid ester can be obtained in high yield.
 [α,β-不飽和カルボン酸製造用触媒の製造方法]
 本発明に係るα,β-不飽和カルボン酸製造用触媒の製造方法で得られる触媒は、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる。本発明は、本触媒の製造方法であって、以下の工程(i)~(iii)を含む。
(i)少なくともモリブデン及びリンを含有するヘテロポリ酸塩を含む水性スラリー(S2)を得る工程。
(ii)前記水性スラリー(S2)を50℃未満で2.5~24.5時間撹拌保持して水性スラリー(S3)を得る工程。
(iii)前記水性スラリー(S3)を噴霧乾燥する工程。
[Method for producing catalyst for producing α, β-unsaturated carboxylic acid]
The catalyst obtained by the method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to the present invention comprises an α, β-unsaturated carboxylic acid obtained by subjecting an α, β-unsaturated aldehyde to gas phase catalytic oxidation with molecular oxygen. Used when manufacturing. The present invention is a method for producing the present catalyst, and includes the following steps (i) to (iii).
(I) A step of obtaining an aqueous slurry (S2) containing a heteropolyacid salt containing at least molybdenum and phosphorus.
(Ii) A step of obtaining the aqueous slurry (S3) by stirring and holding the aqueous slurry (S2) at less than 50 ° C. for 2.5 to 24.5 hours.
(Iii) A step of spray drying the aqueous slurry (S3).
 本発明に係る触媒の製造方法は前記工程(i)~(iii)を含むことにより、水性スラリー中の溶解元素の析出反応が進行し、噴霧乾燥時に溶解元素が触媒表面の微細な孔を塞ぐことを抑制することで、得られる触媒の比表面積が向上すると考えられる。これにより触媒活性が向上し、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に、α,β-不飽和カルボン酸の収率を向上させることができる。 Since the method for producing a catalyst according to the present invention includes the steps (i) to (iii), the precipitation reaction of the dissolved element in the aqueous slurry proceeds, and the dissolved element closes the fine pores on the catalyst surface during spray drying. It is considered that the specific surface area of the obtained catalyst is improved by suppressing this. As a result, the catalytic activity is improved, and when α, β-unsaturated carboxylic acid is produced by vapor-phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen to produce α, β-unsaturated carboxylic acid. The rate can be improved.
 本発明に係る方法により製造されるα,β-不飽和カルボン酸製造用触媒は、少なくともモリブデン及びリンを含む。なかでも下記式(1)で表される組成を有することが、α,β-不飽和カルボン酸の製造において高収率でα,β-不飽和カルボン酸を製造できる観点から好ましい。なお、触媒における各元素のモル比は、触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって求めた値とする。なお、アンモニウム根のモル比率は、触媒成分をケルダール法で分析することによって求めた値とする。 The catalyst for producing an α, β-unsaturated carboxylic acid produced by the method according to the present invention contains at least molybdenum and phosphorus. Among them, the composition represented by the following formula (1) is preferable from the viewpoint of producing an α, β-unsaturated carboxylic acid with a high yield in the production of an α, β-unsaturated carboxylic acid. The molar ratio of each element in the catalyst is a value obtained by analyzing a component in which the catalyst is dissolved in aqueous ammonia by ICP emission analysis. In addition, let the molar ratio of an ammonium root be the value calculated | required by analyzing a catalyst component by the Kjeldahl method.
  PMoCu(NH   (1)
 式(1)中、P、Mo、V、Cu、NH及びOは、それぞれ、リン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を示す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選択される少なくとも1種類の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選択される少なくとも1種の元素を表す。a~iは各成分のモル比率を表し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、好ましくはe=0.01~3、f=0~3、g=0.01~3、h=0~30、iは前記各成分の価数を満足するのに必要な酸素のモル比率である。
 なお、本発明において「アンモニウム根」とは、アンモニウムイオン(NH )になり得るアンモニア(NH)、およびアンモニウム塩などのアンモニウム含有化合物に含まれるアンモニウムの総称である。
P a Mo b V c Cu d A e E f G g (NH 4) h O i (1)
In the formula (1), P, Mo, V, Cu, NH 4 and O represent phosphorus, molybdenum, vanadium, copper, ammonium root and oxygen, respectively. A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron. E is selected from the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, thallium, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum At least one kind of element is shown. G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium. a to i represent the molar ratio of each component; when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, preferably e = 0.01-3, f = 0-3, g = 0.01-3, h = 0-30, i is the molar ratio of oxygen necessary to satisfy the valence of each component.
In the present invention, the “ammonium root” is a general term for ammonium (NH 3 ) that can be an ammonium ion (NH 4 + ) and ammonium contained in an ammonium-containing compound such as an ammonium salt.
 (工程(i))
 工程(i)では、少なくともモリブデン及びリンを含有するヘテロポリ酸塩を含む水性スラリー(S2)を得る。該ヘテロポリ酸塩は、ヘテロポリ酸と塩基とからなる。塩基は特に限定されないが、例えばアルカリ金属などの金属カチオンや、アンモニウムイオンなどが挙げられる。触媒の活性や熱安定性の観点から、ヘテロポリ酸塩としては、金属カチオン塩及びアンモニウム塩からなる群より選択される少なくとも1つであることが好ましい。なお、複数の異なる金属カチオンの複合塩や、金属カチオンとアンモニウムの複合塩もこれに含まれる。また、前記式(1)で表される組成を有する触媒を製造する場合、前記式(1)で表される組成に含まれる元素を含有する水性スラリー(S2)を調製することが好ましい。
(Process (i))
In step (i), an aqueous slurry (S2) containing a heteropolyacid salt containing at least molybdenum and phosphorus is obtained. The heteropolyacid salt is composed of a heteropolyacid and a base. The base is not particularly limited, and examples thereof include metal cations such as alkali metals and ammonium ions. From the viewpoint of catalyst activity and thermal stability, the heteropolyacid salt is preferably at least one selected from the group consisting of metal cation salts and ammonium salts. In addition, the composite salt of a several different metal cation and the composite salt of a metal cation and ammonium are also contained in this. Moreover, when manufacturing the catalyst which has a composition represented by the said Formula (1), it is preferable to prepare the aqueous slurry (S2) containing the element contained in the composition represented by the said Formula (1).
 使用する触媒原料としては特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を単独で、又は二種類以上を組み合わせて使用することができる。モリブデン原料としては、例えばパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が挙げられる。リン原料としては、例えば正リン酸、五酸化リン又はリン酸セシウム等のリン酸塩等が挙げられる。銅原料としては、例えば硫酸銅、硝酸銅、酸化銅、炭酸銅、酢酸銅、塩化銅等が挙げられる。バナジウム原料としては、例えばメタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 The catalyst raw material to be used is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, oxoacid salts, etc. of each element are used alone or in combination of two or more. can do. Examples of the molybdenum raw material include ammonium paramolybdate, molybdenum trioxide, molybdic acid, and molybdenum chloride. Examples of the phosphorus raw material include phosphates such as orthophosphoric acid, phosphorus pentoxide, and cesium phosphate. Examples of the copper raw material include copper sulfate, copper nitrate, copper oxide, copper carbonate, copper acetate, and copper chloride. Examples of the vanadium raw material include ammonium metavanadate, vanadium pentoxide, vanadium chloride and the like. These may use only 1 type and may use 2 or more types together.
 また、モリブデン、リン、バナジウムの原料としては、モリブデン、リン、バナジウムのうちの少なくとも一つの元素を含むヘテロポリ酸を原料として用いてもよい。ヘテロポリ酸としては、例えばリンモリブデン酸、リンバナドモリブデン酸、ケイモリブデン酸等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 Further, as a raw material for molybdenum, phosphorus, and vanadium, a heteropoly acid containing at least one element of molybdenum, phosphorus, and vanadium may be used as a raw material. Examples of the heteropolyacid include phosphomolybdic acid, phosphovanadmolybdic acid, and silicomolybdic acid. These may use only 1 type and may use 2 or more types together.
 前記水性スラリー(S2)は、少なくともモリブデン及びリンを含有する水性スラリー又は水溶液(S1)を70~130℃に保持し、これを塩基含有化合物と混合することにより調製することが好ましい。
 前記水性スラリー又は水溶液(S1)の調製方法には特に制限はないが、水に触媒を構成する各元素の原料の一部、又は全てを加え、加熱撹拌する方法により行うことが簡便であり好ましい。水に触媒を構成する各元素の原料の水溶液、水性スラリー又は水性ゾルを添加することもできる。水100gに添加するモリブデンのモル数は、0.01~1モルが好ましく、下限は0.05モル以上、上限は0.5モル以下がより好ましい。
 水性スラリー又は水溶液(S1)は、成分や温度等の条件により、水性スラリーと水溶液のいずれになる場合もあり、どちらでもよい。
The aqueous slurry (S2) is preferably prepared by maintaining an aqueous slurry or aqueous solution (S1) containing at least molybdenum and phosphorus at 70 to 130 ° C. and mixing it with a base-containing compound.
Although there is no restriction | limiting in particular in the preparation method of the said aqueous slurry or aqueous solution (S1), It is simple and preferable to carry out by the method of adding the raw material of each element which comprises a catalyst to water, or all, and heating and stirring. . An aqueous solution, an aqueous slurry, or an aqueous sol of raw materials for each element constituting the catalyst can be added to water. The number of moles of molybdenum added to 100 g of water is preferably 0.01 to 1 mole, the lower limit is more than 0.05 mole, and the upper limit is more preferably 0.5 mole or less.
The aqueous slurry or aqueous solution (S1) may be either an aqueous slurry or an aqueous solution, depending on conditions such as components and temperature, and either one may be used.
 調製時の水性スラリー又は水溶液(S1)の温度は、80~130℃が好ましく、90~130℃がより好ましい。水性スラリー又は水溶液(S1)の温度を80℃以上とすることで、ヘテロポリ酸の生成速度を十分に速めることができる。また、水性スラリー又は水溶液(S1)の温度を130℃以下とすることで、ヘテロポリ酸以外の副生成物の生成や水性スラリー又は水溶液(S1)中の水の蒸発を抑制することができる。水性スラリー又は水溶液(S1)のpHは4以下が好ましく、2以下がより好ましい。水性スラリー又は水溶液のpHを十分低くすることにより、ケギン型構造を有するヘテロポリ酸を安定に形成することができる。なお、水性スラリー又は水溶液のpHは、HORIBA製ポータブル型pHメーターD-21(商品名)等により測定することができる。 The temperature of the aqueous slurry or aqueous solution (S1) during preparation is preferably 80 to 130 ° C, more preferably 90 to 130 ° C. By setting the temperature of the aqueous slurry or the aqueous solution (S1) to 80 ° C. or higher, the production rate of the heteropolyacid can be sufficiently increased. In addition, by setting the temperature of the aqueous slurry or aqueous solution (S1) to 130 ° C. or less, generation of by-products other than the heteropolyacid and evaporation of water in the aqueous slurry or aqueous solution (S1) can be suppressed. The aqueous slurry or aqueous solution (S1) has a pH of preferably 4 or less, and more preferably 2 or less. By sufficiently lowering the pH of the aqueous slurry or aqueous solution, a heteropolyacid having a Keggin structure can be stably formed. The pH of the aqueous slurry or aqueous solution can be measured with a portable pH meter D-21 (trade name) manufactured by HORIBA.
 次いで、前記水性スラリー又は水溶液(S1)を70~130℃に保った状態で、塩基含有化合物と混合する。これによりヘテロポリ酸塩が生成する。好ましくは、水性スラリー又は水溶液(S1)に塩基含有化合物を添加する。
 塩基含有化合物は、ヘテロポリ酸と塩を形成する塩基を含む化合物であれば良く、特に限定されないが、好ましくは、塩基として金属カチオンやアンモニウムイオンを含有する。前記水性スラリー又は水溶液(S1)と、金属カチオン含有化合物及びアンモニウム含有化合物からなる群より選択される少なくとも1つを混合することにより、ヘテロポリ酸の金属塩又はアンモニウム塩を含む水性スラリー(S2)を得ることができる。
 塩基含有化合物と混合する際の前記水性スラリー又は水溶液(S1)の温度は、70~130℃の範囲に調整することが好ましい。これにより、得られる触媒をα,β-不飽和カルボン酸の製造に用いる際に、触媒層のホットスポット生成を抑制しやすい。前記水性スラリー又は水溶液(S1)の温度の下限は80℃以上、上限は100℃以下がより好ましい。
 金属カチオン含有化合物としては、アルカリ金属を含む化合物を含む化合物を用いることが好ましく、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選択される少なくとも1種の元素(前記式(1)のGに相当)を含む化合物を用いることがより好ましい。金属カチオン含有化合物を添加することにより、触媒の熱安定性が向上し、熱劣化が抑制できる。アンモニウム含有化合物としては、炭酸水素アンモニウム、炭酸アンモニウム、硝酸アンモニウム、アンモニア水等が挙げられる。これらの塩基含有化合物は、1種で用いてもよく複数種を併用してもよい。アンモニウム含有化合物を添加することにより、α,β-不飽和アルデヒドの分子状酸素による気相接触酸化に好適な結晶構造が形成される。なお、複数種の金属カチオン含有化合物や複数種のアンモニウム含有化合物を併用したり、金属カチオン含有化合物とアンモニウム含有化合物とを併用することにより、それぞれの好ましい特性が現れるため優れた性能を示す。
 塩基含有化合物は、溶媒に溶解又は懸濁させて混合することが好ましい。溶媒としては、水、エチルアルコール、アセトン等が挙げられるが、水を溶媒として用いることが好ましい。塩基含有化合物混合後は、70~130℃で5~60分撹拌保持することが好ましい。なお、撹拌保持とは、撹拌した状態に置いておくことを言う。撹拌保持時間の下限は10分以上、上限は30分以下がより好ましい。撹拌保持時間を5分以上とすることで、ヘテロポリ酸の塩を十分に形成させることができる。一方、撹拌保持時間を60分以下とすることで、目的とするヘテロポリ酸塩の形成以外の副反応を抑制することができる。
Next, the aqueous slurry or aqueous solution (S1) is mixed with the base-containing compound while being kept at 70 to 130 ° C. This produces a heteropolyacid salt. Preferably, the base-containing compound is added to the aqueous slurry or the aqueous solution (S1).
The base-containing compound is not particularly limited as long as it is a compound containing a base that forms a salt with a heteropolyacid, and preferably contains a metal cation or ammonium ion as a base. By mixing the aqueous slurry or aqueous solution (S1) and at least one selected from the group consisting of a metal cation-containing compound and an ammonium-containing compound, an aqueous slurry (S2) containing a metal salt or ammonium salt of a heteropolyacid is obtained. Can be obtained.
The temperature of the aqueous slurry or aqueous solution (S1) when mixed with the base-containing compound is preferably adjusted to a range of 70 to 130 ° C. Thereby, when the obtained catalyst is used for the production of α, β-unsaturated carboxylic acid, it is easy to suppress the generation of hot spots in the catalyst layer. The lower limit of the temperature of the aqueous slurry or aqueous solution (S1) is more preferably 80 ° C. or higher, and the upper limit is more preferably 100 ° C. or lower.
As the metal cation-containing compound, a compound containing a compound containing an alkali metal is preferably used, and at least one element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium (G in the formula (1)) It is more preferable to use a compound containing By adding a metal cation-containing compound, the thermal stability of the catalyst is improved and thermal degradation can be suppressed. Examples of the ammonium-containing compound include ammonium hydrogen carbonate, ammonium carbonate, ammonium nitrate, and aqueous ammonia. These base-containing compounds may be used alone or in combination. By adding an ammonium-containing compound, a crystal structure suitable for gas phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen is formed. It should be noted that, when a plurality of types of metal cation-containing compounds and a plurality of types of ammonium-containing compounds are used in combination, or when a metal cation-containing compound and an ammonium-containing compound are used in combination, the respective preferable characteristics appear, so that excellent performance is exhibited.
The base-containing compound is preferably dissolved or suspended in a solvent and mixed. Examples of the solvent include water, ethyl alcohol, acetone and the like, but it is preferable to use water as the solvent. After mixing the base-containing compound, it is preferable to keep stirring at 70 to 130 ° C. for 5 to 60 minutes. Note that “stirring holding” refers to keeping the stirring state. The lower limit of the stirring holding time is more preferably 10 minutes or more, and the upper limit is more preferably 30 minutes or less. By setting the stirring and holding time to 5 minutes or longer, the salt of the heteropolyacid can be sufficiently formed. On the other hand, by setting the stirring and holding time to 60 minutes or less, side reactions other than the formation of the target heteropolyacid salt can be suppressed.
 得られるヘテロポリ酸塩は、α,β-不飽和カルボン酸の収率の観点からケギン型構造を有することが好ましい。ケギン型構造を有するヘテロポリ酸塩を析出させる方法としては、例えば原料化合物やアンモニウムの添加量等を適宜選択し、硝酸、シュウ酸等を適宜添加する等の方法により、水性スラリー(S2)のpHを4以下、好ましくは3以下に調整する方法が挙げられる。なお、得られるヘテロポリ酸塩の構造は、NICOLET6700FT-IR(製品名、Thermo electron社製)を用いた赤外吸収分析より判断することができる。該ヘテロポリ酸塩がケギン型構造を有する場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。 The obtained heteropolyacid salt preferably has a Keggin structure from the viewpoint of the yield of α, β-unsaturated carboxylic acid. As a method for precipitating a heteropolyacid salt having a Keggin structure, for example, the pH of the aqueous slurry (S2) is selected by a method such as appropriately selecting the amount of raw material compound or ammonium added, and appropriately adding nitric acid, oxalic acid, or the like. Is adjusted to 4 or less, preferably 3 or less. The structure of the obtained heteropolyacid salt can be determined by infrared absorption analysis using NICOLET6700FT-IR (product name, manufactured by Thermo Electron). When the heteropolyacid salt has a Keggin structure, the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1060, 960, 870, and 780 cm −1 .
 (工程(ii))
 工程(ii)では、前記工程(i)で得られた水性スラリー(S2)を冷却して、50℃未満で2.5~24.5時間撹拌保持することで、水性スラリー(S3)を得る。冷却は、水性スラリー(S2)を冷媒に接触させて冷却し降温させても良く、水性スラリー(S2)を室温に置くことで降温させても良い。冷却は水性スラリー(S2)を撹拌しながら行うことが好ましい。析出したヘテロポリ酸塩等が撹拌により均一に分散し、後述する工程(iii)の噴霧乾燥時に、性状の安定した均質な乾燥物が得られやすい。ヘテロポリ酸塩の析出を促進する観点から、降温速度は毎分0.1℃以上が好ましく、毎分0.3℃以上がより好ましい。ただし、降温速度は通常、毎分10℃以下である。
 水性スラリー(S2)の保持温度を50℃未満、かつ撹拌保持時間を2.5時間以上とすることで、水性スラリー(S2)に含まれる元素を十分析出させることができるため、乾燥後に得られる触媒の比表面積が向上し、α,β-不飽和カルボン酸製造において収率が向上する。また水性スラリーの保持温度を50℃未満とすることで、水性スラリー(S2)に含まれる揮発性化合物の過剰な揮発を抑制でき、α,β-不飽和カルボン酸収率の観点から有利である。また、水性スラリー(S2)の保持時間を24.5時間以下とすることで、工程(iii)で得られる触媒の嵩密度の低下を抑制し、反応器に充填できる触媒量を多く維持することができるため、触媒を長時間連続使用する観点から有利である。水性スラリー(S2)を撹拌保持する温度は、水性スラリー(S2)を撹拌翼や撹拌羽根等を用いて撹拌可能な温度(例えば、水性スラリー(S2)の凝固点)以上であり、α,β-不飽和カルボン酸収率の観点から10℃以上が好ましく、30℃より高い温度がより好ましい。また、撹拌保持を行う時間の下限は3.4時間以上が好ましく、上限は15時間未満が好ましい。
 なお本発明において、撹拌保持を行う時間とは、水性スラリー(S2)の温度が50℃未満であり、かつ撹拌翼や撹拌羽根等を用いて水性スラリー(S2)を撹拌して流動性を与えている時間を言う。水性スラリー(S2)の撹拌は連続して2.5~24.5時間行っても良く、あるいは撹拌を断続的に行い、その合計時間を2.5~24.5時間としても良い。撹拌により、析出したヘテロポリ酸塩等が均一に分散し、後述する工程(iii)の噴霧乾燥時に、性状の安定した均質な乾燥物が得られやすい。工程(ii)では、このようにして、液中の元素が充分に析出した水性スラリー(S3)を得る。
(Step (ii))
In the step (ii), the aqueous slurry (S2) obtained in the step (i) is cooled, and stirred for 2.5 to 24.5 hours at less than 50 ° C. to obtain an aqueous slurry (S3). . Cooling may be performed by bringing the aqueous slurry (S2) into contact with a refrigerant to cool and cool the temperature, or by cooling the aqueous slurry (S2) at room temperature. Cooling is preferably performed while stirring the aqueous slurry (S2). The precipitated heteropoly acid salt and the like are uniformly dispersed by stirring, and a homogeneous dried product with stable properties can be easily obtained at the time of spray drying in step (iii) described later. From the viewpoint of promoting the precipitation of the heteropolyacid salt, the temperature decreasing rate is preferably 0.1 ° C. or more per minute, and more preferably 0.3 ° C. or more per minute. However, the cooling rate is usually 10 ° C. or less per minute.
Since the element contained in the aqueous slurry (S2) can be sufficiently precipitated by setting the holding temperature of the aqueous slurry (S2) to less than 50 ° C. and the stirring holding time to 2.5 hours or more, it is obtained after drying. The specific surface area of the resulting catalyst is improved, and the yield is improved in the production of α, β-unsaturated carboxylic acid. Further, by setting the holding temperature of the aqueous slurry to less than 50 ° C., excessive volatilization of the volatile compound contained in the aqueous slurry (S2) can be suppressed, which is advantageous from the viewpoint of the yield of α, β-unsaturated carboxylic acid. . In addition, by setting the retention time of the aqueous slurry (S2) to 24.5 hours or less, a decrease in the bulk density of the catalyst obtained in step (iii) is suppressed, and a large amount of catalyst that can be charged into the reactor is maintained. This is advantageous from the viewpoint of continuous use of the catalyst for a long time. The temperature at which the aqueous slurry (S2) is stirred and held is equal to or higher than the temperature at which the aqueous slurry (S2) can be stirred using a stirring blade, a stirring blade, or the like (for example, the freezing point of the aqueous slurry (S2)). 10 degreeC or more is preferable from a viewpoint of unsaturated carboxylic acid yield, and the temperature higher than 30 degreeC is more preferable. Further, the lower limit of the time for stirring and holding is preferably 3.4 hours or more, and the upper limit is preferably less than 15 hours.
In the present invention, the stirring and holding time means that the temperature of the aqueous slurry (S2) is less than 50 ° C., and the aqueous slurry (S2) is stirred using a stirring blade or a stirring blade to give fluidity. Say the time you are. Stirring of the aqueous slurry (S2) may be continuously performed for 2.5 to 24.5 hours, or stirring may be performed intermittently for a total time of 2.5 to 24.5 hours. By stirring, the precipitated heteropolyacid salt and the like are uniformly dispersed, and a homogeneous dried product with stable properties can be easily obtained at the time of spray drying in the step (iii) described later. In the step (ii), an aqueous slurry (S3) in which elements in the liquid are sufficiently precipitated is obtained in this way.
 (工程(iii))
 工程(iii)では前記工程(ii)により得られた水性スラリー(S3)を噴霧乾燥する。水性スラリー(S3)の乾燥は、工程(ii)に連続して行う。好ましくは、水性スラリー(S2)の50℃未満での撹拌保持開始から水性スラリー(S3)の乾燥終了までを、2.5~24.5時間で行う。また、噴霧乾燥を一度に行わず、撹拌保持しながら、2.5時間以上経過後に水性スラリーの一部を徐々に噴霧乾燥機に供給して乾燥させても良い。乾燥温度は120~500℃が好ましく、下限は140℃以上、上限は350℃以下がより好ましい。乾燥は、得られる乾燥物の水分含有率が0.1~4.5質量%となるように行うことが好ましい。なおこれらの条件は、所望する触媒の形状や大きさにより適宣選択することができる。
 工程(iii)で得られた乾燥物は触媒性能を示し、これをα,β-不飽和カルボン酸製造用触媒として用いることができるが、更に、後述する成形や焼成を行うことで触媒としての性能が向上するため好ましい。本発明では、これら成形後、焼成後のものを含めて触媒と総称する。
(Process (iii))
In the step (iii), the aqueous slurry (S3) obtained in the step (ii) is spray-dried. The aqueous slurry (S3) is dried continuously to the step (ii). Preferably, the stirring and holding of the aqueous slurry (S2) at less than 50 ° C. to the end of drying of the aqueous slurry (S3) are performed in 2.5 to 24.5 hours. Alternatively, a part of the aqueous slurry may be gradually supplied to the spray dryer and dried after 2.5 hours or more while maintaining the agitation without performing spray drying all at once. The drying temperature is preferably 120 to 500 ° C, the lower limit is 140 ° C or higher, and the upper limit is more preferably 350 ° C or lower. Drying is preferably performed so that the moisture content of the obtained dried product is 0.1 to 4.5% by mass. These conditions can be appropriately selected depending on the desired shape and size of the catalyst.
The dried product obtained in step (iii) exhibits catalytic performance and can be used as a catalyst for producing an α, β-unsaturated carboxylic acid. This is preferable because the performance is improved. In the present invention, the catalyst is collectively referred to as the catalyst including those after molding and after firing.
 (成形工程)
 成形工程では、前記工程(iii)で得られた乾燥物を必要に応じて粉砕し、成形する。なお、成形は後述する焼成工程の後に行っても良い。成形方法は特に制限されず、公知の乾式又は湿式の成形方法が適用できる。例えば、打錠成形、押出成形、加圧成形、転動造粒等が挙げられる。成形品の形状としては特に制限はなく、球形粒状、リング状、円柱形ペレット状、星型状、成形後に粉砕分級した顆粒状等の任意の形状が挙げられる。成形後の触媒の形状が球形粒状である場合、直径が0.1mm以上10mm以下であることが好ましい。直径が0.1mm以上であることにより、反応管内の圧力損失を小さくすることができる。また、直径が10mm以下であることにより、触媒活性がより向上する。成形する際には担体に担持してもよく、その他の添加剤を混合してもよい。
(Molding process)
In the molding step, the dried product obtained in the step (iii) is pulverized and molded as necessary. In addition, you may perform shaping | molding after the baking process mentioned later. The molding method is not particularly limited, and a known dry or wet molding method can be applied. For example, tableting molding, extrusion molding, pressure molding, rolling granulation and the like can be mentioned. There is no restriction | limiting in particular as a shape of a molded article, Arbitrary shapes, such as a spherical granular form, a ring shape, a cylindrical pellet shape, a star shape, and the granule shape classified by grinding | pulverization after shaping | molding, are mentioned. When the shape of the catalyst after molding is spherical, the diameter is preferably 0.1 mm or more and 10 mm or less. When the diameter is 0.1 mm or more, the pressure loss in the reaction tube can be reduced. Moreover, a catalyst activity improves more because a diameter is 10 mm or less. When molding, it may be supported on a carrier or other additives may be mixed.
 (焼成工程)
 前記工程(iii)又は前記成形工程で得られた触媒を焼成することが、α,β-不飽和カルボン酸収率の観点から好ましい。焼成条件としては、特に限定はないが、例えば空気等の酸素含有ガス及び不活性ガスの少なくとも一方の流通下で行うことができる。前記焼成は、空気等の酸素含有ガス流通下で行われることが好ましい。また、「不活性ガス」とは触媒活性を低下させない気体のことを示し、例えば窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。これらは一種を用いてもよく、二種以上を混合して使用してもよい。α,β-不飽和カルボン酸の収率の観点から、焼成温度は200~500℃が好ましく、下限は300℃以上、上限は450℃以下がより好ましい。また、焼成時間の下限は0.5~40時間が好ましく、1~40時間がより好ましい。
(Baking process)
The catalyst obtained in the step (iii) or the molding step is preferably calcined from the viewpoint of the yield of α, β-unsaturated carboxylic acid. There are no particular limitations on the firing conditions, but for example, the firing can be performed under the flow of at least one of an oxygen-containing gas such as air and an inert gas. The calcination is preferably performed under a flow of oxygen-containing gas such as air. The “inert gas” refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide gas, helium, and argon. These may use 1 type and may mix and use 2 or more types. From the viewpoint of the yield of α, β-unsaturated carboxylic acid, the firing temperature is preferably 200 to 500 ° C., the lower limit is 300 ° C. or higher, and the upper limit is more preferably 450 ° C. or lower. The lower limit of the firing time is preferably 0.5 to 40 hours, and more preferably 1 to 40 hours.
 [α,β-不飽和カルボン酸の製造方法]
 本発明に係るα,β-不飽和カルボン酸の製造方法は、本発明に係る方法により製造された触媒存在下で、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する。また、本発明に係るα,β-不飽和カルボン酸の製造方法は、本発明に係る方法により触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する。これらの方法によれば、高い収率でα,β-不飽和カルボン酸を製造することができる。
[Production method of α, β-unsaturated carboxylic acid]
The method for producing an α, β-unsaturated carboxylic acid according to the present invention is obtained by subjecting an α, β-unsaturated aldehyde to gas phase catalytic oxidation with molecular oxygen in the presence of a catalyst produced by the method according to the present invention. , Β-unsaturated carboxylic acid is produced. In addition, the method for producing an α, β-unsaturated carboxylic acid according to the present invention comprises producing a catalyst by the method according to the present invention, and using this catalyst, gas phase contact of α, β-unsaturated aldehyde with molecular oxygen. Oxidize to produce α, β-unsaturated carboxylic acid. According to these methods, α, β-unsaturated carboxylic acid can be produced with high yield.
 本発明に係る方法において、前記α,β-不飽和アルデヒドとしては、(メタ)アクロレイン、クロトンアルデヒド(β-メチルアクロレイン)、シンナムアルデヒド(β-フェニルアクロレイン)等が挙げられる。中でも、目的生成物の収率の観点から(メタ)アクロレインであることが好ましく、メタクロレインであることがより好ましい。製造されるα,β-不飽和カルボン酸は、前記α,β-不飽和アルデヒドのアルデヒド基がカルボキシル基に変化したα,β-不飽和カルボン酸である。具体的には、α,β-不飽和アルデヒドが(メタ)アクロレインの場合、(メタ)アクリル酸が得られる。なお、「(メタ)アクロレイン」はアクロレイン及びメタクロレインを示し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸を示す。 In the method according to the present invention, examples of the α, β-unsaturated aldehyde include (meth) acrolein, crotonaldehyde (β-methylacrolein), cinnamaldehyde (β-phenylacrolein) and the like. Among these, (meth) acrolein is preferable from the viewpoint of the yield of the target product, and methacrolein is more preferable. The α, β-unsaturated carboxylic acid produced is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is changed to a carboxyl group. Specifically, when the α, β-unsaturated aldehyde is (meth) acrolein, (meth) acrylic acid is obtained. “(Meth) acrolein” indicates acrolein and methacrolein, and “(meth) acrylic acid” indicates acrylic acid and methacrylic acid.
 以下、代表例として、本発明に係る方法により製造された触媒の存在下、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。 Hereinafter, as a representative example, a method for producing methacrylic acid by subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst produced by the method according to the present invention will be described.
 前記方法では、メタクロレイン及び分子状酸素を含む原料ガスと、本発明に係る触媒とを接触させることでメタクリル酸を製造する。この反応では固定床型反応器を使用することができる。反応管内に触媒を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒は1層として充填してもよく、活性の異なる複数の触媒をそれぞれ複数の層に分けて充填してもよい。また、活性を制御するために触媒を不活性担体により希釈し充填してもよい。 In the method, methacrylic acid is produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst according to the present invention. In this reaction, a fixed bed reactor can be used. The reaction can be carried out by filling the reaction tube with a catalyst and supplying a raw material gas to the reactor. The catalyst may be filled as one layer, or a plurality of catalysts having different activities may be divided into a plurality of layers and filled. Further, in order to control the activity, the catalyst may be diluted with an inert carrier and filled.
 原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。 Although the concentration of methacrolein in the raw material gas is not particularly limited, it is preferably 1 to 20% by volume, the lower limit is preferably 3% by volume or more, and the upper limit is more preferably 10% by volume or less. The raw material methacrolein may contain a small amount of impurities such as lower saturated aldehydes that do not substantially affect the present reaction.
 原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4~4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いてもよい。 The concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol with respect to 1 mol of methacrolein, the lower limit is more than 0.5 mol, and the upper limit is more preferably 3 mol or less. The molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.
 原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50容量%が好ましく、下限は1容量%以上、上限は40容量%以下がより好ましい。 The raw material gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas. By performing the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably from 0.1 to 50% by volume, the lower limit is preferably 1% by volume or more, and the upper limit is more preferably 40% by volume or less.
 原料ガスと触媒との接触時間は、1.5~15秒が好ましい。反応圧力は、0.1MPa(G)~1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。 The contact time between the raw material gas and the catalyst is preferably 1.5 to 15 seconds. The reaction pressure is preferably 0.1 MPa (G) to 1 MPa (G). However, (G) means a gauge pressure. The reaction temperature is preferably 200 to 450 ° C, the lower limit is preferably 250 ° C or higher, and the upper limit is more preferably 400 ° C or lower.
 [α,β-不飽和カルボン酸エステルの製造方法]
 本発明に係るα,β-不飽和カルボン酸エステルの製造方法は、本発明に係る方法により製造されたα,β-不飽和カルボン酸をエステル化するものが挙げられる。また、本発明に係るα,β-不飽和カルボン酸エステルの製造方法は、本発明に係る方法によりα,β-不飽和カルボン酸を製造し、該α,β-不飽和カルボン酸をエステル化するものが挙げられる。これらの方法によれば、α,β-不飽和アルデヒドの気相接触酸化により得られるα,β-不飽和カルボン酸を用いて、α,β-不飽和カルボン酸エステルを得ることができる。α,β-不飽和カルボン酸と反応させるアルコールとしては特に限定されず、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるα,β-不飽和カルボン酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
[Production method of α, β-unsaturated carboxylic acid ester]
Examples of the method for producing an α, β-unsaturated carboxylic acid ester according to the present invention include those for esterifying the α, β-unsaturated carboxylic acid produced by the method according to the present invention. The method for producing an α, β-unsaturated carboxylic acid ester according to the present invention comprises producing an α, β-unsaturated carboxylic acid by the method according to the present invention, and esterifying the α, β-unsaturated carboxylic acid. To do. According to these methods, α, β-unsaturated carboxylic acid ester can be obtained using α, β-unsaturated carboxylic acid obtained by gas phase catalytic oxidation of α, β-unsaturated aldehyde. The alcohol to be reacted with the α, β-unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol. Examples of the α, β-unsaturated carboxylic acid ester obtained include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. The reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin. The reaction temperature is preferably 50 to 200 ° C.
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例中の「部」は質量部を意味する。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples. “Parts” in Examples and Comparative Examples means parts by mass.
 触媒における各元素のモル比は、触媒をアンモニア水に溶解した成分をICP発光分析法で分析することによって算出した。 The molar ratio of each element in the catalyst was calculated by analyzing the component obtained by dissolving the catalyst in aqueous ammonia by ICP emission spectrometry.
 原料ガス及び生成物の分析は、ガスクロマトグラフィー(装置:島津製作所製GC-2014、カラム:J&W社製DB-FFAP、30m×0.32mm、膜厚1.0μm)を用いて行った。ガスクロマトグラフィーの結果から、メタクリル酸収率を下記式にて求めた。
  メタクリル酸収率(%)=(生成したメタクリル酸のモル数/反応器へ供給したメタクロレインのモル数)×100
The analysis of the raw material gas and the product was performed using gas chromatography (apparatus: GC-2014 manufactured by Shimadzu Corporation, column: DB-FFAP manufactured by J & W, 30 m × 0.32 mm, film thickness 1.0 μm). From the results of gas chromatography, the yield of methacrylic acid was determined by the following formula.
Methacrylic acid yield (%) = (number of moles of methacrylic acid produced / number of moles of methacrolein fed to the reactor) × 100
 (実施例1)
 純水400部に三酸化モリブデン100部、メタバナジン酸アンモニウム3.4部、純水6.0部で希釈した85質量%リン酸水溶液9.4部及び純水4.5部に溶解した硝酸銅(II)三水和物2.1部を添加した。この水性スラリーを撹拌しながら25℃から95℃に昇温し、液温を95℃に保ちつつ2時間撹拌し、水性スラリー(S1)を得た。さらに液温を95℃に保って撹拌しながら、純水24部に溶解した重炭酸セシウム13.5部と純水26部に溶解した炭酸アンモニウム9.2部を滴下して撹拌し、ヘテロポリ酸のセシウム塩及びアンモニウム塩を析出させた。析出したヘテロポリ酸塩はケギン型構造を有していた。得られた水性スラリー(S2)を95℃から40℃まで撹拌しながら冷却した。このとき、水性スラリー(S2)が50℃未満となってから40℃になるまでの時間は0.4時間であった。続いて水性スラリー(S2)を40℃で3.0時間撹拌しながら保持した。その後、撹拌保持後の水性スラリー(S3)を噴霧乾燥した。得られた乾燥物を加圧成形した後粉砕し、空気流通下380℃で5時間焼成した。得られた触媒のアンモニウム根及び酸素を除く組成は、P1.4Mo120.5Cu0.15Cs1.2であった。
Example 1
Copper nitrate dissolved in 400 parts of pure water, 100 parts of molybdenum trioxide, 3.4 parts of ammonium metavanadate, 9.4 parts of 85 mass% phosphoric acid aqueous solution diluted with 6.0 parts of pure water and 4.5 parts of pure water (II) 2.1 parts of trihydrate was added. The aqueous slurry was heated from 25 ° C. to 95 ° C. with stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to obtain an aqueous slurry (S1). Further, while stirring while maintaining the liquid temperature at 95 ° C., 13.5 parts of cesium bicarbonate dissolved in 24 parts of pure water and 9.2 parts of ammonium carbonate dissolved in 26 parts of pure water were added dropwise and stirred to form a heteropolyacid. Of cesium salt and ammonium salt were precipitated. The precipitated heteropolyacid salt had a Keggin type structure. The obtained aqueous slurry (S2) was cooled from 95 ° C. to 40 ° C. with stirring. At this time, the time from when the aqueous slurry (S2) became less than 50 ° C. to 40 ° C. was 0.4 hour. Subsequently, the aqueous slurry (S2) was held at 40 ° C. with stirring for 3.0 hours. Thereafter, the aqueous slurry (S3) after the stirring and holding was spray-dried. The obtained dried product was pressure-molded, pulverized, and baked at 380 ° C. for 5 hours under air flow. The composition of the obtained catalyst excluding the ammonium root and oxygen was P 1.4 Mo 12 V 0.5 Cu 0.15 Cs 1.2 .
 この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の原料ガスを反応温度285℃、原料ガスと触媒との接触時間2.4秒で通じた。反応器から得られる生成物を捕集し、ガスクロマトグラフィーで分析してメタクリル酸収率を算出した。触媒の製造条件及び評価結果、反応結果を表1に示す。なお表中、水性スラリー(S2)撹拌保持時間Tは、水性スラリー(S2)が50℃未満となってから撹拌保持温度Rになるまでの時間、及び、撹拌保持温度Rでの保持時間の合計である。 This catalyst is filled in a reaction tube, a raw material gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen is reacted at 285 ° C., and the contact time between the raw material gas and the catalyst is 2.4 seconds. I communicated with. The product obtained from the reactor was collected and analyzed by gas chromatography to calculate the yield of methacrylic acid. Table 1 shows the catalyst production conditions, evaluation results, and reaction results. In the table, the aqueous slurry (S2) stirring and holding time T is the total of the time from the time when the aqueous slurry (S2) is less than 50 ° C. to the stirring holding temperature R and the holding time at the stirring holding temperature R. It is.
 (実施例2~10)
 水性スラリー(S2)を95℃から40℃まで冷却した後の保持時間を変更した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。それぞれの撹拌保持時間Tと評価結果、反応結果を表1に示す。
(Examples 2 to 10)
A catalyst was produced in the same manner as in Example 1 except that the holding time after cooling the aqueous slurry (S2) from 95 ° C. to 40 ° C. was changed, and the methacrylic acid yield was calculated. Table 1 shows the stirring and holding times T, the evaluation results, and the reaction results.
 (実施例11)
 実施例1と同様にして得られた水性スラリー(S2)を、95℃から20℃まで撹拌しながら冷却した。このとき、水性スラリー(S2)が50℃未満となってから20℃になるまでの時間は0.5時間であった。続いて水性スラリー(S2)を20℃で3.0時間撹拌しながら保持した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。触媒の製造条件及び反応結果を表2に示す。
 (実施例12)
 水性スラリー(S2)を95℃から20℃まで冷却した後の保持時間を16.0時間に変更した以外は、実施例11と同様に触媒を製造し、メタクリル酸収率を算出した。撹拌保持時間T及び反応結果を表2に示す。
 (実施例13)
 純水400部に三酸化モリブデン100部、メタバナジン酸アンモニウム3.4部、純水6.0部で希釈した85質量%リン酸水溶液9.4部及び純水4.5部に溶解した硝酸銅(II)三水和物2.1部を添加した。この水性スラリーを撹拌しながら25℃から95℃に昇温し、液温を95℃に保ちつつ2時間撹拌し、水性スラリー(S1)を得た。さらに液温を95℃に保って撹拌しながら、純水28.3部に溶解した硝酸セシウム13.5部と30質量%のアンモニア水40.0部を滴下して撹拌し、ヘテロポリ酸のセシウム塩及びアンモニウム塩を析出させた。析出したヘテロポリ酸塩はドーソン型構造を有していた。得られた水性スラリー(S2)を95℃から40℃まで撹拌しながら冷却した。このとき、水性スラリー(S2)が50℃未満となってから40℃になるまでの時間は0.4時間であった。続いて水性スラリー(S2)を40℃で3.0時間撹拌しながら保持した。その後、撹拌保持後の水性スラリー(S3)を噴霧乾燥した。得られた乾燥物を加圧成形した後粉砕し、空気流通下380℃で5時間焼成した。得られた触媒の酸素を除く組成は、P1.4Mo120.5Cu0.15Cs1.2であった。
 該触媒について、実施例1と同様にメタクリル酸収率を算出した。触媒の製造条件及び反応結果を表2に示す。
(Example 11)
The aqueous slurry (S2) obtained in the same manner as in Example 1 was cooled with stirring from 95 ° C to 20 ° C. At this time, the time from when the aqueous slurry (S2) became less than 50 ° C. to 20 ° C. was 0.5 hour. Subsequently, a catalyst was produced in the same manner as in Example 1 except that the aqueous slurry (S2) was held at 20 ° C. with stirring for 3.0 hours, and the methacrylic acid yield was calculated. Table 2 shows the catalyst production conditions and reaction results.
(Example 12)
A catalyst was produced in the same manner as in Example 11 except that the holding time after cooling the aqueous slurry (S2) from 95 ° C. to 20 ° C. was changed to 16.0 hours, and the methacrylic acid yield was calculated. Table 2 shows the stirring holding time T and the reaction results.
(Example 13)
Copper nitrate dissolved in 400 parts of pure water, 100 parts of molybdenum trioxide, 3.4 parts of ammonium metavanadate, 9.4 parts of 85 mass% phosphoric acid aqueous solution diluted with 6.0 parts of pure water and 4.5 parts of pure water (II) 2.1 parts of trihydrate was added. The aqueous slurry was heated from 25 ° C. to 95 ° C. with stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to obtain an aqueous slurry (S1). Further, while stirring at a liquid temperature of 95 ° C., 13.5 parts of cesium nitrate dissolved in 28.3 parts of pure water and 40.0 parts of 30% by mass of ammonia water were added dropwise and stirred to obtain cesium of a heteropolyacid. Salts and ammonium salts were precipitated. The precipitated heteropolyacid salt had a Dawson type structure. The obtained aqueous slurry (S2) was cooled from 95 ° C. to 40 ° C. with stirring. At this time, the time from when the aqueous slurry (S2) became less than 50 ° C. to 40 ° C. was 0.4 hour. Subsequently, the aqueous slurry (S2) was held at 40 ° C. with stirring for 3.0 hours. Thereafter, the aqueous slurry (S3) after the stirring and holding was spray-dried. The obtained dried product was pressure-molded, pulverized, and baked at 380 ° C. for 5 hours under air flow. The composition of the obtained catalyst excluding oxygen was P 1.4 Mo 12 V 0.5 Cu 0.15 Cs 1.2 .
For the catalyst, the methacrylic acid yield was calculated in the same manner as in Example 1. Table 2 shows the catalyst production conditions and reaction results.
 (比較例1及び2)
 水性スラリー(S2)を95℃から40℃まで冷却した後の保持時間を、それぞれ1.0時間及び2.0時間に変更した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
(Comparative Examples 1 and 2)
A catalyst was produced in the same manner as in Example 1 except that the holding time after cooling the aqueous slurry (S2) from 95 ° C. to 40 ° C. was changed to 1.0 hour and 2.0 hours, respectively. The rate was calculated. The reaction results are shown in Table 2.
 (比較例3)
 水性スラリー(S2)を95℃から70℃まで冷却し、70℃で0.3時間撹拌しながら保持した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
 (比較例4)
 水性スラリー(S2)を95℃から55℃まで冷却し、55℃で3.0時間撹拌しながら保持した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
 (比較例5)
 水性スラリー(S2)を95℃から40℃まで冷却した後の保持時間を、2.0時間に変更した以外は、実施例13と同様に触媒を製造し、メタクリル酸収率を算出した。評価結果を表2に示す。
 (比較例6)
 撹拌保持後のスラリー(S3)を蒸発乾固法により乾燥した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
 (比較例7)
 水性スラリー(S2)を95℃から40℃まで冷却した後の保持時間を、2.0時間に変更した以外は、比較例6と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
 (比較例8)
 撹拌保持後のスラリー(S3)を減圧濃縮法により乾燥した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
 (比較例9)
 水性スラリー(S2)を95℃から40℃まで冷却した後の保持時間を、2.0時間に変更した以外は、比較例8と同様に触媒を製造し、メタクリル酸収率を算出した。反応結果を表2に示す。
(Comparative Example 3)
A catalyst was produced in the same manner as in Example 1 except that the aqueous slurry (S2) was cooled from 95 ° C. to 70 ° C. and held with stirring at 70 ° C. for 0.3 hour, and the methacrylic acid yield was calculated. The reaction results are shown in Table 2.
(Comparative Example 4)
A catalyst was produced in the same manner as in Example 1 except that the aqueous slurry (S2) was cooled from 95 ° C. to 55 ° C. and held with stirring at 55 ° C. for 3.0 hours, and the methacrylic acid yield was calculated. The reaction results are shown in Table 2.
(Comparative Example 5)
A catalyst was produced in the same manner as in Example 13 except that the holding time after cooling the aqueous slurry (S2) from 95 ° C. to 40 ° C. was changed to 2.0 hours, and the methacrylic acid yield was calculated. The evaluation results are shown in Table 2.
(Comparative Example 6)
A catalyst was produced in the same manner as in Example 1 except that the stirred slurry (S3) was dried by evaporation to dryness, and the yield of methacrylic acid was calculated. The reaction results are shown in Table 2.
(Comparative Example 7)
A catalyst was produced in the same manner as in Comparative Example 6 except that the holding time after cooling the aqueous slurry (S2) from 95 ° C. to 40 ° C. was changed to 2.0 hours, and the methacrylic acid yield was calculated. The reaction results are shown in Table 2.
(Comparative Example 8)
A catalyst was produced in the same manner as in Example 1 except that the stirred slurry (S3) was dried by a vacuum concentration method, and the yield of methacrylic acid was calculated. The reaction results are shown in Table 2.
(Comparative Example 9)
A catalyst was produced in the same manner as in Comparative Example 8 except that the holding time after cooling the aqueous slurry (S2) from 95 ° C. to 40 ° C. was changed to 2.0 hours, and the methacrylic acid yield was calculated. The reaction results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~12の触媒の製造方法は水性スラリー(S2)を撹拌保持する際の温度及び時間が本発明の範囲内にあり、メタクリル酸収率が高い触媒が得られることが確認された。一方、水性スラリー(S2)を撹拌保持する時間が本発明の範囲外である比較例1及び2は、実施例1~12と比較してメタクリル酸収率が低い触媒が得られた。また水性スラリーを撹拌保持する温度及び時間の両方が本発明の範囲外である比較例3、及び水性スラリーを撹拌保持する温度が本発明の範囲外である比較例4は、更にメタクリル酸収率が低い触媒が得られた。また、水性スラリー(S2)を撹拌保持する温度が30℃より高い実施例1及び9は、同程度の時間撹拌保持している実施例11及び12と比較して、それぞれメタクリル酸収率が高い結果となった。更に水性スラリー(S2)を撹拌保持する時間が15時間未満である実施例1~8は、触媒の嵩密度の低下が抑制されており、実施例9及び10と比較して、触媒を長時間連続使用できる観点から優れていた。 As shown in Table 1, the methods for producing the catalysts of Examples 1 to 12 were able to obtain a catalyst having a high methacrylic acid yield because the temperature and time when the aqueous slurry (S2) was stirred and held were within the scope of the present invention. It was confirmed that On the other hand, Comparative Examples 1 and 2 in which the time for stirring and holding the aqueous slurry (S2) was outside the scope of the present invention gave a catalyst having a lower methacrylic acid yield than Examples 1-12. Further, Comparative Example 3 in which both the temperature and time for stirring and holding the aqueous slurry are outside the scope of the present invention, and Comparative Example 4 in which the temperature for stirring and holding the aqueous slurry are outside the scope of the present invention are further obtained in methacrylic acid yield. A low catalyst was obtained. Further, Examples 1 and 9 in which the temperature for stirring and holding the aqueous slurry (S2) is higher than 30 ° C have higher methacrylic acid yields than those in Examples 11 and 12 in which stirring and holding for the same degree of time are performed. As a result. Further, in Examples 1 to 8 in which the time for stirring and holding the aqueous slurry (S2) was less than 15 hours, the decrease in the bulk density of the catalyst was suppressed. Compared with Examples 9 and 10, the catalyst was kept for a long time. It was excellent from the viewpoint of continuous use.
 工程(i)におけるヘテロポリ酸塩がドーソン型構造を有する場合、水性スラリー(S2)を撹拌保持する際の温度及び時間が本発明の範囲内である実施例13は、メタクリル酸収率が高い触媒が得られていることが確認された。一方、水性スラリー(S2)を撹拌保持する時間が本発明の範囲外である比較例5は、実施例13と比較してメタクリル酸収率が低い触媒が得られた。
 一方、撹拌保持後の水性スラリー(S3)を蒸発乾固法により乾燥している比較例6及び7、並びに減圧濃縮法により乾燥している比較例8及び9は、水性スラリー(S2)を撹拌保持する際の温度及び時間が本発明の範囲内であっても、メタクリル酸収率はほとんど向上しなかった。
 なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。
When the heteropoly acid salt in step (i) has a Dawson structure, Example 13 in which the temperature and time for stirring and holding the aqueous slurry (S2) is within the scope of the present invention is a catalyst having a high methacrylic acid yield. It was confirmed that On the other hand, in Comparative Example 5 in which the time for stirring and holding the aqueous slurry (S2) was outside the scope of the present invention, a catalyst having a lower methacrylic acid yield was obtained than in Example 13.
On the other hand, Comparative Examples 6 and 7 in which the aqueous slurry (S3) after stirring and holding was dried by the evaporation to dryness method and Comparative Examples 8 and 9 in which the aqueous slurry (S3) was dried by the vacuum concentration method were stirred in the aqueous slurry (S2). Even when the temperature and time for holding were within the range of the present invention, the methacrylic acid yield was hardly improved.
In addition, a methacrylic acid ester can be obtained by esterifying the methacrylic acid obtained in the present Example.
 この出願は、2018年2月26日に出願された日本出願特願2018-031564を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2018-031564 for which it applied on February 26, 2018, and takes in those the indications of all here.
Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 本発明によれば、α,β-不飽和アルデヒドから高い収率でα,β-不飽和カルボン酸を製造することができるα,β-不飽和カルボン酸製造用触媒を提供することができ、工業的に有用である。 According to the present invention, it is possible to provide a catalyst for producing an α, β-unsaturated carboxylic acid capable of producing an α, β-unsaturated carboxylic acid in a high yield from an α, β-unsaturated aldehyde, Industrially useful.

Claims (11)

  1.  α,β-不飽和アルデヒドを分子状酸素により気相接触酸化してα,β-不飽和カルボン酸を製造する際に用いられる、α,β-不飽和カルボン酸製造用触媒の製造方法であって、
    (i)少なくともモリブデン及びリンを含有するヘテロポリ酸塩を含む水性スラリー(S2)を得る工程と、
    (ii)前記水性スラリー(S2)を50℃未満で2.5~24.5時間撹拌保持して水性スラリー(S3)を得る工程と、
    (iii)前記水性スラリー(S3)を噴霧乾燥する工程と、
    を含むα,β-不飽和カルボン酸製造用触媒の製造方法。
    A method for producing a catalyst for producing an α, β-unsaturated carboxylic acid, which is used in the production of α, β-unsaturated carboxylic acid by vapor phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen. And
    (I) obtaining an aqueous slurry (S2) containing a heteropolyacid salt containing at least molybdenum and phosphorus;
    (Ii) obtaining the aqueous slurry (S3) by stirring and holding the aqueous slurry (S2) at less than 50 ° C. for 2.5 to 24.5 hours;
    (Iii) spray drying the aqueous slurry (S3);
    A process for producing a catalyst for producing an α, β-unsaturated carboxylic acid comprising:
  2.  前記工程(i)におけるヘテロポリ酸塩が、金属カチオン塩及びアンモニウム塩からなる群より選択される少なくとも1つである、請求項1に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。 The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to claim 1, wherein the heteropolyacid salt in the step (i) is at least one selected from the group consisting of a metal cation salt and an ammonium salt. .
  3.  前記工程(i)において、少なくともモリブデン及びリンを含有する水性スラリー又は水溶液(S1)を70~130℃に保持し、これを塩基含有化合物と混合することにより水性スラリー(S2)を得る、請求項1又は2に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。 The aqueous slurry (S2) is obtained by maintaining the aqueous slurry or aqueous solution (S1) containing at least molybdenum and phosphorus in the step (i) at 70 to 130 ° C and mixing it with a base-containing compound. 3. A process for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to 1 or 2.
  4.  前記工程(i)におけるヘテロポリ酸塩がケギン型構造を有する、請求項1から3のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。 The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to any one of claims 1 to 3, wherein the heteropolyacid salt in the step (i) has a Keggin type structure.
  5.  前記工程(ii)において、前記水性スラリー(S2)の前記撹拌保持を3.4時間以上15時間未満行う、請求項1から4のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。 The α, β-unsaturated carboxylic acid production according to any one of claims 1 to 4, wherein in the step (ii), the stirring and holding of the aqueous slurry (S2) is performed for 3.4 hours or more and less than 15 hours. For producing a catalyst for use.
  6.  前記工程(ii)において、前記水性スラリー(S2)の前記撹拌保持を30℃より高く50℃未満で行う、請求項1から5のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。 The α, β-unsaturated carboxylic acid production according to any one of claims 1 to 5, wherein in the step (ii), the stirring and holding of the aqueous slurry (S2) is performed at a temperature higher than 30 ° C and lower than 50 ° C. For producing a catalyst for use.
  7.  前記触媒が下記式(1)で表される組成を有する、請求項1から6のいずれか1項に記載のα,β-不飽和カルボン酸製造用触媒の製造方法。
      PMoCu(NHi   (1)
    (前記式(1)中、P、Mo、V、Cu、NH及びOは、それぞれ、リン、モリブデン、バナジウム、銅、アンモニウム根及び酸素を示す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、タリウム、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群より選択される少なくとも1種類の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム及びセシウムからなる群から選択される少なくとも1種の元素を表す。a~iは各成分のモル比率を表し、b=12のとき、a=0.5~3、c=0.01~3、d=0.01~2、e=0~3、f=0~3、g=0.01~3、h=0~30、iは前記各成分の価数を満足するのに必要な酸素のモル比率である。)
    The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to any one of claims 1 to 6, wherein the catalyst has a composition represented by the following formula (1).
    P a Mo b V c Cu d A e E f G g (NH 4) h O i (1)
    (In the formula (1), P, Mo, V, Cu, NH 4 and O respectively represent phosphorus, molybdenum, vanadium, copper, ammonium root and oxygen. A represents antimony, bismuth, arsenic, germanium, zirconium. Represents at least one element selected from the group consisting of, tellurium, silver, selenium, silicon, tungsten and boron, where E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium And at least one element selected from the group consisting of titanium, tin, thallium, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, G is composed of lithium, sodium, potassium, rubidium and cesium Represents at least one element selected from the group a I represents the molar ratio of each component. When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0 -3, g = 0.01-3, h = 0-30, i is the molar ratio of oxygen necessary to satisfy the valence of each component.
  8.  請求項1から7のいずれか1項に記載の方法により製造された触媒の存在下で、α,β-不飽和アルデヒドを分子状酸素により気相接触酸化するα,β-不飽和カルボン酸の製造方法。 An α, β-unsaturated carboxylic acid which undergoes gas phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen in the presence of the catalyst produced by the method according to any one of claims 1 to 7. Production method.
  9.  請求項1から7のいずれか1項に記載の方法により触媒を製造し、該触媒を用いてα,β-不飽和アルデヒドを分子状酸素により気相接触酸化するα,β-不飽和カルボン酸の製造方法。 An α, β-unsaturated carboxylic acid produced by the method according to any one of claims 1 to 7, wherein the α, β-unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen using the catalyst. Manufacturing method.
  10.  請求項8又は9に記載の方法により製造されたα,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。 A method for producing an α, β-unsaturated carboxylic acid ester, wherein the α, β-unsaturated carboxylic acid produced by the method according to claim 8 or 9 is esterified.
  11.  請求項8又は9に記載の方法によりα,β-不飽和カルボン酸を製造し、該α,β-不飽和カルボン酸をエステル化するα,β-不飽和カルボン酸エステルの製造方法。 A method for producing an α, β-unsaturated carboxylic acid ester, wherein an α, β-unsaturated carboxylic acid is produced by the method according to claim 8 or 9, and the α, β-unsaturated carboxylic acid is esterified.
PCT/JP2019/007015 2018-02-26 2019-02-25 METHOD FOR PREPARING CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND α,β-UNSATURATED CARBOXYLIC ACID ESTER WO2019163984A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202007557WA SG11202007557WA (en) 2018-02-26 2019-02-25 METHOD FOR PREPARING CATALYST FOR PRODUCING a,ß-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING a,ß-UNSATURATED CARBOXYLIC ACID AND a,ß-UNSATURATED CARBOXYLIC ACID ESTER
KR1020207027230A KR102476427B1 (en) 2018-02-26 2019-02-25 Method for producing catalysts for producing α,β-unsaturated carboxylic acids, and methods for producing α,β-unsaturated carboxylic acids and α,β-unsaturated carboxylic acid esters
CN201980015016.0A CN111770795B (en) 2018-02-26 2019-02-25 Method for producing catalyst for producing alpha, beta-unsaturated carboxylic acid, and method for producing alpha, beta-unsaturated carboxylic acid
JP2020501082A JP7001982B2 (en) 2018-02-26 2019-02-25 A method for producing a catalyst for producing an α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid ester.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018031564 2018-02-26
JP2018-031564 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163984A1 true WO2019163984A1 (en) 2019-08-29

Family

ID=67688463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007015 WO2019163984A1 (en) 2018-02-26 2019-02-25 METHOD FOR PREPARING CATALYST FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID AND α,β-UNSATURATED CARBOXYLIC ACID ESTER

Country Status (5)

Country Link
JP (1) JP7001982B2 (en)
KR (1) KR102476427B1 (en)
CN (1) CN111770795B (en)
SG (1) SG11202007557WA (en)
WO (1) WO2019163984A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644046A (en) * 1979-09-17 1981-04-23 Standard Oil Co Wear proof and high activity component fluid bed catalyst
JPH11226410A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid
JP2009511256A (en) * 2005-10-14 2009-03-19 エボニック デグサ ゲーエムベーハー Mixed oxide catalysts for catalytic gas phase oxidation of olefins and methods for their production
JP2009226270A (en) * 2008-03-19 2009-10-08 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, its manufacturing method, and method for producing methacrylic acid
JP2010516441A (en) * 2007-01-19 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a catalyst molded body whose active material is a multi-element oxide
JP2010520040A (en) * 2007-03-01 2010-06-10 エボニック デグサ ゲーエムベーハー Mixed oxide catalyst made of hollow material
US20140141964A1 (en) * 2012-11-21 2014-05-22 Shanghai Huayi Acrylic Acid Co., Ltd. Heteropoly acid salt catalyst and its preparation method
JP2014226614A (en) * 2013-05-23 2014-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230720A (en) 2004-02-20 2005-09-02 Mitsubishi Rayon Co Ltd Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP4856579B2 (en) * 2007-04-26 2012-01-18 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
KR100954049B1 (en) * 2007-06-13 2010-04-20 주식회사 엘지화학 Method for preparing heteropoly acid catalyst
EP2508256A4 (en) * 2009-11-30 2013-07-10 Nippon Kayaku Kk Process for production of catalyst for use in production of methacrylic acid, and process for production of methacrylic acid
JP5915894B2 (en) 2012-03-16 2016-05-11 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
JP5915895B2 (en) 2012-03-16 2016-05-11 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
US20150105583A1 (en) 2012-05-18 2015-04-16 Nippon Kayaku Kabushiki Kaisha Catalyst For Methacrylic Acid Production, Process For Producing The Same, And Process For Producing Methacrylic Acid Using The Catalyst
CN109999869A (en) * 2013-09-11 2019-07-12 三菱化学株式会社 The manufacturing method of methacrylic acid catalyst for producing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644046A (en) * 1979-09-17 1981-04-23 Standard Oil Co Wear proof and high activity component fluid bed catalyst
JPH11226410A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid
JP2009511256A (en) * 2005-10-14 2009-03-19 エボニック デグサ ゲーエムベーハー Mixed oxide catalysts for catalytic gas phase oxidation of olefins and methods for their production
JP2010516441A (en) * 2007-01-19 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a catalyst molded body whose active material is a multi-element oxide
JP2010520040A (en) * 2007-03-01 2010-06-10 エボニック デグサ ゲーエムベーハー Mixed oxide catalyst made of hollow material
JP2009226270A (en) * 2008-03-19 2009-10-08 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, its manufacturing method, and method for producing methacrylic acid
US20140141964A1 (en) * 2012-11-21 2014-05-22 Shanghai Huayi Acrylic Acid Co., Ltd. Heteropoly acid salt catalyst and its preparation method
JP2014226614A (en) * 2013-05-23 2014-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Also Published As

Publication number Publication date
CN111770795A (en) 2020-10-13
CN111770795B (en) 2024-01-30
KR102476427B1 (en) 2022-12-09
JPWO2019163984A1 (en) 2021-01-14
KR20200123807A (en) 2020-10-30
SG11202007557WA (en) 2020-09-29
JP7001982B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP5973999B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
KR20110044266A (en) Catalyst for methacrylic acid production, process for producing same, and process for producing methacrylic acid
JP2012115825A (en) Catalyst for producing methacrolein and methacrylic acid, and method for producing the same
JP6819699B2 (en) Methacrylic acid production catalyst, methacrylic acid production catalyst precursor, and their production methods, methacrylic acid production method, and methacrylic acid ester production method.
JP7006477B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid.
JP7001982B2 (en) A method for producing a catalyst for producing an α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid and an α, β-unsaturated carboxylic acid ester.
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP6798617B2 (en) A method for producing a catalyst, a method for producing an unsaturated carboxylic acid, a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, and a method for producing an unsaturated carboxylic acid ester.
JP2010029847A (en) Production method for methacrylic acid production catalyst
JP7031737B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester.
WO2023182425A1 (en) Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid esters using catalyst
WO2023162810A1 (en) Method for producing catalyst compact for use in producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic acid and unsaturated carboxylic ester using same
WO2023182426A1 (en) Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid esters using catalyst
JP5149138B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP5424914B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
KR102318486B1 (en) Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester
US20240017247A1 (en) Catalyst, Method for Producing Catalyst, and Method for Producing alpha,beta-Unsaturated Aldehyde, alpha,beta-Unsaturated Carboxylic Acid and alpha,beta-Unsaturated Carboxylic Acid Ester
JP2008149262A (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP5063493B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2010264397A (en) Catalyst for synthesizing unsaturated carboxylic acid and method for manufacturing unsaturated carboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207027230

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19757063

Country of ref document: EP

Kind code of ref document: A1