WO2019163844A1 - 光学ユニット及び投影装置 - Google Patents

光学ユニット及び投影装置 Download PDF

Info

Publication number
WO2019163844A1
WO2019163844A1 PCT/JP2019/006391 JP2019006391W WO2019163844A1 WO 2019163844 A1 WO2019163844 A1 WO 2019163844A1 JP 2019006391 W JP2019006391 W JP 2019006391W WO 2019163844 A1 WO2019163844 A1 WO 2019163844A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical system
projection
imaging
light
Prior art date
Application number
PCT/JP2019/006391
Other languages
English (en)
French (fr)
Inventor
和紀 井上
山本 力
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020501006A priority Critical patent/JP6997854B2/ja
Publication of WO2019163844A1 publication Critical patent/WO2019163844A1/ja
Priority to US16/998,563 priority patent/US11215907B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • G03B17/54Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus with projector
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Definitions

  • the present invention relates to an optical unit and a projection apparatus.
  • Patent Document 1 discloses a half mirror that transmits light from a projection unit to a screen and guides light from the screen to an imaging unit, a lens disposed between the half mirror and the projection unit, and the half mirror and imaging.
  • a projector having a lens disposed between the sections.
  • Patent Document 2 a projection unit, an imaging unit, a half mirror that projects light from the projection unit onto a screen and guides light from the screen to the imaging unit, and the half mirror and the projection unit are disposed.
  • An apparatus including a lens, a lens disposed on the screen side of the half mirror, and a lens disposed between the half mirror and the imaging unit is described.
  • Patent Document 3 discloses a scanning laser light source, a half mirror that transmits light from the laser light source toward the screen, a projection and imaging lens that receives light transmitted through the half mirror, and the projection and imaging.
  • An apparatus has been described that includes an imaging lens on which light collected by a lens for use and reflected by a half mirror is incident, and an imaging element that receives light that has passed through the imaging lens. .
  • Patent Document 4 discloses a display element, a half mirror that transmits light from the display element to the screen side, a projection and imaging lens that receives light transmitted through the half mirror, and the projection and imaging lens. And an image pickup device on which light collected by the laser beam and reflected by a half mirror is incident is described.
  • a lens is provided between a branch member such as a half mirror and an imaging unit and a projection unit.
  • a branch member such as a half mirror
  • an imaging unit such as a projection unit
  • an arrangement in which the optical system is arranged closer to the screen than the branching member is effective.
  • Patent Documents 1 to 4 do not disclose the above configuration and do not recognize such a problem.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical unit capable of reducing design cost and miniaturization, and a projection apparatus including the optical unit.
  • the optical unit of the present invention includes a projection optical system in which light from a display unit is incident, and a common optical that projects the light that has passed through the projection optical system onto a projection target and forms an image of a subject on the projection target side.
  • An imaging optical system for forming an image on the imaging device, and the imaging position of the intermediate image is a component on the projection object side most of the components constituting the common optical system; It is between the optical member.
  • the projection device of the present invention includes the optical unit and the display unit.
  • an optical unit capable of reducing design cost and miniaturization
  • a projection apparatus including the optical unit.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a projector 100 that is an embodiment of a projection apparatus of the present invention. It is a schematic diagram which shows the structural example of the display part 1 of the projector 100 shown in FIG. It is a schematic diagram which shows schematic structure of the projector 100A which is a modification of the projector 100 shown in FIG. It is a schematic diagram which shows schematic structure of the projector 100B which is a modification of the projector 100 shown in FIG. It is a schematic diagram which shows schematic structure of the projector 100C which is a modification of the projector 100 shown in FIG. It is a schematic diagram which shows schematic structure of projector 100D which is a modification of the projector 100 shown in FIG. It is a schematic diagram which shows schematic structure of the projector 100E which is a modification of the projector 100 shown in FIG. It is a schematic diagram which shows schematic structure of the projector 100F which is a modification of the projector 100 shown in FIG.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a projector 100 which is an embodiment of the projection apparatus of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the display unit 1 of the projector 100 illustrated in FIG. 1.
  • the projector 100 is configured to project an image on the screen SC and to capture a range including the projected image projected on the screen SC.
  • the projector 100 includes a display unit 1, a projection optical system 2, a common optical system 3, an optical member 4, an imaging optical system 5, and an imaging element 6.
  • the display unit 1 displays an image for projection based on input image data. As shown in FIG. 2, the display unit 1 includes a light source unit 40 and a light modulation element 44.
  • the light source unit 40 includes an R light source 41r that is a red light source that emits red light, a G light source 41g that is a green light source that emits green light, a B light source 41b that is a blue light source that emits blue light, and a dichroic prism 43.
  • a collimator lens 42r provided between the R light source 41r and the dichroic prism 43, a collimator lens 42g provided between the G light source 41g and the dichroic prism 43, and a B light source 41b and the dichroic prism 43.
  • a collimator lens 42b is a red light source that emits red light
  • a G light source 41g that is a green light source that emits green light
  • a B light source 41b that is a blue light source that emits blue light
  • a collimator lens 42r provided between the R light source 41r and the dichroic prism 43
  • a collimator lens 42g provided between the G light source 41g and the dichroic pris
  • the dichroic prism 43 is an optical member for guiding light emitted from each of the R light source 41r, the G light source 41g, and the B light source 41b to the same optical path. That is, the dichroic prism 43 transmits the red light that has been collimated by the collimator lens 42 r and emits the red light to the light modulation element 44. The dichroic prism 43 reflects the green light that has been collimated by the collimator lens 42 g and emits it to the light modulation element 44. Further, the dichroic prism 43 reflects the blue light that has been collimated by the collimator lens 42 b and emits it to the light modulation element 44.
  • the optical member having such a function is not limited to the dichroic prism. For example, a cross dichroic mirror may be used.
  • Each of the R light source 41r, the G light source 41g, and the B light source 41b uses a light emitting element such as a laser or an LED (Light Emitting Diode).
  • the number of light sources included in the light source unit 40 may be one, two, or four or more.
  • the light modulation element 44 spatially modulates the light emitted from the dichroic prism 43 based on the image data, and the spatially modulated image light (red image light, blue image light, and green image light) is the projection optical system in FIG. 2 is emitted.
  • FIG. 2 shows an example in which a DMD (Digital Micromirror Device) is used as the light modulation element 44.
  • a DMD Digital Micromirror Device
  • the light modulation element 44 for example, LCOS (Liquid crystal on silicon), MEMS (Micro Electro Mechanical System element, or the like). It is also possible to use a liquid crystal display element or the like.
  • the display unit 1 may display an image using a self-luminous organic EL (electro-luminescence) display element, and may cause the displayed image to enter the projection optical system 2.
  • a self-luminous organic EL electro-luminescence
  • an apparatus that displays an image by scanning with laser light may be used.
  • the projection optical system 2 is an optical system to which image light from the display unit 1 is incident, and is configured by a relay optical system including at least one lens.
  • the light that has passed through the projection optical system 2 enters the optical member 4, is reflected by the optical member 4, and enters the common optical system 3.
  • the common optical system 3 is an optical system that projects the light that has passed through the projection optical system 2 onto the screen SC that is a projection target and forms an image of a subject on the screen SC side, and is configured by a relay optical system. .
  • the common optical system 3 includes a lens group 31 including at least one lens, an optical member 32, a lens group 33 including at least one lens, and a lens group 34 including at least one lens. Is provided.
  • the lens group 31, the optical member 32, the lens group 33, and the lens group 34 are arranged on the optical path in this order from the screen SC side.
  • the optical member 32 is a member for bending the optical path of the common optical system 3, and for example, a half mirror, a beam splitter, or a polarizing member is used.
  • the optical member 32 constitutes a first bending optical member.
  • the image light that has passed through the projection optical system 2 is reflected by the optical member 4 and enters the lens group 34.
  • the lens group 34 forms an intermediate image formed by the image light at a position IG between the lens group 33 and the lens group 34.
  • the intermediate image passes through the lens group 33 and enters the optical member 32, is reflected by the optical member 32, and enters the lens group 31.
  • the intermediate image incident on the lens group 31 is projected toward the screen SC.
  • the subject light incident on the lens group 31 from the screen SC side passes through the lens group 31, is reflected by the optical member 32, and enters the lens group 33.
  • the lens group 33 forms an intermediate image formed by subject light at a position IG between the lens group 33 and the lens group 34.
  • the intermediate image passes through the lens group 34 and enters the optical member 4, and passes through the optical member 4 and enters the imaging optical system 5.
  • the image sensor 6 is a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the image pickup optical system 5 is an optical system for forming an intermediate image formed at the position IG on the image pickup device 6.
  • the image pickup optical system 5 is disposed in front of the image pickup element 6 and focuses the subject light transmitted through the optical member 4 to form an image on the image pickup element 6.
  • the imaging optical system 5 includes at least one lens.
  • the optical member 4 is composed of, for example, a half mirror, a beam splitter, or a polarizing member.
  • the optical member 4 reflects the image light that has passed through the projection optical system 2 and guides it to the common optical system 3, and also creates an intermediate image based on the subject light imaged at the position IG by the lens group 33 of the common optical system 3. Then, the light is guided to the image pickup device 6 through the image pickup optical system 5.
  • the optical unit is constituted by the projection optical system 2, the common optical system 3, the optical member 4, the imaging optical system 5, and the imaging element 6 shown in FIG.
  • the projection image displayed by the display unit 1 can be projected onto the screen SC, and the projected image of the image can be captured by the image sensor 6.
  • This projector 100 forms an intermediate image by subject light at a position IG between the lens group 33 and the lens group 34 inside the common optical system 3. For this reason, compared with the case where this intermediate image exists in the imaging optical system 5 side rather than the optical member 4, for example, the distance of this intermediate image and the imaging optical system 5 can be enlarged sufficiently. As a result, the imaging optical system 5 can be prevented from becoming large, and the optical unit can be reduced in size and the design load of the imaging optical system 5 can be reduced.
  • the common optical system 3 and the projection optical system 2 are each constituted by a relay optical system. For this reason, the back focus in the system combining the common optical system 3 and the projection optical system 2 can be shortened. Further, since the light beam is close to parallel light, the optical member 4 and the optical member 32 can be reduced in size.
  • the imaging position of the intermediate image based on the image light matches the imaging position of the intermediate image based on the subject light. For this reason, the design of the optical system becomes easy and the design cost can be reduced.
  • the shape of the projector 100 can be given a degree of freedom.
  • the position IG at which the intermediate image is formed is between the lens closest to the screen SC among the lenses included in the common optical system 3 and the optical member 4, the intermediate image by the subject light and the imaging optics are used.
  • the distance to the system 5 can be made sufficiently large.
  • FIG. 3 is a schematic diagram showing a schematic configuration of a projector 100A which is a modification of the projector 100 shown in FIG.
  • the projector 100A has the same configuration as the projector 100 except that the common optical system 3 is changed to the common optical system 3A.
  • the same components as those in FIG. 3 are identical to FIG. 3 in FIG. 3, the same components as those in FIG.
  • the common optical system 3A of the projector 100A is obtained by deleting the lens group 34 from the common optical system 3 of FIG.
  • This common optical system 3A an intermediate image based on the subject light is formed at a position IG between the lens group 33 and the optical member 4. According to the projector 100A, it is possible to further reduce the size as compared with the projector 100.
  • FIG. 4 is a schematic diagram showing a schematic configuration of a projector 100B which is a modification of the projector 100 shown in FIG.
  • the projector 100B has the same configuration as the projector 100A of FIG. 3 except that the imaging optical system 5 is changed to the imaging optical system 5A and the position of the imaging device 6 is changed.
  • the same components as those in FIG. 4 are identical to FIG. 4 in FIG. 4, the same components as those in FIG.
  • the imaging optical system 5A of the projector 100B includes a lens group 5a composed of at least one lens and an optical member 5b constituting a second bending optical member.
  • the optical member 5b is a member for reflecting the subject light transmitted through the optical member 4 and guiding it to the lens group 5a, and is constituted by, for example, a half mirror, a beam splitter, or a polarizing member.
  • the lens group 5a collects the subject light reflected by the optical member 5b and forms the intermediate image on the image sensor 6.
  • the design of the projector 100B can be given a degree of freedom.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a projector 100C which is a modification of the projector 100 shown in FIG.
  • the projector 100C has the same configuration as the projector 100A of FIG. 4 except that the imaging optical system 5A is changed to the imaging optical system 5B.
  • the imaging optical system 5B of the projector 100C is obtained by adding a lens group 5c including at least one lens to the configuration of the imaging optical system 5A in FIG.
  • the lens group 5c is disposed between the optical member 5b and the optical member 4, and causes subject light transmitted through the optical member 4 to enter the optical member 5b.
  • the addition of the lens group 5c can provide a wide range of imaging performance design, and can improve imaging performance.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a projector 100D which is a modification of the projector 100 shown in FIG.
  • the projector 100D has the same configuration as the projector 100 of FIG. 1 except that the optical member 4 is changed to the optical member 4A and the projection optical system 2 is changed to the projection optical system 2A.
  • the same components as those in FIG. 6 are identical to FIG. 6 in FIG. 6, the same components as those in FIG.
  • the optical member 4 ⁇ / b> A of the projector 100 ⁇ / b> D has the same function as the optical member 4.
  • the optical member 4 ⁇ / b> A is configured by a beam splitter that has a functional surface 4 a that reflects image light and transmits subject light.
  • the projection optical system 2A of the projector 100D includes a projection lens group 2a configured by a relay optical system including at least one lens, and a diaphragm 2b disposed between the projection lens group 2a and the optical member 4A.
  • the diaphragm 2b is composed of a frame-shaped light shielding member fixed to the peripheral edge of the surface of the optical member 4A facing the projection lens group 2a.
  • the area of the light beam of the image light is reduced by the diaphragm 2b, so that the optical member 4A can be downsized. Further, since the aperture 2b does not exist in the passage path of the subject light, it is possible to prevent the imaging performance from deteriorating without affecting the brightness of the captured image.
  • FIG. 7 is a schematic diagram showing a schematic configuration of a projector 100E which is a modification of the projector 100 shown in FIG.
  • the projector 100E has the same configuration as the projector 100 except that the positions of the imaging optical system 5 and the imaging element 6 and the positions of the projection optical system 2 and the display unit 1 are reversed.
  • the same components as those in FIG. 7 are reversed.
  • the optical member 4 of the projector 100E reflects the subject light that has passed through the lens group 34 and guides it to the imaging optical system 5, and transmits the image light incident from the projection optical system 2 and guides it to the lens group 34. According to the projector 100E, the same effect as the projector 100 can be obtained.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a projector 100F which is a modification of the projector 100 shown in FIG.
  • the projector 100F has the same configuration as the projector 100E of FIG. 7 except that the optical member 32 and the lens group 31 are deleted. According to the projector 100F of FIG. 8, the size can be reduced as compared with the projector 100E.
  • the imaging optical system 5 may include a movable component for changing the imaging conditions.
  • the movable component includes at least one of a movable aperture having a variable aperture, a focus lens that moves in the optical axis direction to change the focal position, and a zoom lens that moves in the optical axis direction to change the focal length.
  • a deformable liquid lens may be used.
  • the imaging performance can be improved by including the movable aperture, the focus lens, the zoom lens, or the like in the imaging optical system 5 (5A, 5B).
  • the projector 100 and the projectors 100A to 100F include the projection optical system 2 (2A), the common optical system 3 (3A), the optical member 4 (4A), the imaging optical system 5 (5A, 5B), and the imaging element 6.
  • the optical unit may be configured to be detachable from the projector main body in which the display unit 1 is built.
  • an imaging function can be added later to a projector that does not have an imaging function, and convenience can be improved.
  • the image sensor 6 may be configured to be detachable.
  • an imaging function can be added to the projector, and convenience can be improved.
  • the optical member 4 is preferably a half mirror that transmits and reflects light with a metal film. According to this configuration, image light can be reflected without being affected by the polarization characteristics of the display unit 1.
  • the optical member 4 The imaging magnification by the imaging optical system 5 (5A, 5B) of the intermediate image incident on (4A) is 0.1 times or more the projection magnification by the projection optical system 2 (2A) of the image displayed by the display unit 1. It is preferable to be less than double. With such a relationship, the image pickup optical system 5 and the image pickup element 6 can be further downsized.
  • the image sensor 6 for example, a full size (36 mm ⁇ 24 mm), an APS (Advanced Photo System) -C size (23.6 mm ⁇ 15.6 mm), a 1/3 type ( 4.8 mm ⁇ 3.6 mm) or 1/4 type (3.6 mm ⁇ 2 mm), and the display unit 1 has a display resolution of 4K, WUXGA (Wide Ultra etended Graphics Array), SVGA (Super).
  • the apparatus can be reduced in size even if one of Video Graphics Array (Video Graphics Array) or VGA (Video Graphics Array) is used.
  • the optical unit according to (1), The image forming position is an optical unit located between the optical member and the common optical system.
  • the common optical system includes an optical unit including a first bending optical member for bending an optical path.
  • the imaging optical system includes an optical unit including a second bending optical member for bending the optical path.
  • the imaging optical system is an optical unit including a movable component for changing imaging conditions.
  • the optical unit according to The movable structural member is an optical unit that is at least one of a movable diaphragm, a focus lens, and a zoom lens.
  • the optical unit according to any one of (1) to (7),
  • the projection optical system includes at least one lens, and a diaphragm disposed between the lens and the optical member, An optical unit in which the diaphragm is fixed to the optical member.
  • a projection device comprising the display unit.
  • an optical unit capable of reducing design cost and miniaturization
  • a projection apparatus including the optical unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Diaphragms For Cameras (AREA)

Abstract

設計コストの低減と小型化が可能な光学ユニット、及びこの光学ユニットを備える投影装置を提供する。プロジェクタ(100)は、表示部(1)からの光が入射される投影光学系(2)と、投影光学系(2)を通過した光をスクリーンSCに投影し、スクリーンSC側の被写体を結像させる共通光学系(3)と、投影光学系(2)を通過した光を共通光学系(3)に導き、且つ、共通光学系(3)のレンズ群(33)によって結像された中間像を撮像素子(6)に導くための光学部材(4)と、上記中間像を撮像素子(6)に結像させるための撮像光学系(5)と、を備える。上記中間像の結像位置IGは、共通光学系(3)を構成するレンズ群(33)とレンズ群(34)の間にある。

Description

光学ユニット及び投影装置
 本発明は、光学ユニット及び投影装置に関する。
 特許文献1から4に記載されているように、撮像機能を有する投影装置が提案されている。
 特許文献1には、投影部からの光をスクリーンに透過し、スクリーンからの光を撮像部に導くハーフミラーと、このハーフミラーと投影部の間に配置されたレンズと、このハーフミラーと撮像部の間に配置されたレンズと、を有するプロジェクタが記載されている。
 特許文献2には、投影部と、撮像部と、投影部からの光をスクリーンに投影し、スクリーンからの光を撮像部に導くハーフミラーと、このハーフミラーと投影部の間に配置されたレンズと、このハーフミラーよりもスクリーン側に配置されたレンズと、このハーフミラーと撮像部の間に配置されたレンズと、を有する装置が記載されている。
 特許文献3には、走査用のレーザ光源と、レーザ光源からの光をスクリーン側に透過させるハーフミラーと、ハーフミラーを透過した光が入射される投影兼撮像用のレンズと、この投影兼撮像用のレンズによって集光されてハーフミラーにて反射された光が入射される撮像用のレンズと、この撮像用のレンズを通った光を受光する撮像素子と、を有する装置が記載されている。
 特許文献4には、表示素子と、表示素子からの光をスクリーン側に透過させるハーフミラーと、ハーフミラーを透過した光が入射される投影兼撮像用のレンズと、この投影兼撮像用のレンズによって集光されてハーフミラーにて反射された光が入射される撮像素子と、を有する装置が記載されている。
日本国特開2016-149618号公報 日本国特開2008-257125号公報 国際公開WO2011/046035号公報 国際公開WO2005/083507号公報
 撮像機能と投影機能とを持つ装置において投影性能と撮像性能を向上させるためには、特許文献1に記載されているように、ハーフミラー等の分岐部材と撮像部及び投影部との間にレンズ等の光学系を配置し、更に、特許文献2から4に記載されているように、分岐部材よりもスクリーン側に光学系を配置する構成が有効となる。
 このような構成の装置においては、光学系が多くなることから、設計コストの低減と装置の小型化が課題となる。特許文献1から4は、上記の構成は開示しておらず、このような課題の認識はない。
 本発明は、上記事情に鑑みてなされたものであり、設計コストの低減と小型化が可能な光学ユニット、及びこの光学ユニットを備える投影装置を提供することを目的とする。
 本発明の光学ユニットは、表示部からの光が入射される投影光学系と、上記投影光学系を通過した光を投影対象物に投影し、上記投影対象物側の被写体を結像させる共通光学系と、上記投影光学系を通過した光を上記共通光学系に導き、且つ、上記共通光学系の少なくとも一部によって結像された中間像を撮像素子に導くための光学部材と、上記中間像を上記撮像素子に結像させるための撮像光学系と、を備え、上記中間像の結像位置は、上記共通光学系を構成する構成部材のうちの最も上記投影対象物側にある構成部材と上記光学部材との間にあるものである。
 本発明の投影装置は、上記光学ユニットと、上記表示部と、を備えるものである。
 本発明によれば、設計コストの低減と小型化が可能な光学ユニット、及びこの光学ユニットを備える投影装置を提供することができる。
本発明の投影装置の一実施形態であるプロジェクタ100の概略構成を示す模式図である。 図1に示すプロジェクタ100の表示部1の構成例を示す模式図である。 図1に示すプロジェクタ100の変形例であるプロジェクタ100Aの概略構成を示す模式図である。 図1に示すプロジェクタ100の変形例であるプロジェクタ100Bの概略構成を示す模式図である。 図1に示すプロジェクタ100の変形例であるプロジェクタ100Cの概略構成を示す模式図である。 図1に示すプロジェクタ100の変形例であるプロジェクタ100Dの概略構成を示す模式図である。 図1に示すプロジェクタ100の変形例であるプロジェクタ100Eの概略構成を示す模式図である。 図1に示すプロジェクタ100の変形例であるプロジェクタ100Fの概略構成を示す模式図である。
 図1は、本発明の投影装置の一実施形態であるプロジェクタ100の概略構成を示す模式図である。図2は、図1に示すプロジェクタ100の表示部1の構成例を示す模式図である。
 プロジェクタ100は、スクリーンSCに画像を投影すると共に、スクリーンSCに投影された投影像を含む範囲を撮像可能に構成されている。
 プロジェクタ100は、表示部1と、投影光学系2と、共通光学系3と、光学部材4と、撮像光学系5と、撮像素子6と、を備える。
 表示部1は、入力される画像データに基づいて投影用の画像を表示するものである。図2に示すように、表示部1は、光源ユニット40と、光変調素子44と、を備える。
 光源ユニット40は、赤色光を出射する赤色光源であるR光源41rと、緑色光を出射する緑色光源であるG光源41gと、青色光を出射する青色光源であるB光源41bと、ダイクロイックプリズム43と、R光源41rとダイクロイックプリズム43の間に設けられたコリメータレンズ42rと、G光源41gとダイクロイックプリズム43の間に設けられたコリメータレンズ42gと、B光源41bとダイクロイックプリズム43の間に設けられたコリメータレンズ42bと、を備えている。
 ダイクロイックプリズム43は、R光源41r、G光源41g、及びB光源41bの各々から出射される光を同一光路に導くための光学部材である。すなわち、ダイクロイックプリズム43は、コリメータレンズ42rによって平行光化された赤色光を透過させて光変調素子44に出射する。また、ダイクロイックプリズム43は、コリメータレンズ42gによって平行光化された緑色光を反射させて光変調素子44に出射する。さらに、ダイクロイックプリズム43は、コリメータレンズ42bによって平行光化された青色光を反射させて光変調素子44に出射する。このような機能を持つ光学部材としては、ダイクロイックプリズムに限らない。例えば、クロスダイクロイックミラーを用いてもよい。
 R光源41r、G光源41g、及びB光源41bは、それぞれ、レーザ又はLED(Light Emitting Diode)等の発光素子が用いられる。光源ユニット40に含まれる光源の数は1つ、2つ、又は4つ以上であってもよい。
 光変調素子44は、ダイクロイックプリズム43から出射された光を画像データに基づいて空間変調し、空間変調した画像光(赤色画像光、青色画像光、及び緑色画像光)を図1の投影光学系2に出射する。
 図2は、光変調素子44としてDMD(Digital Micromirror Device)を用いた例であるが、光変調素子44としては、例えば、LCOS(Liquid crystal on silicon)、MEMS(Micro Electro Mechanical Systems)素子、又は液晶表示素子等を用いることも可能である。
 表示部1は、自発光型の有機EL(electro-luminescence)表示素子を用いて画像を表示し、表示した画像を投影光学系2に入射させるものであってもよい。また、レーザ光を走査することで画像の表示を行うものを用いてもよい。
 投影光学系2は、表示部1からの画像光が入射される光学系であり、少なくとも1つのレンズを含むリレー光学系によって構成されている。投影光学系2を通過した光は光学部材4に入射され、光学部材4にて反射されて共通光学系3に入射される。
 共通光学系3は、投影光学系2を通過した光を投影対象物であるスクリーンSCに投影し、且つ、スクリーンSC側の被写体を結像させる光学系であり、リレー光学系によって構成されている。
 図1の例では、共通光学系3は、少なくとも1つのレンズを含むレンズ群31と、光学部材32と、少なくとも1つのレンズを含むレンズ群33と、少なくとも1つのレンズを含むレンズ群34と、を備える。レンズ群31、光学部材32、レンズ群33、及びレンズ群34は、スクリーンSC側からこの順番にて光路上に配置されている。
 光学部材32は、共通光学系3の光路を屈曲させるための部材であり、例えばハーフミラー、ビームスプリッタ―、又は偏光部材等が用いられる。光学部材32は、第一の屈曲用光学部材を構成する。
 投影光学系2を通過した画像光は、光学部材4にて反射されてレンズ群34に入射される。このレンズ群34によって、レンズ群33とレンズ群34の間の位置IGに、画像光によって形成される中間像が結像される。
 この中間像はレンズ群33を通過して光学部材32に入射し、光学部材32にて反射されてレンズ群31に入射される。レンズ群31に入射された中間像はスクリーンSCに向けて投影される。
 一方、スクリーンSC側からレンズ群31に入射した被写体光は、レンズ群31を通過し、光学部材32にて反射されて、レンズ群33に入射される。このレンズ群33によって、レンズ群33とレンズ群34の間の位置IGに、被写体光によって形成される中間像が結像される。
 この中間像は、レンズ群34を通過して光学部材4に入射し、光学部材4を透過して撮像光学系5に入射される。
 撮像素子6は、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等が用いられる。
 撮像光学系5は、位置IGに結像された中間像を撮像素子6に結像させるための光学系である。撮像光学系5は、撮像素子6の前方に配置されており、光学部材4を透過した被写体光を集光して撮像素子6に結像させる。撮像光学系5は、少なくとも1つのレンズを含んで構成されている。
 光学部材4は、例えばハーフミラー、ビームスプリッタ―、又は偏光部材等によって構成されている。光学部材4は、投影光学系2を通過した画像光を反射させて共通光学系3に導き、且つ、共通光学系3のレンズ群33によって位置IGに結像された被写体光に基づく中間像を、撮像光学系5を通して撮像素子6に導く。
 図1に示す投影光学系2、共通光学系3、光学部材4、撮像光学系5、及び撮像素子6によって光学ユニットが構成されている。
 以上のように構成されたプロジェクタ100によれば、表示部1によって表示された投影用の画像をスクリーンSCに投影すると共に、この画像の投影像を撮像素子6によって撮像することができる。
 このプロジェクタ100は、共通光学系3の内部のレンズ群33とレンズ群34の間の位置IGに、被写体光による中間像が結像される。このため、例えばこの中間像が光学部材4よりも撮像光学系5側にある場合と比較すると、この中間像と撮像光学系5との距離を十分に大きくすることができる。この結果、撮像光学系5が大きくなるのを防ぐことができ、光学ユニットの小型化と、撮像光学系5の設計負荷の軽減とが可能になる。
 また、プロジェクタ100によれば、共通光学系3と投影光学系2がそれぞれリレー光学系によって構成されている。このため、共通光学系3と投影光学系2を合わせた系におけるバックフォーカスを短くすることができる。また、光線が平行光に近くなるため、光学部材4と光学部材32を小型化することができる。
 また、プロジェクタ100によれば、画像光に基づく中間像の結像位置と、被写体光に基づく中間像の結像位置とが一致している。このため、光学系の設計が容易となり設計コストを低減することができる。
 また、プロジェクタ100によれば、光学部材32によって共通光学系3の光路が屈曲されているため、プロジェクタ100の形状に自由度を持たせることができる。
 なお、中間像が結像される位置IGは、共通光学系3に含まれるレンズのうちの最もスクリーンSC側にあるレンズと光学部材4との間にあれば、被写体光による中間像と撮像光学系5との距離を十分に大きくすることができる。
 図3は、図1に示すプロジェクタ100の変形例であるプロジェクタ100Aの概略構成を示す模式図である。プロジェクタ100Aは、共通光学系3が共通光学系3Aに変更された点を除いてはプロジェクタ100と同じ構成である。図3において図1と同じ構成には同一符号を付して説明を省略する。
 プロジェクタ100Aの共通光学系3Aは、図1の共通光学系3からレンズ群34を削除したものである。この共通光学系3Aにより、被写体光に基づく中間像は、レンズ群33と光学部材4の間の位置IGに結像される。プロジェクタ100Aによれば、プロジェクタ100と比較して更なる小型化が可能となる。
 図4は、図1に示すプロジェクタ100の変形例であるプロジェクタ100Bの概略構成を示す模式図である。プロジェクタ100Bは、撮像光学系5が撮像光学系5Aに変更され、撮像素子6の位置が変更された点を除いては、図3のプロジェクタ100Aと同じ構成である。図4において図3と同じ構成には同一符号を付して説明を省略する。
 プロジェクタ100Bの撮像光学系5Aは、少なくとも1つのレンズからなるレンズ群5aと、第二の屈曲用光学部材を構成する光学部材5bと、を備える。
 光学部材5bは、光学部材4を透過した被写体光を反射させてレンズ群5aに導くための部材であり、例えばハーフミラー、ビームスプリッタ―、又は偏光部材等によって構成されている。
 レンズ群5aは、光学部材5bにて反射した被写体光を集光して、上記の中間像を撮像素子6に結像させる。
 このプロジェクタ100Bによれば、光学部材5bによって撮像光学系5Aの光路が屈曲されているため、プロジェクタ100B本体を構成している各種パーツ等と撮像光学系5A及び撮像素子6との干渉を防ぐことができる。この結果、プロジェクタ100Bのデザインに自由度を持たせることができる。
 図5は、図1に示すプロジェクタ100の変形例であるプロジェクタ100Cの概略構成を示す模式図である。プロジェクタ100Cは、撮像光学系5Aが撮像光学系5Bに変更された点を除いては図4のプロジェクタ100Aと同じ構成である。図5において図4と同じ構成には同一符号を付して説明を省略する。
 プロジェクタ100Cの撮像光学系5Bは、図4の撮像光学系5Aの構成に、少なくとも1つのレンズからなるレンズ群5cが追加されたものである。
 レンズ群5cは、光学部材5bと光学部材4との間に配置されており、光学部材4を透過した被写体光を光学部材5bに入射させる。
 以上の構成のプロジェクタ100Cによれば、レンズ群5cが追加されていることで撮像性能の設計に幅を持たせることができ、撮像の高性能化を図ることができる。
 図6は、図1に示すプロジェクタ100の変形例であるプロジェクタ100Dの概略構成を示す模式図である。プロジェクタ100Dは、光学部材4が光学部材4Aに変更され、投影光学系2が投影光学系2Aに変更された点を除いては、図1のプロジェクタ100と同じ構成である。図6において図1と同じ構成には同一符号を付して説明を省略する。
 プロジェクタ100Dの光学部材4Aは、光学部材4と機能は同じであり、具体的には、画像光を反射し且つ被写体光を透過する機能面4aを内部に有するビームスプリッタによって構成されている。
 プロジェクタ100Dの投影光学系2Aは、少なくとも1つのレンズからなるリレー光学系によって構成された投影レンズ群2aと、投影レンズ群2aと光学部材4Aとの間に配置された絞り2bと、を備える。
 絞り2bは、光学部材4Aの投影レンズ群2aと対向する面の周縁部に固着された枠状の遮光部材によって構成されている。
 このような構成のプロジェクタ100Dによれば、絞り2bによって画像光の光束の面積が小さくなるため、光学部材4Aの小型化が可能となる。また、絞り2bは、被写体光の通過経路には存在していないため、撮像画像の明るさに影響を与えることなく、撮像性能の低下を防ぐことができる。
 図7は、図1に示すプロジェクタ100の変形例であるプロジェクタ100Eの概略構成を示す模式図である。プロジェクタ100Eは、撮像光学系5及び撮像素子6の位置と、投影光学系2及び表示部1の位置とが逆にされた点を除いてはプロジェクタ100と同じ構成である。図7において図1と同じ構成には同一符号を付して説明を省略する。
 プロジェクタ100Eの光学部材4は、レンズ群34を通過した被写体光を反射させて撮像光学系5に導き、投影光学系2から入射される画像光を透過させてレンズ群34に導く。このプロジェクタ100Eによれば、プロジェクタ100と同じ効果を得ることができる。
 図8は、図1に示すプロジェクタ100の変形例であるプロジェクタ100Fの概略構成を示す模式図である。プロジェクタ100Fは、光学部材32及びレンズ群31が削除された点を除いては、図7のプロジェクタ100Eと同じ構成である。図8のプロジェクタ100Fによれば、プロジェクタ100Eよりも小型化が可能である。
 ここまで説明してきたプロジェクタ100及びプロジェクタ100A~100Fにおいて、撮像光学系5(5A,5B)は、撮像条件を変更するための可動の構成部材を含んでいてもよい。可動の構成部材としては、開口量が可変の可動絞り、光軸方向に移動して焦点位置を変化させるフォーカスレンズ、及び光軸方向に移動して焦点距離を変化させるズームレンズの少なくとも1つを用いることができる。フォーカスレンズとしては、変形可能な液体レンズが用いられてもよい。
 このように、可動絞り、フォーカスレンズ、又はズームレンズ等が撮像光学系5(5A,5B)に含まれることで、撮像性能を向上させることができる。
 また、プロジェクタ100及びプロジェクタ100A~100Fにおいて、投影光学系2(2A)、共通光学系3(3A)、光学部材4(4A)、撮像光学系5(5A,5B)、及び撮像素子6によって構成される光学ユニットが、表示部1を内蔵するプロジェクタ本体に着脱可能に構成されていてもよい。
 この構成によれば、撮像機能を持たないプロジェクタに撮像機能を後付けで付加することができ、利便性を向上させることができる。
 或いは、プロジェクタ100及びプロジェクタ100A~100Fにおいて、撮像素子6が着脱可能に構成されていてもよい。
 この構成によれば、プロジェクタ本体に、例えば市販のレンズ交換型のデジタルカメラの本体を取り付けることで、プロジェクタに撮像機能を付加することができ、利便性を向上させることができる。
 また、プロジェクタ100及びプロジェクタ100A~100Cにおいて、光学部材4は、金属膜にて光を透過及び反射させるハーフミラーを用いることが好ましい。この構成によれば、表示部1の偏光特性の影響を受けることなく、画像光を反射させることができる。
 また、プロジェクタ100及びプロジェクタ100A~100Fにおいて、光学部材4
(4A)に入射される中間像の撮像光学系5(5A,5B)による撮像倍率を、表示部1によって表示される画像の投影光学系2(2A)による投影倍率の0.1倍以上1倍未満とすることが好ましい。このような関係にすることで、撮像光学系5と撮像素子6の更なる小型化が可能になる。
 また、このような関係にすることで、撮像素子6として、例えば、フルサイズ(36mm×24mm)、APS(Advanced Photo System)-Cサイズ(23.6mm×15.6mm)、1/3型(4.8mm×3.6mm)、又は1/4型(3.6mm×2mm)のもののいずれかを用い、表示部1として、表示解像度が4K、WUXGA(Wide Ultra eXtended Graphics Array)、SVGA(Super Video Graphics Array)、又はVGA(Video Graphics Array)対応のもののいずれかを用いても、装置の小型化を図ることができる。
 以上説明してきたように、本明細書には以下の事項が開示されている。
(1)
 表示部からの光が入射される投影光学系と、
 上記投影光学系を通過した光を投影対象物に投影し、上記投影対象物側の被写体を結像させる共通光学系と、
 上記投影光学系を通過した光を上記共通光学系に導き、且つ、上記共通光学系の少なくとも一部によって結像された中間像を撮像素子に導くための光学部材と、
 上記中間像を上記撮像素子に結像させるための撮像光学系と、を備え、
 上記中間像の結像位置は、上記共通光学系を構成する構成部材のうちの最も上記投影対象物側にある構成部材と上記光学部材との間にある光学ユニット。
(2)
 (1)記載の光学ユニットであって、
 上記結像位置は、上記光学部材と上記共通光学系との間にある光学ユニット。
(3)
 (1)又は(2)記載の光学ユニットであって、
 上記光学部材に入射される上記中間像の上記撮像光学系による撮像倍率は、上記表示部によって表示される画像の上記投影光学系による投影倍率の0.1倍以上1倍未満である光学ユニット。
(4)
 (1)~(3)のいずれか1つに記載の光学ユニットであって、
 上記共通光学系は、光路を屈曲させるための第一の屈曲用光学部材を含む光学ユニット。
(5)
 (1)~(4)のいずれか1つに記載の光学ユニットであって、
 上記撮像光学系は、光路を屈曲させるための第二の屈曲用光学部材を含む光学ユニット。
(6)
 (1)~(5)のいずれか1つに記載の光学ユニットであって、
 上記撮像光学系は、撮像条件を変更するための可動の構成部材を含む光学ユニット。
(7)
 (6)記載の光学ユニットであって、
 上記可動の構成部材は、可動絞り、フォーカスレンズ、又はズームレンズの少なくとも1つである光学ユニット。
(8)
 (1)~(7)のいずれか1つに記載の光学ユニットであって、
 上記投影光学系は、少なくとも1つのレンズと、上記レンズと上記光学部材の間に配置された絞りと、を備え、
 上記絞りは上記光学部材に固着されている光学ユニット。
(9)
 (1)~(8)のいずれか1つに記載の光学ユニットであって、
 上記撮像素子を更に備える光学ユニット。
(10)
 (1)~(9)のいずれか1つに記載の光学ユニットと、
 上記表示部と、を備える投影装置。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2018年2月21日出願の日本特許出願(特願2018-029057)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明によれば、設計コストの低減と小型化が可能な光学ユニット、及びこの光学ユニットを備える投影装置を提供することができる。
100、100A~100F プロジェクタ
1 表示部
40 光源ユニット
41r R光源
41g G光源
41b B光源
42r、42g、42b コリメータレンズ
43 ダイクロイックプリズム
44 光変調素子
2、2A 投影光学系
2a 投影レンズ群
2b 絞り
3 共通光学系
31、33、34 レンズ群
32 光学部材
IG 位置
SC スクリーン
4、4A 光学部材
4a 機能面
5、5A、5B 撮像光学系
5a、5c レンズ群
5b 光学部材
6 撮像素子
 

Claims (10)

  1.  表示部からの光が入射される投影光学系と、
     前記投影光学系を通過した光を投影対象物に投影し、前記投影対象物側の被写体を結像させる共通光学系と、
     前記投影光学系を通過した光を前記共通光学系に導き、且つ、前記共通光学系の少なくとも一部によって結像された中間像を撮像素子に導くための光学部材と、
     前記中間像を前記撮像素子に結像させるための撮像光学系と、を備え、
     前記中間像の結像位置は、前記共通光学系を構成する構成部材のうちの最も前記投影対象物側にある構成部材と前記光学部材との間にある光学ユニット。
  2.  請求項1記載の光学ユニットであって、
     前記結像位置は、前記光学部材と前記共通光学系との間にある光学ユニット。
  3.  請求項1又は2記載の光学ユニットであって、
     前記光学部材に入射される前記中間像の前記撮像光学系による撮像倍率は、前記表示部によって表示される画像の前記投影光学系による投影倍率の0.1倍以上1倍未満である光学ユニット。
  4.  請求項1~3のいずれか1項記載の光学ユニットであって、
     前記共通光学系は、光路を屈曲させるための第一の屈曲用光学部材を含む光学ユニット。
  5.  請求項1~4のいずれか1項記載の光学ユニットであって、
     前記撮像光学系は、光路を屈曲させるための第二の屈曲用光学部材を含む光学ユニット。
  6.  請求項1~5のいずれか1項記載の光学ユニットであって、
     前記撮像光学系は、撮像条件を変更するための可動の構成部材を含む光学ユニット。
  7.  請求項6記載の光学ユニットであって、
     前記可動の構成部材は、可動絞り、フォーカスレンズ、又はズームレンズの少なくとも1つである光学ユニット。
  8.  請求項1~7のいずれか1項記載の光学ユニットであって、
     前記投影光学系は、少なくとも1つのレンズと、前記レンズと前記光学部材の間に配置された絞りと、を備え、
     前記絞りは前記光学部材に固着されている光学ユニット。
  9.  請求項1~8のいずれか1項記載の光学ユニットであって、
     前記撮像素子を更に備える光学ユニット。
  10.  請求項1~9のいずれか1項記載の光学ユニットと、
     前記表示部と、を備える投影装置。
     
PCT/JP2019/006391 2018-02-21 2019-02-20 光学ユニット及び投影装置 WO2019163844A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020501006A JP6997854B2 (ja) 2018-02-21 2019-02-20 光学ユニット及び投影装置
US16/998,563 US11215907B2 (en) 2018-02-21 2020-08-20 Optical unit and projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018029057 2018-02-21
JP2018-029057 2018-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/998,563 Continuation US11215907B2 (en) 2018-02-21 2020-08-20 Optical unit and projection apparatus

Publications (1)

Publication Number Publication Date
WO2019163844A1 true WO2019163844A1 (ja) 2019-08-29

Family

ID=67687244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006391 WO2019163844A1 (ja) 2018-02-21 2019-02-20 光学ユニット及び投影装置

Country Status (3)

Country Link
US (1) US11215907B2 (ja)
JP (1) JP6997854B2 (ja)
WO (1) WO2019163844A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183503A (ja) * 2006-01-10 2007-07-19 Olympus Imaging Corp カメラ
JP2017068090A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 結像光学系及びそれを備える画像読取装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527872A (en) * 1983-06-03 1985-07-09 Wally Gentleman Composite process cinematography system and method
US5442484A (en) 1992-01-06 1995-08-15 Mitsubishi Denki Kabushiki Kaisha Retro-focus type lens and projection-type display apparatus
JP2981497B2 (ja) * 1992-01-06 1999-11-22 三菱電機株式会社 レトロフォーカス型レンズ
JP3517044B2 (ja) * 1995-09-28 2004-04-05 富士写真光機株式会社 ビデオプロジェクタ用光学系
JP4532630B2 (ja) * 1999-10-20 2010-08-25 リコー光学株式会社 投射用レンズ
US6707444B1 (en) * 2000-08-18 2004-03-16 International Business Machines Corporation Projector and camera arrangement with shared optics and optical marker for use with whiteboard systems
JP2004271891A (ja) * 2003-03-07 2004-09-30 Sharp Corp プロジェクタ装置
JP4841428B2 (ja) 2004-02-27 2011-12-21 パナソニック株式会社 映像投射装置
US7734169B2 (en) * 2006-01-10 2010-06-08 Olympus Imaging Corp. Camera
TWI292052B (en) * 2006-05-09 2008-01-01 Young Optics Inc Optical projection and image detection apparatus
EP2047678A2 (en) * 2006-07-31 2009-04-15 3M Innovative Properties Company Combination camera/projector system
JP2008257125A (ja) 2007-04-09 2008-10-23 Seiko Epson Corp プロジェクションシステム、形状測定装置、および光学特性評価装置
CN102648431B (zh) 2009-10-15 2014-12-31 日本电气株式会社 图像投影设备、图像投影方法、距离测量设备和距离测量方法
JP2016149618A (ja) 2015-02-12 2016-08-18 株式会社フローベル 画像投影システム、プロジェクタ、およびプログラム
JP2017068089A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 結像光学系及びそれを備える画像読取装置
US10782535B2 (en) * 2015-09-30 2020-09-22 Canon Kabushiki Kaisha Image forming optical system and image reading apparatus including the same
CN108292084B (zh) * 2015-11-18 2020-09-04 麦克赛尔株式会社 图像投影装置
US10897602B2 (en) * 2018-07-27 2021-01-19 Fujifilm Corporation Projection display device for performing projection and imaging comprising optical image emitting light valve and imaging optical system
JP2020016857A (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 投写型表示装置
JP2020140115A (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 投写型表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183503A (ja) * 2006-01-10 2007-07-19 Olympus Imaging Corp カメラ
JP2017068090A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 結像光学系及びそれを備える画像読取装置

Also Published As

Publication number Publication date
US20200379324A1 (en) 2020-12-03
JPWO2019163844A1 (ja) 2020-12-03
US11215907B2 (en) 2022-01-04
JP6997854B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
JP5147849B2 (ja) プロジェクタ
JP5174273B1 (ja) プロジェクタ
JP2019179242A (ja) 光学システムおよび光学システムを有する装置
US7826147B2 (en) Zoom lens and image projection apparatus
KR20120040250A (ko) 집광 광학계 및 투사형 화상 표시 장치
JP5483955B2 (ja) 照明光学系および投射型表示装置
KR20090046302A (ko) 프로젝터
US9372328B2 (en) Projection system and projector
JPWO2018042865A1 (ja) 画像表示装置及び投射光学系
JP6662159B2 (ja) 投射光学系及びプロジェクター
JPWO2016080114A1 (ja) 投影装置
US20110181841A1 (en) Autofocus image projection apparatus
JP2011154159A5 (ja)
JP2007150816A (ja) プロジェクタ
JP6997854B2 (ja) 光学ユニット及び投影装置
US20220365407A1 (en) Projection display apparatus
JP2012078683A (ja) プロジェクター、台形歪み補正方法
JP5199016B2 (ja) 単板投写型表示装置
US20110019057A1 (en) Electronic Playback Apparatus with a Micro-Projector
US12003897B2 (en) Projection display apparatus
JP2008134321A (ja) 撮像機能を備えたプロジェクタ
WO2020261851A1 (ja) 投影装置
JP2020020818A (ja) 光源装置およびこれを用いた投射型表示装置
JP2006078645A (ja) リアプロジェクション式モニタの光学エンジン
JP2010282813A (ja) 照明装置及びそれを用いたプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757973

Country of ref document: EP

Kind code of ref document: A1