WO2019163626A1 - 蒸気弁駆動装置 - Google Patents

蒸気弁駆動装置 Download PDF

Info

Publication number
WO2019163626A1
WO2019163626A1 PCT/JP2019/005275 JP2019005275W WO2019163626A1 WO 2019163626 A1 WO2019163626 A1 WO 2019163626A1 JP 2019005275 W JP2019005275 W JP 2019005275W WO 2019163626 A1 WO2019163626 A1 WO 2019163626A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
piston
piston chamber
flow
Prior art date
Application number
PCT/JP2019/005275
Other languages
English (en)
French (fr)
Inventor
秀和 宮嶋
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2019163626A1 publication Critical patent/WO2019163626A1/ja
Priority to US16/858,882 priority Critical patent/US11428246B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/26Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/16Trip gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • F01K7/20Control means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • F15B1/265Supply reservoir or sump assemblies with pressurised main reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1476Special return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/004Fluid pressure supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/007Overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/008Valve failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/001Actuating devices; Operating means; Releasing devices actuated by volume variations caused by an element soluble in a fluid or swelling in contact with a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1221Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/002Electrical failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/005Filling or draining of fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31552Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
    • F15B2211/31558Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line having a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/862Control during or prevention of abnormal conditions the abnormal condition being electric or electronic failure
    • F15B2211/8623Electric supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8633Pressure source supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8752Emergency operation mode, e.g. fail-safe operation mode

Definitions

  • Embodiment of this invention is related with a steam valve drive device.
  • the steam valve that controls the supply of steam to the steam turbine is opened and closed by a steam valve drive device.
  • a steam valve drive device is required to have not only a function for performing speed control and load control of the turbine, but also a fail-safe function for safely stopping the turbine when it becomes uncontrollable. Therefore, in order to provide a fail-safe function, there is known a steam valve driving device provided with a closing spring that always applies a biasing force (spring force) to the valve body of the steam valve in the closing direction of the steam valve.
  • the cylinder 100 in the steam valve driving device shown in FIGS. 21 and 22 includes a piston 101, a piston chamber 102 to which control oil for pressing the piston 101 in the opening direction is supplied, and a closing spring 103. Yes.
  • the closing spring 103 biases the piston 101 in the closing direction of the steam valve SV. This urging force is always loaded regardless of the open / close state.
  • control oil is supplied to the piston chamber 102 of the cylinder 100 via a servo valve 104, and the piston 101 is pressed in the opening direction by the control oil.
  • the piston chamber 102 is connected to the A port of the dump valve 105, and the X port of the dump valve 105 is connected to the trip solenoid valve 106.
  • the trip solenoid valve 106 is excited, emergency oil is supplied to the X port of the dump valve 105 via the trip solenoid valve 106, and the dump valve 105 is Closed.
  • the control oil supplied to the piston chamber 102 presses the piston 101 in the opening direction.
  • the piston 101 is pressed not by the control oil but by the closing spring 103 provided in the cylinder 100.
  • the cylinder 100 of such a steam valve driving device is sometimes referred to as a single-acting type because the piston 101 is driven only in one direction (opening direction of the steam valve) by hydraulic pressure.
  • the present invention has been made in consideration of such points, and when the steam valve is open, the steam valve drive can prevent the force for exerting the fail-safe function from being applied to the piston of the cylinder.
  • An object is to provide an apparatus.
  • the steam valve driving device is a steam valve driving device that opens and closes the valve body of the steam valve.
  • the steam valve driving device includes a supply port that supplies hydraulic oil, a discharge port that discharges hydraulic oil, and a cylinder.
  • the cylinder is supplied with a piston connected to the valve body, an opening direction piston chamber to which hydraulic oil for pressing the piston in the opening direction of the valve body is supplied, and hydraulic oil for pressing the piston in the closing direction of the valve body. And a closing direction piston chamber.
  • the steam valve driving device includes a control valve, a dump valve, an accumulator, a shut-off valve, and a trip solenoid valve. The control valve allows or blocks the flow of hydraulic oil from the supply port to the opening direction piston chamber.
  • the dump valve blocks or permits the flow of hydraulic oil from the open direction piston chamber to the discharge port.
  • the accumulator stores hydraulic oil under pressure.
  • the shut-off valve allows or blocks the flow of hydraulic oil from the accumulator to the closing direction piston chamber.
  • the trip solenoid valve controls the dump valve and the shutoff valve.
  • the control valve permits the flow of control oil from the closed direction piston chamber to the discharge port in a state where the flow of hydraulic fluid from the supply port to the open direction piston chamber is permitted.
  • the steam valve driving device is a steam valve driving device that opens and closes the valve body of the steam valve.
  • the steam valve driving device includes a supply port that supplies hydraulic oil, a discharge port that discharges hydraulic oil, and a cylinder.
  • the cylinder is provided in a detachable manner with respect to the valve body, a first piston coupled to the valve body, an opening direction first piston chamber to which hydraulic oil that presses the first piston in the opening direction of the valve body is supplied, and the valve body.
  • a second piston chamber, an opening direction second piston chamber to which hydraulic oil that presses the second piston in the valve body opening direction is supplied, and a closing direction second piston chamber in which the second piston is pressed in the valve body closing direction; have.
  • the steam valve driving device includes a control valve, a first dump valve, a trip solenoid valve, and a second dump valve.
  • the control valve permits or blocks the flow of hydraulic oil from the supply port to the first piston chamber in the opening direction.
  • the first dump valve blocks or permits the flow of hydraulic oil from the first piston chamber in the opening direction to the discharge port.
  • the trip solenoid valve permits or blocks the flow of hydraulic oil from the supply port to the second piston chamber in the opening direction.
  • the second dump valve blocks or permits the flow of hydraulic oil from the opening direction second piston chamber to the discharge port.
  • the second piston is connected to the valve body when the steam valve is closed, and is separated from the valve body when the steam valve is opened.
  • FIG. 1 is a system diagram showing a steam valve driving device at the time of resetting a steam valve in the first embodiment.
  • FIG. 2 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 1.
  • FIG. 3 is a system diagram showing the steam valve driving device at the time of resetting the steam valve in the second embodiment.
  • FIG. 4 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 3.
  • FIG. 5 is a system diagram showing a steam valve driving device at the time of resetting the steam valve in the third embodiment.
  • FIG. 6 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 5.
  • FIG. 7 is a system diagram showing a steam valve drive device at the time of resetting the steam valve in the fourth embodiment.
  • FIG. 8 is a system diagram when the steam valve trips in the steam valve driving device of FIG.
  • FIG. 9 is a system diagram showing the steam valve driving device at the time of resetting the steam valve in the fifth embodiment.
  • FIG. 10 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 9.
  • FIG. 11 is a system diagram showing a steam valve driving device when the steam valve is reset in the sixth embodiment.
  • FIG. 12 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 11.
  • FIG. 13 is a system diagram showing a steam valve driving device at the time of resetting the steam valve in the seventh embodiment.
  • FIG. 14 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 13.
  • FIG. 13 is a system diagram showing a steam valve driving device at the time of resetting the steam valve in the fifth embodiment.
  • FIG. 14 is a system diagram when the steam valve trips in the steam valve driving device of FIG. 13.
  • FIG. 13 is a system
  • FIG. 15 is a system diagram showing a steam valve drive device at the time of resetting the steam valve in the eighth embodiment.
  • FIG. 16 is a system diagram when the steam valve trips in the steam valve driving device of FIG.
  • FIG. 17 is a system diagram showing a steam valve driving device at the time of resetting the steam valve in the ninth embodiment.
  • FIG. 18 is a system diagram when the steam valve trips in the steam valve drive device of FIG.
  • FIG. 19 is a system diagram showing a steam valve drive device at the time of resetting the steam valve in the tenth embodiment.
  • FIG. 20 is a system diagram when the steam valve trips in the steam valve drive device of FIG.
  • FIG. 21 is a system diagram at the time of resetting a steam valve in a general steam valve driving device.
  • FIG. 22 is a system diagram of the steam valve drive device of FIG. 21 when the steam valve trips.
  • the steam valve driving device 1 in the first embodiment will be described with reference to FIGS. 1 and 2.
  • the steam valve drive device 1 shown here is a hydraulic drive device for opening and closing the valve body VB of the steam valve SV.
  • the steam valve drive device 1 includes a cylinder 10 and a manifold block 20 that supplies control oil (hydraulic oil) to the cylinder 10.
  • control oil hydraulic oil
  • the cylinder 10 includes a piston 11 connected to the valve body VB, an open direction piston chamber 12 to which control oil for pressing the piston 11 in the opening direction of the valve body VB is supplied, and the piston 11 in the closing direction of the valve body VB. And a closing direction piston chamber 13 to which the control oil to be pressed is supplied.
  • the open direction piston chamber 12 is provided with two a ports, and control oil flows into the open direction piston chamber 12 from each a port, or control oil in the open direction piston chamber 12 flows from each a port. It is configured to flow out.
  • the b-port is provided in the closing direction piston chamber 13 so that the control oil flows into the closing direction piston chamber 13 from the b port, or the control oil in the closing direction piston chamber 13 flows out from the b port. It has become.
  • the piston 11 is connected to the valve body VB via the valve rod VA, and moves linearly according to the pressure of the control oil in the open direction piston chamber 12 and the pressure of the control oil in the close direction piston chamber 13. It is configured to drive the body VB.
  • the opening direction of the valve body VB corresponds to the upward direction
  • the closing direction of the valve body VB corresponds to the downward direction.
  • the piston 11 moves downward under the pressure of the control oil, and moves the valve body VB in the closing direction.
  • the cylinder 10 according to the present embodiment is sometimes referred to as a double-acting type because the piston 11 is driven in both directions (opening direction and closing direction of the steam valve SV) by hydraulic pressure.
  • the manifold block 20 includes a supply port 21 for supplying control oil and a discharge port 22 for discharging control oil.
  • the supply port 21 is connected to the control oil supply system via the control oil supply pipe 2, and the control oil is supplied to the supply port 21 from this control oil supply system.
  • the discharge port 22 is connected to the drain system via the drain pipe 3, and the control oil discharged from the discharge port 22 is supplied to the drain system.
  • the manifold block 20 further includes a servo valve 23 (control valve), a dump valve 24, an accumulator 25, a cutoff valve 26, and a trip electromagnetic valve 27.
  • the servo valve 23 can be switched between a state allowing the flow of control oil from the supply port 21 to the opening direction piston chamber 12 and a state blocking the flow of the control oil (allowing or blocking the flow of the control oil). To be configured). The servo valve 23 can be switched between a state in which the flow of the control oil from the closing direction piston chamber 13 to the discharge port 22 is permitted and a state in which the flow of the control oil is interrupted (the flow of the control oil is permitted). Or configured to block). In the servo valve 23 in the present embodiment, the flow of control oil from the closing direction piston chamber 13 to the discharge port 22 is permitted in a state where the flow of control oil from the supply port 21 to the opening direction piston chamber 12 is permitted. . On the other hand, the servo valve 23 blocks the flow of control oil from the closing direction piston chamber 13 to the discharge port 22 in a state where the flow of control oil from the supply port 21 to the opening direction piston chamber 12 is blocked.
  • the servo valve 23 will be described more specifically.
  • the P port of the servo valve 23 and the supply port 21 are connected by a first control oil supply path 28 (hydraulic oil supply path).
  • the A port of the servo valve 23 and the b port of the closing direction piston chamber 13 are connected by the first closed flow path 29, and the B port of the servo valve 23 and the a port of the opening direction piston chamber 12 are opened. They are connected by a side channel 30.
  • a servo discharge path 31 is connected to the T port of the servo valve 23.
  • the servo discharge path 31 joins a dump discharge path 41 described later, and is connected to the discharge port 22 via the dump discharge path 41.
  • the servo valve 23 When a first electrical signal (an electrical command in the opening direction) transmitted from a control device (not shown) is input to the coil, the servo valve 23 communicates with the P port and the B port of the servo valve 23 to perform the first control. The flow of control oil from the oil supply path 28 to the open side flow path 30 is permitted. As a result, the control oil is supplied from the first control oil supply path 28 to the open-side flow path 30 via the P port and B port of the servo valve 23. When the first electric signal is input, the A port and the T port of the servo valve 23 communicate with each other, and the flow of control oil from the first closed-side flow path 29 to the servo discharge path 31 is permitted.
  • control oil is supplied from the first closed flow path 29 to the servo discharge path 31 via the A port and the T port of the servo valve 23.
  • the control oil supplied to the servo discharge path 31 is supplied to the discharge port 22 via the dump discharge path 41 and is discharged from the discharge port 22.
  • the P port and B port of the servo valve 23 are shut off as shown in FIG.
  • the flow of control oil from the control oil supply path 28 to the open side flow path 30 is blocked.
  • the A port and the T port are blocked, and the flow of control oil from the first closed-side flow path 29 to the servo discharge path 31 is blocked.
  • the P port and the A port communicate with each other, and the first control oil supply passage 28 and the first closed-side passage 29 communicate with each other.
  • the B port and the T port communicate with each other, and the open-side flow path 30 and the servo discharge path 31 communicate with each other.
  • the first control oil supply passage 28 is provided with a supply port side check valve 32 (supply port side backflow prevention function valve).
  • the supply port side check valve 32 is disposed on the supply port 21 side of the first control oil supply path 28 with respect to a later-described branch point P2.
  • the supply port side check valve 32 is configured to permit the flow of control oil to the servo valve 23 but to block the flow of control oil to the supply port 21. Further, the cracking pressure of the supply port side check valve 32 is set to the minimum operating pressure of the steam valve driving device 1.
  • the open side flow path 30 is provided with a first open side pilot check valve 33 (open side backflow prevention valve).
  • the first open side pilot check valve 33 is controlled by a trip solenoid valve 27.
  • the first open side pilot check valve 33 is disposed closer to the servo valve 23 than a branch point P1 to which a later-described dump flow path 40 of the open side flow path 30 is connected.
  • the A port and the B port of the first open side pilot check valve 33 form a part of the open side flow path 30, and the X port (pilot port) of the first open side pilot check valve 33 includes a trip solenoid valve. 27 B ports are connected.
  • the first open side pilot check valve 33 loses the backflow prevention function due to the X port being pressurized by the emergency oil, in both directions. It is configured to allow the flow of control oil.
  • the first open side pilot check valve 33 has a backflow prevention function when emergency oil is not supplied to the X port (emergency oil is discharged), and the control oil to the open direction piston chamber 12 is controlled. However, the flow of the control oil to the servo valve 23 is blocked.
  • a second open side pilot check valve 34 is provided in the open side flow path 30.
  • the second open side pilot check valve 34 is controlled by a trip solenoid valve 27.
  • the second open side pilot check valve 34 is disposed closer to the opening direction piston chamber 12 than a branch point P1 to which a later-described dump flow path 40 of the open side flow path 30 is connected. .
  • the A port and the B port of the second open side pilot check valve 34 form a part of the open side flow path 30, and the X port (pilot port) of the second open side pilot check valve 34 has a trip solenoid valve. 27 B ports are connected.
  • the second open side pilot check valve 34 is pressurized by the emergency oil and loses the backflow prevention function, and allows the control oil to flow in both directions. It is configured as follows.
  • the second open side pilot check valve 34 has a backflow prevention function in a state where emergency oil is not supplied to the X port and permits the flow of control oil to the branch point P1, but the open direction piston chamber. It is comprised so that the flow of the control oil to 12 may be interrupted.
  • the open-side flow path 30 branches into two flow paths so as to be connected to the two a ports of the open direction piston chamber 12 on the open direction piston chamber 12 side of the second open side pilot check valve 34. doing.
  • Each flow path is provided with orifices 36 and 37, and the flow rate of each flow path is adjusted.
  • the first closed-side flow path 29 is provided with a closed-side pilot check valve 35 (closed-side backflow prevention valve).
  • the closed pilot check valve 35 is controlled by a trip solenoid valve 27.
  • the closed pilot check valve 35 is disposed closer to the servo valve 23 than a branch point P4 to which a later-described second closed flow path 44 of the first closed flow path 29 is connected. Yes.
  • the A port and B port of the closed pilot check valve 35 form part of the first closed flow path 29, and the X port (pilot port) of the closed pilot check valve 35 has a trip solenoid valve 27. B port is connected.
  • the closed pilot check valve 35 is pressurized by the emergency oil so as to lose the backflow prevention function and allow the control oil to flow in both directions. It is configured.
  • the closed pilot check valve 35 has a backflow prevention function in a state where emergency oil is not supplied to the X port, and permits the flow of control oil to the closing direction piston chamber 13, but to the servo valve 23. It is configured to block the flow of control oil.
  • the orifice 38 is provided in the 1st closed side flow path 29, and the flow volume of the 1st closed side flow path 29 is adjusted.
  • the orifice 38 is arranged closer to the closing direction piston chamber 13 than a branch point P4 of a second closing side channel 44 described later in the first closing side channel 29.
  • the servo discharge path 31 is provided with a check valve 39.
  • the check valve 39 is configured to allow the flow of control oil to the discharge port 22 but to block the flow of control oil or emergency oil to the servo valve 23. That is, the control oil discharged from the A port of the dump valve 24 or the cylinder 10 or the emergency oil discharged from the T port of the trip solenoid valve 27 is prevented from being supplied to the T port of the servo valve 23. .
  • the dump valve 24 can be switched between a state in which the flow of control oil from the open direction piston chamber 12 to the discharge port 22 is interrupted and a state in which the flow of control oil is permitted (the flow of control oil is blocked or permitted). To be configured).
  • the dump valve 24 will be described more specifically.
  • the B port of the dump valve 24 and the open-side flow path 30 are connected by a dump flow path 40.
  • the dump flow path 40 is connected to a branch point P1 (halfway position) provided on the open direction piston chamber 12 side of the first open side pilot check valve 33 in the open side flow path 30.
  • This branch point P ⁇ b> 1 is disposed on the servo valve 23 side of the second open side pilot check valve 34 in the open side flow path 30. That is, it is disposed between the first open side pilot check valve 33 and the second open side pilot check valve 34.
  • a dump discharge path 41 is connected to the A port of the dump valve 24.
  • the dump discharge path 41 is connected to the discharge port 22.
  • the X port (pilot port) of the dump valve 24 is connected to the B port of the trip solenoid valve 27.
  • the dump valve 24 is controlled by a trip solenoid valve 27.
  • the dump valve 24 is closed when the emergency oil is supplied from the B port of the trip solenoid valve 27 to the X port, and the X port is pressurized by the emergency oil and closed. Is cut off. As a result, the flow of control oil from the opening direction piston chamber 12 to the discharge port 22 is blocked.
  • the dump valve 24 is opened, and the B port and the A port of the dump valve 24 communicate with each other.
  • the accumulator 25 stores control oil under pressure. That is, a gas such as nitrogen is sealed in the accumulator 25 so as to be separated by a diaphragm (a bladder type accumulator) or a piston (a piston type accumulator). For this reason, the accumulator 25 is configured to be able to store the pressurized control oil by filling the control oil while compressing the gas.
  • the accumulator 25 and the first control oil supply path 28 are connected by an accumulator filling path 42.
  • the accumulator filling path 42 is connected to a branch point P2 (halfway position) provided on the servo valve 23 side of the first control oil supply path 28 with respect to the supply port side check valve 32 described above.
  • the control oil supplied to the supply port 21 is supplied to the accumulator 25 through the first control oil supply passage 28 and the accumulator filling passage 42, and the accumulator 25 is filled with the control oil.
  • the shut-off valve 26 can be switched between a state allowing the flow of control oil from the accumulator 25 to the closing direction piston chamber 13 and a state blocking the flow of the control oil (allowing or blocking the flow of the control oil). As configured).
  • shutoff valve 26 will be described.
  • the P port of the shutoff valve 26 and the accumulator 25 are connected by an accumulator discharge path 43.
  • the accumulator discharge path 43 is connected to the accumulator filling path 42 at the branch point P3.
  • the A port of the shutoff valve 26 and the first closed-side flow path 29 are connected by a second closed-side flow path 44.
  • the second closed-side flow path 44 is connected to a branch point P4 (halfway position) provided on the closed direction piston chamber 13 side of the first closed-side flow path 29 with respect to the closed-side pilot check valve 35.
  • the X port (pilot port) of the shut-off valve 26 is connected to the B port of the trip solenoid valve 27.
  • the shutoff valve 26 is controlled by a trip solenoid valve 27. That is, in the state where emergency oil is supplied from the B port of the trip solenoid valve 27 to the X port, the shutoff valve 26 is closed by being pressurized by the emergency oil, and the P port and the A port of the shutoff valve 26 are closed. Is cut off. As a result, the flow of control oil from the accumulator 25 to the closing direction piston chamber 13 is blocked. On the other hand, when emergency oil is not supplied to the X port, the shutoff valve 26 is opened, and the P port and the A port of the shutoff valve 26 communicate with each other.
  • the trip solenoid valve 27 controls the dump valve 24 and the shutoff valve 26 as described above.
  • the trip solenoid valve 27 permits the emergency oil flow from the supply port 21 to the X port of the dump valve 24 and the X port of the shutoff valve 26, and discharges from the X port of the dump valve 24 and the X port of the shutoff valve 26. It is configured to be switchable to a state allowing the flow of emergency oil to the outlet 22.
  • the trip solenoid valve 27 controls the first open side pilot check valve 33, the second open side pilot check valve 34, and the close side pilot check valve 35.
  • the trip solenoid valve 27 when permitting the emergency oil flow to the X port of the dump valve 24 and the X port of the shut-off valve 26, the trip solenoid valve 27 is connected to the X port and the second open side of the first open side pilot check valve 33.
  • the emergency oil flow to the X port of the pilot check valve 34 and the X port of the closed pilot check valve 35 is permitted.
  • the emergency oil means the control oil (operating oil) supplied from the trip solenoid valve 27 to the X port of each valve.
  • the trip solenoid valve 27 will be described.
  • the P port of the trip solenoid valve 27 and the first control oil supply path 28 are connected by a second control oil supply path 45.
  • the second control oil supply path 45 is connected to a branch point P2 (halfway position) provided on the servo valve 23 side of the first control oil supply path 28 with respect to the supply port side check valve 32.
  • the branch point where the accumulator filling path 42 is connected to the first control oil supply path 28 and the branch point where the second control oil supply path 45 is connected to the first control oil supply path 28. are consistent, but not limited to this.
  • the B port of the trip solenoid valve 27 is connected to the X port of the dump valve 24 and the X port of the shutoff valve 26 via an emergency oil flow path 46.
  • the B port of the trip solenoid valve 27 is connected to the X port of the first open side pilot check valve 33, the X port of the second open side pilot check valve 34, and the closed side pilot check valve 35 via the emergency oil passage 46. It is also connected to the X port.
  • the emergency oil passage 46 has a branch structure so that the B port of the trip solenoid valve 27 is connected to the X ports of the valves 24, 26, 33 to 35.
  • a trip discharge path 47 is connected to the T port of the trip solenoid valve 27.
  • the trip discharge path 47 merges with the dump discharge path 41 described above, and is connected to the discharge port 22 via the trip discharge path 47.
  • the trip solenoid valve 27 has a coil that is excited by receiving an electric signal transmitted from a control device (not shown). When this coil is excited, the P port and B port of the trip solenoid valve 27 communicate with each other, and the emergency oil flow from the second control oil supply path 45 to the emergency oil path 46 is permitted. As a result, emergency oil is supplied from the second control oil supply passage 45 to the emergency oil passage 46 via the P port and B port of the trip solenoid valve 27. On the other hand, when the electric signal disappears, the excitation of the coil is released, the P port and B port of the trip solenoid valve 27 are shut off, and the flow of emergency oil from the second control oil supply passage 45 to the emergency oil passage 46 is cut off. Is done.
  • the T port and the B port communicate with each other, and the emergency oil flow from the emergency oil flow path 46 to the trip discharge path 47 is permitted.
  • emergency oil is supplied from the emergency oil passage 46 to the trip discharge passage 47 via the B port and T port of the trip solenoid valve 27.
  • the emergency oil supplied to the trip discharge path 47 is supplied to the discharge port 22 via the dump discharge path 41 and discharged from the discharge port 22.
  • a check valve 48 is provided in the trip discharge path 47.
  • the check valve 48 is configured to permit the flow of emergency oil to the discharge port 22 but to block the flow of control oil to the trip electromagnetic valve 27. That is, the T port of the servo valve 23, the A port of the dump valve 24, or the control oil discharged from the cylinder 10 is prevented from being supplied to the T port of the trip solenoid valve 27.
  • the trip solenoid valve 27 When the steam valve SV is opened (reset), the trip solenoid valve 27 is excited as shown in FIG. Then, the P port and the B port of the trip solenoid valve 27 communicate with each other, and emergency oil is supplied from the supply port 21 to the X port of the dump valve 24 and the X port of the shutoff valve 26 through the trip solenoid valve 27 and the emergency oil passage 46. Is supplied. As a result, the X port of the dump valve 24 is pressurized and the dump valve 24 is closed. For this reason, the flow of control oil from the open direction piston chamber 12 to the discharge port 22 is blocked. Further, the X port of the shutoff valve 26 is pressurized and the shutoff valve 26 is also closed. For this reason, the flow of control oil from the accumulator 25 to the closing direction piston chamber 13 is blocked.
  • the excitation of the trip solenoid valve 27 also supplies emergency oil to the X port of the first open side pilot check valve 33, the X port of the second open side pilot check valve 34, and the X port of the closed side pilot check valve 35.
  • the X ports of the valves 33 to 35 are pressurized. Therefore, the check valve function of each valve 33 to 35 is lost, and the flow of control oil in both directions is permitted in each valve 33 to 35.
  • a first electric signal which is an electric command in the opening direction is input to the servo valve 23.
  • the P port and the B port of the servo valve 23 communicate with each other, and control oil is supplied from the supply port 21 to the open-side flow path 30 via the servo valve 23.
  • the check valve function of the first open side pilot check valve 33 and the second open side pilot check valve 34 provided in the open side flow path 30 is lost.
  • the control oil supplied to the open side flow path 30 is supplied to the open direction piston chamber 12.
  • the input of the first electric signal to the servo valve 23 causes the A port and T port of the servo valve 23 to communicate with each other.
  • the check valve function of the closed pilot check valve 35 provided in the first closed flow path 29 is lost.
  • the control oil in the closing direction piston chamber 13 is discharged to the discharge port 22 via the servo valve 23 and the servo discharge path 31.
  • the second open side pilot check valve 34 permits the flow of the control oil to the branch point P1
  • the first open side pilot check valve 33 blocks the flow of the control oil to the servo valve 23.
  • the control oil in 12 is discharged to the discharge port 22 via the dump flow path 40, the dump valve 24 and the dump discharge path 41.
  • the P port and the A port of the shut-off valve 26 communicate with each other, and the control oil in the accumulator 25 passes from the accumulator discharge passage 43 through the shut-off valve 26 to the second closed side. It is supplied to the flow path 44. Since the closed pilot check valve 35 blocks the flow of control oil to the servo valve 23, the control oil supplied to the second closed flow path 44 passes through the first closed flow path 29 and closes in the closing direction piston chamber. 13 is supplied.
  • the control oil in the open direction piston chamber 12 is discharged from the dump valve 24 having a large discharge capacity, so that the control oil in the open direction piston chamber 12 can be discharged rapidly. . Further, since the control oil is supplied to the closing direction piston chamber 13 from the accumulator 25 that stores the control oil under pressure, the closing direction piston chamber 13 can be rapidly supplied with the control oil. Thereby, the pressure of the control oil in the closing direction piston chamber 13 for exhibiting the fail-safe function can be rapidly increased. For this reason, the valve body VB can be rapidly moved in the closing direction, and the steam valve SV can be rapidly closed. That is, the fail safe function can be enhanced.
  • the supply port side check valve in which the cracking pressure is set in the first control oil supply passage 28 so as to correspond to the lowest operating pressure of the steam valve drive device 1. 32 is provided.
  • the supply port side check valve 32 causes the inside of the steam valve driving device 1 to It is possible to prevent the control oil pressure and the emergency oil pressure from dropping below the minimum operating pressure.
  • the steam valve driving device 1 according to the present embodiment includes the accumulator 25, the control oil can be supplied from the accumulator 25 to the servo valve 23, the trip electromagnetic valve 27, and the like. In this respect as well, it is possible to prevent the pressure of the control oil and the pressure of the emergency oil in the steam valve driving device 1 from being lowered. For this reason, a fail safe function can be improved.
  • the trip solenoid valve 27 is de-energized in the same manner as the case where the steam valve SV is suddenly closed, and the B port is connected by the action of the spring.
  • the T port communicates with the emergency oil in the X port of the dump valve 24 and the emergency oil in the X port of the shutoff valve 26.
  • the dump valve 24 is opened, and the control oil in the opening direction piston chamber 12 is discharged to the discharge port 22.
  • the shutoff valve 26 is opened by the action of the spring, the P port and the A port of the shutoff valve 26 communicate with each other, and the control oil in the accumulator 25 is supplied to the closing direction piston chamber 13.
  • the excitation of the servo valve 23 is released when the power is cut off, the P port and the B port of the servo valve 23 are cut off by the action of the spring, and the P port and the A port communicate with each other.
  • the flow of control oil to the open direction piston chamber 12 is blocked.
  • the steam valve SV can be closed quickly, and the fail-safe function can be enhanced.
  • the dump valve 24 controls the control oil from the opening direction piston chamber 12 of the cylinder 10 to the discharge port 22 by the control of the trip electromagnetic valve 27. Allow flow.
  • the control oil in the opening direction piston chamber 12 can be quickly discharged to the discharge port 22 via the dump valve 24.
  • the shutoff valve 26 permits the flow of control oil from the accumulator 25 to the closing direction piston chamber 13.
  • the control oil stored in the accumulator 25 can be rapidly supplied to the closing direction piston chamber 13, and the pressure of the control oil in the closing direction piston chamber 13 can be rapidly increased.
  • the control oil in the closing direction piston chamber 13 can press the piston 11 so as to exert the fail-safe function, and the valve body VB is rapidly moved in the closing direction to rapidly close the steam valve SV. be able to.
  • the shutoff valve 26 shuts off the flow of control oil from the accumulator 25 to the closing direction piston chamber 13, and the servo valve 23 is closed.
  • the flow of control oil from the chamber 13 to the discharge port 22 is permitted.
  • the control oil in the closing direction piston chamber 13 can be discharged to the discharge port 22 via the servo valve 23.
  • the steam valve SV is open, it is possible to prevent the force for exerting the fail-safe function from being applied to the piston 11 of the cylinder 10. In this case, an increase in the volume of the cylinder 10 can be suppressed, and the size of the cylinder 10 can be reduced.
  • the trip solenoid valve 27 discharges the emergency oil in the X port of the dump valve 24 and the emergency oil in the X port of the shutoff valve 26 when the steam valve SV is suddenly closed. It can be discharged to the outlet 22.
  • the emergency oil in the open direction piston chamber 12 can be quickly discharged to the discharge port 22 via the dump valve 24, and at the same time, the emergency oil stored in the accumulator 25 can be discharged in the close direction piston chamber. 13 can be supplied rapidly. For this reason, the piston 11 can be rapidly moved in the closing direction of the steam valve SV, and the steam valve SV can be rapidly closed.
  • a first open side pilot check valve 33 that shuts off the flow of control oil to the servo valve 23 is provided. This can prevent the control oil from being supplied to the servo valve 23 when the control oil in the opening direction piston chamber 12 is discharged to the discharge port 22.
  • the servo valve is located more than the branch point P4 where the second closed flow path 44 is connected among the first closed flow paths 29 connecting the servo valve 23 and the closing direction piston chamber 13.
  • a closed pilot check valve 35 that shuts off the flow of control oil to the servo valve 23 is provided. This prevents the control oil from being supplied to the servo valve 23 when the control oil is supplied from the accumulator 25 to the closing direction piston chamber 13.
  • the reverse pilot check valve 35 loses its backflow prevention function when emergency oil is supplied to its X port. Thereby, when the steam valve SV is opened, the control oil in the closing direction piston chamber 13 can be discharged to the discharge port 22 via the servo valve 23.
  • the supply port side check valve 32 is provided on the supply port 21 side of the first control oil supply channel 28 from the branch point P2 to which the accumulator filling channel 42 is connected. Yes. Thereby, the flow of the control oil to the supply port 21 is interrupted, and the control oil and the emergency oil in the steam valve driving device 1 can be prevented from being supplied to the supply port 21. For this reason, it can prevent that the pressure of the control oil in the steam valve drive device 1 and the pressure of emergency oil fall.
  • the piston 11 of the cylinder 10 is connected to the valve body VB of the steam valve SV that linearly moves in the opening / closing direction.
  • the present invention is not limited to this, and the piston 11 may be connected to a valve body of a steam valve such as a butterfly valve that rotates in the opening / closing direction.
  • a mechanism for converting the linear motion of the piston 11 into a rotational motion is interposed between the piston 11 and the valve body.
  • control valve indicated by reference numeral 23 is the servo valve 23
  • the present invention is not limited to this, and the control valve indicated by reference numeral 23 can also be configured as an electromagnetic valve.
  • the control valve indicated by reference numeral 23 can also be configured as an electromagnetic valve.
  • the coil of the solenoid valve when the coil of the solenoid valve is excited, the flow of control oil from the first control oil supply path 28 to the open-side flow path 30 is permitted, and when the excitation of the coil is released, the first control oil supply path 28 is released. The flow of control oil to the open-side flow path 30 may be blocked.
  • the second embodiment shown in FIGS. 3 and 4 is mainly different in that the supply port side check valve is a pilot check valve controlled by a trip solenoid valve.
  • the supply port side check valve is a pilot check valve controlled by a trip solenoid valve.
  • the supply port side check valve 32 shown in FIGS. 1 and 2 is a pilot check valve. That is, the first control oil supply passage 28 is provided with a supply port side pilot check valve 50 (supply port side backflow prevention function valve). The supply port side pilot check valve 50 is controlled by a trip solenoid valve 27.
  • the A port and the B port of the supply port side pilot check valve 50 form a part of the first control oil supply path 28, and the X port of the supply port side pilot check valve 50 has an emergency port.
  • the B port of the trip solenoid valve 27 is connected via the oil passage 46.
  • the supply port side pilot check valve 50 loses the backflow prevention function due to the X port being pressurized by the emergency oil, and the control oil in both directions Is configured to allow the flow of.
  • the supply port side pilot check valve 50 has a backflow prevention function in a state where emergency oil is not supplied to the X port, and permits the flow of control oil to the branch point P2, but does not supply the supply port 21 to the supply port 21. It is comprised so that the flow of control oil may be interrupted.
  • the accumulator 25 can pressurize the X port so that the supply port side pilot check valve 50 can lose its check valve function when the steam valve SV is opened after being quickly closed. It is preferable to have an oil amount of
  • the supply port side backflow prevention function valve is the supply port side pilot check valve 50. Accordingly, a decrease in the pressure of the control oil in the steam valve drive device 1 can be prevented by detecting a decrease in the pressure of the control oil in the control oil supply system, a shut-off of the power source, and a trip operation of the trip electromagnetic valve 27.
  • the supply port side pilot check valve 50 can exhibit a backflow prevention function, and the flow of control oil to the supply port 21 can be blocked. For this reason, it can prevent that the control oil in the steam valve drive device 1 is supplied to the supply port 21, and can prevent that the pressure of the control oil in the steam valve drive device 1 falls.
  • the trip solenoid valve 27 when the trip solenoid valve 27 is tripped, the emergency oil in the X port of the supply port side pilot check valve 50 can be discharged. Accordingly, the supply port side pilot check valve 50 can exhibit a backflow prevention function, and similarly, the pressure of the control oil in the steam valve driving device 1 can be prevented from decreasing.
  • the third embodiment shown in FIGS. 5 and 6 is mainly different in that the supply port side check valve is an electromagnetic valve, and other configurations are the same as those in the first embodiment shown in FIGS. It is almost the same as the form. 5 and 6, the same parts as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the supply port side check valve 32 shown in FIGS. 1 and 2 is an electromagnetic valve. That is, the first control oil supply passage 28 is provided with a supply port side solenoid valve 51 (supply port side backflow prevention function valve).
  • the supply port side solenoid valve 51 has a coil that is excited in response to an electrical signal transmitted from a control device (not shown), like the servo valve 23 and the trip solenoid valve 27. In the state where the coil is excited, the supply port side solenoid valve 51 communicates with the P port and the B port of the supply port side solenoid valve 51, loses the backflow prevention function, and reduces the flow of control oil in both directions. Configured to allow. On the other hand, the supply port side solenoid valve 51 has a backflow prevention function by the action of a spring and is configured to block the flow of control oil to the supply port 21 when the coil is not excited. In the present embodiment, the flow of control oil to the branch point P2 is also cut off when not excited.
  • the supply port side backflow prevention function valve is the supply port side solenoid valve 51.
  • the supply port side solenoid valve 51 exerts a backflow prevention function by controlling the supply port side solenoid valve 51 so as to release the excitation. And the flow of control oil to the supply port 21 can be blocked. For this reason, it prevents that the control oil and emergency oil in the steam valve drive device 1 are supplied to the supply port 21, and prevents the pressure of the control oil and the emergency oil in the steam valve drive device 1 from decreasing. it can.
  • the supply port side solenoid valve 51 can exhibit the backflow prevention function, and similarly, the pressure of the control oil and the pressure of the emergency oil in the steam valve driving device 1 can be prevented from decreasing.
  • the supply port side solenoid valve 51 demonstrated the example comprised as a spool valve.
  • the present invention is not limited to this, and the supply port side solenoid valve 51 may be configured as a poppet valve.
  • the steam valve SV when the steam valve SV is opened (FIG. 5), it may be excited and opened, and when the steam valve SV is suddenly closed (FIG. 6), the excitation may be released and closed. In this case, it is possible to further prevent the control oil pressure and the emergency oil pressure in the steam valve driving device 1 from being lowered.
  • the fourth embodiment shown in FIGS. 7 and 8 is mainly different in that hydraulic fluid is supplied to the accumulator via a trip solenoid valve, and the other configuration is the first embodiment shown in FIGS. 1 and 2.
  • This is substantially the same as the embodiment. 7 and 8, the same parts as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the B port of the trip solenoid valve 27 and the accumulator 25 are connected by an accumulator filling path 42. That is, the accumulator filling passage 42 according to the present embodiment is not connected to the first control oil supply passage 28 as shown in FIG. 1, but is connected to the emergency oil passage 46 as shown in FIG. ing.
  • the control oil supplied to the trip solenoid valve 27 is supplied to the accumulator 25 via the emergency oil passage 46 and the accumulator filling passage 42, and the accumulator 25 is filled with the control oil.
  • an accumulator side check valve 52 (accumulator side backflow prevention valve) is provided in the accumulator filling passage 42.
  • the accumulator-side check valve 52 is configured to permit the flow to the accumulator 25 but to block the flow to the trip electromagnetic valve 27 (more specifically, the emergency oil flow path 46). Further, the cracking pressure of the accumulator side check valve 52 is set to the minimum operating pressure of the steam valve driving device 1.
  • the shutoff valve 26 When the steam valve SV is suddenly closed, as shown in FIG. 8, the shutoff valve 26 is opened, and the control oil in the accumulator 25 flows from the accumulator discharge passage 43 to the shutoff valve 26, the second close side passage 44, and the first close. It is supplied to the closing direction piston chamber 13 through the side flow path 29. At this time, the emergency oil is discharged from the emergency oil flow path 46. However, since the accumulator side check valve 52 is provided in the accumulator filling path 42, the control oil in the accumulator 25 is discharged from the accumulator filling path 42. The flow to the flow path 46 is prevented.
  • the accumulator-side check valve 52 is provided in the accumulator filling path 42 that connects the accumulator 25 to the trip electromagnetic valve 27.
  • the control oil stored in the accumulator 25 can be supplied to the shutoff valve 26. That is, the control oil stored in the accumulator 25 can be prevented from being supplied to the servo valve 23 and the trip electromagnetic valve 27. For this reason, the control oil in the accumulator 25 can be used for the operation
  • the fifth embodiment shown in FIGS. 9 and 10 is mainly different in that the accumulator-side check valve is a pilot check valve controlled by a trip solenoid valve, and other configurations are the same as those in FIGS.
  • This is substantially the same as the fourth embodiment shown in FIG. 9 and 10, the same parts as those in the fourth embodiment shown in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the accumulator check valve shown in FIGS. 7 and 8 is a pilot check valve. That is, the accumulator filling passage 42 is provided with an accumulator-side pilot check valve 53 (accumulator-side backflow prevention valve). The accumulator side pilot check valve 53 is controlled by a trip solenoid valve 27.
  • the A port and the B port of the accumulator side pilot check valve 53 form a part of the accumulator filling passage 42, and the emergency oil passage 46 is connected to the X port of the accumulator side pilot check valve 53.
  • the B port of the trip solenoid valve 27 is connected via In the state where the emergency oil from the trip solenoid valve 27 is supplied to the X port, the accumulator side pilot check valve 53 loses the backflow prevention function due to the X port being pressurized by the emergency oil, and the control oil in both directions Configured to allow flow.
  • the accumulator-side pilot check valve 53 has a backflow prevention function when emergency oil is not supplied to the X port and permits the flow of control oil to the accumulator 25, but the trip solenoid valve 27 (more specifically, Specifically, the flow of the control oil to the emergency oil flow path 46) is cut off.
  • the accumulator-side pilot check valve 53 is provided in the accumulator filling path 42 that connects the accumulator 25 to the trip electromagnetic valve 27.
  • the control oil stored in the accumulator 25 can be supplied to the shutoff valve 26. That is, the control oil stored in the accumulator 25 can be prevented from being supplied to the servo valve 23 and the trip electromagnetic valve 27. For this reason, the control oil in the accumulator 25 can be used for the operation
  • the sixth embodiment shown in FIGS. 11 and 12 is mainly different in that the second piston that can be separated from and connected to the first piston of the cylinder is pressed in the closing direction of the valve body by the closing spring,
  • Other configurations are substantially the same as those of the first embodiment shown in FIGS. 11 and 12, the same parts as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cylinder 10 includes a first piston 11 (corresponding to the piston 11 shown in FIG. 1) connected to the valve body VB and an opening direction first piston chamber (FIG. 1). And a first piston chamber in the closing direction (corresponding to the closing direction piston chamber 13 shown in FIG. 1).
  • the cylinder 10 further includes a second piston 60 detachably connected to the valve body VB of the steam valve SV, an opening direction second piston chamber 61, and a closing direction second piston chamber 62. Yes.
  • the first piston 11 is connected to the valve body VB, and the second piston 60 is detachably connected to the first piston 11. More specifically, a first coupling member 63 is provided at an end portion of the first piston 11 on the second piston 60 side, and an end portion of the second piston 60 on the first piston 11 side is provided. A second coupling member 64 is provided. When the second piston 60 closes the steam valve SV, the second coupling member 64 abuts on the first coupling member 63 and is connected to the valve body VB via the first piston 11. The second piston 60 is configured to press the first piston 11 to the fully closed position of the steam valve SV.
  • the second piston 60 is configured to be separated from the first piston 11 (that is, the valve body VB) when the second coupling member 64 is separated from the first coupling member 63 when the steam valve SV is opened. ing.
  • the 1st coupling member 63 and the 2nd coupling member 64 are drawn in the shape which bites mutually, each opposing surface may be formed flat.
  • the opening direction second piston chamber 61 is configured to be supplied with control oil that presses the second piston 60 in the opening direction of the valve body VB.
  • the closing direction second piston chamber 62 is configured to press the second piston 60 in the closing direction of the valve body VB. More specifically, the closing direction second piston chamber 62 is provided with a closing spring 65 that presses the second piston 60 in the closing direction of the valve body VB. The second piston 60 is pressed in the closing direction of the valve body VB by the urging force of the closing spring 65.
  • the manifold block 20 in the present embodiment includes a servo valve 23, a first dump valve (corresponding to the dump valve 24 shown in FIG. 1), a trip electromagnetic valve 27, and a second dump valve 66.
  • the supply port side solenoid valve 51) is not provided.
  • Control oil in the opening direction second piston chamber 61 is discharged through the second dump valve 66.
  • the second dump valve 66 can be switched between a state in which the flow of control oil from the second piston chamber 61 in the opening direction to the discharge port 22 is interrupted and a state in which the flow of the control oil is permitted (the control oil flows). Configured to block or allow flow).
  • the second dump valve 66 will be described.
  • the B port of the second dump valve 66 and the open second piston chamber 61 are connected by a second dump passage 67.
  • a second dump discharge path 68 is connected to the A port of the second dump valve 66.
  • the second dump discharge path 68 is connected to the discharge port 22 via a first dump discharge path (corresponding to the dump discharge path 41 shown in FIG. 1).
  • the X port (pilot port) of the second dump valve 66 is connected to the B port of the trip solenoid valve 27.
  • the second dump valve 66 is controlled by the trip solenoid valve 27. In other words, the second dump valve 66 is closed when the emergency oil is supplied from the B port of the trip solenoid valve 27 to the X port, and the X port is pressurized and closed by the emergency oil. And A port are blocked. As a result, the flow of control oil from the opening direction second piston chamber 61 to the discharge port 22 is blocked. On the other hand, when the emergency oil is not supplied to the X port, the second dump valve 66 is opened, and the B port and the A port of the second dump valve 66 communicate with each other.
  • control oil is supplied to the discharge path 68.
  • the control oil supplied to the second dump discharge path 68 is supplied to the discharge port 22 via the first dump discharge path 41 and is discharged from the discharge port 22.
  • the trip discharge path 47 is provided with a second check valve 69.
  • the second check valve 69 is disposed closer to the trip electromagnetic valve 27 than the branch point P5 to which the second dump discharge path 68 is connected in the trip discharge path 47.
  • the second check valve 69 permits the emergency oil flow to the branch point P5, but is configured to block the control oil flow to the trip solenoid valve 27. That is, the control oil discharged from the second dump valve 66 is prevented from being supplied to the T port of the trip electromagnetic valve 27.
  • the first electric signal that is an electric command in the opening direction is input to the servo valve 23, and the first piston in the opening direction is supplied from the supply port 21 through the servo valve 23.
  • Control oil is supplied to the chamber 12.
  • the first dump valve 24 is closed because emergency oil is supplied from the trip solenoid valve 27. Further, the trip electromagnetic valve 27 is excited, and the control oil (or emergency oil) is supplied from the supply port 21 to the opening-direction second piston chamber 61 through the trip electromagnetic valve 27.
  • the control oil in the first piston chamber 13 in the closing direction is discharged from the discharge port 22 through the servo valve 23.
  • the valve body VB moves in the closing direction, and the steam valve SV is suddenly closed.
  • the control oil in the opening direction first piston chamber 12 is discharged from the first dump valve 24 having a large discharge capacity, and the control oil in the opening direction second piston chamber 61 has a large discharge capacity. Since it is discharged
  • the closing direction second piston chamber 62 is provided with the closing spring 65, the biasing force of the closing spring 65 for exerting the fail-safe function is rapidly applied to the first piston 11 and the second piston 60. Can be loaded. For this reason, the valve body VB can be rapidly moved in the closing direction, and the steam valve SV can be rapidly closed. That is, the fail safe function can be enhanced.
  • the control oil in the opening direction first piston chamber 12 is rapidly discharged to the discharge port 22 via the first dump valve 24. Can do. Further, the control oil in the opening direction second piston chamber 61 can be rapidly discharged to the discharge port 22 via the second dump valve 66.
  • the closing spring 65 is provided in the second piston chamber 62 in the closing direction, the closing spring 65 can press the first piston 11 and the second piston 60 so as to exert the fail-safe function.
  • the steam valve SV can be rapidly closed by moving the valve body VB rapidly in the closing direction.
  • the control oil can be supplied from the trip solenoid valve 27 to the second piston chamber 61 in the opening direction, and the pressure of the control oil in the second piston chamber 61 in the opening direction can be increased. it can.
  • the second piston 60 is pressed in the opening direction of the valve body VB by the control oil in the opening direction second piston chamber 61, and the second piston 60 can be separated from the first piston 11.
  • the biasing force of the closing spring 65 it is possible to prevent the biasing force of the closing spring 65 from being applied to the first piston 11.
  • the force for exerting the fail-safe function can be prevented from being applied to the first piston 11 except when the steam valve SV is suddenly closed. In this case, an increase in the volume of the cylinder 10 can be suppressed, and the size of the cylinder can be reduced.
  • the steam valve SV can be quickly closed by the urging force of the closing spring 65 even when the emergency oil is lost. For this reason, the reliability of the steam valve drive device 1 can be further improved.
  • the second piston 60 does not go through the first piston 11 but through the connecting member 70 when the steam valve SV is suddenly closed.
  • the second coupling member 64 of the second piston 60 is connected to the connecting member 70 (more specifically, connected to the valve body VB). Is in contact with a third coupling member 71) provided at the end of the connecting member 70 on the second piston 60 side, and is connected to the valve body VB (or valve stem VA) via the connecting member 70.
  • a third coupling member 71 provided at the end of the connecting member 70 on the second piston 60 side, and is connected to the valve body VB (or valve stem VA) via the connecting member 70.
  • the second piston 60 is connected not to the first piston 11 but to the connecting member 70 connected to the valve body VB when the steam valve SV is suddenly closed.
  • the urging force of the closing spring 65 can be directly transmitted to the valve body VB.
  • the valve body VB can be moved more rapidly in the closing direction, and the steam valve SV can be closed more rapidly.
  • the eighth embodiment shown in FIG. 15 and FIG. 16 is mainly different in that steam for pressing the second piston in the closing direction of the valve body is supplied to the second piston chamber in the closing direction. Is substantially the same as the sixth embodiment shown in FIG. 11 and FIG. 15 and FIG. 16, the same parts as those of the sixth embodiment shown in FIG. 11 and FIG.
  • the steam that presses the second piston 60 in the closing direction of the valve body VB is supplied to the closing-direction second piston chamber 62.
  • the force for exhibiting the fail-safe function can be obtained from the steam, and the configuration of the steam valve driving device 1 can be simplified.
  • the second piston is mainly different in that a weight for pressing the second piston in the valve closing direction is provided.
  • This is substantially the same as the sixth embodiment shown in FIGS. 17 to 20, the same parts as those in the sixth embodiment shown in FIGS. 11 and 12 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second piston 60 is provided with a weight 74 that presses the second piston 60 in the closing direction of the valve body VB.
  • the weight 74 preferably has a mass that can quickly close the valve body VB of the steam valve SV.
  • the closing spring 65 as shown in FIG. 11 or the like is not provided in the closing direction second piston chamber 62.
  • FIG. 18 when the steam valve SV is suddenly closed, the second piston 60 moves in the closing direction due to the weight of the weight 74, and the second coupling member 64 comes into contact with the first coupling member 63.
  • the valve body VB is connected via the first piston 11.
  • the second piston 60 moves in the opening direction by the pressure of the control oil supplied to the opening direction second piston chamber 61, and the second coupling member 64. Is separated from the first piston 11 by separating from the first coupling member 63.
  • the second piston 60 is provided with the weight 74 that presses the second piston 60 in the closing direction of the valve body VB.
  • the force for exhibiting the fail-safe function can be obtained from the weight 74, and the configuration of the steam valve driving device 1 can be simplified.
  • the present invention is not limited to this, and the second piston 60 is not connected to the first piston 11 when the steam valve SV is suddenly closed as in the embodiments shown in FIGS. 13 and 14. You may make it connect with the valve body VB via 70.
  • FIG. More specifically, as shown in FIG. 20, when the steam valve SV is suddenly closed, the second coupling member 64 of the second piston 60 is connected to the valve body VB by the third coupling of the connecting member 70.
  • the second piston 60 may be configured to contact the member 71 and be connected to the valve body VB via the connecting member 70.
  • the second piston 60 is configured to be separated from the connecting member 70 by the second coupling member 64 being separated from the third coupling member 71. Also good.
  • the gravity of the weight 74 can be directly transmitted to the valve body VB. For this reason, the valve body VB can be moved more rapidly in the closing direction, and the steam valve SV can be closed more rapidly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)

Abstract

実施の形態による蒸気弁駆動装置において、制御弁は、供給口から開方向ピストン室への作動油の流れを許可または遮断する。ダンプ弁は、開方向ピストン室から排出口への作動油の流れを遮断または許可する。遮断弁は、アキュムレータから閉方向ピストン室への作動油の流れを許可または遮断する。制御弁は、供給口から開方向ピストン室への作動油の流れを許可する状態において、閉方向ピストン室から排出口への制御油の流れを許可する。

Description

蒸気弁駆動装置
 本発明の実施形態は、蒸気弁駆動装置に関する。
 蒸気タービンへの蒸気の供給を制御する蒸気弁は、蒸気弁駆動装置によって開閉駆動される。このような蒸気弁駆動装置には、タービンの速度制御および負荷制御を行うための機能だけでなく、制御不能に陥った際にタービンを安全に止めるためのフェイルセーフ機能が求められている。そこで、フェイルセーフ機能を持たせるために、蒸気弁の弁体に対して蒸気弁の閉方向に付勢力(バネ力)を常時負荷させる閉鎖バネを備えた蒸気弁駆動装置が知られている。
 このような閉鎖バネを備えた一般的な蒸気弁駆動装置について、図21および図22を用いて説明する。図21および図22に示す蒸気弁駆動装置におけるシリンダ100は、ピストン101と、ピストン101を開方向に押圧するための制御油が供給されるピストン室102と、閉鎖バネ103と、を有している。閉鎖バネ103は、蒸気弁SVの閉方向にピストン101を付勢している。この付勢力は、開閉状態に関わることなく常時負荷されている。
 図21に示すように、シリンダ100のピストン室102には、サーボ弁104を介して制御油が供給され、ピストン101が制御油によって開方向に押圧されるようになっている。また、ピストン室102には、ダンプ弁105のAポートが接続されており、ダンプ弁105のXポートは、トリップ電磁弁106に接続されている。蒸気弁SVをリセットする場合(蒸気弁SVを開く場合)には、トリップ電磁弁106が励磁され、トリップ電磁弁106を介してダンプ弁105のXポートに非常油が供給され、ダンプ弁105が閉じている。蒸気弁SVをトリップする場合(蒸気弁SVを急閉する場合)には、図22に示すように、トリップ電磁弁106が非励磁になり、ダンプ弁105のXポート内の非常油が排出される。このことにより、ダンプ弁105が開き、ピストン室102内の制御油がダンプ弁105のBポートを介して排出される。このため、閉鎖バネ103の付勢力によってピストン101が閉方向に移動し、蒸気弁SVが急閉する。
 このように、ピストン室102に供給された制御油は、ピストン101を開方向に押圧する。一方、閉方向には、制御油ではなく、シリンダ100内に設けられた閉鎖バネ103によって、ピストン101は押圧されている。このような蒸気弁駆動装置のシリンダ100は、油圧でピストン101を一方向(蒸気弁の開方向)のみに駆動させることから、シングルアクティングタイプと称されることがある。
 一般に、蒸気タービンに連結されているタービン発電機の出力を増加させる場合、蒸気タービンに供給される蒸気の流量は増加する。このことにより、蒸気弁の弁口径が大きくなり、閉鎖バネに要求されるバネ力も大きくなる。この場合、この閉鎖バネの付勢力が常時ピストンに負荷していることから、その付勢力に対抗するために、蒸気弁駆動装置のシリンダの容積が増大し、シリンダが大型化する。
 非常時に蒸気弁を急閉する場合には、シリンダ内の制御油を急速に排出することが求められる。しかしながら、上述したようにシリンダ容積が増大すると、シリンダ内の制御油を排出する時間が長くなるという問題がある。この場合、蒸気タービンのオーバースピード特性が悪化する可能性がある。このような問題は、フェイルセーフ機能を持たせるための閉鎖バネの付勢力が常時ピストンに負荷していることに起因していると考えられる。このため、非常時以外(すなわち、蒸気弁を開いている場合)にはフェイルセーフ機能を発揮させるための力がピストンに負荷しない蒸気弁駆動装置が望まれる。
特開2000-64811号公報
 本発明は、このような点を考慮してなされたものであり、蒸気弁が開いている場合にはフェイルセーフ機能を発揮させるための力がシリンダのピストンに負荷することを防止できる蒸気弁駆動装置を提供することを目的とする。
 実施の形態による蒸気弁駆動装置は、蒸気弁の弁体を開閉駆動する蒸気弁駆動装置である。この蒸気弁駆動装置は、作動油を供給する供給口と、作動油を排出する排出口と、シリンダと、を備えている。シリンダは、弁体に連結されるピストンと、ピストンを弁体の開方向に押圧する作動油が供給される開方向ピストン室と、ピストンを弁体の閉方向に押圧する作動油が供給される閉方向ピストン室と、を有している。また、蒸気弁駆動装置は、制御弁と、ダンプ弁と、アキュムレータと、遮断弁と、トリップ電磁弁と、を備えている。制御弁は、供給口から開方向ピストン室への作動油の流れを許可または遮断する。ダンプ弁は、開方向ピストン室から排出口への作動油の流れを遮断または許可する。アキュムレータは、作動油を加圧下で貯留する。遮断弁は、アキュムレータから閉方向ピストン室への作動油の流れを許可または遮断する。トリップ電磁弁は、ダンプ弁および遮断弁を制御する。制御弁は、供給口から開方向ピストン室への作動油の流れを許可する状態において、閉方向ピストン室から排出口への制御油の流れを許可する。
 また、実施の形態による蒸気弁駆動装置は、蒸気弁の弁体を開閉駆動する蒸気弁駆動装置である。この蒸気弁駆動装置は、作動油を供給する供給口と、作動油を排出する排出口と、シリンダと、を備えている。シリンダは、弁体に連結される第1ピストンと、第1ピストンを弁体の開方向に押圧する作動油が供給される開方向第1ピストン室と、弁体に離接可能に設けられた第2ピストンと、第2ピストンを弁体の開方向に押圧する作動油が供給される開方向第2ピストン室と、第2ピストンを弁体の閉方向に押圧する閉方向第2ピストン室と、を有している。また、蒸気弁駆動装置は、制御弁と、第1ダンプ弁と、トリップ電磁弁と、第2ダンプ弁と、を備えている。制御弁は、供給口から開方向第1ピストン室への作動油の流れを許可または遮断する。第1ダンプ弁は、開方向第1ピストン室から排出口への作動油の流れを遮断または許可する。トリップ電磁弁は、供給口から開方向第2ピストン室への作動油の流れを許可または遮断する。第2ダンプ弁は、開方向第2ピストン室から排出口への作動油の流れを遮断または許可する。第2ピストンは、蒸気弁を閉じる場合に弁体に連結され、蒸気弁を開く場合に弁体から離れる。
図1は、第1の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図2は、図1の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図3は、第2の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図4は、図3の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図5は、第3の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図6は、図5の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図7は、第4の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図8は、図7の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図9は、第5の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図10は、図9の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図11は、第6の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図12は、図11の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図13は、第7の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図14は、図13の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図15は、第8の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図16は、図15の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図17は、第9の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図18は、図17の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図19は、第10の実施の形態において、蒸気弁のリセット時における蒸気弁駆動装置を示す系統図である。 図20は、図19の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。 図21は、一般的な蒸気弁駆動装置において、蒸気弁のリセット時における系統図である。 図22は、図21の蒸気弁駆動装置において、蒸気弁のトリップ時における系統図である。
 以下、図面を参照して、本発明の実施の形態における蒸気弁駆動装置について説明する。
 (第1の実施の形態)
 図1および図2を用いて、第1の実施の形態における蒸気弁駆動装置1について説明する。ここに示す蒸気弁駆動装置1は、蒸気弁SVの弁体VBを開閉駆動するための油圧駆動装置である。
 図1に示すように、本実施の形態による蒸気弁駆動装置1は、シリンダ10と、シリンダ10に制御油(作動油)を供給するマニホールドブロック20と、を備えている。
 シリンダ10は、弁体VBに連結されるピストン11と、ピストン11を弁体VBの開方向に押圧する制御油が供給される開方向ピストン室12と、ピストン11を弁体VBの閉方向に押圧する制御油が供給される閉方向ピストン室13と、を有している。このうち開方向ピストン室12には2つのaポートが設けられており、各aポートから開方向ピストン室12に制御油が流入したり、各aポートから開方向ピストン室12内の制御油が流出したりするように構成されている。閉方向ピストン室13にはbポートが設けられており、このbポートから閉方向ピストン室13に制御油が流入したり、bポートから閉方向ピストン室13内の制御油が流出したりするようになっている。
 ピストン11は、弁棒VAを介して弁体VBに連結されており、開方向ピストン室12内の制御油の圧力および閉方向ピストン室13内の制御油の圧力に応じて直線移動し、弁体VBを駆動するように構成されている。図1に示す形態では、弁体VBの開方向は上方向に相当し、弁体VBの閉方向は下方向に相当する。このため、シリンダ10の開方向ピストン室12に制御油が供給されると、この制御油の圧力を受けてピストン11は上方に移動し、弁体VBを開方向に移動させる。一方、シリンダ10の閉方向ピストン室13に制御油が供給されると、この制御油の圧力を受けてピストン11は下方に移動し、弁体VBを閉方向に移動させる。このように、本実施の形態によるシリンダ10は、油圧でピストン11を双方向(蒸気弁SVの開方向および閉方向)に駆動させることから、ダブルアクティングタイプと称されることがある。
 マニホールドブロック20は、制御油を供給する供給口21と、制御油を排出する排出口22と、を備えている。このうち供給口21は、制御油供給配管2を介して制御油供給系統に接続されており、この制御油供給系統から制御油が供給口21に供給されるようになっている。排出口22は、ドレン配管3を介してドレン系統に接続されており、排出口22から排出される制御油は、このドレン系統に供給される。
 また、マニホールドブロック20は、サーボ弁23(制御弁)と、ダンプ弁24と、アキュムレータ25と、遮断弁26と、トリップ電磁弁27と、を更に備えている。
 サーボ弁23は、供給口21から開方向ピストン室12への制御油の流れを許可する状態と、当該制御油の流れを遮断する状態とに切替可能に(当該制御油の流れを許可または遮断するように)構成されている。また、サーボ弁23は、閉方向ピストン室13から排出口22への制御油の流れを許可する状態と、当該制御油の流れを遮断する状態とに切替可能に(当該制御油の流れを許可または遮断するように)構成されている。本実施の形態におけるサーボ弁23は、供給口21から開方向ピストン室12への制御油の流れを許可する状態において、閉方向ピストン室13から排出口22への制御油の流れが許可される。一方、サーボ弁23は、供給口21から開方向ピストン室12への制御油の流れを遮断する状態において、閉方向ピストン室13から排出口22への制御油の流れが遮断される。
 サーボ弁23についてより具体的に説明すると、サーボ弁23のPポートと供給口21とは、第1制御油供給路28(作動油供給路)によって接続されている。また、サーボ弁23のAポートと閉方向ピストン室13のbポートとは、第1閉側流路29によって接続され、サーボ弁23のBポートと開方向ピストン室12のaポートとは、開側流路30によって接続されている。サーボ弁23のTポートにはサーボ排出路31が接続されている。サーボ排出路31は、後述するダンプ排出路41に合流しており、このダンプ排出路41を介して排出口22に接続されている。
 サーボ弁23は、図示しない制御装置から送信される第1の電気信号(開方向の電気指令)がコイルに入力されると、サーボ弁23のPポートとBポートとが連通し、第1制御油供給路28から開側流路30への制御油の流れが許可される。このことにより、第1制御油供給路28からサーボ弁23のPポートおよびBポートを介して開側流路30に制御油が供給される。また、第1の電気信号が入力されると、サーボ弁23のAポートとTポートとが連通し、第1閉側流路29からサーボ排出路31への制御油の流れが許可される。このことにより、第1閉側流路29からサーボ弁23のAポートおよびTポートを介してサーボ排出路31に制御油が供給される。サーボ排出路31に供給された制御油は、ダンプ排出路41を介して排出口22に供給されて、この排出口22から排出される。
 一方、制御装置から送信される第2の電気信号(閉方向の電気指令)がコイルに入力されると、図2に示すように、サーボ弁23のPポートとBポートは遮断され、第1制御油供給路28から開側流路30への制御油の流れが遮断される。また、AポートとTポートとが遮断され、第1閉側流路29からサーボ排出路31への制御油の流れが遮断される。その代わりに、PポートとAポートとが連通し、第1制御油供給路28と第1閉側流路29とが連通する。また、BポートとTポートとが連通し、開側流路30とサーボ排出路31とが連通する。
 図1に示すように、第1制御油供給路28には、供給口側逆止弁32(供給口側逆流防止機能弁)が設けられている。この供給口側逆止弁32は、第1制御油供給路28のうち後述する分岐点P2よりも供給口21の側に配置されている。供給口側逆止弁32は、サーボ弁23への制御油の流れを許可するが、供給口21への制御油の流れを遮断するように構成されている。また、供給口側逆止弁32のクラッキング圧は、蒸気弁駆動装置1の最低動作圧力に設定されている。
 開側流路30には、第1開側パイロットチェック弁33(開側逆流防止弁)が設けられている。この第1開側パイロットチェック弁33は、トリップ電磁弁27により制御される。
 より具体的には、第1開側パイロットチェック弁33は、開側流路30のうち後述するダンプ流路40が接続される分岐点P1よりもサーボ弁23の側に配置されている。第1開側パイロットチェック弁33のAポートおよびBポートは、開側流路30の一部をなしており、第1開側パイロットチェック弁33のXポート(パイロットポート)には、トリップ電磁弁27のBポートが接続されている。第1開側パイロットチェック弁33は、Xポートにトリップ電磁弁27からの後述する非常油が供給されている状態では、Xポートが非常油によって加圧されて逆流防止機能を喪失し、両方向への制御油の流れを許可するように構成されている。一方、第1開側パイロットチェック弁33は、Xポートに非常油が供給されていない(非常油が排出されている)状態では、逆流防止機能を有し、開方向ピストン室12への制御油の流れは許可するが、サーボ弁23への制御油の流れを遮断するように構成されている。
 また、開側流路30には、第2開側パイロットチェック弁34が設けられている。この第2開側パイロットチェック弁34は、トリップ電磁弁27により制御される。
 より具体的には、第2開側パイロットチェック弁34は、開側流路30のうち後述するダンプ流路40が接続される分岐点P1よりも開方向ピストン室12の側に配置されている。第2開側パイロットチェック弁34のAポートおよびBポートは、開側流路30の一部をなしており、第2開側パイロットチェック弁34のXポート(パイロットポート)には、トリップ電磁弁27のBポートが接続されている。第2開側パイロットチェック弁34は、Xポートに非常油が供給されている状態では、Xポートが非常油によって加圧されて逆流防止機能を喪失し、両方向への制御油の流れを許可するように構成されている。一方、第2開側パイロットチェック弁34は、Xポートに非常油が供給されていない状態では、逆流防止機能を有し、分岐点P1への制御油の流れを許可するが、開方向ピストン室12への制御油の流れを遮断するように構成されている。
 なお、開側流路30は、第2開側パイロットチェック弁34よりも開方向ピストン室12の側において、開方向ピストン室12の2つのaポートに接続されるように2つの流路に分岐している。各流路にはオリフィス36、37が設けられており、各流路の流量が調整されている。
 第1閉側流路29には、閉側パイロットチェック弁35(閉側逆流防止弁)が設けられている。この閉側パイロットチェック弁35は、トリップ電磁弁27により制御される。
 より具体的には、閉側パイロットチェック弁35は、第1閉側流路29のうち後述する第2閉側流路44が接続された分岐点P4よりもサーボ弁23の側に配置されている。閉側パイロットチェック弁35のAポートおよびBポートは、第1閉側流路29の一部をなしており、閉側パイロットチェック弁35のXポート(パイロットポート)には、トリップ電磁弁27のBポートが接続されている。閉側パイロットチェック弁35は、Xポートに非常油が供給されている状態では、Xポートが非常油によって加圧されて逆流防止機能を喪失し、両方向への制御油の流れを許可するように構成されている。一方、閉側パイロットチェック弁35は、Xポートに非常油が供給されていない状態では、逆流防止機能を有し、閉方向ピストン室13への制御油の流れを許可するが、サーボ弁23への制御油の流れを遮断するように構成されている。
 なお、第1閉側流路29には、オリフィス38が設けられており、第1閉側流路29の流量が調整されている。このオリフィス38は、第1閉側流路29のうち後述する第2閉側流路44の分岐点P4よりも閉方向ピストン室13の側に配置されている。
 サーボ排出路31には、逆止弁39が設けられている。この逆止弁39は、排出口22への制御油の流れを許可するが、サーボ弁23への制御油または非常油の流れを遮断するように構成されている。すなわち、ダンプ弁24のAポート若しくはシリンダ10から排出された制御油、またはトリップ電磁弁27のTポートから排出された非常油が、サーボ弁23のTポートに供給されることを防止している。
 ダンプ弁24は、開方向ピストン室12から排出口22への制御油の流れを遮断する状態と、当該制御油の流れを許可する状態とに切替可能に(当該制御油の流れを遮断または許可するように)構成されている。
 ダンプ弁24についてより具体的に説明すると、ダンプ弁24のBポートと開側流路30とは、ダンプ流路40によって接続されている。ダンプ流路40は、開側流路30のうち第1開側パイロットチェック弁33よりも開方向ピストン室12の側に設けられた分岐点P1(途中位置)に接続されている。この分岐点P1は、開側流路30のうち第2開側パイロットチェック弁34よりもサーボ弁23の側に配置されている。すなわち、第1開側パイロットチェック弁33と第2開側パイロットチェック弁34との間に配置されている。ダンプ弁24のAポートには、ダンプ排出路41が接続されている。ダンプ排出路41は、排出口22に接続されている。ダンプ弁24のXポート(パイロットポート)は、トリップ電磁弁27のBポートに接続されている。
 ダンプ弁24は、トリップ電磁弁27によって制御される。すなわち、ダンプ弁24は、トリップ電磁弁27のBポートからXポートに非常油が供給されている状態では、Xポートが非常油によって加圧されて閉じ、ダンプ弁24のBポートとAポートとが遮断される。このことにより、開方向ピストン室12から排出口22への制御油の流れが遮断される。一方、Xポートに非常油が供給されていない状態では、ダンプ弁24は開き、ダンプ弁24のBポートとAポートとが連通する。このことにより、開方向ピストン室12から排出口22への制御油の流れが許可され、開側流路30からダンプ弁24のBポートおよびAポートを介してダンプ排出路41に制御油が供給される。ダンプ排出路41に供給された制御油は、排出口22に供給されて、この排出口22から排出される。
 アキュムレータ25は、加圧下で制御油を貯留している。すなわち、アキュムレータ25内には窒素などの気体が、隔膜(ブラダ型アキュムレータ)またはピストン(ピストン型アキュムレータ)などで隔てるように封入されている。このため、アキュムレータ25は、気体を圧縮しながら制御油を充填することにより、加圧された制御油を貯留可能に構成されている。このアキュムレータ25と第1制御油供給路28とは、アキュムレータ充填路42によって接続されている。アキュムレータ充填路42は、第1制御油供給路28のうち上述した供給口側逆止弁32よりもサーボ弁23の側に設けられた分岐点P2(途中位置)に接続されている。供給口21に供給された制御油は、第1制御油供給路28およびアキュムレータ充填路42を介してアキュムレータ25に供給され、アキュムレータ25に制御油が充填される。
 遮断弁26は、アキュムレータ25から閉方向ピストン室13への制御油の流れを許可する状態と、当該制御油の流れを遮断する状態とに切替可能に(当該制御油の流れを許可または遮断するように)構成されている。
 遮断弁26についてより具体的に説明すると、遮断弁26のPポートとアキュムレータ25とは、アキュムレータ放出路43によって接続されている。アキュムレータ放出路43は、分岐点P3においてアキュムレータ充填路42に接続されている。また、遮断弁26のAポートと第1閉側流路29とは、第2閉側流路44によって接続されている。第2閉側流路44は、第1閉側流路29のうち閉側パイロットチェック弁35よりも閉方向ピストン室13の側に設けられた分岐点P4(途中位置)に接続されている。遮断弁26のXポート(パイロットポート)は、トリップ電磁弁27のBポートに接続されている。
 遮断弁26は、トリップ電磁弁27によって制御される。すなわち、遮断弁26は、トリップ電磁弁27のBポートからXポートに非常油が供給されている状態では、Xポートが非常油によって加圧されて閉じ、遮断弁26のPポートとAポートとが遮断される。このことにより、アキュムレータ25から閉方向ピストン室13への制御油の流れが遮断される。一方、Xポートに非常油が供給されていない状態では、遮断弁26は開き、遮断弁26のPポートとAポートとが連通する。このことにより、アキュムレータ25から閉方向ピストン室13への制御油の流れが許可され、アキュムレータ放出路43から遮断弁26のPポートおよびAポートを介して第2閉側流路44に制御油が供給される。第2閉側流路44に供給された制御油は、第1閉側流路29を介して閉方向ピストン室13に供給される。
 トリップ電磁弁27は、上述したようにダンプ弁24および遮断弁26を制御する。トリップ電磁弁27は、供給口21からダンプ弁24のXポートおよび遮断弁26のXポートへの非常油の流れを許可する状態と、ダンプ弁24のXポートおよび遮断弁26のXポートから排出口22への非常油の流れを許可する状態とに切替可能に構成されている。また、トリップ電磁弁27は、第1開側パイロットチェック弁33、第2開側パイロットチェック弁34および閉側パイロットチェック弁35を制御するようになっている。すなわち、トリップ電磁弁27は、ダンプ弁24のXポートおよび遮断弁26のXポートへの非常油の流れを許可する場合には、第1開側パイロットチェック弁33のXポート、第2開側パイロットチェック弁34のXポートおよび閉側パイロットチェック弁35のXポートへの非常油の流れを許可する。ここで、非常油とは、トリップ電磁弁27から各弁のXポートへ供給される制御油(作動油)のことを意味している。
 トリップ電磁弁27についてより具体的に説明すると、トリップ電磁弁27のPポートと第1制御油供給路28とは、第2制御油供給路45によって接続されている。第2制御油供給路45は、第1制御油供給路28のうち供給口側逆止弁32よりもサーボ弁23の側に設けられた分岐点P2(途中位置)に接続されている。図1に示す形態では、アキュムレータ充填路42が第1制御油供給路28に接続されている分岐点と、第2制御油供給路45が第1制御油供給路28に接続されている分岐点は一致しているが、これに限られることはない。トリップ電磁弁27のBポートは、非常油流路46を介してダンプ弁24のXポートおよび遮断弁26のXポートに接続されている。また、トリップ電磁弁27のBポートは、非常油流路46を介して第1開側パイロットチェック弁33のXポート、第2開側パイロットチェック弁34のXポートおよび閉側パイロットチェック弁35のXポートにも接続されている。非常油流路46は、トリップ電磁弁27のBポートを各弁24、26、33~35のXポートに接続するように分岐構造を有している。トリップ電磁弁27のTポートにはトリップ排出路47が接続されている。トリップ排出路47は、上述したダンプ排出路41に合流しており、このトリップ排出路47を介して排出口22に接続されている。
 トリップ電磁弁27は、図示しない制御装置から送信される電気信号を受けて励磁されるコイルを有している。このコイルが励磁されると、トリップ電磁弁27のPポートとBポートとが連通し、第2制御油供給路45から非常油流路46への非常油の流れが許可される。このことにより、第2制御油供給路45からトリップ電磁弁27のPポートおよびBポートを介して非常油流路46に非常油が供給される。一方、電気信号が無くなるとコイルの励磁が解かれ、トリップ電磁弁27のPポートとBポートとが遮断され、第2制御油供給路45から非常油流路46への非常油の流れが遮断される。その代わりに、TポートとBポートとが連通し、非常油流路46からトリップ排出路47への非常油の流れが許可される。このことにより、非常油流路46からトリップ電磁弁27のBポートおよびTポートを介してトリップ排出路47に非常油が供給される。トリップ排出路47に供給された非常油は、ダンプ排出路41を介して排出口22に供給されて、この排出口22から排出される。
 トリップ排出路47には逆止弁48が設けられている。この逆止弁48は、排出口22への非常油の流れを許可するが、トリップ電磁弁27への制御油の流れを遮断するように構成されている。すなわち、サーボ弁23のTポート、ダンプ弁24のAポート、またはシリンダ10から排出された制御油が、トリップ電磁弁27のTポートに供給されることを防止している。
 次に、このような構成からなる本実施の形態の作用について説明する。
 蒸気弁SVを開く(リセットする)場合、図1に示すように、トリップ電磁弁27が励磁される。すると、トリップ電磁弁27のPポートとBポートとが連通し、供給口21からトリップ電磁弁27および非常油流路46を介してダンプ弁24のXポートおよび遮断弁26のXポートに非常油が供給される。このことにより、ダンプ弁24のXポートが加圧されて、ダンプ弁24は閉じる。このため、開方向ピストン室12から排出口22への制御油の流れが遮断される。また、遮断弁26のXポートも加圧されて、遮断弁26も閉じる。このため、アキュムレータ25から閉方向ピストン室13への制御油の流れが遮断される。
 また、トリップ電磁弁27の励磁により、第1開側パイロットチェック弁33のXポート、第2開側パイロットチェック弁34のXポートおよび閉側パイロットチェック弁35のXポートにも非常油が供給され、各弁33~35のXポートが加圧される。このため、各弁33~35の逆止弁機能が喪失され、各弁33~35において、両方向の制御油の流れが許可される。
 また、蒸気弁SVを開く場合、サーボ弁23に開方向の電気指令である第1の電気信号が入力される。すると、サーボ弁23のPポートとBポートとが連通し、供給口21からサーボ弁23を介して開側流路30に制御油が供給される。開側流路30に設けられた第1開側パイロットチェック弁33および第2開側パイロットチェック弁34は、上述したように逆止弁機能が喪失されている。このことにより、開側流路30に供給された制御油は、開方向ピストン室12に供給される。
 また、サーボ弁23への第1の電気信号の入力により、サーボ弁23のAポートとTポートとが連通する。第1閉側流路29に設けられた閉側パイロットチェック弁35は、上述したように逆止弁機能が喪失されている。このことにより、閉方向ピストン室13内の制御油が、サーボ弁23およびサーボ排出路31を介して排出口22に排出される。
 開方向ピストン室12に制御油が供給されると、開方向ピストン室12内の制御油の圧力が高まる。閉方向ピストン室13内の制御油が排出されることにより、ピストン11が開方向ピストン室12内の制御油で押圧され、弁体VBを開方向に移動させる。このようにして、蒸気弁SVが開く。
 一方、蒸気弁SVを急閉する(トリップする)場合、図2に示すように、トリップ電磁弁27の励磁が解かれ、バネの作用によってトリップ電磁弁27がトリップする。すると、図2の破線で示すように、トリップ電磁弁27のBポートとTポートとが連通し、ダンプ弁24のXポート内の非常油および遮断弁26のXポート内の非常油が、非常油流路46、トリップ電磁弁27およびトリップ排出路47を介して排出口22に排出される。このことにより、ダンプ弁24のXポートから非常油が排出されてダンプ弁24が開くとともに、遮断弁26のXポートから非常油が排出されて遮断弁26がバネの作用によって開く。
 また、トリップ電磁弁27の励磁が解かれることにより、第1開側パイロットチェック弁33のXポート内の非常油、第2開側パイロットチェック弁34のXポート内の非常油および閉側パイロットチェック弁35のXポート内の非常油が、同様にして排出口22に排出される。このことにより、各弁33~35のXポートから非常油が排出され、各弁33~35が逆流防止機能を発揮する。
 上述のようにダンプ弁24が開くと、ダンプ弁24のBポートとAポートとが連通する。第2開側パイロットチェック弁34は分岐点P1への制御油の流れを許可するとともに、第1開側パイロットチェック弁33はサーボ弁23への制御油の流れを遮断するため、開方向ピストン室12内の制御油は、ダンプ流路40、ダンプ弁24およびダンプ排出路41を介して排出口22に排出される。
 また、上述のように遮断弁26が開くと、遮断弁26のPポートとAポートとが連通し、アキュムレータ25内の制御油が、アキュムレータ放出路43から遮断弁26を介して第2閉側流路44に供給される。閉側パイロットチェック弁35はサーボ弁23への制御油の流れを遮断するため、第2閉側流路44に供給された制御油は、第1閉側流路29を介して閉方向ピストン室13に供給される。
 閉方向ピストン室13に制御油が供給されると、閉方向ピストン室13内の制御油の圧力が高まる。開方向ピストン室12内の制御油が排出されることにより、ピストン11が閉方向ピストン室13内の制御油で押圧され、弁体VBを閉方向に移動させる。このようにして、蒸気弁SVが急閉する。
 蒸気弁SVを急閉する際、開方向ピストン室12内の制御油は、排出容量が大きいダンプ弁24から排出されるため、開方向ピストン室12内の制御油を急速に排出することができる。また、閉方向ピストン室13には、加圧下で制御油を貯留するアキュムレータ25から制御油が供給されるため、閉方向ピストン室13には急速に制御油を供給することができる。このことにより、フェイルセーフ機能を発揮させるための閉方向ピストン室13内の制御油の圧力を急速に高めることができる。このため、弁体VBを閉方向に急速に移動させることができ、蒸気弁SVの急閉が可能になる。すなわち、フェイルセーフ機能を高めることができる。
 ところで、本実施の形態による蒸気弁駆動装置1においては、第1制御油供給路28に、蒸気弁駆動装置1の最低動作圧力に対応するようにクラッキング圧が設定された供給口側逆止弁32が設けられている。このことにより、制御油供給系統からの制御油の供給が絶たれた場合若しくは制御油の供給圧力が緩やかに低下した場合であっても、供給口側逆止弁32によって蒸気弁駆動装置1内の制御油の圧力および非常油の圧力が、最低動作圧力よりも低下することを防止できる。また、本実施の形態による蒸気弁駆動装置1は、アキュムレータ25を備えているため、アキュムレータ25からサーボ弁23、トリップ電磁弁27などに制御油を供給することができる。この点においても、蒸気弁駆動装置1内の制御油の圧力および非常油の圧力が低下することを防止できる。このため、フェイルセーフ機能を高めることができる。
 また、蒸気弁駆動装置1の電源が遮断された場合には、上述した蒸気弁SVを急閉する場合と同様にして、トリップ電磁弁27の励磁が解かれて、バネの作用によってBポートとTポートとが連通し、ダンプ弁24のXポート内の非常油および遮断弁26のXポート内の非常油が排出口22に排出される。このことによりダンプ弁24が開き、開方向ピストン室12内の制御油が排出口22に排出される。また、遮断弁26がバネの作用によって開き、遮断弁26のPポートとAポートとが連通し、アキュムレータ25内の制御油が閉方向ピストン室13に供給される。また、電源の遮断によってサーボ弁23の励磁が解かれ、バネの作用によってサーボ弁23のPポートとBポートとが遮断されてPポートとAポートとが連通する。このことにより、開方向ピストン室12への制御油の流れが遮断される。このため、蒸気弁SVを急閉することができ、フェイルセーフの機能を高めることができる。
 このように本実施の形態によれば、蒸気弁SVを急閉する場合、トリップ電磁弁27の制御によって、ダンプ弁24が、シリンダ10の開方向ピストン室12から排出口22への制御油の流れを許可する。このことにより、開方向ピストン室12内の制御油を、ダンプ弁24を介して排出口22に急速に排出することができる。また、遮断弁26がアキュムレータ25から閉方向ピストン室13への制御油の流れを許可する。このことにより、アキュムレータ25に貯留された制御油を急速に閉方向ピストン室13に供給することができ、閉方向ピストン室13内の制御油の圧力を急速に高めることができる。このため、閉方向ピストン室13内の制御油が、フェイルセーフ機能を発揮させるようにピストン11を押圧することができ、弁体VBを閉方向に急速に移動させて蒸気弁SVを急閉することができる。
 また、本実施の形態によれば、蒸気弁SVを開く場合には、遮断弁26は、アキュムレータ25から閉方向ピストン室13への制御油の流れを遮断し、サーボ弁23は、閉方向ピストン室13から排出口22への制御油の流れを許可する。このことにより、閉方向ピストン室13内の制御油をサーボ弁23を介して排出口22に排出することができる。このため、ピストン11が、閉方向ピストン室13に供給される制御油から閉方向への圧力を受けることを防止できる。この結果、蒸気弁SVが開いている場合には、フェイルセーフ機能を発揮させるための力がシリンダ10のピストン11に負荷することを防止できる。この場合、シリンダ10の容積の増大を抑制し、シリンダ10の小型化を図ることができる。
 また、本実施の形態によれば、トリップ電磁弁27は、蒸気弁SVを急閉する場合に、ダンプ弁24のXポート内の非常油および遮断弁26のXポート内の非常油を、排出口22に排出することができる。このことにより、開方向ピストン室12内の非常油をダンプ弁24を介して排出口22に急速に排出することができるとともに、これと同時に、アキュムレータ25に貯留された非常油を閉方向ピストン室13に急速に供給することができる。このため、蒸気弁SVの閉方向へピストン11を急速に移動させることができ、蒸気弁SVを急閉させることができる。
 また、本実施の形態によれば、サーボ弁23と開方向ピストン室12とを接続した開側流路30のうちダンプ流路40が接続された分岐点P1よりもサーボ弁23の側に、サーボ弁23への制御油の流れを遮断する第1開側パイロットチェック弁33が設けられている。このことにより、開方向ピストン室12内の制御油を排出口22に排出する場合に、制御油がサーボ弁23に供給されることを防止できる。
 また、本実施の形態によれば、サーボ弁23と閉方向ピストン室13とを接続した第1閉側流路29のうち第2閉側流路44が接続された分岐点P4よりもサーボ弁23の側に、サーボ弁23への制御油の流れを遮断する閉側パイロットチェック弁35が設けられている。このことにより、アキュムレータ25から閉方向ピストン室13に制御油を供給する場合に、制御油がサーボ弁23に供給されることを防止できる。
 また、本実施の形態によれば、閉側パイロットチェック弁35は、そのXポートに非常油が供給されることにより、逆流防止機能が喪失される。このことにより、蒸気弁SVを開く場合には、閉方向ピストン室13内の制御油をサーボ弁23を介して排出口22に排出することができる。
 また、本実施の形態によれば、第1制御油供給路28のうちアキュムレータ充填路42が接続された分岐点P2よりも供給口21の側に、供給口側逆止弁32が設けられている。このことにより、供給口21への制御油の流れが遮断され、蒸気弁駆動装置1内の制御油および非常油が供給口21に供給されることを防止できる。このため、蒸気弁駆動装置1内の制御油の圧力および非常油の圧力が低下することを防止できる。
 なお、上述した本実施の形態においては、シリンダ10のピストン11が、開閉方向に直線移動する蒸気弁SVの弁体VBに連結されている例について説明した。しかしながら、このことに限られることはなく、ピストン11は、開閉方向に回動するバタフライ弁のような蒸気弁の弁体に連結されていてもよい。この場合には、ピストン11と弁体との間に、ピストン11の直線運動を回動運動に変換させる機構が介在されていることが好ましい。
 また、上述した本実施の形態においては、符号23に示す制御弁がサーボ弁23である例について説明した。しかしながら、このことに限られることはなく、符号23に示す制御弁は、電磁弁として構成することもできる。例えば、その電磁弁のコイルが励磁されると、第1制御油供給路28から開側流路30への制御油の流れを許可し、コイルの励磁が解かれると第1制御油供給路28から開側流路30への制御油の流れが遮断されるようにしてもよい。
 (第2の実施の形態)
 次に、図3および図4を用いて、本発明の第2の実施の形態における蒸気弁駆動装置について説明する。
 図3および図4に示す第2の実施の形態においては、供給口側逆止弁がトリップ電磁弁により制御されるパイロットチェック弁である点が主に異なり、他の構成は、図1および図2に示す第1の実施の形態と略同一である。なお、図3および図4において、図1および図2に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図3に示すように、図1および図2に示す供給口側逆止弁32が、パイロットチェック弁になっている。すなわち、第1制御油供給路28には、供給口側パイロットチェック弁50(供給口側逆流防止機能弁)が設けられている。この供給口側パイロットチェック弁50は、トリップ電磁弁27により制御される。
 より具体的には、供給口側パイロットチェック弁50のAポートおよびBポートは、第1制御油供給路28の一部をなしており、供給口側パイロットチェック弁50のXポートには、非常油流路46を介してトリップ電磁弁27のBポートが接続されている。供給口側パイロットチェック弁50は、Xポートにトリップ電磁弁27からの非常油が供給されている状態では、Xポートが非常油によって加圧されて逆流防止機能を喪失し、両方向への制御油の流れを許可するように構成されている。一方、供給口側パイロットチェック弁50は、Xポートに非常油が供給されていない状態では、逆流防止機能を有し、分岐点P2への制御油の流れは許可するが、供給口21への制御油の流れを遮断するように構成されている。
 蒸気弁SVを開く場合、図3に示すように、トリップ電磁弁27のBポートから供給口側パイロットチェック弁50のXポートに非常油が供給され、このXポートが加圧される。このため、供給口側パイロットチェック弁50の逆止弁機能が喪失され、供給口側パイロットチェック弁50において、両方向の制御油の流れが許可される。これにより、供給口21からサーボ弁23、トリップ電磁弁27およびアキュムレータ25に制御油が供給される。
 蒸気弁SVを急閉する場合、図4に示すように、供給口側パイロットチェック弁50のXポート内の非常油が、非常油流路46、トリップ電磁弁27およびトリップ排出路47を介して排出口22に排出される。このことにより、供給口側パイロットチェック弁50のXポートから非常油が排出される。このため、供給口側パイロットチェック弁50が逆流防止機能を発揮し、供給口21への制御油の流れが遮断される。
 なお、本実施の形態によるアキュムレータ25は、蒸気弁SVを急閉した後に開く場合に、供給口側パイロットチェック弁50が逆止弁機能を喪失可能なようにXポートを加圧することができる程度の油量を有していることが好ましい。
 このように本実施の形態によれば、供給口側逆流防止機能弁が、供給口側パイロットチェック弁50になっている。このことにより、制御油供給系統内の制御油の圧力の低下、電源の遮断およびトリップ電磁弁27のトリップ動作を検出して、蒸気弁駆動装置1内の制御油の圧力の低下を防止できる。
 すなわち、制御油供給系統内の制御油の圧力が低下した場合には、供給口側パイロットチェック弁50のXポート内の非常油の圧力が低下する。このことにより、供給口側パイロットチェック弁50が逆流防止機能を発揮することができ、供給口21への制御油の流れを遮断することができる。このため、蒸気弁駆動装置1内の制御油が供給口21に供給されることを防止し、蒸気弁駆動装置1内の制御油の圧力が低下することを防止できる。
 また、蒸気弁駆動装置1の電源が遮断された場合には、トリップ電磁弁27の励磁が解かれる。このことにより、供給口側パイロットチェック弁50のXポート内の非常油を排出することができる。このため、供給口側パイロットチェック弁50が逆流防止機能を発揮することができ、同様にして、蒸気弁駆動装置1内の制御油の圧力が低下することを防止できる。
 さらに、トリップ電磁弁27がトリップ動作した場合には、供給口側パイロットチェック弁50のXポート内の非常油を排出することができる。このことにより、供給口側パイロットチェック弁50が逆流防止機能を発揮することができ、同様にして、蒸気弁駆動装置1内の制御油の圧力が低下することを防止できる。
 (第3の実施の形態)
 次に、図5および図6を用いて、本発明の第3の実施の形態における蒸気弁駆動装置について説明する。
 図5および図6に示す第3の実施の形態においては、供給口側逆止弁が電磁弁である点が主に異なり、他の構成は、図1および図2に示す第1の実施の形態と略同一である。なお、図5および図6において、図1および図2に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図5に示すように、図1および図2に示す供給口側逆止弁32が、電磁弁になっている。すなわち、第1制御油供給路28には、供給口側電磁弁51(供給口側逆流防止機能弁)が設けられている。
 供給口側電磁弁51は、サーボ弁23およびトリップ電磁弁27と同様に、図示しない制御装置から送信される電気信号を受けて励磁されるコイルを有している。供給口側電磁弁51は、このコイルが励磁されている状態では、供給口側電磁弁51のPポートとBポートとが連通し、逆流防止機能を喪失し、両方向への制御油の流れを許可するように構成されている。一方、供給口側電磁弁51は、そのコイルが励磁されていない状態では、バネの作用によって逆流防止機能を有し、供給口21への制御油の流れを遮断するように構成されている。なお、本実施の形態においては、励磁されていない状態では、分岐点P2への制御油の流れも遮断される。
 蒸気弁SVを開く場合、図5に示すように、供給口側電磁弁51は励磁される。このため、供給口側電磁弁51の逆流防止機能が喪失され、供給口側電磁弁51において、両方向の制御油の流れが許可される。これにより、供給口21からサーボ弁23、トリップ電磁弁27およびアキュムレータ25に制御油が供給される。
 蒸気弁SVを急閉する場合、図6に示すように、供給口側電磁弁51の励磁が解かれる。このため、供給口側電磁弁51が逆流防止機能を発揮し、供給口21への制御油の流れが遮断される。
 このように本実施の形態によれば、供給口側逆流防止機能弁が供給口側電磁弁51になっている。このことにより、制御油供給系統内の制御油の圧力の低下および電源の遮断を検出して、蒸気弁駆動装置1内の制御油の圧力および非常油の圧力の低下を防止できる。
 すなわち、制御油供給系統内の制御油の圧力が低下した場合には、励磁を解くように供給口側電磁弁51を制御することにより、供給口側電磁弁51が逆流防止機能を発揮することができ、供給口21への制御油の流れを遮断することができる。このため、蒸気弁駆動装置1内の制御油および非常油が供給口21に供給されることを防止し、蒸気弁駆動装置1内の制御油の圧力および非常油の圧力が低下することを防止できる。
 また、蒸気弁駆動装置1の電源が遮断された場合には、供給口側電磁弁51の励磁が解かれる。このことにより、供給口側電磁弁51が逆流防止機能を発揮することができ、同様にして、蒸気弁駆動装置1内の制御油の圧力および非常油の圧力が低下することを防止できる。
 なお、上述した本実施の形態においては、供給口側電磁弁51が、スプール弁として構成されている例について説明した。しかしながら、このことに限られることはなく、供給口側電磁弁51は、ポペット弁として構成されていてもよい。例えば、蒸気弁SVを開く場合(図5)に励磁されて開き、蒸気弁SVを急閉する場合(図6)に励磁が解かれて閉じるようにしてもよい。この場合には、蒸気弁駆動装置1内の制御油の圧力および非常油の圧力の低下をより一層防止できる。
 (第4の実施の形態)
 次に、図7および図8を用いて、本発明の第4の実施の形態における蒸気弁駆動装置について説明する。
 図7および図8に示す第4の実施の形態においては、トリップ電磁弁を介してアキュムレータに作動油が供給される点が主に異なり、他の構成は、図1および図2に示す第1の実施の形態と略同一である。なお、図7および図8において、図1および図2に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図7に示すように、トリップ電磁弁27のBポートとアキュムレータ25とがアキュムレータ充填路42によって接続されている。すなわち、本実施の形態によるアキュムレータ充填路42は、図1に示すような第1制御油供給路28に接続されているのではなく、図7に示すように、非常油流路46に接続されている。トリップ電磁弁27に供給された制御油は、非常油流路46およびアキュムレータ充填路42を介してアキュムレータ25に供給され、アキュムレータ25に制御油が充填される。
 アキュムレータ充填路42には、アキュムレータ側逆止弁52(アキュムレータ側逆流防止弁)が設けられている。このアキュムレータ側逆止弁52は、アキュムレータ25への流れを許可するが、トリップ電磁弁27(より具体的には、非常油流路46)への流れを遮断するように構成されている。また、アキュムレータ側逆止弁52のクラッキング圧は、蒸気弁駆動装置1の最低動作圧力に設定されている。
 蒸気弁SVを開く場合、図7に示すように、トリップ電磁弁27のBポートからアキュムレータ充填路42を介してアキュムレータ25に制御油が供給される。
 蒸気弁SVを急閉する場合、図8に示すように、遮断弁26が開き、アキュムレータ25内の制御油が、アキュムレータ放出路43から遮断弁26、第2閉側流路44および第1閉側流路29を介して閉方向ピストン室13に供給される。この際、非常油流路46から非常油が排出されるが、アキュムレータ充填路42にアキュムレータ側逆止弁52が設けられているため、アキュムレータ25内の制御油が、アキュムレータ充填路42から非常油流路46に流れることが防止される。
 このように本実施の形態によれば、アキュムレータ25をトリップ電磁弁27に接続するアキュムレータ充填路42に、アキュムレータ側逆止弁52が設けられている。このことにより、アキュムレータ25に貯留された制御油を遮断弁26に供給することができる。すなわち、サーボ弁23およびトリップ電磁弁27に、アキュムレータ25に貯留された制御油が供給されることを防止できる。このため、アキュムレータ25内の制御油を、蒸気弁SVを急閉するための動作に使用することができ、蒸気弁駆動装置1の信頼性を向上させることができる。
 (第5の実施の形態)
 次に、図9および図10を用いて、本発明の第5の実施の形態における蒸気弁駆動装置について説明する。
 図9および図10に示す第5の実施の形態においては、アキュムレータ側逆止弁がトリップ電磁弁により制御されるパイロットチェック弁である点が主に異なり、他の構成は、図7および図8に示す第4の実施の形態と略同一である。なお、図9および図10において、図7および図8に示す第4の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図9に示すように、図7および図8に示すアキュムレータ側逆止弁が、パイロットチェック弁になっている。すなわち、アキュムレータ充填路42には、アキュムレータ側パイロットチェック弁53(アキュムレータ側逆流防止弁)が設けられている。このアキュムレータ側パイロットチェック弁53は、トリップ電磁弁27により制御される。
 より具体的には、アキュムレータ側パイロットチェック弁53のAポートおよびBポートは、アキュムレータ充填路42の一部をなしており、アキュムレータ側パイロットチェック弁53のXポートには、非常油流路46を介してトリップ電磁弁27のBポートが接続されている。アキュムレータ側パイロットチェック弁53は、Xポートにトリップ電磁弁27からの非常油が供給されている状態では、Xポートが非常油によって加圧されて逆流防止機能を喪失し、両方向への制御油の流れを許可するように構成されている。一方、アキュムレータ側パイロットチェック弁53は、Xポートに非常油が供給されていない状態では、逆流防止機能を有し、アキュムレータ25への制御油の流れは許可するが、トリップ電磁弁27(より具体的には非常油流路46)への制御油の流れを遮断するように構成されている。
 蒸気弁SVを開く場合、図9に示すように、トリップ電磁弁27のBポートからアキュムレータ側パイロットチェック弁53のXポートに非常油が供給され、このXポートが加圧される。このため、アキュムレータ側パイロットチェック弁53の逆止弁機能が喪失され、アキュムレータ側パイロットチェック弁53において、両方向の制御油の流れが許可される。これにより、トリップ電磁弁27からアキュムレータ25に制御油が供給される。
 蒸気弁SVを急閉する場合、図10に示すように、アキュムレータ側パイロットチェック弁53のXポート内の非常油が、非常油流路46、トリップ電磁弁27およびトリップ排出路47を介して排出口22に排出される。このことにより、アキュムレータ側パイロットチェック弁53のXポートから非常油が排出される。このため、アキュムレータ側パイロットチェック弁53が逆流防止機能を発揮し、非常油流路46への制御油の流れが遮断される。
 このように本実施の形態によれば、アキュムレータ25をトリップ電磁弁27に接続するアキュムレータ充填路42に、アキュムレータ側パイロットチェック弁53が設けられている。このことにより、アキュムレータ25に貯留された制御油を遮断弁26に供給することができる。すなわち、サーボ弁23およびトリップ電磁弁27に、アキュムレータ25に貯留された制御油が供給されることを防止できる。このため、アキュムレータ25内の制御油を、蒸気弁SVを急閉するための動作に使用することができ、蒸気弁駆動装置1の信頼性を向上させることができる。
 (第6の実施の形態)
 次に、図11および図12を用いて、本発明の第6の実施の形態における蒸気弁駆動装置について説明する。
 図11および図12に示す第6の実施の形態においては、シリンダの第1ピストンに離接可能な第2ピストンが、閉鎖バネによって弁体の閉方向に押圧されている点が主に異なり、他の構成は、図1および図2に示す第1の実施の形態と略同一である。なお、図11および図12において、図1および図2に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図11に示すように、シリンダ10は、弁体VBに連結される第1ピストン11(図1に示すピストン11に相当)と、開方向第1ピストン室(図1に示す開方向ピストン室12に相当)と、閉方向第1ピストン室(図1に示す閉方向ピストン室13に相当)と、を有している。そして、シリンダ10は、蒸気弁SVの弁体VBに離接可能に設けられた第2ピストン60と、開方向第2ピストン室61と、閉方向第2ピストン室62と、を更に有している。
 本実施の形態においては、第1ピストン11は弁体VBに連結されており、第2ピストン60は、第1ピストン11に離接可能に設けられている。より具体的には、第1ピストン11の第2ピストン60の側の端部に、第1カップリング部材63が設けられており、第2ピストン60の第1ピストン11の側の端部に、第2カップリング部材64が設けられている。第2ピストン60は、蒸気弁SVを閉じる場合に、第1カップリング部材63に第2カップリング部材64が当接し、第1ピストン11を介して弁体VBに連結される。第2ピストン60は、蒸気弁SVの全閉位置まで第1ピストン11を押圧するように構成されている。一方、第2ピストン60は、蒸気弁SVを開く場合に、第1カップリング部材63から第2カップリング部材64が離れることで、第1ピストン11(すなわち弁体VB)から離れるように構成されている。なお、図11等においては、第1カップリング部材63および第2カップリング部材64が互いに噛み込むような形状で描かれているが、各々の対向面が平坦状に形成されていてもよい。
 開方向第2ピストン室61は、弁体VBの開方向に第2ピストン60を押圧する制御油が供給されるように構成されている。
 閉方向第2ピストン室62は、弁体VBの閉方向に第2ピストン60を押圧するように構成されている。より具体的には、閉方向第2ピストン室62には、弁体VBの閉方向に第2ピストン60を押圧する閉鎖バネ65が設けられている。この閉鎖バネ65の付勢力によって、第2ピストン60は弁体VBの閉方向に押圧されている。
 本実施の形態におけるマニホールドブロック20は、サーボ弁23と、第1ダンプ弁(図1に示すダンプ弁24に相当)と、トリップ電磁弁27と、第2ダンプ弁66と、を備えている。図1等に示すようなアキュムレータ25や遮断弁26、供給口側逆流防止機能弁(図1に示す供給口側逆止弁32、図3に示す供給口側パイロットチェック弁50、図5に示す供給口側電磁弁51)は設けられていない。
 開方向第1ピストン室12内の制御油は、第1ダンプ弁24を介して排出されるようになっている。
 開方向第2ピストン室61内の制御油は、第2ダンプ弁66を介して排出されるようになっている。この第2ダンプ弁66は、開方向第2ピストン室61から排出口22への制御油の流れを遮断する状態と、当該制御油の流れを許可する状態とに切替可能に(当該制御油の流れを遮断または許可するように)構成されている。
 第2ダンプ弁66についてより具体的に説明すると、第2ダンプ弁66のBポートと開方向第2ピストン室61とは、第2ダンプ流路67によって接続されている。第2ダンプ弁66のAポートには、第2ダンプ排出路68が接続されている。第2ダンプ排出路68は、第1ダンプ排出路(図1に示すダンプ排出路41に相当)を介して排出口22に接続されている。第2ダンプ弁66のXポート(パイロットポート)は、トリップ電磁弁27のBポートに接続されている。
 第2ダンプ弁66は、トリップ電磁弁27によって制御される。すなわち、第2ダンプ弁66は、トリップ電磁弁27のBポートからXポートに非常油が供給されている状態では、Xポートが非常油によって加圧されて閉じ、第2ダンプ弁66のBポートとAポートとが遮断される。このことにより、開方向第2ピストン室61から排出口22への制御油の流れが遮断される。一方、Xポートに非常油が供給されていない状態では、第2ダンプ弁66は開き、第2ダンプ弁66のBポートとAポートとが連通する。このことにより、開方向第2ピストン室61から排出口22への制御油の流れが許可され、開方向第2ピストン室61から第2ダンプ弁66のBポートおよびAポートを介して第2ダンプ排出路68に制御油が供給される。第2ダンプ排出路68に供給された制御油は、第1ダンプ排出路41を介して排出口22に供給されて、この排出口22から排出される。
 なお、トリップ排出路47には、第2の逆止弁69が設けられている。この第2の逆止弁69は、トリップ排出路47のうち第2ダンプ排出路68が接続される分岐点P5よりもトリップ電磁弁27の側に配置されている。第2の逆止弁69は、分岐点P5への非常油の流れを許可するが、トリップ電磁弁27への制御油の流れを遮断するように構成されている。すなわち、第2ダンプ弁66から排出された制御油が、トリップ電磁弁27のTポートに供給されることを防止している。
 蒸気弁SVを開く場合、図11に示すように、サーボ弁23に開方向の電気指令である第1の電気信号が入力されて、供給口21からサーボ弁23を介して開方向第1ピストン室12に制御油が供給される。第1ダンプ弁24は、トリップ電磁弁27から非常油が供給されるため、閉じている。また、トリップ電磁弁27が励磁されて、供給口21からトリップ電磁弁27を介して開方向第2ピストン室61に制御油(または非常油)が供給される。一方、サーボ弁23への第1の電気信号の入力により、閉方向第1ピストン室13内の制御油は、サーボ弁23を介して排出口22から排出される。
 開方向第2ピストン室61に制御油が供給されると、開方向第2ピストン室61内の制御油の圧力が高まる。このことにより、開方向第2ピストン室61内の制御油の圧力で弁体VBの開方向に押圧されて、第2ピストン60の第2カップリング部材64が、閉鎖バネ65の付勢力に抗して第1ピストン11の第1カップリング部材63から離れる。このため、蒸気弁SVが開いている間、第2ピストン60は第1ピストン11から離れ、第1ピストン11には、閉鎖バネ65の付勢力が負荷されない。
 また、開方向第1ピストン室12に制御油が供給されると、開方向第1ピストン室12内の制御油の圧力が高まる。閉方向第1ピストン室13内の制御油が排出されることにより、第1ピストン11が開方向第1ピストン室12内の制御油の圧力で弁体VBの開方向に押圧されて、弁体VBを開方向に移動させる。このようにして、蒸気弁SVが開く。
 一方、蒸気弁SVを急閉する場合、図12に示すように、トリップ電磁弁27がトリップする。すると、第1ダンプ弁24のXポート内の非常油および第2ダンプ弁66のXポート内の非常油が排出され、第1ダンプ弁24および第2ダンプ弁66がそれぞれ開く。このため、開方向第1ピストン室12内の制御油は、第1ダンプ排出路41を介して排出口22に排出される。開方向第2ピストン室61内の制御油は、第2ダンプ排出路68および第1ダンプ排出路41を介して排出口22に排出される。
 開方向第2ピストン室61内の制御油が排出されると、閉鎖バネ65の付勢力によって、第2ピストン60は弁体VBの閉方向に移動し、第2ピストンの第2カップリング部材64が第1ピストン11の第1カップリング部材63に当接する。このことにより、閉鎖バネ65の付勢力は、第2ピストン60を介して第1ピストン11に負荷され、第1ピストン11が、第2ピストン60とともに弁体VBの閉方向に移動する。なお、本実施の形態においては、閉方向第1ピストン室13には、サーボ弁23を介して制御油が供給される。このことにより、閉方向第1ピストン室13に供給された制御油の圧力で第1ピストン11が弁体VBの閉方向に押圧され、弁体VBを閉方向に移動させるための力を高めることができる。
 このようにして弁体VBが閉方向に移動し、蒸気弁SVが急閉する。この際、開方向第1ピストン室12内の制御油は、排出容量が大きい第1ダンプ弁24から排出されるとともに、開方向第2ピストン室61内の制御油は、排出容量が大きい第2ダンプ弁66から排出されるため、開方向第1ピストン室12内の制御油および開方向第2ピストン室61内の制御油をそれぞれ急速に排出することができる。また、閉方向第2ピストン室62には、閉鎖バネ65が設けられているため、フェイルセーフ機能を発揮させるための閉鎖バネ65の付勢力を、第1ピストン11および第2ピストン60に急速に負荷することができる。このため、弁体VBを閉方向に急速に移動させることができ、蒸気弁SVの急閉が可能になる。すなわち、フェイルセーフ機能を高めることができる。
 また、蒸気弁駆動装置1の電源が遮断された場合には、トリップ電磁弁27の励磁が解かれるとともにサーボ弁23に閉方向の電気指令である第2の電気信号が入力される。このため、上述したように蒸気弁SVを急閉することができ、フェイルセーフの機能を高めることができる。
 このように本実施の形態によれば、蒸気弁SVを急閉する場合、開方向第1ピストン室12内の制御油を、第1ダンプ弁24を介して排出口22に急速に排出することができる。また、開方向第2ピストン室61内の制御油を、第2ダンプ弁66を介して排出口22に急速に排出することができる。一方、閉方向第2ピストン室62に閉鎖バネ65が設けられているため、この閉鎖バネ65が、フェイルセーフ機能を発揮させるように第1ピストン11および第2ピストン60を押圧することができ、弁体VBを閉方向に急速に移動させて蒸気弁SVを急閉することができる。一方、蒸気弁SVを開く場合には、トリップ電磁弁27から開方向第2ピストン室61に制御油を供給することができ、開方向第2ピストン室61内の制御油の圧力を高めることができる。このことにより、開方向第2ピストン室61内の制御油によって第2ピストン60が弁体VBの開方向に押圧されて、第2ピストン60を第1ピストン11から離すことができる。このため、閉鎖バネ65の付勢力が、第1ピストン11に負荷されることを防止できる。この結果、蒸気弁SVを急閉する場合以外には、フェイルセーフ機能を発揮させるための力が第1ピストン11に負荷することを防止できる。この場合、シリンダ10の容積の増大を抑制し、シリンダの小型化を図ることができる。
 また、本実施の形態によれば、非常油が喪失された場合であっても、閉鎖バネ65の付勢力により、蒸気弁SVを急閉することができる。このため、蒸気弁駆動装置1の信頼性をより一層向上させることができる。
 (第7の実施の形態)
 次に、図13および図14を用いて、本発明の第7の実施の形態における蒸気弁駆動装置について説明する。
 図13および図14に示す第7の実施の形態においては、第2ピストンが、蒸気弁を閉じる場合、第1ピストンを介することなく、連結部材を介して弁体に連結される点が主に異なり、他の構成は、図11および図12に示す第6の実施の形態と略同一である。なお、図13および図14において、図11および図12に示す第6の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図13および図14に示すように、第2ピストン60は、蒸気弁SVを急閉する場合、第1ピストン11を介することなく、連結部材70を介して弁体VBに連結される。より具体的には、図14に示すように、蒸気弁SVを急閉する場合、第2ピストン60の第2カップリング部材64は、弁体VBに連結された連結部材70(より具体的には、連結部材70の第2ピストン60の側の端部に設けられた第3カップリング部材71)に当接して、連結部材70を介して弁体VB(または弁棒VA)に連結されるように構成されている。一方、図13に示すように、第2ピストン60は、蒸気弁SVを開く場合、第3カップリング部材71から第2カップリング部材64が離れることで、連結部材70(すなわち弁体VB)から離れるように構成されている。
 このように本実施の形態によれば、第2ピストン60は、蒸気弁SVを急閉する場合、第1ピストン11ではなく、弁体VBに連結された連結部材70に連結される。このことにより、閉鎖バネ65の付勢力を、弁体VBに直接的に伝えることができる。このため、弁体VBを閉方向により一層急速に移動させることができ、蒸気弁SVをより一層急速に閉じることができる。
 (第8の実施の形態)
 次に、図15および図16を用いて、本発明の第8の実施の形態における蒸気弁駆動装置について説明する。
 図15および図16に示す第8の実施の形態においては、閉方向第2ピストン室に、弁体の閉方向に第2ピストンを押圧する蒸気が供給される点が主に異なり、他の構成は、図11および図12に示す第6の実施の形態と略同一である。なお、図15および図16において、図11および図12に示す第6の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図15および図16に示すように、閉方向第2ピストン室62に、弁体VBの閉方向に第2ピストン60を押圧する蒸気が供給される。より具体的には、蒸気弁SVに蒸気を供給する蒸気管72から分岐した蒸気抽気管73が閉方向第2ピストン室62に接続されている。このことにより、閉方向第2ピストン室62に蒸気が充填されて、閉方向第2ピストン室62内の圧力が、蒸気管72内の蒸気の圧力まで高まる。この圧力によって、第2ピストン60が、弁体VBの閉方向に押圧されている。本実施の形態においては、閉方向第2ピストン室62に、図11等に示すような閉鎖バネ65は設けられていない。図16に示すように、蒸気弁SVを急閉する場合、第2ピストン60は、蒸気の圧力によって閉方向に移動し、第2カップリング部材64が第1カップリング部材63に当接して、第1ピストン11を介して弁体VBに連結されるように構成されている。一方、図15に示すように、蒸気弁SVを開く場合、第2ピストン60は、開方向第2ピストン室61に供給される制御油の圧力によって開方向に移動し、第2カップリング部材64が第1カップリング部材63から離れることで、第1ピストン11から離れるように構成されている。
 このように本実施の形態によれば、閉方向第2ピストン室62に、弁体VBの閉方向に第2ピストン60を押圧する蒸気が供給される。このことにより、フェイルセーフ機能を発揮させるための力を蒸気から得ることができ、蒸気弁駆動装置1の構成を簡素化することができる。
 なお、上述した本実施の形態においては、第2ピストン60が、蒸気弁SVを急閉する場合に、第1ピストン11を介して弁体VBに連結される例について説明した。しかしながら、このことに限られることはなく、図13および図14に示す形態のように、第2ピストン60は、蒸気弁SVを急閉する場合に、第1ピストン11を介することなく弁体VBに連結されるようにしてもよい。
 (第9の実施の形態)
 次に、図17~図20を用いて、本発明の第9の実施の形態における蒸気弁駆動装置について説明する。
 図17~図20に示す第9の実施の形態においては、第2ピストンに、弁体の閉方向に第2ピストンを押圧するウエイトが設けられている点が主に異なり、他の構成は、図11および図12に示す第6の実施の形態と略同一である。なお、図17~図20において、図11および図12に示す第6の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
 本実施の形態においては、図17および図18に示すように、第2ピストン60に、弁体VBの閉方向に第2ピストン60を押圧するウエイト74が設けられている。このウエイト74は、蒸気弁SVの弁体VBを急閉することができるような質量を有していることが好ましい。本実施の形態においては、閉方向第2ピストン室62に、図11等に示すような閉鎖バネ65は設けられていない。図18に示すように、蒸気弁SVを急閉する場合、第2ピストン60は、ウエイト74の重さによって閉方向に移動し、第2カップリング部材64が第1カップリング部材63に当接して、第1ピストン11を介して弁体VBに連結されるように構成されている。一方、図17に示すように、蒸気弁SVを開く場合、第2ピストン60は、開方向第2ピストン室61に供給される制御油の圧力によって開方向に移動し、第2カップリング部材64が第1カップリング部材63から離れることで、第1ピストン11から離れるように構成されている。
 このように本実施の形態によれば、第2ピストン60に、弁体VBの閉方向に第2ピストン60を押圧するウエイト74が設けられている。このことにより、フェイルセーフ機能を発揮させるための力をウエイト74から得ることができ、蒸気弁駆動装置1の構成を簡素化することができる。
 なお、上述した本実施の形態においては、第2ピストン60が、蒸気弁SVを急閉する場合に第1ピストン11を介して弁体VBに連結される例について説明した。しかしながら、このことに限られることはなく、図13および図14に示す形態のように、第2ピストン60は、蒸気弁SVを急閉する場合に、第1ピストン11を介することなく、連結部材70を介して弁体VBに連結されるようにしてもよい。より具体的には、図20に示すように、蒸気弁SVを急閉する場合、第2ピストン60の第2カップリング部材64が、弁体VBに連結された連結部材70の第3カップリング部材71に当接して、第2ピストン60は、連結部材70を介して弁体VBに連結されるように構成してもよい。一方、図19に示すように、蒸気弁SVを開く場合、第2ピストン60は、第2カップリング部材64が第3カップリング部材71から離れることで、連結部材70から離れるように構成してもよい。図19および図20に示す形態においては、ウエイト74の重力を、弁体VBに直接的に伝えることができる。このため、弁体VBを閉方向により一層急速に移動させることができ、蒸気弁SVをより一層急速に閉じることができる。
 以上述べた実施の形態によれば、蒸気弁が開いている場合にはフェイルセーフ機能を発揮させるための力がシリンダのピストンに負荷することを防止できる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、当然のことながら、本発明の要旨の範囲内で、これらの実施の形態を、部分的に適宜組み合わせることも可能である。

Claims (16)

  1.  蒸気弁の弁体を開閉駆動する蒸気弁駆動装置であって、
     作動油を供給する供給口と、
     前記作動油を排出する排出口と、
     前記弁体に連結されるピストンと、前記ピストンを前記弁体の開方向に押圧する前記作動油が供給される開方向ピストン室と、前記ピストンを前記弁体の閉方向に押圧する前記作動油が供給される閉方向ピストン室と、を有するシリンダと、
     前記供給口から前記開方向ピストン室への前記作動油の流れを許可または遮断する制御弁と、
     前記開方向ピストン室から前記排出口への前記作動油の流れを遮断または許可するダンプ弁と、
     前記作動油を加圧下で貯留するアキュムレータと、
     前記アキュムレータから前記閉方向ピストン室への前記作動油の流れを許可または遮断する遮断弁と、
     前記ダンプ弁および前記遮断弁を制御するトリップ電磁弁と、を備え、
     前記制御弁は、前記供給口から前記開方向ピストン室への前記作動油の流れを許可する状態において、前記閉方向ピストン室から前記排出口への制御油の流れを許可する、蒸気弁駆動装置。
  2.  前記トリップ電磁弁は、
     前記供給口から前記ダンプ弁のパイロットポートおよび前記遮断弁のパイロットポートへの前記作動油の流れを許可して、前記開方向ピストン室から前記排出口への前記作動油の流れを遮断するとともに前記アキュムレータから前記閉方向ピストン室への前記作動油の流れを遮断する状態と、
     前記ダンプ弁の前記パイロットポートおよび前記遮断弁の前記パイロットポートから前記排出口への前記作動油の流れ許可して、前記開方向ピストン室から前記排出口への前記作動油の流れを許可するとともに前記アキュムレータから前記閉方向ピストン室への前記作動油の流れを許可する状態と、に切替可能である、請求項1に記載の蒸気弁駆動装置。
  3.  前記制御弁と前記開方向ピストン室とを接続した開側流路と、
     前記開側流路に設けられた開側逆流防止弁と、
     前記開側流路のうち前記開側逆流防止弁よりも前記開方向ピストン室の側に設けられた途中位置と前記ダンプ弁とを接続したダンプ流路と、を更に備え、
     前記開側逆流防止弁は、前記制御弁への前記作動油の流れを遮断する、請求項1または2に記載の蒸気弁駆動装置。
  4.  前記制御弁と前記閉方向ピストン室とを接続した第1閉側流路と、
     前記第1閉側流路の途中位置と前記遮断弁とを接続した第2閉側流路と、
     前記第1閉側流路のうち前記第2閉側流路が接続された前記途中位置よりも前記制御弁の側に設けられた閉側逆流防止弁と、を更に備え、
     前記閉側逆流防止弁は、前記制御弁への前記作動油の流れを遮断する、請求項1~3のいずれか一項に記載の蒸気弁駆動装置。
  5.  前記閉側逆流防止弁は、前記トリップ電磁弁により制御されるパイロットチェック弁である、請求項4に記載の蒸気弁駆動装置。
  6.  前記供給口と前記制御弁とを接続した作動油供給路と、
     前記作動油供給路の途中位置と前記アキュムレータとを接続し、前記アキュムレータに前記作動油を供給するアキュムレータ充填路と、
     前記作動油供給路のうち前記アキュムレータ充填路が接続された前記途中位置よりも前記供給口の側に設けられ、前記供給口への前記作動油の流れを遮断する供給口側逆流防止機能弁と、を更に備えた、請求項1~5のいずれか一項に記載の蒸気弁駆動装置。
  7.  前記供給口側逆流防止機能弁は、前記トリップ電磁弁により制御されるパイロットチェック弁である、請求項6に記載の蒸気弁駆動装置。
  8.  前記供給口側逆流防止機能弁は、電磁弁である、請求項6に記載の蒸気弁駆動装置。
  9.  前記トリップ電磁弁と前記アキュムレータとを接続し、前記トリップ電磁弁から前記アキュムレータに前記作動油を供給するアキュムレータ充填路と、
     前記アキュムレータ充填路に設けられ、前記トリップ電磁弁への前記作動油の流れを遮断するアキュムレータ側逆流防止弁と、を更に備えた、請求項1~5のいずれか一項に記載の蒸気弁駆動装置。
  10.  前記アキュムレータ側逆流防止弁は、前記トリップ電磁弁により制御されるパイロットチェック弁である、請求項9に記載の蒸気弁駆動装置。
  11.  蒸気弁の弁体を開閉駆動する蒸気弁駆動装置であって、
     作動油を供給する供給口と、
     前記作動油を排出する排出口と、
     前記弁体に連結される第1ピストンと、前記第1ピストンを前記弁体の開方向に押圧する前記作動油が供給される開方向第1ピストン室と、前記弁体に離接可能に設けられた第2ピストンと、前記第2ピストンを前記弁体の開方向に押圧する前記作動油が供給される開方向第2ピストン室と、前記第2ピストンを前記弁体の閉方向に押圧する閉方向第2ピストン室と、を有するシリンダと、
     前記供給口から前記開方向第1ピストン室への前記作動油の流れを許可または遮断する制御弁と、
     前記開方向第1ピストン室から前記排出口への前記作動油の流れを遮断または許可する第1ダンプ弁と、
     前記供給口から前記開方向第2ピストン室への前記作動油の流れを許可または遮断するトリップ電磁弁と、
     前記開方向第2ピストン室から前記排出口への前記作動油の流れを遮断または許可する第2ダンプ弁と、を備え、
     前記第2ピストンは、前記蒸気弁を閉じる場合に前記弁体に連結され、前記蒸気弁を開く場合に前記弁体から離れる、蒸気弁駆動装置。
  12.  前記第2ピストンは、前記蒸気弁を閉じる場合、前記第1ピストンを介して前記弁体に連結される、請求項11に記載の蒸気弁駆動装置。
  13.  前記弁体に連結される連結部材を更に備え、
     前記第2ピストンは、前記蒸気弁を閉じる場合、前記第1ピストンを介することなく、前記連結部材を介して前記弁体に連結される、請求項11に記載の蒸気弁駆動装置。
  14.  前記閉方向第2ピストン室に、前記弁体の閉方向に前記第2ピストンを押圧する閉鎖バネが設けられている、請求項11~13のいずれか一項に記載の蒸気弁駆動装置。
  15.  前記閉方向第2ピストン室に、前記弁体の閉方向に前記第2ピストンを押圧する蒸気が供給される、請求項11~13のいずれか一項に記載の蒸気弁駆動装置。
  16.  前記第2ピストンに、前記弁体の閉方向に前記第2ピストンを押圧するウエイトが設けられている、請求項11~13のいずれか一項に記載の蒸気弁駆動装置。
PCT/JP2019/005275 2018-02-26 2019-02-14 蒸気弁駆動装置 WO2019163626A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/858,882 US11428246B2 (en) 2018-02-26 2020-04-27 Steam valve driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032368A JP6909743B2 (ja) 2018-02-26 2018-02-26 蒸気弁駆動装置
JP2018-032368 2018-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/858,882 Continuation US11428246B2 (en) 2018-02-26 2020-04-27 Steam valve driving apparatus

Publications (1)

Publication Number Publication Date
WO2019163626A1 true WO2019163626A1 (ja) 2019-08-29

Family

ID=67687240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005275 WO2019163626A1 (ja) 2018-02-26 2019-02-14 蒸気弁駆動装置

Country Status (3)

Country Link
US (1) US11428246B2 (ja)
JP (1) JP6909743B2 (ja)
WO (1) WO2019163626A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7297617B2 (ja) * 2019-09-13 2023-06-26 日本ムーグ株式会社 電動油圧アクチュエータシステム、電動油圧アクチュエータシステムの油圧回路、及びそれを含む蒸気タービンシステム
CN114135710A (zh) * 2021-12-02 2022-03-04 大连大高阀门股份有限公司 气液联动驱动装置的液压控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927703A (ja) * 1972-07-10 1974-03-12
JPS562406A (en) * 1979-06-20 1981-01-12 Hitachi Ltd Controlling device of turbine bypass valve
JPS63156401U (ja) * 1987-03-31 1988-10-13
JPH08165905A (ja) * 1994-12-15 1996-06-25 Fuji Electric Co Ltd 抽気蒸気タービン
JP2003056306A (ja) * 2001-08-14 2003-02-26 Mitsubishi Heavy Ind Ltd 蒸気弁駆動制御装置
JP2012082795A (ja) * 2010-10-14 2012-04-26 Toshiba Corp 蒸気弁装置
JP2013543957A (ja) * 2010-11-08 2013-12-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 制御弁または切換弁を備えた制御機器を操作するハイドロリック式またはニューマチック式の駆動装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US389643A (en) * 1888-09-18 Air-brake
US2489450A (en) * 1946-08-30 1949-11-29 Standard Oil Dev Co Valve assembly for plural motor operation
US2861550A (en) * 1952-10-28 1958-11-25 Westinghouse Electric Corp Hydraulic power control valve
FR1094774A (ja) * 1953-03-09 1955-05-24
US3038500A (en) * 1958-03-10 1962-06-12 Parker Hannifin Corp Pilot-master valves with pressure accumulators
FR1347038A (fr) * 1962-09-19 1963-12-27 Alsacienne Constr Meca Dispositif de commande présélective
US3272062A (en) * 1965-10-07 1966-09-13 Ltv Electrosystems Inc Servo valve synchronizer
DE1555198B2 (de) * 1967-01-27 1975-10-09 Danfoss A/S, Nordborg (Daenemark) Hydrostatische Lenkeinrichtung
US3705631A (en) * 1971-05-27 1972-12-12 Case Co J I Hydraulic tilt and pitch control for dozer blade
US4611528A (en) * 1981-11-12 1986-09-16 Vickers, Incorporated Power transmission
US4567813A (en) * 1982-05-06 1986-02-04 Moog Inc. Pressure equalization of multiple valves
JPS63199969A (ja) * 1987-02-13 1988-08-18 Hitachi Ltd 流体制御弁
US4744285A (en) * 1987-03-10 1988-05-17 Applied Power Inc. Alternating valve
US4986165A (en) * 1989-08-29 1991-01-22 Kabushiki Kaisha Kobe Seiko Sho Hydraulic shovel control circuit with operating pattern switching valve
US5081903A (en) * 1990-01-09 1992-01-21 Woodward Governor Company Multiplexed hydraulic control system with multi-bit binary selector signal control
US5088383A (en) * 1990-01-22 1992-02-18 Woodward Governor Company Multiplexed hydraulic control system with multiplexing valve having planar port array
US5044256A (en) * 1990-11-05 1991-09-03 Caterpillar Inc. Exhaust pressurizing control for a fluid system
DE59203461D1 (de) * 1991-11-04 1995-10-05 Asea Brown Boveri Speiseschaltung für eine Zweirohr-Hydraulik.
JP3786524B2 (ja) 1998-08-18 2006-06-14 株式会社東芝 蒸気弁制御装置
US7356990B2 (en) 2005-08-29 2008-04-15 Woodward Governor Company Electro hydraulic actuator with spring energized accumulators
DE102009014421A1 (de) * 2009-03-26 2010-09-30 Abb Technology Ag Ventilanordnung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927703A (ja) * 1972-07-10 1974-03-12
JPS562406A (en) * 1979-06-20 1981-01-12 Hitachi Ltd Controlling device of turbine bypass valve
JPS63156401U (ja) * 1987-03-31 1988-10-13
JPH08165905A (ja) * 1994-12-15 1996-06-25 Fuji Electric Co Ltd 抽気蒸気タービン
JP2003056306A (ja) * 2001-08-14 2003-02-26 Mitsubishi Heavy Ind Ltd 蒸気弁駆動制御装置
JP2012082795A (ja) * 2010-10-14 2012-04-26 Toshiba Corp 蒸気弁装置
JP2013543957A (ja) * 2010-11-08 2013-12-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 制御弁または切換弁を備えた制御機器を操作するハイドロリック式またはニューマチック式の駆動装置

Also Published As

Publication number Publication date
US11428246B2 (en) 2022-08-30
JP2019148196A (ja) 2019-09-05
US20200256479A1 (en) 2020-08-13
JP6909743B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
JP5822233B2 (ja) 流体圧制御装置
JP6746511B2 (ja) 蒸気タービン弁駆動装置
WO2019163626A1 (ja) 蒸気弁駆動装置
JP2013127317A (ja) 自閉式停止弁に用いられる流れ制御アクチュエータ装置
US5913577A (en) Pilot stage of an electrohydraulic control valve
JP5873684B2 (ja) 作業車両の油圧駆動装置
JP6159629B2 (ja) 流体圧制御装置
US10302221B2 (en) Testing of safety devices
JP6182447B2 (ja) 流体圧制御装置
GB2554225A (en) Hydraulic drive system for construction machine
JP6829560B2 (ja) 緊急遮断弁装置
WO2021056613A1 (zh) 可快速自动关闭的装置及天然气井口紧急切断装置
JP2020186782A (ja) 蒸気弁駆動装置
US20080054203A1 (en) Valve arrangement
CN105782523B (zh) 超压时压杆失稳触发动作的阀门组件
US6959726B2 (en) Valve assembly for attenuating bounce of hydraulically driven members of a machine
CN107208399A (zh) 用于建筑设备的控制阀
JP6706170B2 (ja) 流体圧制御装置
JP2001187903A (ja) 配管破断制御弁装置
KR101381237B1 (ko) 전기유압식 안전밸브 개폐장치
JP2017062010A (ja) 流体圧制御装置
WO2015174250A1 (ja) 流体圧制御装置
US443208A (en) hultgren
JP4183356B2 (ja) 油圧制御装置
US1009074A (en) Automatic shut-off valve for elevators.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758077

Country of ref document: EP

Kind code of ref document: A1