WO2019163424A1 - 好気性生物処理装置及びその運転方法 - Google Patents

好気性生物処理装置及びその運転方法 Download PDF

Info

Publication number
WO2019163424A1
WO2019163424A1 PCT/JP2019/002698 JP2019002698W WO2019163424A1 WO 2019163424 A1 WO2019163424 A1 WO 2019163424A1 JP 2019002698 W JP2019002698 W JP 2019002698W WO 2019163424 A1 WO2019163424 A1 WO 2019163424A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
raw water
biological treatment
aerobic biological
reaction tank
Prior art date
Application number
PCT/JP2019/002698
Other languages
English (en)
French (fr)
Inventor
小林 秀樹
哲朗 深瀬
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019163424A1 publication Critical patent/WO2019163424A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an aerobic biological treatment apparatus for organic wastewater and an operation method thereof.
  • the aerobic biological treatment method is widely used as a treatment method for organic wastewater because it is inexpensive. In this method, it is necessary to dissolve oxygen in the water to be treated, and aeration with a diffuser is usually performed.
  • Aeration with a diffuser has a low dissolution efficiency of about 5-20%.
  • more than 2/3 of the power cost in aerobic biological treatment is used for oxygen dissolution.
  • MABR Membrane aeration bioreactor
  • An object of the present invention is to provide an aerobic biological treatment apparatus that can be sufficiently treated even when the TOC component concentration of raw water is high, and an operation method thereof.
  • the aerobic biological treatment apparatus of the present invention supplies a raw water to a reaction tank, a fluidized bed carrier filled in the reaction tank, and a lower part of the reaction tank so that the raw water flows upward in the reaction tank.
  • First raw water supply means an oxygen-dissolving membrane module installed in the reaction tank, an oxygen-containing gas supply means for supplying an oxygen-containing gas to the oxygen-dissolving membrane module, and a part of the raw water as an oxygen-dissolving film
  • a second raw water supply means for supplying the reaction vessel into a reaction tank having an intermediate height in the vertical direction of the module.
  • the oxygen-dissolving membrane module includes a non-porous oxygen-dissolving membrane.
  • the oxygen-dissolving film is hydrophobic.
  • the oxygen-dissolving membrane is a hollow fiber membrane provided in the vertical direction, and the oxygen-containing gas supply means supplies an oxygen-containing gas to a lower portion of the hollow fiber membrane, It is configured to circulate from the lower side to the upper side.
  • the operation method of the aerobic biological treatment apparatus of the present invention is the operation method of the aerobic biological treatment apparatus of the present invention, wherein the dissolved oxygen concentration of the treated water at the top of the reaction tank or the treated water flowing out of the reaction tank is determined. Measure and control the oxygen-containing gas supply means so that the dissolved oxygen concentration becomes a predetermined concentration.
  • the dissolved oxygen concentration (DO) is controlled to be 0.01 to 1 mg / L, particularly 0.2 to 1 mg / L.
  • the raw water is divided and supplied to the lower part of the reaction tank and the middle part in the vertical direction of the reaction tank (the middle part in the vertical direction of the oxygen-dissolving membrane module). Therefore, the process is performed in a state where DO exists in the entire reaction tank. Further, the biofilm can be prevented from adhering to the surface of the oxygen-dissolved film without locally increasing the undecomposed TOC. Therefore, even if the TOC component concentration of raw water is high (for example, 100 mg / L or more, particularly 500 mg / L or more), an efficient and stable treatment is performed.
  • the supply amount of the oxygen-containing gas does not become excessive by controlling the DO of the treated water to have a predetermined concentration, and the power for supplying the oxygen-containing gas Cost (for example, the power cost of a blower) can be reduced.
  • the DO of treated water is 0.01 mg / L to 1 mg / L, insufficient supply of oxygen-containing gas is prevented in the entire reaction tank. If the DO of the treated water is 0.2 to 1 mg / L, the number of rotifers in the reaction tank increases and the sludge in the reaction tank is preyed on by minute animals such as rotifers, so that excess sludge is reduced.
  • FIG. 1 It is a longitudinal cross-sectional view of the biological treatment apparatus which concerns on embodiment.
  • (A) is a side view of an oxygen-dissolved membrane unit
  • (b) is a perspective view of the oxygen-dissolved membrane unit.
  • FIG. 1 is a longitudinal sectional view of an aerobic biological treatment apparatus 1 according to an embodiment.
  • This aerobic biological treatment apparatus 1 includes a reaction tank (tank body) 2, a perforated plate such as a punching plate installed horizontally below the reaction tank 2, and a plurality of dispersion nozzles uniformly provided on a flat plate A large-diameter particle layer 4 formed above the water-permeable plate 3, a small-diameter particle layer 5 formed above the large-diameter particle layer 4, and a powder above the small-diameter particle layer 5.
  • a fluidized bed F formed by filling a bioadhesive carrier such as granular activated carbon, an oxygen-dissolving membrane module 6 at least partially disposed in the fluidized bed F, and a receiving chamber formed below the water-permeable plate 3.
  • a raw water pipe 8 a cleaning pipe 9 to which a gas for backwashing is supplied when cleaning the packed bed, a blower 26 for supplying an oxygen-containing gas such as air to the oxygen dissolving membrane module 6, etc.
  • a trough 10 and an outlet 11 for allowing the treated water to flow out are provided in the upper part of the reaction tank 2.
  • the trough 10 forms an annular flow path along the inner wall of the tank.
  • the raw water pipe 8 is a first raw water supply pipe 8A for supplying raw water into the receiving chamber 7 at the lower part of the reaction tank 2 and a first raw water supply pipe 8A for supplying raw water into the reaction tank 2 at the height of the upward flow of the oxygen dissolving membrane module 6. Branches to 2 raw water supply pipe 8B.
  • the raw water supply pipes 8A and 8B are provided with valves 8a and 8b for opening and closing and adjusting the flow rate.
  • Each raw water supply pipe 8A, 8B has the same length and shape in the tank.
  • a circulation pipe 30 is provided between the branch point of the raw water supply pipe 8B and the valve 8a. As a result, only the raw water passes through the valve 8b, and all the circulating water passes through the valve 8a.
  • the second raw water supply pipe 8B is provided so as to supply the raw water substantially uniformly to the entire periphery of the oxygen-dissolving membrane module 6. Therefore, a plurality of second raw water supply pipes 8B may be provided.
  • the DO meter 13 is installed in the upper part of the reaction tank 2 or the treated water extraction pipe 12 connected to the outlet 11, and the detection signal is input to the blower controller 14.
  • FIG. 1 shows that the reaction vessel is filled with a fluidized bed carrier, and the biofilm adheres to the surface of the oxygen-dissolved membrane by the shearing force caused by the flow of the carrier so that most of the biofilm adheres to the fluidized bed carrier. At this time, the oxygen-dissolved film is used only for the purpose of supplying oxygen.
  • a non-porous oxygen-dissolving film is used as the oxygen-dissolving film, and an oxygen-containing gas is vented from the outside of the tank to the primary side of the oxygen-dissolving film through the pipe, and the exhaust is discharged outside the tank through the pipe. It is configured to do. Therefore, an oxygen-containing gas is passed through the oxygen-dissolved film at a low pressure, passes oxygen as oxygen molecules between constituent atoms of the oxygen-dissolved film (dissolves in the film), and is brought into contact with the water to be treated as oxygen molecules. Since oxygen is dissolved directly in water, no bubbles are generated.
  • This method uses a molecular diffusion mechanism based on a concentration gradient, and does not require aeration using a diffuser tube as in the prior art.
  • hydrophobic material it is preferable to use a hydrophobic material as the material for the oxygen-dissolving film because it is difficult to be immersed in the film. A trace amount of water vapor enters even a hydrophobic film.
  • FIG. 2 shows an example of the oxygen-dissolving membrane module 6.
  • This oxygen dissolution membrane module 6 uses a non-porous hollow fiber membrane 22 as an oxygen dissolution membrane.
  • the hollow fiber membranes 22 are arranged in the vertical direction, and the upper end of each hollow fiber membrane 22 is connected to the upper header 20 and the lower end is connected to the lower header 21.
  • the interior of the hollow fiber membrane 22 communicates with the upper header 20 and the lower header 21, respectively.
  • Each header 20, 21 is a hollow tube. Even when a flat membrane or a spiral membrane is used, it is desirable to arrange the ventilation direction to be the vertical direction.
  • each upper header 20 are preferably connected to the upper manifold 23
  • one end or both ends of each lower header 21 are preferably connected to the lower manifold 24.
  • air is supplied as an oxygen-containing gas from the blower 26 to the lower part of the oxygen-dissolving membrane module 6 through the air supply pipe 27, and the non-permeating gas is discharged from the upper part of the oxygen-dissolving membrane module 6 through the exhaust gas pipe 28.
  • Air flows from the lower header 20 through the hollow fiber membrane 22 to the upper header 21, during which oxygen passes through the hollow fiber membrane 22 and dissolves in the water in the reaction vessel 2.
  • the amount of air supplied from the blower 26 is controlled by the controller 14.
  • Each header 20, 21 and each manifold 23, 24 may be provided so as to have a running water gradient.
  • the oxygen-dissolving membrane module 6 may be installed in multiple stages up and down.
  • a blower 26 and an air supply pipe 27 for supplying air are provided (constituting oxygen-containing gas supply means), and the air supply pipe 27 is connected to the lower manifold 24. It is connected to the.
  • An exhaust gas pipe 28 is connected to the upper manifold 23.
  • a part of raw water (about 30 to 60% of the whole raw water) is introduced into the receiving chamber 7 through the first raw water supply pipe 8A, and the water permeable plate 3 and the large diameter are introduced.
  • SS is filtered, and then supplied to the fluidized bed F of granular activated carbon with biofilm attached.
  • the remainder of the raw water is supplied to the height of the middle part in the vertical direction of the oxygen-dissolving membrane module 6 through the second raw water supply pipe 8B.
  • the raw water introduced into the reaction tank 2 is temporarily passed upward in the fluidized bed F, undergoes a biological reaction, and is taken out as treated water from the upper clarification region through the trough 10 and the outlet 11.
  • the oxygen-containing gas such as air supplied from the air supply pipe 27 flows upward through the oxygen-dissolving membrane module 6 and then flows out from the upper end position of the oxygen-dissolving module 6, and the exhaust air enters the atmosphere from the exhaust gas pipe 28. Discharged.
  • the TOC concentration is high, it is efficient to supply a large amount of oxygen-containing gas to the raw water injection portion that requires the most oxygen. Therefore, in the case of upward circulating water, it is preferable that the oxygen-containing gas also flows upward. .
  • the arrangement height of the second raw water supply pipe 8B is about 30 to 70% of the height of the oxygen-dissolving membrane module 6 (if a plurality of oxygen-dissolving membrane modules are used, the top-end height and the bottom-most height of the topmost module are used).
  • the height of the lower end of the module needs to be 30 to 70%).
  • the two-stage division is arranged at a height of about 30 to 50%, and the three-stage division is arranged at a height of about 20 to 33% and about 50 to 66%, that is, slightly lower than the intermediate height.
  • the biofilm adhesion to the surface of the oxygen-dissolved film derived from the undecomposed TOC which is easily generated when supplying the high concentration TOC to one place, can be suppressed, and stable biological treatment can be performed.
  • air is supplied so that the DO concentration of the treated water is equal to or lower than the predetermined concentration, so that air is not excessively supplied.
  • the oxygen-dissolving membrane module 6 When the height of the second raw water supply pipe 8B overlaps the height of the oxygen-dissolving membrane module 6, the oxygen-dissolving membrane module 6 has two upper and lower stages or two horizontal stages, and the second raw water supply pipe 8B is interposed between the membrane modules. Is preferably arranged.
  • the second raw water supply pipe 8B may have a simple structure that can be removed, and this may be passed through the oxygen-dissolving membrane module 6.
  • a non-porous oxygen-dissolving membrane is installed in a fluidized bed of a biological carrier such as activated carbon to increase the amount of oxygen supplied, there is no upper limit to the organic wastewater concentration of the target raw water.
  • the biological carrier since the biological carrier is operated in a fluidized bed, it is not exposed to intense disturbance. Therefore, since a large amount of organisms can be stably maintained, the load can be increased.
  • the dissolution power of oxygen is small compared to preaeration and direct aeration.
  • Activated carbon is suitable as the biological carrier.
  • the filling amount of the fluidized bed carrier is preferably about 30 to 70%, particularly about 40 to 60% of the volume of the reaction vessel.
  • the larger the filling amount the more the biomass and the higher the activity.
  • the carrier may flow out. Accordingly, it is preferable to pass water at an LV in which the fluidized bed develops about 20 to 50%, for example, 7 to 30 m / hr, particularly 8 to 15 m / hr.
  • a gel material other than activated carbon, a porous material, a non-porous material, etc. can be used under the same conditions.
  • polyvinyl alcohol gel polyacrylamide gel, polyurethane foam, calcium alginate gel, zeolite, plastic and the like can also be used.
  • activated carbon when used as the carrier, it is possible to remove a wide range of pollutants by the interaction between the activated carbon adsorption and biodegradation.
  • the average particle size of a fluidized bed carrier such as activated carbon is preferably about 0.2 to 1.2 mm, particularly about 0.3 to 0.6 mm.
  • a fluidized bed carrier such as activated carbon
  • the average particle size is large, it is possible to increase the LV, and when a part of the treated water is circulated to the reaction tank, the amount of circulation can be increased, so that a high load is possible.
  • the specific surface area is small, the biomass is reduced. If the average particle size is small, the pump power can be reduced because it can flow at a low LV. And since the specific surface area is large, the amount of attached organisms increases.
  • the optimum particle size depends on the concentration of waste water, and is preferably about 0.2 to 0.4 mm when TOC is 50 mg / L.
  • the expansion ratio of activated carbon is preferably about 20 to 50%. If the expansion rate is lower than 20%, there is a possibility of clogging and short circuit. If the development rate is higher than 50%, there is a risk of carrier outflow, and the pump power cost increases.
  • the development rate of the activated carbon fluidized bed is about 10 to 20%, but in this case, the activated carbon flow is uneven and flows vertically and horizontally. As a result, the membrane installed at the same time is rubbed by activated carbon and worn out.
  • the fluidized bed carrier such as activated carbon needs to be sufficiently fluidized, and the development rate is desirably 20% or more.
  • the particle size of the carrier is preferably smaller than that of normal biological activated carbon.
  • activated carbon it is not specifically limited, such as coconut charcoal, coal, charcoal.
  • the shape is preferably spherical charcoal, but may be ordinary granular charcoal or crushed charcoal.
  • the oxygen-containing gas may be a gas containing oxygen, such as air, oxygen-enriched air, or pure oxygen. It is desirable that the gas to be vented passes through a filter to remove fine particles in advance.
  • the air flow rate is preferably such that the DO detected by the DO meter 13 is 1 mg / L or less.
  • the power consumption of the blower 26 can be suppressed by setting the treated water DO to 1 mg / L or less.
  • DO is approximately 0 mg / L
  • nitrification and denitrification proceed simultaneously, so that biological treatment efficiency is improved.
  • DO increases too much, the biofilm adhering to activated carbon will be enlarged, oxygen will not reach the deep part of a biofilm, and the biofilm deep part may become anaerobic and bioreaction efficiency may fall.
  • the enlarged biofilm-attached activated carbon may flow out of the reaction tank.
  • the lower limit of DO may be 0 (zero), but is preferably 0.01 mg / L or more in order to confirm that oxygen necessary for aerobic treatment is supplied.
  • the detected DO of the DO meter 13 is set to 0.2 to 1 mg / L.
  • DO the amount of rotifer growth in the reaction tank 2 is increased, the sludge is preyed on by the rotifer, the sludge is reduced, and the excess sludge is reduced.
  • the flow rate of the water to be treated is preferably LV 7 m / hr or more and the treated water is circulated.
  • the oxygen dissolution rate is increased proportionally.
  • LV is high, it is preferable to use activated carbon having a large particle size so that the expansion rate is not so large. From the biomass and oxygen dissolution rate, the optimum LV range is about 7 to 30 m / hr, particularly about 8 to 15 m / hr.
  • the residence time is preferably set so that the tank load is 0.5 to 4 kg-TOC / m 3 / day.
  • the blower it is sufficient that the discharge wind pressure is equal to or lower than the water pressure coming from the water depth. However, it is necessary to be more than the pressure loss of piping. Usually, the pipe resistance is about 1 to 2 kPa.
  • a general-purpose blower having a pressure of 0.5 MPa or less can be used even at a water depth of 5 m or more, and a low-pressure blower of 0.1 MPa or less is preferably used.
  • the supply pressure of the oxygen-containing gas is higher than the pressure loss of the hollow fiber membrane, and the membrane must not be crushed by water pressure. Since the pressure loss of the flat membrane and the spiral membrane is negligible compared to the water pressure, the pressure is extremely low, about 5 kPa or more, water depth pressure or less, desirably 20 kPa or less.
  • the pressure loss varies depending on the inner diameter and length. Since the amount of air vent is a membrane 1 m 2 per 50 ⁇ 200 mL / day, film air quantity when the doubled length is doubled, the air quantity even Maku ⁇ becomes doubled only doubles Don't be. Therefore, the pressure loss of the membrane is directly proportional to the membrane length and inversely proportional to the diameter.
  • the value of pressure loss is about 3 to 20 kPa for hollow fibers having an inner diameter of 50 ⁇ m and a length of 2 m.
  • a high concentration for example, 100 mg / L or more, particularly 500 mg / L or more
  • it can be treated efficiently and stably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

好気性生物処理装置1は、反応槽(槽体)2と、該反応槽2の下部に水平に設置された透水板3と、該透水板3の上側に形成された大径粒子層4と、該大径粒子層4の上側に形成された小径粒子層5と、該小径粒子層5の上側に配置された酸素溶解膜モジュール6と、前記透水板3の下側に形成された受入室7と、該受入室7内に原水を供給する第1原水供給管8Aと、反応槽2の上下方向途中部分に原水を供給する第2原水供給管8Bと、受入室7内において散気を行うように設置された散気管9等を有する。処理水のDOが1mg/L以下となるようにブロワ26を制御する。

Description

好気性生物処理装置及びその運転方法
 本発明は、有機性排水の好気性生物処理装置及びその運転方法に関する。
 好気性生物処理方法は安価であるため有機性廃水の処理法として多用されている。本方法では、被処理水への酸素の溶解が必要であり、通常は散気管による曝気が行われている。
 散気管による曝気は溶解効率が5~20%程度と低い。また、散気管の設置される水深にかかる水圧以上の圧力で曝気することが必要であり、高圧で多量の空気を送風するため、ブロワの電力費が高い。通常は、好気性生物処理における電力費の2/3以上が酸素溶解のために使用されている。
 中空糸膜を用いたメンブレンエアレーションバイオリアクター(MABR)は、気泡の発生なしで酸素溶解できる。MABRでは、水深にかかる水圧よりも低い圧力の空気を通気すればよいため、ブロワの必要圧力が低く、また、酸素の溶解効率が高い。
特開2006-87310号公報
 本発明は、原水のTOC成分濃度が高い場合でも十分に処理することができる好気性生物処理装置及びその運転方法を提供することを目的とする。
 本発明の好気性生物処理装置は、反応槽と、該反応槽内に充填された流動床担体と、該反応槽内に原水を上向流通水させるように該反応槽の下部に原水を供給する第1の原水供給手段と、該反応槽内に設置された酸素溶解膜モジュールと、該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、原水の一部を酸素溶解膜モジュールの上下方向の途中高さの反応槽内に供給する第2の原水供給手段とを備えてなる。
 本発明の一態様では、酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている。
 本発明の一態様では、酸素溶解膜が疎水性である。
 本発明の一態様では、酸素溶解膜が上下方向に設けられた中空糸膜であり、前記酸素含有ガス供給手段は、酸素含有ガスを該中空糸膜の下部に供給し、中空糸膜内を下側から上側へ流通させるように構成されている。
 本発明の好気性生物処理装置の運転方法は、本発明の好気性生物処理装置の運転方法であって、該反応槽の上部の処理水又は該反応槽から流出する処理水の溶存酸素濃度を測定し、この溶存酸素濃度が所定濃度となるように酸素含有ガス供給手段を制御する。
 本発明の一態様では、前記溶存酸素濃度(DO)が0.01~1mg/L特に0.2~1mg/Lとなるように制御を行う。
 本発明の好気性生物処理装置では、原水を反応槽下部と反応槽の上下方向途中部分(酸素溶解膜モジュールの上下方向途中部分)とに分割して供給するので、酸素溶解膜モジュールに局部的に高負荷となることがなく、反応槽全体でDOが存在する状態で処理が行われる。また未分解TOCが局所的に高濃度になることなく、酸素溶解膜表面への生物膜の付着を防止できる。そのため、原水のTOC成分濃度が高くても(例えば100mg/L以上、特に500mg/L以上)効率よく安定した処理が行われる。
 本発明の好気性生物処理装置の運転方法では、処理水のDOが所定濃度となるように制御することにより、酸素含有ガスの供給量が過剰とならず、酸素含有ガスの供給のための動力コスト(例えばブロワの電力コスト)を低減することができる。
 処理水のDOが0.01mg/L~1mg/Lであれば、反応槽全体で酸素含有ガスの供給不足が防止される。処理水のDOが0.2~1mg/Lであれば、反応槽内のワムシの個体数が増え反応槽の汚泥がワムシ等の微小動物で捕食されるので、余剰汚泥が減少する。
実施の形態に係る生物処理装置の縦断面図である。 (a)は酸素溶解膜ユニットの側面図、(b)は酸素溶解膜ユニットの斜視図である。
 以下、図面を参照して本発明についてさらに詳細に説明する。
 図1は実施の形態に係る好気性生物処理装置1の縦断面図である。この好気性生物処理装置1は、反応槽(槽体)2と、該反応槽2の下部に水平に設置されたパンチングプレート等の多孔板や、平板に複数の分散ノズルを均等に設けたものなどの透水板3と、該透水板3の上側に形成された大径粒子層4と、該大径粒子層4の上側に形成された小径粒子層5と、小径粒子層5の上側に粉粒状活性炭等の生物付着担体の充填により形成された流動床Fと、流動床F内に少なくとも一部が配置された酸素溶解膜モジュール6と、前記透水板3の下側に形成された受入室7と、原水管8と、充填層の洗浄時に逆洗のためのガス等が供給される洗浄配管9と、酸素溶解膜モジュール6に空気等の酸素含有ガスを供給するためのブロワ26等を有する。反応槽2の上部には、処理水を流出させるためのトラフ10及び流出口11が設けられている。トラフ10は槽内壁に沿って環状流路を形成している。
 原水管8は、反応槽2下部の受入室7内に原水を供給する第1原水供給管8Aと、酸素溶解膜モジュール6の上向流の高さの反応槽2内に原水を供給する第2原水供給管8Bとに分岐している。各原水供給管8A,8Bには開閉及び流量調整を行うためのバルブ8a,8bが設けられている。各原水供給管8A,8Bは槽内では同じ長さ、形状になっている。
 処理水を流出口11から排出する処理水配管12と、処理水配管12を通じて処理水が貯留される処理水槽29と、処理水槽29から処理水の一部を第1原水供給管8Aの第2原水供給配管8Bとの分岐点とバルブ8aの間に返送する循環配管30が設けられている。これによりバルブ8bを通るのは原水のみとし、循環水はすべてバルブ8aを通る。
 第2原水供給管8Bは酸素溶解膜モジュール6の全周囲に略均等に原水を供給するように設けられるのが好ましい。そのために、第2原水供給管8Bを複数本設けてもよい。
 この反応槽2の上部か、又は流出口11に連なる処理水取出用配管12にDO計13が設置され、その検出信号がブロワ制御器14に入力されている。
 図1は、反応槽に流動床担体を充填して、酸素溶解膜の表面への生物膜の付着を担体の流動による剪断力によって抑制して生物膜の大部分が流動床担体に付着するようにしたものであり、このとき、酸素溶解膜は酸素供給の目的のみに用いられる。
 図1では、酸素溶解膜として非多孔質(ノンポーラス)の酸素溶解膜を用い、酸素含有気体を槽外から配管を通じて酸素溶解膜の一次側に通気して、排気は配管を通じて槽外に排出するように構成している。そのため、酸素含有気体を、低圧で酸素溶解膜に通気し、酸素を酸素分子として酸素溶解膜の構成原子の間を通過し(膜に溶解し)、酸素分子として被処理水と接触させる。酸素を水に直接溶解させるので気泡が生じない。この方法は、濃度勾配による分子拡散のメカニズムを用いており、従来のように散気管などによる散気が不要となる。
 酸素溶解膜の素材として疎水性の素材を用いると膜中に浸水しづらいので好ましい。疎水性の膜であっても微量の水蒸気が浸入する。
 図2は、酸素溶解膜モジュール6の一例を示している。この酸素溶解膜モジュール6は酸素溶解膜として非多孔質の中空糸膜22を用いたものである。この実施の形態では、中空糸膜22は上下方向に配列されており、各中空糸膜22の上端は上部ヘッダー20に連なり、下端は下部ヘッダー21に連なっている。中空糸膜22の内部は、それぞれ上部ヘッダー20及び下部ヘッダー21内に連通している。各ヘッダー20,21は中空管状である。なお、平膜やスパイラル膜を用いる場合にも、通気方向が上下方向となるように配列されることが望ましい。
 図2(b)の通り、1対のヘッダー20,21と中空糸膜22とからなるユニットが複数個平行に配列されている。図2(a)の通り、各上部ヘッダー20の一端又は両端が上部マニホルド23に連結され、各下部ヘッダー21の一端又は両端が下部マニホルド24に連結されていることが好ましい。
 この実施の形態では、ブロワ26から給気配管27を介して酸素溶解膜モジュール6の下部に酸素含有ガスとして空気を供給し、酸素溶解膜モジュール6の上部から非透過ガスを排ガス配管28により排出する。空気は、下部ヘッダー20から中空糸膜22を通って上部ヘッダー21へ流れ、この間に酸素が中空糸膜22を透過して反応槽2内の水に溶解する。
 このブロワ26からの空気の供給量は、制御器14によって制御される。
 各ヘッダー20,21及び各マニホルド23,24は流水勾配を有するように設けられていてもよい。酸素溶解膜モジュール6は上下に多段に設置されてもよい。
 この酸素溶解膜モジュール6に空気を供給するために、ブロワ26と空気供給用の給気配管27とが設けられており(酸素含有ガス供給手段を構成)、該給気配管27が下部マニホルド24に接続されている。上部マニホルド23には排ガス配管28が接続されている。
 このように構成された好気性生物処理装置1において、原水の一部(原水全体の30~60%程度)は、第1原水供給管8Aを通じて受入室7に導入され、透水板3及び大径・小径の粒子層4,5を上向流通水されてSSが濾過され、次いで生物膜付着の粉粒状活性炭の流動床Fに供給される。原水の残部は、第2原水供給管8Bを介して酸素溶解膜モジュール6の上下方向途中部分の高さに供給される。このように反応槽2内に導入された原水は、流動床Fにおいて、一過式で上向流通水され生物反応を行って上部清澄領域からトラフ10と流出口11を通じて処理水として取り出される。
 給気配管27から供給された空気等の酸素含有気体は、酸素溶解膜モジュール6を上向流通気した後、酸素溶解モジュール6の上端位置より流出し、排空気は排ガス配管28から大気中へ排出される。特にTOC濃度が高いときは酸素を最も多く必要とする原水注入部に多く酸素含有ガスを供給することが効率的なので、上向流通水の場合は酸素含有ガスも上向流通気することが好ましい。
 酸素溶解膜モジュール6の各中空糸膜22内を空気が流れる間に、酸素が中空糸膜22を透過して水中に溶け込む。そのため、上向流通気の場合中空糸膜22内にあっては、上部ほど酸素濃度が低く、上部ほど中空糸膜22を透過する酸素透過量が少ない。この実施の形態では、原水の一部を第2原水供給管8Bを介して酸素溶解膜モジュール6の上下方向途中部分に供給しているので、酸素溶解膜モジュール6の下部においてTOC成分が生物分解された被処理水に対し、酸素溶解膜モジュール6の上下方向途中部分で新たな原水が追加供給される。そのため、第2原水供給管8Bの下流側(上方)において、高TOC成分濃度の原水が処理され、流動床F内の全域において、DOが存在し、十分に生物処理が行われる。
 第2原水供給管8Bの配置高さは酸素溶解膜モジュール6の高さの30~70%程度の高さ(複数の酸素溶解膜モジュールを用いる場合は最上位のモジュールの上端高さと最下位のモジュールの下端高さの30~70%程度の高さ)にする必要がある。特に2段分割では30~50%程度の高さ、3段分割では20~33%、50~66%程度の高さ、つまり中間の高さよりやや低めに配置することが好ましい。これにより、一箇所に高濃度TOCを供給するときに発生しやすかった未分解TOCに由来する酸素溶解膜表面への生物膜付着を抑制することができ、安定した生物処理を行うことができる。
 本発明では、処理水のDO濃度が所定濃度以下となるように空気を供給するので、空気を過剰供給することがない。
 第2原水供給管8Bの高さが酸素溶解膜モジュール6の高さと重なるときは、酸素溶解膜モジュール6を上下2段または水平方向2段とし、各膜モジュールの間に第2原水供給管8Bを配置することが好ましい。第2原水供給管8Bを取り外し可能な簡易な構造とし、これを酸素溶解膜モジュール6内に通すようにしてもよい。
 本発明では、活性炭等の生物担体の流動床に非多孔性の酸素溶解膜を設置することで、供給酸素量が多くなるため、対象とする原水の有機性排水濃度に上限が無い。
 また、生物担体を流動床で運転するため、激しい撹乱にさらされることがない。したがって、多量の生物を安定して維持できるため、負荷を高くとることができる。
 また、本発明では酸素溶解膜を使用するため、プリエアレーション、直接曝気と比較すると、酸素の溶解動力が小さい。
 これらのことから、本発明によると、低濃度から高濃度までの有機性排水を高負荷で、かつ安価に処理することが可能となる。
<生物担体>
 生物担体としては、活性炭が好適である。
 流動床担体の充填量は反応槽の容積の30~70%程度、特に40~60%程度が好ましい。この充填量は、多いほうが生物量が多く活性は高いが、多すぎると担体が流出するおそれがある。従って、流動床が20~50%程度展開するLV例えば7~30m/hr特に8~15m/hrで通水するのが良い。なお、流動床担体として活性炭以外のゲル状物質、多孔質材、非多孔質材等も同様の条件で使用できる。例えば、ポリビニルアルコールゲル、ポリアクリルアミドゲル、ポリウレタンフォーム、アルギン酸カルシウムゲル、ゼオライト、プラスチック等も用いることができる。ただし、担体として活性炭を用いると、活性炭の吸着作用と生物分解作用による相互作用により、広範囲な汚濁物質の除去を行うことが可能である。
 活性炭等の流動床担体の平均粒径は0.2~1.2mm特に0.3~0.6mm程度が好ましい。平均粒径が大きいと高LVとすることが可能であり、処理水の一部を反応槽に循環する場合は循環量を増やせるため高負荷が可能となる。しかし、比表面積が小さくなるため、生物量が少なくなる。平均粒径が小さいと、低LVで流動できるため、ポンプ動力が安価となる。かつ、比表面積が大きいため、付着生物量が増える。
 最適粒径は廃水の濃度にも依存し、TOC:50mg/Lであれば0.2~0.4mm程度が好ましい。
 活性炭の展開率は、20~50%程度が好ましい。展開率が20%よりも低いと、目詰まり、短絡のおそれがある。展開率が50%よりも高いと、担体流出のおそれがあると共に、ポンプ動力コストが高くなる。
 通常の生物活性炭では、活性炭流動床の展開率は10~20%程度であるがこの場合、活性炭の流動状態が不均一で上下左右に流動する。結果として同時に設置した膜が活性炭によってこすられ、すり減って消耗することになる。これを防止するため、本発明では、活性炭等の流動床担体は十分に流動させることが必要で展開率は20%以上とするのが望ましい。このため、担体の粒径は通常の生物活性炭よりも小さいほうが好ましい。なお、活性炭の場合、やしがら炭、石炭、木炭等特に限定されない。形状は球状炭が好ましいが、通常の粒状炭や破砕炭でも良い。
<酸素含有ガス>
 酸素含有ガスは空気、酸素富化空気、純酸素等、酸素を含む気体であればよい。通気する気体はフィルターを通過させて微細粒子を予め除去することが望ましい。
 通気量はDO計13で検出されるDOが1mg/L以下となるようにするのが好ましい。このように処理水DOを1mg/L以下とすることにより、ブロワ26の消費電力を抑制することができる。また、DOがほぼ0mg/Lであると、硝化と脱窒とが同時に進行するため、生物処理効率が向上する。なお、DOが過度に多くなると、活性炭に付着する生物膜が肥大化し、生物膜の深部にまで酸素が行き届かなくなり、生物膜深部が嫌気化して生物反応効率が低下するおそれがある。また、肥大化した生物膜付着活性炭が反応槽外に流失するおそれもある。
 DOの下限値は、0(ゼロ)でもよいが、好気処理に必要な酸素が供給されていることを確認するために、0.01mg/L以上であることが好ましい。
 本発明の一態様では、DO計13の検出DOが0.2~1mg/Lとなるようにする。DOを0.2mg/L以上とすることにより、反応槽2内のワムシ生育量が増加し、ワムシによって汚泥が捕食され、汚泥が減容され、余剰汚泥が少なくなる。
 なお、空気等の酸素含有ガスを中空糸膜22に下向きに流すと、酸素含有ガスからの凝縮水が中空糸膜22内に滞留することが防止される。
<被処理水の流速>
 被処理水の流速はLV7m/hr以上とし、処理水を循環するのが好ましい。
 LVを高くすると、それに比例して酸素溶解速度が向上する。LVが高い場合は、粒径が大きい活性炭を使い、展開率をあまり大きくしないようにするのが好ましい。生物量、酸素溶解速度から、最適LV範囲は7~30m/hr特に8~15m/hr程度である。
<滞留時間>
 槽負荷0.5~4kg-TOC/m/dayとなるように滞留時間を設定するのが好ましい。
<ブロワ>
 ブロワは、吐出風圧が水深からくる水圧以下のもので十分である。但し、配管等の圧損以上であることは必要である。通常、配管抵抗は1~2kPa程度である。
 5mの水深の場合、通常は0.55MPa程度までの出力の汎用ブロワが用いられ、それ以上の水深では高圧ブロワが用いられてきている。
 本発明では、5m以上の水深であっても0.5MPa以下の圧力の汎用ブロワを用いることができ、0.1MPa以下の低圧ブロワを用いることが好ましい。
 酸素含有ガスの供給圧は、中空糸膜の圧力損失より高く、さらに膜が水圧でつぶれないこと、が条件となる。平膜、スパイラル膜は膜の圧損が水圧と比較すると無視できるため、極めて低い圧力、5kPa程度以上、水深圧力以下、望ましくは20kPa以下である。
 中空糸膜の場合、内径と長さによって圧力損失は変化する。通気する空気量は膜1mあたり50~200mL/dayであるから、膜長さが2倍になると空気量は2倍になり、膜径が2倍になっても空気量は2倍にしかならない。したがって、膜の圧力損失は膜長さに正比例し、直径に反比例する。
 圧力損失の値は、内径50μm、長さ2mの中空糸で3~20kPa程度である。本発明においては、原水中のTOCが高濃度(例えば100mg/L以上特に500mg/L以上)の処理であっても効率的かつ安定的に処理することができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年2月20日付で出願された日本特許出願2018-028195に基づいており、その全体が引用により援用される。
 1 好気性生物処理装置
 2 反応槽
 6 酸素溶解膜モジュール
 8 原水管
 8A 第1原水供給管
 8B 第2原水供給管
 13 DO計
 20,21 ヘッダー
 22 中空糸膜
 26 ブロワ
 27 給気配管
 28 排ガス配管

Claims (6)

  1.  反応槽と、
     該反応槽内に充填された流動床担体と、
     該反応槽内に原水を上向流通水させるように該反応槽の下部に原水を供給する第1の原水供給手段と、
     該反応槽内に設置された酸素溶解膜モジュールと、
     該酸素溶解膜モジュールに酸素含有ガスを供給する酸素含有ガス供給手段と、
     原水の一部を酸素溶解膜モジュールの上下方向の途中高さの反応槽内に供給する第2の原水供給手段と
    を備えてなる好気性生物処理装置。
  2.  酸素溶解膜モジュールは非多孔質の酸素溶解膜を備えている請求項1ないし3のいずれかの好気性生物処理装置。
  3.  酸素溶解膜が疎水性である請求項2に記載の好気性生物処理装置。
  4.  酸素溶解膜が上下方向に設けられた中空糸膜であり、前記酸素含有ガス供給手段は、酸素含有ガスを該中空糸膜の下部に供給し、中空糸膜内を下側から上側へ流通させるように構成されていることを特徴とする請求項1~3のいずれかの好気性生物処理装置。
  5.  請求項1~4のいずれかの好気性生物処理装置の運転方法であって、
     前記反応槽の上部の処理水又は該反応槽から流出する処理水の溶存酸素濃度を測定し、この溶存酸素濃度が所定濃度となるように酸素含有ガス供給手段を制御する好気性生物処理装置の運転方法。
  6.  前記溶存酸素濃度が0.01~1mg/Lとなるように制御を行う請求項5の好気性生物処理装置の運転方法。
PCT/JP2019/002698 2018-02-20 2019-01-28 好気性生物処理装置及びその運転方法 WO2019163424A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028195A JP6614253B2 (ja) 2018-02-20 2018-02-20 好気性生物処理装置及びその運転方法
JP2018-028195 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163424A1 true WO2019163424A1 (ja) 2019-08-29

Family

ID=67688048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002698 WO2019163424A1 (ja) 2018-02-20 2019-01-28 好気性生物処理装置及びその運転方法

Country Status (3)

Country Link
JP (1) JP6614253B2 (ja)
TW (1) TW201940688A (ja)
WO (1) WO2019163424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982746A (zh) * 2020-07-16 2020-11-24 北京城市排水集团有限责任公司 一种曝气装置的曝气性能评价方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384693A (ja) * 1986-09-26 1988-04-15 Ishikawajima Harima Heavy Ind Co Ltd 流動床式汚水処理装置
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH06507335A (ja) * 1989-10-02 1994-08-25 メンブラン・コーポレーション 無気泡型の気体搬送装置及び方法
JPH07112190A (ja) * 1993-10-19 1995-05-02 Tonen Corp 生物濾過装置
JP2005034739A (ja) * 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd 排水処理方法
JP2013202544A (ja) * 2012-03-29 2013-10-07 Swing Corp 排水処理方法
JP2013208556A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd 有機性排水の生物処理方法及び装置
JP2014036959A (ja) * 2008-12-28 2014-02-27 Metawater Co Ltd 生物学的窒素除去装置、水処理システム、及びそのための担体
JP2015058428A (ja) * 2013-09-17 2015-03-30 黎明興技術顧問股▲分▼有限公司 廃液処理方法および廃液処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384693A (ja) * 1986-09-26 1988-04-15 Ishikawajima Harima Heavy Ind Co Ltd 流動床式汚水処理装置
JPS6490093A (en) * 1987-10-01 1989-04-05 Komatsu Mfg Co Ltd Apparatus for treating waste water
JPH06507335A (ja) * 1989-10-02 1994-08-25 メンブラン・コーポレーション 無気泡型の気体搬送装置及び方法
JPH07112190A (ja) * 1993-10-19 1995-05-02 Tonen Corp 生物濾過装置
JP2005034739A (ja) * 2003-07-15 2005-02-10 Mitsubishi Rayon Co Ltd 排水処理方法
JP2014036959A (ja) * 2008-12-28 2014-02-27 Metawater Co Ltd 生物学的窒素除去装置、水処理システム、及びそのための担体
JP2013202544A (ja) * 2012-03-29 2013-10-07 Swing Corp 排水処理方法
JP2013208556A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd 有機性排水の生物処理方法及び装置
JP2015058428A (ja) * 2013-09-17 2015-03-30 黎明興技術顧問股▲分▼有限公司 廃液処理方法および廃液処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982746A (zh) * 2020-07-16 2020-11-24 北京城市排水集团有限责任公司 一种曝气装置的曝气性能评价方法
CN111982746B (zh) * 2020-07-16 2021-06-11 北京城市排水集团有限责任公司 一种曝气装置的曝气性能评价方法

Also Published As

Publication number Publication date
JP6614253B2 (ja) 2019-12-04
TW201940688A (zh) 2019-10-16
JP2019141781A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2019159667A1 (ja) 好気性生物処理装置
WO2018168022A1 (ja) 好気性生物処理装置
JP6601517B2 (ja) 好気性生物処理装置の運転方法
WO2018100841A1 (ja) 生物活性炭処理装置
JP6547866B1 (ja) 好気性生物処理装置
WO2019163424A1 (ja) 好気性生物処理装置及びその運転方法
JP6858146B2 (ja) 好気性生物処理装置及びその運転方法
JP6597815B2 (ja) 好気性生物処理装置の運転方法
JP6558455B1 (ja) 好気性生物処理装置
JP6866918B2 (ja) 好気性生物処理装置
JP6610688B2 (ja) 好気性生物処理装置
WO2019163425A1 (ja) 好気性生物処理装置
JP2019005756A (ja) 生物活性炭処理装置
JP2019005755A (ja) 生物活性炭処理装置
JP2019005757A (ja) 生物活性炭処理装置
JP2019025483A (ja) 生物活性炭処理装置
JP2021010853A (ja) 好気性生物処理装置及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757692

Country of ref document: EP

Kind code of ref document: A1