WO2019163284A1 - スカンジウムの回収方法 - Google Patents

スカンジウムの回収方法 Download PDF

Info

Publication number
WO2019163284A1
WO2019163284A1 PCT/JP2018/047932 JP2018047932W WO2019163284A1 WO 2019163284 A1 WO2019163284 A1 WO 2019163284A1 JP 2018047932 W JP2018047932 W JP 2018047932W WO 2019163284 A1 WO2019163284 A1 WO 2019163284A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
solution
treatment
post
hydrogen sulfide
Prior art date
Application number
PCT/JP2018/047932
Other languages
English (en)
French (fr)
Inventor
中井 修
小原 剛
小林 宙
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Publication of WO2019163284A1 publication Critical patent/WO2019163284A1/ja
Priority to PH12020551269A priority Critical patent/PH12020551269A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering scandium.
  • HPAL high pressure acid leach
  • nickel oxide ore and sulfuric acid are mixed and slurried, placed in a pressure-resistant reaction vessel such as an autoclave, stirred at a high temperature of about 220 ° C. to 280 ° C., nickel and cobalt contained in the nickel oxide ore, etc. Is leached into a sulfuric acid solution to form a leaching slurry (leaching step).
  • the obtained leaching slurry is washed while separating it into solid and liquid, and a neutralizing agent such as calcium carbonate is added to adjust the pH to about 4 to separate many impurities such as iron.
  • the contained leachate is obtained (solid-liquid separation step).
  • alkali such as slaked lime or limestone is used to recover nickel and cobalt from the sulfuric acid solution (leaching solution) obtained by leaching the nickel oxide ore. Is added to adjust the pH to separate most of the impurities (neutralization step). Subsequently, an operation for recovering nickel and cobalt is performed by adding a sulfiding agent such as hydrogen sulfide gas to the solution after neutralization treatment (liquid after neutralization) to precipitate sulfides of nickel and cobalt. Sulfurization process). And after the sulfidation process, after the sulfide is separated and recovered, the neutralized solution (final neutralization treatment) is performed by adding a neutralizing agent to separate impurities such as manganese. Discharged as Japanese wastewater.
  • a sulfiding agent such as hydrogen sulfide gas
  • a sulfiding agent such as hydrogen sulfide gas used for sulfiding treatment may remain in the solution after sulfiding, and it is necessary to remove the hydrogen sulfide from the solution before discharging.
  • Specific methods for removing hydrogen sulfide dissolved in the solution after sulfidation include, for example, a method of aeration by aeration, a method of aeration by reduced pressure, and oxidation of hydrogen sulfide by an oxidizing agent such as hydrogen peroxide. Examples thereof include a method for obtaining and fixing a sulfate, and a method for decreasing the solubility of hydrogen sulfide by increasing the acid concentration of the aqueous solution.
  • hydrogen sulfide gas is generated in the treatment tank because the solubility of hydrogen sulfide is reduced. Therefore, in the treatment, it is necessary to remove the hydrogen sulfide gas.
  • a method of removing hydrogen sulfide gas for example, a method of treating with an exhaust gas treatment facility (scrubber) using an alkaline solution such as sodium hydroxide (caustic soda) as an absorbent is common. The drainage needs to be treated separately.
  • the alkaline drainage is used as an alternative to alkali such as slaked lime and limestone, which are neutralizing agents used in the final neutralization treatment for the post-sulfurization solution.
  • nickel oxide ore may contain a trace amount of scandium in addition to valuable materials such as nickel and cobalt.
  • scandium is a very valuable metal, only a small amount is produced, and therefore, establishment of a technique for recovering scandium from nickel oxide ore is desired.
  • Patent Document 1 proposes a method for recovering high-quality scandium from nickel oxide ore.
  • the post-sulfurization liquid acidic solution containing scandium
  • the post-sulfurization liquid produced in the sulfidation process in the nickel oxide ore hydrometallurgical process was subjected to ion exchange treatment using a chelate resin to concentrate scandium.
  • Patent Document 1 discloses that a starch is produced from a scandium eluate after ion exchange treatment, and the scandium is concentrated by dissolving the starch with an acid, and a back extract obtained after solvent extraction treatment. It is further preferable to provide an oxalic acid oxidation step in which oxalic acid is dissolved in hydrochloric acid and oxalic acid is further added to obtain scandium oxalate.
  • Patent Document 2 also proposes a scandium recovery method that can easily and efficiently recover high-purity scandium. Specifically, a solution containing scandium is passed through an ion exchange resin, and then the eluate eluted from the ion exchange resin is subjected to solvent extraction to be separated into a residual extraction solution and an extractant after extraction, In the recovery method of obtaining scandium oxide by subjecting the extracted residue to an oxalate treatment to obtain a scandium oxalate precipitate and baking the precipitate, an amine-based extractant is used as the solvent extractant. The technique characterized by using is disclosed.
  • Patent Document 3 as a method for efficiently recovering high-quality scandium, sodium sulfate is added to a sulfuric acid solution containing scandium, a precipitate of scandium sulfate double salt is recovered, and then pure water is added to the precipitate. Add a neutralizer to the resulting solution to recover scandium hydroxide, add acid to the obtained scandium hydroxide, and redissolve (purify) the scandium hydroxide.
  • a method for obtaining a scandium solution is disclosed.
  • the alkali used as the neutralizing agent in the neutralization treatment includes caustic soda (sodium hydroxide), slaked lime, limestone and the like.
  • caustic soda sodium hydroxide
  • sodium hydroxide is characterized by being easy to control because it can be handled as a solution, not a solid such as slaked lime or limestone, or a slurry in which a solid is suspended.
  • sodium hydroxide is very expensive, such as several times higher than the cost of slaked lime and several tens of times higher than the cost of limestone.
  • the amount of sodium hydroxide used is suppressed as much as possible. It is hoped that.
  • the present invention has been proposed in view of such a situation, and effectively and economically removes impurity iron from an acidic solution containing scandium while reducing loss.
  • An object is to provide a method capable of recovering high-purity scandium.
  • the present inventor has intensively studied to solve the above-described problems.
  • the de-ironing step of using a post-sulfurized solution as an acidic solution containing scandium and adding an alkaline solution to the scandium eluate obtained by ion exchange treatment to the post-sulfurized solution to remove iron By using the detoxification effluent discharged through the detoxification treatment for hydrogen sulfide gas generated in the hydrometallurgical process of nickel oxide ore as an alkaline solution to be added to the scandium eluent, it can be efficiently performed at low cost. And it was found that iron can be effectively removed to separate scandium, and the present invention has been completed.
  • an alkaline solution is added to an acidic solution containing scandium to separate iron contained in the acidic solution as a hydroxide, And a neutralizing step of obtaining a scandium hydroxide by neutralizing the scandium, wherein the scandium-containing acidic solution is a leachate obtained by leaching the nickel oxide ore with sulfuric acid.
  • This is a post-sulfurization liquid that is recovered by wet smelting by adding hydrogen sulfide gas and performing a sulfidation treatment to produce a sulfide containing nickel and a post-sulfurization liquid.
  • an alkaline solution to be added As an alkaline solution to be added, a solution whose pH is adjusted to a range of 13.0 or more and 14.0 or less is used, and at least a part of the alkali solution is a sulfidation remaining after the sulfiding treatment in the wet smelting Using abatement effluent was detoxified by the hydrogen gas is absorbed in an alkaline solution, a method of recovering scandium.
  • the second invention of the present invention is the scandium recovery method according to the first invention, wherein the alkaline solution is a sodium hydroxide solution.
  • the acidic solution containing scandium is subjected to an ion exchange treatment using an ion exchange resin on the post-sulfurization solution. This is a method for recovering scandium which is the obtained scandium eluent.
  • impurity iron is effectively and economically removed from an acidic solution containing scandium to recover high purity scandium while reducing loss. can do.
  • present embodiments specific embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail.
  • the present invention is not limited to the following embodiments, and the gist of the present invention is changed. In the range which does not carry out, it can implement by adding a change suitably.
  • the notation “X to Y” (X and Y are arbitrary numerical values) means “X or more and Y or less”.
  • the scandium recovery method is a method for recovering high-purity scandium from an acidic solution containing scandium through a process of removing impurities in the solution and concentrating the scandium. Specifically, this scandium recovery method separates iron contained in scandium eluent as hydroxide by adding an alkaline solution to an acidic solution containing scandium (hereinafter also simply referred to as “scandium-containing solution”). And a neutralization step of performing a neutralization treatment on the post-deironation solution to obtain scandium hydroxide.
  • this scandium recovery method as an acidic solution containing scandium, hydrogen sulfide gas is added to a leachate obtained by leaching nickel oxide ore with sulfuric acid to perform a sulfidation treatment.
  • a post-sulfurized solution recovered by hydrometallurgy (hydrometallurgy of nickel oxide ore) is used.
  • a scandium eluent obtained by subjecting a post-sulfurization solution obtained by wet smelting of nickel oxide ore to an ion exchange treatment using a chelate resin as an ion exchange resin can be used.
  • the deironing step in the deironing step, at least part or all of the alkaline solution added to remove iron from the scandium-containing solution, the sulfide remaining after the sulfidation treatment in the hydrometallurgy of nickel oxide ore. It is characterized by using a detoxification drainage that is detoxified by absorbing hydrogen gas into an alkaline solution.
  • alkaline solution used for the deironing treatment a solution whose pH is adjusted in the range of 13.0 to 14.0 is used.
  • sodium hydroxide or the like has been used as an alkaline solution to be added to a scandium-containing solution in the neutralization treatment (neutralization treatment for iron removal) in the iron removal step.
  • sodium hydroxide solution is an expensive drug, and the use of new sodium hydroxide has resulted in increased processing costs.
  • the alkaline solution used in the scandium recovery method according to the present embodiment is an abatement exhaust generated by the treatment for removing the hydrogen sulfide gas remaining after the sulfidation treatment in the hydrometallurgy.
  • It is a liquid, and is a drainage solution composed of an alkaline solution produced by absorbing hydrogen sulfide into the alkaline solution.
  • the alkaline solution include sodium hydroxide.
  • Such a detoxification waste liquid is an alkaline solution based on a sodium hydroxide solution added in the detoxification treatment of hydrogen sulfide gas as described above. Therefore, the pH of the solution (an acidic solution containing scandium) can be sufficiently controlled in an appropriate range as an alkaline solution for the deironing treatment.
  • the detoxification waste solution is reused, so the drug cost is reduced. It can be reduced, and economically efficient processing can be executed.
  • the alkaline solution having a part or all of the detoxification waste solution is adjusted to have a pH of 13.0 or more and 14.0 or less, the iron by deironing treatment is used. The removal rate can be effectively increased.
  • a detoxifying effluent generated by the treatment for detoxifying hydrogen sulfide gas the pH of which is adjusted to the range of 13.0 to 14.0
  • an acidic solution containing scandium can be used.
  • the scandium recovery loss can be reduced.
  • FIG. 1 is a process diagram showing an example of a scandium recovery method according to the present embodiment.
  • This scandium recovery method separates scandium and other impurities from the post-sulfurization solution (acid solution containing scandium) obtained by the hydrometallurgical smelting process of nickel oxide ore (high-purity). The scandium is recovered economically and efficiently.
  • the scandium recovery method includes a nickel oxide ore wet smelting step S1 and an ion exchange treatment step of subjecting the post-sulfurization solution, which is a scandium-containing solution obtained from the wet smelting step S1, to ion exchange treatment.
  • S2 and an iron removal step S3 in which an alkaline solution is added to the scandium eluent to remove iron, and a solution after the iron removal is neutralized to obtain scandium hydroxide and then dissolved in an acid.
  • the scandium recovery method includes a nickel oxide ore wet smelting process (wet smelting step S1) for obtaining a solution that is a raw material for scandium recovery, and the raw material solution.
  • the process can be roughly divided into a scandium recovery process (ion exchange treatment step S2 to scandium recovery step S6) in which impurities are removed and high-purity scandium is recovered.
  • the hydrometallurgical treatment process of nickel oxide ore sulfidation treatment using hydrogen sulfide gas is performed in the dezincification step S14 and nickel recovery step S15, and the sulfidation remaining after the sulfidation treatment Hydrogen gas is rendered harmless by the treatment in the detoxification treatment step S16.
  • a sodium hydroxide solution is used, and the remaining hydrogen sulfide gas is absorbed by the sodium hydroxide solution. Therefore, the drainage obtained through the detoxification treatment step S16, that is, the detoxification drainage, is an alkaline solution based on a sodium hydroxide solution in which sodium hydrogen sulfide is absorbed.
  • hydrometallurgical process S1 of nickel oxide ore is a leaching process S11 in which nickel oxide ore is leached with sulfuric acid under high temperature and high pressure to obtain a leaching slurry, and the leaching slurry is solidified.
  • the detoxification that removes the hydrogen sulfide gas remaining after the sulfidation process in the dezincification process S14 or the nickel recovery process S15 by an alkaline solution (sodium hydroxide solution) It has processing step S16.
  • Leaching process for example, sulfuric acid is added to the nickel oxide ore slurry using a high-temperature pressurized container (autoclave) and the like, and the mixture is stirred at a temperature of 240 ° C. to 260 ° C. It is a process of forming a leaching slurry. In addition, what is necessary is just to perform the process in leaching process S11 according to the conventionally known HPAL process.
  • Nickel oxide ores include so-called laterite ores such as limonite ore and saprolite ore. Laterite ore usually has a nickel content of 0.8% to 2.5% by weight and is contained as a hydroxide or siliceous clay (magnesium silicate) mineral. These nickel oxide ores contain scandium.
  • the solid-liquid separation step S12 is a step of solid-liquid separation into a leachate containing nickel, cobalt, scandium, and the like and a leach residue that is hematite while washing the leach slurry obtained in the leach step S11.
  • the solid-liquid separation treatment can be performed, for example, using a flocculant supplied from a flocculant supply facility or the like using a solid-liquid separation facility such as a thickener after the leaching slurry is mixed with a cleaning liquid.
  • the neutralization step S13 is a step of adding a neutralizing agent to the leachate obtained by separation and adjusting the pH to obtain a neutralized starch containing an impurity element and a post-neutralized solution. Due to the neutralization treatment in the neutralization step S13, valuable metals such as nickel, cobalt, and scandium are included in the post-neutralization solution, and most of impurities such as iron and aluminum become neutralized starch.
  • neutralizing agent conventionally known neutralizing agents can be used, and examples thereof include calcium carbonate, slaked lime, and sodium hydroxide.
  • a post-neutralization solution containing zinc and nickel and cobalt is introduced into a pressurized container, and hydrogen sulfide gas is blown into the gas phase, whereby zinc and nickel are mixed. Sulfurizes selectively to cobalt to produce zinc sulfide and nickel recovery mother liquor. And the mother liquid for nickel collection
  • a mixed sulfide of nickel and cobalt is generated by adding a hydrogen sulfide gas to cause a sulfurization reaction.
  • dezincification performed prior to the sulfurization treatment of the nickel or the like is performed. The treatment is performed under conditions that are more relaxed than the sulfurization reaction conditions for nickel.
  • Nickel recovery process In the nickel recovery step S15, a nickel recovery mother liquor obtained through the dezincification step S14 is used as a sulfurization reaction start solution, and hydrogen sulfide gas as a sulfiding agent is blown into the sulfurization reaction start solution to cause a sulfurization reaction.
  • nickel and cobalt sulfides which are also simply referred to as “nickel sulfides” for the sake of convenience
  • poor liquid post-sulfurized liquid
  • the mother liquor for nickel recovery is an aqueous sulfuric acid solution containing nickel and cobalt.
  • the sulfidation treatment in the nickel recovery step S15 can be performed using a sulfidation reaction tank or the like, and hydrogen sulfide gas is blown into the gas phase portion in the reaction tank with respect to the sulfidation reaction starting liquid introduced into the sulfidation reaction tank.
  • a sulfurization reaction is caused by dissolving hydrogen sulfide gas in the solution.
  • the obtained slurry containing nickel sulfide is charged into a sedimentation apparatus such as a thickener and subjected to sedimentation separation treatment, and only the sulfide is separated and recovered from the bottom of the thickener.
  • the aqueous solution component overflows from the upper part of the thickener and is recovered as a liquid after sulfidation.
  • the hydrogen sulfide gas partial pressure in the reaction tank is increased by gradually increasing the amount of hydrogen sulfide gas blown. Becomes effective.
  • the amount of gas dissolved in the process liquid increases, and for example, the following reaction can proceed in the right direction.
  • the unreacted hydrogen sulfide gas remaining in the reaction solution is detoxified and discharged.
  • hydrogen sulfide gas is generated from the solution by increasing the acid concentration in the reaction solution to lower the solubility of hydrogen sulfide.
  • the hydrogen sulfide gas thus separated is collected and detoxified.
  • the detoxification drainage discharged by this detoxification treatment is an alkaline solution based on the sodium hydroxide solution used for the detoxification.
  • the post-sulfurization solution obtained through the above-described nickel oxide ore hydrometallurgy step S1 can be applied as a target solution for the scandium recovery process.
  • recovering scandium using the post-sulfurization liquid which is an acidic solution containing scandium as a target solution of a scandium collection process is demonstrated in order.
  • the ion exchange treatment step S2 is a step for obtaining a scandium eluent by subjecting the post-sulfurization solution to an ion exchange treatment using an ion exchange resin.
  • the post-sulfurization solution that is an acidic solution containing scandium
  • scandium for example, aluminum, chromium, and other impurities remaining in the solution without being sulfided by the sulfidation treatment in the nickel recovery step S15 described above. It is included. For this reason, when recovering scandium from the solution after sulfidation, it is preferable to previously remove impurities contained in the solution after sulfidation and concentrate scandium (Sc) to generate a scandium eluent.
  • the ion exchange treatment step S2 for example, a method based on ion exchange treatment using a chelate resin as an ion exchange resin, containing impurities such as aluminum separated and removed from the solution after sulfidation and enriched with scandium A solution (scandium eluent) can be obtained.
  • the ion exchange treatment step S2 for example, an adsorption step in which a solution after sulfurization is brought into contact with a chelate resin to adsorb scandium, and a sulfuric acid having a predetermined normality is brought into contact with the chelate resin adsorbing scandium to form aluminum.
  • An aluminum removal step to remove the aluminum a scandium elution step to obtain a scandium eluent by bringing the chelate resin into contact with sulfuric acid of a predetermined degree, and a chromium adsorbed to the chelate resin by bringing the chelate resin into contact with a predetermined degree of sulfuric acid
  • a chrome removal step of removing a chrome removal step of removing.
  • the type of chelate resin used for the ion exchange treatment is not particularly limited.
  • a resin having iminodiacetic acid as a functional group can be used, and according to this chelate resin, the adsorption selectivity of scandium can be enhanced.
  • the iron removal step S3 is a step of separating and removing iron as a hydroxide by adding an alkaline solution to an acidic solution containing scandium and performing a iron removal treatment.
  • the acidic solution containing scandium the scandium eluent obtained through the ion exchange treatment in the ion exchange treatment step S2 described above can be used.
  • the iron contained in the solution (post-sulfurization solution) containing scandium obtained through the hydrometallurgy step S1 of nickel oxide ore is present in the form of divalent ions from the potential of the solution. It is thought that there is. That is, iron ions (Fe 2+ ) are dissolved in the solution.
  • an alkaline solution added to remove iron by neutralization from an acidic solution containing scandium (scandium eluent) or All of them are characterized by using a detoxification effluent that has been detoxified by absorbing the hydrogen sulfide gas remaining after the sulfidation treatment in the hydrometallurgy of nickel oxide ore into an alkaline solution.
  • This detoxification waste liquid is a solution produced by absorbing hydrogen sulfide gas in a sodium hydroxide solution, which is an alkaline solution, that is, an alkaline solution based on a sodium hydroxide solution.
  • the iron in the scandium eluent is recycled.
  • the amount of neutralizing agent (new sodium hydroxide solution) used in the conventional treatment can be reduced, and the treatment cost Can be effectively reduced.
  • the amount of new sodium hydroxide solution used is reduced, the amount of drainage is not increased.
  • the detoxification waste solution is a solution discharged through a process of absorbing hydrogen sulfide gas into a sodium hydroxide solution, which is an alkaline solution, and is an alkaline solution based on the sodium hydroxide solution.
  • a sodium hydroxide solution which is an alkaline solution
  • an alkaline solution based on the sodium hydroxide solution is an alkaline solution based on the sodium hydroxide solution.
  • the detoxification effluent is a solution obtained by being treated in the detoxification tower in the detoxification treatment step S16 in the hydrometallurgical process S1
  • the alkali concentration is increased by circulation and stirring in the detoxification tower. Is uniform. Therefore, by reusing such a detoxification effluent with a uniform alkali concentration, it is possible to suppress the occurrence of poor removal of iron, which is an impurity due to a decrease in the speed of the neutralization reaction, etc. Can be processed.
  • scandium may precipitate (coprecipitate) together with the precipitation of iron, and this leads to a decrease in the scandium recovery rate. It is preferable to prevent settling.
  • it is effective to appropriately control the pH range when an alkaline solution is added to an acidic solution containing scandium (scandium eluent). Become. Specifically, by adding an alkaline solution, the pH of the scandium eluent is maintained in the range of 3.5 to 4.5, preferably in the range of 3.8 to 4.2.
  • iron can be separated and removed at a removal rate of 95% by mass or more.
  • the pH is adjusted to a range of 13.0 or more and 14.0 or less as an alkaline solution (an alkaline solution used for deironing treatment) having at least part or all of the detoxification waste liquid. It is characterized by using.
  • the pH adjustment operation of the scandium eluent can be appropriately and stably performed. It is possible to sufficiently remove iron and to suppress recovery loss by suppressing coprecipitation of scandium.
  • the neutralization step S4 is a step of obtaining scandium hydroxide by performing a neutralization treatment on the post-deironation solution from which iron has been separated and removed through the treatment in the deironation step S3.
  • scandium hydroxide is generated and then dissolved in a mineral acid such as sulfuric acid to obtain a scandium solution.
  • a neutralizing agent such as calcium carbonate, slaked lime, or sodium hydroxide is used, and the neutralized treatment is performed by adding to the solution after deironing.
  • gypsum calcium sulfate
  • scandium when the neutralizing agent contains calcium
  • a type that does not generate solids such as sodium hydroxide is preferable.
  • the pH condition in the neutralization treatment is preferably adjusted to a range of 6 to 9 by adding a neutralizing agent. If the pH is less than 6, neutralization may be insufficient and scandium may not be sufficiently recovered. On the other hand, if the pH exceeds 9, the amount of neutralizing agent used is increased, which is not preferable in terms of cost increase.
  • the scandium hydroxide precipitate recovered by solid-liquid separation is dissolved with a mineral acid such as sulfuric acid or hydrochloric acid to concentrate the scandium to obtain a solution.
  • solvent extraction step S5 a scandium solution, which is a solution obtained by concentrating scandium obtained through the neutralization step S4, is subjected to a solvent extraction treatment and brought into contact with an extractant to obtain an extraction liquid containing scandium. It is a process.
  • the mode in the solvent extraction step S5 is not particularly limited, but the extraction solution is a mixture of a scandium solution and an extractant that is an organic solvent to extract impurities and a small amount of scandium. And a scrubbing step in which a small amount of scandium extracted into the organic solvent after the extraction is mixed into an aqueous phase to obtain a post-washing solution, and a post-washing organic solvent. It is preferable to perform a solvent extraction process including a back extraction step of adding a back extractant to the solvent and back-extracting impurities from the organic solvent after washing.
  • impurities are selectively extracted into an organic solvent containing an extractant to obtain an organic solvent containing impurities and a residual extraction liquid.
  • an extracting agent it does not specifically limit as an extracting agent, It is preferable to use an amine type extracting agent. For example, it has characteristics such as low selectivity with scandium and no need for a neutralizing agent during extraction.
  • Primene JM-T which is a primary amine
  • LA-1 which is a secondary amine
  • tertiary amine It is preferable to use an amine-based extractant known by a trade name such as TNOA (Tri-n-octylamine) or TIOA (Tri-i-octylamine).
  • a reverse extraction solution (back extraction start liquid) is added to an organic solvent containing an extractant and mixed to cause a reverse reaction to the extraction process, so that impurities are back-extracted and contain impurities.
  • a liquid after back extraction is obtained.
  • carbonates such as sodium carbonate and potassium carbonate.
  • the scandium recovery step S6 is a step of recovering scandium from the extraction residual liquid obtained by the extraction process in the solvent extraction process S5 and, if a scrubbing process is performed, the scrubbing cleaning liquid.
  • the scandium recovery method is not particularly limited, and a known method can be used.
  • the method (oxalate treatment) can be used.
  • the method using oxalate treatment is preferable because impurities can be more effectively separated.
  • a precipitate of scandium oxalate is generated by adding oxalic acid to the extracted residue, and then the scandium oxalate is dried and roasted and recovered as scandium oxide.
  • the extraction residue may be added to a reaction vessel containing an oxalic acid solution to generate scandium oxalate precipitates.
  • the roasting treatment is a treatment in which the scandium oxalate precipitate obtained by the oxalate treatment is washed with water and dried, followed by roasting. Through this roasting treatment, scandium can be recovered as extremely high-purity scandium oxide.
  • the roasting treatment conditions are not particularly limited.
  • the roasting treatment conditions may be put in a tubular furnace and heated at about 900 ° C. for about 2 hours.
  • Example 1 In Example 1, the scandium recovery method based on the process diagram shown in FIG. 1 was executed.
  • the following steps were performed as the nickel oxide ore hydrometallurgical step S1. That is, first, an ore slurry obtained by crushing nickel oxide ore is charged into an autoclave, sulfuric acid is added at a high temperature of about 250 ° C. to 270 ° C., and acid leaching of nickel, cobalt, and scandium is performed. The leaching process was performed by (leaching step S11). Next, the leaching slurry obtained by the leaching treatment was subjected to a solid-liquid separation device and separated into a leaching solution containing nickel, cobalt, and scandium and a leaching residue (solid-liquid separation step S12).
  • neutralization step S13 alkali was added to the obtained leachate to adjust pH to separate most of the impurities such as iron and aluminum, and solid-liquid separation was performed to obtain a neutralized solution.
  • the hydrogen sulfide gas remaining after the sulfidation process in the dezincification process S14 and the nickel recovery process S15 is absorbed by the sodium hydroxide solution in the detoxification tower. Disinfecting was performed.
  • this detoxification treatment an alkaline detoxification drainage based on a sodium hydroxide solution in which hydrogen sulfide gas was absorbed was generated.
  • Scandium recovery process In order to recover scandium using the post-sulfurization solution that is an acidic solution containing scandium obtained through the hydrometallurgical step S1, the following steps were performed. That is, first, the sulfurized solution was subjected to an ion exchange treatment using a chelate resin as an ion exchange resin (ion exchange treatment step S2). Specifically, scandium was adsorbed by bringing the solution after sulfurization into contact with the chelate resin and separated from other impurity components. Subsequently, the scandium was eluted by bringing the sulfuric acid solution into contact with the chelate resin on which scandium was adsorbed, and the scandium eluent was recovered. Since the chelate resin also adsorbed part of impurities such as iron, aluminum and chromium together with scandium, only scandium was selectively eluted by adjusting the concentration of the sulfuric acid solution.
  • ion exchange treatment step S2 scandium was adsorbed by bringing the solution after sulfurization into contact with the
  • an iron solution was added to the recovered scandium eluent to remove iron contained in the scandium eluent as a precipitate of iron hydroxide (deironation step S3).
  • the detoxification waste solution generated in the detoxification treatment step S16 in the wet smelting step S1 was used as the alkaline solution added to the scandium eluent.
  • Table 1 shows the composition of the scandium eluent, which is the starting solution for the deironing treatment.
  • a detoxified effluent obtained by detoxifying the hydrogen sulfide gas with a sodium hydroxide solution while blowing air into the scandium eluent has a concentration of 1.0 N (pH 14.0) in terms of sodium hydroxide concentration. It was added as a solution adjusted to.
  • Table 2 below is a correspondence table between the concentration of the sodium hydroxide solution and the pH of the solution at that time.
  • the reaction temperature was adjusted to 30 ° C. to 40 ° C., and the reaction was carried out for 120 minutes while maintaining the pH during the reaction to be in the range of 4.0 to 4.5 to carry out deironing treatment. .
  • the iron removal rate (%) and the scandium removal rate (%) are respectively defined as follows.
  • the solution after iron removal means a solution obtained by separating and removing iron after the iron removal treatment.
  • Iron removal rate (%) (iron amount in scandium eluent ⁇ iron amount in solution after deironing) / iron amount in scandium eluent ⁇ 100
  • Scandium removal rate (coprecipitation rate) (%) (scandium amount in scandium eluent ⁇ scandium amount in solution after deironing) / scandium amount in scandium eluate ⁇ 100
  • the obtained post-deironation solution is neutralized to generate a scandium hydroxide precipitate, and then the scandium hydroxide precipitate is added with sulfuric acid. It melt
  • the scandium-dissolved solution was subjected to a solvent extraction treatment to obtain an extraction residue from which impurities were separated (solvent extraction step S5).
  • oxalic acid was added to the extraction liquid containing scandium to produce scandium oxalate, and the obtained scandium oxalate was placed in a tube furnace and baked to obtain high-purity scandium oxide ( Scandium recovery process).
  • Example 2 in the iron removal treatment in the iron removal step S3, the detoxification waste liquid is a solution adjusted to a concentration of 0.5 N (pH 13.0 to 14.0) in terms of sodium hydroxide concentration, This was treated in the same manner as in Example 1 except that this was added to the scandium eluent and treated.
  • Example 3 in the iron removal treatment in the iron removal step S3, the detoxification waste liquid is a solution adjusted to a concentration of 0.1 N (pH 13.0) in terms of sodium hydroxide concentration, and this is used as a scandium eluent.
  • the treatment was performed in the same manner as in Example 1 except that it was added.
  • Comparative Example 1 In Comparative Example 1, only a novel sodium hydroxide solution was added as an alkaline solution in the deironing process in the deironing process, as in the conventional process. Specifically, a novel sodium hydroxide solution adjusted to a concentration of 4N was used and added to the scandium eluent. In addition, it processed similarly to Example 1 except this.
  • Comparative Example 2 was treated in the same manner as Comparative Example 1 except that a new sodium hydroxide solution adjusted to a concentration of 8N was used and this was added to the scandium eluent.
  • Comparative Example 3 in the iron removal process in the iron removal step S3, the detoxification effluent is a solution adjusted to a concentration of 0.05 N (pH 12.0 to 13.0) in terms of sodium hydroxide concentration, This was treated in the same manner as in Example 1 except that this was added to the scandium eluent and treated.
  • Comparative Example 4 in the deironation process in the deironation step S3, the detoxification waste solution is a solution adjusted to a concentration of 0.01 N (pH 12.0) in terms of sodium hydroxide concentration, and this is used as the scandium eluent.
  • the treatment was performed in the same manner as in Example 1 except that it was added and treated.
  • Table 3 summarizes the processing conditions and results of the deironing process in Examples 1 to 3 and Comparative Examples 1 to 4.
  • surface is relative evaluation with the filtration time with respect to the slurry after the iron removal process obtained by the conventional process (comparative example 1), and the filtration time of the conventional process is set to "1". This is the relative value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

スカンジウムを含有する酸性溶液から鉄を効果的にかつ経済的にも効率的に除去し、ロスを低減しながら高純度なスカンジウムを回収する方法を提供する。 本発明は、スカンジウム含有酸性溶液にアルカリ溶液を添加することで酸性溶液に含まれる鉄を水酸化物として分離する脱鉄工程と、脱鉄後液を中和して水酸化スカンジウムを得る中和工程と、を含むスカンジウム回収方法である。スカンジウム含有酸性溶液は、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケル硫化物と硫化後液とを生成させる湿式製錬により回収されるその硫化後液であり、脱鉄工程では、硫化後液に添加するアルカリ溶液としてpHを13.0~14.0に調整したものを用い、そのアルカリ溶液の一部又は全部として、湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いる。

Description

スカンジウムの回収方法
 本発明は、スカンジウムの回収方法に関する。
 低品位ニッケル酸化鉱石からニッケルやコバルト等の有価物を効率よく回収する方法として、例えば、高圧酸浸出(High Pressure Acid Leach:HPAL)プロセスと呼ばれる方法がある。
 HPALプロセスでは、ニッケル酸化鉱石と硫酸とを混合しスラリー化してオートクレーブ等の耐圧反応容器に入れ、220℃~280℃程度の高温度下で撹拌し、ニッケル酸化鉱石に含有されたニッケルやコバルト等の有価物を硫酸溶液中に浸出して浸出スラリーを生成させる(浸出工程)。次いで、得られた浸出スラリーを固液分離しながら洗浄し、さらに炭酸カルシウム等の中和剤を添加してpHを4程度に調整して鉄等の不純物の多くを分離し、ニッケルやコバルトを含有する浸出液を得る(固液分離工程)。
 さらに、得られた浸出液に硫化剤を添加して硫化処理を施すことで、ニッケルやコバルト等の有価物を硫化物として沈殿させ、硫化後液と分離して回収する(硫化工程)。
 このようなHPAL法による湿式製錬方法に関しては、浸出工程や固液分離工程における処理の簡素化や、得られた浸出液に対して中和処理を施す中和工程での中和剤消費量及び澱物量の削減、さらに効率的な水の繰り返し使用等を目的とする技術が種々提案されており、プロセス全体として簡素でかつ高効率な処理を行うことが可能な方法が研究されている。
 上述したように、HPAL法による湿式製錬方法では、ニッケル酸化鉱石に対して浸出処理を施して得られた硫酸酸性溶液(浸出液)からニッケル及びコバルトを回収するために、消石灰や石灰石等のアルカリを添加してpHを調整することで不純物の大部分を分離している(中和工程)。次いで、中和処理後の溶液(中和後液)に硫化水素ガス等の硫化剤を添加してニッケルやコバルトの硫化物を析出させて、ニッケル及びコバルトを回収する操業が行われている(硫化工程)。そして、硫化工程後に硫化物が分離回収された後の硫化後液に対しては、中和剤を添加して中和処理(最終中和処理)を施し、マンガン等の不純物を分離して中和後排水として放流している。
 ところが、硫化後液中には、硫化処理に用いた硫化水素ガスのような硫化剤が残留することがあり、放流するにあたっては溶液中から硫化水素を除去することが必要になる。硫化後液(硫酸溶液)中に溶存する硫化水素を除去する具体的な方法としては、例えば、エアレーションにより曝気する方法、減圧により曝気する方法、過酸化水素等の酸化剤により硫化水素を酸化し硫酸塩を得て固定化する方法、さらには水溶液の酸濃度を上昇させて硫化水素の溶解度を低下させる方法等が挙げられる。
 これらの多くの処理方法では、硫化水素の溶解度を低減させるようにしているため、処理槽中に硫化水素ガスが発生する。そのため、処理においては、硫化水素ガスを除害する必要がある。硫化水素ガスを除害する方法としては、例えば、水酸化ナトリウム(苛性ソーダ)等のアルカリ溶液を吸収液とする排ガス処理設備(スクラバー)にて処理する方法が一般的であり、除害後のアルカリ排液は別途処理する必要がある。なお、そのアルカリ排液は、例えば、硫化後液に対する最終中和処理にて用いる中和剤である消石灰や石灰石等のアルカリの代替として使用されている。
 ところで、ニッケル酸化鉱石には、ニッケルやコバルト等の有価物の他に、微量のスカンジウムが含有される場合があることも知られている。スカンジウムは、極めて有価な金属であるにもかかわらず、少量しか産出されないため、ニッケル酸化鉱石からスカンジウムを回収する技術の確立が望まれている。
 例えば、特許文献1には、ニッケル酸化鉱石から高品位のスカンジウムを回収する方法が提案されている。具体的には、ニッケル酸化鉱石の湿式製錬方法における硫化工程にて生成した硫化後液(スカンジウムを含有する酸性溶液)を、キレート樹脂を用いたイオン交換処理に付してスカンジウムを濃縮させたスカンジウム溶離液を得て、そのスカンジウム溶離液に対して溶媒抽出処理を施し、抽出剤を逆抽出することによって逆抽出物を得て、得られた逆抽出物を焼成することでスカンジウムを酸化スカンジウムの形態で回収する、という方法である。また、特許文献1には、イオン交換処理後のスカンジウム溶離液から澱物を生成させ、その澱物を酸溶解することでスカンジウムを濃縮する工程や、溶媒抽出処理の後に得られた逆抽出物を塩酸で溶解し、さらにシュウ酸を加えてシュウ酸スカンジウムを得るシュウ酸化工程を設けることがさらに好ましいとされている。
 また、特許文献2においても、高純度なスカンジウムを簡便に且つ効率よく回収することができるスカンジウムの回収方法が提案されている。具体的には、スカンジウムを含有する溶液をイオン交換樹脂に通液し、次いでそのイオン交換樹脂から溶離した溶離液を溶媒抽出に付して抽残液と抽出後抽出剤とに分離し、次いで抽残液に対してシュウ酸塩化処理を施しシュウ酸スカンジウムの沈殿物を得て、その沈殿物を焙焼することによって酸化スカンジウムを得る回収方法において、溶媒抽出の抽出剤にアミン系抽出剤を用いることを特徴とする技術が開示されている。
 また、特許文献3には、高品位のスカンジウムを効率よく回収する方法として、スカンジウムを含有する硫酸溶液に硫酸ナトリウムを添加し、スカンジウム硫酸複塩の沈殿を回収した後、この沈殿物に純水を添加して溶解させ、得られた溶解液に中和剤を添加して水酸化スカンジウムを回収し、得られた水酸化スカンジウムに酸を添加し、その水酸化スカンジウムを再溶解(精製)してスカンジウム溶解液を得る方法が開示されている。
 しかしながら、これらの方法を用いた場合、中和剤のコストがかかり、経済的な観点で効率的にスカンジウムを回収することが難しいという問題がある。また、中和処理時に局部的な反応が生じて、沈殿させたくないスカンジウムが鉄等の不純物と共沈し、その結果として回収ロスが増加する等、好ましくない結果をもたらすこともある。
 中和処理において中和剤として用いられるアルカリとしては、一般的には、苛性ソーダ(水酸化ナトリウム)や、消石灰、石灰石等が挙げられる。その中でも、水酸化ナトリウムは、消石灰や石灰石等の固体あるいは固体が懸濁したスラリーでなく、溶液として取り扱うことができるため、制御が容易であるという特徴がある。
 ところが、水酸化ナトリウムの使用コストは、消石灰のコストに比べて数倍、石灰石のコストに比べると数十倍もかかる等、非常に高価なものであり、水酸化ナトリウムの使用量はできるだけ抑制することが望まれている。
 さらに、中和剤として、消石灰や石灰石はもちろんのこと、水酸化ナトリウムを使用した場合でも、濃厚な状態で溶液中に添加すると、溶液が一時的かつ局部的に高いpH状態になりやすいため、生成した水酸化鉄と共にスカンジウムが共沈してしまう問題がある。このようなスカンジウムの共沈を抑制するために、添加するアルカリの濃度を低下させてしまうと、使用量が増加し、排水処理量も増加する等、設備規模が拡大する等の別の問題が生じる。
 このように、スカンジウムの回収方法において、鉄等の不純物を中和してスカンジウムと分離するにあたり、スカンジウムと鉄とを低コストで効率的にかつ効果的に分離する方法は見出されない。
特開2015-163729号公報 特開2016-108664号公報 特開2016-180151号公報
 本発明は、このような実情に鑑みて提案されたものであり、スカンジウムを含有する酸性溶液から不純物の鉄を効果的に、かつ経済的にも効率的に除去して、ロスを低減しながら高純度なスカンジウムを回収することができる方法を提供することを目的とする。
 本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、スカンジウムを含有する酸性溶液として硫化後液を用い、その硫化後液に対してイオン交換処理を経て得られるスカンジウム溶離液に対してアルカリ溶液を添加して鉄を除去する脱鉄工程において、ニッケル酸化鉱石の湿式製錬プロセスにて生じた硫化水素ガスに対する除害処理を経て排出される除害排液を、スカンジウム溶離液に添加するアルカリ溶液として用いることで、低コストで効率的にかつ効果的に鉄を除去してスカンジウムを分離できることを見出いし、本発明を完成するに至った。
 (1)本発明の第1の発明は、スカンジウムを含有する酸性溶液にアルカリ溶液を添加することによって該酸性溶液に含まれる鉄を水酸化物として分離する脱鉄工程と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得る中和工程と、を含むスカンジウムの回収方法であって、前記スカンジウムを含有する酸性溶液は、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケルを含む硫化物と硫化後液とを生成させる湿式製錬により回収される該硫化後液であり、前記脱鉄工程では、前記硫化後液に添加するアルカリ溶液としてpHを13.0以上14.0以下の範囲に調整したものを用い、該アルカリ溶液の少なくとも一部として、前記湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いる、スカンジウムの回収方法である。
 (2)本発明の第2の発明は、第1の発明において、前記アルカリ溶液は、水酸化ナトリウム溶液である、スカンジウムの回収方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記スカンジウムを含有する酸性溶液は、前記硫化後液に対してイオン交換樹脂を用いたイオン交換処理を施すことによって得られるスカンジウム溶離液である、スカンジウムの回収方法である。
 本発明に係るスカンジウムの回収方法によれば、スカンジウムを含有する酸性溶液から不純物の鉄を効果的に、かつ経済的にも効率的に除去して、ロスを低減しながら高純度なスカンジウムを回収することができる。
スカンジウムの回収方法の一例を示す工程図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の要旨を変更しない範囲内において、適宜変更を加えて実施することができる。なお、本明細書にて、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 ≪1.概要≫
 本実施の形態に係るスカンジウムの回収方法は、スカンジウムを含有する酸性溶液から、溶液中の不純物を除去してスカンジウムを濃縮させる処理を経て、高純度なスカンジウムを回収する方法である。具体的に、このスカンジウムの回収方法は、スカンジウムを含有する酸性溶液(以下、単に「スカンジウム含有溶液」ともいう)にアルカリ溶液を添加することでスカンジウム溶離液に含まれる鉄を水酸化物として分離する脱鉄工程と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得る中和工程と、を含む方法である。
 このスカンジウムの回収方法では、スカンジウムを含有する酸性溶液として、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケルを含む硫化物と硫化後液とを生成させる湿式製錬(ニッケル酸化鉱石の湿式製錬)により回収される硫化後液を用いる。また、好ましくは、ニッケル酸化鉱石の湿式製錬により得られた硫化後液に対してキレート樹脂をイオン交換樹脂として用いたイオン交換処理を施すことによって得られるスカンジウム溶離液を用いることができる。
 そして、このスカンジウムの回収方法において、脱鉄工程では、スカンジウム含有溶液から鉄を除去するために添加するアルカリ溶液の少なくとも一部又は全部として、ニッケル酸化鉱石の湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いることを特徴としている。
 また、その脱鉄処理に使用するアルカリ溶液としては、pHを13.0以上14.0以下の範囲に調整したものを用いる。
 従来、脱鉄工程における中和処理(脱鉄のための中和処理)において、スカンジウム含有溶液に添加するアルカリ溶液としては、水酸化ナトリウム等が用いられていた。しかしながら、水酸化ナトリウム溶液は高価な薬剤であり、新規の水酸化ナトリウムを用いると処理コストの上昇をもたらすことになっていた。
 これに対して、本実施の形態に係るスカンジウムの回収方法において使用するアルカリ溶液の少なくとも一部は、湿式製錬における硫化処理後に残留した硫化水素ガスを除害する処理にて生じた除害排液であり、硫化水素をアルカリ溶液に吸収させて生じたアルカリ溶液からなる排液である。アルカリ溶液としては、水酸化ナトリウムが挙げられる。
 このような除害排液は、上述したように硫化水素ガスの除害処理にあたって添加した水酸化ナトリウム溶液に基づくアルカリ溶液である。したがって、脱鉄処理のためのアルカリ溶液として、十分に溶液(スカンジウムを含有する酸性溶液)のpHを適切な範囲に制御することができる。また一方で、従来の処理のように、新規な水酸化ナトリウム溶液を脱鉄処理のためのアルカリ溶液として使用する場合に比べ、除害排液をいわゆる再利用していることから、薬剤コストを低減することができ、経済的にも効率的な処理を実行することができる。
 また、除害排液を一部又は全部とするアルカリ溶液として、その溶液のpHを13.0以上14.0以下の範囲に調整したものを用いるようにしていることから、脱鉄処理による鉄除去率を効果的に高めることができる。
 しかも、硫化水素ガスを除害する処理にて生じた除害排液であって、pHを13.0以上14.0以下の範囲に調整したものを用いることで、スカンジウムを含有する酸性溶液に添加したとき、溶液中で局所的にpHが高くなるといった事態を抑えることができ、脱鉄処理において鉄と共にスカンジウムが沈殿化(共沈)することを防ぐことができる。これにより、スカンジウムの回収方法において、スカンジウムの回収ロスを低減できる。
 ≪2.スカンジウムの回収方法における各工程について≫
 図1は、本実施の形態に係るスカンジウムの回収方法の一例を示す工程図である。このスカンジウムの回収方法は、ニッケル酸化鉱石の湿式製錬プロセス(湿式製錬処理)により得られた硫化後液(スカンジウムを含有する酸性溶液)から、スカンジウムとその他の不純物とを分離し、高純度のスカンジウムを経済的にも効率性高く回収するものである。
 具体的に、スカンジウムの回収方法は、ニッケル酸化鉱石の湿式製錬工程S1と、湿式製錬工程S1から得られたスカンジウム含有溶液である硫化後液に対してイオン交換処理を施すイオン交換処理工程S2と、スカンジウム溶離液に対してアルカリ溶液を添加して脱鉄処理を施す脱鉄工程S3と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得た後に酸に溶解してスカンジウム溶解液を得る中和工程S4と、スカンジウム溶解液に溶媒抽出処理を施す溶媒抽出工程S5と、得られた抽残液からスカンジウムを酸化スカンジウムの形態として回収するスカンジウム回収工程S6と、を有する。
 このように、本実施の形態に係るスカンジウムの回収方法は、スカンジウム回収の原料となる溶液を得るためのニッケル酸化鉱石の湿式製錬処理のプロセス(湿式製錬工程S1)と、その原料溶液から不純物を除去して高純度なスカンジウムを回収するスカンジウム回収処理のプロセス(イオン交換処理工程S2~スカンジウム回収工程S6)と、に大きく分けることができる。
 ここで、詳しくは後述するが、ニッケル酸化鉱石の湿式製錬処理のプロセスでは、脱亜鉛工程S14やニッケル回収工程S15において硫化水素ガスを用いた硫化処理が行われ、その硫化処理後に残留した硫化水素ガスは、除害処理工程S16における処理により無害化される。除害処理工程S16における処理では、水酸化ナトリウム溶液を用い、残留した硫化水素ガスを水酸化ナトリウム溶液に吸収させることによって除害している。したがって、除害処理工程S16を経て得られる排液、すなわち除害排液は、硫化水素ナトリウムが吸収された水酸化ナトリウム溶液に基づくアルカリ性の溶液となっている。
 <2-1.ニッケル酸化鉱石の湿式製錬処理のプロセス>
 (1)湿式製錬工程
 ニッケル酸化鉱石の湿式製錬工程S1は、図1に示すように、ニッケル酸化鉱石を高温高圧下で硫酸浸出して浸出スラリーを得る浸出工程S11と、浸出スラリーを固液分離して浸出液と浸出残渣とを得る固液分離工程S12と、浸出液に中和剤を添加して不純物を含む中和澱物と中和後液とを得る中和工程S13と、中和後液に硫化水素ガスを添加して亜鉛を硫化物として除去する脱亜鉛工程S14と、脱亜鉛処理後の溶液に硫化水素が宇を添加してニッケルの硫化物と硫化後液とを得るニッケル回収工程S15と、を有する。
 また、ニッケル酸化鉱石の湿式製錬工程S1では、脱亜鉛工程S14やニッケル回収工程S15における硫化処理後に残留した硫化水素ガスを、アルカリ溶液(水酸化ナトリウム溶液)に吸収させて除害する除害処理工程S16を有する。
  [浸出工程]
 浸出工程S11は、例えば高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱石のスラリーに硫酸を添加して240℃~260℃の温度下で撹拌処理を施し、浸出液と浸出残渣とからなる浸出スラリーを形成する工程である。なお、浸出工程S11における処理は、従来知られているHPALプロセスに従って行えばよい。
 ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8重量%~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。また、これらのニッケル酸化鉱石には、スカンジウムが含まれている。
  [固液分離工程]
 固液分離工程S12は、浸出工程S11にて得られた浸出スラリーを洗浄しながら、ニッケルやコバルト、スカンジウム等を含む浸出液と、ヘマタイトである浸出残渣とに固液分離する工程である。
 固液分離処理では、例えば、浸出スラリーを洗浄液と混合した後、凝集剤供給設備等から供給される凝集剤を用い、シックナー等の固液分離設備を利用して行うことができる。
  [中和工程]
 中和工程S13は、分離して得られた浸出液に中和剤を添加してpH調整し、不純物元素を含む中和澱物と中和後液とを得る工程である。中和工程S13における中和処理により、ニッケルやコバルト、スカンジウム等の有価金属は中和後液に含まれるようになり、鉄、アルミニウムをはじめとした不純物の大部分が中和澱物となる。
 中和剤としては、従来公知のもの使用することができ、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等が挙げられる。
  [脱亜鉛工程]
 脱亜鉛工程S14は、中和工程S13を経て得られた中和後液に硫化剤である硫化水素ガスを添加することによって、中和後液中に含まれる亜鉛を硫化物の形態として分離除去する工程である。このように、中和後液に対する硫化処理により生成した亜鉛硫化物を分離除去することで、ニッケル及びコバルトを含むニッケル回収用母液を得る。
 具体的に、脱亜鉛工程S14では、例えば、加圧された容器内にニッケル及びコバルトと共に亜鉛を含む中和後液を導入し、気相中へ硫化水素ガスを吹き込むことによって、亜鉛をニッケル及びコバルトに対して選択的に硫化し、亜鉛硫化物とニッケル回収用母液とを生成する。そして、硫化反応後に得られたスラリーを固液分離することで、亜鉛を分離したニッケル回収用母液を得ることができる。
 なお、次工程のニッケル回収工程S15においても、硫化水素ガスを添加して硫化反応を生じさせることによってニッケル及びコバルトの混合硫化物を生成させるが、そのニッケル等の硫化処理に先立って行う脱亜鉛処理では、硫化反応の条件として、ニッケルに対する硫化反応条件よりも緩和させた条件で行う。
  [ニッケル回収工程]
 ニッケル回収工程S15は、脱亜鉛工程S14を経て得られたニッケル回収用母液を硫化反応始液として、その硫化反応始液に対して硫化剤である硫化水素ガスを吹き込むことにより硫化反応を生じさせ、不純物成分の少ないニッケル及びコバルトの硫化物(便宜的に単に「ニッケル硫化物」ともいう)と、ニッケルの濃度を低い水準で安定させた貧液(硫化後液)とを生成させる工程である。なお、ニッケル回収用母液は、ニッケル及びコバルトを含む硫酸水溶液である。
 ニッケル回収工程S15における硫化処理は、硫化反応槽等を用いて行うことができ、硫化反応槽に導入した硫化反応始液に対して、その反応槽内の気相部分に硫化水素ガスを吹き込み、溶液中に硫化水素ガスを溶解させることで硫化反応を生じさせる。この硫化処理により、硫化反応始液中に含まれるニッケルを硫化物として固定化して回収する。
 なお、硫化処理後においては、得られたニッケル硫化物を含むスラリーをシックナー等の沈降分離装置に装入して沈降分離処理を施し、その硫化物のみをシックナーの底部より分離回収する。一方で、水溶液成分は、シックナーの上部からオーバーフローさせて硫化後液として回収する。
 (2)湿式製錬工程における硫化水素ガスの除害処理(除害処理工程)
 ここで、上述した脱亜鉛工程S14やニッケル回収工程S15における硫化処理で使用した硫化水素ガスのうち、反応後のプロセス液中に含まれることになる未反応の硫化水素ガスについては、除害処理工程S16にて除害(無害化)される。具体的には、その未反応の硫化水素ガスは、除害設備における除害塔(スクラバー)に移送されて、アルカリ溶液(水酸化ナトリウム溶液)を用いた無害化処理が行われる。
 脱亜鉛工程S14やニッケル回収工程S15における硫化処理では、ニッケルの回収率を向上させる観点から、硫化水素ガスの吹き込み量を徐々に増加させることによって、反応槽の硫化水素ガス分圧を上昇させることが有効となる。硫化水素ガス分圧を増加させることで、プロセス液中に溶存するガス量が増加し、例えば下記に示す反応を右方向に進行させることができる。また、各工程での処理の増強を行い、処理するプロセス液の流量を増加させることによって、生産量を増加させることも可能となる。
 HS+Ni→NiS+2H
 ところが、硫化処理に供するプロセス液の流量が増加すると、単位流量あたりの液中の硫化水素ガスの溶存量は変わらないものの、流量に比例してトータルの液中に溶存する未反応の硫化水素ガス量が増加する。このため、除害処理に供される硫化水素ガスの量が上昇することになる。
 そこで、除害処理工程S16における除害処理では、反応液中に残留した未反応の硫化水素ガスを除害して排出するようにしている。残留した硫化水素ガスを除害するにあたっては、例えば、反応液中の酸濃度を上昇させて硫化水素の溶解度を低下させることによって溶液から硫化水素ガスを発生させる。除害処理では、このようにして分離した硫化水素ガスを捕集して除害する。
 より具体的には、洗浄塔において反応液中に残留した未反応の硫化水素ガスを除害ファンにて吸引して回収し、回収した硫化水素ガスを、アルカリ溶液である水酸化ナトリウム溶液に吸収させる反応により無害化し、随伴する空気を大気放出する。除害処理工程S16における除害処理では、例えば以下の反応式に示す反応により硫化水素ガスを除害している。このような除害処理は、例えばスクラバーと呼ばれる排ガス処理設備を用いて行うことができる。
 HS+2NaOH→2HO+Na
 HS+NaOH→HO+NaHS
 そして、このような除害処理により、除害排液として、硫化水素ガスを水酸化ナトリウム溶液に吸収させて生成した溶液(洗浄溶液)が排出される。したがって、この除害処理により排出される除害排液は、除害のために使用した水酸化ナトリウム溶液に基づくアルカリ性の溶液である。
 <2-2.スカンジウム回収処理>
 スカンジウムの回収方法では、上述したニッケル酸化鉱石の湿式製錬工程S1を経て得られた硫化後液を、スカンジウム回収処理の対象溶液として適用することができる。以下では、スカンジウム回収処理の対象溶液として、スカンジウムを含有する酸性溶液である硫化後液を用いてスカンジウムを回収する工程について、順に説明する。
  [イオン交換処理工程]
 イオン交換処理工程S2は、硫化後液に対してイオン交換樹脂を用いたイオン交換処理を施すことによってスカンジウム溶離液を得る工程である。
 ここで、スカンジウムを含有する酸性溶液である硫化後液には、スカンジウムのほかに、例えば上述したニッケル回収工程S15での硫化処理で硫化されずに溶液中に残留したアルミニウムやクロム、その他の不純物が含まれている。このことから、硫化後液からスカンジウムを回収するにあたり、予め、その硫化後液中に含まれる不純物を除去してスカンジウム(Sc)を濃縮し、スカンジウム溶離液を生成させることが好ましい。
 イオン交換処理工程S2では、例えばキレート樹脂をイオン交換樹脂として使用したイオン交換処理による方法であり、硫化後液中に含まれるアルミニウム等の不純物を分離して除去し、スカンジウムを濃縮させたスカンジウム含有溶液(スカンジウム溶離液)を得ることができる。具体的に、イオン交換処理工程S2としては、例えば、硫化後液をキレート樹脂に接触させてスカンジウムを吸着させる吸着工程と、スカンジウムを吸着したキレート樹脂に所定の規定度の硫酸を接触させてアルミニウムを除去するアルミニウム除去工程と、キレート樹脂に所定の規定度の硫酸を接触させてスカンジウム溶離液を得るスカンジウム溶離工程と、キレート樹脂に所定の規定度の硫酸を接触させてキレート樹脂に吸着したクロムを除去するクロム除去工程と、を有するものを例示できる。
 イオン交換処理に用いるキレート樹脂の種類としては、特に限定されない。例えばイミノジ酢酸を官能基とする樹脂を用いることができ、このキレート樹脂によれば、スカンジウムの吸着選択性を高めることができる。
 このように、硫化後液に対してイオン交換処理を施すことによって、硫化後液に含まれる不純物を除去することができ、スカンジウムを濃縮させたスカンジウム溶離液を得ることができる。
  [脱鉄工程]
 脱鉄工程S3は、スカンジウムを含有する酸性溶液にアルカリ溶液を添加して脱鉄処理を施すことによって鉄を水酸化物として分離除去する工程である。スカンジウムを含有する酸性溶液としては、上述したイオン交換処理工程S2におけるイオン交換処理を経て得られたスカンジウム溶離液を用いることができる。
 ここで、ニッケル酸化鉱石の湿式製錬工程S1を経て得られたスカンジウムを含有する溶液(硫化後液)中に含まれる鉄は、その溶液の電位から、2価のイオンの形態で存在していると考えられる。すなわち、溶液中に鉄イオン(Fe2+)が溶解している。
 このような溶液中の鉄を分離除去するにあたっては、塩素ガスや酸素、空気等の酸化剤を添加するとともに、アルカリ溶液である水酸化ナトリウム溶液を中和剤として添加し、2価の鉄イオンを水酸化物の形態で中和澱物として固定化する。そして、この中和処理により得られたスラリーを固液分離することで、スカンジウムを鉄から有効に分離することができる。なお、具体的には、以下の反応が生じる。
 Fe2+→Fe3++e
 Fe3++3NaOH→Fe(OH)+3Na
 本実施の形態に係るスカンジウムの回収方法においては、図1に示すように、スカンジウムを含有する酸性溶液(スカンジウム溶離液)から中和により鉄を除去するために添加するアルカリ溶液の少なくとも一部又は全部として、ニッケル酸化鉱石の湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いることを特徴としている。この除害排液は、硫化水素ガスをアルカリ溶液である水酸化ナトリウム溶液に吸収させて生成した溶液であり、すなわち、水酸化ナトリウム溶液に基づくアルカリ性の溶液である。
 このように、湿式製錬工程S1における除害処理工程S16を経て得られる、硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を再利用して、スカンジウム溶離液中の鉄を水酸化鉄として固定するためのアルカリ溶液の少なくとも一部に用いることで、従来の処理にて使用していた中和剤(新規な水酸化ナトリウム溶液)の使用量を減らすことができ、処理コストを有効に低減することができる。また、新規の水酸化物ナトリウム溶液の使用量が減少することから、排水量が増加することもない。
 また、上述のように、除害排液は硫化水素ガスをアルカリ溶液である水酸化ナトリウム溶液に吸収させる処理を経て排出された溶液であって、水酸化ナトリウム溶液に基づくアルカリ性の溶液であることから、脱鉄処理のためのアルカリ溶液として用いることで、スカンジウム溶離液中に含まれる2価鉄イオンを水酸化物として効果的に分離除去できる。
 また、除害排液は、湿式製錬工程S1における除害処理工程S16における除害塔内で処理されて得られた溶液であることから、除害塔内での循環や撹拌により、アルカリ濃度は均一化されている。したがって、このようなアルカリ濃度が均一な除害排液を再利用することで、中和反応の速度低下等に起因する不純物である鉄の除去不良等の発生を抑制することができ、安定的に処理することができる。
 さて、脱鉄工程S3における脱鉄処理においては、鉄の沈殿と共にスカンジウムが沈殿物化(共沈)してしまうことがあり、このことはスカンジウム回収率の低下をもたらすため、スカンジウムの鉄との共沈を防ぐことが好ましい。スカンジウムの沈殿を抑制して鉄のみを選択的に沈殿物化させるためには、スカンジウムを含有する酸性溶液(スカンジウム溶離液)にアルカリ溶液を添加したときのpH範囲を適切に制御することが有効となる。具体的には、アルカリ溶液を添加することで、スカンジウム溶離液のpHを3.5~4.5の範囲、好ましくは3.8~4.2の範囲に維持することで、スカンジウムの共沈を抑制しながら、例えば95質量%以上の除去率で鉄を分離除去することができる。
 pHが4.5を超えると、溶液中では局所的にはpHがさらに上昇し、スカンジウムまでもが共沈し始め、その結果としてスカンジウムの回収ロスが増加する。一方で、中和が不完全となりpHが3.5未満の状態では、鉄の除去率が不十分となり、高純度のスカンジウムが得られなくなる可能性がある。
 このように、脱鉄処理にアルカリ溶液添加後のスカンジウム溶離液のpHを適切な範囲に制御するにあたっては、添加するアルカリ溶液のpHを制御することが重要となる。
 したがって、本実施の形態においては、除害排液を少なくとも一部又は全部とするアルカリ溶液(脱鉄処理に用いるアルカリ溶液)として、pHを13.0以上14.0以下の範囲に調整したものを用いることを特徴としている。このように、除害排液を含むアルカリ溶液のpHを13.0以上14.0以下に調整して用いることで、適切にかつ安定的にスカンジウム溶離液のpH調整操作を行うことができ、鉄の十分に除去することが可能になるとともに、スカンジウムの共沈を抑制して回収ロスを低減することができる。
  [中和工程]
 中和工程S4は、脱鉄工程S3における処理を経て鉄が分離除去された脱鉄後液に対して中和処理を施すことによって水酸化スカンジウムを得る工程である。中和工程S4では、水酸化スカンジウムを生成させたのち、それを硫酸等の鉱酸に溶解させてスカンジウム溶解液を得る。
 具体的に、中和工程S4においては、例えば、炭酸カルシウム、消石灰、水酸化ナトリウム等の中和剤を使用し、脱鉄後液に添加して中和処理を施す。なお、カルシウム分を含む中和剤であると、石膏(硫酸カルシウム)が生成してスカンジウムに混在する可能性があるため、水酸化ナトリウム等の固形物を生成しない種類であるものが好ましい。
 また、中和処理におけるpH条件としては、中和剤を添加することによって6~9の範囲に調整されることが好ましい。pHが6未満であると、中和が不十分となってスカンジウムを十分に回収できない可能性がある。一方で、pHが9を超えると、中和剤の使用量が増加してコスト増となる点で好ましくない。
 このようにして硫化後液中のスカンジウムを水酸化物(水酸化スカンジウム)の沈殿物とし、得られたスラリーを固液分離する。
 その後、固液分離して回収した水酸化スカンジウムの沈殿物を、硫酸や塩酸等の鉱酸で溶解することによって、スカンジウムを濃縮させて溶液を得る。
  [溶媒抽出工程]
 溶媒抽出工程S5は、中和工程S4を経て得られたスカンジウムを濃縮させた溶液であるスカンジウム溶解液を溶媒抽出処理に付し、抽出剤に接触させて、スカンジウムを含有する抽残液を得る工程である。
 溶媒抽出工程S5における態様としては、特に限定されないが、スカンジウム溶解液と有機溶媒である抽出剤とを混合して、不純物と僅かなスカンジウムを抽出した抽出後有機溶媒とスカンジウムを残した抽残液とに分離する抽出工程と、抽出後有機溶媒に硫酸溶液を混合して抽出後有機溶媒に抽出された僅かなスカンジウムを水相に分離させて洗浄後液を得るスクラビング工程と、洗浄後有機溶媒に逆抽出剤を添加して洗浄後有機溶媒から不純物を逆抽出する逆抽出工程と、を有する溶媒抽出処理を行うことが好ましい。
 抽出処理においては、抽出剤を含む有機溶媒中に不純物を選択的に抽出し、不純物を含有する有機溶媒と抽残液とを得る。抽出剤としては、特に限定されないが、アミン系の抽出剤を用いることが好ましい。例えば、スカンジウムとの選択性が低く、また抽出時に中和剤が不要である等の特徴を有する、例えば、1級アミンであるPrimeneJM-T、2級アミンであるLA-1、3級アミンであるTNOA(Tri-n-octylamine)、TIOA(Tri-i-octylamine)等の商品名で知られるアミン系抽出剤を用いることが好ましい。このようなアミン系抽出剤を用いて溶媒抽出処理を行うことで、効率的に且つ効果的に不純物を抽出してスカンジウムと分離することができる。
 また、逆抽出処理においては、抽出処理を経て不純物を抽出した有機溶媒から、不純物を逆抽出する。具体的には、抽出剤を含む有機溶媒に逆抽出溶液(逆抽出始液)を添加して混合することによって、抽出処理とは逆の反応を生じさせて不純物を逆抽出し、不純物を含む逆抽出後液を得る。なお、逆抽出溶液としては、炭酸ナトリウム、炭酸カリウム等の炭酸塩を含有する溶液を用いることが好ましい。
  [スカンジウム回収工程]
 スカンジウム回収工程S6は、溶媒抽出工程S5における抽出処理にて得られた抽残液、及び、スクラビング処理を行った場合にはそのスクラビング後の洗浄液から、スカンジウムを回収する工程である。
 スカンジウム回収方法としては、特に限定されず公知の方法を用いることができる。例えば、スカンジウムを含有する抽残液にアルカリを添加して中和して水酸化スカンジウムの沈殿物として回収する方法や、抽残液にシュウ酸を添加してシュウ酸塩の沈殿物として回収する方法(シュウ酸塩化処理)を用いることができる。その中でも、シュウ酸塩化処理を用いた方法によれば、より一層効果的に不純物を分離することができ好ましい。
 シュウ酸塩化処理を用いた回収方法では、抽残液にシュウ酸を加えることでシュウ酸スカンジウムの沈殿物を生成させ、その後、シュウ酸スカンジウムを乾燥し、焙焼することによって酸化スカンジウムとして回収する。このシュウ酸塩化処理では、シュウ酸溶液を収容した反応槽に抽残液を添加してシュウ酸スカンジウムの沈殿物を生成させてもよい。
 焙焼処理は、シュウ酸塩化処理により得られたシュウ酸スカンジウムの沈殿物を水で洗浄し、乾燥させた後に、焙焼する処理である。この焙焼処理を経ることで、スカンジウムを極めて高純度な酸化スカンジウムとして回収することができる。焙焼処理条件は、特に限定されないが、例えば管状炉に入れて約900℃で2時間程度加熱すればよい。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 [実施例1]
 実施例1では、図1に示した工程図に基づくスカンジウムの回収方法を実行した。
 (湿式製錬処理)
 ニッケル酸化鉱石の湿式製錬工程S1として、以下の各工程を実行した。すなわち、先ず、ニッケル酸化鉱石を破砕して得られた鉱石スラリーをオートクレーブに装入し、250℃~270℃程度の高温下で硫酸を添加し、ニッケル、コバルト、及びスカンジウムを酸浸出するHLAP法による浸出処理を行った(浸出工程S11)。次に、浸出処理により得られた浸出スラリーを固液分離装置に供し、ニッケル、コバルト、及びスカンジウムを含有する浸出液と浸出残渣とに分離した(固液分離工程S12)。
 次に、得られた浸出液にアルカリを添加してpHを調整して鉄やアルミニウム等の不純物の大部分を分離し、固液分離して中和後液を得た(中和工程S13)。
 次に、得られた中和後液に硫化剤として硫化水素ガスを吹き込んで硫化反応を生じさせ、溶液中に含まれる亜鉛を硫化物の形態として分離した(脱亜鉛工程S14)。次いで、脱亜鉛処理後の溶液にさらに硫化水素ガスを吹き込んで硫化反応を生じさせ、溶液中にニッケルやコバルトを硫化物の形態として回収した(ニッケル回収工程S15)。一方、ニッケル回収工程では、ニッケル等が分離された溶液であって、スカンジウムを含有する酸性溶液である硫化後液が得られた。
 ここで、湿式製錬工程S1では、除害処理工程S16として、脱亜鉛工程S14及びニッケル回収工程S15における硫化処理後に残留した硫化水素ガスを、除害塔にて水酸化ナトリウム溶液に吸収させて除害する処理を行った。この除害処理により、硫化水素ガスを吸収させた水酸化ナトリウム溶液に基づくアルカリ性の除害排液が生じた。
 (スカンジウム回収処理)
 湿式製錬工程S1を経て得られた、スカンジウムを含有する酸性溶液である硫化後液を用いてスカンジウムを回収するために、以下の各工程を実行した。すなわち、先ず、硫化後液を、キレート樹脂をイオン交換樹脂として用いたイオン交換処理に付した(イオン交換処理工程S2)。具体的には、キレート樹脂に硫化後液を接触させることによってスカンジウムを吸着させ、それ以外の不純物成分と分離した。続いて、スカンジウムを吸着させたキレート樹脂に硫酸溶液を接触させることでスカンジウムを溶離し、スカンジウム溶離液を回収した。なお、キレート樹脂には、スカンジウムと共に鉄やアルミニウム、クロム等の不純物の一部も吸着していたため、硫酸溶液の濃度を調整することでスカンジウムのみを選択的に溶離させた。
 次に、回収したスカンジウム溶離液にアルカリ溶液を添加することによって、スカンジウム溶離液中に含まれる鉄を水酸化鉄の沈殿物として除去する脱鉄処理を行った(脱鉄工程S3)。このとき、スカンジウム溶離液に添加するアルカリ溶液として、湿式製錬工程S1における除害処理工程S16にて生じた除害排液を用いた。
 ここで、下記表1に、脱鉄処理の始液であるスカンジウム溶離液の組成を示す。このスカンジウム溶離液に、エアーを吹き込みながら、硫化水素ガスを水酸化ナトリウム溶液で除害処理して得られた除害排液を、水酸化ナトリウム濃度換算で1.0N(pH14.0)の濃度に調整した溶液として、添加した。なお、下記表2は、水酸化ナトリウム溶液の濃度とそのときの溶液のpHの対応表である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 そして、スターラーにて撹拌しながら反応温度を30℃~40℃とし、反応中のpHが4.0~4.5の範囲となるように維持しつつ120分間反応させ、脱鉄処理を行った。
 このような脱鉄処理の結果、スカンジウム溶離液に含まれていた鉄の95%を超える量を分離除去することができた(鉄除去率:>95%)。一方で、中和に伴うスカンジウムのロスは13%に抑制することができた(スカンジウム除去率(共沈率):13%)。
 ここで、鉄除去率(%)、スカンジウム除去率(%)は、それぞれ以下のように定義される。なお、脱鉄後液とは、脱鉄処理後に鉄を分離除去して得られた溶液をいう。
 鉄除去率(%)=(スカンジウム溶離液中の鉄量-脱鉄後液中の鉄量)/スカンジウム溶離液中の鉄量×100
 スカンジウム除去率(共沈率)(%)=(スカンジウム溶離液中のスカンジウム量-脱鉄後液中のスカンジウム量)/スカンジウム溶離液中のスカンジウム量×100
 また、脱鉄処理後のスラリーに対する濾過処理の時間は、従来処理(比較例1)と比べて1.4倍に増加したものの、除害排液を再利用したとこにより、発生する排水量が減少した。また、従来処理に比べて、新規に必要な水酸化ナトリウム溶液の添加量を有効に低減させることができた。
 なお、脱鉄工程S3における脱鉄処理の後、得られた脱鉄後液に中和処理を施すことで水酸化スカンジウムの沈殿物を生成させ、その後、その水酸化スカンジウムの沈殿物を硫酸により溶解してスカンジウム溶解液を得た(中和工程S4)。次いで、スカンジウム溶解液を溶媒抽出処理に付して不純物を分離した抽残液を得た(溶媒抽出工程S5)。そして、スカンジウムを含有する抽残液にシュウ酸を添加してシュウ酸スカンジウムを生成させ、得られたシュウ酸スカンジウムを管状炉に入れて焙焼することによって、高純度な酸化スカンジウムを得た(スカンジウム回収工程)。
 [実施例2]
 実施例2では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.5N(pH13.0~14.0の範囲)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加して処理したこと以外は、実施例1と同様に処理した。
 [実施例3]
 実施例3では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.1N(pH13.0)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加したこと以外は、実施例1と同様に処理した。
 [比較例1]
 比較例1では、従来処理と同様に、脱鉄工程での脱鉄処理においてアルカリ溶液として新規の水酸化ナトリウム溶液のみを添加した。具体的には、4Nの濃度に調整した新規の水酸化ナトリウム溶液を用い、これをスカンジウム溶離液に添加した。なお、このこと以外は、実施例1と同様に処理した。
 このような比較例1での脱鉄処理の結果、スカンジウム溶離液に含まれていた鉄の95%を超える量を分離除去することができ、スカンジウムのロスも15%であった。しかしながら、新規の水酸化ナトリウム溶液を用いたため、処理コストが非常に高くなる結果となった。
 [比較例2]
 比較例2では、8Nの濃度に調整した新規の水酸化ナトリウム溶液を用い、これをスカンジウム溶離液に添加したこと以外は、比較例1と同様に処理した。
 このような比較例2での脱鉄処理の結果、スカンジウム溶離液に含まれていた鉄の95%を超える量を分離除去することができたものの、スカンジウムのロスは30%にもなり、ロスが多くなった。また、比較例2でも当然に、新規の水酸化ナトリウム溶液を用いたため、処理コストが非常に高くなる結果となった。
 [比較例3]
 比較例3では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.05N(pH12.0~13.0の範囲)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加して処理したこと以外は、実施例1と同様に処理した。
 このような比較例3での脱鉄処理の結果、鉄除去率は85%程度と低く、スカンジウ溶離液から鉄を十分に除去することができなかった。また、脱鉄処理後のスラリーに対する濾過時間が、比較例1よりも10倍もかかるなど濾過性が低下した。
 [比較例4]
 比較例4では、脱鉄工程S3での脱鉄処理において、除害排液を、水酸化ナトリウム濃度換算で0.01N(pH12.0)の濃度に調整した溶液とし、これをスカンジウム溶離液に添加して処理したこと以外は、実施例1と同様に処理した。
 このような比較例4での脱鉄処理の結果、鉄除去率は85%程度と低く、スカンジウ溶離液から鉄を十分に除去することができなかった。また、脱鉄処理後のスラリーに対する濾過時間が、比較例1よりも51倍もかかるなど濾過性が著しく低下した。
 下記表3に、実施例1~3、比較例1~4における脱鉄処理の処理条件と処理結果をまとめて示す。なお、表中の濾過時間の評価は、従来処理(比較例1)により得られた脱鉄処理後のスラリーに対する濾過処理時間との相対評価であり、その従来処理の濾過時間を「1」としたときの相対値である。
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  スカンジウムを含有する酸性溶液にアルカリ溶液を添加することによって該酸性溶液に含まれる鉄を水酸化物として分離する脱鉄工程と、脱鉄後液に対して中和処理を施して水酸化スカンジウムを得る中和工程と、を含むスカンジウムの回収方法であって、
     前記スカンジウムを含有する酸性溶液は、ニッケル酸化鉱石を硫酸浸出して得られた浸出液に硫化水素ガスを添加して硫化処理を施し、ニッケルを含む硫化物と硫化後液とを生成させる湿式製錬により回収される該硫化後液であり、
     前記脱鉄工程では、前記硫化後液に添加するアルカリ溶液としてpHを13.0以上14.0以下の範囲に調整したものを用い、該アルカリ溶液の少なくとも一部として、前記湿式製錬における硫化処理後に残留した硫化水素ガスをアルカリ溶液に吸収させて除害した除害排液を用いる
     スカンジウムの回収方法。
  2.  前記アルカリ溶液は、水酸化ナトリウム溶液である
     請求項1に記載のスカンジウムの回収方法。
  3.  前記スカンジウムを含有する酸性溶液は、前記硫化後液に対してイオン交換樹脂を用いたイオン交換処理を施すことによって得られるスカンジウム溶離液である
     請求項1又は2に記載のスカンジウムの回収方法。
PCT/JP2018/047932 2018-02-20 2018-12-26 スカンジウムの回収方法 WO2019163284A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12020551269A PH12020551269A1 (en) 2018-02-20 2020-08-18 Method for recovering scandium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018027998A JP6852695B2 (ja) 2018-02-20 2018-02-20 スカンジウムの回収方法
JP2018-027998 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163284A1 true WO2019163284A1 (ja) 2019-08-29

Family

ID=67686760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047932 WO2019163284A1 (ja) 2018-02-20 2018-12-26 スカンジウムの回収方法

Country Status (3)

Country Link
JP (1) JP6852695B2 (ja)
PH (1) PH12020551269A1 (ja)
WO (1) WO2019163284A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327276B2 (ja) 2019-09-24 2023-08-16 住友金属鉱山株式会社 スカンジウムの回収方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010163657A (ja) * 2009-01-15 2010-07-29 Chuo Denki Kogyo Co Ltd 希土類元素の回収方法
JP2013139616A (ja) * 2012-01-06 2013-07-18 Sumitomo Metal Mining Co Ltd 希土類元素の回収方法
JP2015163729A (ja) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 スカンジウム回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010163657A (ja) * 2009-01-15 2010-07-29 Chuo Denki Kogyo Co Ltd 希土類元素の回収方法
JP2013139616A (ja) * 2012-01-06 2013-07-18 Sumitomo Metal Mining Co Ltd 希土類元素の回収方法
JP2015163729A (ja) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 スカンジウム回収方法

Also Published As

Publication number Publication date
JP2019143196A (ja) 2019-08-29
JP6852695B2 (ja) 2021-03-31
PH12020551269A1 (en) 2021-05-31

Similar Documents

Publication Publication Date Title
JP6004023B2 (ja) スカンジウムの回収方法
AU2010211729A1 (en) Method for collecting nickel from acidic sulfuric acid solution
CN101506394A (zh) 低铁含量的金属镍的生产
JP6439530B2 (ja) スカンジウムの回収方法
WO2016157629A1 (ja) ニッケル及びコバルトの混合硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
WO2018101039A1 (ja) イオン交換処理方法、スカンジウムの回収方法
AU2016315207B2 (en) Scandium oxide manufacturing method
JP6953988B2 (ja) 硫化剤の除去方法
WO2018043183A1 (ja) スカンジウムの回収方法
WO2019163284A1 (ja) スカンジウムの回収方法
JP6256491B2 (ja) スカンジウムの回収方法
WO2017094308A1 (ja) 硫化剤の除去方法
JP7196630B2 (ja) 硫酸水溶液からの有価金属の回収方法及び回収設備
JP6996328B2 (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
JP6888359B2 (ja) 金属酸化鉱の製錬方法
WO2021010165A1 (ja) スカンジウムの回収方法
JP7346962B2 (ja) スカンジウムの回収方法
JP6128166B2 (ja) 酸化スカンジウムの製造方法
WO2021059942A1 (ja) スカンジウムの回収方法
JP2022055767A (ja) 脱亜鉛処理方法、ニッケル酸化鉱石の湿式製錬方法
AU2002221333B2 (en) Hydroxide solids enrichment by precipitate contact
JP2019077928A (ja) 中和処理方法およびニッケル酸化鉱石の湿式製錬方法
JP2019171315A (ja) 湿式ニッケル製錬で生成される硫化後液の硫化水素除去方法
AU2002221333A1 (en) Hydroxide solids enrichment by precipitate contact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907408

Country of ref document: EP

Kind code of ref document: A1