WO2019163238A1 - Throttle device and fuel evaporative gas recovery system - Google Patents

Throttle device and fuel evaporative gas recovery system Download PDF

Info

Publication number
WO2019163238A1
WO2019163238A1 PCT/JP2018/043874 JP2018043874W WO2019163238A1 WO 2019163238 A1 WO2019163238 A1 WO 2019163238A1 JP 2018043874 W JP2018043874 W JP 2018043874W WO 2019163238 A1 WO2019163238 A1 WO 2019163238A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
valve
adjustment valve
throttle device
evaporative gas
Prior art date
Application number
PCT/JP2018/043874
Other languages
French (fr)
Japanese (ja)
Inventor
眞一 関口
裕美 川口
竜也 北岡
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Priority to CN201880073856.8A priority Critical patent/CN111356830B/en
Publication of WO2019163238A1 publication Critical patent/WO2019163238A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/32Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an air by-pass around the air throttle valve or with an auxiliary air passage, e.g. with a variably controlled valve therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a throttle device and a fuel evaporative gas recovery system having a structure for introducing fuel evaporative gas in a fuel tank of a motorcycle or the like into an intake system of an engine.
  • the canister for temporarily storing the evaporation gas, the evaporation gas from the fuel tank to the canister Evaporative fuel treatment in which the evaporative gas in the canister is purged into the intake passage due to the negative pressure generated in the intake passage.
  • Devices are known (see, for example, Patent Document 1 and Patent Document 2).
  • the purge amount of the evaporated gas purged from the canister into the intake passage depends on the negative pressure of the intake passage, and therefore it is difficult to arbitrarily control the purge amount. Therefore, it is necessary to set the passage area of the purge pipe according to the request for the purge amount for each vehicle.
  • the canister for temporarily storing the evaporation gas, the evaporation gas from the fuel tank to the canister
  • a canister arrangement structure or a fuel evaporative gas recovery device is known in which the evaporative gas is purged into the intake passage at a desired flow rate (see, for example, Patent Document 3 and Patent Document 4).
  • the above-described canister arrangement structure or fuel evaporative gas recovery device requires a purge valve equipped with a dedicated drive source.
  • a purge valve equipped with a dedicated drive source.
  • the number of parts is increased and the cost is increased. This is not desirable because it leads to an increase in size.
  • the present invention has been made in view of the above circumstances, and its object is to suppress the increase in dedicated parts, achieve cost reduction, downsizing, etc., and recover fuel evaporative gas.
  • a throttle device has a throttle valve that opens and closes a main passage, a main passage, a sub-passage that bypasses the throttle valve, a body having a gas passage that introduces fuel evaporative gas into the main passage, and a passage area of the sub-passage.
  • the first adjustment valve is arranged to be reciprocally movable in a predetermined direction, and the second adjustment valve is arranged to be opened and closed in conjunction with the movement of the first adjustment valve. It may be adopted.
  • the first adjustment valve and the second adjustment valve adopt a configuration in which the second adjustment valve is arranged to move in the valve opening direction when the first adjustment valve moves in the valve closing direction. May be.
  • the throttle device includes a first biasing spring that biases the first adjustment valve in the valve opening direction or the valve closing direction, and a second biasing spring that biases the second adjustment valve in the valve closing direction,
  • the adjustment valve may be configured to be maintained in contact with the first adjustment valve by the urging force of the second urging spring when driven to open and close.
  • a configuration may be adopted in which when the second adjustment valve is maintained in the closed state, the first adjustment valve is disposed so as not to contact the second adjustment valve.
  • the auxiliary passage includes an upstream passage that branches from the main passage, a downstream passage that joins the main passage, a communication passage that connects the upstream passage to the downstream passage, and the gas passage includes the auxiliary passage.
  • a configuration may be adopted that includes a downstream-side passage that forms a part of the communication passage and an introduction passage that communicates with the downstream-side communication.
  • the first adjustment valve is disposed so as to freely reciprocate in a predetermined direction
  • the second adjustment valve is disposed so as to be opened and closed in conjunction with the movement of the first adjustment valve.
  • the passages may be arranged in the fixed direction
  • the first adjustment valve may adjust the passage area of the communication passage
  • the second adjustment valve may adjust the passage area of the introduction passage.
  • the throttle device includes a casing that is detachably connected to the body and accommodates the second regulating valve and defines a passage communicating with the gas passage, and the casing includes a connector that can connect a pipe through which fuel evaporative gas passes.
  • the configuration may be adopted.
  • a fuel evaporative gas recovery system is a fuel evaporative gas recovery system that recovers fuel evaporative gas into an intake system of an engine, the throttle device including the casing mounted on the engine, a fuel tank, and a fuel tank interior
  • the canister for guiding and temporarily storing the fuel evaporative gas and a pipe for connecting the connector and the canister of the casing included in the throttle device.
  • the second adjustment valve may be configured to be opened and closed by drive control of a drive source based on throttle opening information included in the throttle device.
  • the increase in dedicated parts can be suppressed to achieve cost reduction, downsizing, etc., and fuel evaporative gas can be reliably recovered without being released to the outside. Can do.
  • FIG. 1 is a system diagram showing a fuel evaporative gas recovery system for an engine including a throttle device according to the present invention.
  • 1 is an external perspective view showing an embodiment of a throttle device according to the present invention.
  • FIG. 3 is an exploded perspective view of the throttle device shown in FIG. 2.
  • FIG. 3 is a partial cross-sectional perspective view in which a part of the throttle device shown in FIG. 2 is cut.
  • FIG. 3 is a partial cross-sectional perspective view in which a part of the throttle device shown in FIG. 2 is cut.
  • FIG. 3 is a cross-sectional view through the axis of the main passage of the throttle device shown in FIG. 2.
  • FIG. 5 is a partial cross-sectional view illustrating the operation of the first adjustment valve and the second adjustment valve included in the throttle device of the present invention and illustrating a state in which the second adjustment valve is closed.
  • FIG. 5 is a partial cross-sectional view illustrating the operation of the first and second regulating valves included in the throttle device of the present invention and showing a state in which the second regulating valve is opened. It is a fragmentary sectional view showing other embodiments of the 1st regulating valve contained in the throttle device of the present invention. It is a characteristic view which shows the operation characteristic of the 1st regulating valve and the 2nd regulating valve in embodiment shown in FIG.
  • FIG. 13 is a partial cross-sectional view showing another embodiment in which the casing, the first adjustment valve, and the second adjustment valve are changed in the throttle device shown in FIG. 12. It is a fragmentary sectional view which shows the modification of embodiment shown in FIG.
  • a throttle device 1 As shown in FIG. 1, a throttle device 1 according to an embodiment is assembled in the middle of an intake pipe 3b downstream of an air cleaner 3a in an intake system 3 of an engine 2 mounted on a motorcycle.
  • the throttle device 1 is provided with a rotational drive source 4 that rotationally drives the valve shaft 20 of the throttle valve 30 and a position sensor 5 that detects the opening position of the throttle valve 30.
  • the motorcycle includes an engine 2 including an injector 2a for fuel injection, an intake system 3, a fuel tank 6, a canister 7, a pipe 8a connecting the fuel tank 6 and the canister 7, a canister 7 and a throttle device 1.
  • a pipe 8b for connecting the connector 74 and a control unit 9 are provided.
  • the canister 7 includes a container 7a, an introduction connector 7b, a lead-out connector 7c, and a suction pipe 7d.
  • the container 7a stores activated carbon that temporarily adsorbs the fuel evaporative gas.
  • a pipe 8a that guides fuel evaporative gas from the fuel tank 6 is connected to the introduction connector 7b.
  • a pipe 8b that guides the fuel evaporative gas stored in the container 7a to the throttle device 1 is connected to the lead-out connector 7c.
  • the suction pipe 7d takes in outside air according to the pressure in the container 7a, and a filter and a check valve are arranged inside the suction pipe 7d.
  • the suction pipe 7b may be connected to the downstream side of the air cleaner 3a via a pipe instead of being opened to the outside air.
  • the fuel evaporative gas is supplied to the engine 2 by the throttle device 1, the fuel tank 6, the canister 7, the pipe 8 a that connects the fuel tank 6 and the canister 7, and the pipe 8 b that connects the connector 74 of the throttle device 1 and the canister 7.
  • a fuel evaporative gas recovery system that recovers to the intake system 3 is configured.
  • the canister 7 may be disposed adjacent to the fuel tank 6 without the pipe 8a.
  • the throttle device 1 drives the body 10, the valve shaft 20 having the axis S, the throttle valve 30, the first adjustment valve 41, the first biasing spring 42, and the first adjustment valve 41.
  • a casing 70 that houses the drive source 50, the second adjustment valve 61, the second urging spring 62, the second adjustment valve 61, and the second urging spring 62 and is connected to the body 10.
  • the body 10 is made of a metal material such as aluminum, and has a portion of the connecting flange portions 11a and 11b, the main passage 12, the valve shaft hole 13 through which the valve shaft 20 passes, the sub passage 14, and a part of the gas passage for introducing fuel evaporative gas.
  • An introductory passage 15 to be formed, a concave portion 16 that accommodates the first adjustment valve 41 and the first urging spring 42, an attachment portion 17 to which the drive source 50 is attached, and a flange portion 18 to which the casing 70 is attached are provided.
  • connection flange portions 11 a and 11 b are connected to the middle of the intake pipe 3 b so that the main passage 12 defines a part of the intake passage of the intake system 3.
  • the connecting flange portion 11a is connected to the upstream side
  • the connecting flange portion 11b is connected to the downstream side.
  • the main passage 12 is formed in a cylindrical shape extending in the direction of the axis L so that intake air as a fluid flows.
  • the valve shaft hole 13 is formed in a circular hole so that the valve shaft 20 is rotatably passed therethrough.
  • the valve shaft 20 may be supported via a bearing fitted in the valve shaft hole 13.
  • the sub-passage 14 is formed so as to branch from the main passage 12 and join the main passage 12 again so as to bypass the throttle valve 30.
  • the sub-passage 14 includes an upstream passage 14a branched from the main passage 12, a downstream passage 14b joining the main passage 12, and an upstream passage 14a as a downstream passage 14b. It is formed by a communication passage 14c that communicates.
  • the upstream side passage 14 a has a circular cross section on the upstream side of the throttle valve 30 and is formed so as to branch from the main passage 12 and extend obliquely.
  • the downstream side passage 14 b has a circular cross section and is formed so as to extend obliquely toward the main passage 12 on the downstream side of the throttle valve 30 so as to join.
  • the communication passage 14c has a circular cross section, and is formed to communicate the upstream passage 14a with the downstream passage 14b and to extend in the direction of the axis S1 as a predetermined direction.
  • the axis S ⁇ b> 1 is arranged in parallel with the axis S of the valve shaft 20.
  • the introduction passage 15 forms a part of a gas passage for introducing the fuel evaporative gas, has a circular cross section, is formed to extend in the direction of the axis S ⁇ b> 1, and communicates with the passage 71 of the casing 70.
  • a valve seat 15 a on which the second adjustment valve 61 is seated is formed on the upstream side of the introduction passage 15. That is, the introduction passage 15 is arranged coaxially with the communication passage 14c in the direction of the axis S1.
  • the introduction passage 15 and the communication passage 14c are processed with respect to the body 10 using a tool such as a drill, only the processing from the direction of the axis S1 is required. Can be reduced.
  • the valve shaft hole 13 is formed by drilling the body 10, since the axis S ⁇ b> 1 and the axis S are parallel, the valve shaft hole 13, the introduction passage can be obtained simply by translating the body 10. 15 and the communication path 14c can be processed, and the manufacturing cost can be reduced by reducing the setup as described above.
  • a gas passage for introducing the fuel evaporative gas into the main passage 12 is formed in the body 10 by the downstream passage 14 b that forms part of the introduction passage 15 and the sub passage 14. That is, the downstream passage 14b which is a part of the sub passage 14 is also used as the gas passage. Therefore, the position where the gas passage opens to the main passage 12 is the position where the downstream passage 14b of the sub passage 14 opens, and the structure can be simplified as compared with the case where a dedicated passage is provided as the gas passage.
  • the recess 16 extends in the direction of the axis S1 so as to accommodate the first adjustment valve 41 and the first biasing spring 42, and the first adjustment valve 41 rotates about the axis S1. In order to avoid this, it is formed to have a substantially elliptical cross section and to define two contact surfaces 16a.
  • the recess 16 is formed so as to communicate with the upstream side passage 14a and the communication passage 14c of the sub passage 14, and also functions as a part of the upstream side passage or the communication passage.
  • the attachment portion 17 is screwed with a fitting portion 17 a to which the joint portion 54 of the driving source 50 is fitted and a screw b 1 for fastening the presser member 56 that presses the joint portion 54.
  • a screw hole 17b is provided.
  • the flange portion 18 includes a joint surface 18a to which the casing 70 is joined, and a screw hole 18b into which a screw b2 for fastening the casing 70 is screwed.
  • the valve shaft 20 is formed of a metal material or the like so as to extend in the direction of the axis S in a circular cross section, and includes a slit 21 and a screw hole 22 into which the throttle valve 30 is fitted in a substantially central region. .
  • the throttle valve 30 fitted in the slit 21 is fastened by the screw b ⁇ b> 3, thereby holding the throttle valve 30 so as to be freely opened and closed.
  • the throttle valve 30 is formed in a substantially disc shape with a metal material or the like, and includes a circular hole 31 through which the screw b3 passes.
  • the throttle valve 30 is disposed so as to open and close the main passage 12 by passing the valve shaft 20 through the valve shaft hole 13 and then passing through the slit 21 and being fixed to the valve shaft 20 by the screw b3.
  • the throttle valve 30 opens the main passage 12 to a desired opening degree according to the rotation of the valve shaft 20.
  • the first adjustment valve 41 includes a tip portion 41a, a cylindrical portion 41b, a female screw 41c, a flange portion 41d, and two detent walls 41e.
  • the first adjustment valve 41 is appropriately driven by the drive source 50 in the idle operation region of the engine 2 to adjust the flow rate of the intake air flowing through the auxiliary passage 14.
  • the distal end portion 41a extends in the direction of the axis S1 and is formed in a conical shape, and is disposed so as to face the communication path 14c to define a measuring portion. Then, the first adjustment valve 41 moves in the direction of the axis S1, so that the tip portion 41a adjusts the passage area of the communication passage 14c. Moreover, the front-end
  • the cylindrical portion 41b is formed to extend in the direction opposite to the tip portion 41a in the direction of the axis S1.
  • the female screw 41c is formed inside the cylindrical portion 41b and is screwed with the male screw 52a of the drive source 50 over a predetermined stroke.
  • the flange portion 41d is formed around the cylindrical portion 41b and receives one end portion of the first biasing spring 42.
  • the two detent walls 41e are formed so as to extend from the outer peripheral region of the flange portion 41d in the direction of the axis S1 and to define a substantially elliptical outer contour. Then, as shown in FIG. 6, the two detent walls 41 e come into contact with the two contact surfaces 16 a of the recess 16 to restrict the rotation of the first adjustment valve 41 about the axis S ⁇ b> 1, and the tip portion It serves to guide 41a so as to freely reciprocate on the axis S1.
  • the first urging spring 42 is a compression type coil spring, and in the recess 16, one end engages with the flange 41 d of the first valve body 41, and the other end engages with the bottom wall of the recess 16. Thus, they are arranged in a compressed state by a predetermined amount.
  • the first urging spring 42 urges the first adjustment valve 41 in the axis S1 direction as a predetermined direction, that is, in the valve opening direction in which the tip portion 41a moves away from the communication path 14c.
  • rattling (backlash) in the direction of the axis S1 between the female screw 41c of the first adjustment valve 41 and the male screw 52a of the drive source 50 is prevented, and the passage area can be adjusted with high accuracy.
  • a first biasing spring that biases the first adjustment valve 41 in the valve closing direction may be employed.
  • the drive source 50 includes a stepping motor 51, an output shaft 52, a housing 53, a joint portion 54, a connector 55, and a pressing member 56.
  • the stepping motor 51 operates in synchronization with pulse power, and includes a rotor to which an output shaft 52 is coupled, a stator disposed around the rotor, and a winding (coil) wound around the stator. It has. As the configuration of the winding, two-phase, three-phase, five-phase, etc. can be applied.
  • the output shaft 52 outputs a rotational force from the stepping motor 51, and includes a male screw 52a formed in a region on the distal end side.
  • the male screw 52 a is screwed to the female screw 41 c of the first adjustment valve 41. Therefore, the first adjustment valve 41 moves in the valve closing direction or the valve opening direction along the axis S ⁇ b> 1 according to the rotation direction of the output shaft 52.
  • the housing 53 accommodates the stepping motor 51 and is formed so as to block the stepping motor 51 from the fluid flowing into the recess 16.
  • the joint portion 54 is formed integrally with the housing 53, and is fitted and joined to the fitting portion 17a in the attachment portion 17 of the body 10, and is pressed by the pressing member 56 and fastened by the screw b1.
  • the connector 55 has a terminal for supplying electric power to the stepping motor 51 and is electrically connected to the wiring of the motorcycle.
  • the presser member 56 is disposed so as to press the joint portion 54 from the outside after the joint portion 54 is fitted to the fitting portion 17a of the body 10, and is fastened to the body 10 by the screw b1.
  • the second regulating valve 61 is formed using a metal material so as to extend in the direction of the axis S1, and as shown in FIGS. 4, 5, and 8, a tip portion 61a, a columnar portion 61b, a conical surface 61c, and a flange portion. 61d and groove portions 61e and 61f are provided.
  • the second adjustment valve 61 flows through the introduction passage 15 as a gas passage by the driving force of the drive source 50 transmitted through the first adjustment valve 41 in the operation region excluding the idle operation region of the engine 2. The flow rate of the fuel evaporative gas is adjusted.
  • the distal end portion 61 a is formed in a columnar shape and is disposed so as to face the lower passage 14 b through the introduction passage 15.
  • the distal end portion 61 a is formed so as to be in contact with the distal end portion 41 a of the first adjustment valve 41 by the urging force of the second urging spring 62.
  • the tip portion 61 a is disposed so as not to contact the tip portion 41 a of the first adjustment valve 41.
  • the columnar portion 61 b is inserted into the guide passage 71 c of the casing 70 and guided so as to be movable in the direction of the axis S ⁇ b> 1.
  • the conical surface 61c is in close contact with the seating surface 15a formed at the edge of the introduction passage 15 in the closed state. Further, the conical surface 61c adjusts the passage area of the introduction passage 15 by appropriately moving the second adjustment valve 61 in the direction of the axis S1.
  • the flange portion 61d is inserted into the guide passage 71b of the casing 70 and is guided so as to be movable in the direction of the axis S1.
  • the groove portions 61e and 61f are formed so as to form a gap with the inner wall surfaces of the guide passages 71b and 71c of the casing 70 so that the fuel evaporative gas introduced through the pipe 8b passes toward the introduction passage 15.
  • the second urging spring 62 is a compression-type coil spring, and in the passage 71 of the casing 70, one end is engaged with the flange 61 d of the second adjustment valve 61, and the other end is a receiving surface 72 of the casing 70. And is arranged in a state compressed by a predetermined amount.
  • the second urging spring 62 urges the second adjustment valve 61 in the valve closing direction. That is, the urging force is exerted in the direction in which the distal end portion 61 a contacts the distal end portion 41 a of the first adjustment valve 41.
  • the second adjustment valve 61 when the second adjustment valve 61 is driven to open and close, the second adjustment valve 61 is moved to the first adjustment valve 41 by the second biasing spring 62. Maintained in contact. Thereby, the second adjustment valve 61 can be interlocked with the movement of the first adjustment valve 41.
  • the second adjustment valve 61 moves in the valve opening direction. According to this, when the second adjustment valve 61 is opened and the fuel evaporative gas flows from the introduction passage 15 into the downstream passage 14b, the first adjustment valve 41 moves in the valve closing direction. It is possible to suppress or prevent the evaporation gas from flowing into the recess 16 through the communication path 14c.
  • the 1st adjustment valve 41 is arrange
  • FIG. According to this, the closed state of the second regulating valve 61 can be reliably maintained, and the inflow of the fuel evaporative gas outside the desired operation region can be prevented.
  • the second adjustment valve 61 when the first adjustment valve 41 is driven by the drive source 50, the second adjustment valve 61 is driven to open and close in conjunction with the movement of the first adjustment valve 41. It is opened and closed by a driving force.
  • the drive source 50 for driving the first adjustment valve 41 is also used as the drive source for driving the second adjustment valve 61, a dedicated drive source for the second adjustment valve 61 is not required, Cost reduction and downsizing can be achieved by suppressing an increase in parts.
  • the casing 70 is formed using a metal material or the like, and includes a passage 71, a receiving surface 72, a flange portion 73, and a connector 74 as shown in FIGS.
  • the passage 71 is formed by a large-diameter passage 71a, guide passages 71b and 71c, and a small-diameter passage 71d that are sequentially arranged around the axis S1.
  • the passage 71 communicates with the introduction passage 15 and the downstream passage 14b, which are gas passages of the body 10.
  • the large-diameter passage 71a and the guide passages 71b and 71c also function to accommodate the second adjustment valve 61 and the second urging spring 62.
  • the flange portion 73 includes a joint surface 73a and a through hole 73b.
  • the joint surface 73 a is joined to the joint surface 18 a of the flange portion 18 of the body 10.
  • the through hole 73b is formed so as to pass a screw b2 screwed into the screw hole 18b of the flange portion 18 of the body 10.
  • the connector 74 is formed in a cylindrical shape so as to be able to connect a pipe 18b for guiding the fuel evaporative gas. That is, the casing 70 is detachably connected to the body 10 and accommodates the second adjustment valve 61 and defines a passage 71 that communicates with the introduction passage 15 and the downstream passage 14b that are gas passages.
  • the second adjustment valve 61 can be easily assembled to the body 10, and the second adjustment valve 61 according to the required specifications. Can be assembled as appropriate.
  • the throttle device 1 including the second adjustment valve 61 can be easily provided simply by performing additional processing or the like on the existing body. This makes it possible to share parts, reduce the number of parts, reduce manufacturing costs, and the like.
  • the control unit 9 controls the drive of the rotational drive source 4, the drive of the drive source 50, and the like. .
  • the throttle valve 30 is in a state in which the main passage 12 is closed, and the intake air flowing through the main passage 12 flows through the sub-passage 14 so as to bypass the throttle valve 30 and again into the main passage. It is sucked into the passage 12.
  • the first adjustment valve 41 is appropriately driven by the drive source 50, and the tip end portion 41a adjusts the passage area of the communication passage 14c to maintain the engine idle operation in a stable state.
  • the position of the first adjustment valve 41 in the direction of the axis S1 is appropriately adjusted by the drive source 50 in a non-contact state with the second adjustment valve 61, and the communication path 14c. Adjust the passage area. Thereby, the amount of intake air flowing through the auxiliary passage 14 is adjusted.
  • the second adjustment valve 61 is not in contact with the first adjustment valve 61 at all times, so that the driving force of the driving source 50 is not transmitted. Therefore, the second regulating valve 61 is maintained in the closed state by the conical surface 61c being in close contact with the valve seat 15a by the urging force of the second urging spring 62. As a result, the fuel evaporative gas in the canister 7 is blocked without flowing into the introduction passage 15 from the passage 71.
  • the throttle valve 30 is in a predetermined opening range and the main passage 12 is opened. Therefore, the intake air flowing through the main passage 12 flows through the main passage 12 and is sucked into the engine 2 without passing through the auxiliary passage 14. At this time, the first adjustment valve 41 does not need to be used to adjust the amount of intake air flowing through the auxiliary passage 14.
  • the drive source 50 is driven and controlled based on the detection signal of the position sensor 5 in order to open the second adjustment valve 61 and introduce the fuel evaporative gas into the intake system 3. That is, when the drive amount of the drive source 50 is controlled based on the opening degree information of the throttle valve 30 and other operation information, the second adjustment valve 61 appropriately moves in the direction of the axis S1 via the first adjustment valve 61. Then, the valve is opened, and the tip 61a adjusts the passage area of the introduction passage 15. As a result, the fuel evaporative gas flows through the introduction passage 15 and the downstream passage 14 b as gas passages and is introduced into the main passage 12.
  • the tip end portion 41 a is moved to the second adjustment valve 61.
  • the second adjustment valve 61 is urged by the urging force of the second urging spring 62 in conjunction with the amount of movement of the first adjustment valve 41 in the axis S1 direction. It moves in the valve opening direction while resisting.
  • the passage area of the introduction passage 15 is appropriately adjusted, and the flow rate of the fuel evaporative gas flowing into the main passage 12 via the introduction passage 15 and the downstream passage 14b as gas passages is adjusted.
  • the second adjustment valve 61 is driven to open and close by the drive control of the drive source 50 based on the opening information of the throttle valve 30 included in the throttle device 1.
  • the drive source 50 is also used as the drive source for the second regulating valve 61, thereby suppressing an increase in dedicated parts, thereby reducing cost and size.
  • the fuel evaporative gas can be reliably recovered without being released to the outside.
  • the second adjustment valve 61 that is opened and closed by the driving force of the drive source 50, the fuel evaporative gas can be introduced into the main passage 12 at a desired timing.
  • the opening position is not limited to the vicinity of the throttle valve 30 or the downstream side, and can be set in a wide area including the upstream side.
  • FIG. 12 shows another embodiment of the throttle device according to the present invention, which is the same as the above-described embodiment except that the first adjustment valve 43 in which the tip portion 41a of the first adjustment valve 41 is changed is adopted. It is. Therefore, about the same structure, the same code
  • the 1st adjustment valve 43 is provided with the front-end
  • the distal end portion 43a is formed contiguously with the conical surface 43a1 and conical surface 43a1 that define a gap with the inner peripheral surface of the communication path 14c, and the cylindrical surface 43a2 that slides in close contact with the inner peripheral surface of the communication path 14c. It has.
  • the conical surface 43a1 is used to adjust the passage area of the communication passage 14c in order to adjust the flow rate of the intake air flowing through the auxiliary passage 14 in the idle operation region.
  • the cylindrical surface 43a2 is used when the flow rate of the fuel evaporative gas flowing through the introduction passage 15 is adjusted by opening the second adjustment valve 61 in the operation region other than the idle operation region.
  • the first adjustment valve 43 in the idle operation region, the first adjustment valve 43 is maintained in a non-contact state with the second adjustment valve 61, and is driven in the direction of the axis S1 by the drive source 50 within the stroke range in which the conical surface 43a1 faces the communication path 14c.
  • the position at is appropriately adjusted to adjust the passage area. Thereby, the amount of intake air flowing through the auxiliary passage 14 is adjusted.
  • the tip is moved at the timing of transition from the conical surface 43a1 to the cylindrical surface 43a2 or the timing after the transition.
  • the portion 43 a contacts the tip portion 61 a of the second adjustment valve 61.
  • the second adjustment valve 61 is attached to the second urging spring 62 in conjunction with the amount of movement of the first adjustment valve 43 in the axis S1 direction. It moves in the valve opening direction against the force. Thereby, the 2nd regulating valve 61 opens, the passage area of the introduction passage 15 is adjusted suitably, and the flow volume of fuel evaporative gas is adjusted.
  • only the second adjustment valve 61 can be operated in a region where the first adjustment valve 43 does not exert an adjustment action on the sub-passage 14. Thereby, the adjustment operation of the first adjustment valve 43 and the adjustment operation of the second adjustment valve 61 can be completely separated to provide a play area.
  • the first adjustment valve 43 is in a state in which the communication path 14c is closed, so that fuel evaporative gas is reliably prevented from flowing into the recess 16 through the communication path 14c. can do.
  • the first adjustment valve 43 does not sit on the edge of the communication passage 14c, the female screw 41c and the male screw 52a are not clogged or locked due to excessive movement, and the desired screw feeding function is maintained. can do.
  • the first adjustment valve 44 includes a tip end portion 44a, a cylindrical portion 41b, a female screw 41c, a flange portion 41d, and two detent walls 41e.
  • the distal end portion 44a is conically formed with a conical surface 44a1 and a conical surface 44a1 that define a gap with the inner peripheral surface of the communication path 14c, and a cylindrical surface 44a2 that slides in close contact with the inner peripheral surface of the communication path 14c.
  • the rod 44a3 is provided on the tip side from the conical surface 44a1.
  • the conical surface 44a1 is used to adjust the passage area of the communication passage 14c in order to adjust the flow rate of the intake air flowing through the auxiliary passage 14 in the idle operation region.
  • the cylindrical surface 44a2 is used when the flow rate of the fuel evaporative gas flowing through the introduction passage 15 is adjusted by opening the second adjustment valve 64 in the operation region other than the idle operation region.
  • the rod 44a3 is formed so as to come into contact with the second adjustment valve 64 in a detachable manner.
  • the second adjustment valve 63 is formed in a thin disc shape having an area covering the introduction passage 15 and is arranged to be swingable around the support shaft 63a.
  • the second urging spring 64 is a torsion coil spring disposed around the support shaft 63a and urges the second adjustment valve 63 to rotate in the valve closing direction.
  • the casing 170 includes a passage 171, a flange portion 73, and a connector 74.
  • the passage 171 communicates with the introduction passage 15 and the downstream passage 14b, which are gas passages of the body 10.
  • the casing 170 is detachably connected to the body 10, and accommodates the second regulating valve 63 and the second urging spring 64 and defines a passage 171 that communicates with the introduction passage 15 and the downstream passage 14b that are gas passages. Is.
  • the first adjustment valve 44 in the idle operation region, the first adjustment valve 44 is maintained in a non-contact state with the second adjustment valve 64, and is driven by the drive source 50 in the direction of the axis S1 within a range of the stroke where the conical surface 44a1 faces the communication path 14c.
  • the position at is appropriately adjusted to adjust the passage area. Thereby, the amount of intake air flowing through the auxiliary passage 14 is adjusted.
  • the first adjusting valve 44 is driven in the valve closing direction by the drive source 50 in the operation region other than the idle operation region, the rod is moved at the timing when the transition from the conical surface 44a1 to the cylindrical surface 44a2 or after the transition. 44a3 contacts the second regulating valve 64.
  • the second adjustment valve 63 is attached to the second urging spring 64 in conjunction with the amount of movement of the first adjustment valve 44 in the axis S1 direction. It rotates in the valve opening direction against the force. As a result, the second adjustment valve 63 is opened, the passage area of the introduction passage 15 is appropriately adjusted, and the flow rate of the fuel evaporative gas is adjusted.
  • the second adjustment valve 63 can be operated in a region where the first adjustment valve 44 does not exert an adjustment action on the sub-passage 14.
  • the adjusting operation of the first adjusting valve 44 and the adjusting operation of the second adjusting valve 63 can be completely separated to provide a play area.
  • the first regulating valve 44 is in a state in which the communication path 14c is closed, so that fuel evaporative gas is reliably prevented from flowing into the recess 16 through the communication path 14c. can do.
  • the first adjustment valve 44 does not sit on the edge of the communication passage 14c, the internal screw 41c and the male screw 52a are not clogged or locked due to excessive movement, and the desired screw feeding function is maintained. can do.
  • the second adjustment valve 63 is a thin disk and the second biasing spring 64 is a torsion coil spring, the dimension in the direction of the axis S can be reduced, and therefore the casing 170 can also be reduced. The device can be made smaller.
  • FIG. 15 shows a modification of the embodiment shown in FIG.
  • a tip 41a1 in which the inclination angle or the outer contour of the tip 41a of the first regulator 41 is changed is adopted with respect to the form of the first regulator 41 and the communication passage 14c shown in FIG. Has been.
  • the inner diameter or shape of the communication path 14c may be changed as appropriate.
  • the concentration of the fuel evaporative gas guided from the canister 7 is high, the fuel evaporative gas is diluted in advance by intake air. Thereby, it can suppress thru
  • the drive source 50 provided with the stepping motor is shown as the drive source for driving the first adjustment valves 41, 43, 44.
  • the present invention is not limited to this, and the first adjustment valve is made higher.
  • a drive source including other actuators or a drive source including a DC motor and a speed reduction mechanism may be employed.
  • the present invention is not limited to this, and the second regulating valves 61 and 63 may be arranged so as to come into contact with each other as long as the valve closing state is guaranteed.
  • the 1st regulating valves 41 and 43 and the 2nd regulating valve 61 were separately formed separately was shown, it is not limited to this,
  • the 1st regulating valve of As long as the second adjustment valve is driven to open and close in conjunction with the movement, the first adjustment valve and the second adjustment valve may be integrally formed. In this case, the second biasing spring can be eliminated.
  • the present invention is not limited to this, and rattling or backlash is not provided. If it is the structure which does not produce etc., you may abolish a 1st biasing spring.
  • the auxiliary passage 14 including the upstream passage 14a, the downstream passage 14c, and the communication passage 14c is shown as the auxiliary passage.
  • the auxiliary passage 14 is not limited to this, and bypasses the throttle valve 30. As long as the flow rate can be adjusted by the first adjustment valve, another form of sub-passage may be adopted.
  • the gas passage provided in the body 10 is configured to also serve as the downstream passage 14b that is a part of the sub-passage 14, but is not limited thereto, and a dedicated gas passage is provided. It may be provided.
  • the present invention is not limited to this.
  • a configuration may be adopted in which a housing space for arranging the second adjustment valve is provided in the body, and a cover and a connector for closing the opening are provided.
  • the throttle device and the fuel evaporative gas recovery system of the present invention can achieve an increase in the number of dedicated parts, achieve cost reduction, downsizing, etc., and reliably release the fuel evaporative gas without releasing it to the outside. Since it can be collected, it can be applied to a motorcycle or the like that requires a reduction in size and cost, and is also useful in other vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

This throttle device comprises: a throttle valve (30) for opening and closing a main passage (12); a body (10) having the main passage (12), a secondary passage (14) bypassing the throttle valve (30), and gas passages (15, 14b) for introducing fuel evaporative gas into the main passage (12); a first adjustment valve (41) for adjusting the passage area of the secondary passage (14); a drive source (50) for driving the first adjustment valve (41); and a second adjustment valve (61) for adjusting the passage area of the gas passage (15). The second adjustment valve (61) is driven by the driving force from the drive source (50). Thus, a lower cost and a reduction in size can be achieved while suppressing an increase in specialized components, and fuel evaporative gas can be recovered reliably without being discharged to the outside.

Description

スロットル装置及び燃料蒸発ガス回収システムThrottle device and fuel evaporative gas recovery system
 本発明は、自動二輪車等の燃料タンクにおける燃料の蒸発ガスをエンジンの吸気系に導入する構造を備えたスロットル装置及び燃料蒸発ガス回収システムに関する。 The present invention relates to a throttle device and a fuel evaporative gas recovery system having a structure for introducing fuel evaporative gas in a fuel tank of a motorcycle or the like into an intake system of an engine.
 従来の自動二輪車等の車両においては、燃料タンク内で生じた燃料の蒸発ガスが大気中に放出されるのを防止するべく、蒸発ガスを一時的に貯留するキャニスタ、燃料タンクからキャニスタに蒸発ガスを導くチャージ配管、キャニスタからエンジンの吸気通路に蒸発ガスを導くパージ配管を設け、吸気通路内に発生する負圧により、キャニスタ内の蒸発ガスが吸気通路内にパージされるようにした蒸発燃料処理装置が知られている(例えば、特許文献1、特許文献2を参照)。 In vehicles such as conventional motorcycles, in order to prevent the evaporation gas of fuel generated in the fuel tank from being released into the atmosphere, the canister for temporarily storing the evaporation gas, the evaporation gas from the fuel tank to the canister Evaporative fuel treatment in which the evaporative gas in the canister is purged into the intake passage due to the negative pressure generated in the intake passage. Devices are known (see, for example, Patent Document 1 and Patent Document 2).
 しかしながら、上記の蒸発燃料処理装置においては、キャニスタから吸気通路内にパージされる蒸発ガスのパージ量は吸気通路の負圧に依存するため、パージ量を任意にコントロールするのが困難であり、又、車両毎のパージ量の要求に応じて、パージ配管の通路面積を設定する必要があった。 However, in the above evaporative fuel processing apparatus, the purge amount of the evaporated gas purged from the canister into the intake passage depends on the negative pressure of the intake passage, and therefore it is difficult to arbitrarily control the purge amount. Therefore, it is necessary to set the passage area of the purge pipe according to the request for the purge amount for each vehicle.
 また、他の自動二輪車等においては、燃料タンク内で生じた燃料の蒸発ガスが大気中に放出されるのを防止するべく、蒸発ガスを一時的に貯留するキャニスタ、燃料タンクからキャニスタに蒸発ガスを導くチャージ配管、キャニスタからエンジンの吸気通路に蒸発ガスを導くパージ配管、キャニスタの下流側又はパージ配管の途中に専用の駆動源を備えたパージバルブを設け、パージバルブを適宜制御することにより、キャニスタ内の蒸発ガスが所望の流量で吸気通路内にパージされるようにしたキャニスタ配置構造又は燃料蒸発ガス回収装置が知られている(例えば、特許文献3、特許文献4を参照)。 Further, in other motorcycles and the like, in order to prevent the evaporation gas of fuel generated in the fuel tank from being released into the atmosphere, the canister for temporarily storing the evaporation gas, the evaporation gas from the fuel tank to the canister A charge pipe that leads to the engine, a purge pipe that leads the evaporated gas from the canister to the intake passage of the engine, a purge valve equipped with a dedicated drive source on the downstream side of the canister or in the middle of the purge pipe, and by appropriately controlling the purge valve, A canister arrangement structure or a fuel evaporative gas recovery device is known in which the evaporative gas is purged into the intake passage at a desired flow rate (see, for example, Patent Document 3 and Patent Document 4).
 しかしながら、上記のキャニスタ配置構造又は燃料蒸発ガス回収装置では、専用の駆動源を備えたパージバルブが必要であり、特に、低コスト化が望まれる小型の自動二輪車においては、部品の増加、コストの増加、大型化を招くため、望ましいものではない。 However, the above-described canister arrangement structure or fuel evaporative gas recovery device requires a purge valve equipped with a dedicated drive source. Particularly, in a small motorcycle for which cost reduction is desired, the number of parts is increased and the cost is increased. This is not desirable because it leads to an increase in size.
特開2013-71486号公報JP 2013-71486 A 特開2013-19398号公報JP 2013-19398 A 特開2012-7537号公報JP 2012-7537 A 特開2016-8014号公報Japanese Patent Laid-Open No. 2016-8014
 本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは、専用部品の増加を抑えて、低コスト化、小型化等を達成でき、燃料蒸発ガスを回収できる、スロットル装置及び燃料蒸発ガス回収システムを提供することにある。 The present invention has been made in view of the above circumstances, and its object is to suppress the increase in dedicated parts, achieve cost reduction, downsizing, etc., and recover fuel evaporative gas. To provide a throttle device and a fuel evaporative gas recovery system.
 本発明のスロットル装置は、主通路を開閉するスロットル弁と、主通路,スロットル弁を迂回する副通路,及び主通路に燃料蒸発ガスを導入するガス通路を有するボディと、副通路の通路面積を調整する第1調整弁と、第1調整弁を駆動する駆動源と、上記駆動源に駆動力より駆動されてガス通路の通路面積を調整する第2調整弁と、を備えている。 A throttle device according to the present invention has a throttle valve that opens and closes a main passage, a main passage, a sub-passage that bypasses the throttle valve, a body having a gas passage that introduces fuel evaporative gas into the main passage, and a passage area of the sub-passage. A first adjustment valve to be adjusted, a drive source that drives the first adjustment valve, and a second adjustment valve that is driven by the drive source with a driving force to adjust the passage area of the gas passage.
 上記スロットル装置において、第1調整弁は、所定方向において往復動自在に配置され、第2調整弁は、第1調整弁の移動に連動して開閉駆動されるように配置されている、構成を採用してもよい。 In the throttle device, the first adjustment valve is arranged to be reciprocally movable in a predetermined direction, and the second adjustment valve is arranged to be opened and closed in conjunction with the movement of the first adjustment valve. It may be adopted.
 上記スロットル装置において、第1調整弁及び第2調整弁は、第1調整弁が閉弁方向に移動するとき第2調整弁が開弁方向に移動するように配置されている、構成を採用してもよい。 In the above throttle device, the first adjustment valve and the second adjustment valve adopt a configuration in which the second adjustment valve is arranged to move in the valve opening direction when the first adjustment valve moves in the valve closing direction. May be.
 上記スロットル装置において、第1調整弁を開弁方向又は閉弁方向に付勢する第1付勢バネと、第2調整弁を閉弁方向に付勢する第2付勢バネを含み、第2調整弁は、開閉駆動されるとき、第2付勢バネの付勢力により第1調整弁と接触した状態に維持される、構成を採用してもよい。 The throttle device includes a first biasing spring that biases the first adjustment valve in the valve opening direction or the valve closing direction, and a second biasing spring that biases the second adjustment valve in the valve closing direction, The adjustment valve may be configured to be maintained in contact with the first adjustment valve by the urging force of the second urging spring when driven to open and close.
 上記スロットル装置において、第2調整弁が閉弁状態に維持されるとき、第1調整弁は第2調整弁と非接触となるように配置されている、構成を採用してもよい。 In the above-described throttle device, a configuration may be adopted in which when the second adjustment valve is maintained in the closed state, the first adjustment valve is disposed so as not to contact the second adjustment valve.
 上記スロットル装置において、副通路は、主通路から分岐する上流側通路と、主通路に合流する下流側通路と、上流側通路を下流側通路に連通させる連通路を含み、ガス通路は、副通路の一部をなす下流側通路と、下流側連通に連通する導入通路を含む、構成を採用してもよい。 In the throttle device, the auxiliary passage includes an upstream passage that branches from the main passage, a downstream passage that joins the main passage, a communication passage that connects the upstream passage to the downstream passage, and the gas passage includes the auxiliary passage. A configuration may be adopted that includes a downstream-side passage that forms a part of the communication passage and an introduction passage that communicates with the downstream-side communication.
 上記スロットル装置において、第1調整弁は、所定方向において往復動自在に配置され、第2調整弁は、第1調整弁の移動に連動して開閉駆動されるように配置され、連通路及び導入通路は、上記定方向に配列され、第1調整弁は、連通路の通路面積を調整し、第2調整弁は、導入通路の通路面積を調整する、構成を採用してもよい。 In the above-described throttle device, the first adjustment valve is disposed so as to freely reciprocate in a predetermined direction, and the second adjustment valve is disposed so as to be opened and closed in conjunction with the movement of the first adjustment valve. The passages may be arranged in the fixed direction, the first adjustment valve may adjust the passage area of the communication passage, and the second adjustment valve may adjust the passage area of the introduction passage.
 上記スロットル装置において、ボディに着脱自在に連結されて第2調整弁を収容すると共にガス通路に連通する通路を画定するケーシングを含み、ケーシングは、燃料蒸発ガスを通す配管を接続し得るコネクタを含む、構成を採用してもよい。 The throttle device includes a casing that is detachably connected to the body and accommodates the second regulating valve and defines a passage communicating with the gas passage, and the casing includes a connector that can connect a pipe through which fuel evaporative gas passes. The configuration may be adopted.
 本発明の燃料蒸発ガス回収システムは、燃料蒸発ガスをエンジンの吸気系に回収する燃料蒸発ガス回収システムであって、エンジンに搭載された上記ケーシングを含むスロットル装置と、燃料タンクと、燃料タンク内の燃料蒸発ガスを導いて一時的に貯留するキャニスタと、スロットル装置に含まれるケーシングのコネクタとキャニスタとを接続する配管とを含む、構成となっている。 A fuel evaporative gas recovery system according to the present invention is a fuel evaporative gas recovery system that recovers fuel evaporative gas into an intake system of an engine, the throttle device including the casing mounted on the engine, a fuel tank, and a fuel tank interior The canister for guiding and temporarily storing the fuel evaporative gas and a pipe for connecting the connector and the canister of the casing included in the throttle device.
 上記燃料蒸発ガス回収システムにおいて、第2調整弁は、スロットル装置に含まれるスロットル弁の開度情報に基づく駆動源の駆動制御により開閉駆動される、構成を採用してもよい。 In the fuel evaporative gas recovery system, the second adjustment valve may be configured to be opened and closed by drive control of a drive source based on throttle opening information included in the throttle device.
 上記構成をなすスロットル装置及び燃料蒸発ガス回収システムによれば、専用部品の増加を抑えて、低コスト化、小型化等を達成でき、燃料蒸発ガスを外部に放出することなく確実に回収することができる。 According to the throttle device and the fuel evaporative gas recovery system configured as described above, the increase in dedicated parts can be suppressed to achieve cost reduction, downsizing, etc., and fuel evaporative gas can be reliably recovered without being released to the outside. Can do.
本発明に係るスロットル装置を含むエンジンの燃料蒸発ガス回収システムを示すシステム図である。1 is a system diagram showing a fuel evaporative gas recovery system for an engine including a throttle device according to the present invention. 本発明に係るスロットル装置の一実施形態を示す外観斜視図である。1 is an external perspective view showing an embodiment of a throttle device according to the present invention. 図2に示すスロットル装置の分解斜視図である。FIG. 3 is an exploded perspective view of the throttle device shown in FIG. 2. 図2に示すスロットル装置の一部を切断した部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view in which a part of the throttle device shown in FIG. 2 is cut. 図2に示すスロットル装置の一部を切断した部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view in which a part of the throttle device shown in FIG. 2 is cut. 図2に示すスロットル装置の主通路の軸線を通る断面図である。FIG. 3 is a cross-sectional view through the axis of the main passage of the throttle device shown in FIG. 2. 本発明のスロットル装置に含まれる駆動源、第1調整弁、及び第1付勢バネを示す分解斜視図である。It is a disassembled perspective view which shows the drive source, 1st adjustment valve, and 1st biasing spring which are contained in the throttle apparatus of this invention. 本発明のスロットル装置に含まれる第2調整弁、第2付勢バネ、及びケーシングを示す分解斜視図である。It is a disassembled perspective view which shows the 2nd regulating valve, the 2nd biasing spring, and casing which are contained in the throttle apparatus of this invention. 第2調整弁及び第2付勢バネがケーシング内に収容された状態を示す斜視断面図である。It is a perspective sectional view showing the state where the 2nd regulating valve and the 2nd energizing spring were stored in the casing. 本発明のスロットル装置に含まれる第1調整弁と第2調整弁の動作を説明するものであり、第2調整弁が閉弁した状態を示す部分断面図である。FIG. 5 is a partial cross-sectional view illustrating the operation of the first adjustment valve and the second adjustment valve included in the throttle device of the present invention and illustrating a state in which the second adjustment valve is closed. 本発明のスロットル装置に含まれる第1調整弁と第2調整弁の動作を説明するものであり、第2調整弁が開弁した状態を示す部分断面図である。FIG. 5 is a partial cross-sectional view illustrating the operation of the first and second regulating valves included in the throttle device of the present invention and showing a state in which the second regulating valve is opened. 本発明のスロットル装置に含まれる第1調整弁の他の実施形態を示す部分断面図である。It is a fragmentary sectional view showing other embodiments of the 1st regulating valve contained in the throttle device of the present invention. 図12に示す実施形態における第1調整弁及び第2調整弁の動作特性を示す特性図である。It is a characteristic view which shows the operation characteristic of the 1st regulating valve and the 2nd regulating valve in embodiment shown in FIG. 図12に示すスロットル装置において、ケーシング、第1調整弁、及び第2調整弁を変更した他の実施形態を示す部分断面図である。FIG. 13 is a partial cross-sectional view showing another embodiment in which the casing, the first adjustment valve, and the second adjustment valve are changed in the throttle device shown in FIG. 12. 図11に示す実施形態の変形例を示す部分断面図である。It is a fragmentary sectional view which shows the modification of embodiment shown in FIG.
 以下、本発明の一実施形態について、図1ないし図11を参照しつつ説明する。
 一実施形態に係るスロットル装置1は、図1に示すように、自動二輪車に搭載されるエンジン2の吸気系3において、エアクリーナ3aより下流側で吸気管3bの途中に組み付けられるものである。
 ここで、スロットル装置1には、スロットル弁30の弁軸20を回転駆動する回転駆動源4、スロットル弁30の開度位置を検出する位置センサ5が取り付けられている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a throttle device 1 according to an embodiment is assembled in the middle of an intake pipe 3b downstream of an air cleaner 3a in an intake system 3 of an engine 2 mounted on a motorcycle.
Here, the throttle device 1 is provided with a rotational drive source 4 that rotationally drives the valve shaft 20 of the throttle valve 30 and a position sensor 5 that detects the opening position of the throttle valve 30.
 また、自動二輪車は、燃料噴射用のインジェクタ2aを含むエンジン2、吸気系3の他に、燃料タンク6、キャニスタ7、燃料タンク6とキャニスタ7を接続する配管8a、キャニスタ7とスロットル装置1のコネクタ74を接続する配管8b、制御ユニット9を備えている。 The motorcycle includes an engine 2 including an injector 2a for fuel injection, an intake system 3, a fuel tank 6, a canister 7, a pipe 8a connecting the fuel tank 6 and the canister 7, a canister 7 and a throttle device 1. A pipe 8b for connecting the connector 74 and a control unit 9 are provided.
 キャニスタ7は、容器7a、導入コネクタ7b、導出コネクタ7c、吸入管7dを備えている。
 容器7aには、燃料蒸発ガスを一時的に吸着する活性炭が収容されている。
 導入コネクタ7bには、燃料タンク6から燃料蒸発ガスを導く配管8aが接続される。
 導出コネクタ7cには、容器7a内に貯留された燃料蒸発ガスをスロットル装置1に導く配管8bが接続される。
 吸入管7dは、容器7a内の圧力に応じて外気を取り入れるものであり、その内側にはフィルタ及び逆止弁が配置されている。
 尚、吸入管7bは、外気に開放されるのではなく、エアクリーナ3aの下流側に配管を介して接続されてもよい。
The canister 7 includes a container 7a, an introduction connector 7b, a lead-out connector 7c, and a suction pipe 7d.
The container 7a stores activated carbon that temporarily adsorbs the fuel evaporative gas.
A pipe 8a that guides fuel evaporative gas from the fuel tank 6 is connected to the introduction connector 7b.
A pipe 8b that guides the fuel evaporative gas stored in the container 7a to the throttle device 1 is connected to the lead-out connector 7c.
The suction pipe 7d takes in outside air according to the pressure in the container 7a, and a filter and a check valve are arranged inside the suction pipe 7d.
The suction pipe 7b may be connected to the downstream side of the air cleaner 3a via a pipe instead of being opened to the outside air.
 すなわち、スロットル装置1、燃料タンク6、キャニスタ7、燃料タンク6とキャニスタ7とを接続する配管8a、スロットル装置1のコネクタ74とキャニスタ7とを接続する配管8bにより、燃料蒸発ガスをエンジン2の吸気系3に回収する燃料蒸発ガス回収システムが構成されている。尚、キャニスタ7は、配管8aを廃止して、燃料タンク6に隣接して配置されてもよい。 That is, the fuel evaporative gas is supplied to the engine 2 by the throttle device 1, the fuel tank 6, the canister 7, the pipe 8 a that connects the fuel tank 6 and the canister 7, and the pipe 8 b that connects the connector 74 of the throttle device 1 and the canister 7. A fuel evaporative gas recovery system that recovers to the intake system 3 is configured. The canister 7 may be disposed adjacent to the fuel tank 6 without the pipe 8a.
 スロットル装置1は、図2ないし図4に示すように、ボディ10、軸線Sをもつ弁軸20、スロットル弁30、第1調整弁41、第1付勢バネ42、第1調整弁41を駆動する駆動源50、第2調整弁61、第2付勢バネ62、第2調整弁61及び第2付勢バネ62を収容すると共にボディ10に連結されたケーシング70を備えている。 As shown in FIGS. 2 to 4, the throttle device 1 drives the body 10, the valve shaft 20 having the axis S, the throttle valve 30, the first adjustment valve 41, the first biasing spring 42, and the first adjustment valve 41. And a casing 70 that houses the drive source 50, the second adjustment valve 61, the second urging spring 62, the second adjustment valve 61, and the second urging spring 62 and is connected to the body 10.
 ボディ10は、アルミニウム等の金属材料により形成され、接続フランジ部11a,11b、主通路12、弁軸20を通す弁軸孔13、副通路14、燃料蒸発ガスを導入するガス通路の一部をなす導入通路15、第1調整弁41及び第1付勢バネ42を収容する凹部16、駆動源50を取り付ける取付け部17、ケーシング70を取り付けるフランジ部18を備えている。 The body 10 is made of a metal material such as aluminum, and has a portion of the connecting flange portions 11a and 11b, the main passage 12, the valve shaft hole 13 through which the valve shaft 20 passes, the sub passage 14, and a part of the gas passage for introducing fuel evaporative gas. An introductory passage 15 to be formed, a concave portion 16 that accommodates the first adjustment valve 41 and the first urging spring 42, an attachment portion 17 to which the drive source 50 is attached, and a flange portion 18 to which the casing 70 is attached are provided.
 接続フランジ部11a,11bは、主通路12が吸気系3の吸気通路の一部を画定するように、吸気管3bの途中に連結される。
 ここでは、接続フランジ部11aが上流側に連結され、接続フランジ部11bが下流側に連結される。
 主通路12は、流体としての吸気が流れるように、軸線L方向に伸長する円筒状に形成されている。
 弁軸孔13は、弁軸20が回転自在に通されるように円形孔に形成されている。
 尚、弁軸20は、弁軸孔13に嵌合された軸受を介して支持されてもよい。
The connection flange portions 11 a and 11 b are connected to the middle of the intake pipe 3 b so that the main passage 12 defines a part of the intake passage of the intake system 3.
Here, the connecting flange portion 11a is connected to the upstream side, and the connecting flange portion 11b is connected to the downstream side.
The main passage 12 is formed in a cylindrical shape extending in the direction of the axis L so that intake air as a fluid flows.
The valve shaft hole 13 is formed in a circular hole so that the valve shaft 20 is rotatably passed therethrough.
The valve shaft 20 may be supported via a bearing fitted in the valve shaft hole 13.
 副通路14は、スロットル弁30を迂回するように、主通路12から分岐して再び主通路12に合流するように形成されている。
 ここで、副通路14は、図4及び図5に示すように、主通路12から分岐する上流側通路14a、主通路12に合流する下流側通路14b、上流側通路14aを下流側通路14bに連通させる連通路14cにより形成されている。
The sub-passage 14 is formed so as to branch from the main passage 12 and join the main passage 12 again so as to bypass the throttle valve 30.
Here, as shown in FIGS. 4 and 5, the sub-passage 14 includes an upstream passage 14a branched from the main passage 12, a downstream passage 14b joining the main passage 12, and an upstream passage 14a as a downstream passage 14b. It is formed by a communication passage 14c that communicates.
 上流側通路14aは、スロットル弁30よりも上流側において、円形断面で、主通路12から分岐して斜めに伸長するように形成されている。
 下流側通路14bは、円形断面で、スロットル弁30よりも下流側において主通路12に向けて斜めに伸長して合流するように形成されている。
 連通路14cは、円形断面で、上流側通路14aを下流側通路14bに連通させると共に所定方向としての軸線S1方向に伸長するように形成されている。
 ここで、軸線S1は、弁軸20の軸線Sと平行に配置されている。
The upstream side passage 14 a has a circular cross section on the upstream side of the throttle valve 30 and is formed so as to branch from the main passage 12 and extend obliquely.
The downstream side passage 14 b has a circular cross section and is formed so as to extend obliquely toward the main passage 12 on the downstream side of the throttle valve 30 so as to join.
The communication passage 14c has a circular cross section, and is formed to communicate the upstream passage 14a with the downstream passage 14b and to extend in the direction of the axis S1 as a predetermined direction.
Here, the axis S <b> 1 is arranged in parallel with the axis S of the valve shaft 20.
 導入通路15は、燃料蒸発ガスを導入するガス通路の一部をなすものであり、円形断面で、軸線S1方向に伸長するように形成されており、ケーシング70の通路71に連通している。
 導入通路15の上流側には、第2調整弁61が着座する弁座15aが形成されている。
 すなわち、導入通路15は、軸線S1方向において連通路14cと同軸上に配列されている。
The introduction passage 15 forms a part of a gas passage for introducing the fuel evaporative gas, has a circular cross section, is formed to extend in the direction of the axis S <b> 1, and communicates with the passage 71 of the casing 70.
A valve seat 15 a on which the second adjustment valve 61 is seated is formed on the upstream side of the introduction passage 15.
That is, the introduction passage 15 is arranged coaxially with the communication passage 14c in the direction of the axis S1.
 したがって、ボディ10に対して、ドリル等の工具を用いて、導入通路15及び連通路14cを加工する場合、軸線S1方向からの加工だけで済むため、加工に伴う段取りを削減して、製造コストを低減することができる。
 また、ボディ10に対して、同様にドリル加工にて弁軸孔13を形成する場合、軸線S1と軸線Sが平行であるため、ボディ10を平行移動させるだけで、弁軸孔13、導入通路15及び連通路14cを加工することができ、前述同様に、段取りの削減により、製造コストを低減することができる。
Accordingly, when the introduction passage 15 and the communication passage 14c are processed with respect to the body 10 using a tool such as a drill, only the processing from the direction of the axis S1 is required. Can be reduced.
Similarly, when the valve shaft hole 13 is formed by drilling the body 10, since the axis S <b> 1 and the axis S are parallel, the valve shaft hole 13, the introduction passage can be obtained simply by translating the body 10. 15 and the communication path 14c can be processed, and the manufacturing cost can be reduced by reducing the setup as described above.
 上記構成においては、導入通路15及び副通路14の一部をなす下流側通路14bにより、ボディ10において、主通路12に燃料蒸発ガスを導入するガス通路が形成されている。
 すなわち、ガス通路として、副通路14の一部である下流側通路14bが兼用されている。
 したがって、ガス通路が主通路12に開口する位置は、副通路14の下流側通路14bが開口する位置であり、ガス通路として専用の通路を設ける場合に比べて、構造を簡素化できる。
In the above configuration, a gas passage for introducing the fuel evaporative gas into the main passage 12 is formed in the body 10 by the downstream passage 14 b that forms part of the introduction passage 15 and the sub passage 14.
That is, the downstream passage 14b which is a part of the sub passage 14 is also used as the gas passage.
Therefore, the position where the gas passage opens to the main passage 12 is the position where the downstream passage 14b of the sub passage 14 opens, and the structure can be simplified as compared with the case where a dedicated passage is provided as the gas passage.
 凹部16は、図4ないし図6に示すように、第1調整弁41及び第1付勢バネ42を収容するように、軸線S1方向に伸長し、第1調整弁41が軸線S1回りに回転しないように略楕円形断面をなすと共に二つの接触面16aを画定するように形成されている。
 また、凹部16は、副通路14の上流側通路14a及び連通路14cに連通するように形成され、上流側通路又は連通路の一部としても機能する。
As shown in FIGS. 4 to 6, the recess 16 extends in the direction of the axis S1 so as to accommodate the first adjustment valve 41 and the first biasing spring 42, and the first adjustment valve 41 rotates about the axis S1. In order to avoid this, it is formed to have a substantially elliptical cross section and to define two contact surfaces 16a.
The recess 16 is formed so as to communicate with the upstream side passage 14a and the communication passage 14c of the sub passage 14, and also functions as a part of the upstream side passage or the communication passage.
 取付け部17は、図3及び図4に示すように、駆動源50の接合部54が嵌合される嵌合部17a、接合部54を押える押え部材56を締結するネジb1が捩じ込まれるネジ孔17bを備えている。
 フランジ部18は、ケーシング70が接合される接合面18a、ケーシング70を締結するネジb2が捩じ込まれるネジ孔18bを備えている。
As shown in FIGS. 3 and 4, the attachment portion 17 is screwed with a fitting portion 17 a to which the joint portion 54 of the driving source 50 is fitted and a screw b 1 for fastening the presser member 56 that presses the joint portion 54. A screw hole 17b is provided.
The flange portion 18 includes a joint surface 18a to which the casing 70 is joined, and a screw hole 18b into which a screw b2 for fastening the casing 70 is screwed.
 弁軸20は、図3に示すように、金属材料等により円形断面で軸線S方向に伸長するように形成され、略中央領域においてスロットル弁30を嵌め込むスリット21及びネジ孔22を備えている。
 弁軸20は、ボディ10の弁軸孔13に通された状態で、スリット21に嵌め込まれたスロットル弁30がネジb3により締結されることにより、スロットル弁30を開閉自在に保持する。
As shown in FIG. 3, the valve shaft 20 is formed of a metal material or the like so as to extend in the direction of the axis S in a circular cross section, and includes a slit 21 and a screw hole 22 into which the throttle valve 30 is fitted in a substantially central region. .
When the valve shaft 20 is passed through the valve shaft hole 13 of the body 10, the throttle valve 30 fitted in the slit 21 is fastened by the screw b <b> 3, thereby holding the throttle valve 30 so as to be freely opened and closed.
 スロットル弁30は、図3及び図6に示すように、金属材料等により略円板状に形成され、ネジb3を通す円孔31を備えている。
 スロットル弁30は、弁軸20が弁軸孔13に通された後に、スリット21に通されてネジb3により弁軸20に固定され、主通路12を開閉するように配置される。
 そして、スロットル弁30は、弁軸20の回転に応じて、所望の開度に主通路12を開放するようになっている。
As shown in FIGS. 3 and 6, the throttle valve 30 is formed in a substantially disc shape with a metal material or the like, and includes a circular hole 31 through which the screw b3 passes.
The throttle valve 30 is disposed so as to open and close the main passage 12 by passing the valve shaft 20 through the valve shaft hole 13 and then passing through the slit 21 and being fixed to the valve shaft 20 by the screw b3.
The throttle valve 30 opens the main passage 12 to a desired opening degree according to the rotation of the valve shaft 20.
 第1調整弁41は、図4ないし図7に示すように、先端部41a、円筒部41b、雌ネジ41c、鍔部41d、二つの回り止め壁41eを備えている。
 そして、第1調整弁41は、エンジン2のアイドル運転領域において、駆動源50により適宜駆動されて、副通路14を流れる吸気の流量を調整するようになっている。
As shown in FIGS. 4 to 7, the first adjustment valve 41 includes a tip portion 41a, a cylindrical portion 41b, a female screw 41c, a flange portion 41d, and two detent walls 41e.
The first adjustment valve 41 is appropriately driven by the drive source 50 in the idle operation region of the engine 2 to adjust the flow rate of the intake air flowing through the auxiliary passage 14.
 先端部41aは、軸線S1方向に伸長して円錐状に形成され、連通路14cに臨むように配置されて計量部を画定する。
 そして、第1調整弁41が軸線S1方向に移動することにより、先端部41aが連通路14cの通路面積を調整するようになっている。
 また、先端部41aは、図4及び図5に示すように、軸線S1方向において、第2調整弁61の先端部61aと接触し得るように形成されている。
The distal end portion 41a extends in the direction of the axis S1 and is formed in a conical shape, and is disposed so as to face the communication path 14c to define a measuring portion.
Then, the first adjustment valve 41 moves in the direction of the axis S1, so that the tip portion 41a adjusts the passage area of the communication passage 14c.
Moreover, the front-end | tip part 41a is formed so that it can contact with the front-end | tip part 61a of the 2nd adjustment valve 61 in the axis line S1 direction, as shown in FIG.4 and FIG.5.
 円筒部41bは、軸線S1方向において先端部41aと逆向きに伸長するように形成されている。
 雌ネジ41cは、円筒部41bの内側に形成され、駆動源50の雄ネジ52aと所定のストロークに亘って螺合するようになっている。
 鍔部41dは、円筒部41bの周りに形成され、第1付勢バネ42の一端部を受けるようになっている。
The cylindrical portion 41b is formed to extend in the direction opposite to the tip portion 41a in the direction of the axis S1.
The female screw 41c is formed inside the cylindrical portion 41b and is screwed with the male screw 52a of the drive source 50 over a predetermined stroke.
The flange portion 41d is formed around the cylindrical portion 41b and receives one end portion of the first biasing spring 42.
 二つの回り止め壁41eは、鍔部41dの外周領域から軸線S1方向に伸長すると共に略楕円状の外輪郭を画定するように形成されている。
 そして、二つの回り止め壁41eは、図6に示すように、凹部16の二つの接触面16aに接触して、第1調整弁41が軸線S1回りに回転するのを規制すると共に、先端部41aを軸線S1上において往復動自在にガイドする役割をなす。
The two detent walls 41e are formed so as to extend from the outer peripheral region of the flange portion 41d in the direction of the axis S1 and to define a substantially elliptical outer contour.
Then, as shown in FIG. 6, the two detent walls 41 e come into contact with the two contact surfaces 16 a of the recess 16 to restrict the rotation of the first adjustment valve 41 about the axis S <b> 1, and the tip portion It serves to guide 41a so as to freely reciprocate on the axis S1.
 第1付勢バネ42は、圧縮型のコイルバネであり、凹部16内において、一端部が第1弁体41の鍔部41dと係合し、他端部が凹部16の底壁と係合して、所定量圧縮した状態で配置されている。
 そして、第1付勢バネ42は、第1調整弁41を所定方向としての軸線S1方向に、すなわち、先端部41aが連通路14cから遠ざかる開弁方向に、付勢している。
 これにより、第1調整弁41の雌ネジ41cと駆動源50の雄ネジ52aの軸線S1方向におけるガタツキ(バックラッシ)が防止され、高精度に通路面積を調整することができる。
 尚、第1調整弁41を閉弁方向に付勢する第1付勢バネを採用してもよい。
The first urging spring 42 is a compression type coil spring, and in the recess 16, one end engages with the flange 41 d of the first valve body 41, and the other end engages with the bottom wall of the recess 16. Thus, they are arranged in a compressed state by a predetermined amount.
The first urging spring 42 urges the first adjustment valve 41 in the axis S1 direction as a predetermined direction, that is, in the valve opening direction in which the tip portion 41a moves away from the communication path 14c.
As a result, rattling (backlash) in the direction of the axis S1 between the female screw 41c of the first adjustment valve 41 and the male screw 52a of the drive source 50 is prevented, and the passage area can be adjusted with high accuracy.
A first biasing spring that biases the first adjustment valve 41 in the valve closing direction may be employed.
 駆動源50は、図4及び図7に示すように、ステッピングモータ51、出力軸52、ハウジング53、接合部54、コネクタ55、押え部材56を備えている。 4 and 7, the drive source 50 includes a stepping motor 51, an output shaft 52, a housing 53, a joint portion 54, a connector 55, and a pressing member 56.
 ステッピングモータ51は、パルス電力に同期して動作するものであり、出力軸52が結合された回転子、回転子の周りに配置された固定子、固定子に巻回された巻線(コイル)を備えている。巻線の構成としては、二相、三相、五相等を適用することができる。 The stepping motor 51 operates in synchronization with pulse power, and includes a rotor to which an output shaft 52 is coupled, a stator disposed around the rotor, and a winding (coil) wound around the stator. It has. As the configuration of the winding, two-phase, three-phase, five-phase, etc. can be applied.
 出力軸52は、ステッピングモータ51から回転力を出力するものであり、先端側の領域に形成された雄ネジ52aを備えている。
 雄ネジ52aは、第1調整弁41の雌ネジ41cに螺合される。
 したがって、出力軸52の回転方向に応じて、第1調整弁41は、軸線S1に沿って閉弁方向又は開弁方向に移動する。
The output shaft 52 outputs a rotational force from the stepping motor 51, and includes a male screw 52a formed in a region on the distal end side.
The male screw 52 a is screwed to the female screw 41 c of the first adjustment valve 41.
Therefore, the first adjustment valve 41 moves in the valve closing direction or the valve opening direction along the axis S <b> 1 according to the rotation direction of the output shaft 52.
 ハウジング53は、ステッピングモータ51を収容すると共に、凹部16内に流れ込む流体からステッピングモータ51を遮断するように形成されている。
 接合部54は、ハウジング53に一体的に形成され、ボディ10の取付け部17において、嵌合部17aに嵌合して接合され、押え部材56により押し付けられてネジb1により締結される。
The housing 53 accommodates the stepping motor 51 and is formed so as to block the stepping motor 51 from the fluid flowing into the recess 16.
The joint portion 54 is formed integrally with the housing 53, and is fitted and joined to the fitting portion 17a in the attachment portion 17 of the body 10, and is pressed by the pressing member 56 and fastened by the screw b1.
 コネクタ55は、ステッピングモータ51に電力を供給する端子を有し、自動二輪車の配線と電気的に接続されるようになっている。
 押え部材56は、接合部54をボディ10の嵌合部17aに嵌合した後、接合部54を外側から押え付けるように配置されて、ネジb1によりボディ10に締結される。
The connector 55 has a terminal for supplying electric power to the stepping motor 51 and is electrically connected to the wiring of the motorcycle.
The presser member 56 is disposed so as to press the joint portion 54 from the outside after the joint portion 54 is fitted to the fitting portion 17a of the body 10, and is fastened to the body 10 by the screw b1.
 第2調整弁61は、金属材料を用いて軸線S1方向に伸長するように形成され、図4、図5、図8に示すように、先端部61a、柱状部61b、円錐面61c、鍔部61d、溝部61e,61fを備えている。
 そして、第2調整弁61は、エンジン2のアイドル運転領域を除いた運転領域において、第1調整弁41を介して伝達される駆動源50の駆動力により、ガス通路としての導入通路15を流れる燃料蒸発ガスの流量を調整するようになっている。
The second regulating valve 61 is formed using a metal material so as to extend in the direction of the axis S1, and as shown in FIGS. 4, 5, and 8, a tip portion 61a, a columnar portion 61b, a conical surface 61c, and a flange portion. 61d and groove portions 61e and 61f are provided.
The second adjustment valve 61 flows through the introduction passage 15 as a gas passage by the driving force of the drive source 50 transmitted through the first adjustment valve 41 in the operation region excluding the idle operation region of the engine 2. The flow rate of the fuel evaporative gas is adjusted.
 先端部61aは、円柱状に形成され、導入通路15を通して下側通路14b内に臨むように配置される。
 そして、先端部61aは、第2付勢バネ62の付勢力により、第1調整弁41の先端部41aと接触し得るように形成されている。
 ここでは、第2調整弁61が閉弁状態にあるとき、先端部61aは、第1調整弁41の先端部41aと非接触となるように配置されている。
The distal end portion 61 a is formed in a columnar shape and is disposed so as to face the lower passage 14 b through the introduction passage 15.
The distal end portion 61 a is formed so as to be in contact with the distal end portion 41 a of the first adjustment valve 41 by the urging force of the second urging spring 62.
Here, when the second adjustment valve 61 is in the closed state, the tip portion 61 a is disposed so as not to contact the tip portion 41 a of the first adjustment valve 41.
 柱状部61bは、図8及び図9に示すように、ケーシング70のガイド通路71cに挿入されて、軸線S1方向に移動自在にガイドされる。
 円錐面61cは、閉弁状態で導入通路15の縁部に形成された座面15aと密接する。また、第2調整弁61が軸線S1方向に適宜移動することにより、円錐面61cが導入通路15の通路面積を調整するようになっている。
As shown in FIGS. 8 and 9, the columnar portion 61 b is inserted into the guide passage 71 c of the casing 70 and guided so as to be movable in the direction of the axis S <b> 1.
The conical surface 61c is in close contact with the seating surface 15a formed at the edge of the introduction passage 15 in the closed state. Further, the conical surface 61c adjusts the passage area of the introduction passage 15 by appropriately moving the second adjustment valve 61 in the direction of the axis S1.
 鍔部61dは、ケーシング70のガイド通路71bに挿入されて、軸線S1方向に移動自在にガイドされる。
 溝部61e,61fは、配管8bを介して導入される燃料蒸発ガスを導入通路15に向けて通すべく、ケーシング70のガイド通路71b,71cの内壁面と隙間をなすように形成されている。
The flange portion 61d is inserted into the guide passage 71b of the casing 70 and is guided so as to be movable in the direction of the axis S1.
The groove portions 61e and 61f are formed so as to form a gap with the inner wall surfaces of the guide passages 71b and 71c of the casing 70 so that the fuel evaporative gas introduced through the pipe 8b passes toward the introduction passage 15.
 第2付勢バネ62は、圧縮型のコイルバネであり、ケーシング70の通路71内において、一端部が第2調整弁61の鍔部61dと係合し、他端部がケーシング70の受け面72と係合して、所定量圧縮した状態で配置されている。
 そして、第2付勢バネ62は、第2調整弁61を閉弁方向に付勢している。すなわち、先端部61aが第1調整弁41の先端部41aに接触する向きに付勢力を及ぼす。
The second urging spring 62 is a compression-type coil spring, and in the passage 71 of the casing 70, one end is engaged with the flange 61 d of the second adjustment valve 61, and the other end is a receiving surface 72 of the casing 70. And is arranged in a state compressed by a predetermined amount.
The second urging spring 62 urges the second adjustment valve 61 in the valve closing direction. That is, the urging force is exerted in the direction in which the distal end portion 61 a contacts the distal end portion 41 a of the first adjustment valve 41.
 第1調整弁41及び第2調整弁61の上記配置関係によれば、第2調整弁61が開閉駆動されるとき、第2調整弁61は第2付勢バネ62により第1調整弁41に接触した状態に維持されている。
 これにより、第2調整弁61を第1調整弁41の移動に連動させることができる。
According to the above-described arrangement relationship between the first adjustment valve 41 and the second adjustment valve 61, when the second adjustment valve 61 is driven to open and close, the second adjustment valve 61 is moved to the first adjustment valve 41 by the second biasing spring 62. Maintained in contact.
Thereby, the second adjustment valve 61 can be interlocked with the movement of the first adjustment valve 41.
 また、第1調整弁41が閉弁方向に移動するとき、第2調整弁61は開弁方向に移動するようになっている。
 これによれば、第2調整弁61が開弁して、燃料蒸発ガスが導入通路15から下流側通路14bに流れ込む際に、第1調整弁41は閉弁方向に移動しているため、燃料蒸発ガスが連通路14cを通して凹部16内に流れ込むのを抑制ないし防止することができる。
Further, when the first adjustment valve 41 moves in the valve closing direction, the second adjustment valve 61 moves in the valve opening direction.
According to this, when the second adjustment valve 61 is opened and the fuel evaporative gas flows from the introduction passage 15 into the downstream passage 14b, the first adjustment valve 41 moves in the valve closing direction. It is possible to suppress or prevent the evaporation gas from flowing into the recess 16 through the communication path 14c.
 さらに、第2調整弁61が閉弁状態に維持されるとき、第1調整弁41は第2調整弁61と非接触となるように配置されている。
 これによれば、第2調整弁61の閉弁状態を確実に維持することができ、所望される運転領域以外での燃料蒸発ガスの流入を防止できる。
Furthermore, when the 2nd adjustment valve 61 is maintained in a valve closing state, the 1st adjustment valve 41 is arrange | positioned so that it may become non-contact with the 2nd adjustment valve 61. FIG.
According to this, the closed state of the second regulating valve 61 can be reliably maintained, and the inflow of the fuel evaporative gas outside the desired operation region can be prevented.
 上記構成によれば、第1調整弁41が駆動源50により駆動されると、第2調整弁61は、第1調整弁41の移動に連動して開閉駆動される、すなわち、駆動源50の駆動力により開閉駆動されるようになっている。
 このように、第1調整弁41を駆動する駆動源50を、第2調整弁61を駆動する駆動源として兼用するため、第2調整弁61のための専用の駆動源が不要であり、専用部品の増加を抑えて、低コスト化、小型化等を達成できる。
According to the above configuration, when the first adjustment valve 41 is driven by the drive source 50, the second adjustment valve 61 is driven to open and close in conjunction with the movement of the first adjustment valve 41. It is opened and closed by a driving force.
Thus, since the drive source 50 for driving the first adjustment valve 41 is also used as the drive source for driving the second adjustment valve 61, a dedicated drive source for the second adjustment valve 61 is not required, Cost reduction and downsizing can be achieved by suppressing an increase in parts.
 ケーシング70は、金属材料等を用いて形成され、図8及び図9に示すように、通路71、受け面72、フランジ部73、コネクタ74を備えている。
 通路71は、軸線S1を中心として順次配列された、大径通路71a、ガイド通路71b,71c、小径通路71dにより形成されている。
 そして、通路71は、ボディ10のガス通路である導入通路15及び下流側通路14bに連通する。
 また、大径通路71a及びガイド通路71b,71cは、第2調整弁61及び第2付勢バネ62を収容する機能もなす。
The casing 70 is formed using a metal material or the like, and includes a passage 71, a receiving surface 72, a flange portion 73, and a connector 74 as shown in FIGS.
The passage 71 is formed by a large-diameter passage 71a, guide passages 71b and 71c, and a small-diameter passage 71d that are sequentially arranged around the axis S1.
The passage 71 communicates with the introduction passage 15 and the downstream passage 14b, which are gas passages of the body 10.
The large-diameter passage 71a and the guide passages 71b and 71c also function to accommodate the second adjustment valve 61 and the second urging spring 62.
 フランジ部73は、接合面73a、貫通孔73bを備えている。
 接合面73aは、ボディ10のフランジ部18の接合面18aに接合される。
 貫通孔73bは、ボディ10のフランジ部18のネジ孔18bに捩じ込まれるネジb2を通すように形成されている。
The flange portion 73 includes a joint surface 73a and a through hole 73b.
The joint surface 73 a is joined to the joint surface 18 a of the flange portion 18 of the body 10.
The through hole 73b is formed so as to pass a screw b2 screwed into the screw hole 18b of the flange portion 18 of the body 10.
 コネクタ74は、円筒状に形成され、燃料蒸発ガスを導くための配管18bを接続し得るように形成されている。
 すなわち、ケーシング70は、ボディ10に着脱自在に連結されて、第2調整弁61を収容すると共にガス通路である導入通路15及び下流側通路14bに連通する通路71を画定するものである。
The connector 74 is formed in a cylindrical shape so as to be able to connect a pipe 18b for guiding the fuel evaporative gas.
That is, the casing 70 is detachably connected to the body 10 and accommodates the second adjustment valve 61 and defines a passage 71 that communicates with the introduction passage 15 and the downstream passage 14b that are gas passages.
 このように、第2調整弁61を収容するケーシング70を設けたことにより、ボディ10に対して第2調整弁61を容易に組み付けることができ、又、要求仕様に応じた第2調整弁61を適宜組み付けることができる。
 また、第1調整弁41及び駆動源50を備えた既存のスロットル装置が存在する場合、既存のボディに追加工等を施すだけで、第2調整弁61を備えたスロットル装置1を容易に提供することができ、部品の共用化、部品点数の削減、製造コストの低減等を達成することができる。
Thus, by providing the casing 70 that accommodates the second adjustment valve 61, the second adjustment valve 61 can be easily assembled to the body 10, and the second adjustment valve 61 according to the required specifications. Can be assembled as appropriate.
In addition, when there is an existing throttle device including the first adjustment valve 41 and the drive source 50, the throttle device 1 including the second adjustment valve 61 can be easily provided simply by performing additional processing or the like on the existing body. This makes it possible to share parts, reduce the number of parts, reduce manufacturing costs, and the like.
 次に、上記スロットル装置1を備えた燃料蒸発ガス回収システムにおける動作について、図10及び図11を参照して説明する。
 ここでは、位置センサ5の検知信号、エンジン2の運転情報、その他の関連情報に基づいて、制御ユニット9が、回転駆動源4の駆動、駆動源50の駆動等を制御するようになっている。
Next, the operation of the fuel evaporative gas recovery system including the throttle device 1 will be described with reference to FIGS. 10 and 11.
Here, based on the detection signal of the position sensor 5, the operation information of the engine 2, and other related information, the control unit 9 controls the drive of the rotational drive source 4, the drive of the drive source 50, and the like. .
 先ず、エンジン2がアイドル運転領域にあるとき、スロットル弁30は主通路12を閉じた状態にあり、主通路12を流れる吸気は、スロットル弁30を迂回するように副通路14を流れて再び主通路12に吸い込まれる。
 この状態において、第1調整弁41は、駆動源50により適宜駆動されて、先端部41aが連通路14cの通路面積を調整し、エンジンのアイドル運転を安定した状態に維持する。
First, when the engine 2 is in the idle operation region, the throttle valve 30 is in a state in which the main passage 12 is closed, and the intake air flowing through the main passage 12 flows through the sub-passage 14 so as to bypass the throttle valve 30 and again into the main passage. It is sucked into the passage 12.
In this state, the first adjustment valve 41 is appropriately driven by the drive source 50, and the tip end portion 41a adjusts the passage area of the communication passage 14c to maintain the engine idle operation in a stable state.
 すなわち、図10に示すように、アイドル運転領域において、第1調整弁41は、第2調整弁61と非接触の状態で、駆動源50により軸線S1方向における位置が適宜調整されて連通路14cの通路面積を調整する。これにより、副通路14を流れる吸気量が調整される。
 また、アイドル運転領域において、第2調整弁61は、第1調整弁61と常時非接触となるため、駆動源50の駆動力は伝達されない。
 したがって、第2調整弁61は、第2付勢バネ62の付勢力により円錐面61cが弁座15aに密接して、閉弁状態が維持される。
 これにより、キャニスタ7内の燃料蒸発ガスは、通路71から導入通路15に流れ込むことなく、遮断された状態となる。
That is, as shown in FIG. 10, in the idle operation region, the position of the first adjustment valve 41 in the direction of the axis S1 is appropriately adjusted by the drive source 50 in a non-contact state with the second adjustment valve 61, and the communication path 14c. Adjust the passage area. Thereby, the amount of intake air flowing through the auxiliary passage 14 is adjusted.
In the idle operation region, the second adjustment valve 61 is not in contact with the first adjustment valve 61 at all times, so that the driving force of the driving source 50 is not transmitted.
Therefore, the second regulating valve 61 is maintained in the closed state by the conical surface 61c being in close contact with the valve seat 15a by the urging force of the second urging spring 62.
As a result, the fuel evaporative gas in the canister 7 is blocked without flowing into the introduction passage 15 from the passage 71.
 一方、エンジン2がアイドル運転領域以外の運転領域にあるとき、スロットル弁30は所定の開度範囲にあり、主通路12を開放した状態となる。
 したがって、主通路12を流れる吸気は、副通路14を経ることなく、主通路12を流れてエンジン2に吸い込まれる。
 このとき、第1調整弁41は、副通路14を流れる吸気量を調整するために使用される必要は無い。
On the other hand, when the engine 2 is in an operation region other than the idle operation region, the throttle valve 30 is in a predetermined opening range and the main passage 12 is opened.
Therefore, the intake air flowing through the main passage 12 flows through the main passage 12 and is sucked into the engine 2 without passing through the auxiliary passage 14.
At this time, the first adjustment valve 41 does not need to be used to adjust the amount of intake air flowing through the auxiliary passage 14.
 そして、第2調整弁61を開弁させて燃料蒸発ガスを吸気系3に導入するべく、位置センサ5の検知信号に基づいて、駆動源50が駆動制御される。
 すなわち、スロットル弁30の開度情報及びその他の運転情報に基づいて、駆動源50の駆動量が制御されると、第2調整弁61が第1調整弁61を介して適宜軸線S1方向に移動して開弁し、先端部61aが導入通路15の通路面積を調整する。
 これにより、燃料蒸発ガスが、ガス通路としての導入通路15及び下流側通路14bを流れて、主通路12に導入される。
Then, the drive source 50 is driven and controlled based on the detection signal of the position sensor 5 in order to open the second adjustment valve 61 and introduce the fuel evaporative gas into the intake system 3.
That is, when the drive amount of the drive source 50 is controlled based on the opening degree information of the throttle valve 30 and other operation information, the second adjustment valve 61 appropriately moves in the direction of the axis S1 via the first adjustment valve 61. Then, the valve is opened, and the tip 61a adjusts the passage area of the introduction passage 15.
As a result, the fuel evaporative gas flows through the introduction passage 15 and the downstream passage 14 b as gas passages and is introduced into the main passage 12.
 具体的には、図11に示すように、アイドル運転領域以外の運転領域において、駆動源50により、第1調整弁41が閉弁方向に駆動されると、先端部41aが第2調整弁61の先端部61aと接触する。
 第1調整弁41がさらに閉弁方向に駆動されると、第1調整弁41の軸線S1方向における移動量に連動して、第2調整弁61が、第2付勢バネ62の付勢力に抗しつつ開弁方向に移動する。
 これにより、導入通路15の通路面積が適宜調整されて、ガス通路としての導入通路15及び下流側通路14bを経て主通路12に流れ込む燃料蒸発ガスの流量が調整される。
 上記のように、第2調整弁61は、スロットル装置1に含まれるスロットル弁30の開度情報に基づく駆動源50の駆動制御により開閉駆動されるようになっている。
Specifically, as shown in FIG. 11, when the first adjustment valve 41 is driven in the valve closing direction by the drive source 50 in the operation region other than the idle operation region, the tip end portion 41 a is moved to the second adjustment valve 61. In contact with the tip 61a.
When the first adjustment valve 41 is further driven in the valve closing direction, the second adjustment valve 61 is urged by the urging force of the second urging spring 62 in conjunction with the amount of movement of the first adjustment valve 41 in the axis S1 direction. It moves in the valve opening direction while resisting.
Thereby, the passage area of the introduction passage 15 is appropriately adjusted, and the flow rate of the fuel evaporative gas flowing into the main passage 12 via the introduction passage 15 and the downstream passage 14b as gas passages is adjusted.
As described above, the second adjustment valve 61 is driven to open and close by the drive control of the drive source 50 based on the opening information of the throttle valve 30 included in the throttle device 1.
 以上述べたように、上記構成のスロットル装置1によれば、駆動源50を第2調整弁61の駆動源として兼用することにより、専用部品の増加を抑えて、低コスト化、小型化等を達成でき、燃料蒸発ガスを外部に放出することなく確実に回収することができる。
 また、駆動源50の駆動力により開閉駆動される第2調整弁61を設けたことにより、燃料蒸発ガスを所望のタイミングで主通路12に導入することができるため、ガス通路が主通路12に開口する位置は、スロットル弁30の近傍あるいは下流側に限らず、上流側も含めた広い領域において設定することができる。
As described above, according to the throttle device 1 having the above-described configuration, the drive source 50 is also used as the drive source for the second regulating valve 61, thereby suppressing an increase in dedicated parts, thereby reducing cost and size. The fuel evaporative gas can be reliably recovered without being released to the outside.
Further, by providing the second adjustment valve 61 that is opened and closed by the driving force of the drive source 50, the fuel evaporative gas can be introduced into the main passage 12 at a desired timing. The opening position is not limited to the vicinity of the throttle valve 30 or the downstream side, and can be set in a wide area including the upstream side.
 図12は、本発明に係るスロットル装置の他の実施形態を示すものであり、第1調整弁41の先端部41aを変更した第1調整弁43を採用した以外は、前述の実施形態と同一である。したがって、同一の構成については、同一の符号を付して説明を省略する。 FIG. 12 shows another embodiment of the throttle device according to the present invention, which is the same as the above-described embodiment except that the first adjustment valve 43 in which the tip portion 41a of the first adjustment valve 41 is changed is adopted. It is. Therefore, about the same structure, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 この実施形態において、第1調整弁43は、先端部43a、円筒部41b、雌ネジ41c、鍔部41d、二つの回り止め壁41eを備えている。
 先端部43aは、連通路14cの内周面との間に隙間を画定する円錐面43a1、円錐面43a1に連続して形成され連通路14cの内周面に密接して摺動する円筒面43a2を備えている。
In this embodiment, the 1st adjustment valve 43 is provided with the front-end | tip part 43a, the cylindrical part 41b, the internal thread 41c, the collar part 41d, and the two detent walls 41e.
The distal end portion 43a is formed contiguously with the conical surface 43a1 and conical surface 43a1 that define a gap with the inner peripheral surface of the communication path 14c, and the cylindrical surface 43a2 that slides in close contact with the inner peripheral surface of the communication path 14c. It has.
 円錐面43a1は、アイドル運転領域において副通路14を流れる吸気の流量を調整するべく、連通路14cの通路面積を調整するために使用されるものである。
 円筒面43a2は、アイドル運転領域以外の運転領域において、第2調整弁61を開弁させて導入通路15を流れる燃料蒸発ガスの流量を調整する際に使用されるものでる。
The conical surface 43a1 is used to adjust the passage area of the communication passage 14c in order to adjust the flow rate of the intake air flowing through the auxiliary passage 14 in the idle operation region.
The cylindrical surface 43a2 is used when the flow rate of the fuel evaporative gas flowing through the introduction passage 15 is adjusted by opening the second adjustment valve 61 in the operation region other than the idle operation region.
 すなわち、アイドル運転領域において、第1調整弁43は、第2調整弁61と非接触の状態を維持しつつ、駆動源50により、円錐面43a1が連通路14cに臨むストロークの範囲で軸線S1方向における位置が適宜調整されて通路面積を調整する。これにより、副通路14を流れる吸気量が調整される。
 一方、アイドル運転領域以外の運転領域において、駆動源50により、第1調整弁43が閉弁方向に駆動されると、円錐面43a1から円筒面43a2に移行するタイミング又移行後のタイミングで、先端部43aが第2調整弁61の先端部61aと接触する。
That is, in the idle operation region, the first adjustment valve 43 is maintained in a non-contact state with the second adjustment valve 61, and is driven in the direction of the axis S1 by the drive source 50 within the stroke range in which the conical surface 43a1 faces the communication path 14c. The position at is appropriately adjusted to adjust the passage area. Thereby, the amount of intake air flowing through the auxiliary passage 14 is adjusted.
On the other hand, when the first adjusting valve 43 is driven in the valve closing direction by the drive source 50 in the operation region other than the idle operation region, the tip is moved at the timing of transition from the conical surface 43a1 to the cylindrical surface 43a2 or the timing after the transition. The portion 43 a contacts the tip portion 61 a of the second adjustment valve 61.
 そして、第1調整弁43がさらに閉弁方向に駆動されると、第1調整弁43の軸線S1方向における移動量に連動して、第2調整弁61が、第2付勢バネ62の付勢力に抗しつつ開弁方向に移動する。これにより、第2調整弁61が開弁して導入通路15の通路面積が適宜調整され、燃料蒸発ガスの流量が調整される。 When the first adjustment valve 43 is further driven in the valve closing direction, the second adjustment valve 61 is attached to the second urging spring 62 in conjunction with the amount of movement of the first adjustment valve 43 in the axis S1 direction. It moves in the valve opening direction against the force. Thereby, the 2nd regulating valve 61 opens, the passage area of the introduction passage 15 is adjusted suitably, and the flow volume of fuel evaporative gas is adjusted.
 この実施形態によれば、図13に示すように、第1調整弁43が副通路14に対して調整作用を及ぼさない領域において、第2調整弁61だけを作動させることができる。
 これにより、第1調整弁43の調整動作と第2調整弁61の調整動作を完全に分離して、遊び領域を設けることもできる。
 特に、第2調整弁61が開弁状態にあるとき、第1調整弁43は連通路14cを閉弁した状態にあるため、燃料蒸発ガスが連通路14cを通して凹部16に流れ込むのを確実に防止することができる。
 また、第1調整弁43は、連通路14cの縁部に着座しないため、過移動による雌ネジ41cと雄ネジ52aの食いつ付きやロックを生じることはなく、所期のネジ送り機能を維持することができる。
According to this embodiment, as shown in FIG. 13, only the second adjustment valve 61 can be operated in a region where the first adjustment valve 43 does not exert an adjustment action on the sub-passage 14.
Thereby, the adjustment operation of the first adjustment valve 43 and the adjustment operation of the second adjustment valve 61 can be completely separated to provide a play area.
In particular, when the second adjustment valve 61 is in the open state, the first adjustment valve 43 is in a state in which the communication path 14c is closed, so that fuel evaporative gas is reliably prevented from flowing into the recess 16 through the communication path 14c. can do.
Further, since the first adjustment valve 43 does not sit on the edge of the communication passage 14c, the female screw 41c and the male screw 52a are not clogged or locked due to excessive movement, and the desired screw feeding function is maintained. can do.
 図14は、図12に示すスロットル装置において、ケーシング70の代わりにケーシング170を採用し、第1調整弁43の先端部43aを変更した第1調整弁44を採用し、第2調整弁61の代わりに第2調整弁63を採用し、第2付勢バネ62の代わりに第2付勢バネ64を採用したものである。上記以外の構成は、前述の実施形態と同一である。したがって、同一の構成については、同一の符号を付して説明を省略する。 14 employs a casing 170 instead of the casing 70 in the throttle device shown in FIG. 12, employs a first regulating valve 44 in which the distal end portion 43 a of the first regulating valve 43 is changed, and configures the second regulating valve 61. Instead, the second adjustment valve 63 is adopted, and the second urging spring 64 is adopted instead of the second urging spring 62. The configuration other than the above is the same as that of the above-described embodiment. Therefore, about the same structure, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 この実施形態において、第1調整弁44は、先端部44a、円筒部41b、雌ネジ41c、鍔部41d、二つの回り止め壁41eを備えている。
 先端部44aは、連通路14cの内周面との間に隙間を画定する円錐面44a1、円錐面44a1に連続して形成され連通路14cの内周面に密接して摺動する円筒面44a2、円錐面44a1より先端側に形成されたロッド44a3を備えている。
In this embodiment, the first adjustment valve 44 includes a tip end portion 44a, a cylindrical portion 41b, a female screw 41c, a flange portion 41d, and two detent walls 41e.
The distal end portion 44a is conically formed with a conical surface 44a1 and a conical surface 44a1 that define a gap with the inner peripheral surface of the communication path 14c, and a cylindrical surface 44a2 that slides in close contact with the inner peripheral surface of the communication path 14c. The rod 44a3 is provided on the tip side from the conical surface 44a1.
 円錐面44a1は、アイドル運転領域において副通路14を流れる吸気の流量を調整するべく、連通路14cの通路面積を調整するために使用されるものである。
 円筒面44a2は、アイドル運転領域以外の運転領域において、第2調整弁64を開弁させて導入通路15を流れる燃料蒸発ガスの流量を調整する際に使用されるものである。
 ロッド44a3は、第2調整弁64と離脱可能に接触するように形成されている。
The conical surface 44a1 is used to adjust the passage area of the communication passage 14c in order to adjust the flow rate of the intake air flowing through the auxiliary passage 14 in the idle operation region.
The cylindrical surface 44a2 is used when the flow rate of the fuel evaporative gas flowing through the introduction passage 15 is adjusted by opening the second adjustment valve 64 in the operation region other than the idle operation region.
The rod 44a3 is formed so as to come into contact with the second adjustment valve 64 in a detachable manner.
 第2調整弁63は、導入通路15を覆う面積をなす薄板の円盤状に形成されて、支軸63a回りに揺動自在に配置されている。
 第2付勢バネ64は、支軸63aの周りに配置された捩りコイルバネであり、第2調整弁63を閉弁方向に回転付勢している。
The second adjustment valve 63 is formed in a thin disc shape having an area covering the introduction passage 15 and is arranged to be swingable around the support shaft 63a.
The second urging spring 64 is a torsion coil spring disposed around the support shaft 63a and urges the second adjustment valve 63 to rotate in the valve closing direction.
 ケーシング170は、通路171、フランジ部73、コネクタ74を備えている。
 通路171は、ボディ10のガス通路である導入通路15及び下流側通路14bに連通する。
 ケーシング170は、ボディ10に着脱自在に連結されて、第2調整弁63及び第2付勢バネ64を収容すると共にガス通路である導入通路15及び下流側通路14bに連通する通路171を画定するものである。
The casing 170 includes a passage 171, a flange portion 73, and a connector 74.
The passage 171 communicates with the introduction passage 15 and the downstream passage 14b, which are gas passages of the body 10.
The casing 170 is detachably connected to the body 10, and accommodates the second regulating valve 63 and the second urging spring 64 and defines a passage 171 that communicates with the introduction passage 15 and the downstream passage 14b that are gas passages. Is.
 すなわち、アイドル運転領域において、第1調整弁44は、第2調整弁64と非接触の状態を維持しつつ、駆動源50により、円錐面44a1が連通路14cに臨むストロークの範囲で軸線S1方向における位置が適宜調整されて通路面積を調整する。これにより、副通路14を流れる吸気量が調整される。
 一方、アイドル運転領域以外の運転領域において、駆動源50により、第1調整弁44が閉弁方向に駆動されると、円錐面44a1から円筒面44a2に移行するタイミング又移行後のタイミングで、ロッド44a3が第2調整弁64と接触する。
That is, in the idle operation region, the first adjustment valve 44 is maintained in a non-contact state with the second adjustment valve 64, and is driven by the drive source 50 in the direction of the axis S1 within a range of the stroke where the conical surface 44a1 faces the communication path 14c. The position at is appropriately adjusted to adjust the passage area. Thereby, the amount of intake air flowing through the auxiliary passage 14 is adjusted.
On the other hand, when the first adjusting valve 44 is driven in the valve closing direction by the drive source 50 in the operation region other than the idle operation region, the rod is moved at the timing when the transition from the conical surface 44a1 to the cylindrical surface 44a2 or after the transition. 44a3 contacts the second regulating valve 64.
 そして、第1調整弁44がさらに閉弁方向に駆動されると、第1調整弁44の軸線S1方向における移動量に連動して、第2調整弁63が、第2付勢バネ64の付勢力に抗しつつ開弁方向に回転する。これにより、第2調整弁63が開弁して導入通路15の通路面積が適宜調整され、燃料蒸発ガスの流量が調整される。 When the first adjustment valve 44 is further driven in the valve closing direction, the second adjustment valve 63 is attached to the second urging spring 64 in conjunction with the amount of movement of the first adjustment valve 44 in the axis S1 direction. It rotates in the valve opening direction against the force. As a result, the second adjustment valve 63 is opened, the passage area of the introduction passage 15 is appropriately adjusted, and the flow rate of the fuel evaporative gas is adjusted.
 この実施形態によれば、前述同様に、第1調整弁44が副通路14に対して調整作用を及ぼさない領域において、第2調整弁63だけを作動させることができる。
 これにより、第1調整弁44の調整動作と第2調整弁63の調整動作を完全に分離して、遊び領域を設けることもできる。
 特に、第2調整弁63が開弁状態にあるとき、第1調整弁44は連通路14cを閉弁した状態にあるため、燃料蒸発ガスが連通路14cを通して凹部16に流れ込むのを確実に防止することができる。
According to this embodiment, as described above, only the second adjustment valve 63 can be operated in a region where the first adjustment valve 44 does not exert an adjustment action on the sub-passage 14.
As a result, the adjusting operation of the first adjusting valve 44 and the adjusting operation of the second adjusting valve 63 can be completely separated to provide a play area.
In particular, when the second regulating valve 63 is in the open state, the first regulating valve 44 is in a state in which the communication path 14c is closed, so that fuel evaporative gas is reliably prevented from flowing into the recess 16 through the communication path 14c. can do.
 また、第1調整弁44は、連通路14cの縁部に着座しないため、過移動による雌ネジ41cと雄ネジ52aの食いつ付きやロックを生じることはなく、所期のネジ送り機能を維持することができる。
 さらに、第2調整弁63が薄板の円盤状であり、第2付勢バネ64が捩りコイルバネでるため、軸線S方向における寸法を小さくすることができ、それ故に、ケーシング170も小さくすることができ、装置をより小型化できる。
In addition, since the first adjustment valve 44 does not sit on the edge of the communication passage 14c, the internal screw 41c and the male screw 52a are not clogged or locked due to excessive movement, and the desired screw feeding function is maintained. can do.
Further, since the second adjustment valve 63 is a thin disk and the second biasing spring 64 is a torsion coil spring, the dimension in the direction of the axis S can be reduced, and therefore the casing 170 can also be reduced. The device can be made smaller.
 図15は、図11に示す実施形態の変形例を示すものである。
 この変形例においては、図11に示す第1調整弁41及び連通路14cの形態に対して、第1調整弁41の先端部41aの傾斜角度又は外輪郭の寸法を変更した先端部41a1が採用されている。尚、連通路14cの内径又は形状が適宜変更されてもよい。
 そして、図15に示すように、第2調整弁61が開弁状態にあるアイドル運転以外の領域において、主通路12を流れる吸気の一部が、連通路14cを通して下流側通路14bに流れ込むようになっている。
FIG. 15 shows a modification of the embodiment shown in FIG.
In this modified example, a tip 41a1 in which the inclination angle or the outer contour of the tip 41a of the first regulator 41 is changed is adopted with respect to the form of the first regulator 41 and the communication passage 14c shown in FIG. Has been. The inner diameter or shape of the communication path 14c may be changed as appropriate.
Then, as shown in FIG. 15, in a region other than the idle operation in which the second adjustment valve 61 is in the open state, a part of the intake air flowing through the main passage 12 flows into the downstream passage 14b through the communication passage 14c. It has become.
 このように、主通路12から連通路14cを通して導かれる吸気の一部が、導入通路15を通して導かれる燃料蒸発ガスに合流することにより、燃料蒸発ガスを予め吸気に混合させることができる。
 例えば、キャニスタ7から導かれる燃料蒸発ガスの濃度が高い場合、燃料蒸発ガスは吸気により予め希釈される。これにより、燃料蒸発ガスが下流側通路14bの壁面に付着するのを抑制ないし防止できる。それ故に、燃料蒸発ガスを効率良く主通路12に導入することができる。
In this way, a part of the intake air guided from the main passage 12 through the communication passage 14c merges with the fuel evaporative gas guided through the introduction passage 15, whereby the fuel evaporative gas can be mixed with the intake air in advance.
For example, when the concentration of the fuel evaporative gas guided from the canister 7 is high, the fuel evaporative gas is diluted in advance by intake air. Thereby, it can suppress thru | or prevent that fuel evaporative gas adheres to the wall surface of the downstream channel | path 14b. Therefore, the fuel evaporative gas can be efficiently introduced into the main passage 12.
 上記実施形態においては、第1調整弁41,43,44を駆動する駆動源として、ステッピングモータを備えた駆動源50を示したが、これに限定されるものではなく、第1調整弁を高精度に駆動できるものであれば、その他のアクチュエータを備えた駆動源、又はDCモータ及び減速機構等を備えた駆動源を採用してもよい。 In the above embodiment, the drive source 50 provided with the stepping motor is shown as the drive source for driving the first adjustment valves 41, 43, 44. However, the present invention is not limited to this, and the first adjustment valve is made higher. As long as it can be driven accurately, a drive source including other actuators or a drive source including a DC motor and a speed reduction mechanism may be employed.
 上記実施形態においては、第2調整弁61,63が閉弁状態にあるとき、第1調整弁41,43,44と第2調整弁61,63とが非接触となるように配置された場合を示したが、これに限定されるものではなく、第2調整弁61,63の閉弁状態が保証される構造であれば、両者が接触するように配置されてもよい。 In the above embodiment, when the second regulating valves 61, 63 are in the closed state, the first regulating valves 41, 43, 44 and the second regulating valves 61, 63 are arranged so as not to contact each other. However, the present invention is not limited to this, and the second regulating valves 61 and 63 may be arranged so as to come into contact with each other as long as the valve closing state is guaranteed.
 上記実施形態においては、第1調整弁41,43と第2調整弁61とが、別々に分離して形成された場合を示したが、これに限定されるものではなく、第1調整弁の移動に連動して第2調整弁を開閉駆動させる構成であれば、第1調整弁と第2調整弁を一体的に形成してもよい。この場合、第2付勢バネを廃止することができる。 In the said embodiment, although the case where the 1st regulating valves 41 and 43 and the 2nd regulating valve 61 were separately formed separately was shown, it is not limited to this, The 1st regulating valve of As long as the second adjustment valve is driven to open and close in conjunction with the movement, the first adjustment valve and the second adjustment valve may be integrally formed. In this case, the second biasing spring can be eliminated.
 上記実施形態においては、第1調整弁41,43,44を軸線S方向に付勢する第1付勢バネ42を採用した場合を示したが、これに限定されるものではなく、ガタツキやバックラッシ等を生じない構成であれば、第1付勢バネを廃止してもよい。 In the above embodiment, the case where the first urging spring 42 that urges the first adjusting valves 41, 43, 44 in the direction of the axis S is employed, but the present invention is not limited to this, and rattling or backlash is not provided. If it is the structure which does not produce etc., you may abolish a 1st biasing spring.
 上記実施形態においては、副通路として、上流側通路14a、下流側通路14c、及び連通路14cを含む副通路14を示したが、これに限定されるものではなく、スロットル弁30を迂回すると共に第1調整弁により流量が調整され得るものであれば、その他の形態をなす副通路を採用してもよい。 In the above embodiment, the auxiliary passage 14 including the upstream passage 14a, the downstream passage 14c, and the communication passage 14c is shown as the auxiliary passage. However, the auxiliary passage 14 is not limited to this, and bypasses the throttle valve 30. As long as the flow rate can be adjusted by the first adjustment valve, another form of sub-passage may be adopted.
 上記実施形態においては、ボディ10に設けられるガス通路として、副通路14の一部である下流側通路14bを兼用する構成を示したが、これに限定されるものではなく、専用のガス通路を設けてもよい。 In the embodiment described above, the gas passage provided in the body 10 is configured to also serve as the downstream passage 14b that is a part of the sub-passage 14, but is not limited thereto, and a dedicated gas passage is provided. It may be provided.
 上記実施形態においては、第2調整弁61,63を収容するケーシング70,170を採用した場合を示したが、これに限定されるものではない。例えば、第2調整弁の組み付けが可能であれば、ボディに第2調整弁を配置する収容空間を設け、その開口部を閉塞するカバー及びコネクタを設けた構成を採用してもよい。 In the above embodiment, the case where the casings 70 and 170 that accommodate the second regulating valves 61 and 63 are employed has been described, but the present invention is not limited to this. For example, if the second adjustment valve can be assembled, a configuration may be adopted in which a housing space for arranging the second adjustment valve is provided in the body, and a cover and a connector for closing the opening are provided.
 以上述べたように、本発明のスロットル装置及び燃料蒸発ガス回収システムは、専用部品の増加を抑えて、低コスト化、小型化等を達成でき、燃料蒸発ガスを外部に放出することなく確実に回収することができるため、小型化及び低コスト化が要求される自動二輪車等に適用できるのは勿論のこと、その他の車両においても有用である。 As described above, the throttle device and the fuel evaporative gas recovery system of the present invention can achieve an increase in the number of dedicated parts, achieve cost reduction, downsizing, etc., and reliably release the fuel evaporative gas without releasing it to the outside. Since it can be collected, it can be applied to a motorcycle or the like that requires a reduction in size and cost, and is also useful in other vehicles.
1 スロットル装置
2 エンジン
3 吸気系
6 燃料タンク
7 キャニスタ
8b 配管
10 ボディ
12 主通路
14 副通路
14a 上流側通路(副通路)
14b 下流側通路(副通路、ガス通路)
S1 軸線(所定方向)
14c 連通路(副通路)
15 導入通路(ガス通路)
30 スロットル弁
41,43,44 第1調整弁
42 第1付勢バネ
50 駆動源
61,63 第2調整弁
62,64 第2付勢バネ
70,170 ケーシング
71,171 通路
74 コネクタ
DESCRIPTION OF SYMBOLS 1 Throttle device 2 Engine 3 Intake system 6 Fuel tank 7 Canister 8b Piping 10 Body 12 Main passage 14 Sub passage 14a Upstream passage (sub passage)
14b Downstream passage (sub-passage, gas passage)
S1 axis (predetermined direction)
14c Communication passage (sub-passage)
15 Introduction passage (gas passage)
30 Throttle valves 41, 43, 44 First adjustment valve 42 First urging spring 50 Drive source 61, 63 Second adjustment valve 62, 64 Second urging spring 70, 170 Casing 71, 171 Passage 74 Connector

Claims (10)

  1.  主通路を開閉するスロットル弁と、
     前記主通路と,前記スロットル弁を迂回する副通路と,前記主通路に燃料蒸発ガスを導入するガス通路とを有するボディと、
     前記副通路の通路面積を調整する第1調整弁と、
     前記第1調整弁を駆動する駆動源と、
     前記駆動源の駆動力により駆動されて前記ガス通路の通路面積を調整する第2調整弁とを含む、スロットル装置。
    A throttle valve that opens and closes the main passage;
    A body having the main passage, a sub-passage bypassing the throttle valve, and a gas passage for introducing fuel evaporative gas into the main passage;
    A first adjustment valve for adjusting a passage area of the sub passage;
    A drive source for driving the first regulating valve;
    And a second adjusting valve that is driven by a driving force of the driving source to adjust a passage area of the gas passage.
  2.  前記第1調整弁は、所定方向において往復動自在に配置され、
     前記第2調整弁は、前記第1調整弁の移動に連動して開閉駆動されるように配置されている、
    ことを特徴とする請求項1又は2に記載のスロットル装置。
    The first adjustment valve is arranged to reciprocate in a predetermined direction,
    The second adjustment valve is arranged to be opened and closed in conjunction with the movement of the first adjustment valve.
    The throttle device according to claim 1 or 2, characterized by the above.
  3.  前記第1調整弁及び前記第2調整弁は、前記第1調整弁が閉弁方向に移動するとき前記第2調整弁が開弁方向に移動するように配置されている、
    ことを特徴とする請求項2に記載のスロットル装置。
    The first adjustment valve and the second adjustment valve are arranged such that when the first adjustment valve moves in the valve closing direction, the second adjustment valve moves in the valve opening direction.
    The throttle device according to claim 2.
  4.  前記第1調整弁を開弁方向又は閉弁方向に付勢する第1付勢バネと、前記第2調整弁を閉弁方向に付勢する第2付勢バネを含み、
     前記第2調整弁は、開閉駆動されるとき、前記第2付勢バネの付勢力により前記第1調整弁と接触した状態に維持される、
    ことを特徴とする請求項1ないし3いずれか一つに記載のスロットル装置。
    A first urging spring that urges the first adjustment valve in a valve opening direction or a valve closing direction; and a second urging spring that urges the second adjustment valve in a valve closing direction;
    When the second adjustment valve is driven to open and close, the second adjustment valve is maintained in contact with the first adjustment valve by the urging force of the second urging spring.
    The throttle device according to any one of claims 1 to 3, wherein:
  5.  前記第2調整弁が閉弁状態に維持されるとき、前記第1調整弁は前記第2調整弁と非接触となるように配置されている、
    ことを特徴とする請求項4に記載のスロットル装置。
    When the second regulating valve is maintained in a closed state, the first regulating valve is disposed so as not to contact the second regulating valve.
    The throttle device according to claim 4.
  6.  前記副通路は、前記主通路から分岐する上流側通路と、前記主通路に合流する下流側通路と、前記上流側通路を前記下流側通路に連通させる連通路を含み、
     前記ガス通路は、前記下流側通路と、前記下流側連通に連通する導入通路を含む、
    ことを特徴とする請求項1ないし5いずれか一つに記載のスロットル装置。
    The sub-passage includes an upstream passage that branches from the main passage, a downstream passage that joins the main passage, and a communication passage that connects the upstream passage to the downstream passage,
    The gas passage includes the downstream passage and an introduction passage communicating with the downstream communication.
    The throttle device according to any one of claims 1 to 5, wherein:
  7.  前記第1調整弁は、所定方向において往復動自在に配置され、
     前記第2調整弁は、前記第1調整弁の移動に連動して開閉駆動されるように配置され、
     前記連通路及び前記導入通路は、前記所定方向に配列され、
     前記第1調整弁は、前記連通路の通路面積を調整し、
     前記第2調整弁は、前記導入通路の通路面積を調整する、
    ことを特徴とする請求項6に記載のスロットル装置。
    The first adjustment valve is arranged to reciprocate in a predetermined direction,
    The second regulating valve is arranged to be opened and closed in conjunction with the movement of the first regulating valve,
    The communication passage and the introduction passage are arranged in the predetermined direction,
    The first adjusting valve adjusts a passage area of the communication passage;
    The second regulating valve adjusts a passage area of the introduction passage;
    The throttle device according to claim 6.
  8.  前記ボディに着脱自在に連結されて前記第2調整弁を収容すると共に前記ガス通路に連通する通路を画定するケーシングを含み、
     前記ケーシングは、燃料蒸発ガスを通す配管を接続し得るコネクタを含む、
    ことを特徴とする請求項1ないし7いずれか一つに記載のスロットル装置。
    A casing that is detachably connected to the body and contains the second regulating valve and defines a passage communicating with the gas passage;
    The casing includes a connector that can connect a pipe through which fuel evaporative gas passes.
    The throttle device according to any one of claims 1 to 7, characterized in that:
  9.  燃料蒸発ガスをエンジンの吸気系に回収する燃料蒸発ガス回収システムであって、
     前記エンジンに搭載された請求項8に記載のスロットル装置と、
     燃料タンクと、
     前記燃料タンク内の燃料蒸発ガスを導いて一時的に貯留するキャニスタと、
     前記スロットル装置のコネクタと前記キャニスタとを接続する配管と、を含む、
    ことを特徴とする燃料蒸発ガス回収システム。
    A fuel evaporative gas recovery system that recovers fuel evaporative gas into an engine intake system,
    The throttle device according to claim 8 mounted on the engine;
    A fuel tank,
    A canister for guiding and temporarily storing fuel evaporative gas in the fuel tank;
    A pipe connecting the connector of the throttle device and the canister,
    A fuel evaporative gas recovery system.
  10.  前記第2調整弁は、前記スロットル装置に含まれる前記スロットル弁の開度情報に基づく前記駆動源の駆動制御により開閉駆動される、
    ことを特徴とする請求項9に記載の燃料蒸発ガス回収システム。
    The second adjustment valve is driven to open and close by drive control of the drive source based on opening information of the throttle valve included in the throttle device.
    The fuel evaporative gas recovery system according to claim 9.
PCT/JP2018/043874 2018-02-23 2018-11-28 Throttle device and fuel evaporative gas recovery system WO2019163238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880073856.8A CN111356830B (en) 2018-02-23 2018-11-28 Throttling device and fuel evaporation gas recovery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030621A JP6933591B2 (en) 2018-02-23 2018-02-23 Throttle device and fuel evaporative emission recovery system
JP2018-030621 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163238A1 true WO2019163238A1 (en) 2019-08-29

Family

ID=67687498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043874 WO2019163238A1 (en) 2018-02-23 2018-11-28 Throttle device and fuel evaporative gas recovery system

Country Status (3)

Country Link
JP (1) JP6933591B2 (en)
CN (1) CN111356830B (en)
WO (1) WO2019163238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085117A1 (en) * 2020-10-21 2022-04-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015209A (en) * 2017-07-05 2019-01-31 株式会社ミクニ Fuel injection device
US20240309818A1 (en) 2023-03-17 2024-09-19 Mikuni Corporation Air amount adjustment valve and multiple throttle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296418A (en) * 1976-02-05 1977-08-13 Caterpillar Tractor Co Byypass valve
JPH04171261A (en) * 1990-11-01 1992-06-18 Aisan Ind Co Ltd Purge controller for fuel evaporation gas
JPH10259767A (en) * 1997-03-19 1998-09-29 Aisan Ind Co Ltd Evaporated fuel treating device for internal combustion engine
JPH10259766A (en) * 1997-03-18 1998-09-29 Toyota Motor Corp Purge amount regulating mechanism for evaporated fuel gas
JP2001234761A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Module for internal combustion engine and intake device
JP2001342913A (en) * 2000-05-31 2001-12-14 Keihin Corp Throttle valve control device
JP2010019185A (en) * 2008-07-11 2010-01-28 Denso Corp Intake system control device for internal combustion engine

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1915851A (en) * 1931-11-06 1933-06-27 Carter Carburetor Corp Carburetor
GB1364052A (en) * 1971-04-15 1974-08-21 Zenith Carburetter Co Ltd Cold starting devices for internal combustion engines
US4091780A (en) * 1975-02-07 1978-05-30 Nissan Motor Company, Ltd. Car knock preventive system
JPS5556191Y2 (en) * 1978-01-30 1980-12-26
JPS55154328U (en) * 1979-04-23 1980-11-07
JPS55156239A (en) * 1979-05-24 1980-12-05 Nippon Denso Co Ltd Air intake device of engine
JPS6045806B2 (en) * 1979-08-22 1985-10-12 株式会社日立製作所 Air flow meter using heating resistor
JPS57113932A (en) * 1980-12-29 1982-07-15 Hitachi Ltd Speed reducer
JPS57206762A (en) * 1981-06-15 1982-12-18 Suzuki Motor Co Ltd Egr control of internal combustion engine
JPS60243330A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Apparatus for controlling quantity of intake air supplied to engine
CN85103283B (en) * 1985-04-30 1988-05-18 株式会社日立制作所 Idling control device
DE19508625C1 (en) * 1995-03-10 1996-06-05 Audi Ag I.C. engine with electrostatic charge dissipation device
US5509395A (en) * 1995-03-31 1996-04-23 Siemens Electric Limited Canister purge flow regulator
JP3248439B2 (en) * 1996-12-13 2002-01-21 三菱自動車工業株式会社 Control device for in-cylinder injection type internal combustion engine
JP2001324761A (en) * 2000-05-16 2001-11-22 Toshiba Corp Display device
CN2450398Y (en) * 2000-11-28 2001-09-26 陈旺骏 Water and fuel collecting and adjusting device specially adapted for car
JP2004011602A (en) * 2002-06-11 2004-01-15 Aisan Ind Co Ltd Exhaust pressure control valve
JP2005337190A (en) * 2004-05-31 2005-12-08 Denso Corp Intake air throttle for internal combustion engine
CN1978878A (en) * 2005-12-05 2007-06-13 爱三工业株式会社 Engine air bypass structure
JP2009074367A (en) * 2007-09-18 2009-04-09 Yamaha Motor Co Ltd Controller of internal combustion engine and saddle-riding vehicle having the same
EP2497921A1 (en) * 2011-03-08 2012-09-12 Delphi Automotive Systems Luxembourg SA Throttle valve assembly
US8622074B2 (en) * 2012-01-26 2014-01-07 Ti Automotive Technology Center Gmbh Fuel tank venting system
WO2014020865A1 (en) * 2012-07-31 2014-02-06 トヨタ自動車株式会社 Fuel vapor processing apparatus
CN107110072B (en) * 2014-12-25 2019-07-09 爱三工业株式会社 Evaporated fuel treating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296418A (en) * 1976-02-05 1977-08-13 Caterpillar Tractor Co Byypass valve
JPH04171261A (en) * 1990-11-01 1992-06-18 Aisan Ind Co Ltd Purge controller for fuel evaporation gas
JPH10259766A (en) * 1997-03-18 1998-09-29 Toyota Motor Corp Purge amount regulating mechanism for evaporated fuel gas
JPH10259767A (en) * 1997-03-19 1998-09-29 Aisan Ind Co Ltd Evaporated fuel treating device for internal combustion engine
JP2001234761A (en) * 2000-02-21 2001-08-31 Hitachi Ltd Module for internal combustion engine and intake device
JP2001342913A (en) * 2000-05-31 2001-12-14 Keihin Corp Throttle valve control device
JP2010019185A (en) * 2008-07-11 2010-01-28 Denso Corp Intake system control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085117A1 (en) * 2020-10-21 2022-04-28
WO2022085117A1 (en) * 2020-10-21 2022-04-28 株式会社ミクニ Throttle device and method for controlling same
JP7458499B2 (en) 2020-10-21 2024-03-29 株式会社ミクニ throttle device

Also Published As

Publication number Publication date
JP2019143586A (en) 2019-08-29
CN111356830A (en) 2020-06-30
JP6933591B2 (en) 2021-09-08
CN111356830B (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2019163238A1 (en) Throttle device and fuel evaporative gas recovery system
US10415511B2 (en) Evaporated fuel processing devices
US7694662B2 (en) Bypass-intake-flow control apparatus
KR101387627B1 (en) Exhaust-Gas Recirculation Valve
US20110291036A1 (en) Valve driving device
US20020185116A1 (en) Exhaust gas recirculation system
US20080308079A1 (en) Exhaust Gas Recycling Device Comprising a Flow Regulating and Selectively Connecting Valve
US20070068581A1 (en) Throttle valve control device
WO2007145311A1 (en) Valve device and device for controlling idle air amount
JP2001303983A (en) Throttle device for internal combustion engine
WO2010110212A1 (en) Air intake control device for engine
CN112639270B (en) Gas-saving device
EP2861861A1 (en) Canister purge valve with integrated vacuum generator and check valves
JP7458499B2 (en) throttle device
JP2019211017A (en) Fluid control valve and evaporation fuel treatment device
JP6963519B2 (en) Throttle device
JP4113003B2 (en) Flow control device
EP1686256B1 (en) Exhaust gas recycling valve for a vehicle
JP2007170521A (en) Valve device
JP6029208B2 (en) Engine intake air amount control device
WO2023223522A1 (en) Valve device and valve device production method
KR20240084898A (en) Spring Slide Abrasion Prevention type 3 Way EGR Valve Unit EGR(and Exhaust Gas Recirculation System thereby
JP2006152816A (en) Intake control device of engine
JP2006322432A (en) Hole detecting device for fuel tank
JP2005337114A (en) Throttle control device for motorcycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907001

Country of ref document: EP

Kind code of ref document: A1