WO2023223522A1 - Valve device and valve device production method - Google Patents

Valve device and valve device production method Download PDF

Info

Publication number
WO2023223522A1
WO2023223522A1 PCT/JP2022/020902 JP2022020902W WO2023223522A1 WO 2023223522 A1 WO2023223522 A1 WO 2023223522A1 JP 2022020902 W JP2022020902 W JP 2022020902W WO 2023223522 A1 WO2023223522 A1 WO 2023223522A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
valve
stator
valve device
Prior art date
Application number
PCT/JP2022/020902
Other languages
French (fr)
Japanese (ja)
Inventor
孝治 弓達
拓朗 頭井
暁 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024521502A priority Critical patent/JPWO2023223522A1/ja
Priority to PCT/JP2022/020902 priority patent/WO2023223522A1/en
Publication of WO2023223522A1 publication Critical patent/WO2023223522A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Definitions

  • the present disclosure relates to a valve device and a method for manufacturing the valve device.
  • Patent Document 1 discloses a valve device.
  • the valve device disclosed in Patent Document 1 includes a spiral spring as one urging means for urging the valve in the valve-closing direction.
  • the valve device disclosed in Patent Document 1 employs a screw structure as a structure for converting rotation of a rotor into axial movement of a motor shaft.
  • a female thread is formed on the rotor
  • a male thread is formed on the motor shaft, and these threads are connected to each other.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a valve device that can adjust the torque of a spiral spring while the axial position of the shaft is fixed. .
  • a valve device includes a rotor that is rotatably supported inside a stator, a shaft that is supported in a center hole of the rotor so as to be able to reciprocate in the axial direction, and that moves in the axial direction as the rotor rotates.
  • a valve is installed at the tip of the shaft and opens and closes a flow path formed in the valve housing. The inner peripheral end is assembled to the rotor, while the outer peripheral end is assembled to the stator, and the rotor is connected to the rotor in a direction corresponding to the opening direction of the valve.
  • a spiral spring that biases in the opposite direction to the rotation direction, a plate that is provided between the stator and the valve housing and has a rotation restriction hole that restricts the rotation of the shaft that passes through it, and when the shaft is pulled into the rotor side.
  • the stopper portion is provided with a stopper portion that restricts movement of the shaft toward the rotor by coming into contact with the shaft.
  • the torque of the spiral spring can be adjusted while the axial position of the shaft is fixed.
  • the present disclosure can suppress variations in the torque of the spiral spring and stabilize the performance of the valve device.
  • FIG. 1 is a longitudinal cross-sectional view of a valve device according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1;
  • FIG. 2 is a sectional view taken along the line III-III in FIG. 1;
  • 1 is a longitudinal cross-sectional view showing a method for manufacturing a valve device according to a first embodiment;
  • FIG. 5 is a sectional view taken along the line VV in FIG. 4.
  • FIG. FIG. 5 is a longitudinal cross-sectional view following FIG. 4 and showing the method for manufacturing the valve device.
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6;
  • 3 is a flowchart showing a method for manufacturing a valve device according to Embodiment 1.
  • FIG. 1 is a longitudinal cross-sectional view of a valve device according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1;
  • Embodiment 1 A valve device according to Embodiment 1 will be described using FIGS. 1 to 8.
  • FIG. 1 is a longitudinal sectional view of a valve device according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1.
  • FIG. 3 is a sectional view taken along the line III--III in FIG. 1.
  • FIG. 1 shows an example in which the valve device according to the first embodiment is applied to an EGR valve device of an exhaust gas recirculation (hereinafter referred to as EGR) system mounted on a vehicle. . Further, FIG. 1 shows the valve device in a fully closed state.
  • EGR exhaust gas recirculation
  • the EGR system aims to reduce the harmful substances contained in the exhaust gas emitted from the combustion chamber of a vehicle engine.
  • An exhaust gas recirculation passage (hereinafter referred to as an EGR passage) is provided for recirculating (refluxing) exhaust gas from the engine to the intake passage.
  • the EGR system includes an EGR valve device in the middle of the EGR passage in order to control the flow rate of EGR gas.
  • the valve device includes a motor 10, a valve housing 20, a plate 30, and a spiral spring 40.
  • the motor 10 includes a stator 11, a rotor 12, a shaft 13, a valve 14, and a bearing 15.
  • This motor 10 allows a shaft 13 to reciprocate in its axial direction by rotating a rotor 12 with respect to a stator 11.
  • the motor 10 employs a screw structure as a structure for converting the rotation of the rotor 12 into axial movement of the shaft 13. Details of the screw structure will be described later.
  • the stator 11 is provided inside a motor housing (not shown) that forms the outer shell of the motor 10. This stator 11 rotatably supports a rotor 12 via a bearing 15. Further, as shown in FIGS. 2 and 3, the stator 11 has a screw hole 11a, a screw hole 11b, a housing portion 11c, and an outer hook portion 11d. The screw holes 11a, the screw holes 11b, and the storage portion 11c open on the lower surface of the stator 11.
  • the screw holes 11a are holes used when attaching the lower surface of the stator 11 to the upper surface of the valve housing 20.
  • the stator 11 is attached to the valve housing 20 by fastening screws (not shown) passing through the screw holes 11a into screw holes (not shown) opening in the upper surface of the valve housing 20.
  • the screw hole 11b is a hole used when attaching a plate 30, which will be described later, to the lower surface of the stator 11. The details of this screw hole 11b will be described later together with the plate 30.
  • the storage portion 11c is capable of storing a spiral spring 40, which will be described later.
  • the storage portion 11c is a substantially circular recess that opens on the lower surface of the stator 11.
  • the outer hook portion 11d is formed on the outer periphery of the storage portion 11c. Details of the storage portion 11c and the outer hook portion 11d will be described later together with the spiral spring 40.
  • the rotor 12 is arranged inside the stator 11. As shown in FIGS. 1 and 3, the rotor 12 has a stepped center hole 12A, a fitting portion 12d, and an inner hook portion 12e.
  • the stepped central hole 12A is a hole that is thinner on the upper end side than on the lower end side.
  • the stepped center hole 12A is formed in the center of the rotor 12, and opens to the lower end surface of the rotor 12 via a fitting portion 12d.
  • 12 A of such stepped center holes have the small diameter hole part 12a, the large diameter hole part 12b, and the stopper part 12c.
  • the small diameter hole portion 12a constitutes the upper part of the stepped center hole 12A.
  • the large-diameter hole portion 12b constitutes the lower part of the stepped center hole 12A, and is open to the lower end surface of the rotor 12.
  • the diameter of the large diameter hole 12b is larger than the diameter of the small diameter hole 12a.
  • a female thread is formed on the inner peripheral surface of the small diameter hole 12a.
  • a step surface connecting the small diameter hole portion 12a and the large diameter hole portion 12b constitutes a stopper portion 12c.
  • the fitting portion 12d is formed in a cylindrical shape and opens at the lower end surface of the rotor 12.
  • the stepped center hole 12A and the fitting portion 12d are arranged coaxially.
  • the diameter of the fitting portion 12d is larger than the diameter of the small diameter hole 12a and the diameter of the large diameter hole 12b. Further, the fitting portion 12d is arranged inside the storage portion 11c of the stator 11.
  • the inner hook portion 12e is formed on the fitting portion 12d.
  • the inner hook portion 12e is, for example, a cutout portion formed by cutting out a portion of the vertical wall of the fitting portion 12d.
  • the upper end side of the shaft 13 is supported in the stepped center hole 12A of the rotor 12 and the plate 30 so as to be able to reciprocate in the axial direction thereof.
  • the lower end side of the shaft 13 is supported in a valve housing 20, which will be described later, so as to be able to reciprocate in the axial direction thereof.
  • the shaft 13 has a threaded shaft portion 13a, a D-shaped shaft portion 13b, and a circular shaft portion 13c.
  • the screw shaft portion 13a, the D-shaped shaft portion 13b, and the circular shaft portion 13c are formed in this order from the upper end (base end) to the lower end (tip) of the shaft 13.
  • the screw shaft portion 13a can be inserted into the small diameter hole portion 12a.
  • a male thread is formed on the outer peripheral surface of this screw shaft portion 13a. That is, the female thread of the small diameter hole portion 12a and the male thread of the screw shaft portion 13a have the above-mentioned thread structure and can be coupled to each other.
  • the D-shaped shaft portion 13b has a D-shaped cross section (axial cross section). This D-shaped shaft portion 13b can be inserted into the circular large diameter hole 12b.
  • a certain amount of gap S is formed between the upper end surface of the D-shaped shaft portion 13b and the stopper portion 12c.
  • the D-shaped shaft portion 13b does not close to the stopper portion 12c. It never comes into contact with. Further, when assembling the valve device, the upper end surface of the D-shaped shaft portion 13b can come into contact with the stopper portion 12c. When the upper end surface of the D-shaped shaft portion 13b comes into contact with the stopper portion 12c, further upward movement (pulling toward the rotor side) is restricted.
  • the circular shaft portion 13c has a circular cross section (axial cross section). This circular shaft portion 13c is arranged inside the valve housing 20.
  • a valve 14 is provided at the lower end of the circular shaft portion 13c, in other words, at the tip of the shaft 13. This valve 14 is a poppet type valve and has a circular shape.
  • the valve housing 20 is connected to the lower part of the motor 10 via a plate 30.
  • This valve housing 20 has a flow path 20a and a through hole 20b formed therein.
  • the flow path 20a forms a part of the EGR path.
  • EGR gas which is a fluid, flows through the flow path 20a.
  • Arrow G in FIG. 1 indicates the flow of EGR gas.
  • the through hole 20b is formed to vertically penetrate the valve housing 20.
  • a circular shaft portion 13c of the shaft 13 is supported through the through hole 20b.
  • valve housing 20 includes a valve seat 21, a filter member 22, a bearing 23, and a seal member 24.
  • An annular valve seat 21 is provided in the flow path 20a.
  • the valve 14 is removably attached to the opening edge of the valve seat 21.
  • the valve 14 is seated on the valve seat 21 as the shaft 13 moves upward. Further, the valve 14 is removed from the valve seat 21 by the shaft 13 moving downward.
  • the valve 14 controls the flow rate of the EGR gas flowing through the flow path 20a by adjusting its opening relative to the valve seat 21.
  • the filter member 22, the bearing 23, and the seal member 24 are provided in the through hole 20b.
  • the filter member 22 and the seal member 24 are formed into a cylindrical shape.
  • the circular shaft portion 13c of the shaft 13 is supported by the through hole 20b of the valve housing 20 via the filter member 22, the bearing 23, and the seal member 24.
  • the bearing 23 supports the circular shaft portion 13c so that it can reciprocate in its axial direction.
  • the filter member 22 scrapes off deposits from the outer peripheral surface of the circular shaft portion 13c by reciprocating the circular shaft portion 13c in the axial direction.
  • the seal member 24 seals between the outer peripheral surface of the circular shaft portion 13c and the inner peripheral surface of the through hole 20b.
  • the plate 30 is provided between the lower surface of the motor 10 and the upper surface of the valve housing 20.
  • This plate 30 is formed into a substantially circular flat plate shape. Further, the plate 30 has a rotation regulating hole 31 and a long hole 32.
  • the rotation restriction hole 31 is arranged at the center of the plate 30.
  • the rotation regulating hole 31 is formed to protrude upward from the upper surface of the plate 30. Therefore, the rotation regulating hole 31 can be fitted into the fitting portion 12d of the rotor 12. Further, the rotation regulating hole 31 has a D-shape. A D-shaped shaft portion 13b of the shaft 13 is supported through the rotation regulating hole 31. The rotation of the shaft 13 is restricted by the D-shaped shaft portion 13b passing through the rotation restriction hole 31.
  • the cross section of the D-shaped shaft portion 13b and the rotation regulating hole 31 are in the shape of the letter D, they are not limited to this shape, and may be in the shape of a cross or width across flats. good.
  • the elongated hole 32 is arranged at the outer circumference of the plate 30 so as to face the screw hole 11b of the stator 11. Further, the elongated hole 32 is formed in an arc shape with the rotation regulating hole 31 as the center. This elongated hole 32 is a screw hole used when attaching the plate 30 to the lower surface of the stator 11. By forming the elongated hole 32 in an arc shape, the plate 30 can be attached to the stator 11 at an arbitrary rotation angle. At this time, when one screw 51 is passed through one elongated hole 32, any one of the plurality of screw holes 11b is used for this elongated hole 32.
  • the plate 30 is attached to the lower surface of the stator 11 so as to close the storage portion 11c by fastening the screws 51 passing through the long holes 32 into the screw holes 11b of the stator 11. Note that, as shown in FIG. 2, three elongated holes 32 are formed in the plate 30, but it is sufficient that at least one elongated hole 32 is formed. Further, the length of the elongated hole 32 can be adjusted as appropriate.
  • the spiral spring 40 is stored in the storage portion 11c of the stator 11. At this time, the spiral spring 40 is arranged around the fitting part 12d arranged inside the storage part 11c. An inner peripheral end 41 of the spiral spring 40 is assembled to the inner hook portion 12e of the rotor 12. On the other hand, the outer peripheral end 42 of the spiral spring 40 is assembled to the outer hook portion 11d of the stator 11. Therefore, the spiral spring 40 always urges the rotor 12 with respect to the stator 11 in the rotational direction corresponding to the closing direction of the valve 14. For example, as shown in FIG. 3, the rotation direction F of the rotor 12 corresponding to the valve opening direction is clockwise when viewed from the valve housing side.
  • the valve device In the valve device, it is necessary to prevent the valve 14 from separating from the valve seat 21 and becoming open when, for example, the motor 10 is powered off or malfunctions. Therefore, the valve device includes the spiral spring 40 and uses the rotor 12 and the plate 30 to constantly bias the valve 14 in the closing direction.
  • the shaft 13 is moved by the biasing force of the spiral spring 40 as the rotor 12 rotates in one direction (for example, clockwise when viewed from the valve housing side). resist and move downward.
  • the valve 14 separates from the valve seat 21 and opens the flow path 20a. Therefore, the exhaust passage and the intake passage communicate with each other via the EGR passage including the flow path 20a. As a result, EGR gas flows back from the exhaust passage to the intake passage. At this time, the flow rate of the EGR gas is controlled according to the opening degree of the valve 14 with respect to the valve seat 21.
  • the shaft 13 is rotated by the biasing force of the spiral spring 40 as the rotor 12 rotates in the other direction (for example, counterclockwise when viewed from the valve housing side). Move upward while receiving the pressure.
  • the valve 14 seats on the valve seat 21 and closes the flow path 20a. Therefore, the valve 14 blocks the exhaust passage and the intake passage. As a result, EGR gas no longer flows back from the exhaust passage to the intake passage. At this time, even when the valve 14 is fully closed, the gap S is maintained. That is, the D-shaped shaft portion 13b of the shaft 13 does not come into contact with the stopper portion 12c.
  • FIG. 1 shows the fully closed state of the valve 14 in the valve device
  • the valve 14 shown by the two-dot chain line in FIG. 1 shows the fully open state.
  • FIG. 4 is a longitudinal cross-sectional view showing the method for manufacturing the valve device according to the first embodiment.
  • FIG. 5 is a sectional view taken along the line VV in FIG. 4.
  • FIG. 6 is a longitudinal sectional view following FIG. 4 and showing the method for manufacturing the valve device.
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6.
  • FIG. 8 is a flowchart showing a method for manufacturing a valve device according to the first embodiment.
  • step ST11 the method for manufacturing a valve device includes inserting the shaft 13 into the stepped center hole 12A of the rotor 12 and abutting the stopper portion 12c, and then inserting the inner peripheral end 41 of the spiral spring 40 into the rotor. 12 to the inner hook portion 12e.
  • step ST12 the method for manufacturing a valve device inserts the shaft 13 into the rotation restriction hole 31 of the plate 30.
  • step ST13 the method for manufacturing a valve device rotates the rotor 12 in a rotation direction F corresponding to the opening direction of the valve 14, and assembles the outer peripheral end 42 of the spiral spring 40 to the outer hook portion 11d of the stator 11. .
  • step ST14 the method for manufacturing a valve device rotates the rotor 12, shaft 13, and plate 30 together in the rotation direction F corresponding to the opening direction of the valve 14 until the spiral spring 40 has a predetermined torque.
  • step ST15 the method for manufacturing a valve device fixes the valve housing 20, the plate 30, and the stator 11. Then, the method for manufacturing the valve device ends.
  • the shaft 13 is inserted into the stepped center hole 12A of the rotor 12.
  • the D-shaped shaft portion 13b of the shaft 13 comes into contact with the stopper portion 12c of the stepped center hole 12A. Therefore, the axial position of the shaft 13 when the valve 14 is in the fully closed state is set. Further, the rotor 12 and shaft 13 can rotate together. Furthermore, the rotation angle relationship between the rotation angle of the inner hook portion 12e and the rotation angle of the D-shaped shaft portion 13b is maintained.
  • the spiral spring 40 is stored in the storage portion 11c of the stator 11. At this time, the inner peripheral end 41 of the spiral spring 40 is assembled to the inner hook portion 12e of the rotor 12.
  • the plate 30 is fitted onto the rotor 12 and shaft 13. Specifically, the D-shaped shaft portion 13b of the shaft 13 is inserted into the rotation restriction hole 31 of the plate 30. Further, the D-shaped shaft portion 13b of the shaft 13 is inserted into the fitting portion 12d of the rotor 12.
  • the rotor 12 is rotated via the shaft 13 and the plate 30 in a rotation direction F corresponding to the opening direction of the valve 14.
  • the spiral spring 40 typically expands radially outward. Therefore, the outer circumferential end 42 of the spiral spring 40 slides on the inner circumferential wall surface of the storage portion 11c as the rotor 12 rotates, and eventually is naturally caught on the outer hook portion 11d (see FIG. 3).
  • the rotor 12, shaft 13, and plate 30 are opened from the state in which the inner peripheral end 41 is assembled to the inner hook part 12e and the outer peripheral end 42 is assembled to the outer hook part 11d. They are rotated together in a rotation direction F corresponding to the valve direction.
  • the rotor 12, shaft 13, and plate 30 are rotated together until the spiral spring 40 has a predetermined torque.
  • the plate 30 is attached to the lower surface of the stator 11 using the screws 51. That is, the plate 30 is attached to the lower surface of the stator 11 so as to close the storage portion 11c by fastening the screws 51 passing through the long holes 32 into the screw holes 11b of the stator 11.
  • the elongated hole 32 is formed in an arc shape, so that the plate 30 can be attached to the stator 11 at an arbitrary rotation angle.
  • the predetermined torque that the spiral spring 40 has is a torque design value of the spiral spring 40 that corresponds to the axial position of the shaft 13 when the valve 14 is in a fully closed state.
  • This torque design value is determined based on the EGR gas pressure, the valve seat diameter, the output for opening and closing the valve 14 in the motor 10 (output for reciprocating the shaft 13), etc. This is set taking into consideration the responsiveness of the operation. That is, the torque design value becomes a different value depending on the vehicle in which the valve device is mounted.
  • valve seat 21 is attached to the flow path 20a of the valve housing 20. Further, the filter member 22, the bearing 23, and the seal member 24 are attached to the through hole 20b of the valve housing 20.
  • the circular shaft portion 13c of the shaft 13 is inserted into the through hole 20b and supported by the through hole 20b via the filter member 22, bearing 23, and seal member 24. Then, the valve 14 is attached to the tip of the circular shaft portion 13c.
  • the valve device includes a rotor 12 that is rotatably supported inside the stator 11 and a stepped center hole 12A of the rotor 12 that is supported so as to be able to reciprocate in the axial direction.
  • a shaft 13 that moves in the axial direction in accordance with A spiral spring 40 whose end 42 is assembled to the stator 11 and urges the rotor 12 in a direction opposite to the rotational direction F corresponding to the opening direction of the valve 14 is provided between the stator 11 and the valve housing 20.
  • the plate 30 has a rotation regulating hole 31 that regulates the rotation of the shaft 13 that passes through the plate 30, and when the shaft 13 is pulled toward the rotor, the plate 30 comes into contact with the shaft 13 and prevents the shaft 13 from moving toward the rotor. It is provided with a stopper part 12c for regulating. Therefore, the valve device can adjust the torque of the spiral spring 40 while the axial position of the shaft 13 is fixed. As a result, the valve device can suppress variations in the torque of the spiral spring 40, and stabilize performance.
  • the stopper portion 12c is provided in the stepped center hole 12A of the rotor 12. Therefore, the valve device can easily restrict movement of the shaft 13 toward the rotor.
  • the valve device includes a long hole 32 formed in an arc shape in the plate 30, through which a screw 51 fastened to a screw hole 11b formed in the stator 11 can pass. Therefore, in the valve device, the plate 30 can be attached to the stator 11 at any rotation angle.
  • valve device when the shaft 13 moves to open and close the valve 14, a gap S is formed between the shaft 13 and the stopper portion 12c. Therefore, the valve device can prohibit the shaft 13 from coming into contact with the stopper portion 12c before the valve 14 is seated on the valve seat 21 when the valve 14 moves toward the fully closed state. As a result, the valve device can prevent damage to the shaft 13 and the stopper portion 12c due to their contact.
  • the shaft 13 is inserted into the stepped center hole 12A of the rotor 12, and with the shaft 13 in contact with the stopper portion 12c, the inner peripheral end 41 of the spiral spring 40 is Assemble the rotor 12, insert the shaft 13 into the rotation restriction hole 31 of the plate 30, rotate the rotor 12, and assemble the outer peripheral end 42 of the spiral spring 40 to the stator 11.
  • the valve housing 20, the plate 30, and the stator 11 are fixed by rotating together in the rotation direction F corresponding to the opening direction of the valve 14 until the spiral spring 40 has a predetermined torque. Therefore, in the method for manufacturing the valve device, the torque of the spiral spring 40 can be adjusted while the axial position of the shaft 13 is fixed, so that the workability of assembling the valve device can be improved.
  • any component of the embodiments can be modified or any component of the embodiments can be omitted.
  • the valve device By including the stopper portion, the valve device according to the present disclosure can adjust the torque of the spiral spring while the axial position of the shaft is fixed, and is suitable for use in valve devices and the like.

Abstract

A valve device comprises: a rotor (12) which is rotatably supported by a stator (11); a shaft (13) which is supported so as to be capable of reciprocal motion in the axial direction in a stepped center hole (12A) of the rotor (12), and which moves in the axial direction along with rotation of the rotor (12); a valve (14) which is provided to a tip end of the shaft (13) and which opens and closes a flow path (20a); a spiral spring (40), the inner peripheral end (41) of which is assembled to the rotor (12), the outer peripheral end (42) of which is assembled to the stator (11), and which biases the rotor (12) in a direction opposite from a rotation direction (F) corresponding to the valve opening direction of the valve (14); a plate (30) which is provided between the stator (11) and a valve housing (20), and which has a rotation restricting hole (31) that restricts rotation of the shaft (13) passing therethrough; and a stopper part (12c) which restricts movement of the shaft (13) to the rotor side by making contact with the shaft (13), when the shaft (13) is pulled toward the rotor side.

Description

バルブ装置及びバルブ装置の製造方法Valve device and method for manufacturing the valve device
 本開示は、バルブ装置及びバルブ装置の製造方法に関する。 The present disclosure relates to a valve device and a method for manufacturing the valve device.
 特許文献1には、バルブ装置が開示されている。この特許文献1に開示されたバルブ装置は、バルブを閉弁方向に付勢する1つの付勢手段として、渦巻きばねを備えている。 Patent Document 1 discloses a valve device. The valve device disclosed in Patent Document 1 includes a spiral spring as one urging means for urging the valve in the valve-closing direction.
特開平11-270417号公報Japanese Patent Application Publication No. 11-270417
 特許文献1に開示されたバルブ装置は、ロータの回転をモータシャフトの軸方向移動に変換する構造として、ねじ構造を採用している。このねじ構造は、ロータに雌ねじを形成する一方、モータシャフトに雄ねじを形成し、それらのねじ同士を結合したものである。 The valve device disclosed in Patent Document 1 employs a screw structure as a structure for converting rotation of a rotor into axial movement of a motor shaft. In this threaded structure, a female thread is formed on the rotor, a male thread is formed on the motor shaft, and these threads are connected to each other.
 しかしながら、雌ねじのねじ切り開始位置と、雄ねじのねじ切り開始位置とを、常に一定に設定することは、困難である。このため、ロータの回転角度とモータシャフトの回転角度との間の回転角度関係は、当該ロータとモータシャフトとの組み合わせによって変化してしまう。 However, it is difficult to always set the thread cutting start position of the female thread and the thread cutting start position of the male thread constant. Therefore, the rotation angle relationship between the rotation angle of the rotor and the rotation angle of the motor shaft changes depending on the combination of the rotor and the motor shaft.
 この結果、特許文献1に開示されたバルブ装置においては、ロータを、渦巻きばねを用いて、閉弁方向に対応した回転方向に向けて付勢した状態で、その組み立てを行っても、上記回転角度関係にばらつきが生じるため、例えば、バルブ全閉状態におけるロータの回転角度と、バルブ全閉状態におけるモータシャフトの軸方向位置とは、常に一致するとは限らない。このため、バルブ全閉状態におけるモータシャフトの軸方向位置に対応する、渦巻きばねのトルクにも、ばらつきが生じてしまう。このように、渦巻きばねのトルクにばらつきが生じると、バルブ装置の性能が不安定になるおそれがある。 As a result, in the valve device disclosed in Patent Document 1, even if the rotor is assembled with the spiral spring biased in the rotational direction corresponding to the valve closing direction, the rotor cannot rotate as described above. Since variations occur in the angular relationship, for example, the rotation angle of the rotor when the valve is fully closed does not always match the axial position of the motor shaft when the valve is fully closed. Therefore, the torque of the spiral spring, which corresponds to the axial position of the motor shaft when the valve is fully closed, also varies. As described above, when the torque of the spiral spring varies, the performance of the valve device may become unstable.
 本開示は、上記のような課題を解決するためになされたもので、シャフトの軸方向位置を固定した状態で、渦巻きばねのトルクを調整することができるバルブ装置を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a valve device that can adjust the torque of a spiral spring while the axial position of the shaft is fixed. .
 本開示に係るバルブ装置は、ステータの内側において回転可能に支持されるロータと、ロータの中心孔において軸方向に往復移動可能に支持され、ロータの回転に伴って軸方向に移動するシャフトと、シャフトの先端に設けられ、バルブハウジングに形成される流路を開閉するバルブと、内周端がロータに組み付けられる一方、外周端がステータに組み付けられ、ロータを、バルブの開弁方向に対応した回転方向の反対方向に向けて付勢する渦巻きばねと、ステータとバルブハウジングとの間に設けられ、貫通したシャフトの回転を規制する回転規制孔を有するプレートと、シャフトをロータ側に引き込んだときに、当該シャフトと当接することで、シャフトのロータ側への移動を規制するストッパ部とを備えるものである。 A valve device according to the present disclosure includes a rotor that is rotatably supported inside a stator, a shaft that is supported in a center hole of the rotor so as to be able to reciprocate in the axial direction, and that moves in the axial direction as the rotor rotates. A valve is installed at the tip of the shaft and opens and closes a flow path formed in the valve housing.The inner peripheral end is assembled to the rotor, while the outer peripheral end is assembled to the stator, and the rotor is connected to the rotor in a direction corresponding to the opening direction of the valve. A spiral spring that biases in the opposite direction to the rotation direction, a plate that is provided between the stator and the valve housing and has a rotation restriction hole that restricts the rotation of the shaft that passes through it, and when the shaft is pulled into the rotor side. The stopper portion is provided with a stopper portion that restricts movement of the shaft toward the rotor by coming into contact with the shaft.
 本開示によれば、シャフトの軸方向位置を固定した状態で、渦巻きばねのトルクを調整することができる。この結果、本開示は、渦巻きばねのトルクのばらつきを抑えることができ、バルブ装置の性能の安定化を図ることができる。 According to the present disclosure, the torque of the spiral spring can be adjusted while the axial position of the shaft is fixed. As a result, the present disclosure can suppress variations in the torque of the spiral spring and stabilize the performance of the valve device.
実施の形態1に係るバルブ装置の縦断面図である。1 is a longitudinal cross-sectional view of a valve device according to a first embodiment. 図1のII‐II矢視断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 1; 図1のIII-III矢視断面図である。FIG. 2 is a sectional view taken along the line III-III in FIG. 1; 実施の形態1に係るバルブ装置の製造方法を示す縦断面図である。1 is a longitudinal cross-sectional view showing a method for manufacturing a valve device according to a first embodiment; FIG. 図4のV‐V矢視断面図である。5 is a sectional view taken along the line VV in FIG. 4. FIG. 図4に続く、バルブ装置の製造方法を示す縦断面図である。FIG. 5 is a longitudinal cross-sectional view following FIG. 4 and showing the method for manufacturing the valve device. 図6のVII‐VII矢視断面図である。FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6; 実施の形態1に係るバルブ装置の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing a valve device according to Embodiment 1. FIG.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
実施の形態1.
 実施の形態1に係るバルブ装置について、図1から図8を用いて説明する。
Embodiment 1.
A valve device according to Embodiment 1 will be described using FIGS. 1 to 8.
 先ず、実施の形態1に係るバルブ装置の構成について、図1から図3を用いて説明する。図1は、実施の形態1に係るバルブ装置の縦断面図である。図2は、図1のII‐II矢視断面図である。図3は、図1のIII-III矢視断面図である。 First, the configuration of the valve device according to Embodiment 1 will be explained using FIGS. 1 to 3. FIG. 1 is a longitudinal sectional view of a valve device according to a first embodiment. FIG. 2 is a sectional view taken along the line II-II in FIG. 1. FIG. 3 is a sectional view taken along the line III--III in FIG. 1.
 ここで、図1は、実施の形態1に係るバルブ装置を、車両に搭載された排気ガス再循環(Exhaust Gas Recirculation:以下、EGRと称す)システムのEGRバルブ装置に適用した例を示している。また、図1は、バルブ装置の全閉状態を示している。 Here, FIG. 1 shows an example in which the valve device according to the first embodiment is applied to an EGR valve device of an exhaust gas recirculation (hereinafter referred to as EGR) system mounted on a vehicle. . Further, FIG. 1 shows the valve device in a fully closed state.
 EGRシステムは、車両のエンジンにおいて、その燃焼室から排出される排気ガス中に含まれる有害物質の低減を図ることを目的として、排気ガスの一部(以下、EGRガスと称す)を、排気通路から吸気通路へ再循環(還流)させるための排気ガス再循環通路(以下、EGR通路と称す)を備えている。また、EGRシステムは、EGRガスの流量を制御するため、EGR通路の途中に、EGRバルブ装置を備えている。 The EGR system aims to reduce the harmful substances contained in the exhaust gas emitted from the combustion chamber of a vehicle engine. An exhaust gas recirculation passage (hereinafter referred to as an EGR passage) is provided for recirculating (refluxing) exhaust gas from the engine to the intake passage. Further, the EGR system includes an EGR valve device in the middle of the EGR passage in order to control the flow rate of EGR gas.
 図1に示すように、バルブ装置は、モータ10、バルブハウジング20、プレート30、及び、渦巻きばね40を備えている。 As shown in FIG. 1, the valve device includes a motor 10, a valve housing 20, a plate 30, and a spiral spring 40.
 図1に示すように、モータ10は、ステータ11、ロータ12、シャフト13、バルブ14、及び、軸受15を備えている。このモータ10は、ステータ11に対して、ロータ12が回転することで、シャフト13をその軸方向に往復移動可能としている。また、モータ10は、ロータ12の回転をシャフト13の軸方向移動に変換する構造として、ねじ構造を採用している。そのねじ構造の詳細については、後述する。 As shown in FIG. 1, the motor 10 includes a stator 11, a rotor 12, a shaft 13, a valve 14, and a bearing 15. This motor 10 allows a shaft 13 to reciprocate in its axial direction by rotating a rotor 12 with respect to a stator 11. Further, the motor 10 employs a screw structure as a structure for converting the rotation of the rotor 12 into axial movement of the shaft 13. Details of the screw structure will be described later.
 ステータ11は、モータ10の外殻をなすモータハウジング(図示省略)の内側に設けられている。このステータ11は、軸受15を介して、ロータ12を回転可能に支持している。また、図2及び図3に示すように、ステータ11は、ねじ通し孔11a、ねじ孔11b、収納部11c、及び、外側フック部11dを有している。ねじ通し孔11a、ねじ孔11b、及び、収納部11cは、ステータ11の下面に開口するものである。 The stator 11 is provided inside a motor housing (not shown) that forms the outer shell of the motor 10. This stator 11 rotatably supports a rotor 12 via a bearing 15. Further, as shown in FIGS. 2 and 3, the stator 11 has a screw hole 11a, a screw hole 11b, a housing portion 11c, and an outer hook portion 11d. The screw holes 11a, the screw holes 11b, and the storage portion 11c open on the lower surface of the stator 11.
 ねじ通し孔11aは、ステータ11の下面をバルブハウジング20の上面に取り付ける際に使用する孔である。ステータ11は、ねじ通し孔11aを貫通したねじ(図示省略)が、バルブハウジング20の上面に開口するねじ孔(図示省略)に締結されることで、当該バルブハウジング20に取り付けられる。 The screw holes 11a are holes used when attaching the lower surface of the stator 11 to the upper surface of the valve housing 20. The stator 11 is attached to the valve housing 20 by fastening screws (not shown) passing through the screw holes 11a into screw holes (not shown) opening in the upper surface of the valve housing 20.
 ねじ孔11bは、後述するプレート30をステータ11の下面に取り付ける際に使用する孔である。このねじ孔11bの詳細については、プレート30と共に後述する。 The screw hole 11b is a hole used when attaching a plate 30, which will be described later, to the lower surface of the stator 11. The details of this screw hole 11b will be described later together with the plate 30.
 収納部11cは、後述する渦巻きばね40を収納可能とするものである。この収納部11cは、ステータ11の下面に開口する、略円形をなす凹部である。また、外側フック部11dは、収納部11cの外周部に形成されている。収納部11c及び外側フック部11dの詳細については、渦巻きばね40と共に後述する。 The storage portion 11c is capable of storing a spiral spring 40, which will be described later. The storage portion 11c is a substantially circular recess that opens on the lower surface of the stator 11. Further, the outer hook portion 11d is formed on the outer periphery of the storage portion 11c. Details of the storage portion 11c and the outer hook portion 11d will be described later together with the spiral spring 40.
 図1に示すように、ロータ12は、ステータ11の内側に配置されている。図1及び図3に示すように、ロータ12は、段付き中心孔12A、嵌合部12d、及び、内側フック部12eを有している。 As shown in FIG. 1, the rotor 12 is arranged inside the stator 11. As shown in FIGS. 1 and 3, the rotor 12 has a stepped center hole 12A, a fitting portion 12d, and an inner hook portion 12e.
 段付き中心孔12Aは、上端側が下端側よりも細くなる孔である。この段付き中心孔12Aは、ロータ12の中心部に形成されており、当該ロータ12の下端面に対して、嵌合部12dを介して開口している。このような、段付き中心孔12Aは、小径孔部12a、大径孔部12b、及び、ストッパ部12cを有している。 The stepped central hole 12A is a hole that is thinner on the upper end side than on the lower end side. The stepped center hole 12A is formed in the center of the rotor 12, and opens to the lower end surface of the rotor 12 via a fitting portion 12d. 12 A of such stepped center holes have the small diameter hole part 12a, the large diameter hole part 12b, and the stopper part 12c.
 小径孔部12aは、段付き中心孔12Aの上部を構成している。大径孔部12bは、段付き中心孔12Aの下部を構成し、ロータ12の下端面に開口している。大径孔部12bの径は、小径孔部12aの径よりも大きな径となっている。小径孔部12aの内周面には、雌ねじが形成されている。そして、小径孔部12aと大径孔部12bとの繋ぐ段差面は、ストッパ部12cを構成している。 The small diameter hole portion 12a constitutes the upper part of the stepped center hole 12A. The large-diameter hole portion 12b constitutes the lower part of the stepped center hole 12A, and is open to the lower end surface of the rotor 12. The diameter of the large diameter hole 12b is larger than the diameter of the small diameter hole 12a. A female thread is formed on the inner peripheral surface of the small diameter hole 12a. A step surface connecting the small diameter hole portion 12a and the large diameter hole portion 12b constitutes a stopper portion 12c.
 嵌合部12dは、円筒状に形成されており、ロータ12の下端面に開口している。段付き中心孔12Aと嵌合部12dとは、同軸上に配置されている。嵌合部12dの径は、小径孔部12aの径、及び、大径孔部12bの径よりも大きな径となっている。また、嵌合部12dは、ステータ11の収納部11cの内部に配置されている。 The fitting portion 12d is formed in a cylindrical shape and opens at the lower end surface of the rotor 12. The stepped center hole 12A and the fitting portion 12d are arranged coaxially. The diameter of the fitting portion 12d is larger than the diameter of the small diameter hole 12a and the diameter of the large diameter hole 12b. Further, the fitting portion 12d is arranged inside the storage portion 11c of the stator 11.
 内側フック部12eは、嵌合部12dに形成されている。内側フック部12eは、例えば、嵌合部12dの縦壁の一部分を切り欠くことによって形成された、切り欠き部分である。 The inner hook portion 12e is formed on the fitting portion 12d. The inner hook portion 12e is, for example, a cutout portion formed by cutting out a portion of the vertical wall of the fitting portion 12d.
 これに対して、図1に示すように、シャフト13の上端側は、ロータ12の段付き中心孔12A及びプレート30において、その軸方向に往復移動可能に支持されている。一方、シャフト13の下端側は、後述するバルブハウジング20において、その軸方向に往復移動可能に支持されている。 On the other hand, as shown in FIG. 1, the upper end side of the shaft 13 is supported in the stepped center hole 12A of the rotor 12 and the plate 30 so as to be able to reciprocate in the axial direction thereof. On the other hand, the lower end side of the shaft 13 is supported in a valve housing 20, which will be described later, so as to be able to reciprocate in the axial direction thereof.
 具体的には、図1に示すように、シャフト13は、ねじ軸部13a、D形軸部13b、及び、円形軸部13cを有している。ねじ軸部13a、D形軸部13b、及び、円形軸部13cは、シャフト13の上端(基端)から下端(先端)に向けて、順に形成されている。 Specifically, as shown in FIG. 1, the shaft 13 has a threaded shaft portion 13a, a D-shaped shaft portion 13b, and a circular shaft portion 13c. The screw shaft portion 13a, the D-shaped shaft portion 13b, and the circular shaft portion 13c are formed in this order from the upper end (base end) to the lower end (tip) of the shaft 13.
 ねじ軸部13aは、小径孔部12aに挿入可能となっている。このねじ軸部13aの外周面には、雄ねじが形成されている。即ち、小径孔部12aの雌ねじと、ねじ軸部13aの雄ねじとは、上記ねじ構造であり、互いに結合可能となっている。 The screw shaft portion 13a can be inserted into the small diameter hole portion 12a. A male thread is formed on the outer peripheral surface of this screw shaft portion 13a. That is, the female thread of the small diameter hole portion 12a and the male thread of the screw shaft portion 13a have the above-mentioned thread structure and can be coupled to each other.
 D形軸部13bは、D文字形状の横断面(軸方向断面)を有している。このD形軸部13bは、円形をなす大径孔部12bに挿入可能となっている。ここで、バルブ装置の駆動時おいては、D形軸部13bの上端面とストッパ部12cとの間には、一定量の隙間Sが形成されている。 The D-shaped shaft portion 13b has a D-shaped cross section (axial cross section). This D-shaped shaft portion 13b can be inserted into the circular large diameter hole 12b. Here, when the valve device is driven, a certain amount of gap S is formed between the upper end surface of the D-shaped shaft portion 13b and the stopper portion 12c.
 即ち、バルブ装置においては、バルブ14の開度を調整して、EGRガスの流量を制御するために、シャフト13をその軸方向に往復移動させても、D形軸部13bは、ストッパ部12cに当接することは無い。また、バルブ装置の組み立て時においては、D形軸部13bの上端面は、ストッパ部12cに対して、当接可能となっている。D形軸部13bは、その上端面がストッパ部12cに当接することで、それ以上の上方への移動(ロータ側への引き込み)が規制される。 That is, in the valve device, even if the shaft 13 is reciprocated in its axial direction in order to adjust the opening degree of the valve 14 and control the flow rate of EGR gas, the D-shaped shaft portion 13b does not close to the stopper portion 12c. It never comes into contact with. Further, when assembling the valve device, the upper end surface of the D-shaped shaft portion 13b can come into contact with the stopper portion 12c. When the upper end surface of the D-shaped shaft portion 13b comes into contact with the stopper portion 12c, further upward movement (pulling toward the rotor side) is restricted.
 円形軸部13cは、円形の横断面(軸方向断面)を有している。この円形軸部13cは、バルブハウジング20の内部に配置されている。円形軸部13cの下端、言い換えれば、シャフト13の先端には、バルブ14が設けられている。このバルブ14は、ポペット式のバルブであり、円形状をなしている。 The circular shaft portion 13c has a circular cross section (axial cross section). This circular shaft portion 13c is arranged inside the valve housing 20. A valve 14 is provided at the lower end of the circular shaft portion 13c, in other words, at the tip of the shaft 13. This valve 14 is a poppet type valve and has a circular shape.
 バルブハウジング20は、プレート30を介して、モータ10の下部に接続している。このバルブハウジング20には、流路20a及び貫通孔20bが形成されている。 The valve housing 20 is connected to the lower part of the motor 10 via a plate 30. This valve housing 20 has a flow path 20a and a through hole 20b formed therein.
 流路20aは、上記EGR通路の一部分を形成するものである。流体であるEGRガスは、流路20aを流れる。図1の矢印Gは、EGRガスの流れを示している。貫通孔20bは、バルブハウジング20を上下方向に貫通して形成されている。この貫通孔20bには、シャフト13の円形軸部13cが貫通支持されている。 The flow path 20a forms a part of the EGR path. EGR gas, which is a fluid, flows through the flow path 20a. Arrow G in FIG. 1 indicates the flow of EGR gas. The through hole 20b is formed to vertically penetrate the valve housing 20. A circular shaft portion 13c of the shaft 13 is supported through the through hole 20b.
 また、バルブハウジング20は、バルブシート21、フィルタ部材22、軸受23、及び、シール部材24を備えている。 Further, the valve housing 20 includes a valve seat 21, a filter member 22, a bearing 23, and a seal member 24.
 環状をなすバルブシート21は、流路20aに設けられている。このバルブシート21の開口縁部には、バルブ14が着脱可能となっている。バルブ14は、シャフト13が上方に向けて移動することにより、バルブシート21に着座する。また、バルブ14は、シャフト13が下方に向けて移動することにより、バルブシート21から離脱する。バルブ14は、バルブシート21に対する開度を調整することにより、当該流路20aを流れるEGRガスの流量を制御する。 An annular valve seat 21 is provided in the flow path 20a. The valve 14 is removably attached to the opening edge of the valve seat 21. The valve 14 is seated on the valve seat 21 as the shaft 13 moves upward. Further, the valve 14 is removed from the valve seat 21 by the shaft 13 moving downward. The valve 14 controls the flow rate of the EGR gas flowing through the flow path 20a by adjusting its opening relative to the valve seat 21.
 また、フィルタ部材22、軸受23、及び、シール部材24は、貫通孔20bに設けられている。フィルタ部材22及びシール部材24は、円筒状に形成されている。シャフト13の円形軸部13cは、フィルタ部材22、軸受23、及び、シール部材24を介して、バルブハウジング20の貫通孔20bに支持されている。 Furthermore, the filter member 22, the bearing 23, and the seal member 24 are provided in the through hole 20b. The filter member 22 and the seal member 24 are formed into a cylindrical shape. The circular shaft portion 13c of the shaft 13 is supported by the through hole 20b of the valve housing 20 via the filter member 22, the bearing 23, and the seal member 24.
 軸受23は、円形軸部13cをその軸方向において往復移動可能に支持している。フィルタ部材22は、円形軸部13cが軸方向に往復移動することにより、当該円形軸部13cの外周面から、デポジットを削ぎ落すものである。シール部材24は、円形軸部13cの外周面と貫通孔20bの内周面との間をシールするものである。 The bearing 23 supports the circular shaft portion 13c so that it can reciprocate in its axial direction. The filter member 22 scrapes off deposits from the outer peripheral surface of the circular shaft portion 13c by reciprocating the circular shaft portion 13c in the axial direction. The seal member 24 seals between the outer peripheral surface of the circular shaft portion 13c and the inner peripheral surface of the through hole 20b.
 図1及び図2に示すように、プレート30は、モータ10の下面とバルブハウジング20の上面との間に設けられている。このプレート30は、略円形平板状に形成されている。また、プレート30は、回転規制孔31及び長孔32を有している。 As shown in FIGS. 1 and 2, the plate 30 is provided between the lower surface of the motor 10 and the upper surface of the valve housing 20. This plate 30 is formed into a substantially circular flat plate shape. Further, the plate 30 has a rotation regulating hole 31 and a long hole 32.
 回転規制孔31は、プレート30の中心部に配置されている。この回転規制孔31は、プレート30の上面から上方に向けて突出するように形成されている。このため、回転規制孔31は、ロータ12の嵌合部12dに嵌合可能となっている。また、回転規制孔31は、D文字形状をなしている。この回転規制孔31には、シャフト13のD形軸部13bが貫通支持されている。シャフト13は、D形軸部13bが回転規制孔31を貫通することで、回転が規制される。 The rotation restriction hole 31 is arranged at the center of the plate 30. The rotation regulating hole 31 is formed to protrude upward from the upper surface of the plate 30. Therefore, the rotation regulating hole 31 can be fitted into the fitting portion 12d of the rotor 12. Further, the rotation regulating hole 31 has a D-shape. A D-shaped shaft portion 13b of the shaft 13 is supported through the rotation regulating hole 31. The rotation of the shaft 13 is restricted by the D-shaped shaft portion 13b passing through the rotation restriction hole 31.
 なお、D形軸部13bの横断面と、回転規制孔31とは、D文字形状となっているが、この形状に限定されることは無く、十文字形状又は二面幅形状等であっても良い。 Although the cross section of the D-shaped shaft portion 13b and the rotation regulating hole 31 are in the shape of the letter D, they are not limited to this shape, and may be in the shape of a cross or width across flats. good.
 長孔32は、プレート30の外周部において、ステータ11のねじ孔11bと対向するように配置されている。また、長孔32は、回転規制孔31を中心として、円弧状に形成されている。この長孔32は、プレート30をステータ11の下面に取り付ける際に使用する、ねじ通し孔である。長孔32は、円弧状に形成されることで、ステータ11に対して、プレート30を任意の回転角度で取り付けることが可能となる。このとき、1つの長孔32に1本のねじ51を通す場合、この長孔32に対して、複数のねじ孔11bのうち、いずれか1つのねじ孔11bを使用する。 The elongated hole 32 is arranged at the outer circumference of the plate 30 so as to face the screw hole 11b of the stator 11. Further, the elongated hole 32 is formed in an arc shape with the rotation regulating hole 31 as the center. This elongated hole 32 is a screw hole used when attaching the plate 30 to the lower surface of the stator 11. By forming the elongated hole 32 in an arc shape, the plate 30 can be attached to the stator 11 at an arbitrary rotation angle. At this time, when one screw 51 is passed through one elongated hole 32, any one of the plurality of screw holes 11b is used for this elongated hole 32.
 プレート30は、長孔32を貫通したねじ51が、ステータ11のねじ孔11bに締結されることで、当該ステータ11の下面に対して、収納部11cを塞ぐように取り付けられる。なお、図2に示すように、プレート30には、3つの長孔32が形成されているが、当該長孔32は、少なくとも1つ形成されていれば良い。また、長孔32の長さは、適宜、調整可能である。 The plate 30 is attached to the lower surface of the stator 11 so as to close the storage portion 11c by fastening the screws 51 passing through the long holes 32 into the screw holes 11b of the stator 11. Note that, as shown in FIG. 2, three elongated holes 32 are formed in the plate 30, but it is sufficient that at least one elongated hole 32 is formed. Further, the length of the elongated hole 32 can be adjusted as appropriate.
 図1及び図3に示すように、渦巻きばね40は、ステータ11の収納部11cに収納されている。このとき、渦巻きばね40は、収納部11cの内部に配置された嵌合部12dの周囲に配置されている。渦巻きばね40の内周端41は、ロータ12の内側フック部12eに組み付けられている。一方、渦巻きばね40の外周端42は、ステータ11の外側フック部11dに組み付けられている。このため、渦巻きばね40は、ステータ11に対して、ロータ12を、バルブ14の閉弁方向に対応した回転方向に向けて常時付勢している。例えば、図3に示すように、ロータ12における開弁方向に対応した回転方向Fは、バルブハウジング側から見て、時計周り方向となっている。 As shown in FIGS. 1 and 3, the spiral spring 40 is stored in the storage portion 11c of the stator 11. At this time, the spiral spring 40 is arranged around the fitting part 12d arranged inside the storage part 11c. An inner peripheral end 41 of the spiral spring 40 is assembled to the inner hook portion 12e of the rotor 12. On the other hand, the outer peripheral end 42 of the spiral spring 40 is assembled to the outer hook portion 11d of the stator 11. Therefore, the spiral spring 40 always urges the rotor 12 with respect to the stator 11 in the rotational direction corresponding to the closing direction of the valve 14. For example, as shown in FIG. 3, the rotation direction F of the rotor 12 corresponding to the valve opening direction is clockwise when viewed from the valve housing side.
 バルブ装置においては、例えば、モータ10の電源OFF時又は故障時において、バルブ14が、バルブシート21から離れてしまい、開弁状態となることを防止する必要がある。そこで、バルブ装置は、渦巻きばね40を備えることで、ロータ12及びプレート30を使用して、バルブ14を閉弁方向に向けて常時付勢している。 In the valve device, it is necessary to prevent the valve 14 from separating from the valve seat 21 and becoming open when, for example, the motor 10 is powered off or malfunctions. Therefore, the valve device includes the spiral spring 40 and uses the rotor 12 and the plate 30 to constantly bias the valve 14 in the closing direction.
 従って、モータ10に駆動電力が供給されると、シャフト13は、ロータ12の一方向(例えば、バルブハウジング側から見て、時計周り方向)への回転に伴って、渦巻きばね40の付勢力に抗して、下方に向けて移動する。これに対応して、バルブ14は、バルブシート21から離脱して、流路20aを開放する。このため、排気通路と吸気通路とは、流路20aを含むEGR通路を介して、連通する。この結果、EGRガスは、排気通路から吸気通路に還流する。このとき、EGRガスの流量は、バルブ14のバルブシート21に対するバルブ開度に応じて制御される。 Therefore, when driving power is supplied to the motor 10, the shaft 13 is moved by the biasing force of the spiral spring 40 as the rotor 12 rotates in one direction (for example, clockwise when viewed from the valve housing side). resist and move downward. Correspondingly, the valve 14 separates from the valve seat 21 and opens the flow path 20a. Therefore, the exhaust passage and the intake passage communicate with each other via the EGR passage including the flow path 20a. As a result, EGR gas flows back from the exhaust passage to the intake passage. At this time, the flow rate of the EGR gas is controlled according to the opening degree of the valve 14 with respect to the valve seat 21.
 また、モータ10に駆動電力が供給されると、シャフト13は、ロータ12の他方向(例えば、バルブハウジング側から見て、反時計周り方向)への回転に伴って、渦巻きばね40の付勢力を受けながら、上方に向けて移動する。これに対応して、バルブ14は、バルブシート21に着座して、流路20aを閉鎖する。このため、排気通路と吸気通路との間は、バルブ14によって遮断される。この結果、EGRガスは、排気通路から吸気通路に還流しなくなる。このとき、バルブ14が全閉状態になる場合でも、隙間Sは確保されている。即ち、シャフト13のD形軸部13bは、ストッパ部12cに当接しない。 Further, when driving power is supplied to the motor 10, the shaft 13 is rotated by the biasing force of the spiral spring 40 as the rotor 12 rotates in the other direction (for example, counterclockwise when viewed from the valve housing side). Move upward while receiving the pressure. Correspondingly, the valve 14 seats on the valve seat 21 and closes the flow path 20a. Therefore, the valve 14 blocks the exhaust passage and the intake passage. As a result, EGR gas no longer flows back from the exhaust passage to the intake passage. At this time, even when the valve 14 is fully closed, the gap S is maintained. That is, the D-shaped shaft portion 13b of the shaft 13 does not come into contact with the stopper portion 12c.
 なお、上述したように、図1は、バルブ装置におけるバルブ14の全閉状態を示しているが、図1において2点鎖線で示すバルブ14は、全開状態を示すものである。 As mentioned above, although FIG. 1 shows the fully closed state of the valve 14 in the valve device, the valve 14 shown by the two-dot chain line in FIG. 1 shows the fully open state.
 次に、実施の形態1に係るバルブ装置の製造方法について、図1から図8を用いて説明する。図4は、実施の形態1に係るバルブ装置の製造方法を示す縦断面図である。図5は、図4のV‐V矢視断面図である。図6は、図4に続く、バルブ装置の製造方法を示す縦断面図である。図7は、図6のVII‐VII矢視断面図である。図8は、実施の形態1に係るバルブ装置の製造方法を示すフローチャートである。 Next, a method for manufacturing the valve device according to Embodiment 1 will be described using FIGS. 1 to 8. FIG. 4 is a longitudinal cross-sectional view showing the method for manufacturing the valve device according to the first embodiment. FIG. 5 is a sectional view taken along the line VV in FIG. 4. FIG. 6 is a longitudinal sectional view following FIG. 4 and showing the method for manufacturing the valve device. FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6. FIG. 8 is a flowchart showing a method for manufacturing a valve device according to the first embodiment.
 先ず、実施の形態1に係るバルブ装置の製造方法について、図8を用いて説明する。 First, a method for manufacturing the valve device according to Embodiment 1 will be described using FIG. 8.
 ステップST11において、バルブ装置の製造方法は、シャフト13を、ロータ12の段付き中心孔12Aに挿入して、ストッパ部12cに当接させた状態で、渦巻きばね40の内周端41を、ロータ12の内側フック部12eに組み付ける。 In step ST11, the method for manufacturing a valve device includes inserting the shaft 13 into the stepped center hole 12A of the rotor 12 and abutting the stopper portion 12c, and then inserting the inner peripheral end 41 of the spiral spring 40 into the rotor. 12 to the inner hook portion 12e.
 ステップST12において、バルブ装置の製造方法は、シャフト13をプレート30の回転規制孔31に挿入する。 In step ST12, the method for manufacturing a valve device inserts the shaft 13 into the rotation restriction hole 31 of the plate 30.
 ステップST13において、バルブ装置の製造方法は、ロータ12を、バルブ14の開弁方向に対応した回転方向Fに回転させて、渦巻きばね40の外周端42を、ステータ11の外側フック部11dに組み付ける。 In step ST13, the method for manufacturing a valve device rotates the rotor 12 in a rotation direction F corresponding to the opening direction of the valve 14, and assembles the outer peripheral end 42 of the spiral spring 40 to the outer hook portion 11d of the stator 11. .
 ステップST14において、バルブ装置の製造方法は、ロータ12、シャフト13、及び、プレート30を、渦巻きばね40が所定トルクを有するまで、バルブ14の開弁方向に対応した回転方向Fに共に回転させる。 In step ST14, the method for manufacturing a valve device rotates the rotor 12, shaft 13, and plate 30 together in the rotation direction F corresponding to the opening direction of the valve 14 until the spiral spring 40 has a predetermined torque.
 ステップST15において、バルブ装置の製造方法は、バルブハウジング20及びプレート30と、ステータ11とを固定する。そして、バルブ装置の製造方法は、終了する。 In step ST15, the method for manufacturing a valve device fixes the valve housing 20, the plate 30, and the stator 11. Then, the method for manufacturing the valve device ends.
 また、実施の形態1に係るバルブ装置の製造方法について、図1から図7を用いて詳細に説明する。 Furthermore, a method for manufacturing the valve device according to Embodiment 1 will be described in detail using FIGS. 1 to 7.
 先ず、図4及び図5に示すように、シャフト13が、ロータ12の段付き中心孔12Aに挿入される。このとき、シャフト13のD形軸部13bは、段付き中心孔12Aのストッパ部12cに当接される。このため、バルブ14の全閉状態におけるシャフト13の軸方向位置が、設定される。また、ロータ12とシャフト13との共回りが、可能となる。更に、内側フック部12eの回転角度とD形軸部13bの回転角度との間の回転角度関係が、保持される。 First, as shown in FIGS. 4 and 5, the shaft 13 is inserted into the stepped center hole 12A of the rotor 12. At this time, the D-shaped shaft portion 13b of the shaft 13 comes into contact with the stopper portion 12c of the stepped center hole 12A. Therefore, the axial position of the shaft 13 when the valve 14 is in the fully closed state is set. Further, the rotor 12 and shaft 13 can rotate together. Furthermore, the rotation angle relationship between the rotation angle of the inner hook portion 12e and the rotation angle of the D-shaped shaft portion 13b is maintained.
 なお、上述した回転角度関係は、小径孔部12aに形成された雌ねじのねじ切り開始位置と、ねじ軸部13aに形成された雄ねじのねじ切り開始位置とが一定では無いため、ロータ12とシャフト13との組み合わせによって異なる。 Note that the above-mentioned rotation angle relationship is different between the rotor 12 and the shaft 13 because the thread cutting start position of the female thread formed in the small diameter hole portion 12a and the thread cutting start position of the male thread formed in the screw shaft portion 13a are not constant. It depends on the combination of
 次いで、渦巻きばね40が、ステータ11の収納部11cに収納される。このとき、渦巻きばね40の内周端41が、ロータ12の内側フック部12eに組み付けられる。 Next, the spiral spring 40 is stored in the storage portion 11c of the stator 11. At this time, the inner peripheral end 41 of the spiral spring 40 is assembled to the inner hook portion 12e of the rotor 12.
 次いで、図2、図6、図7に示すように、プレート30が、ロータ12及びシャフト13に嵌め込まれる。具体的には、シャフト13のD形軸部13bが、プレート30の回転規制孔31に挿入される。また、シャフト13のD形軸部13bが、ロータ12の嵌合部12dに挿入される。 Next, as shown in FIGS. 2, 6, and 7, the plate 30 is fitted onto the rotor 12 and shaft 13. Specifically, the D-shaped shaft portion 13b of the shaft 13 is inserted into the rotation restriction hole 31 of the plate 30. Further, the D-shaped shaft portion 13b of the shaft 13 is inserted into the fitting portion 12d of the rotor 12.
 次いで、図7に示すように、ロータ12が、シャフト13及びプレート30を介して、バルブ14の開弁方向に対応した回転方向Fに回転される。ここで、渦巻きばね40は、通常、径方向外側に向けて広がる。このため、渦巻きばね40の外周端42は、ロータ12の回転に伴って、収納部11cの内周壁面上を滑り、最終的に、外側フック部11dに自然と引っ掛かる(図3参照)。 Next, as shown in FIG. 7, the rotor 12 is rotated via the shaft 13 and the plate 30 in a rotation direction F corresponding to the opening direction of the valve 14. Here, the spiral spring 40 typically expands radially outward. Therefore, the outer circumferential end 42 of the spiral spring 40 slides on the inner circumferential wall surface of the storage portion 11c as the rotor 12 rotates, and eventually is naturally caught on the outer hook portion 11d (see FIG. 3).
 次いで、上述したように、内周端41が内側フック部12eに組み付けられ、且つ、外周端42が外側フック部11dに組み付けられた状態から、ロータ12、シャフト13、及び、プレート30が、開弁方向に対応した回転方向Fに共に回転される。ここで、ロータ12、シャフト13、及び、プレート30は、渦巻きばね40が所定トルクを有するまで、共に回転される。 Next, as described above, the rotor 12, shaft 13, and plate 30 are opened from the state in which the inner peripheral end 41 is assembled to the inner hook part 12e and the outer peripheral end 42 is assembled to the outer hook part 11d. They are rotated together in a rotation direction F corresponding to the valve direction. Here, the rotor 12, shaft 13, and plate 30 are rotated together until the spiral spring 40 has a predetermined torque.
 次いで、図2に示すように、渦巻きばね40のトルクが所定トルクに達すると、プレート30が、ねじ51を用いて、ステータ11の下面に取り付けられる。即ち、プレート30は、長孔32を貫通したねじ51が、ステータ11のねじ孔11bに締結されることで、当該ステータ11の下面に対して、収納部11cを塞ぐように取り付けられる。このとき、長孔32は、円弧状に形成されることで、ステータ11に対して、プレート30を任意の回転角度で取り付けることができる。 Next, as shown in FIG. 2, when the torque of the spiral spring 40 reaches a predetermined torque, the plate 30 is attached to the lower surface of the stator 11 using the screws 51. That is, the plate 30 is attached to the lower surface of the stator 11 so as to close the storage portion 11c by fastening the screws 51 passing through the long holes 32 into the screw holes 11b of the stator 11. At this time, the elongated hole 32 is formed in an arc shape, so that the plate 30 can be attached to the stator 11 at an arbitrary rotation angle.
 なお、渦巻きばね40が有する所定トルクとは、バルブ14の全閉状態におけるシャフト13の軸方向位置に対応する、渦巻きばね40のトルク設計値である。このトルク設計値は、EGRガスの圧力、バルブシート径、及び、モータ10におけるバルブ14を開閉させるための出力(シャフト13を往復移動させるための出力)等に基づいて、バルブセルフリターン及びバルブ開閉動作の応答性等を考慮して、設定されるものである。即ち、トルク設計値は、バルブ装置が搭載される車両によって、異なる値となる。 Note that the predetermined torque that the spiral spring 40 has is a torque design value of the spiral spring 40 that corresponds to the axial position of the shaft 13 when the valve 14 is in a fully closed state. This torque design value is determined based on the EGR gas pressure, the valve seat diameter, the output for opening and closing the valve 14 in the motor 10 (output for reciprocating the shaft 13), etc. This is set taking into consideration the responsiveness of the operation. That is, the torque design value becomes a different value depending on the vehicle in which the valve device is mounted.
 次いで、図1に示すように、バルブシート21が、バルブハウジング20の流路20aに取り付けられる。また、フィルタ部材22、軸受23、及び、シール部材24が、バルブハウジング20の貫通孔20bに取り付けられる。 Next, as shown in FIG. 1, the valve seat 21 is attached to the flow path 20a of the valve housing 20. Further, the filter member 22, the bearing 23, and the seal member 24 are attached to the through hole 20b of the valve housing 20.
 次いで、シャフト13の円形軸部13cが、貫通孔20bに挿入され、フィルタ部材22、軸受23、及び、シール部材24を介して、当該貫通孔20bに支持される。そして、バルブ14が、その円形軸部13cの先端に取り付けられる。 Next, the circular shaft portion 13c of the shaft 13 is inserted into the through hole 20b and supported by the through hole 20b via the filter member 22, bearing 23, and seal member 24. Then, the valve 14 is attached to the tip of the circular shaft portion 13c.
 最後に、モータ10、バルブハウジング20、及び、プレート30が、ねじ通し孔11a等を使用して、互いに固定される。 Finally, the motor 10, valve housing 20, and plate 30 are fixed to each other using the screw holes 11a and the like.
 以上、実施の形態1に係るバルブ装置は、ステータ11の内側において回転可能に支持されるロータ12と、ロータ12の段付き中心孔12Aにおいて軸方向に往復移動可能に支持され、ロータ12の回転に伴って軸方向に移動するシャフト13と、シャフト13の先端に設けられ、バルブハウジング20に形成される流路20aを開閉するバルブ14と、内周端41がロータ12に組み付けられる一方、外周端42がステータ11に組み付けられ、ロータ12を、バルブ14の開弁方向に対応した回転方向Fの反対方向に向けて付勢する渦巻きばね40と、ステータ11とバルブハウジング20との間に設けられ、貫通したシャフト13の回転を規制する回転規制孔31を有するプレート30と、シャフト13をロータ側に引き込んだときに、当該シャフト13と当接することで、シャフト13のロータ側への移動を規制するストッパ部12cとを備える。このため、バルブ装置は、シャフト13の軸方向位置を固定した状態で、渦巻きばね40のトルクを調整することができる。この結果、バルブ装置は、渦巻きばね40のトルクのばらつきを抑えることができ、性能の安定化を図ることができる。 As described above, the valve device according to the first embodiment includes a rotor 12 that is rotatably supported inside the stator 11 and a stepped center hole 12A of the rotor 12 that is supported so as to be able to reciprocate in the axial direction. A shaft 13 that moves in the axial direction in accordance with A spiral spring 40 whose end 42 is assembled to the stator 11 and urges the rotor 12 in a direction opposite to the rotational direction F corresponding to the opening direction of the valve 14 is provided between the stator 11 and the valve housing 20. The plate 30 has a rotation regulating hole 31 that regulates the rotation of the shaft 13 that passes through the plate 30, and when the shaft 13 is pulled toward the rotor, the plate 30 comes into contact with the shaft 13 and prevents the shaft 13 from moving toward the rotor. It is provided with a stopper part 12c for regulating. Therefore, the valve device can adjust the torque of the spiral spring 40 while the axial position of the shaft 13 is fixed. As a result, the valve device can suppress variations in the torque of the spiral spring 40, and stabilize performance.
 バルブ装置においては、ストッパ部12cは、ロータ12の段付き中心孔12Aに設けられる。このため、バルブ装置は、シャフト13のロータ側への移動を容易に規制することができる。 In the valve device, the stopper portion 12c is provided in the stepped center hole 12A of the rotor 12. Therefore, the valve device can easily restrict movement of the shaft 13 toward the rotor.
 バルブ装置は、プレート30において円弧状に形成され、ステータ11に形成されるねじ孔11bに締結されるねじ51が、貫通可能となる長孔32を備える。このため、バルブ装置は、ステータ11に対して、プレート30を任意の回転角度で取り付けることができる。 The valve device includes a long hole 32 formed in an arc shape in the plate 30, through which a screw 51 fastened to a screw hole 11b formed in the stator 11 can pass. Therefore, in the valve device, the plate 30 can be attached to the stator 11 at any rotation angle.
 バルブ装置においては、シャフト13におけるバルブ14を開閉させるための移動時において、シャフト13とストッパ部12cとの間には、隙間Sが形成される。このため、バルブ装置は、バルブ14の全閉状態に向かう動作時において、バルブ14がバルブシート21に着座する前にシャフト13がストッパ部12cに当接することを、禁止することができる。この結果、バルブ装置は、シャフト13とストッパ部12cとの当接による、それらの破損を防止することができる。 In the valve device, when the shaft 13 moves to open and close the valve 14, a gap S is formed between the shaft 13 and the stopper portion 12c. Therefore, the valve device can prohibit the shaft 13 from coming into contact with the stopper portion 12c before the valve 14 is seated on the valve seat 21 when the valve 14 moves toward the fully closed state. As a result, the valve device can prevent damage to the shaft 13 and the stopper portion 12c due to their contact.
 実施の形態1に係るバルブ装置の製造方法は、シャフト13を、ロータ12の段付き中心孔12Aに挿入して、ストッパ部12cに当接させた状態で、渦巻きばね40の内周端41をロータ12に組み付け、シャフト13をプレート30の回転規制孔31に挿入し、ロータ12を回転させて、渦巻きばね40の外周端42をステータ11に組み付け、ロータ12、シャフト13、及び、プレート30を、渦巻きばね40が所定トルクを有するまで、バルブ14の開弁方向に対応した回転方向Fに共に回転させ、バルブハウジング20及びプレート30と、ステータ11とを固定する。このため、バルブ装置の製造方法は、シャフト13の軸方向位置を固定した状態で、渦巻きばね40のトルクを調整することができるので、バルブ装置の組み立て作業性を向上させることができる。 In the method for manufacturing the valve device according to the first embodiment, the shaft 13 is inserted into the stepped center hole 12A of the rotor 12, and with the shaft 13 in contact with the stopper portion 12c, the inner peripheral end 41 of the spiral spring 40 is Assemble the rotor 12, insert the shaft 13 into the rotation restriction hole 31 of the plate 30, rotate the rotor 12, and assemble the outer peripheral end 42 of the spiral spring 40 to the stator 11. The valve housing 20, the plate 30, and the stator 11 are fixed by rotating together in the rotation direction F corresponding to the opening direction of the valve 14 until the spiral spring 40 has a predetermined torque. Therefore, in the method for manufacturing the valve device, the torque of the spiral spring 40 can be adjusted while the axial position of the shaft 13 is fixed, so that the workability of assembling the valve device can be improved.
 なお、本開示はその開示の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 Note that within the scope of the present disclosure, any component of the embodiments can be modified or any component of the embodiments can be omitted.
 本開示に係るバルブ装置は、ストッパ部を備えることにより、シャフトの軸方向位置を固定した状態で、渦巻きばねのトルクを調整することができ、バルブ装置等に用いるのに適している。 By including the stopper portion, the valve device according to the present disclosure can adjust the torque of the spiral spring while the axial position of the shaft is fixed, and is suitable for use in valve devices and the like.
 10 モータ、11 ステータ、11a ねじ通し孔、11b ねじ孔、11c 収納部、11d 外側フック部、12 ロータ、12A 段付き中心孔、12a 小径孔部、12b 大径孔部、12c ストッパ部、12d 嵌合部、12e 内側フック部、13 シャフト、13a ねじ軸部、13b D形軸部、13c 円形軸部、14 バルブ、15 軸受、20 バルブハウジング、20a 流路、20b 貫通孔、21 バルブシート、22 フィルタ部材、23 軸受、24 シール部材、30 プレート、31 回転規制孔、32 長孔、40 渦巻きばね、41 内周端、42 外周端、51 ねじ、S 隙間。 10 motor, 11 stator, 11a screw hole, 11b screw hole, 11c storage section, 11d outer hook section, 12 rotor, 12A stepped center hole, 12a small diameter hole section, 12b large diameter hole section, 12c stopper section, 12d fitting Joining part, 12e Inner hook part, 13 Shaft, 13a Threaded shaft part, 13b D-shaped shaft part, 13c Circular shaft part, 14 Valve, 15 Bearing, 20 Valve housing, 20a Flow path, 20b Through hole, 21 Valve seat, 22 Filter member, 23 Bearing, 24 Seal member, 30 Plate, 31 Rotation regulating hole, 32 Long hole, 40 Spiral spring, 41 Inner circumference end, 42 Outer circumference end, 51 Screw, S gap.

Claims (5)

  1.  ステータの内側において回転可能に支持されるロータと、
     前記ロータの中心孔において軸方向に往復移動可能に支持され、前記ロータの回転に伴って軸方向に移動するシャフトと、
     前記シャフトの先端に設けられ、バルブハウジングに形成される流路を開閉するバルブと、
     内周端が前記ロータに組み付けられる一方、外周端が前記ステータに組み付けられ、前記ロータを、前記バルブの開弁方向に対応した回転方向の反対方向に向けて付勢する渦巻きばねと、
     前記ステータと前記バルブハウジングとの間に設けられ、貫通した前記シャフトの回転を規制する回転規制孔を有するプレートと、
     前記シャフトを前記ロータ側に引き込んだときに、当該シャフトと当接することで、前記シャフトの前記ロータ側への移動を規制するストッパ部とを備える
     ことを特徴とするバルブ装置。
    a rotor rotatably supported inside the stator;
    a shaft that is supported in a center hole of the rotor so as to be able to reciprocate in the axial direction and moves in the axial direction as the rotor rotates;
    a valve that is provided at the tip of the shaft and opens and closes a flow path formed in the valve housing;
    a spiral spring whose inner peripheral end is assembled to the rotor and whose outer peripheral end is assembled to the stator, biasing the rotor in a direction opposite to a rotational direction corresponding to the opening direction of the valve;
    a plate provided between the stator and the valve housing and having a rotation restriction hole that restricts rotation of the shaft passing through the plate;
    A valve device comprising: a stopper portion that restricts movement of the shaft toward the rotor by coming into contact with the shaft when the shaft is pulled toward the rotor.
  2.  前記ストッパ部は、前記ロータの前記中心孔に設けられる
     ことを特徴とする請求項1記載のバルブ装置。
    The valve device according to claim 1, wherein the stopper portion is provided in the center hole of the rotor.
  3.  前記プレートにおいて円弧状に形成され、前記ステータに形成されるねじ孔に締結されるねじが、貫通可能となる長孔を備える
     ことを特徴とする請求項1又は請求項2記載のバルブ装置。
    The valve device according to claim 1 or 2, wherein the plate has an elongated hole formed in an arc shape and through which a screw fastened to a screw hole formed in the stator can pass.
  4.  前記シャフトにおける前記バルブを開閉させるための移動時において、前記シャフトと前記ストッパ部との間には、隙間が形成される
     ことを特徴とする請求項1から請求項3のうちのいずれか1項記載のバルブ装置。
    Any one of claims 1 to 3, wherein a gap is formed between the shaft and the stopper portion when the shaft moves to open and close the valve. Valve device as described.
  5.  請求項1から請求項4のうちのいずれか1項記載のバルブ装置の製造方法であって、
     前記シャフトを、前記ロータの前記中心孔に挿入して、前記ストッパ部に当接させた状態で、前記渦巻きばねの前記内周端を前記ロータに組み付け、
     前記シャフトを前記プレートの前記回転規制孔に挿入し、
     前記ロータを、前記バルブの開弁方向に対応した回転方向に回転させて、前記渦巻きばねの前記外周端を前記ステータに組み付け、
     前記シャフト、前記ロータ、及び、前記プレートを、前記渦巻きばねが所定トルクを有するまで、前記バルブの開弁方向に対応した回転方向に共に回転させ、
     前記バルブハウジング及び前記プレートと、前記ステータとを固定する
     ことを特徴とするバルブ装置の製造方法。
    A method for manufacturing a valve device according to any one of claims 1 to 4, comprising:
    Assembling the inner circumferential end of the spiral spring to the rotor with the shaft inserted into the center hole of the rotor and in contact with the stopper portion,
    inserting the shaft into the rotation regulating hole of the plate;
    rotating the rotor in a rotation direction corresponding to the opening direction of the valve, and assembling the outer peripheral end of the spiral spring to the stator;
    Rotating the shaft, the rotor, and the plate together in a rotation direction corresponding to the opening direction of the valve until the spiral spring has a predetermined torque;
    A method for manufacturing a valve device, characterized in that the valve housing, the plate, and the stator are fixed.
PCT/JP2022/020902 2022-05-20 2022-05-20 Valve device and valve device production method WO2023223522A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024521502A JPWO2023223522A1 (en) 2022-05-20 2022-05-20
PCT/JP2022/020902 WO2023223522A1 (en) 2022-05-20 2022-05-20 Valve device and valve device production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020902 WO2023223522A1 (en) 2022-05-20 2022-05-20 Valve device and valve device production method

Publications (1)

Publication Number Publication Date
WO2023223522A1 true WO2023223522A1 (en) 2023-11-23

Family

ID=88834923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020902 WO2023223522A1 (en) 2022-05-20 2022-05-20 Valve device and valve device production method

Country Status (2)

Country Link
JP (1) JPWO2023223522A1 (en)
WO (1) WO2023223522A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624976A (en) * 1985-06-28 1987-01-10 エレクトリツク パワ− リサ−チ インスチテユ−ト インコ−ポレ−テツド Control and diagnostic system for motor working valve based on microprocessor
JP2000234564A (en) * 1999-02-10 2000-08-29 Unisia Jecs Corp Control device for egr valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624976A (en) * 1985-06-28 1987-01-10 エレクトリツク パワ− リサ−チ インスチテユ−ト インコ−ポレ−テツド Control and diagnostic system for motor working valve based on microprocessor
JP2000234564A (en) * 1999-02-10 2000-08-29 Unisia Jecs Corp Control device for egr valve

Also Published As

Publication number Publication date
JPWO2023223522A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US20220010694A1 (en) Hydraulic oil control valve and valve timing adjustment device
US11898471B2 (en) Valve timing adjustment device
US11649740B2 (en) Hydraulic oil control valve and valve timing adjustment device
US11891926B2 (en) Valve timing adjustment device
US20220010696A1 (en) Hydraulic oil control valve and valve timing adjustment device
JP2009114997A (en) Bypass-intake-flow control apparatus
US20220282644A1 (en) Valve timing adjusting device
US6886546B1 (en) Rotary-actuator EGR valve having compliant seal/bushing
US20220282643A1 (en) Valve timing adjustment device
WO2023223522A1 (en) Valve device and valve device production method
JP2007532835A (en) Hybrid butterfly valve for flow adjustment
JP4731592B2 (en) Intake air amount control device for internal combustion engine
WO2003023265A1 (en) Control valve
JP2016180375A (en) Intake air flow control device
JP2016180373A (en) Intake air flow control device
JP6955952B2 (en) Ball valve
CN115315569A (en) Working oil control valve and valve timing adjustment device
US20050126527A1 (en) Variable valve timing controller
WO2019150906A1 (en) Throttle device
JP6189141B2 (en) Channel open / close valve
JPS60228751A (en) Variable venturi type carburetor
KR101889040B1 (en) Intake Air Control Integrated EGR Valve For Vehicle
JP3498708B2 (en) Vane type hydraulic actuator
JP2010038005A (en) Exhaust pressure control device
KR101788311B1 (en) Differential Pressure Control Valve For Precise Flow Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942726

Country of ref document: EP

Kind code of ref document: A1