WO2019163103A1 - Vacuum cleaner - Google Patents

Vacuum cleaner Download PDF

Info

Publication number
WO2019163103A1
WO2019163103A1 PCT/JP2018/006768 JP2018006768W WO2019163103A1 WO 2019163103 A1 WO2019163103 A1 WO 2019163103A1 JP 2018006768 W JP2018006768 W JP 2018006768W WO 2019163103 A1 WO2019163103 A1 WO 2019163103A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
value
voltage
phase motor
Prior art date
Application number
PCT/JP2018/006768
Other languages
French (fr)
Japanese (ja)
Inventor
裕次 ▲高▼山
和徳 畠山
酒井 顕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020501962A priority Critical patent/JP6925497B2/en
Priority to PCT/JP2018/006768 priority patent/WO2019163103A1/en
Publication of WO2019163103A1 publication Critical patent/WO2019163103A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means

Definitions

  • the present invention relates to a vacuum cleaner equipped with a single-phase motor driven by a motor driving device.
  • a single-phase motor has the following advantages compared to a three-phase motor having three phases.
  • a device using a single-phase motor can be made smaller than a device using a three-phase motor.
  • the vacuum cleaner includes, as basic components, an electric blower that generates a suction force, a suction port for sucking dust, and a dust collection chamber for storing sucked dust.
  • the electric vacuum cleaner disclosed in Patent Literature 1 includes an optical floor detection sensor that detects the type of floor to be cleaned. Examples of floor types include carpets, tatami mats, and flooring.
  • the floor surface detection sensor of Patent Document 1 includes a wheel for detecting a floor surface, a holding frame for the wheel, two photo switches, a light shielding unit for shielding an optical axis of one of the two photo switches, And a light shielding lever for shielding the optical axis of the other photoswitch.
  • the vacuum cleaner of Patent Document 1 performs control to automatically switch the operation mode of the vacuum cleaner according to the detection information on the floor surface.
  • the detection information of the floor surface in Patent Document 1 is information regarding whether the floor surface is a carpet, whether the floor surface is a plank floor or a tatami floor, or whether the suction port is away from the floor surface. is there.
  • Patent Document 1 Due to the diversification of lifestyles in recent years, the function of detecting the type of floor surface to be cleaned has been recognized as an essential component.
  • the method using an optical floor detection sensor uses a large number of parts and has a complicated structure.
  • the conventional vacuum cleaner has a problem that design and manufacturing costs increase, and reliability decreases due to an increase in the number of parts. For this reason, it is desired to realize a function of detecting a floor type without using an optical floor detection sensor.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a vacuum cleaner that can detect a floor type without using an optical floor detection sensor.
  • a vacuum cleaner includes a single-phase motor, a motor driving device that drives the single-phase motor, and a suction tool that sucks dust.
  • the motor driving device includes a single-phase inverter that applies an AC voltage to the single-phase motor, a position sensor that outputs a position sensor signal indicating a rotor magnetic pole position of the single-phase motor, and a rotational speed of the single-phase motor based on the position sensor signal.
  • a calculation unit is provided that calculates and calculates an opening ratio of a gap generated between the suction port of the suction tool and the cleaning surface based on the calculated change in the rotation speed. When the aperture ratio is within the first range, the amplitude value of the AC voltage is the first value, and when the aperture ratio is within the second range, the amplitude value of the AC voltage is a second value different from the first value.
  • the vacuum cleaner according to the present invention has an effect that the floor type can be detected without using an optical floor detection sensor.
  • the basic block diagram of the vacuum cleaner provided with the motor drive device in the embodiment The block diagram which shows the structure of the motor drive system containing the motor drive device in embodiment Circuit diagram of single-phase inverter shown in FIG.
  • FIG. 5 is a time chart showing waveform examples of a positive voltage command, a negative voltage command, a pulse width modulation (PWM) signal, and an inverter output voltage.
  • PWM pulse width modulation
  • the figure which shows the change of the inverter output voltage according to the modulation factor The block diagram which shows the function structure for calculating the advance angle phase input into the carrier comparison part shown in FIG.4 and FIG.5
  • the figure which shows an example of the calculation method of the advance angle phase in embodiment A position sensor signal output from the position sensor shown in FIG. 2, a rotor mechanical angle that is an angle from the reference position of the rotor shown in FIG. 2, a reference phase that is a phase obtained by converting the rotor mechanical angle into an electrical angle,
  • FIG. 3 is a schematic cross-sectional view showing a schematic structure of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) that can be used as a switching element shown in FIG.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • FIG. 1 is a basic configuration diagram of a vacuum cleaner according to an embodiment.
  • FIG. 2 is a block diagram which shows a function structure when the vacuum cleaner which concerns on embodiment is seen as a motor drive system.
  • the vacuum cleaner 1 includes a suction port body 63, an extension pipe 62, and a cleaner body 6.
  • the suction port body 63 is for sucking together dust and dust (hereinafter simply referred to as “dust”) on the surface to be cleaned such as the floor surface together with air.
  • a suction port 69 that opens downward is formed on the lower surface of the suction port body 63.
  • the suction port body 63 sucks dust together with air from the suction port 69.
  • the extension pipe 62 is connected between the suction port body 63 and the cleaner body 6 and is made of a straight member having a hollow cylindrical shape.
  • the vacuum cleaner body 6 is for separating dust from the air taken in and discharging the air from which the dust has been removed.
  • the cleaner body 6 accommodates the motor driving device 2, the electric blower 64, and the dust collecting chamber 65.
  • the motor driving device 2 is a device for driving the electric blower 64, and the electric blower 64 has a single-phase motor (not shown) and blades directly connected to the single-phase motor for generating high-speed airflow. Air containing dust is sucked from the suction port 69 by the high-speed airflow generated by driving the electric blower 64.
  • the dust collection chamber 65 is for separating dust from air containing dust and temporarily storing the separated dust.
  • the cleaner body 6 is provided with an operation unit 66 and a battery 67.
  • the operation unit 66 is for the user of the vacuum cleaner 1 to hold and operate, and the operation unit 66 is provided with an operation switch (not shown) for the user to operate the vacuum cleaner 1.
  • the battery 67 is a DC power source that supplies DC power to the motor driving device 2.
  • the motor driving device 2 is connected to a battery 67 as a power source and the single-phase motor 12 provided in the electric blower 64 shown in FIG. 1.
  • a voltage sensor 20 is provided between the battery 67 and the motor drive device 2.
  • a current sensor 22 is provided between the motor driving device 2 and the single-phase motor 12.
  • An example of the single phase motor 12 is a brushless motor.
  • the motor drive device 2 drives the single-phase motor 12 by supplying AC power to the single-phase motor 12.
  • the voltage sensor 20 is a sensor that detects a DC voltage V dc applied from the battery 67 to the motor driving device 2.
  • the position sensor 21 is a sensor that detects a rotor magnetic pole position that is a magnetic pole position of the rotor 12 a built in the single-phase motor 12.
  • the current sensor 22 is a sensor that detects a motor current that is a current flowing through the single-phase motor 12.
  • the vacuum cleaner 1 may be configured to have a plurality of operation modes.
  • One of the plurality of operation modes is a “normal operation mode”, and the other one of the plurality of operation modes is a “save operation mode”.
  • the “normal operation mode” is an operation mode in which operation is performed at the motor rotation speed during normal operation.
  • the “save operation mode” is an operation mode in which power consumption is suppressed by setting the motor rotation speed lower than the motor rotation speed during normal operation.
  • the switching between the “normal operation mode” and the “save operation mode” may be performed by a changeover switch (not shown) or may be performed by control of the motor drive device 2 according to the remaining battery level.
  • the voltage sensor 20 detects the DC voltage V dc , but the detection target is not limited to the DC voltage V dc .
  • the detection target may be an inverter output voltage that is an output voltage of the motor drive device 2. “Inverter output voltage” has the same meaning as “motor applied voltage” described later.
  • the position sensor 21 may be any sensor that can detect the rotor magnetic pole position.
  • a position detection element such as a Hall IC and a Hall element, or a circuit that detects the rotor magnetic pole position from the motor induced voltage may be used.
  • the motor induced voltage is a voltage induced in a winding (not shown) in the stator 12b of the single phase motor 12.
  • the motor drive device 2 includes a single-phase inverter 11, a control unit 25, an analog / digital converter 30, and a drive signal generation unit 32.
  • the single-phase inverter 11 is connected to the single-phase motor 12 and applies an AC voltage to the single-phase motor 12.
  • the analog-digital converter 30 converts analog data, which is the DC voltage V dc detected by the voltage sensor 20, into digital data.
  • the analog / digital converter 30 converts the analog data of the motor current detected by the current sensor 22 into digital data.
  • the control unit 25 generates pulse width modulation (PWM) signals Q1, Q2, Q3, and Q4, which are signals for controlling the motor current into a sine wave.
  • PWM pulse width modulation
  • the drive signal generation unit 32 generates a drive signal for driving the switching elements in the single-phase inverter 11 based on the PWM signals Q1, Q2, Q3, and Q4 output from the control unit 25.
  • the control unit 25 generates PWM signals Q1, Q2, Q3, and Q4 based on the DC voltage converted by the analog-digital converter 30 and the position sensor signal that is the rotational position detection signal output from the position sensor 21. To do.
  • the position sensor signal is a binary digital signal that changes in accordance with the direction of the magnetic flux generated in the rotor 12a.
  • the control unit 25 includes a processor 31, a carrier generation unit 33, and a memory 34.
  • the processor 31 is a processing unit that performs various calculations related to PWM control and advance angle control. A function of the carrier comparison unit 38 and a function of the advance phase calculation unit 44 described later are realized by the processor 31.
  • the processor 31 may be called a CPU (Central Processing Unit), a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 34 stores a program read by the processor 31.
  • the memory 34 is used as a work area when the processor 31 performs arithmetic processing.
  • the memory 34 is generally a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM). Details of the configuration of the carrier generation unit 33 will be described later.
  • the drive signal generation unit 32 converts the PWM signals Q1, Q2, Q3, and Q4 output from the processor 31 into drive signals for driving the single-phase inverter 11, and outputs the drive signals to the single-phase inverter 11.
  • the single-phase motor 12 is a brushless motor
  • a plurality of permanent magnets are arranged in the circumferential direction on the rotor 12a of the single-phase motor 12.
  • the plurality of permanent magnets are arranged so that the magnetization direction is alternately reversed in the circumferential direction, and form a plurality of magnetic poles of the rotor 12a.
  • a winding (not shown) is wound around the stator 12 b of the single-phase motor 12.
  • stator winding is referred to as “stator winding”.
  • the alternating current flowing through the stator winding corresponds to the “motor current” described above.
  • the number of magnetic poles of the rotor 12a is four, but the number of magnetic poles of the rotor 12a may be other than four.
  • FIG. 3 is a circuit configuration diagram of the single-phase inverter shown in FIG.
  • the single-phase inverter 11 has a plurality of switching elements 51, 52, 53, and 54 that are bridge-connected. Each of the two switching elements 51 and 53 located on the high potential side is referred to as an upper arm switching element. Each of the two switching elements 52 and 54 located on the low potential side is referred to as a lower arm switching element.
  • the connection end 11a between the switching element 51 and the switching element 52 and the connection end 11b between the switching element 53 and the switching element 54 constitute an AC end in the bridge circuit.
  • a single-phase motor 12 is connected to the connection ends 11a and 11b.
  • Each of the plurality of switching elements 51, 52, 53, 54 is a MOSFET which is a metal oxide semiconductor field effect transistor.
  • MOSFET is an example of FET (Field-Effect Transistor).
  • a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed.
  • a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed.
  • a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed.
  • the switching element 54 is formed with a body diode 54 a connected in parallel between the drain and source of the switching element 54.
  • Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode.
  • At least one of the plurality of switching elements 51, 52, 53, and 54 is not limited to a MOSFET formed of a silicon-based material, but is formed of a wide band gap semiconductor such as silicon carbide, a gallium nitride-based material, or diamond.
  • a MOSFET may be used.
  • wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for at least one of the plurality of switching elements 51, 52, 53, and 54, the withstand voltage and allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element Can be miniaturized.
  • the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the heat radiating portion for radiating the heat generated in the semiconductor module.
  • the wide band gap semiconductor can simplify the heat dissipation structure that dissipates heat generated in the semiconductor module.
  • FIG. 4 is a block diagram showing a carrier comparison unit realized by the processor shown in FIG. 2 and a carrier generation unit shown in FIG.
  • FIG. 5 is a block diagram showing in detail the configuration of the carrier comparison unit and the carrier generation unit shown in FIG. As described above, the function of generating the PWM signals Q1, Q2, Q3, and Q4 can be realized by the carrier generation unit 33 and the carrier comparison unit 38 illustrated in FIG.
  • the carrier comparison unit 38 receives an advance angle phase ⁇ v subjected to advance angle control and a reference phase ⁇ e used when generating a voltage command V m described later.
  • the reference phase ⁇ e is a phase obtained by converting the rotor mechanical angle ⁇ m that is an angle from the reference position of the rotor 12a into an electrical angle.
  • “advance angle phase” represents “advance angle”, which is the “advance angle” of the voltage command, in terms of phase.
  • the “advance angle” referred to here is a phase difference between the motor applied voltage applied to the stator winding by the single-phase inverter 11 and the motor induced voltage induced in the stator winding.
  • the “lead angle” takes a positive value.
  • the motor induced voltage is a signal synchronized with the output signal of the position sensor 21.
  • the “lead angle” is also a phase difference between the position sensor signal and the motor applied voltage.
  • the calculation of the advanced angle phase theta v it is necessary to information about the voltage applied to the motor, it may be used motor current instead of the voltage applied to the motor. In other words, the phase difference between the position sensor signal and the motor current may be the “advance angle”.
  • the carrier comparison unit 38 includes the advance value ⁇ v and the reference phase ⁇ e , the carrier generated by the carrier generation unit 33, the DC voltage V dc, and the amplitude value of the voltage command V m.
  • a voltage amplitude command V * is input.
  • the carrier comparison unit 38 generates PWM signals Q1, Q2, Q3, and Q4 based on the carrier, the advance angle phase ⁇ v , the reference phase ⁇ e , the DC voltage V dc, and the voltage amplitude command V *.
  • a carrier frequency f C [Hz] that is a carrier frequency is set in the carrier generation unit 33.
  • a waveform of a triangular wave carrier that goes up and down between “0” and “1” is shown. Note that the PWM control of the single-phase inverter 11, and the synchronous PWM control, there are asynchronous PWM control, when the asynchronous PWM control, the control for synchronizing the carrier to advance the phase theta v is not necessary.
  • the carrier comparison unit 38 includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, an addition unit 38e, a multiplication unit 38f, a comparison unit 38g, a comparison unit 38h, and an output inversion unit. 38i and an output inverting unit 38j.
  • the absolute value calculation unit 38a calculates the absolute value
  • is divided by the DC voltage V dc detected by the voltage sensor 20.
  • the battery voltage which is the output voltage of the battery 67, varies as the current continues to flow.
  • the motor applied voltage does not decrease due to a decrease in the battery voltage.
  • the modulation rate can be increased.
  • a sine value of “ ⁇ e + ⁇ v ” obtained by adding the advance phase ⁇ v to the reference phase ⁇ e is calculated.
  • the calculated sine value of “ ⁇ e + ⁇ v ” is multiplied by the output of the division unit 38b.
  • the voltage command V m that is the output of the multiplication unit 38c is multiplied by 1 ⁇ 2.
  • the adder 38e 1 ⁇ 2 is added to the output of the multiplier 38d.
  • the multiplication unit 38f multiplies the output of the addition unit 38e by “ ⁇ 1”.
  • the output of the addition unit 38e is input to the comparison unit 38g as a positive voltage command V m1 for driving the two switching elements 51, 53 of the upper arm among the plurality of switching elements 51, 52, 53, 54.
  • the output of the multiplication unit 38f is input to the comparison unit 38h as a voltage command V m2 of the negative side for driving the two switching elements 52, 54 of the lower arm.
  • the comparison unit 38g compares the positive-side voltage command V m1 with the carrier amplitude.
  • the output of the comparison unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the output inversion unit 38i obtained by inverting the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52.
  • the comparison unit 38h compares the negative-side voltage command V m2 with the carrier amplitude.
  • the output of the comparison unit 38h is a PWM signal Q3 to the switching element 53, and the output of the output inversion unit 38j obtained by inverting the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54.
  • the switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
  • FIG. 6 is a time chart showing waveform examples of the positive voltage command, the negative voltage command, the PWM signal, and the inverter output voltage shown in FIG.
  • the waveform of the positive voltage command V m1 output from the adder 38e, the waveform of the negative voltage command V m2 output from the multiplier 38f, and the PWM signals Q1, Q2, and The waveforms of Q3 and Q4 and the waveform of the inverter output voltage are shown.
  • PWM signals Q1, Q2, Q3, and Q4 are generated.
  • FIG. 2 controls the plurality of switching elements 51, 52, 53, and 54 in the single-phase inverter 11 by using the PWM signals Q1, Q2, Q3, and Q4, so that FIG. An inverter output voltage as shown, that is, a PWM-controlled voltage pulse is applied to the single-phase motor 12.
  • the modulation method used when generating the PWM signals Q1, Q2, Q3, and Q4 includes bipolar modulation that outputs a voltage pulse that changes at a positive or negative potential, and a voltage that changes at three potentials every half cycle of the power supply.
  • a pulse that is, unipolar modulation that outputs a voltage pulse that changes to a positive potential, a negative potential, and a zero potential.
  • the waveform shown in FIG. 6 is based on unipolar modulation.
  • any modulation method may be used. In applications where it is necessary to control the motor current waveform to a sine wave, it is preferable to employ unipolar modulation with a lower harmonic content than bipolar modulation.
  • FIG. 7 is a diagram illustrating a change in the inverter output voltage in accordance with the modulation rate.
  • the upper part of FIG. 7 shows the voltage command V m when the modulation factor is 1.0, the carrier, and the inverter output voltage.
  • the lower part of FIG. 7 shows the voltage command V m , the carrier, and the inverter output voltage when the modulation rate is 2.0.
  • the voltage command V m1 on the positive side is compared with the carrier amplitude in the comparison unit 38g, and the voltage command V m2 on the negative side is compared with the carrier amplitude in the comparison unit 38h.
  • the switching element of the single-phase inverter 11 is turned on.
  • the switching element of the single-phase inverter 11 is turned off.
  • the modulation rate there are various definitions of the modulation rate.
  • the ratio between the voltage amplitude command V * and the carrier amplitude that is, “voltage amplitude command V * / carrier amplitude” is defined as the modulation rate.
  • the upper part of FIG. 7 shows a waveform when the modulation rate is 1.0, but the same waveform is obtained when the modulation rate is less than 1.0.
  • the modulation factor is less than 1.0, an inverter output voltage is generated according to the carrier frequency, and therefore, the inverter output voltage also outputs a voltage pulse according to the carrier frequency.
  • the modulation rate exceeds 1.0
  • the waveforms are as shown in the middle and lower parts of FIG.
  • the modulation rate exceeds 1.0 it is called “overmodulation”, and the region where the modulation rate exceeds 1.0 is called “overmodulation region”.
  • the overmodulation region since the voltage command V m exceeds the carrier amplitude, there is a section in which an inverter drive signal cannot be generated according to the carrier frequency.
  • the inverter output voltage is fixed to a positive power supply voltage or a negative power supply voltage, the inverter output voltage can obtain a larger output voltage than when the modulation factor is 1.0.
  • a battery is a structure that exhibits the nature of internal impedance. For this reason, the battery output voltage varies greatly according to the current output from the battery. Specifically, it is known that when a current of 20 [A] flows in a battery of 20 [V], the battery output voltage decreases to approximately 17 [V]. Further, in the above-described region where the modulation factor is 1.0 or more, it is known that the output voltage cannot be accurately obtained with respect to the voltage command V m because the number of output voltage pulses decreases. It has been. Furthermore, since the battery current becomes a pulsating current due to the influence of switching by the single-phase inverter 11, it is known that the voltage output from the battery also pulsates.
  • FIG. 8 is a block diagram illustrating a functional configuration for calculating an advance phase input to the carrier comparison unit illustrated in FIGS. 4 and 5.
  • the function for calculating the advance angle phase ⁇ v can be realized by a rotation speed calculation unit 42 and an advance angle phase calculation unit 44 as shown in FIG.
  • the rotation speed calculation unit 42 calculates the rotation speed ⁇ of the single-phase motor 12 based on the position sensor signal detected by the position sensor 21. In addition, the rotation speed calculation unit 42 calculates a reference phase ⁇ e obtained by converting a rotor mechanical angle ⁇ m that is an angle from the reference position of the rotor 12a into an electrical angle. The advance phase calculation unit 44 calculates the advance phase ⁇ v based on the rotation speed ⁇ and the reference phase ⁇ e calculated by the rotation speed calculation unit 42 and the position sensor signal.
  • FIG. 9 is a diagram illustrating an example of a method of calculating the advance phase according to the embodiment.
  • the horizontal axis of FIG. 9 shows the rotational speed N
  • the vertical axis of FIG. 9 shows an advanced phase theta v.
  • the advance phase ⁇ v can be determined using a function in which the advance phase ⁇ v increases as the rotational speed N increases.
  • the advance angle adjustment width ⁇ del indicates a variation range of the attachment position of the position sensor 21.
  • first-order linear function but is not limited to first-order linear function. If either advanced angle phase theta v according to an increase of the rotational speed N is equal or greater relationship may be used functions other than first-order linear function.
  • FIG. 10 shows a position sensor signal output from the position sensor shown in FIG. 2, a rotor mechanical angle that is an angle from the reference position of the rotor 12a shown in FIG. 2, and a phase obtained by converting the rotor mechanical angle into an electrical angle.
  • FIG. 5 is a diagram showing a relationship between a certain reference phase and a voltage command shown in FIG. 4.
  • the bottom portion of Figure 10, the rotor mechanical angle theta m when the rotor 12a is rotated in the clockwise direction is 0 °, 45 °, 90 °
  • the single-phase motor 12 is 135 ° and 180 ° are shown .
  • the rotor 12a of the single phase motor 12 is provided with four magnets.
  • the control unit 25 calculates a reference phase ⁇ e converted into an electrical angle in accordance with the detected position sensor signal.
  • a sinusoidal voltage command V m having the same phase as the reference phase ⁇ e is output.
  • the amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * as described above.
  • a sine-wave voltage command V m advanced by ⁇ / 4 which is a component of the advance angle phase ⁇ v , from the reference phase ⁇ e is output.
  • FIG. 11 is a diagram illustrating a time change of the voltage amplitude command V * in the embodiment.
  • the voltage amplitude command V * is an operation mode that changes stepwise according to time, as shown. More specifically, first, a predetermined first voltage V 1 set in advance is applied at the time of startup. In startup period, the first voltage V 1 is maintained. In the acceleration section, the voltage amplitude command V * is increased so as to obtain a preset acceleration rate. After the acceleration, when shifting to the steady operation section, the increase of the voltage amplitude command V * is stopped. In the steady operation section, the voltage amplitude command V * at the time of acceleration stop is maintained.
  • the second voltage V 2 is applied a larger constant than the first voltage V 1.
  • the voltage amplitude command V * is controlled to be constant in the start-up section and the steady operation section.
  • the time ⁇ 1 providing a first voltages V 1 may be set to any time in consideration of the stabilization time of the control system.
  • the “load” referred to here means a closed state of the suction port body 63.
  • the closed state of the suction port body 63 is related to a gap generated between the suction port body 63 and the floor surface which is a cleaning surface. This gap can be defined by the concept of “aperture ratio”. Details of the aperture ratio will be described later.
  • an overcurrent may flow through the motor.
  • the reason why the overcurrent flows is that the current fluctuates abruptly in order to keep the rotation speed constant when the load fluctuates. More specifically, if the rotational speed constant control is performed at the time of transition from “light load”, that is, “load torque is small” to “heavy load”, that is, “load torque is large”, it is the same. This is because the motor output torque must be increased to maintain the rotation speed, and the amount of change in the motor current increases.
  • the voltage amplitude command V * is controlled to be constant.
  • the voltage amplitude command V * does not change when the load becomes heavy. Therefore, the rotation speed of the motor decreases as the load torque increases. Even if the rotational speed of the motor is reduced, a sudden change in motor current and an overcurrent can be prevented, so that a sudden change in the rotational speed of the motor can be suppressed. Thereby, the vacuum cleaner which rotates stably is realizable.
  • the load torque increases with an increase in the rotational speed of the blade, which is the load of the single-phase motor, and also increases with an increase in the diameter of the air passage.
  • the diameter of the air passage means the width of the suction port of the suction port body when an electric vacuum cleaner is taken as an example.
  • FIG. 12 is a diagram for explaining the definition of the aperture ratio in the embodiment.
  • the “opening ratio” in the embodiment is a percentage that represents the degree of a gap formed between the suction port 69 of the suction port body 63 and the cleaning surface shown in FIG.
  • FIG. 12 schematically shows the suction port body 63 of the electric vacuum cleaner 1 shown in FIG. 1, the extension pipe 62 connected to the suction port body 63, and the air passage 72 in the extension pipe 62. Yes. Solid arrows in the figure indicate the flow of air.
  • the suction inlet of the suction inlet body 63 is not shown with the code
  • the sealed state is a state where air does not flow.
  • the aperture ratio varies depending on the floor type. In addition to the floor surface type, the opening ratio changes depending on the suction mode such as when the suction port is clogged with dust or when the suction port sucks the curtain. Therefore, in this specification, the range of the aperture ratio corresponding to the floor type or the suction mode is defined as follows.
  • the opening ratio according to the floor type or suction mode is affected by the structure of the suction port body of the vacuum cleaner or the degree of dust clogging at the suction port. For this reason, the numerical value shown here is an example to the last.
  • control is performed with the voltage amplitude command V * kept constant during steady operation.
  • the rotational speed of the single-phase motor 12 changes according to load fluctuations.
  • the load fluctuation can be indirectly observed by observing the rotational speed of the single-phase motor 12.
  • the load fluctuation appears as a result of the fluctuation of the aperture ratio.
  • the variation in the aperture ratio is a variation in floor type or a variation in suction mode. Therefore, by observing the motor rotation speed, it is possible to recognize a change in floor type or a change in suction mode.
  • the control according to the present embodiment in which the voltage amplitude command V * is constant makes it possible to incorporate control according to the floor type and suction mode.
  • FIG. 13 is a diagram for explaining a voltage command control method according to the embodiment.
  • the horizontal axis of FIG. 13 represents the rotation speed N
  • the vertical axis of FIG. 13 illustrates an advanced phase theta v and the voltage amplitude command V *.
  • the control area corresponding to the rotation speed and the aperture ratio is divided into four areas from area 1 to area 4.
  • Region 1 assumes that the opening ratio is 80% to 100%, that is, the state where the suction port 63 is not touching the floor surface.
  • Region 2 assumes that the aperture ratio is 50% to 80%, that is, the floor is flooring.
  • Region 3 assumes that the opening ratio is 10% to 50%, that is, the floor is a carpet.
  • the region 4 assumes that the opening ratio is 0% to 10%, that is, the suction port body 63 is in a sealed state, or the suction port body 63 is clogged with suction.
  • a voltage amplitude command V * is set according to the rotation speed N.
  • the transition from the region 1 to the region 2 is performed when the aperture ratio falls below 80% that is the threshold value between the regions.
  • the opening ratio is less than 80%, it is considered that the suction port body 63 of the vacuum cleaner 1 has moved from the state where it does not touch the floor surface 76 to the floor surface 76 which is a flooring.
  • the rotation speed N is further increased by changing the voltage amplitude command V * from the first command value Vc1 to the second command value Vc2.
  • the second command value Vc2 is larger than the first command value Vc1.
  • the transition from the region 2 to the region 1 is performed in the same manner.
  • the transition from the region 2 to the region 1 is performed when the aperture ratio exceeds 80% which is the threshold value between the regions.
  • the transition from the region 2 to the region 3 is performed when the aperture ratio falls below 50% which is the threshold value between the regions.
  • the case where the opening ratio falls below 50% is a case where the suction port body 63 of the vacuum cleaner 1 is considered to have moved from the flooring to the carpet. Carpets need more suction than flooring.
  • the rotational speed N is further increased by setting the voltage amplitude command V * to a larger value. Specifically, the voltage amplitude command V * is changed from the second command value Vc2 to the third command value Vc3.
  • the third command value Vc3 is larger than the second command value Vc2. Further, as the rotational speed N increases, the advance angle phase ⁇ v is also increased by the inclination value K.
  • the suction force can be further increased by changing the voltage amplitude command V * from the second command value Vc2 to the third command value Vc3.
  • the transition from the region 3 to the region 2 is performed in the same manner.
  • the transition from the region 3 to the region 2 is performed when the aperture ratio exceeds 50% which is the threshold value between the regions.
  • the transition from the region 3 to the region 4 is performed when the aperture ratio falls below 10% which is the threshold value between the regions.
  • the opening ratio is less than 10%, it is assumed that the suction port body 63 is clogged with suction material during cleaning of the carpet.
  • the value of the voltage amplitude command V * is decreased in order to decrease the rotational speed N.
  • the voltage amplitude command V * is changed from the third command value Vc3 to the fourth command value Vc4.
  • the fourth command value Vc4 is smaller than the first command value Vc1.
  • to reduce the rotational speed N to reduce the slope of the advanced angle phase theta v value "-K".
  • the example shown in FIG. 13, that is, the example of changing the voltage amplitude command V * according to the aperture ratio is an example, and is not limited to this.
  • the magnitude relationship between the voltage command values may be changed according to the application.
  • the first to fourth command values described above may have a plurality of values for each operation mode.
  • transition between the region 1 and the region 2, the transition between the region 2 and the region 3, and the transition between the region 3 and the region 4 are described. Transition between, transition between region 1 and region 4, and transition between region 2 and region 4 can also occur.
  • the transition from the region 1 to the region 3 is performed when the threshold value is 50%, which is the upper limit value of the aperture ratio range in the region 3, and the aperture ratio falls below the threshold value.
  • the transition from the region 3 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value.
  • the transition from the region 1 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value.
  • the transition from the region 4 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value.
  • the transition from the region 2 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value.
  • the transition from the region 4 to the region 2 is performed when the threshold value is 50% that is the lower limit value of the aperture ratio range in the region 2 and the aperture ratio exceeds the threshold value.
  • FIG. 14 is a diagram for explaining the calculation method of the aperture ratio in the embodiment.
  • FIG. 14 shows three curves composed of “Vc1”, “Vc2” and “Vc3” shown in FIG. 13 with respect to the voltage amplitude command V * which changes according to the aperture ratio.
  • the range of the aperture ratio is as described above. “No floor” means that the suction port 63 is separated from the floor 76.
  • the relationship between the rotational speed N and the voltage amplitude command V * is grasped in advance and held in a table (not shown) in the control unit 25.
  • the rotational speed when the rotational speed suddenly rises and falls, the rotational speed is larger than the rotational speed after the sudden rise, and may be smaller than the rotational speed after the sudden drop.
  • the aperture ratio does not correspond to 14 thick solid lines. Based on the rotation speed ⁇ calculated by the rotation speed calculation unit 42 shown in FIG. 8, by referring to a table in which the relationship between the aperture ratio, the rotation speed N, and the voltage amplitude command V * is maintained, the aperture ratio can be calculated. The corresponding voltage amplitude command V * can be calculated.
  • FIG. 15 is a diagram for explaining the control method of the advance phase in the embodiment.
  • the transition from region 1 to region 2 is performed when the aperture ratio falls below 80%, which is the threshold value between the regions.
  • no voltage amplitude command V * is changed, the slope of increasing the advance phase theta v is changed from the first inclination value K1 to the second inclination value K2.
  • Both the first slope value K1 and the second slope value K2 are positive.
  • the second slope value K2 is larger than the first slope value K1.
  • the transition from the region 2 to the region 1 is performed in the same manner.
  • the transition from the region 2 to the region 1 is performed when the aperture ratio exceeds 80% which is the threshold value between the regions.
  • the slope of increasing the advance phase theta v is changed from the second inclination value K2 to the first inclination value K1.
  • the transition from the region 2 to the region 3 is performed when the aperture ratio falls below 50% which is the threshold value between the regions.
  • no voltage amplitude command V * is changed, the slope of increasing the advance phase theta v is changed from the second inclination value K2 in a third inclination value K3.
  • Both the second slope value K2 and the third slope value K3 are positive.
  • the third inclination value K3 is larger than the second inclination value K2.
  • the transition from the region 3 to the region 2 is performed in the same manner.
  • the transition from the region 3 to the region 2 is performed when the aperture ratio exceeds 50% which is the threshold value between the regions. At this time, the slope of increasing the advance phase theta v is changed from the third slope value K3 to the second inclination value K2.
  • the transition from the region 3 to the region 4 is performed when the aperture ratio falls below 10% which is the threshold value between the regions.
  • no voltage amplitude command V * is changed, the slope of increasing the advance phase theta v is changed from the third slope value K3 to a fourth inclination value K4.
  • the fourth slope value K4 is negative.
  • the transition from the region 4 to the region 3 is performed in the same manner.
  • the transition from the region 4 to the region 3 is performed when the aperture ratio exceeds 10% which is a threshold value between the regions.
  • the slope of increasing the advance phase theta v is changed from the fourth inclination value K4 in the third inclination value K3.
  • transition between the region 1 and the region 2, the transition between the region 2 and the region 3, and the transition between the region 3 and the region 4 are described. Transition between, transition between region 1 and region 4, and transition between region 2 and region 4 can also occur.
  • the transition from the region 1 to the region 3 is performed when the threshold value is 50%, which is the upper limit value of the aperture ratio range in the region 3, and the aperture ratio falls below the threshold value.
  • the transition from the region 3 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value.
  • the transition from the region 1 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value.
  • the transition from the region 4 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value.
  • the transition from the region 2 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value.
  • the transition from the region 4 to the region 2 is performed when the threshold value is 50% that is the lower limit value of the aperture ratio range in the region 2 and the aperture ratio exceeds the threshold value.
  • the effect of the advance angle control will be described.
  • the advance phase theta v when 0, the rotational speed N is saturated where the voltage applied to the motor and the motor induced voltage is balanced.
  • To further increase the rotational speed N advances the advanced angle phase theta v, suppresses motor induced voltage by weakening the magnetic flux to be generated in the stator 12b by the armature reaction, increasing the rotational speed N. Therefore, by selecting the advance angle phase ⁇ v according to the rotation speed N, a wider rotation speed region can be obtained.
  • the advance angle control when the opening ratio of the suction port body 63 is in the first range, the voltage amplitude command V * is kept constant and the rotation speed N is increased. increasing the advance phase theta v is a lead angle of the voltage command in accordance with the.
  • This control enables stable driving in a wide rotational speed range. Further, by providing the advance angle adjustment width ⁇ del, the influence on the rotational speed N can be suppressed even when the position sensor 21 is displaced.
  • the advance angle control when the opening ratio of the suction port body 63 changes from the first range to the second range, the voltage amplitude command V * corresponds to the first range.
  • the first command value is changed to a second command value corresponding to the second range.
  • changing the voltage amplitude command V * from the first command value corresponding to the first range to the second command value corresponding to the second range means that the single-phase inverter 11 to the single-phase motor 12 This is equivalent to changing the applied voltage from the first amplitude value corresponding to the first range to the second amplitude value corresponding to the second range.
  • the advanced angle phase theta v is set by the function according to the rotational speed N, it is possible to change the rotation speed by changing the slope of the straight line or curve indicated by function. That is, when the opening ratio of the suction port body 63 is in the first range, the slope of the straight line or curve representing the advanced angle phase theta v is set to a first inclination value, the opening ratio of the suction port body 63 of the second for range, it sets the slope of the straight line or curve representing the advanced angle phase theta v to the second gradient value.
  • the function representing the advanced angle phase theta v be a curve, it is possible to use the gradient of the tangent at the control point of the curve.
  • FIG. 16 is a schematic cross-sectional view showing a schematic structure of a MOSFET.
  • FIG. 16 illustrates an n-type MOSFET.
  • FIG. 17 is a first diagram illustrating a motor current path according to the polarity of the inverter output voltage output from the single-phase inverter illustrated in FIG. 3.
  • FIG. 18 is a second diagram illustrating a motor current path according to the polarity of the inverter output voltage.
  • FIG. 19 is a third diagram illustrating a motor current path according to the polarity of the inverter output voltage.
  • a p-type semiconductor substrate 80 is used as shown in FIG.
  • a source electrode 82, a drain electrode 83, and a gate electrode 84 are formed on the semiconductor substrate 80 having the p-type region 81.
  • an n-type region 85 is formed by ion implantation of a high concentration impurity.
  • an oxide insulating film 86 is formed between a portion where the n-type region 85 is not formed and the gate electrode 84. That is, the oxide insulating film 86 is interposed between the gate electrode 84 and the p-type region 81 in the semiconductor substrate 80.
  • n-type portion becomes a current path and is called a channel.
  • FIG. 16 is an example where the n-type channel 87 is formed. In the case of a p-type MOSFET, a p-type channel is formed.
  • the current flows into the single-phase motor 12 through the channel of the switching element 51, which is the upper arm of the first phase, as shown by the thick solid line (a) in FIG. It flows out of the single-phase motor 12 through the channel of the switching element 54 which is a two-phase lower arm.
  • the polarity of the inverter output voltage is negative, current flows into the single-phase motor 12 through the channel of the switching element 53, which is the upper arm of the second phase, as shown by the thick broken line (b) in FIG. And flows out of the single-phase motor 12 through the channel of the switching element 52 which is the lower arm of the first phase.
  • the conduction loss is smaller when a current is passed through a MOSFET channel than when a current is passed in the forward direction of a diode. Therefore, in the present embodiment, in the return mode in which the return current flows, the MOSFET on the side having the body diode is controlled to be turned on in order to reduce the current flowing through the body diode.
  • the switching element 52 is controlled to be turned on at the timing when the reflux current shown by the thick solid line (c) in FIG. 18 flows. If controlled in this way, as indicated by a thick solid line (e) in FIG. 19, most of the return current flows through the channel side of the switching element 52 having a small resistance value. Thereby, the semiconductor loss in the switching element 52 is reduced. Further, the switching element 51 is controlled to be turned on at the timing when the return current indicated by the thick broken line (d) in FIG. 18 flows. If controlled in this way, as indicated by a thick broken line (f) in FIG. 19, most of the reflux current flows through the channel side of the switching element 51 having a small resistance value. Thereby, the semiconductor loss in the switching element 51 is reduced.
  • the loss of the switching element can be reduced by turning on the MOSFET on the side having the body diode at the timing when the reflux current flows through the body diode.
  • the structure of the MOSFET is made a surface mount type so that heat can be radiated on the substrate, and if necessary, part or all of the switching element is formed of a wide band gap semiconductor, so that the MOSFET generates heat only on the substrate.
  • the structure which suppresses is realized. Note that if heat can be radiated only by the substrate, a heat sink is unnecessary, which contributes to the miniaturization of the inverter and can lead to the miniaturization of the product.
  • a further heat dissipation effect can be obtained by installing the substrate in the air path.
  • the semiconductor element on the substrate can be radiated by the wind generated by the electric blower, so that the heat generation of the semiconductor element can be significantly suppressed.
  • the electric vacuum cleaner 60 is a product whose motor rotation speed varies from 0 [rpm] to 100,000 or more [rpm].
  • the control method according to the above-described embodiment is suitable.
  • constant voltage amplitude command V * by changing the advanced angle phase theta v in accordance with the rotational speed, it is possible while expanding the rotational speed drive range from a low speed to a high speed rotation region, corresponding to the sudden load change.
  • the motor current can be controlled to a sine wave by PWM control, high-efficiency driving can be achieved, so that the operation time can be extended.
  • FIG. 20 is a diagram for explaining the modulation control in the motor drive device of the present embodiment.
  • the relationship between the rotational speed and the modulation rate is shown.
  • a waveform of the inverter output voltage when the modulation rate is 1 or less and a waveform of the inverter output voltage when the modulation rate exceeds 1 are shown.
  • the load torque of the rotating body increases as the number of rotations increases. For this reason, it is necessary to increase the motor output torque as the rotational speed increases.
  • the motor output torque increases in proportion to the motor current, and the inverter output voltage needs to be increased to increase the motor current. Therefore, the number of revolutions can be increased by increasing the modulation rate and increasing the inverter output voltage.
  • region between said (A) and said (B) is a gray zone, and depending on a use, it may be contained in a low-speed rotation area, and may be included in a high-speed rotation area.
  • the modulation rate is set to a value larger than 1.
  • the modulation factor above 1
  • the increase in switching loss can be suppressed by increasing the inverter output voltage and reducing the number of switching operations performed by the switching elements in the inverter.
  • the modulation rate exceeds 1, the motor output voltage increases, but since the number of switching times decreases, there is a concern about current distortion.
  • the reactance component of the motor increases and di / dt, which is a change component of the motor current, decreases. Therefore, current distortion is smaller than in the low speed rotation range, and the influence on waveform distortion is small.
  • the modulation rate is set to a value larger than 1 and control is performed to reduce the number of switching pulses. By this control, an increase in switching loss can be suppressed and higher efficiency can be achieved.
  • the control unit 25 is set with a first rotation speed that determines the boundary between the low-speed rotation region and the high-speed rotation region, and the control unit 25 is configured when the rotation speed of the motor or the load is equal to or lower than the first rotation speed.
  • the modulation rate is set to 1 or less, and when the rotational speed of the motor or load exceeds the first rotational speed, the modulation rate may be set to exceed 1.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A vacuum cleaner (1) includes a single phase motor (12), a motor drive device (2) that drives the single phase motor (12), and a suction port body (63) that sucks in dust. The motor drive device (2) includes: a single phase inverter (11) that applies AC power to the single phase motor (12); and a processor (31) that calculates the opening percentage of the gap formed between a suction port (69) of the suction port body (63) and a cleaning surface on the basis of a position sensor (21) that outputs a position sensor signal which indicates the position of the magnetic pole of a rotor of the single phase motor (12) and of changes in the rotational speed of the single phase motor (12) calculated on the basis of the position sensor signal. When the opening percentage is within a first range, the amplitude value of the AC power is a first value, and when the opening percentage is within a second range, the amplitude value of the AC power is a second value that is different from the first value.

Description

電気掃除機Electric vacuum cleaner
 本発明は、モータ駆動装置によって駆動される単相モータを搭載した電気掃除機に関する。 The present invention relates to a vacuum cleaner equipped with a single-phase motor driven by a motor driving device.
 単相モータには、相数が3つの三相モータと比較して以下の利点がある。
 (1)三相モータには三相インバータを用いる必要があるのに対し、単相モータには、三相インバータよりも構成が簡素化された単相インバータを用いればよい。
 (2)フルブリッジインバータを用いた三相インバータは6つのスイッチング素子が必要であるのに対し、単相モータは、フルブリッジインバータを用いたとしても、4つのスイッチング素子で構成できる。
 (3)上記(1)及び(2)の特徴により、単相モータを用いた装置は、三相モータを用いた装置に比べて、小型化が可能である。
A single-phase motor has the following advantages compared to a three-phase motor having three phases.
(1) While it is necessary to use a three-phase inverter for a three-phase motor, a single-phase inverter having a simpler configuration than a three-phase inverter may be used for a single-phase motor.
(2) A three-phase inverter using a full-bridge inverter requires six switching elements, whereas a single-phase motor can be configured with four switching elements even if a full-bridge inverter is used.
(3) Due to the features of (1) and (2) above, a device using a single-phase motor can be made smaller than a device using a three-phase motor.
 上記の特徴により、バッテリを搭載したコードレスの電気掃除機においては、小型化の観点から、単相モータの適用例が多い。 Due to the above features, single-phase motors are often applied from the viewpoint of miniaturization in cordless vacuum cleaners equipped with batteries.
 電気掃除機は、基本的な構成要素として、吸引力を発生させる電動送風機と、塵埃を吸い込む吸込口体と、吸引した塵埃を溜め込む集塵室と、を備える。これらに加え、下記特許文献1の電気掃除機には、掃除対象の床面種類を検知する、光学式の床面検知センサが備えられている。床面種類としては、絨毯、畳、フローリングを例示できる。特許文献1の床面検知センサは、床面検知用の車輪、当該車輪の保持枠、2つのフォトスイッチ、2つのフォトスイッチの内の一方のフォトスイッチの光軸を遮蔽するための遮光部、及びもう一方のフォトスイッチの光軸を遮蔽するための遮光レバーを有する。 The vacuum cleaner includes, as basic components, an electric blower that generates a suction force, a suction port for sucking dust, and a dust collection chamber for storing sucked dust. In addition to these, the electric vacuum cleaner disclosed in Patent Literature 1 includes an optical floor detection sensor that detects the type of floor to be cleaned. Examples of floor types include carpets, tatami mats, and flooring. The floor surface detection sensor of Patent Document 1 includes a wheel for detecting a floor surface, a holding frame for the wheel, two photo switches, a light shielding unit for shielding an optical axis of one of the two photo switches, And a light shielding lever for shielding the optical axis of the other photoswitch.
 特許文献1の電気掃除機は、床面の検知情報に応じて、電気掃除機の運転モードを自動で切り替える制御を行う。特許文献1における床面の検知情報とは、床面が絨毯であるか、又は、床面が板床もしくは畳床であるか、又は、吸込口体が床面を離れているか否かに関する情報である。 The vacuum cleaner of Patent Document 1 performs control to automatically switch the operation mode of the vacuum cleaner according to the detection information on the floor surface. The detection information of the floor surface in Patent Document 1 is information regarding whether the floor surface is a carpet, whether the floor surface is a plank floor or a tatami floor, or whether the suction port is away from the floor surface. is there.
特開平2-52620号公報Japanese Patent Laid-Open No. 2-52620
 近年における生活様式の多様化により、掃除対象の床面種類を検知する機能は必須の構成要素として認識されている。しかしながら、上記特許文献1に示されるように、光学式の床面検知センサを使用する方式では、多数の部品を使用すると共に、構造も複雑である。その結果、従来の電気掃除機は、設計及び製造コストが増加し、部品点数の増加によって信頼性が低下するという課題があった。このため、光学式の床面検知センサを使用せずに、床面種類を検知する機能を実現することが望まれている。 Due to the diversification of lifestyles in recent years, the function of detecting the type of floor surface to be cleaned has been recognized as an essential component. However, as shown in Patent Document 1, the method using an optical floor detection sensor uses a large number of parts and has a complicated structure. As a result, the conventional vacuum cleaner has a problem that design and manufacturing costs increase, and reliability decreases due to an increase in the number of parts. For this reason, it is desired to realize a function of detecting a floor type without using an optical floor detection sensor.
 本発明は、上記に鑑みてなされたものであって、光学式の床面検知センサを使用せずに、床面種類を検知できる電気掃除機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a vacuum cleaner that can detect a floor type without using an optical floor detection sensor.
 上述した課題を解決し、目的を達成するために、本発明に係る電気掃除機は、単相モータ、単相モータを駆動するモータ駆動装置、及び塵埃を吸引する吸込具を備える。モータ駆動装置は、単相モータに交流電圧を印加する単相インバータ、単相モータのロータ磁極位置を示す位置センサ信号を出力する位置センサ、及び位置センサ信号に基づいて単相モータの回転速度を算出し、算出した回転速度の変化に基づいて吸込具の吸込口と清掃面との間に生じた隙間の開口率を算出する算出部を備える。開口率が第1の範囲内のとき、交流電圧の振幅値は第1の値とされ、開口率が第2の範囲内のとき、交流電圧の振幅値は第1の値とは異なる第2の値とされる。 In order to solve the above-described problems and achieve the object, a vacuum cleaner according to the present invention includes a single-phase motor, a motor driving device that drives the single-phase motor, and a suction tool that sucks dust. The motor driving device includes a single-phase inverter that applies an AC voltage to the single-phase motor, a position sensor that outputs a position sensor signal indicating a rotor magnetic pole position of the single-phase motor, and a rotational speed of the single-phase motor based on the position sensor signal. A calculation unit is provided that calculates and calculates an opening ratio of a gap generated between the suction port of the suction tool and the cleaning surface based on the calculated change in the rotation speed. When the aperture ratio is within the first range, the amplitude value of the AC voltage is the first value, and when the aperture ratio is within the second range, the amplitude value of the AC voltage is a second value different from the first value. The value of
 本発明に係る電気掃除機によれば、光学式の床面検知センサを使用せずに、床面種類を検知できるという効果を奏する。 The vacuum cleaner according to the present invention has an effect that the floor type can be detected without using an optical floor detection sensor.
実施の形態におけるモータ駆動装置を備えた電気掃除機の基本構成図The basic block diagram of the vacuum cleaner provided with the motor drive device in the embodiment 実施の形態におけるモータ駆動装置を含むモータ駆動システムの構成を示すブロック図The block diagram which shows the structure of the motor drive system containing the motor drive device in embodiment 図2に示す単相インバータの回路構成図Circuit diagram of single-phase inverter shown in FIG. 図2に示すプロセッサで実現されるキャリア比較部、及び図2に示すキャリア生成部を示すブロック図The block diagram which shows the carrier comparison part implement | achieved by the processor shown in FIG. 2, and the carrier production | generation part shown in FIG. 図4に示すキャリア比較部及びキャリア生成部の構成を詳細に示すブロック図The block diagram which shows in detail the structure of the carrier comparison part and carrier generation part which are shown in FIG. 図5に示される正側の電圧指令と、負側の電圧指令と、パルス幅変調(Pulse Width Moduration:PWM)信号と、インバータ出力電圧とのそれぞれの波形例を示すタイムチャートFIG. 5 is a time chart showing waveform examples of a positive voltage command, a negative voltage command, a pulse width modulation (PWM) signal, and an inverter output voltage. 変調率に応じたインバータ出力電圧の変化を示す図The figure which shows the change of the inverter output voltage according to the modulation factor 図4及び図5に示したキャリア比較部へ入力される進角位相を算出するための機能構成を示すブロック図The block diagram which shows the function structure for calculating the advance angle phase input into the carrier comparison part shown in FIG.4 and FIG.5 実施の形態における進角位相の算出方法の一例を示す図The figure which shows an example of the calculation method of the advance angle phase in embodiment 図2に示す位置センサから出力される位置センサ信号と、図2に示すロータの基準位置からの角度であるロータ機械角と、当該ロータ機械角を電気角に換算した位相である基準位相と、図4に示す電圧指令との関係を示す図A position sensor signal output from the position sensor shown in FIG. 2, a rotor mechanical angle that is an angle from the reference position of the rotor shown in FIG. 2, a reference phase that is a phase obtained by converting the rotor mechanical angle into an electrical angle, The figure which shows the relationship with the voltage command shown in FIG. 実施の形態における電圧振幅指令の時間変化を示す図The figure which shows the time change of the voltage amplitude command in embodiment 実施の形態における開口率の定義の説明に供する図The figure which uses for description of the definition of the aperture ratio in embodiment 実施の形態における電圧指令の制御方法の説明に供する図The figure which serves for description of the control method of the voltage command in the embodiment 実施の形態における開口率の算出方法の説明に供する図The figure which uses for description of the calculation method of the aperture ratio in embodiment 実施の形態における進角位相の制御方法の説明に供する図The figure which serves for description of the control method of the advance angle phase in the embodiment 図3に示すスイッチング素子として利用可能なMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の概略構造を示す模式的断面図FIG. 3 is a schematic cross-sectional view showing a schematic structure of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) that can be used as a switching element shown in FIG. 図3に示す単相インバータから出力されるインバータ出力電圧の極性によるモータ電流の経路を示す第1の図The 1st figure which shows the path | route of the motor current by the polarity of the inverter output voltage output from the single phase inverter shown in FIG. 図3に示す単相インバータから出力されるインバータ出力電圧の極性によるモータ電流の経路を示す第2の図2nd figure which shows the path | route of the motor current by the polarity of the inverter output voltage output from the single phase inverter shown in FIG. 図3に示す単相インバータから出力されるインバータ出力電圧の極性によるモータ電流の経路を示す第3の図3rd figure which shows the path | route of the motor current by the polarity of the inverter output voltage output from the single phase inverter shown in FIG. 実施の形態に係るモータ駆動装置における変調制御を説明するための図The figure for demonstrating the modulation control in the motor drive device which concerns on embodiment
 以下に、本発明の実施の形態に係る電気掃除機を図面に基づいて詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。 Hereinafter, a vacuum cleaner according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
実施の形態.
 図1は、実施の形態に係る電気掃除機の基本構成図である。また、図2は、実施の形態に係る電気掃除機をモータ駆動システムとして見たときの機能構成を示すブロック図である。図1に示すように、電気掃除機1は、吸込口体63、延長管62及び掃除機本体6を備えている。吸込口体63は、床面等の被清掃面上の塵埃及びごみ(以下、単に「塵埃」と略す)を空気と一緒に吸い込むためのものである。吸込口体63の下面には、下向きに開口する吸込口69が形成されている。吸込口体63は、この吸込口69から塵埃を空気と一緒に吸い込む。延長管62は、吸込口体63と掃除機本体6との間に接続され、中空筒状を呈する直状の部材からなる。
Embodiment.
FIG. 1 is a basic configuration diagram of a vacuum cleaner according to an embodiment. Moreover, FIG. 2 is a block diagram which shows a function structure when the vacuum cleaner which concerns on embodiment is seen as a motor drive system. As shown in FIG. 1, the vacuum cleaner 1 includes a suction port body 63, an extension pipe 62, and a cleaner body 6. The suction port body 63 is for sucking together dust and dust (hereinafter simply referred to as “dust”) on the surface to be cleaned such as the floor surface together with air. A suction port 69 that opens downward is formed on the lower surface of the suction port body 63. The suction port body 63 sucks dust together with air from the suction port 69. The extension pipe 62 is connected between the suction port body 63 and the cleaner body 6 and is made of a straight member having a hollow cylindrical shape.
 掃除機本体6は、内部に取り込んだ空気から塵埃を分離し、塵埃が取り除かれた空気を排出するためのものである。掃除機本体6には、モータ駆動装置2と電動送風機64と集塵室65が収容されている。モータ駆動装置2は電動送風機64を駆動させる装置であり、電動送風機64は図示しない単相モータおよび単相モータに直結された羽根を有し高速気流を発生させるための物である。電動送風機64の駆動によって生み出された高速気流により吸込口69から塵埃を含む空気が吸い込まれる。集塵室65は、塵埃を含む空気から塵埃を分離し、分離した塵埃を一時的に溜めておくためのものである。 The vacuum cleaner body 6 is for separating dust from the air taken in and discharging the air from which the dust has been removed. The cleaner body 6 accommodates the motor driving device 2, the electric blower 64, and the dust collecting chamber 65. The motor driving device 2 is a device for driving the electric blower 64, and the electric blower 64 has a single-phase motor (not shown) and blades directly connected to the single-phase motor for generating high-speed airflow. Air containing dust is sucked from the suction port 69 by the high-speed airflow generated by driving the electric blower 64. The dust collection chamber 65 is for separating dust from air containing dust and temporarily storing the separated dust.
 また、掃除機本体6には、操作部66とバッテリ67とが設けられている。操作部66は、電気掃除機1の使用者が持って操作するためのものであり、操作部66には、使用者が電気掃除機1の運転を操作するための図示しない操作スイッチが設けられている。バッテリ67は、モータ駆動装置2に直流電力を供給する直流電源である。 Further, the cleaner body 6 is provided with an operation unit 66 and a battery 67. The operation unit 66 is for the user of the vacuum cleaner 1 to hold and operate, and the operation unit 66 is provided with an operation switch (not shown) for the user to operate the vacuum cleaner 1. ing. The battery 67 is a DC power source that supplies DC power to the motor driving device 2.
 図2に示すように、モータ駆動装置2は、電源であるバッテリ67、及び図1に示した電動送風機64に具備される単相モータ12に接続されている。バッテリ67とモータ駆動装置2との間には、電圧センサ20が設けられている。モータ駆動装置2と単相モータ12との間には、電流センサ22が設けられている。単相モータ12の一例は、ブラシレスモータである。モータ駆動装置2は、単相モータ12に交流電力を供給して単相モータ12を駆動する。電圧センサ20は、バッテリ67からモータ駆動装置2に印加される直流電圧Vdcを検出するセンサである。位置センサ21は、単相モータ12に内蔵されるロータ12aの磁極位置であるロータ磁極位置を検出するセンサである。電流センサ22は、単相モータ12に流れる電流であるモータ電流を検出するセンサである。 As shown in FIG. 2, the motor driving device 2 is connected to a battery 67 as a power source and the single-phase motor 12 provided in the electric blower 64 shown in FIG. 1. A voltage sensor 20 is provided between the battery 67 and the motor drive device 2. A current sensor 22 is provided between the motor driving device 2 and the single-phase motor 12. An example of the single phase motor 12 is a brushless motor. The motor drive device 2 drives the single-phase motor 12 by supplying AC power to the single-phase motor 12. The voltage sensor 20 is a sensor that detects a DC voltage V dc applied from the battery 67 to the motor driving device 2. The position sensor 21 is a sensor that detects a rotor magnetic pole position that is a magnetic pole position of the rotor 12 a built in the single-phase motor 12. The current sensor 22 is a sensor that detects a motor current that is a current flowing through the single-phase motor 12.
 電気掃除機1は、複数の運転モードを有するように構成されていてもよい。複数の運転モードの1つは「通常運転モード」であり、複数の運転モードの他の1つは「セーブ運転モード」である。「通常運転モード」は、通常運転時のモータ回転数で運転する運転モードである。「セーブ運転モード」は、通常運転時のモータ回転数よりも低いモータ回転数とすることで消費電力を抑制した運転モードである。 The vacuum cleaner 1 may be configured to have a plurality of operation modes. One of the plurality of operation modes is a “normal operation mode”, and the other one of the plurality of operation modes is a “save operation mode”. The “normal operation mode” is an operation mode in which operation is performed at the motor rotation speed during normal operation. The “save operation mode” is an operation mode in which power consumption is suppressed by setting the motor rotation speed lower than the motor rotation speed during normal operation.
 「通常運転モード」と「セーブ運転モード」との間の切り替えは、図示しない切り替えスイッチによって実施してもよいし、バッテリ残量に応じたモータ駆動装置2の制御によって実施してもよい。 The switching between the “normal operation mode” and the “save operation mode” may be performed by a changeover switch (not shown) or may be performed by control of the motor drive device 2 according to the remaining battery level.
 なお、本実施の形態では、電圧センサ20が直流電圧Vdcを検出しているが、検出対象は直流電圧Vdcに限定されない。検出対象は、モータ駆動装置2の出力電圧であるインバータ出力電圧でもよい。なお、「インバータ出力電圧」は後述する「モータ印加電圧」と同義である。 In the present embodiment, the voltage sensor 20 detects the DC voltage V dc , but the detection target is not limited to the DC voltage V dc . The detection target may be an inverter output voltage that is an output voltage of the motor drive device 2. “Inverter output voltage” has the same meaning as “motor applied voltage” described later.
 また、位置センサ21は、ロータ磁極位置を検出できるものであればどのようなものでもよい。ホールIC及びホール素子といった位置検出素子、又は、モータ誘起電圧からロータ磁極位置を検出する回路でもよい。なお、モータ誘起電圧は、単相モータ12のステータ12bにおける不図示の巻線に誘起される電圧である。 Further, the position sensor 21 may be any sensor that can detect the rotor magnetic pole position. A position detection element such as a Hall IC and a Hall element, or a circuit that detects the rotor magnetic pole position from the motor induced voltage may be used. The motor induced voltage is a voltage induced in a winding (not shown) in the stator 12b of the single phase motor 12.
 次に、モータ駆動装置2の内部の構成について説明する。モータ駆動装置2は、図2に示すように、単相インバータ11と、制御部25と、アナログディジタル変換器30と、駆動信号生成部32とを備える。 Next, the internal configuration of the motor drive device 2 will be described. As shown in FIG. 2, the motor drive device 2 includes a single-phase inverter 11, a control unit 25, an analog / digital converter 30, and a drive signal generation unit 32.
 単相インバータ11は、単相モータ12に接続され、単相モータ12に交流電圧を印加する。アナログディジタル変換器30は、電圧センサ20により検出された直流電圧Vdcであるアナログデータをディジタルデータに変換する。また、アナログディジタル変換器30は、電流センサ22により検出されたモータ電流のアナログデータをディジタルデータに変換する。 The single-phase inverter 11 is connected to the single-phase motor 12 and applies an AC voltage to the single-phase motor 12. The analog-digital converter 30 converts analog data, which is the DC voltage V dc detected by the voltage sensor 20, into digital data. The analog / digital converter 30 converts the analog data of the motor current detected by the current sensor 22 into digital data.
 制御部25は、モータ電流を正弦波に制御するための信号であるパルス幅変調(Pulse Width Moduration:PWM)信号Q1,Q2,Q3,Q4を生成する。駆動信号生成部32は、制御部25から出力されたPWM信号Q1,Q2,Q3,Q4に基づいて単相インバータ11内のスイッチング素子を駆動するための駆動信号を生成する。 The control unit 25 generates pulse width modulation (PWM) signals Q1, Q2, Q3, and Q4, which are signals for controlling the motor current into a sine wave. The drive signal generation unit 32 generates a drive signal for driving the switching elements in the single-phase inverter 11 based on the PWM signals Q1, Q2, Q3, and Q4 output from the control unit 25.
 制御部25は、アナログディジタル変換器30で変換された直流電圧と、位置センサ21から出力された回転位置検出信号である位置センサ信号とに基づいて、PWM信号Q1,Q2,Q3,Q4を生成する。位置センサ信号は、ロータ12aで発生する磁束の方向に応じて変化する二値のディジタル信号である。 The control unit 25 generates PWM signals Q1, Q2, Q3, and Q4 based on the DC voltage converted by the analog-digital converter 30 and the position sensor signal that is the rotational position detection signal output from the position sensor 21. To do. The position sensor signal is a binary digital signal that changes in accordance with the direction of the magnetic flux generated in the rotor 12a.
 次に、制御部25の内部の構成について説明する。制御部25は、プロセッサ31と、キャリア生成部33と、メモリ34とを有する。 Next, the internal configuration of the control unit 25 will be described. The control unit 25 includes a processor 31, a carrier generation unit 33, and a memory 34.
 プロセッサ31は、PWM制御及び進角制御に関する各種演算を行う処理部である。後述するキャリア比較部38の機能、及び進角位相算出部44の機能は、プロセッサ31によって実現される。プロセッサ31は、CPU(Central Processing Unit)、マイクロプロセッサ、マイクロコンピュータ、又はDSP(Digital Signal Processor)と称されるものでもよい。 The processor 31 is a processing unit that performs various calculations related to PWM control and advance angle control. A function of the carrier comparison unit 38 and a function of the advance phase calculation unit 44 described later are realized by the processor 31. The processor 31 may be called a CPU (Central Processing Unit), a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
 メモリ34には、プロセッサ31によって読みとられるプログラムが保存される。メモリ34は、プロセッサ31が演算処理を行う際の作業領域として使用される。メモリ34は、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。キャリア生成部33の構成の詳細は後述する。 The memory 34 stores a program read by the processor 31. The memory 34 is used as a work area when the processor 31 performs arithmetic processing. The memory 34 is generally a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (registered trademark) (Electrically EPROM). Details of the configuration of the carrier generation unit 33 will be described later.
 駆動信号生成部32は、プロセッサ31から出力されたPWM信号Q1,Q2,Q3,Q4を、単相インバータ11を駆動するための駆動信号に変換して、単相インバータ11に出力する。 The drive signal generation unit 32 converts the PWM signals Q1, Q2, Q3, and Q4 output from the processor 31 into drive signals for driving the single-phase inverter 11, and outputs the drive signals to the single-phase inverter 11.
 単相モータ12がブラシレスモータである場合、単相モータ12のロータ12aには、図示しない複数個の永久磁石が周方向に配列される。これらの複数個の永久磁石は、着磁方向が周方向に交互に反転するように配置され、ロータ12aの複数個の磁極を形成する。単相モータ12のステータ12bには、図示しない巻線が巻かれて配置される。以下、ステータ12bの巻線を「ステータ巻線」と呼ぶ。ステータ巻線に流れる交流電流は、前述した「モータ電流」に対応する。なお、本実施の形態では、ロータ12aの磁極数が4極の場合を想定するが、ロータ12aの磁極数は4極以外でもよい。 When the single-phase motor 12 is a brushless motor, a plurality of permanent magnets (not shown) are arranged in the circumferential direction on the rotor 12a of the single-phase motor 12. The plurality of permanent magnets are arranged so that the magnetization direction is alternately reversed in the circumferential direction, and form a plurality of magnetic poles of the rotor 12a. A winding (not shown) is wound around the stator 12 b of the single-phase motor 12. Hereinafter, the winding of the stator 12b is referred to as “stator winding”. The alternating current flowing through the stator winding corresponds to the “motor current” described above. In the present embodiment, it is assumed that the number of magnetic poles of the rotor 12a is four, but the number of magnetic poles of the rotor 12a may be other than four.
 図3は、図2に示す単相インバータの回路構成図である。単相インバータ11は、ブリッジ接続された複数のスイッチング素子51,52,53,54を有する。高電位側に位置する2つのスイッチング素子51,53のそれぞれは、上アームのスイッチング素子と称される。低電位側に位置する2つのスイッチング素子52,54のそれぞれは、下アームのスイッチング素子と称される。スイッチング素子51とスイッチング素子52との接続端11a、及びスイッチング素子53とスイッチング素子54との接続端11bは、ブリッジ回路における交流端を構成する。接続端11a,11bには、単相モータ12が接続される。 FIG. 3 is a circuit configuration diagram of the single-phase inverter shown in FIG. The single-phase inverter 11 has a plurality of switching elements 51, 52, 53, and 54 that are bridge-connected. Each of the two switching elements 51 and 53 located on the high potential side is referred to as an upper arm switching element. Each of the two switching elements 52 and 54 located on the low potential side is referred to as a lower arm switching element. The connection end 11a between the switching element 51 and the switching element 52 and the connection end 11b between the switching element 53 and the switching element 54 constitute an AC end in the bridge circuit. A single-phase motor 12 is connected to the connection ends 11a and 11b.
 複数のスイッチング素子51,52,53,54のそれぞれは、金属酸化膜半導体電界効果型トランジスタであるMOSFETが使用される。MOSFETはFET(Field-Effect Transistor)の一例である。 Each of the plurality of switching elements 51, 52, 53, 54 is a MOSFET which is a metal oxide semiconductor field effect transistor. MOSFET is an example of FET (Field-Effect Transistor).
 スイッチング素子51には、スイッチング素子51のドレインとソースとの間に並列接続されるボディダイオード51aが形成される。スイッチング素子52には、スイッチング素子52のドレインとソースとの間に並列接続されるボディダイオード52aが形成される。スイッチング素子53には、スイッチング素子53のドレインとソースとの間に並列接続されるボディダイオード53aが形成される。スイッチング素子54には、スイッチング素子54のドレインとソースとの間に並列接続されるボディダイオード54aが形成される。複数のボディダイオード51a,52a,53a,54aのそれぞれは、MOSFETの内部に形成される寄生ダイオードであり、還流ダイオードとして使用される。 In the switching element 51, a body diode 51a connected in parallel between the drain and source of the switching element 51 is formed. In the switching element 52, a body diode 52a connected in parallel between the drain and source of the switching element 52 is formed. In the switching element 53, a body diode 53a connected in parallel between the drain and source of the switching element 53 is formed. The switching element 54 is formed with a body diode 54 a connected in parallel between the drain and source of the switching element 54. Each of the plurality of body diodes 51a, 52a, 53a, 54a is a parasitic diode formed inside the MOSFET, and is used as a freewheeling diode.
 複数のスイッチング素子51,52,53,54の内の少なくとも一つは、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されたMOSFETでもよい。 At least one of the plurality of switching elements 51, 52, 53, and 54 is not limited to a MOSFET formed of a silicon-based material, but is formed of a wide band gap semiconductor such as silicon carbide, a gallium nitride-based material, or diamond. A MOSFET may be used.
 一般的にワイドバンドギャップ半導体は、シリコン半導体に比べて耐電圧および耐熱性が高い。そのため、複数のスイッチング素子51,52,53,54の内の少なくとも一つにワイドバンドギャップ半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。また、ワイドバンドギャップ半導体は、耐熱性も高いため、半導体モジュールで発生した熱を放熱するための放熱部の小型化が可能である。更に、ワイドバンドギャップ半導体は、半導体モジュールで発生した熱を放熱する放熱構造の簡素化が可能である。 Generally, wide band gap semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a wide band gap semiconductor for at least one of the plurality of switching elements 51, 52, 53, and 54, the withstand voltage and allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element Can be miniaturized. In addition, since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the heat radiating portion for radiating the heat generated in the semiconductor module. Furthermore, the wide band gap semiconductor can simplify the heat dissipation structure that dissipates heat generated in the semiconductor module.
 図4は、図2に示すプロセッサで実現されるキャリア比較部、及び図2に示すキャリア生成部を示すブロック図である。図5は、図4に示すキャリア比較部及びキャリア生成部の構成を詳細に示すブロック図である。前述したように、PWM信号Q1,Q2,Q3,Q4を生成する機能は、図4に示すキャリア生成部33及びキャリア比較部38によって実現できる。 FIG. 4 is a block diagram showing a carrier comparison unit realized by the processor shown in FIG. 2 and a carrier generation unit shown in FIG. FIG. 5 is a block diagram showing in detail the configuration of the carrier comparison unit and the carrier generation unit shown in FIG. As described above, the function of generating the PWM signals Q1, Q2, Q3, and Q4 can be realized by the carrier generation unit 33 and the carrier comparison unit 38 illustrated in FIG.
 図4において、キャリア比較部38には、後述する電圧指令Vを生成するときに用いる進角制御された進角位相θと、基準位相θとが入力される。基準位相θは、ロータ12aの基準位置からの角度であるロータ機械角θを電気角に換算した位相である。ここで、「進角位相」とは、電圧指令の「進み角」である「進角」を位相で表したものである。また、ここで言う「進み角」とは、単相インバータ11がステータ巻線に印加するモータ印加電圧と、ステータ巻線に誘起されるモータ誘起電圧との間の位相差である。なお、モータ印加電圧がモータ誘起電圧よりも進んでいるときに、「進み角」は正の値をとる。また、モータ誘起電圧は、位置センサ21の出力信号と同期した信号である。このため、「進み角」は、位置センサ信号とモータ印加電圧との間の位相差でもある。進角位相θの算出には、モータ印加電圧に関する情報が必要であるが、モータ印加電圧に代えてモータ電流を用いてもよい。すなわち、位置センサ信号とモータ電流との間の位相差を「進み角」としてもよい。 In FIG. 4, the carrier comparison unit 38 receives an advance angle phase θ v subjected to advance angle control and a reference phase θ e used when generating a voltage command V m described later. The reference phase θ e is a phase obtained by converting the rotor mechanical angle θ m that is an angle from the reference position of the rotor 12a into an electrical angle. Here, “advance angle phase” represents “advance angle”, which is the “advance angle” of the voltage command, in terms of phase. The “advance angle” referred to here is a phase difference between the motor applied voltage applied to the stator winding by the single-phase inverter 11 and the motor induced voltage induced in the stator winding. When the motor applied voltage is ahead of the motor induced voltage, the “lead angle” takes a positive value. The motor induced voltage is a signal synchronized with the output signal of the position sensor 21. For this reason, the “lead angle” is also a phase difference between the position sensor signal and the motor applied voltage. The calculation of the advanced angle phase theta v, it is necessary to information about the voltage applied to the motor, it may be used motor current instead of the voltage applied to the motor. In other words, the phase difference between the position sensor signal and the motor current may be the “advance angle”.
 また、キャリア比較部38には、進角位相θと、基準位相θとに加え、キャリア生成部33で生成されたキャリアと、直流電圧Vdcと、電圧指令Vの振幅値である電圧振幅指令V*とが入力される。キャリア比較部38は、キャリア、進角位相θ、基準位相θ、直流電圧Vdc及び電圧振幅指令V*に基づいて、PWM信号Q1,Q2,Q3,Q4を生成する。 In addition, the carrier comparison unit 38 includes the advance value θ v and the reference phase θ e , the carrier generated by the carrier generation unit 33, the DC voltage V dc, and the amplitude value of the voltage command V m. A voltage amplitude command V * is input. The carrier comparison unit 38 generates PWM signals Q1, Q2, Q3, and Q4 based on the carrier, the advance angle phase θ v , the reference phase θ e , the DC voltage V dc, and the voltage amplitude command V *.
 図5に示すように、キャリア生成部33には、キャリアの周波数であるキャリア周波数f[Hz]が設定される。キャリア周波数fの矢印の先には、キャリア波形の一例として、“0”と“1”との間を上下する三角波キャリアの波形が示されている。なお、単相インバータ11のPWM制御には、同期PWM制御と、非同期PWM制御とがあるが、非同期PWM制御の場合、進角位相θにキャリアを同期させる制御は不要である。 As illustrated in FIG. 5, a carrier frequency f C [Hz] that is a carrier frequency is set in the carrier generation unit 33. At the tip of the arrow of the carrier frequency f C , as an example of the carrier waveform, a waveform of a triangular wave carrier that goes up and down between “0” and “1” is shown. Note that the PWM control of the single-phase inverter 11, and the synchronous PWM control, there are asynchronous PWM control, when the asynchronous PWM control, the control for synchronizing the carrier to advance the phase theta v is not necessary.
 キャリア比較部38は、図5に示すように、絶対値演算部38a、除算部38b、乗算部38c、乗算部38d、加算部38e、乗算部38f、比較部38g、比較部38h、出力反転部38i及び出力反転部38jを有する。 As shown in FIG. 5, the carrier comparison unit 38 includes an absolute value calculation unit 38a, a division unit 38b, a multiplication unit 38c, a multiplication unit 38d, an addition unit 38e, a multiplication unit 38f, a comparison unit 38g, a comparison unit 38h, and an output inversion unit. 38i and an output inverting unit 38j.
 絶対値演算部38aでは、電圧振幅指令V*の絶対値|V*|が演算される。除算部38bでは、絶対値|V*|が、電圧センサ20で検出された直流電圧Vdcによって除算される。バッテリ67の出力電圧であるバッテリ電圧は、電流を流し続けることにより変動するが、絶対値|V*|を直流電圧Vdcで除算することにより、バッテリ電圧の低下によってモータ印加電圧が低下しないように、変調率を増加させることができる。 The absolute value calculation unit 38a calculates the absolute value | V * | of the voltage amplitude command V *. In the dividing unit 38b, the absolute value | V * | is divided by the DC voltage V dc detected by the voltage sensor 20. The battery voltage, which is the output voltage of the battery 67, varies as the current continues to flow. By dividing the absolute value | V * | by the DC voltage Vdc , the motor applied voltage does not decrease due to a decrease in the battery voltage. In addition, the modulation rate can be increased.
 乗算部38cでは、基準位相θに進角位相θを加えた“θ+θ”の正弦値が演算される。演算された“θ+θ”の正弦値は、除算部38bの出力に乗算される。乗算部38dでは、乗算部38cの出力である電圧指令Vに1/2が乗算される。加算部38eでは、乗算部38dの出力に1/2が加算される。乗算部38fでは、加算部38eの出力に“-1”が乗算される。加算部38eの出力は、複数のスイッチング素子51,52,53,54の内、上アームの2つのスイッチング素子51,53を駆動するための正側の電圧指令Vm1として比較部38gに入力され、乗算部38fの出力は、下アームの2つのスイッチング素子52,54を駆動するための負側の電圧指令Vm2として比較部38hに入力される。 In the multiplication unit 38c, a sine value of “θ e + θ v ” obtained by adding the advance phase θ v to the reference phase θ e is calculated. The calculated sine value of “θ e + θ v ” is multiplied by the output of the division unit 38b. In the multiplication unit 38d, the voltage command V m that is the output of the multiplication unit 38c is multiplied by ½. In the adder 38e, ½ is added to the output of the multiplier 38d. The multiplication unit 38f multiplies the output of the addition unit 38e by “−1”. The output of the addition unit 38e is input to the comparison unit 38g as a positive voltage command V m1 for driving the two switching elements 51, 53 of the upper arm among the plurality of switching elements 51, 52, 53, 54. , the output of the multiplication unit 38f is input to the comparison unit 38h as a voltage command V m2 of the negative side for driving the two switching elements 52, 54 of the lower arm.
 比較部38gでは、正側の電圧指令Vm1と、キャリアの振幅とが比較される。比較部38gの出力は、スイッチング素子51へのPWM信号Q1となり、比較部38gの出力を反転した出力反転部38iの出力は、スイッチング素子52へのPWM信号Q2となる。同様に、比較部38hでは、負側の電圧指令Vm2と、キャリアの振幅とが比較される。比較部38hの出力は、スイッチング素子53へのPWM信号Q3となり、比較部38hの出力を反転した出力反転部38jの出力は、スイッチング素子54へのPWM信号Q4となる。出力反転部38iにより、スイッチング素子51とスイッチング素子52とが同時にオンすることはなく、出力反転部38jにより、スイッチング素子53とスイッチング素子54とが同時にオンされることはない。 The comparison unit 38g compares the positive-side voltage command V m1 with the carrier amplitude. The output of the comparison unit 38g becomes the PWM signal Q1 to the switching element 51, and the output of the output inversion unit 38i obtained by inverting the output of the comparison unit 38g becomes the PWM signal Q2 to the switching element 52. Similarly, the comparison unit 38h compares the negative-side voltage command V m2 with the carrier amplitude. The output of the comparison unit 38h is a PWM signal Q3 to the switching element 53, and the output of the output inversion unit 38j obtained by inverting the output of the comparison unit 38h is the PWM signal Q4 to the switching element 54. The switching element 51 and the switching element 52 are not simultaneously turned on by the output inverting part 38i, and the switching element 53 and the switching element 54 are not simultaneously turned on by the output inverting part 38j.
 図6は、図5に示される正側の電圧指令と、負側の電圧指令と、PWM信号と、インバータ出力電圧とのそれぞれの波形例を示すタイムチャートである。図6には上から順に、加算部38eから出力される正側の電圧指令Vm1の波形と、乗算部38fから出力される負側の電圧指令Vm2の波形と、PWM信号Q1,Q2,Q3,Q4の波形と、インバータ出力電圧の波形とが示されている。電圧指令Vm1,Vm2を使用することにより、PWM信号Q1,Q2,Q3,Q4が生成される。図2に示されるモータ駆動装置2は、PWM信号Q1,Q2,Q3,Q4を使用して単相インバータ11内の複数のスイッチング素子51,52,53,54を制御することにより、図6に示されるようなインバータ出力電圧、すなわちPWM制御された電圧パルスを、単相モータ12に印加する。 FIG. 6 is a time chart showing waveform examples of the positive voltage command, the negative voltage command, the PWM signal, and the inverter output voltage shown in FIG. In FIG. 6, in order from the top, the waveform of the positive voltage command V m1 output from the adder 38e, the waveform of the negative voltage command V m2 output from the multiplier 38f, and the PWM signals Q1, Q2, and The waveforms of Q3 and Q4 and the waveform of the inverter output voltage are shown. By using the voltage commands V m1 and V m2 , PWM signals Q1, Q2, Q3, and Q4 are generated. The motor drive device 2 shown in FIG. 2 controls the plurality of switching elements 51, 52, 53, and 54 in the single-phase inverter 11 by using the PWM signals Q1, Q2, Q3, and Q4, so that FIG. An inverter output voltage as shown, that is, a PWM-controlled voltage pulse is applied to the single-phase motor 12.
 PWM信号Q1,Q2,Q3,Q4を生成する際に使用する変調方式としては、正又は負の電位で変化する電圧パルスを出力するバイポーラ変調と、電源半周期ごとに3つの電位で変化する電圧パルス、すなわち正の電位と負の電位と零の電位とに変化する電圧パルスを出力するユニポーラ変調とが知られている。図6に示した波形は、ユニポーラ変調によるものである。本実施の形態のモータ駆動装置2においては、何れの変調方式を用いてもよい。なお、モータ電流波形をより正弦波に制御する必要がある用途では、バイポーラ変調よりも、高調波含有率が少ないユニポーラ変調を採用することが好ましい。 The modulation method used when generating the PWM signals Q1, Q2, Q3, and Q4 includes bipolar modulation that outputs a voltage pulse that changes at a positive or negative potential, and a voltage that changes at three potentials every half cycle of the power supply. There is known a pulse, that is, unipolar modulation that outputs a voltage pulse that changes to a positive potential, a negative potential, and a zero potential. The waveform shown in FIG. 6 is based on unipolar modulation. In the motor drive device 2 of the present embodiment, any modulation method may be used. In applications where it is necessary to control the motor current waveform to a sine wave, it is preferable to employ unipolar modulation with a lower harmonic content than bipolar modulation.
 図7は、変調率に応じたインバータ出力電圧の変化を示す図である。図7の上段部には、変調率=1.0である場合の電圧指令Vと、キャリアとインバータ出力電圧とが示される。図7の中段部には、変調率=1.2である場合の電圧指令Vとキャリアとインバータ出力電圧とが示される。図7の下段部には、変調率=2.0である場合の電圧指令Vとキャリアとインバータ出力電圧とが示される。 FIG. 7 is a diagram illustrating a change in the inverter output voltage in accordance with the modulation rate. The upper part of FIG. 7 shows the voltage command V m when the modulation factor is 1.0, the carrier, and the inverter output voltage. The middle part of FIG. 7 shows the voltage command V m , the carrier, and the inverter output voltage when the modulation factor = 1.2. The lower part of FIG. 7 shows the voltage command V m , the carrier, and the inverter output voltage when the modulation rate is 2.0.
 図5で説明したように、正側の電圧指令Vm1は、比較部38gにおいてキャリアの振幅と比較され、負側の電圧指令Vm2は、比較部38hにおいてキャリアの振幅と比較される。電圧指令Vm1,Vm2が、キャリアの振幅よりも大きいときは、単相インバータ11のスイッチング素子がオンとなる。また、電圧指令Vm1,Vm2がキャリアの振幅よりも小さいときは、単相インバータ11のスイッチング素子がオフとなる。これらの動作により、図6に示されるようなPWM制御されたインバータ出力電圧が単相モータ12に印加される。 As described with reference to FIG. 5, the voltage command V m1 on the positive side is compared with the carrier amplitude in the comparison unit 38g, and the voltage command V m2 on the negative side is compared with the carrier amplitude in the comparison unit 38h. When the voltage commands V m1 and V m2 are larger than the carrier amplitude, the switching element of the single-phase inverter 11 is turned on. When the voltage commands V m1 and V m2 are smaller than the carrier amplitude, the switching element of the single-phase inverter 11 is turned off. By these operations, an inverter output voltage subjected to PWM control as shown in FIG. 6 is applied to the single-phase motor 12.
 なお、変調率の定義は、種々なものが存在するが、本明細書では、電圧振幅指令V*とキャリアの振幅との比率、すなわち「電圧振幅指令V*/キャリア振幅」を変調率と定義する。図7の上段部には、変調率=1.0の場合の波形が示されるが、変調率が1.0未満の場合も同様な波形となる。変調率が1.0未満の場合、キャリアの周波数に応じてインバータ出力電圧が生成されるため、インバータ出力電圧もキャリア周波数に応じた電圧パルスが出力される。 There are various definitions of the modulation rate. In this specification, the ratio between the voltage amplitude command V * and the carrier amplitude, that is, “voltage amplitude command V * / carrier amplitude” is defined as the modulation rate. To do. The upper part of FIG. 7 shows a waveform when the modulation rate is 1.0, but the same waveform is obtained when the modulation rate is less than 1.0. When the modulation factor is less than 1.0, an inverter output voltage is generated according to the carrier frequency, and therefore, the inverter output voltage also outputs a voltage pulse according to the carrier frequency.
 一方、変調率が1.0を超える場合、図7の中段部及び下段部に示すような波形となる。なお、変調率が1.0を超える場合は「過変調」と称され、変調率が1.0を超える領域は「過変調領域」と称される。過変調領域では、電圧指令Vがキャリアの振幅を超えるため、キャリア周波数に応じてインバータ駆動信号を生成することができない区間が発生する。この区間では、インバータ出力電圧は、正の電源電圧又は負の電源電圧に固定されるため、インバータ出力電圧は変調率1.0のときに比べ、大きな出力電圧を得ることができる。 On the other hand, when the modulation rate exceeds 1.0, the waveforms are as shown in the middle and lower parts of FIG. When the modulation rate exceeds 1.0, it is called “overmodulation”, and the region where the modulation rate exceeds 1.0 is called “overmodulation region”. In the overmodulation region, since the voltage command V m exceeds the carrier amplitude, there is a section in which an inverter drive signal cannot be generated according to the carrier frequency. In this section, since the inverter output voltage is fixed to a positive power supply voltage or a negative power supply voltage, the inverter output voltage can obtain a larger output voltage than when the modulation factor is 1.0.
 次に、電源にバッテリを用いる場合の問題点と、その対策について説明する。 Next, we will explain the problems and countermeasures when using a battery as a power source.
 バッテリは、内部インピーダンスの性質が現れる構造物である。このため、バッテリ出力電圧は、バッテリから出力される電流に応じて大きく変化する。具体的に、20[V]のバッテリにおいて、20[A]の電流を流した場合、バッテリ出力電圧は、およそ17[V]まで低下することが知られている。また、前述した変調率が1.0以上の領域の場合、出力電圧パルスの数が少なくなることで、電圧指令Vに対して、出力電圧が正確に得られないという問題が生じることが知られている。更に、単相インバータ11によるスイッチングの影響により、バッテリ電流は脈動した電流となるため、バッテリから出力される電圧も脈動することが知られている。これらの問題に対して、進角を一定値とはせずに逐次変化させるように制御すれば、バッテリから単相インバータ11に印加される電圧のばらつきと、単相インバータ11が出力する電圧のばらつきとの両方を抑制することができる。 A battery is a structure that exhibits the nature of internal impedance. For this reason, the battery output voltage varies greatly according to the current output from the battery. Specifically, it is known that when a current of 20 [A] flows in a battery of 20 [V], the battery output voltage decreases to approximately 17 [V]. Further, in the above-described region where the modulation factor is 1.0 or more, it is known that the output voltage cannot be accurately obtained with respect to the voltage command V m because the number of output voltage pulses decreases. It has been. Furthermore, since the battery current becomes a pulsating current due to the influence of switching by the single-phase inverter 11, it is known that the voltage output from the battery also pulsates. In order to solve these problems, if the advance angle is controlled so as to be sequentially changed without being a constant value, the variation in the voltage applied from the battery to the single-phase inverter 11 and the voltage output from the single-phase inverter 11 Both variations can be suppressed.
 次に、本実施の形態における進角制御について説明する。図8は、図4及び図5に示したキャリア比較部へ入力される進角位相を算出するための機能構成を示すブロック図である。進角位相θを算出するための機能は、図8に示すように回転速度算出部42と、進角位相算出部44とによって実現できる。 Next, the advance angle control in the present embodiment will be described. FIG. 8 is a block diagram illustrating a functional configuration for calculating an advance phase input to the carrier comparison unit illustrated in FIGS. 4 and 5. The function for calculating the advance angle phase θ v can be realized by a rotation speed calculation unit 42 and an advance angle phase calculation unit 44 as shown in FIG.
 回転速度算出部42は、位置センサ21が検出した位置センサ信号に基づいて単相モータ12の回転速度ωを算出する。また、回転速度算出部42は、ロータ12aの基準位置からの角度であるロータ機械角θを電気角に換算した基準位相θを算出する。進角位相算出部44は、回転速度算出部42が算出した回転速度ω及び基準位相θと、位置センサ信号とに基づいて、進角位相θを算出する。 The rotation speed calculation unit 42 calculates the rotation speed ω of the single-phase motor 12 based on the position sensor signal detected by the position sensor 21. In addition, the rotation speed calculation unit 42 calculates a reference phase θ e obtained by converting a rotor mechanical angle θ m that is an angle from the reference position of the rotor 12a into an electrical angle. The advance phase calculation unit 44 calculates the advance phase θ v based on the rotation speed ω and the reference phase θ e calculated by the rotation speed calculation unit 42 and the position sensor signal.
 図9は、実施の形態における進角位相の算出方法の一例を示す図である。図9の横軸は回転速度Nを示し、図9の縦軸は進角位相θを示している。なお、回転速度を[rpm]の単位で表すときには、“N”の表記を使用する。図9に示すように、進角位相θは、回転速度Nの増加に対して進角位相θが増加する関数を用いて決定することができる。また、図9において、進角調整幅Δθdelは、位置センサ21の取り付け位置のばらつき範囲を示している。なお、図9の例では、1次の線形関数により進角位相θを決定しているが、1次の線形関数に限定されない。回転速度Nの増加に応じて進角位相θが同じか、もしくは大きくなる関係であれば、1次の線形関数以外の関数を用いてもよい。 FIG. 9 is a diagram illustrating an example of a method of calculating the advance phase according to the embodiment. The horizontal axis of FIG. 9 shows the rotational speed N, the vertical axis of FIG. 9 shows an advanced phase theta v. Note that when the rotation speed is expressed in units of [rpm], the notation “N” is used. As shown in FIG. 9, the advance phase θ v can be determined using a function in which the advance phase θ v increases as the rotational speed N increases. Further, in FIG. 9, the advance angle adjustment width Δθdel indicates a variation range of the attachment position of the position sensor 21. In the example of FIG. 9, and determines the advance angle phase theta v by first-order linear function, but is not limited to first-order linear function. If either advanced angle phase theta v according to an increase of the rotational speed N is equal or greater relationship may be used functions other than first-order linear function.
 図10は、図2に示す位置センサから出力される位置センサ信号と、図2に示すロータ12aの基準位置からの角度であるロータ機械角と、当該ロータ機械角を電気角に換算した位相である基準位相と、図4に示す電圧指令との関係を示す図である。図10の最下段部には、ロータ12aが時計方向に回転したときのロータ機械角θが0°、45°、90°、135°及び180°である単相モータ12が示されている。単相モータ12のロータ12aには、4つの磁石が設けられている。ロータ12aの外周に4つのティース12b1が設けられている。ロータ12aが時計方向に回転した場合、ロータ機械角θに応じた位置センサ信号が検出される。制御部25では、検出された位置センサ信号に応じて電気角に換算された基準位相θが算出される。 10 shows a position sensor signal output from the position sensor shown in FIG. 2, a rotor mechanical angle that is an angle from the reference position of the rotor 12a shown in FIG. 2, and a phase obtained by converting the rotor mechanical angle into an electrical angle. FIG. 5 is a diagram showing a relationship between a certain reference phase and a voltage command shown in FIG. 4. The bottom portion of Figure 10, the rotor mechanical angle theta m when the rotor 12a is rotated in the clockwise direction is 0 °, 45 °, 90 ° , the single-phase motor 12 is 135 ° and 180 ° are shown . The rotor 12a of the single phase motor 12 is provided with four magnets. Four teeth 12b1 are provided on the outer periphery of the rotor 12a. If the rotor 12a is rotated clockwise, the position sensor signals corresponding to the rotor mechanical angle theta m is detected. The control unit 25 calculates a reference phase θ e converted into an electrical angle in accordance with the detected position sensor signal.
 図10の中段部に「例1」として示される電圧指令Vは、進角位相θ=0の場合の電圧指令である。進角位相θ=0の場合、基準位相θと同相の正弦波状の電圧指令Vが出力される。このときの電圧指令Vの振幅は、前述した電圧振幅指令V*に基づいて決定される。 The voltage command V m shown as “Example 1” in the middle part of FIG. 10 is a voltage command in the case of the advance angle phase θ v = 0. When the advance angle phase θ v = 0, a sinusoidal voltage command V m having the same phase as the reference phase θ e is output. The amplitude of the voltage command V m at this time is determined based on the voltage amplitude command V * as described above.
 図10の中段部に「例2」として示される電圧指令Vは、進角位相θ=π/4の場合の電圧指令である。進角位相θ=π/4の場合、基準位相θから進角位相θの成分であるπ/4進めた正弦波状の電圧指令Vが出力される。 The voltage command V m shown as “Example 2” in the middle part of FIG. 10 is a voltage command in the case of the advance angle phase θ v = π / 4. When the advance angle phase θ v = π / 4, a sine-wave voltage command V m advanced by π / 4, which is a component of the advance angle phase θ v , from the reference phase θ e is output.
 次に、電圧振幅指令V*の与え方について説明する。図11は、実施の形態における電圧振幅指令V*の時間変化を示す図である。本実施の形態において、電圧振幅指令V*は、図示のように、時間に応じて段階的に変化する動作態様とする。具体的に説明すると、まず、起動時には予め設定した一定の第1電圧Vが与えられる。起動区間においては、第1電圧Vが維持される。加速区間では、予め設定した加速レートが得られるように電圧振幅指令V*を上昇させる。加速後、定常運転区間に移行するときは、電圧振幅指令V*の上昇を停止する。定常運転区間では、加速停止時の電圧振幅指令V*が維持される。これにより、定常運転区間では、第1電圧Vよりも大きな一定の第2電圧Vが与えられる。すなわち、本実施の形態では、起動区間及び定常運転区間では、電圧振幅指令V*を一定とするように制御している。なお、起動区間において、第1電圧Vを与える時間τ1は、制御系の安定時間を考慮した任意の時間を設定することができる。 Next, how to give the voltage amplitude command V * will be described. FIG. 11 is a diagram illustrating a time change of the voltage amplitude command V * in the embodiment. In the present embodiment, the voltage amplitude command V * is an operation mode that changes stepwise according to time, as shown. More specifically, first, a predetermined first voltage V 1 set in advance is applied at the time of startup. In startup period, the first voltage V 1 is maintained. In the acceleration section, the voltage amplitude command V * is increased so as to obtain a preset acceleration rate. After the acceleration, when shifting to the steady operation section, the increase of the voltage amplitude command V * is stopped. In the steady operation section, the voltage amplitude command V * at the time of acceleration stop is maintained. Thus, in the steady operation period, the second voltage V 2 is applied a larger constant than the first voltage V 1. In other words, in the present embodiment, the voltage amplitude command V * is controlled to be constant in the start-up section and the steady operation section. Incidentally, in the start-up interval, the time τ1 providing a first voltages V 1 may be set to any time in consideration of the stabilization time of the control system.
 次に、電圧振幅指令V*が一定であることの効果について説明する。定常運転区間において、電圧振幅指令V*を一定に維持することにより、以下の効果が得られる。 Next, the effect of the voltage amplitude command V * being constant will be described. The following effects can be obtained by maintaining the voltage amplitude command V * constant in the steady operation section.
 (1)負荷が急変した場合においても位置センサ信号から検出された位相を元に、一定の電圧指令を出力できる。
 (2)回転速度が変動した場合においても電圧振幅に影響が及ばないため、出力電圧を安定に保つことができる。
(1) Even when the load suddenly changes, a constant voltage command can be output based on the phase detected from the position sensor signal.
(2) Since the voltage amplitude is not affected even when the rotation speed fluctuates, the output voltage can be kept stable.
 なお、ここで言う「負荷」とは、電気掃除機1の場合、吸込口体63の塞ぎ状態を意味する。吸込口体63の塞ぎ状態は、吸込口体63と清掃面である床面との間に生じた隙間に関係する。この隙間は、「開口率」という概念で定義できる。開口率の詳細については、後述する。 In addition, in the case of the vacuum cleaner 1, the “load” referred to here means a closed state of the suction port body 63. The closed state of the suction port body 63 is related to a gap generated between the suction port body 63 and the floor surface which is a cleaning surface. This gap can be defined by the concept of “aperture ratio”. Details of the aperture ratio will be described later.
 ところで、一般的な電気掃除機で実施されている回転速度一定制御では、モータに過電流が流れる場合がある。過電流が流れる理由は、負荷変動の際に回転速度を一定に保とうとするため、電流が急激に変動するからである。より詳細に説明すると、「負荷が軽い状態」すなわち「負荷トルクが小さい状態」から、「負荷が重い状態」すなわち「負荷トルクが大きい状態」に遷移した際に回転速度一定制御を行うと、同一回転速度を維持しようしてモータ出力トルクを大きくしなければならず、モータ電流の変化量が大きくなるからである。 By the way, in the constant rotation speed control performed in a general vacuum cleaner, an overcurrent may flow through the motor. The reason why the overcurrent flows is that the current fluctuates abruptly in order to keep the rotation speed constant when the load fluctuates. More specifically, if the rotational speed constant control is performed at the time of transition from “light load”, that is, “load torque is small” to “heavy load”, that is, “load torque is large”, it is the same. This is because the motor output torque must be increased to maintain the rotation speed, and the amount of change in the motor current increases.
 一方、本実施の形態では、前述したように、定常運転区間においては、電圧振幅指令V*を一定とする制御を行う。ここで、電圧振幅指令V*を一定とする場合、負荷が重くなった際には、電圧振幅指令V*は変化しないので、負荷トルクが大きくなった分、モータの回転速度は低下する。モータの回転速度は低下しても、モータ電流の急峻な変化と過電流とを防止できるので、モータの回転速度の急変を抑制することができる。これにより、安定して回転する電気掃除機を実現することができる。 On the other hand, in the present embodiment, as described above, in the steady operation section, the voltage amplitude command V * is controlled to be constant. Here, when the voltage amplitude command V * is constant, the voltage amplitude command V * does not change when the load becomes heavy. Therefore, the rotation speed of the motor decreases as the load torque increases. Even if the rotational speed of the motor is reduced, a sudden change in motor current and an overcurrent can be prevented, so that a sudden change in the rotational speed of the motor can be suppressed. Thereby, the vacuum cleaner which rotates stably is realizable.
 なお、電気掃除機の場合、負荷トルクは、単相モータの負荷である羽根の回転速度の増加によって増加すると共に、風路の径が広くなることでも増加する。風路の径とは、電気掃除機を例とした場合、吸込口体の吸込口の広さを意味している。吸込口が広いとき、例えば吸込口に何も接触していない場合、風を吸い込む力が必要となるため、同一回転速度で羽根が回転している際の負荷トルクは大きくなる。一方、吸込口が狭いとき、例えば吸込口が何かの物体と接触して塞がれている状態では、風を吸い込む力が必要なくなるため、同一回転速度で羽根が回転している際の負荷トルクは小さくなる。 In the case of a vacuum cleaner, the load torque increases with an increase in the rotational speed of the blade, which is the load of the single-phase motor, and also increases with an increase in the diameter of the air passage. The diameter of the air passage means the width of the suction port of the suction port body when an electric vacuum cleaner is taken as an example. When the suction port is wide, for example, when nothing is in contact with the suction port, a force for sucking wind is required, so that the load torque when the blades are rotating at the same rotational speed is increased. On the other hand, when the suction port is narrow, for example, when the suction port is in contact with some object and blocked, the load when the blades are rotating at the same rotation speed is not necessary because the force to suck in the wind is not necessary. Torque is reduced.
 次に、開口率について説明する。図12は、実施の形態における開口率の定義の説明に供する図である。ここで、実施の形態における「開口率」は、図1に示す吸込口体63の吸込口69と清掃面との間に生じた隙間の程度を表す百分率である。図12には、図1に示した電気掃除機1の吸込口体63と、吸込口体63に接続される延長管62と、延長管62内の風路72とが模式的に示されている。図中の実線の矢印は、空気の流れを示している。なお、図12では、吸込口体63の吸込口は、符号で示されていない。 Next, the aperture ratio will be described. FIG. 12 is a diagram for explaining the definition of the aperture ratio in the embodiment. Here, the “opening ratio” in the embodiment is a percentage that represents the degree of a gap formed between the suction port 69 of the suction port body 63 and the cleaning surface shown in FIG. FIG. 12 schematically shows the suction port body 63 of the electric vacuum cleaner 1 shown in FIG. 1, the extension pipe 62 connected to the suction port body 63, and the air passage 72 in the extension pipe 62. Yes. Solid arrows in the figure indicate the flow of air. In addition, in FIG. 12, the suction inlet of the suction inlet body 63 is not shown with the code | symbol.
 図12の左側に示されるように、吸込口体63の吸込口が床面76によって塞がれて密閉された状態を開口率=0%と定義する。密閉された状態とは、空気が流れない状態である。一方、図12の右側に示されるように、吸込口体63の吸込口が床面76に接触していない場合を開口率=100%と定義する。なお、図12の中央には、両者の中間、すなわち開口率=50%の状態が示されている。 As shown on the left side of FIG. 12, a state where the suction port of the suction port body 63 is closed and sealed by the floor surface 76 is defined as an opening ratio = 0%. The sealed state is a state where air does not flow. On the other hand, as shown on the right side of FIG. 12, the case where the suction port of the suction port body 63 is not in contact with the floor surface 76 is defined as the opening ratio = 100%. In the center of FIG. 12, the middle of the two, that is, the state of the aperture ratio = 50% is shown.
 開口率は、床面種類に応じても変化する。また、床面種類以外にも、吸込口に塵埃が詰まった場合、吸込口がカーテンを吸引した場合といった吸引態様に応じて、開口率が変化する。そこで、本明細書では、床面種類又は吸引態様に応じた開口率の範囲を、以下のように定義する。 開口 The aperture ratio varies depending on the floor type. In addition to the floor surface type, the opening ratio changes depending on the suction mode such as when the suction port is clogged with dust or when the suction port sucks the curtain. Therefore, in this specification, the range of the aperture ratio corresponding to the floor type or the suction mode is defined as follows.
 ・吸込口体63の吸込口に吸引物が詰まった場合の開口率:0~10%
 ・床面76が絨毯である場合の開口率:10~50%
 ・床面76がフローリングである場合の開口率:50~80%
 ・吸込口体63の吸込口が床面76から離れている状態の開口率:80~100%
-Opening ratio when suction material is clogged in the suction port body 63: 0 to 10%
・ Opening ratio when floor 76 is carpet: 10-50%
・ Opening ratio when floor 76 is flooring: 50-80%
-Opening ratio in a state where the suction port of the suction port body 63 is separated from the floor surface 76: 80 to 100%
 なお、床面種類又は吸引態様に応じた開口率は、電気掃除機の吸込口体の構造、又は吸込口における塵埃の詰まり具合が影響する。このため、ここで示す数値は、あくまでも一例である。 Note that the opening ratio according to the floor type or suction mode is affected by the structure of the suction port body of the vacuum cleaner or the degree of dust clogging at the suction port. For this reason, the numerical value shown here is an example to the last.
 前述したように、本実施の形態では、定常運転時においては、電圧振幅指令V*を一定とした制御を行う。この制御を行う場合、負荷変動に応じて単相モータ12の回転速度が変化する。逆の見方をすれば、単相モータ12の回転速度を観測することで、負荷変動を間接的に観測することができる。ここで、負荷変動は、開口率の変動の結果として現れる。開口率の変動は、床面種類の変動であり、又は吸引態様の変動である。従って、モータ回転数を観測することで、床面種類の変動又は吸引態様の変動を認識することができる。すなわち、電圧振幅指令V*を一定とした本実施の形態の制御により、床面種類及び吸引態様に応じた制御を取り入れることが可能となる。 As described above, in the present embodiment, control is performed with the voltage amplitude command V * kept constant during steady operation. When this control is performed, the rotational speed of the single-phase motor 12 changes according to load fluctuations. In other words, the load fluctuation can be indirectly observed by observing the rotational speed of the single-phase motor 12. Here, the load fluctuation appears as a result of the fluctuation of the aperture ratio. The variation in the aperture ratio is a variation in floor type or a variation in suction mode. Therefore, by observing the motor rotation speed, it is possible to recognize a change in floor type or a change in suction mode. In other words, the control according to the present embodiment in which the voltage amplitude command V * is constant makes it possible to incorporate control according to the floor type and suction mode.
 図13は、実施の形態における電圧指令の制御方法の説明に供する図である。図13の横軸は回転速度Nを示し、図13の縦軸は進角位相θ及び電圧振幅指令V*を示している。 FIG. 13 is a diagram for explaining a voltage command control method according to the embodiment. The horizontal axis of FIG. 13 represents the rotation speed N, the vertical axis of FIG. 13 illustrates an advanced phase theta v and the voltage amplitude command V *.
 図13の例では、回転速度及び開口率に応じた制御領域が、領域1から領域4までの4つの領域に区分されている。領域1は開口率が80%から100%のとき、すなわち吸込口体63が床面に触れていない状態を想定している。領域2は開口率が50%から80%のとき、すなわち床面がフローリングの場合を想定している。領域3は開口率が10%から50%のとき、すなわち床面が絨毯の場合を想定している。領域4は開口率が0%から10%のとき、すなわち吸込口体63が密閉された状態か、もしくは吸込口体63に吸引物が詰まった場合を想定している。 In the example of FIG. 13, the control area corresponding to the rotation speed and the aperture ratio is divided into four areas from area 1 to area 4. Region 1 assumes that the opening ratio is 80% to 100%, that is, the state where the suction port 63 is not touching the floor surface. Region 2 assumes that the aperture ratio is 50% to 80%, that is, the floor is flooring. Region 3 assumes that the opening ratio is 10% to 50%, that is, the floor is a carpet. The region 4 assumes that the opening ratio is 0% to 10%, that is, the suction port body 63 is in a sealed state, or the suction port body 63 is clogged with suction.
 進角位相θは、回転速度Nの増加に応じて、図13の太破線で示すように変化して行く。そして、回転速度Nに応じて電圧振幅指令V*が設定される。 As the rotational speed N increases, the advance angle phase θ v changes as shown by a thick broken line in FIG. A voltage amplitude command V * is set according to the rotation speed N.
 領域1から領域2への移行は、開口率が当該領域間の閾値である80%を下回ったときに行われる。開口率が80%を下回ったときとは、電気掃除機1の吸込口体63が床面76に触れていない状態から、フローリングである床面76に移動したと考えられる場合である。この場合、電圧振幅指令V*を第1の指令値Vc1から第2の指令値Vc2に変更することで回転速度Nをより上昇させる。第2の指令値Vc2は、第1の指令値Vc1よりも大きい。このとき、前述の通り、回転速度Nの増加に応じて進角位相θを傾き値Kで増加させる。なお、領域2から領域1への移行も、同様に行われる。領域2から領域1への移行は、開口率が当該領域間の閾値である80%を上回ったときに行われる。 The transition from the region 1 to the region 2 is performed when the aperture ratio falls below 80% that is the threshold value between the regions. When the opening ratio is less than 80%, it is considered that the suction port body 63 of the vacuum cleaner 1 has moved from the state where it does not touch the floor surface 76 to the floor surface 76 which is a flooring. In this case, the rotation speed N is further increased by changing the voltage amplitude command V * from the first command value Vc1 to the second command value Vc2. The second command value Vc2 is larger than the first command value Vc1. At this time, as described above, increases in accordance with an increase of the rotational speed N advanced phase theta v slope value K. Note that the transition from the region 2 to the region 1 is performed in the same manner. The transition from the region 2 to the region 1 is performed when the aperture ratio exceeds 80% which is the threshold value between the regions.
 領域2から領域3への移行は、開口率が当該領域間の閾値である50%を下回ったときに行われる。開口率が50%を下回ったときとは、電気掃除機1の吸込口体63がフローリングから絨毯に移動したと考えられる場合である。フローリングよりも絨毯の方が吸引力を必要とする。このため、電圧振幅指令V*を更に大きな値に設定することで回転速度Nをより上昇させる。具体的には、電圧振幅指令V*を第2の指令値Vc2から第3の指令値Vc3に変更する。第3の指令値Vc3は、第2の指令値Vc2よりも大きい。また、回転速度Nの増加に伴い進角位相θも傾き値Kで増加させる。電圧振幅指令V*を第2の指令値Vc2から第3の指令値Vc3に変更することにより、吸引力を更に上げることが可能となる。なお、領域3から領域2への移行も、同様に行われる。領域3から領域2への移行は、開口率が当該領域間の閾値である50%を上回ったときに行われる。 The transition from the region 2 to the region 3 is performed when the aperture ratio falls below 50% which is the threshold value between the regions. The case where the opening ratio falls below 50% is a case where the suction port body 63 of the vacuum cleaner 1 is considered to have moved from the flooring to the carpet. Carpets need more suction than flooring. For this reason, the rotational speed N is further increased by setting the voltage amplitude command V * to a larger value. Specifically, the voltage amplitude command V * is changed from the second command value Vc2 to the third command value Vc3. The third command value Vc3 is larger than the second command value Vc2. Further, as the rotational speed N increases, the advance angle phase θ v is also increased by the inclination value K. The suction force can be further increased by changing the voltage amplitude command V * from the second command value Vc2 to the third command value Vc3. The transition from the region 3 to the region 2 is performed in the same manner. The transition from the region 3 to the region 2 is performed when the aperture ratio exceeds 50% which is the threshold value between the regions.
 領域3から領域4への移行は、開口率が当該領域間の閾値である10%を下回ったときに行われる。開口率が10%を下回ったときとは、絨毯の清掃中に、吸込口体63に吸引物が詰まった場合を想定している。吸引物が詰まった場合には、回転速度Nを下げるため、電圧振幅指令V*の値を小さくする。具体的には、電圧振幅指令V*を第3の指令値Vc3から第4の指令値Vc4に変更する。第4の指令値Vc4は、第1の指令値Vc1よりも小さい。また、回転速度Nを下げるため、進角位相θを傾き値“-K”で減少させる。電圧振幅指令V*を第4の指令値Vc4に変更することにより、回転速度Nの上昇を抑制し、単相モータ12における無駄な発熱を抑制することができる。なお、領域4から領域3への移行も、同様に行われる。領域4から領域3への移行は、開口率が当該領域間の閾値である10%を上回ったときに行われる。 The transition from the region 3 to the region 4 is performed when the aperture ratio falls below 10% which is the threshold value between the regions. When the opening ratio is less than 10%, it is assumed that the suction port body 63 is clogged with suction material during cleaning of the carpet. When the suctioned object is clogged, the value of the voltage amplitude command V * is decreased in order to decrease the rotational speed N. Specifically, the voltage amplitude command V * is changed from the third command value Vc3 to the fourth command value Vc4. The fourth command value Vc4 is smaller than the first command value Vc1. Moreover, to reduce the rotational speed N, to reduce the slope of the advanced angle phase theta v value "-K". By changing the voltage amplitude command V * to the fourth command value Vc4, an increase in the rotational speed N can be suppressed and useless heat generation in the single-phase motor 12 can be suppressed. The transition from the region 4 to the region 3 is performed in the same manner. The transition from the region 4 to the region 3 is performed when the aperture ratio exceeds 10% which is a threshold value between the regions.
 なお、図13に示す例、すなわち開口率に応じた電圧振幅指令V*の変更例は一例であり、これに限定されない。電圧指令値の大小関係は、用途に応じて変更してもよい。また、製品の運転モードが複数ある場合、上述した第1から第4の指令値は、運転モード毎に複数の値を有していてもよい。 It should be noted that the example shown in FIG. 13, that is, the example of changing the voltage amplitude command V * according to the aperture ratio is an example, and is not limited to this. The magnitude relationship between the voltage command values may be changed according to the application. Moreover, when there are a plurality of operation modes of the product, the first to fourth command values described above may have a plurality of values for each operation mode.
 また、上記では、領域1と領域2との間の移行、領域2と領域3との間の移行、及び領域3と領域4との間の移行について説明したが、領域1と領域3との間の移行、領域1と領域4との間の移行、及び領域2と領域4との間の移行も起こり得る。領域1から領域3への移行は、領域3における開口率範囲の上限値である50%が閾値となり、開口率が当該閾値を下回ったときに行われる。領域3から領域1への移行は、領域1における開口率範囲の下限値である80%が閾値となり、開口率が当該閾値を上回ったときに行われる。領域1から領域4への移行は、領域4における開口率範囲の上限値である10%が閾値となり、開口率が当該閾値を下回ったときに行われる。領域4から領域1への移行は、領域1における開口率範囲の下限値である80%が閾値となり、開口率が当該閾値を上回ったときに行われる。領域2から領域4への移行は、領域4における開口率範囲の上限値である10%が閾値となり、開口率が当該閾値を下回ったときに行われる。領域4から領域2への移行は、領域2における開口率範囲の下限値である50%が閾値となり、開口率が当該閾値を上回ったときに行われる。 In the above description, the transition between the region 1 and the region 2, the transition between the region 2 and the region 3, and the transition between the region 3 and the region 4 are described. Transition between, transition between region 1 and region 4, and transition between region 2 and region 4 can also occur. The transition from the region 1 to the region 3 is performed when the threshold value is 50%, which is the upper limit value of the aperture ratio range in the region 3, and the aperture ratio falls below the threshold value. The transition from the region 3 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value. The transition from the region 1 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value. The transition from the region 4 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value. The transition from the region 2 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value. The transition from the region 4 to the region 2 is performed when the threshold value is 50% that is the lower limit value of the aperture ratio range in the region 2 and the aperture ratio exceeds the threshold value.
 次に、開口率の算出方法について説明する。図14は、実施の形態における開口率の算出方法の説明に供する図である。 Next, a method for calculating the aperture ratio will be described. FIG. 14 is a diagram for explaining the calculation method of the aperture ratio in the embodiment.
 図14には、開口率に応じて変化する電圧振幅指令V*に関し、図13において示した“Vc1”、“Vc2”及び“Vc3”からなる3つの曲線が示されている。開口率の範囲は、上述した例の通りである。なお、「床面なし」とは、吸込口体63が床面76から離れている状態を意味している。 FIG. 14 shows three curves composed of “Vc1”, “Vc2” and “Vc3” shown in FIG. 13 with respect to the voltage amplitude command V * which changes according to the aperture ratio. The range of the aperture ratio is as described above. “No floor” means that the suction port 63 is separated from the floor 76.
 図14において、回転速度N1未満では電圧振幅指令V*=Vc1であり、動作点は太実線L1上を移動する。回転速度N1に達すると、電圧振幅指令V*=Vc2となり、動作点は太実線L2上に移る。このとき、回転速度Nは、N2に達する。回転速度N2以上、N3未満では、動作点は太実線L2上を移動する。回転速度N3に達すると、電圧振幅指令V*=Vc3となり、動作点は太実線L3上に移る。このとき、回転速度Nは、N4に達する。回転速度N4以上では、動作点は太実線L3上を移動する。 In FIG. 14, when the rotational speed is less than N1, the voltage amplitude command V * = Vc1, and the operating point moves on the thick solid line L1. When the rotational speed N1 is reached, the voltage amplitude command V * = Vc2, and the operating point moves on the thick solid line L2. At this time, the rotational speed N reaches N2. At a rotational speed of N2 or more and less than N3, the operating point moves on the thick solid line L2. When the rotation speed N3 is reached, the voltage amplitude command V * = Vc3, and the operating point moves on the thick solid line L3. At this time, the rotational speed N reaches N4. At a rotational speed of N4 or higher, the operating point moves on the thick solid line L3.
 上記のように、回転速度Nを変更すると、開口率に対する電圧振幅指令V*の関係が変化する。このため、回転速度Nと電圧振幅指令V*の関係を前もって把握しておき、制御部25内の図示しないテーブルに保持しておく。図14に示す例では、回転速度がN1より小さい開口率=100%~80%であるときに、電圧振幅指令V*=Vc1となる。以下同様に、回転速度N1~N3のとき開口率=80%~50%であり、電圧振幅指令V*=Vc2となる。また、回転速度N3以上のとき、開口率=50%~10%であり、電圧振幅指令V*=Vc3となる。なお、回転数が急上昇、急下降する際は、急上昇後の回転数よりさらに大きな回転数になり、急降下後の回転数よりさらに小さな回転数になることがあるが、その際の開口率は図14の太実線に応じた開口率にはならない。図8に示す回転速度算出部42によって算出された回転速度ωを基に、開口率と回転速度Nと電圧振幅指令V*との関係が保持されているテーブルを参照することで、開口率に対応する電圧振幅指令V*を算出することが可能となる。 As described above, when the rotation speed N is changed, the relationship of the voltage amplitude command V * to the aperture ratio changes. For this reason, the relationship between the rotational speed N and the voltage amplitude command V * is grasped in advance and held in a table (not shown) in the control unit 25. In the example shown in FIG. 14, the voltage amplitude command V * = Vc1 when the rotational speed is an aperture ratio smaller than N1 = 100% to 80%. Similarly, when the rotational speed is N1 to N3, the aperture ratio is 80% to 50%, and the voltage amplitude command V * = Vc2. When the rotation speed is N3 or higher, the aperture ratio is 50% to 10%, and the voltage amplitude command V * = Vc3. In addition, when the rotational speed suddenly rises and falls, the rotational speed is larger than the rotational speed after the sudden rise, and may be smaller than the rotational speed after the sudden drop. The aperture ratio does not correspond to 14 thick solid lines. Based on the rotation speed ω calculated by the rotation speed calculation unit 42 shown in FIG. 8, by referring to a table in which the relationship between the aperture ratio, the rotation speed N, and the voltage amplitude command V * is maintained, the aperture ratio can be calculated. The corresponding voltage amplitude command V * can be calculated.
 なお、図13の例では、進角位相θを増加させる傾きは一定とし、開口率の範囲に応じて、開口率の範囲内では一定値である電圧振幅指令V*を出力していたが、これに限定されない。電圧振幅指令V*は一定とし、進角位相θを増加させる傾きを変更してもよい。以下、この手法について、図15を参照して説明する。すなわち、図15は、実施の形態における進角位相の制御方法の説明に供する図である。 In the example of FIG. 13, the gradient of increasing the advance phase theta v is a constant, depending on the range of the aperture ratio, in the range of the aperture ratio has output a voltage amplitude command V * is a constant value However, the present invention is not limited to this. Voltage amplitude command V * is a constant, may be changed inclination increases the advanced angle phase theta v. Hereinafter, this method will be described with reference to FIG. That is, FIG. 15 is a diagram for explaining the control method of the advance phase in the embodiment.
 図15において、領域1から領域2への移行は、開口率が当該領域間の閾値である80%を下回ったときに行われる。このとき、電圧振幅指令V*は変更されず、進角位相θを増加させる傾きが、第1の傾き値K1から第2の傾き値K2に変更される。第1の傾き値K1及び第2の傾き値K2は、共に正である。また、第2の傾き値K2は、第1の傾き値K1よりも大きい。なお、領域2から領域1への移行も、同様に行われる。領域2から領域1への移行は、開口率が当該領域間の閾値である80%を上回ったときに行われる。このとき、進角位相θを増加させる傾きは、第2の傾き値K2から第1の傾き値K1に変更される。 In FIG. 15, the transition from region 1 to region 2 is performed when the aperture ratio falls below 80%, which is the threshold value between the regions. At this time, no voltage amplitude command V * is changed, the slope of increasing the advance phase theta v is changed from the first inclination value K1 to the second inclination value K2. Both the first slope value K1 and the second slope value K2 are positive. The second slope value K2 is larger than the first slope value K1. Note that the transition from the region 2 to the region 1 is performed in the same manner. The transition from the region 2 to the region 1 is performed when the aperture ratio exceeds 80% which is the threshold value between the regions. At this time, the slope of increasing the advance phase theta v is changed from the second inclination value K2 to the first inclination value K1.
 領域2から領域3への移行は、開口率が当該領域間の閾値である50%を下回ったときに行われる。このときも、電圧振幅指令V*は変更されず、進角位相θを増加させる傾きが、第2の傾き値K2から第3の傾き値K3に変更される。第2の傾き値K2及び第3の傾き値K3は、共に正である。また、第3の傾き値K3は、第2の傾き値K2よりも大きい。なお、領域3から領域2への移行も、同様に行われる。領域3から領域2への移行は、開口率が当該領域間の閾値である50%を上回ったときに行われる。このとき、進角位相θを増加させる傾きは、第3の傾き値K3から第2の傾き値K2に変更される。 The transition from the region 2 to the region 3 is performed when the aperture ratio falls below 50% which is the threshold value between the regions. In this case, no voltage amplitude command V * is changed, the slope of increasing the advance phase theta v is changed from the second inclination value K2 in a third inclination value K3. Both the second slope value K2 and the third slope value K3 are positive. The third inclination value K3 is larger than the second inclination value K2. The transition from the region 3 to the region 2 is performed in the same manner. The transition from the region 3 to the region 2 is performed when the aperture ratio exceeds 50% which is the threshold value between the regions. At this time, the slope of increasing the advance phase theta v is changed from the third slope value K3 to the second inclination value K2.
 領域3から領域4への移行は、開口率が当該領域間の閾値である10%を下回ったときに行われる。このときも、電圧振幅指令V*は変更されず、進角位相θを増加させる傾きが、第3の傾き値K3から第4の傾き値K4に変更される。第4の傾き値K4は負である。なお、領域4から領域3への移行も、同様に行われる。領域4から領域3への移行は、開口率が当該領域間の閾値である10%を上回ったときに行われる。このとき、進角位相θを増加させる傾きは、第4の傾き値K4から第3の傾き値K3に変更される。 The transition from the region 3 to the region 4 is performed when the aperture ratio falls below 10% which is the threshold value between the regions. In this case, no voltage amplitude command V * is changed, the slope of increasing the advance phase theta v is changed from the third slope value K3 to a fourth inclination value K4. The fourth slope value K4 is negative. The transition from the region 4 to the region 3 is performed in the same manner. The transition from the region 4 to the region 3 is performed when the aperture ratio exceeds 10% which is a threshold value between the regions. At this time, the slope of increasing the advance phase theta v is changed from the fourth inclination value K4 in the third inclination value K3.
 なお、図15に示す例、すなわち開口率に応じた進角位相θの傾き値の変更例は一例であり、これに限定されない。各領域における進角位相θの傾き値の大小関係は、用途に応じて変更してもよい。また、製品の運転モードが複数ある場合、上述した第1から第4の傾き値は、運転モード毎に複数の値を有していてもよい。 Note that modification of example, i.e. the slope value of the advanced angle phase theta v corresponding to the aperture ratio shown in FIG. 15 is an example, not limited to this. Magnitude relationship between the gradient values of the advanced angle phase theta v in each region may be changed depending on the application. Moreover, when there are a plurality of operation modes of the product, the first to fourth inclination values described above may have a plurality of values for each operation mode.
 また、上記では、領域1と領域2との間の移行、領域2と領域3との間の移行、及び領域3と領域4との間の移行について説明したが、領域1と領域3との間の移行、領域1と領域4との間の移行、及び領域2と領域4との間の移行も起こり得る。領域1から領域3への移行は、領域3における開口率範囲の上限値である50%が閾値となり、開口率が当該閾値を下回ったときに行われる。領域3から領域1への移行は、領域1における開口率範囲の下限値である80%が閾値となり、開口率が当該閾値を上回ったときに行われる。領域1から領域4への移行は、領域4における開口率範囲の上限値である10%が閾値となり、開口率が当該閾値を下回ったときに行われる。領域4から領域1への移行は、領域1における開口率範囲の下限値である80%が閾値となり、開口率が当該閾値を上回ったときに行われる。領域2から領域4への移行は、領域4における開口率範囲の上限値である10%が閾値となり、開口率が当該閾値を下回ったときに行われる。領域4から領域2への移行は、領域2における開口率範囲の下限値である50%が閾値となり、開口率が当該閾値を上回ったときに行われる。 In the above description, the transition between the region 1 and the region 2, the transition between the region 2 and the region 3, and the transition between the region 3 and the region 4 are described. Transition between, transition between region 1 and region 4, and transition between region 2 and region 4 can also occur. The transition from the region 1 to the region 3 is performed when the threshold value is 50%, which is the upper limit value of the aperture ratio range in the region 3, and the aperture ratio falls below the threshold value. The transition from the region 3 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value. The transition from the region 1 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value. The transition from the region 4 to the region 1 is performed when the threshold value is 80%, which is the lower limit value of the aperture ratio range in the region 1, and the aperture ratio exceeds the threshold value. The transition from the region 2 to the region 4 is performed when the upper limit value of the aperture ratio range in the region 4 is 10% as a threshold value and the aperture ratio falls below the threshold value. The transition from the region 4 to the region 2 is performed when the threshold value is 50% that is the lower limit value of the aperture ratio range in the region 2 and the aperture ratio exceeds the threshold value.
 次に、進角制御による効果について説明する。まず、回転速度Nの増加に応じて進角位相θを増加させるようにすれば、回転速度範囲を広げることができる。進角位相θを0とした場合には、モータ印加電圧とモータ誘起電圧とが釣り合う所で回転速度Nが飽和する。回転速度Nを更に増加させるためには、進角位相θを進め、電機子反作用によるステータ12bに発生させる磁束を弱めることでモータ誘起電圧を抑制し、回転速度Nを増加させる。よって、進角位相θを回転速度Nに応じて選択することで、より広範囲の回転速度領域を得ることができる。 Next, the effect of the advance angle control will be described. First, if to increase the advance phase theta v according to an increase of the rotational speed N, it is possible to widen the rotational speed range. The advance phase theta v when 0, the rotational speed N is saturated where the voltage applied to the motor and the motor induced voltage is balanced. To further increase the rotational speed N advances the advanced angle phase theta v, suppresses motor induced voltage by weakening the magnetic flux to be generated in the stator 12b by the armature reaction, increasing the rotational speed N. Therefore, by selecting the advance angle phase θ v according to the rotation speed N, a wider rotation speed region can be obtained.
 次に、進角制御に進角調整幅Δθdelを設けることによる効果について説明する。まず、進角調整幅Δθdelを設けることで、製造時に位置センサ21の位置ずれが生じた場合、又は位置センサ21固有の感度の特性ずれが発生した場合においても、進角調整幅Δθdelによって、位置ずれ又は特性ずれの修正が可能となる。これにより、安定した特定の回転速度Nを得ることができる。また、位置ずれ又は特性ずれの修正を製造工程から省くことができるので、位置ずれ又は特性ずれを修正又は調整するためのコストの発生を抑制できる。 Next, the effect of providing the advance angle adjustment width Δθdel for the advance angle control will be described. First, by providing the advance angle adjustment width Δθdel, even if a position shift of the position sensor 21 occurs at the time of manufacture or a characteristic shift of sensitivity inherent to the position sensor 21 occurs, Deviation or characteristic deviation can be corrected. Thereby, the stable specific rotational speed N can be obtained. Further, since the correction of the positional deviation or the characteristic deviation can be omitted from the manufacturing process, the generation of the cost for correcting or adjusting the positional deviation or the characteristic deviation can be suppressed.
 以上の説明の通り、本実施の形態に係る進角制御によれば、吸込口体63の開口率が第1の範囲の場合には、電圧振幅指令V*を一定とし、回転速度Nの増加に応じて電圧指令の進み角である進角位相θを増加させる。本制御により、広い回転速度範囲において安定した駆動が可能となる。また、進角調整幅Δθdelを設けることにより、位置センサ21の位置ずれが発生した場合においても、回転速度Nに与える影響を抑制することができる。 As described above, according to the advance angle control according to the present embodiment, when the opening ratio of the suction port body 63 is in the first range, the voltage amplitude command V * is kept constant and the rotation speed N is increased. increasing the advance phase theta v is a lead angle of the voltage command in accordance with the. This control enables stable driving in a wide rotational speed range. Further, by providing the advance angle adjustment width Δθdel, the influence on the rotational speed N can be suppressed even when the position sensor 21 is displaced.
 また、本実施の形態に係る進角制御によれば、吸込口体63の開口率が第1の範囲から第2の範囲に変化した場合、電圧振幅指令V*を第1の範囲に対応する第1の指令値から第2の範囲に対応する第2の指令値に変更する。これにより、床面種類の変動又は吸引態様の変動に応じた制御が可能となり、開口率に応じた好ましい吸引力を得ることができる。なお、電圧振幅指令V*を第1の範囲に対応する第1の指令値から第2の範囲に対応する第2の指令値に変更することは、単相インバータ11から単相モータ12への印加電圧を第1の範囲に対応する第1の振幅値から第2の範囲に対応する第2の振幅値に変更することと等価である。 Further, according to the advance angle control according to the present embodiment, when the opening ratio of the suction port body 63 changes from the first range to the second range, the voltage amplitude command V * corresponds to the first range. The first command value is changed to a second command value corresponding to the second range. Thereby, the control according to the fluctuation | variation of the floor surface kind or the fluctuation | variation of a suction aspect is attained, and the preferable suction | attraction force according to an aperture ratio can be obtained. Note that changing the voltage amplitude command V * from the first command value corresponding to the first range to the second command value corresponding to the second range means that the single-phase inverter 11 to the single-phase motor 12 This is equivalent to changing the applied voltage from the first amplitude value corresponding to the first range to the second amplitude value corresponding to the second range.
 なお、進角位相θが回転速度Nに応じて関数で設定されている場合、関数で示される直線又は曲線の傾きを変化させることで回転速度を変化させることが可能となる。すなわち、吸込口体63の開口率が第1の範囲の場合、進角位相θを表す直線又は曲線の傾きを第1の傾き値に設定し、吸込口体63の開口率が第2の範囲の場合、進角位相θを表す直線又は曲線の傾きを第2の傾き値に設定する。これにより、進角位相θの計算を迅速に行うことができる。なお、進角位相θを表す関数が曲線である場合、当該曲線の制御点における接線の傾きを用いることができる。 Incidentally, if the advanced angle phase theta v is set by the function according to the rotational speed N, it is possible to change the rotation speed by changing the slope of the straight line or curve indicated by function. That is, when the opening ratio of the suction port body 63 is in the first range, the slope of the straight line or curve representing the advanced angle phase theta v is set to a first inclination value, the opening ratio of the suction port body 63 of the second for range, it sets the slope of the straight line or curve representing the advanced angle phase theta v to the second gradient value. Thus, it is possible to calculate the advance phase theta v quickly. Incidentally, the function representing the advanced angle phase theta v be a curve, it is possible to use the gradient of the tangent at the control point of the curve.
 次に、本実施の形態における損失低減手法について、図16から図19の図面を参照して説明する。図16は、MOSFETの概略構造を示す模式的断面図である。図16では、n型MOSFETを例示している。図17は、図3に示す単相インバータから出力されるインバータ出力電圧の極性によるモータ電流の経路を示す第1の図である。図18は、当該インバータ出力電圧の極性によるモータ電流の経路を示す第2の図である。図19は、当該インバータ出力電圧の極性によるモータ電流の経路を示す第3の図である。 Next, the loss reduction technique in the present embodiment will be described with reference to the drawings of FIGS. FIG. 16 is a schematic cross-sectional view showing a schematic structure of a MOSFET. FIG. 16 illustrates an n-type MOSFET. FIG. 17 is a first diagram illustrating a motor current path according to the polarity of the inverter output voltage output from the single-phase inverter illustrated in FIG. 3. FIG. 18 is a second diagram illustrating a motor current path according to the polarity of the inverter output voltage. FIG. 19 is a third diagram illustrating a motor current path according to the polarity of the inverter output voltage.
 n型MOSFETの場合、図16に示すように、p型の半導体基板80が用いられる。p型領域81を有する半導体基板80には、ソース電極82、ドレイン電極83及びゲート電極84が形成される。ソース電極82及びドレイン電極83と接する部位には、高濃度の不純物がイオン注入されてn型領域85が形成される。また、p型の半導体基板80において、n型領域85が形成されない部位とゲート電極84との間には、酸化絶縁膜86が形成される。すなわち、ゲート電極84と、半導体基板80におけるp型領域81との間には、酸化絶縁膜86が介在している。 In the case of an n-type MOSFET, a p-type semiconductor substrate 80 is used as shown in FIG. A source electrode 82, a drain electrode 83, and a gate electrode 84 are formed on the semiconductor substrate 80 having the p-type region 81. At a portion in contact with the source electrode 82 and the drain electrode 83, an n-type region 85 is formed by ion implantation of a high concentration impurity. In the p-type semiconductor substrate 80, an oxide insulating film 86 is formed between a portion where the n-type region 85 is not formed and the gate electrode 84. That is, the oxide insulating film 86 is interposed between the gate electrode 84 and the p-type region 81 in the semiconductor substrate 80.
 ゲート電極84に正電圧が印加されると、半導体基板80におけるp型領域81と酸化絶縁膜86との間の境界面に電子が引き寄せられ、負に帯電する。電子が集まった所は、電子の密度がホールよりも多くなりn型化する。このn型化した部分は電流の通り道となりチャネルと呼ばれる。図16の例は、n型チャネル87が形成される場合の例である。p型MOSFETの場合には、p型チャネルが形成される。 When a positive voltage is applied to the gate electrode 84, electrons are attracted to the interface between the p-type region 81 and the oxide insulating film 86 in the semiconductor substrate 80, and are negatively charged. Where the electrons gather, the electron density is higher than that of the holes and becomes n-type. This n-type portion becomes a current path and is called a channel. The example of FIG. 16 is an example where the n-type channel 87 is formed. In the case of a p-type MOSFET, a p-type channel is formed.
 インバータ出力電圧の極性が正の場合、図17の太実線(a)で示すように、電流は、第1相の上アームであるスイッチング素子51のチャネルを通って単相モータ12に流れ込み、第2相の下アームであるスイッチング素子54のチャネルを通って単相モータ12から流れ出す。また、インバータ出力電圧の極性が負の場合、図17の太破線(b)で示すように、電流は、第2相の上アームであるスイッチング素子53のチャネルを通って単相モータ12に流れ込み、第1相の下アームであるスイッチング素子52のチャネルを通って単相モータ12から流れ出す。 When the polarity of the inverter output voltage is positive, the current flows into the single-phase motor 12 through the channel of the switching element 51, which is the upper arm of the first phase, as shown by the thick solid line (a) in FIG. It flows out of the single-phase motor 12 through the channel of the switching element 54 which is a two-phase lower arm. When the polarity of the inverter output voltage is negative, current flows into the single-phase motor 12 through the channel of the switching element 53, which is the upper arm of the second phase, as shown by the thick broken line (b) in FIG. And flows out of the single-phase motor 12 through the channel of the switching element 52 which is the lower arm of the first phase.
 次に、インバータ出力電圧が零、すなわち単相インバータ11から零電圧が出力された場合の電流経路について説明する。正のインバータ出力電圧が生成された後にインバータ出力電圧が零になると、図18の太実線(c)で示すように、電源側からは電流が流れず、単相インバータ11と単相モータ12との間で電流が行き来する還流モードとなる。このとき、単相モータ12に直前に流れている電流の向きは変わらないため、単相モータ12から流れ出した電流は、第2相の下アームであるスイッチング素子54のチャネルと、第1相の下アームであるスイッチング素子52のボディダイオード52aとを通って単相モータ12に戻る。なお、負のインバータ出力電圧が生成された後にインバータ出力電圧が零になる場合は、直前に流れていた電流の向きが逆であるため、図18の太破線(d)で示すように、還流電流の向きは逆となる。具体的に説明すると、単相モータ12から流れ出した電流は、第1相の上アームであるスイッチング素子51のボディダイオード51aと、第2相の上アームであるスイッチング素子53のチャネルとを通って単相モータ12に戻る。 Next, the current path when the inverter output voltage is zero, that is, when zero voltage is output from the single-phase inverter 11, will be described. When the inverter output voltage becomes zero after the positive inverter output voltage is generated, no current flows from the power source side, as shown by a thick solid line (c) in FIG. 18, and the single-phase inverter 11 and the single-phase motor 12 It becomes the recirculation | reflux mode in which an electric current passes between. At this time, since the direction of the current that flows immediately before the single-phase motor 12 does not change, the current that flows from the single-phase motor 12 flows between the channel of the switching element 54 that is the lower arm of the second phase and the first phase. It returns to the single-phase motor 12 through the body diode 52a of the switching element 52 which is the lower arm. In addition, when the inverter output voltage becomes zero after the negative inverter output voltage is generated, the direction of the current that has flowed immediately before is reversed, so that as shown by the thick broken line (d) in FIG. The direction of the current is reversed. More specifically, the current flowing out of the single-phase motor 12 passes through the body diode 51a of the switching element 51 that is the upper arm of the first phase and the channel of the switching element 53 that is the upper arm of the second phase. Return to the single-phase motor 12.
 上記の説明の通り、単相モータ12と単相インバータ11との間で電流が還流する還流モードでは、第1相及び第2相の内の何れか一方の相ではボディダイオードに電流が流れる。一般的に、ダイオードの順方向に電流を流すことに比べ、MOSFETのチャネルに電流を流した方が、導通損失が小さくなることが知られている。そこで、本実施の形態では、還流電流が流れる還流モードにおいて、ボディダイオードに流れる通流電流を小さくすべく、当該ボディダイオードを有する側のMOSFETがオンに制御される。 As described above, in the reflux mode in which the current flows back between the single-phase motor 12 and the single-phase inverter 11, a current flows through the body diode in one of the first phase and the second phase. Generally, it is known that the conduction loss is smaller when a current is passed through a MOSFET channel than when a current is passed in the forward direction of a diode. Therefore, in the present embodiment, in the return mode in which the return current flows, the MOSFET on the side having the body diode is controlled to be turned on in order to reduce the current flowing through the body diode.
 還流モードにおいて、図18の太実線(c)で示す還流電流が流れるタイミングでは、スイッチング素子52がオンに制御される。このように制御すれば、図19の太実線(e)で示すように、還流電流の多くは抵抗値の小さいスイッチング素子52のチャネル側を流れる。これにより、スイッチング素子52での半導体損失が低減される。また、図18の太破線(d)で示す還流電流が流れるタイミングでは、スイッチング素子51がオンに制御される。このように制御すれば、図19の太破線(f)で示すように、還流電流の多くは抵抗値の小さいスイッチング素子51のチャネル側を流れる。これにより、スイッチング素子51での半導体損失が低減される。 In the reflux mode, the switching element 52 is controlled to be turned on at the timing when the reflux current shown by the thick solid line (c) in FIG. 18 flows. If controlled in this way, as indicated by a thick solid line (e) in FIG. 19, most of the return current flows through the channel side of the switching element 52 having a small resistance value. Thereby, the semiconductor loss in the switching element 52 is reduced. Further, the switching element 51 is controlled to be turned on at the timing when the return current indicated by the thick broken line (d) in FIG. 18 flows. If controlled in this way, as indicated by a thick broken line (f) in FIG. 19, most of the reflux current flows through the channel side of the switching element 51 having a small resistance value. Thereby, the semiconductor loss in the switching element 51 is reduced.
 前述のように、ボディダイオードに還流電流が流れるタイミングにおいて、当該ボディダイオードを有する側のMOSFETがオンに制御されることにより、スイッチング素子の損失を低減することができる。このため、MOSFETの形状を表面実装タイプにして基板にて放熱可能な構造とし、また、要すればスイッチング素子の一部又は全部をワイドバンドギャップ半導体で形成することにより、基板のみでMOSFETの発熱を抑制する構造を実現する。なお、基板のみで放熱が可能であれば、ヒートシンクが不要となるため、インバータの小型化に寄与し、製品の小型化にも繋げることができる。 As described above, the loss of the switching element can be reduced by turning on the MOSFET on the side having the body diode at the timing when the reflux current flows through the body diode. For this reason, the structure of the MOSFET is made a surface mount type so that heat can be radiated on the substrate, and if necessary, part or all of the switching element is formed of a wide band gap semiconductor, so that the MOSFET generates heat only on the substrate. The structure which suppresses is realized. Note that if heat can be radiated only by the substrate, a heat sink is unnecessary, which contributes to the miniaturization of the inverter and can lead to the miniaturization of the product.
 前述の放熱方法に加え、基板を風路に設置することで、更なる放熱効果をも得ることができる。基板を風路に設置することにより、電動送風機が発生する風によって基板上の半導体素子を放熱できるので、半導体素子の発熱を大幅に抑制することができる。 In addition to the heat dissipation method described above, a further heat dissipation effect can be obtained by installing the substrate in the air path. By installing the substrate in the air path, the semiconductor element on the substrate can be radiated by the wind generated by the electric blower, so that the heat generation of the semiconductor element can be significantly suppressed.
 電気掃除機60は、モータ回転数が0[rpm]から10万以上[rpm]まで変動する製品である。このように単相モータ12が高速回転する製品を駆動する際には、前述した実施の形態に係る制御手法が好適である。電圧振幅指令V*を一定とし、回転速度に応じて進角位相θを変更することで、低速から高速回転領域まで回転数駆動範囲を広げつつ、負荷急変に対応することができる。また、PWM制御によってモータ電流を正弦波に制御することで高効率な駆動ができるため、運転時間の長時間化が望める。 The electric vacuum cleaner 60 is a product whose motor rotation speed varies from 0 [rpm] to 100,000 or more [rpm]. Thus, when the single-phase motor 12 drives a product that rotates at high speed, the control method according to the above-described embodiment is suitable. And constant voltage amplitude command V *, by changing the advanced angle phase theta v in accordance with the rotational speed, it is possible while expanding the rotational speed drive range from a low speed to a high speed rotation region, corresponding to the sudden load change. In addition, since the motor current can be controlled to a sine wave by PWM control, high-efficiency driving can be achieved, so that the operation time can be extended.
 図20は、本実施の形態のモータ駆動装置における変調制御を説明するための図である。同図の左側には、回転数と変調率の関係が示される。また同図の右側には、変調率が1以下のときのインバータ出力電圧の波形と、変調率が1を超えるときのインバータ出力電圧の波形とが示される。一般的に、回転数の増加に伴い回転体の負荷トルクは大きくなる。このため、回転数の増加に伴いモータ出力トルクを増加させる必要がある。また、一般的にモータ出力トルクはモータ電流に比例して増加し、モータ電流の増加にはインバータ出力電圧の増加が必要である。よって、変調率を上げてインバータ出力電圧を増加させることで、回転数を増加させることができる。 FIG. 20 is a diagram for explaining the modulation control in the motor drive device of the present embodiment. On the left side of the figure, the relationship between the rotational speed and the modulation rate is shown. Also, on the right side of the figure, a waveform of the inverter output voltage when the modulation rate is 1 or less and a waveform of the inverter output voltage when the modulation rate exceeds 1 are shown. In general, the load torque of the rotating body increases as the number of rotations increases. For this reason, it is necessary to increase the motor output torque as the rotational speed increases. In general, the motor output torque increases in proportion to the motor current, and the inverter output voltage needs to be increased to increase the motor current. Therefore, the number of revolutions can be increased by increasing the modulation rate and increasing the inverter output voltage.
 次に、本実施の形態における回転数制御について説明する。なお、以下の説明では、負荷として電動送風機を想定し、電動送風機の運転域を以下の通り区分する。
 (A)低速回転域(低回転数領域):0[rpm]から8万[rpm]
 (B)高速回転域(高回転数領域):8万[rpm]以上
Next, the rotational speed control in the present embodiment will be described. In the following description, an electric blower is assumed as a load, and an operation range of the electric blower is divided as follows.
(A) Low speed range (low speed range): 0 [rpm] to 80,000 [rpm]
(B) High speed rotation range (high rotation speed range): 80,000 [rpm] or more
 なお、上記(A)と上記(B)に挟まれた領域はグレーゾーンであり、用途に応じて、低速回転域に含まれる場合もあれば、高速回転域に含まれる場合もある。 In addition, the area | region between said (A) and said (B) is a gray zone, and depending on a use, it may be contained in a low-speed rotation area, and may be included in a high-speed rotation area.
 まず、低速回転域での制御について説明する。低速回転域では変調率を1以下としてPWM制御される。なお、変調率を1以下とすることで、モータ電流を正弦波に制御し、モータの高効率化を図ることができる。なお、低速回転域と高速回転域とで同じキャリア周波数で動作させた場合、キャリア周波数は高速回転域に合わせたキャリア周波数となるため、低速回転域ではPWMパルスが必要以上に多くなる傾向にある。このため、低速回転域ではキャリア周波数を低下させ、スイッチング損失を低下させる手法を用いてもよい。また、回転数に同期させてキャリア周波数を可変させることで、回転数に応じてパルス数が変化しないように制御してもよい。 First, the control in the low speed rotation region will be described. In the low speed rotation range, PWM control is performed with a modulation rate of 1 or less. Note that, by setting the modulation rate to 1 or less, the motor current can be controlled to a sine wave, and the efficiency of the motor can be increased. When operating at the same carrier frequency in the low-speed rotation region and the high-speed rotation region, the carrier frequency becomes a carrier frequency that matches the high-speed rotation region, and therefore the PWM pulse tends to increase more than necessary in the low-speed rotation region. . For this reason, in the low-speed rotation region, a method of reducing the carrier frequency and reducing the switching loss may be used. Further, by changing the carrier frequency in synchronization with the rotation speed, control may be performed so that the pulse number does not change according to the rotation speed.
 次に、高速回転域での制御について説明する。高速回転域では、変調率が1より大きな値に設定される。変調率を1より大きくすることで、インバータ出力電圧を増加させつつ、インバータ内のスイッチング素子が行うスイッチング回数を低減させることで、スイッチング損失の増加を抑えることができる。ここで、変調率が1を超えることによって、モータ出力電圧は増加するが、スイッチング回数が低下するため、電流の歪が懸念される。しかしながら、高速回転中においては、モータのリアクタンス成分が大きくなり、モータ電流の変化成分であるdi/dtが小さくなるため、低速回転域に比べて電流歪は小さくなり、波形の歪に対する影響は小さくなる。よって、高速回転域では、変調率を1より大きな値に設定し、スイッチングパルス数を低減させる制御を行う。この制御により、スイッチング損失の増加を抑制し、高効率化を図ることができる。 Next, control in the high speed rotation range will be described. In the high-speed rotation range, the modulation rate is set to a value larger than 1. By increasing the modulation factor above 1, the increase in switching loss can be suppressed by increasing the inverter output voltage and reducing the number of switching operations performed by the switching elements in the inverter. Here, when the modulation rate exceeds 1, the motor output voltage increases, but since the number of switching times decreases, there is a concern about current distortion. However, during high speed rotation, the reactance component of the motor increases and di / dt, which is a change component of the motor current, decreases. Therefore, current distortion is smaller than in the low speed rotation range, and the influence on waveform distortion is small. Become. Therefore, in the high-speed rotation region, the modulation rate is set to a value larger than 1 and control is performed to reduce the number of switching pulses. By this control, an increase in switching loss can be suppressed and higher efficiency can be achieved.
 なお、上記の通り、低速回転域と高速回転域の境界は曖昧である。このため、制御部25には、低速回転域と高速回転域との境界を決める第1回転速度が設定され、制御部25は、モータ又は負荷の回転速度が第1回転速度以下の場合には変調率を1以下に設定し、モータ又は負荷の回転速度が第1回転速度を超えた場合には1を超える変調率に設定するように制御すればよい。 In addition, as described above, the boundary between the low-speed rotation range and the high-speed rotation range is ambiguous. For this reason, the control unit 25 is set with a first rotation speed that determines the boundary between the low-speed rotation region and the high-speed rotation region, and the control unit 25 is configured when the rotation speed of the motor or the load is equal to or lower than the first rotation speed. The modulation rate is set to 1 or less, and when the rotational speed of the motor or load exceeds the first rotational speed, the modulation rate may be set to exceed 1.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 電気掃除機、2 モータ駆動装置、6 掃除機本体、11 単相インバータ、11a,11b 接続端、12 単相モータ、12a ロータ、12b ステータ、12b1 ティース、20 電圧センサ、21 位置センサ、22 電流センサ、25 制御部、30 アナログディジタル変換器、31 プロセッサ、32 駆動信号生成部、33 キャリア生成部、34 メモリ、38 キャリア比較部、38a 絶対値演算部、38b 除算部、38c,38d,38f 乗算部、38e 加算部、38g,38h 比較部、38i,38j 出力反転部、42 回転速度算出部、44 進角位相算出部、51,52,53,54 スイッチング素子、51a,52a,53a,54a ボディダイオード、62 延長管、63 吸込口体、64 電動送風機、65 集塵室、66 操作部、67 バッテリ、69 吸込口、72 風路、76 床面、80 半導体基板、81 p型領域、82 ソース電極、83 ドレイン電極、84 ゲート電極、85 n型領域、86 酸化絶縁膜。 1 electric vacuum cleaner, 2 motor drive device, 6 vacuum cleaner body, 11 single-phase inverter, 11a, 11b connection end, 12 single-phase motor, 12a rotor, 12b stator, 12b1 tooth, 20 voltage sensor, 21 position sensor, 22 current Sensor, 25 control unit, 30 analog-digital converter, 31 processor, 32 drive signal generation unit, 33 carrier generation unit, 34 memory, 38 carrier comparison unit, 38a absolute value calculation unit, 38b division unit, 38c, 38d, 38f multiplication Unit, 38e addition unit, 38g, 38h comparison unit, 38i, 38j output inversion unit, 42 rotation speed calculation unit, 44 advance phase calculation unit, 51, 52, 53, 54 switching element, 51a, 52a, 53a, 54a body Diode, 62 extension tube, 63 suction Mouth, 64 electric blower, 65 dust collection chamber, 66 operation unit, 67 battery, 69 suction port, 72 air passage, 76 floor, 80 semiconductor substrate, 81 p-type region, 82 source electrode, 83 drain electrode, 84 gate Electrode, 85 n-type region, 86 oxide insulating film.

Claims (8)

  1.  単相モータと、前記単相モータを駆動するモータ駆動装置と、塵埃を吸引する吸込具と、を備えた電気掃除機であって、
     前記モータ駆動装置は、
     前記単相モータに交流電圧を印加する単相インバータと、
     前記単相モータのロータ磁極位置を示す位置センサ信号を出力する位置センサと、
     前記位置センサ信号に基づいて前記単相モータの回転速度を算出し、算出した前記回転速度の変化に基づいて、前記吸込具の吸込口と清掃面との間に生じた隙間の開口率を算出する算出部と、
     を備え、
     前記開口率が第1の範囲内のとき、前記交流電圧の振幅値は第1の値とされ、前記開口率が第2の範囲内のとき、前記交流電圧の振幅値は前記第1の値とは異なる第2の値とされる
     電気掃除機。
    A vacuum cleaner comprising a single-phase motor, a motor driving device for driving the single-phase motor, and a suction tool for sucking dust,
    The motor driving device is
    A single-phase inverter that applies an AC voltage to the single-phase motor;
    A position sensor that outputs a position sensor signal indicating a rotor magnetic pole position of the single-phase motor;
    Based on the position sensor signal, the rotational speed of the single-phase motor is calculated, and based on the calculated change in the rotational speed, the aperture ratio of the gap generated between the suction port of the suction tool and the cleaning surface is calculated. A calculating unit to
    With
    When the aperture ratio is within the first range, the amplitude value of the AC voltage is a first value, and when the aperture ratio is within the second range, the amplitude value of the AC voltage is the first value. A vacuum cleaner with a second value different from
  2.  単相モータと、前記単相モータを駆動するモータ駆動装置と、塵埃を吸引する吸込具と、を備えた電気掃除機であって、
     前記モータ駆動装置は、
     前記単相モータに交流電圧を印加する単相インバータと、
     前記単相モータのロータ磁極位置を示す位置センサ信号を出力する位置センサと、
     前記単相モータに流れるモータ電流を検出する電流センサと、
     前記位置センサ信号に基づいて前記単相モータの回転速度を算出し、算出した前記回転速度の変化に基づいて、前記吸込具の吸込口と清掃面との間に生じた隙間の開口率を算出する算出部と、
     を備え、
     前記モータ電流と前記位置センサ信号との位相差である進角を制御し、
     前記進角は、前記単相モータの回転速度の増加に伴い増加する傾きを有し、
     前記開口率が第1の範囲のとき、前記進角の傾きは第1の傾き値とされ、前記開口率が第2の範囲のとき、前記進角の傾きは前記第1の傾き値とは異なる第2の傾き値とされる
     電気掃除機。
    A vacuum cleaner comprising a single-phase motor, a motor driving device for driving the single-phase motor, and a suction tool for sucking dust,
    The motor driving device is
    A single-phase inverter that applies an AC voltage to the single-phase motor;
    A position sensor that outputs a position sensor signal indicating a rotor magnetic pole position of the single-phase motor;
    A current sensor for detecting a motor current flowing in the single-phase motor;
    Based on the position sensor signal, the rotational speed of the single-phase motor is calculated, and based on the calculated change in the rotational speed, the aperture ratio of the gap generated between the suction port of the suction tool and the cleaning surface is calculated. A calculating unit to
    With
    Controlling an advance angle which is a phase difference between the motor current and the position sensor signal;
    The advance angle has a slope that increases as the rotational speed of the single-phase motor increases.
    When the aperture ratio is in the first range, the slope of the advance angle is a first slope value, and when the aperture ratio is in the second range, the slope of the advance angle is the first slope value. A vacuum cleaner with a different second slope value.
  3.  単相モータと、前記単相モータを駆動するモータ駆動装置と、塵埃を吸引する吸込具と、を備えた電気掃除機であって、
     前記モータ駆動装置は、前記単相モータに交流電圧を印加する単相インバータを備え、
     前記吸込具の吸込口と清掃面との間に生じた隙間の開口率が第1の範囲内のとき、前記単相モータの回転速度が第1の回転速度であると共に前記交流電圧の振幅値が第1の値であり、
     前記開口率が第2の範囲内のとき、前記単相モータの回転速度が前記第1の回転速度とは異なる第2の回転速度であると共に前記交流電圧の振幅値が前記第1の値とは異なる第2の値となる
     電気掃除機。
    A vacuum cleaner comprising a single-phase motor, a motor driving device for driving the single-phase motor, and a suction tool for sucking dust,
    The motor driving device includes a single-phase inverter that applies an AC voltage to the single-phase motor,
    When the opening ratio of the gap generated between the suction port of the suction tool and the cleaning surface is within the first range, the rotational speed of the single-phase motor is the first rotational speed and the amplitude value of the AC voltage Is the first value,
    When the aperture ratio is in the second range, the rotation speed of the single-phase motor is a second rotation speed different from the first rotation speed, and the amplitude value of the AC voltage is the first value. Is a different second value vacuum cleaner.
  4.  単相モータと、前記単相モータを駆動するモータ駆動装置と、塵埃を吸引する吸込具と、を備えた電気掃除機であって、
     前記モータ駆動装置は、
     前記単相モータに交流電圧を印加する単相インバータと、
     前記単相モータのロータ磁極位置を示す位置センサ信号を出力する位置センサと、
     を備え、
     前記モータへの印加電圧と前記位置センサ信号との位相差である進角を制御し、
     前記進角は、前記単相モータの回転速度の増加に伴い増加する傾きを有し、
     前記吸込具の吸込口と清掃面との間に生じた隙間の開口率が第1の範囲内のとき、前記単相モータの回転速度が第1の回転速度であると共に前記進角の傾きが第1の傾き値であり、
     前記開口率が第2の範囲内のとき、前記単相モータの回転速度が前記第1の回転速度とは異なる第2の回転速度であると共に前記進角の傾きが前記第1の傾き値とは異なる第2の傾き値となる
     電気掃除機。
    A vacuum cleaner comprising a single-phase motor, a motor driving device for driving the single-phase motor, and a suction tool for sucking dust,
    The motor driving device is
    A single-phase inverter that applies an AC voltage to the single-phase motor;
    A position sensor that outputs a position sensor signal indicating a rotor magnetic pole position of the single-phase motor;
    With
    Controlling the advance angle which is the phase difference between the voltage applied to the motor and the position sensor signal;
    The advance angle has a slope that increases as the rotational speed of the single-phase motor increases.
    When the opening ratio of the gap formed between the suction port of the suction tool and the cleaning surface is within the first range, the rotation speed of the single-phase motor is the first rotation speed and the inclination of the advance angle is A first slope value,
    When the aperture ratio is in the second range, the rotation speed of the single-phase motor is a second rotation speed different from the first rotation speed, and the inclination of the advance angle is the first inclination value. Is a vacuum cleaner with a different second slope value.
  5.  前記開口率の範囲を複数有し、前記開口率の範囲の上限値又は下限値を閾値とし、前記開口率が前記閾値を上回る毎、又は下回る毎に前記交流電圧の振幅値又は前記進角の傾き値を変化させる請求項2又は4に記載の電気掃除機。 A plurality of ranges of the aperture ratio, the upper limit value or the lower limit value of the range of the aperture ratio as a threshold value, the amplitude value of the AC voltage or the advance angle each time the aperture ratio exceeds or falls below the threshold value The vacuum cleaner of Claim 2 or 4 which changes an inclination value.
  6.  前記交流電圧の振幅値又は前記進角の傾き値は、運転モード毎に複数有する請求項2、4又は5に記載の電気掃除機。 The electric vacuum cleaner according to claim 2, 4 or 5, wherein the AC voltage has a plurality of amplitude values or inclination values of the advance angle for each operation mode.
  7.  前記単相インバータは、複数のスイッチング素子を備え、
     複数の前記スイッチング素子の内の少なくとも1つはワイドバンドギャップ半導体で形成されている請求項1から6の何れか1項に記載の電気掃除機。
    The single-phase inverter includes a plurality of switching elements,
    The vacuum cleaner according to any one of claims 1 to 6, wherein at least one of the plurality of switching elements is formed of a wide band gap semiconductor.
  8.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム又はダイヤモンドである請求項7に記載の電気掃除機。 The electric vacuum cleaner according to claim 7, wherein the wide band gap semiconductor is silicon carbide, gallium nitride, or diamond.
PCT/JP2018/006768 2018-02-23 2018-02-23 Vacuum cleaner WO2019163103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020501962A JP6925497B2 (en) 2018-02-23 2018-02-23 Vacuum cleaner
PCT/JP2018/006768 WO2019163103A1 (en) 2018-02-23 2018-02-23 Vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006768 WO2019163103A1 (en) 2018-02-23 2018-02-23 Vacuum cleaner

Publications (1)

Publication Number Publication Date
WO2019163103A1 true WO2019163103A1 (en) 2019-08-29

Family

ID=67687156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006768 WO2019163103A1 (en) 2018-02-23 2018-02-23 Vacuum cleaner

Country Status (2)

Country Link
JP (1) JP6925497B2 (en)
WO (1) WO2019163103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228271A1 (en) * 2022-05-24 2023-11-30 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252620A (en) * 1988-08-15 1990-02-22 Mitsubishi Electric Corp Power brush for vacuum cleaner
JP2000324873A (en) * 1999-05-13 2000-11-24 Sharp Corp Inverter washing machine
JP2003088156A (en) * 2001-09-11 2003-03-20 Sanyo Electric Co Ltd Controller of brushless motor
JP2005143225A (en) * 2003-11-07 2005-06-02 Toyota Motor Corp Controller for motor
JP2006204050A (en) * 2005-01-24 2006-08-03 Matsushita Electric Ind Co Ltd Motor drive and air conditioner employing it
JP2008188264A (en) * 2007-02-06 2008-08-21 Sharp Corp Motor drive device and vacuum cleaner using same
JP2017189029A (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Motor controller and motor control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057530A (en) * 2008-09-01 2010-03-18 Panasonic Corp Suction tool for vacuum cleaner and vacuum cleaner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252620A (en) * 1988-08-15 1990-02-22 Mitsubishi Electric Corp Power brush for vacuum cleaner
JP2000324873A (en) * 1999-05-13 2000-11-24 Sharp Corp Inverter washing machine
JP2003088156A (en) * 2001-09-11 2003-03-20 Sanyo Electric Co Ltd Controller of brushless motor
JP2005143225A (en) * 2003-11-07 2005-06-02 Toyota Motor Corp Controller for motor
JP2006204050A (en) * 2005-01-24 2006-08-03 Matsushita Electric Ind Co Ltd Motor drive and air conditioner employing it
JP2008188264A (en) * 2007-02-06 2008-08-21 Sharp Corp Motor drive device and vacuum cleaner using same
JP2017189029A (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Motor controller and motor control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228271A1 (en) * 2022-05-24 2023-11-30 三菱電機株式会社 Motor drive device, electric blower, electric vacuum cleaner, and hand dryer

Also Published As

Publication number Publication date
JP6925497B2 (en) 2021-08-25
JPWO2019163103A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6644159B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2018138807A1 (en) Motor drive device, electric fan, electric cleaner, and hand dryer
JP6800329B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2019180971A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
JP6847195B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2019163103A1 (en) Vacuum cleaner
JP7237198B2 (en) motor drives, vacuum cleaners and hand dryers
WO2019180972A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
JP7237197B2 (en) motor drives, vacuum cleaners and hand dryers
WO2019180969A1 (en) Motor drive device, electric fan, vacuum cleaner, and hand dryer
CN111869098B (en) Motor driving device, electric blower, dust collector and hand dryer
US11863104B2 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
EP3952103A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
JP6616055B1 (en) Motor drive device, vacuum cleaner and hand dryer
JP6739691B1 (en) Motor drive device, electric blower, vacuum cleaner and hand dryer
JP7042966B2 (en) Motor drive, electric blower, vacuum cleaner and hand dryer
WO2019180968A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer
WO2020208785A1 (en) Motor drive device, electric blower, electric vacuum cleaner, and hand dryer
WO2019180967A1 (en) Motor drive device, electric vacuum cleaner, and hand dryer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906731

Country of ref document: EP

Kind code of ref document: A1