WO2019160326A1 - Method for analyzing gas sample, analysis apparatus therefor, and concentration apparatus therefor - Google Patents

Method for analyzing gas sample, analysis apparatus therefor, and concentration apparatus therefor Download PDF

Info

Publication number
WO2019160326A1
WO2019160326A1 PCT/KR2019/001759 KR2019001759W WO2019160326A1 WO 2019160326 A1 WO2019160326 A1 WO 2019160326A1 KR 2019001759 W KR2019001759 W KR 2019001759W WO 2019160326 A1 WO2019160326 A1 WO 2019160326A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sample
unit
concentration
flow rate
air
Prior art date
Application number
PCT/KR2019/001759
Other languages
French (fr)
Korean (ko)
Inventor
김태만
안종록
김도훈
박한오
Original Assignee
(주)바이오니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아 filed Critical (주)바이오니아
Publication of WO2019160326A1 publication Critical patent/WO2019160326A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph

Definitions

  • the present invention relates to a method for analyzing a gas sample, an analysis apparatus thereof, and a concentration apparatus thereof.
  • gas chromatography Gas Chromatography, GC
  • VOCs volatile organic compounds
  • a canister method and an adsorbent tube method are mainly used as a method for collecting a sample to be analyzed and injecting the collected sample into gas chromatography.
  • the canister method collects air in the atmosphere and conducts concentration analysis through an analysis device.
  • the canister method is capable of analyzing low concentrations of volatile organic compounds at the ppb level, and has the advantage of repeatedly analyzing the collected gas samples.
  • the collection of gas samples requires a container that can store gas samples without adsorption and reaction on the inner surface of the container without any adsorption and reaction on the inside of the container, and requires considerable investment and management in the facility. There is a problem that is required.
  • the adsorption tube method is a method of passing a gas sample in the air through an adsorption tube loaded with an adsorbent, concentrating the gas sample in the adsorbent, and then desorbing and analyzing the concentrated gas sample in an analyzer.
  • Such an adsorption tube method has an advantage in that it is easier to collect and analyze a gas sample as low cost and time are required in comparison with the canister method in the continuous collection and analysis in the field.
  • the known adsorption tube method has a problem that, when the concentration of the gas sample in the air is low, a sufficient amount of air cannot be permeated, and sample gas below the detection limit of the analytical equipment is concentrated in the concentration tube, making it impossible to quantitate the sample. There is.
  • Another object of the present invention is to concentrate a gas sample present in a small amount in the air in the concentration apparatus for analysis, by varying the amount of air used according to the concentration of the sample to concentrate the gas sample, appropriate for the quantitative analysis It is to provide a gas sample analysis device and a gas sample analysis method that can increase the accuracy of analysis and shorten the analysis time by allowing a large amount of samples to be concentrated and analyzed.
  • the gas sample concentrating device includes an adsorption part including a gas sample adsorbed therein, and a concentrating part in which air containing a gas sample is introduced and the gas sample is concentrated on the adsorption part; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample into the air and measuring its concentration; And a control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value. It includes;
  • a gas sample analyzing apparatus includes an adsorbent including a gas sample adsorbed therein, and a concentrating portion in which air containing a gas sample is introduced to concentrate the gas sample; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample in the air into an inflow path separate from the concentration unit to measure its concentration; A control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value; And an analysis unit for desorbing and introducing the gas sample adsorbed on the adsorption unit and analyzing the components of the gas sample.
  • control of the controller may be to control the flow rate of the air including the gas sample and the inflow time of the air so that the gas sample is concentrated to the required concentration.
  • the control unit based on the following relation 1, the flow rate (F A ) and the time of the air flowing into the concentration unit to satisfy the required concentration amount (E S ) of the gas sample concentrated in the adsorption unit It may be controlling (T A ).
  • E S is a required concentration of a gas sample
  • C S is a concentration of a gas sample in the atmosphere
  • F A is a flow rate of air when the concentration of the gas sample is measured at the measuring unit. It is the flow rate of the air which becomes
  • T A is the time which air flows into a concentrating part.
  • the flow rate adjusting unit may be a first flow rate adjusting unit
  • the gas sample analysis device further includes a second flow rate adjusting unit which is provided at the rear end of the measuring unit to adjust the flow rate of the air of the measuring unit.
  • the control unit may calculate the estimated value based on the concentration of the gaseous sample in the air measured by the measuring unit and the flow rate of the air measured by the second flow rate adjusting unit, and the first flow rate adjusting unit may calculate the estimated value. It may be to control the gas sample to be concentrated to the required concentration.
  • Gas sample analysis device configured to connect the analyzer and the gas supplier when the concentrator and the flow controller are connected, or to allow the gas supplier to be connected to the concentrator and the concentrator to the analyzer.
  • the multiport valve may have a structure in which air passing through the concentrating unit is introduced into the flow rate adjusting unit, or switched so that a gas sample concentrated in the concentrating unit is desorbed and introduced into the analyzing unit.
  • the gas sample analyzing apparatus or the gas sample concentrating device may be provided in the concentrating part and further include a heat exchange part for adsorbing or desorption of the gas sample.
  • the heat exchanger may have a heating function for cooling and desorption for adsorption.
  • the analysis unit the gas chromatography adsorbed by the gas sample adsorbed to the adsorption unit; And a mass spectrometer configured to introduce a gas sample from the gas chromatography.
  • Gas sample analysis method a) measuring the concentration of the gas sample in the air, b) based on the measured concentration of the gas sample in the air, the required concentration of the gas sample for use in the analysis Calculating an estimated value for the flow rate and time, c) adsorbing the gas sample in air to concentrate the adsorbent, and controlling and concentrating the concentrated amount based on the estimated value; and d) the gas adsorbed to the adsorbent. Detaching and analyzing the sample.
  • control of step c) may be to control the concentration of the gas sample to the required concentration by maintaining the inflow of the air in the enrichment unit with the estimated value.
  • the step d) may be a step of analyzing a gas sample adsorbed on the adsorption unit by desorption and then introducing the gas sample into an analysis unit including a gas chromatography and a mass spectrometer.
  • the step d) may include the step of quantitatively analyzing the gas sample by normalizing the analysis results based on the estimated value calculated in the step b), wherein the estimated value is It can be the amount of air determined.
  • the gas sample analyzing apparatus and the gas sample analyzing method according to the present invention can estimate the appropriate concentration of the gas sample for analysis, that is, the flow rate and time for allowing the gas sample to be concentrated to the required concentration, It is effective to significantly reduce the overall analysis time, including the concentration time of.
  • gas sample analysis device and gas sample analysis method according to the present invention can concentrate the gas sample to an appropriate concentration for analysis, so that the appropriate amount of sample required for quantitative analysis is concentrated and analyzed to increase the accuracy of analysis and analysis This can shorten the time.
  • FIG. 1 to 4 show a process diagram of a gas sample concentrating device according to the present invention, wherein a dotted line means connection of an electrical signal for transmitting information such as an estimated value and a flow rate, and an arrow means an air flow path. .
  • FIG. 5 and 6 show a process diagram of the gas sample analysis device according to the present invention, where the dotted line means the connection of the electrical signal for transmitting information, such as the estimated value, the flow rate, the arrow indicates the flow path of the air .
  • FIG. 7 is a schematic diagram showing the change of each path through the switching of the multi-port valve of the gas sample analysis device according to the present invention.
  • the unit of% used without special mention in the present invention means weight% unless otherwise defined.
  • gas sample refers to a compound that is an analyte, which is present in the air in a gaseous phase, and is not limited as long as it is an analyte that is a sample.
  • the compound may mean an organic compound, that is, volatile organic compounds (VOCs).
  • the "shear" and "stage” referred to in the present invention are interpreted based on the flow direction of the gas sample and air.
  • the present invention first measures the concentration of the gas sample in the atmosphere and calculates an estimated value for the flow rate and time for the required concentration based on this, and controls the inflow flow rate and time of the air containing the gas sample based on the estimated value
  • the purpose of the present invention is to provide a gas sample concentrating device, a gas sample analyzing device, and a gas sample analyzing method capable of concentrating a gas sample at a required concentration.
  • the gas sample concentrating device includes an adsorption part including a gas sample adsorbed therein, and a concentrating part in which air containing a gas sample is introduced and the gas sample is concentrated on the adsorption part; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample into the air and measuring its concentration; And a control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value. It includes;
  • the present invention may provide a concentration device provided separately from the analysis unit, and may provide an analysis device including the concentration unit and the analysis unit.
  • a gas sample analyzing apparatus includes an adsorbent including a gas sample adsorbed therein, and a concentrating portion in which air containing a gas sample is introduced to concentrate the gas sample; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample into the air and measuring its concentration; A control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value; And an analysis unit for desorbing and introducing the gas sample adsorbed on the adsorption unit and analyzing the components of the gas sample.
  • the concentrating unit is a space provided with the adsorption unit, and means a space in which a gas sample is adsorbed and concentrated on the adsorption unit, and may be, for example, an adsorption tube.
  • the adsorption unit means an adsorbent capable of adsorbing a gas sample or a space provided with the adsorbent.
  • the adsorbent corresponds to a known technique that can appropriately adopt the kind according to the kind of the component of the gas sample, and various kinds of those may be used in the present invention.
  • the adsorbent may adsorb or desorb a gas sample according to specific conditions such as temperature.
  • the flow rate control unit adjusts the flow rate of air so that air including a gas sample can be introduced into the concentrating unit.
  • the flow rate control unit may be a mass flow controller. It can be so limited.
  • air may be introduced into a separate inflow path from the concentrator, and air may be introduced into a common inflow path as illustrated in FIGS. 5 and 6.
  • the measurement unit and the enrichment unit have separate inflow paths, which means that the inflow paths of air are configured independently, and in the paths after the inflow paths, the inflow paths may or may not be shared with each other. It should not be interpreted as a full path.
  • the measuring unit may be any one capable of measuring the concentration of a gas sample in the air.
  • a photoionization detector PID
  • ECD electron capture detector
  • FPD flame photometric detector
  • FPD flame photometric detector
  • FPD flame photometric detector
  • FID Flame ionization detector
  • TCD thermal conductivity detector
  • the air including the gas sample is introduced into the concentrating unit and the measuring unit through an independent inflow path or a common inflow path, and through the measuring unit, the control unit estimates the flow rate and time for the required concentration. Based on the estimated value, the concentration unit controls the gas sample to be concentrated to the required concentration amount.
  • control unit controls the flow rate and time of the air flowing into the concentrating unit by adjusting the flow rate adjusting unit based on the estimated value for the flow rate and time of the air to allow the gas sample to be concentrated to the required concentration amount
  • the gas sample is concentrated to the required concentration.
  • measuring the atmospheric concentration and the flow rate of the gas sample at the site where the air containing the gas sample to be analyzed exists can estimate the inflow flow rate and time of the air so that the gas sample is concentrated to the required concentration. have. That is, the control of the controller may control the flow rate of the air including the gas sample and the inflow time of the air through the estimated value so that the gas sample is concentrated to the required concentration.
  • the flow rate and time of the air is controlled until the current concentration of the gas sample concentrated in the concentration unit reaches the required concentration amount, and then, after desorbing the concentrated gas sample to the required concentration amount, it is efficiently transferred to the analysis unit. Accurate qualitative and quantitative analysis is possible in time.
  • the control unit based on the following relation 1, the flow rate (F A ) and the time (T A ) of the air flowing into the concentration unit to satisfy the required concentration amount (E S ) of the gas sample concentrated in the adsorption unit It may be to control.
  • E S is a required concentration of a gas sample
  • C S is a concentration of a gas sample in the atmosphere
  • F A is a flow rate of air when the concentration of the gas sample is measured at the measuring unit. It is the flow rate of the air which becomes
  • T A is the time which air flows into a concentrating part.
  • control unit is a flow rate of the air flowing into the concentration unit (F S ) to satisfy the required concentration (E S ) of the gas sample concentrated in the adsorption unit based on the following equation 1, when the C S is a predetermined value or more A ) and time (T A ), and when C S is less than a certain value may be to control the flow rate (F A ) and time (T A ) of the air flowing into the concentration unit to a specially set values.
  • the constant value and the set value are not limited because a person skilled in the art can calculate and adjust appropriately according to the type of sample, environmental conditions, etc. for smooth control.
  • C S and F A are values that are first measured and set in the measuring unit, which are values for calculating the required concentration of the gas sample concentrated in the concentration unit.
  • Equation 1 when the concentration (C S ) of the gas sample in the air decreases at a predetermined F A , the concentration time (T A ) can be infinitely increased. For practical purposes, the concentration (C S ) of the gas sample in the air is increased.
  • the flow rate (F A ) and the time (T A ) of the air flowing into the concentrating unit may be controlled to specially set values so that the sample concentration may be finished within the set time.
  • 'Required concentration' referred to in the present invention is a variable that can be appropriately adjusted according to the type of gas sample or analysis conditions.
  • control unit may be to control to maintain the inflow of the air in the concentration unit with the estimated value through the flow controller.
  • the flow rate control unit may be a first flow rate control unit, the gas sample analysis device or the concentration device is provided at the rear end of the measurement unit to determine the flow rate of the air of the measurement unit
  • the control unit may further include a second flow rate adjusting unit, wherein the control unit calculates the estimated value based on the concentration of the gas sample in the air measured by the measuring unit and the flow rate of the air measured by the second flow rate adjusting unit.
  • the first sample may be controlled to concentrate the gas sample to the required concentration through the adsorption unit through the flow rate adjusting unit.
  • the concentration of the gas sample to be analyzed may be measured first, and the amount of air to be concentrated may be determined in advance to obtain a gas sample that satisfies the required concentration, and then may be analyzed. Therefore, as the sample can be concentrated and used to the concentration necessary for the concentration of the gas sample, it is possible to efficiently and precisely analyze in a short time.
  • the gas sample may be classified into a step of adsorbing and concentrating the gas sample and a step of analyzing the concentrated gas sample.
  • the step of concentrating it is preferable to prevent the air of the concentrating unit from flowing into the analyzing unit.
  • the analyzing step it is preferable to prevent the air of the concentrating unit from flowing into the flow controller and enter the analyzing unit.
  • a device including a separate analyzer may be operated together.
  • the gas sample analysis device is located at the rear end of the condensation unit; a three-way valve for controlling the air inlet to the flow rate control unit or the analysis unit; Can be.
  • the three-way valve is positioned between the path connected to the concentrator, the flow controller, and the analyzer, and has opening / closing means so that the air of the concentrator can only flow into the path of the flow controller or only into the path of the analyzer.
  • the three-way valve may be variously known as long as it has an opening / closing means for distributing the flow path of the fluid from the front end to the first path and the second path at the rear end and allowing the fluid to flow only in the first path or the second path. .
  • the gas sample analysis device as shown in Figure 5 and 6, the gas supply unit; And a first port path connecting the analyzer and the gas supply unit when the concentrator and the flow rate controller are connected, or switching to a second port path where the gas supplier is connected to the concentrator and the concentrator is connected to the analyzer.
  • It may further include a multi-port valve.
  • the multiport valve may have a structure in which air passing through the condenser is introduced into the flow rate controller, or switched so that the concentrated gas sample of the condenser is desorbed and introduced into the analyzer. have.
  • the first port path is used for the concentration of the gas sample, as shown in Figure 5, the air flowing from the concentration unit through the flow rate control unit, so that the gas sample is concentrated in the adsorption unit of the concentration unit.
  • the second port path is a path for desorbing and transporting the gas sample for analysis of the gas sample.
  • the carrier gas introduced from the gas supply part flows into the condenser and is desorbed from the adsorption part of the condenser. Allow gas samples to enter the analyzer.
  • the inlet path into which the first air is introduced may be connected to the flow rate controller (first flow controller).
  • the switched structure is shown in FIG. 7, which may be a structure in which three pipes that are spaced apart from each other in a circle are rotated with respect to the center of the circle and connected to a path connected to each part.
  • FIG. 7 may be a structure in which three pipes that are spaced apart from each other in a circle are rotated with respect to the center of the circle and connected to a path connected to each part.
  • Such a multiport structure is well known in the art of valves, and further description thereof is omitted.
  • the analysis unit means a device for analyzing the desorbed gas sample after desorbing the gas sample concentrated in the required concentration in the concentration unit from the adsorption unit.
  • Equipment for the analysis may be a variety of known ones can be used, a specific example, the analysis unit, gas chromatography (Gas chromatography) that is desorbed and introduced into the gas sample adsorbed to the adsorption unit; And a mass spectrometer through which a gas sample is introduced from the gas chromatography.
  • gas chromatography Gas chromatography
  • mass spectrometer through which a gas sample is introduced from the gas chromatography.
  • the present invention is not limited thereto.
  • the quality of the gas sample may be analyzed as well as the quality of the gas sample.
  • various methods and apparatuses may be used for desorption of a gas sample adsorbed on the adsorption unit of the concentration unit.
  • a method of changing specific conditions such as temperature Can be mentioned.
  • the gas sample analyzing apparatus according to the present invention may be provided in the concentrating part and further comprising a heat exchange part for adsorption or desorption of the gas sample.
  • the heat exchange part may be variously used as long as it can increase or decrease the temperature of the gas sample adsorbed on the adsorption part.
  • the amount of air determined at the time of gas sample concentration (corresponding to F A ⁇ T A in Equation 1 above) may be used for normalization during quantitative analysis, and thus, a gas sample analyzing apparatus according to the present invention. Or precise quantitative analysis is possible using the concentration device.
  • the gas sample analyzing apparatus or the concentrating device according to an embodiment of the present invention may further include an inlet provided at the front end of the measuring unit to transfer air to the measuring unit.
  • a gas sample analyzing apparatus or a concentrating device may be provided between the concentrating unit and the flow controller (first flow controller), so that particulate impurities or gases other than air may be provided. It may further include a filtration unit for filtering the sample.
  • a gas sample analyzer or a concentrator includes a first filter provided at the front end of the concentrating unit to filter particulate impurities other than air to transfer the filtered air to the concentrating unit. It may further include a.
  • the analysis device or the concentration device may further include a second filter unit provided at the front end of the inlet unit to filter particulate impurities other than air to transfer the filtered air to the inlet unit.
  • the gas sample analyzing apparatus or the concentrating device may further include a pump provided at a rear end of the flow controller (first flow controller) to adjust the flow rate of air.
  • the gas sample analysis device or concentrator is provided at the rear end of the second flow controller to adjust the flow rate of the air; may further include a.
  • Air may be introduced into the concentrating unit and the measuring unit through the pump, specifically, a vacuum pump.
  • the pump may be positioned as a first pump and a second pump at each rear end of the concentrating unit and the measuring unit, or one pump may be connected to the rear end of the concentrating unit and the measuring unit.
  • the gas sample analysis device or the concentration device may further include a vacuum gauge located at the rear end of the first flow controller or the second flow controller.
  • Gas sample analysis method a) measuring the concentration of the gas sample in the air, b) based on the measured concentration of the gas sample in the air, the required concentration of the gas sample for use in the analysis Calculating an estimated value for the flow rate and time, c) adsorbing the gas sample in air to concentrate the adsorbent, and controlling and concentrating the concentrated amount based on the estimated value; and d) the gas adsorbed to the adsorbent. Detaching and analyzing the sample.
  • control of step c) may be to control the concentration of the gas sample to the required concentration by maintaining the inflow of the air in the enrichment unit with the estimated value.
  • the step d) may be a step of analyzing a gas sample adsorbed on the adsorption unit by desorption and then introducing the gas sample into an analysis unit including a gas chromatography and a mass spectrometer.
  • step d) may include quantitatively analyzing the gas sample based on the estimated value calculated in step b).
  • the quantitative analysis may be used by normalizing the analysis result, and the estimated value may be the amount of air determined during gas sample concentration (corresponding to F A ⁇ T A in Equation 1).
  • first filter portion 120: three-way valve
  • 122 multi-port valve
  • control unit 400: analysis unit

Abstract

A gas sample analysis apparatus and a gas sample analysis method, according to the present invention, can estimate a flow rate and a time enabling a gas sample to be concentrated to a gas sample concentration suitable for analysis, that is, a required concentration amount, thereby remarkably reducing total analysis time including gas sample concentration time, and can allow a suitable amount of a sample required for quantitative analysis to be concentrated and analyzed, thereby increasing analysis accuracy and preventing a problem in which overall analysis efficiency deteriorates.

Description

기체 시료의 분석 방법, 이의 분석 장치 및 이의 농축 장치Analytical method of gaseous sample, its analytical device and its concentration device
본 발명은 기체 시료의 분석 방법, 이의 분석 장치 및 이의 농축 장치에 관한 것이다.The present invention relates to a method for analyzing a gas sample, an analysis apparatus thereof, and a concentration apparatus thereof.
일반적으로, 휘발성 유해물질, 악취성분 등의 휘발성 유기 화합물(Volatile Organic Compounds, VOCs)을 분석하기 위해, 통상 가스 크로마토그래피(Gas Chromatography,GC)가 이용되고 있다. 또한 분석하고자 하는 시료를 포집한 후 그 포집된 시료를 가스 크로마토그래피에 주입하기 위한 방법으로, 주로 캐니스터(Canister)법 및 흡착관(Adsorbent tube)법 등이 이용된다.In general, gas chromatography (Gas Chromatography, GC) is commonly used to analyze volatile organic compounds (VOCs) such as volatile harmful substances and odorous components. In addition, as a method for collecting a sample to be analyzed and injecting the collected sample into gas chromatography, a canister method and an adsorbent tube method are mainly used.
캐니스터법은 대기 중의 공기를 포집하여 분석 장치를 통해 농축 분석하는 방법이다. 캐니스터법은 ppb 수준으로 저농도의 휘발성 유기 화합물의 분석이 가능하며, 이렇게 포집된 기체 시료를 여러 번 반복 분석이 가능한 이점이 있다. 그러나 기체 시료 포집 시 기체 시료가 용기 내면에 흡착 및 반응하지 않고 그대로 분석 전까지 보관될 수 있는 용기가 요구되며, 설비에 투자 및 관리가 크게 소요되므로, 현장에서 연속 포집 및 분석함에 있어 상당한 비용 및 시간이 요구되는 문제가 있다.The canister method collects air in the atmosphere and conducts concentration analysis through an analysis device. The canister method is capable of analyzing low concentrations of volatile organic compounds at the ppb level, and has the advantage of repeatedly analyzing the collected gas samples. However, the collection of gas samples requires a container that can store gas samples without adsorption and reaction on the inner surface of the container without any adsorption and reaction on the inside of the container, and requires considerable investment and management in the facility. There is a problem that is required.
흡착관법은 흡착제가 장입된 흡착관에 대기 중의 기체 시료를 통과시켜 흡착제에 기체 시료를 농축한 후, 이를 탈착시켜 농축된 기체 시료를 분석기에서 분석하는 방법이다. 이러한 흡착관법은 현장에서 연속 포집 및 분석함에 있어 캐니스터법과 비교하여 낮은 비용 및 시간이 요구됨에 따라 보다 용이하게 기체 시료를 포집 및 분석할 수 있는 장점이 있다.The adsorption tube method is a method of passing a gas sample in the air through an adsorption tube loaded with an adsorbent, concentrating the gas sample in the adsorbent, and then desorbing and analyzing the concentrated gas sample in an analyzer. Such an adsorption tube method has an advantage in that it is easier to collect and analyze a gas sample as low cost and time are required in comparison with the canister method in the continuous collection and analysis in the field.
그러나 종래의 공지된 흡착관법을 이용하여 기체 시료를 농축 및 분석하고자 할 경우, 공기 중 기체 시료의 농도에 관계없이 일정한 양의 공기를 통과 및 농축하여 사용하므로, 공기 중의 기체 시료의 농도가 높을 경우, 흡착관의 시료 흡착용량(breakthrough volume)보다 많은 기체 시료가 흡착관에 주입될 수 있다. 이 경우 시료가 흡착관을 통과함에 따라 정량분석이 어렵게 되거나, 분석 장비로의 과도한 시료의 주입으로 분석 장비를 오염시킬 수 있다. 또한 공지된 흡착관법은, 공기 중의 기체 시료의 농도가 낮을 경우, 충분한 양의 공기를 투과시키지 못해서 농축관에 분석 장비의 검출 한계 이하의 시료 기체가 농축되어, 시료의 정량분석이 불가능하게 되는 문제가 있다.However, when a gas sample is to be concentrated and analyzed using a conventionally known adsorption tube method, since a certain amount of air is passed and concentrated regardless of the concentration of the gas sample in the air, the concentration of the gas sample in the air is high. More gas samples than the sample breakthrough volume of the adsorption tube may be injected into the adsorption tube. In this case, as the sample passes through the adsorption tube, it becomes difficult to quantitatively analyze or contaminate the analysis equipment by excessive injection of the sample into the analysis equipment. In addition, the known adsorption tube method has a problem that, when the concentration of the gas sample in the air is low, a sufficient amount of air cannot be permeated, and sample gas below the detection limit of the analytical equipment is concentrated in the concentration tube, making it impossible to quantitate the sample. There is.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
한국등록특허공보 제10-0846190호 (2008.07.08)Korea Patent Publication No. 10-0846190 (2008.07.08)
본 발명의 목적은 기체 시료의 농축 시간을 포함하여 전체 분석 시간을 현저히 감소시킬 수 있는 기체 시료 분석 장치 및 기체 시료 분석 방법을 제공하는 것이다.It is an object of the present invention to provide a gas sample analysis device and a gas sample analysis method capable of significantly reducing the total analysis time including the concentration time of the gas sample.
본 발명의 다른 목적은 공기 중에 미량으로 존재하는 기체 시료를 분석을 위하여 농축 장치에 농축할 때, 시료의 농도에 따라 사용하는 공기의 양을 달리하여 기체 시료를 농축하여, 정량분석에 요구되는 적절한 양의 시료가 농축되고 분석되게 하여 분석의 정밀도를 높이고 분석시간을 단축할 수 있는 기체 시료 분석 장치 및 기체 시료 분석 방법을 제공하는 것이다.Another object of the present invention is to concentrate a gas sample present in a small amount in the air in the concentration apparatus for analysis, by varying the amount of air used according to the concentration of the sample to concentrate the gas sample, appropriate for the quantitative analysis It is to provide a gas sample analysis device and a gas sample analysis method that can increase the accuracy of analysis and shorten the analysis time by allowing a large amount of samples to be concentrated and analyzed.
본 발명에 따른 기체 시료 농축 장치는, 기체 시료가 흡착되는 흡착부를 포함하며, 기체 시료를 포함하는 공기가 유입되어 이 기체 시료가 상기 흡착부에 농축되는 농축부; 상기 농축부의 후단에 구비되어 상기 공기의 유량을 조절하는 유량 조절부; 공기 중 기체 시료가 유입되어 이의 농도를 측정하는 측정부; 및 상기 측정부에서 측정된 공기 중 기체 시료의 농도를 바탕으로, 상기 농축부의 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 상기 유량 조절부를 제어하는 제어부;를 포함한다.The gas sample concentrating device according to the present invention includes an adsorption part including a gas sample adsorbed therein, and a concentrating part in which air containing a gas sample is introduced and the gas sample is concentrated on the adsorption part; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample into the air and measuring its concentration; And a control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value. It includes;
본 발명에 따른 기체 시료 분석 장치는, 기체 시료가 흡착되는 흡착부를 포함하며, 기체 시료를 포함하는 공기가 유입되어 이 기체 시료가 상기 흡착부에 농축되는 농축부; 상기 농축부의 후단에 구비되어 상기 공기의 유량을 조절하는 유량 조절부; 상기 농축부와 별도의 유입 경로로 공기 중 기체 시료가 유입되어 이의 농도를 측정하는 측정부; 상기 측정부에서 측정된 공기 중 기체 시료의 농도를 바탕으로, 상기 농축부의 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 상기 유량 조절부를 제어하는 제어부; 및 상기 흡착부에 흡착된 기체 시료가 탈착되어 유입되고, 이 기체 시료의 성분을 분석하는 분석부;를 포함한다.A gas sample analyzing apparatus according to the present invention includes an adsorbent including a gas sample adsorbed therein, and a concentrating portion in which air containing a gas sample is introduced to concentrate the gas sample; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample in the air into an inflow path separate from the concentration unit to measure its concentration; A control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value; And an analysis unit for desorbing and introducing the gas sample adsorbed on the adsorption unit and analyzing the components of the gas sample.
본 발명의 일 예에 있어서, 상기 제어부의 제어는 기체 시료를 포함하는 공기의 유량 및 상기 공기의 유입시간을 제어하여 기체 시료가 요구 농축량으로 농축되도록 하는 것일 수 있다.In one example of the present invention, the control of the controller may be to control the flow rate of the air including the gas sample and the inflow time of the air so that the gas sample is concentrated to the required concentration.
본 발명의 일 예에 있어서, 상기 제어부는 하기 관계식 1을 바탕으로, 흡착부에 농축되는 기체 시료의 요구 농축량(E S)을 만족하도록 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 제어하는 것일 수 있다. 하기 관계식 1에서, E S는 기체 시료의 요구 농축량이며, C S는 대기 중의 기체 시료의 농도이며, F A는 측정부에서 기체 시료의 농도를 측정할 시의 공기의 유량으로 농축부에 유입되는 공기의 유량이며, T A는 공기가 농축부에 유입되는 시간이다.In one embodiment of the present invention, the control unit based on the following relation 1, the flow rate (F A ) and the time of the air flowing into the concentration unit to satisfy the required concentration amount (E S ) of the gas sample concentrated in the adsorption unit It may be controlling (T A ). In Equation 1 below, E S is a required concentration of a gas sample, C S is a concentration of a gas sample in the atmosphere, and F A is a flow rate of air when the concentration of the gas sample is measured at the measuring unit. It is the flow rate of the air which becomes, and T A is the time which air flows into a concentrating part.
[관계식 1][Relationship 1]
E S = C S × F A × T A E S = C S × F A × T A
본 발명의 일 예에 있어서, 상기 유량 조절부는 제1 유량 조절부일 수 있고, 상기 기체 시료 분석 장치는, 상기 측정부의 후단에 구비되어 측정부의 공기의 유량을 조절하는 제2 유량 조절부를 더 포함할 수 있으며, 상기 제어부는 상기 측정부에서 측정된 공기 중 기체 시료의 농도 및 상기 제2 유량 조절부에서 측정된 공기의 유량을 바탕으로 상기 추정값을 산출하여 상기 제1 유량 조절부를 통해 상기 흡착부에 기체 시료가 요구 농축량으로 농축되도록 제어하는 것일 수 있다.In one embodiment of the present invention, the flow rate adjusting unit may be a first flow rate adjusting unit, the gas sample analysis device further includes a second flow rate adjusting unit which is provided at the rear end of the measuring unit to adjust the flow rate of the air of the measuring unit. The control unit may calculate the estimated value based on the concentration of the gaseous sample in the air measured by the measuring unit and the flow rate of the air measured by the second flow rate adjusting unit, and the first flow rate adjusting unit may calculate the estimated value. It may be to control the gas sample to be concentrated to the required concentration.
본 발명에 따른 기체 시료 분석 장치는, 가스 공급부; 및 상기 농축부와 상기 유량조절부가 연결될 때 상기 분석부와 상기 가스 공급부가 연결되도록 하거나, 상기 가스 공급부가 상기 농축부와 연결되고 상기 농축부가 상기 분석부로 연결되도록 하는 멀티포트 밸브;를 더 포함할 수 있다. 이때 상기 멀티포트 밸브는 상기 농축부를 통과한 공기가 상기 유량 조절부로 유입되도록 하거나, 상기 농축부에 농축된 기체 시료가 상기 분석부로 탈착되어 유입되도록 스위칭되는 구조를 가질 수 있다.Gas sample analysis device according to the present invention, the gas supply unit; And a multiport valve configured to connect the analyzer and the gas supplier when the concentrator and the flow controller are connected, or to allow the gas supplier to be connected to the concentrator and the concentrator to the analyzer. Can be. In this case, the multiport valve may have a structure in which air passing through the concentrating unit is introduced into the flow rate adjusting unit, or switched so that a gas sample concentrated in the concentrating unit is desorbed and introduced into the analyzing unit.
본 발명의 일 예에 따른 기체 시료 분석 장치 또는 기체 시료 농축 장치는, 상기 농축부에 구비되며, 기체시료의 흡착 또는 탈착을 위한 열교환부;를 더 포함할 수 있다.The gas sample analyzing apparatus or the gas sample concentrating device according to an embodiment of the present invention may be provided in the concentrating part and further include a heat exchange part for adsorbing or desorption of the gas sample.
본 발명의 일 예에 있어서,상기 열교환부는 흡착을 위한 냉각 및 탈착을 위한 가열 기능을 가질 수 있다.In one example of the present invention, the heat exchanger may have a heating function for cooling and desorption for adsorption.
본 발명의 일 예에 있어서, 상기 분석부는, 상기 흡착부에 흡착된 기체 시료가 탈착되어 유입되는 가스 크로마토그래피; 및 상기 가스 크로마토그래피로부터 기체 시료가 유입되는 질량분석부;를 포함할 수 있다.In one embodiment of the present invention, the analysis unit, the gas chromatography adsorbed by the gas sample adsorbed to the adsorption unit; And a mass spectrometer configured to introduce a gas sample from the gas chromatography.
본 발명에 따른 기체 시료 분석 방법은, a) 공기 중 기체 시료의 농도를 측정하는 단계, b) 상기 측정된 공기 중 기체 시료의 농도를 바탕으로, 분석에 사용하기 위한 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하는 단계, c) 공기 중 기체 시료를 흡착부에 흡착시켜 농축시키되, 상기 추정값을 바탕으로 농축량을 제어하여 농축하는 단계 및 d) 상기 흡착부에 흡착된 기체 시료를 탈착시켜 분석하는 단계를 포함한다.Gas sample analysis method according to the invention, a) measuring the concentration of the gas sample in the air, b) based on the measured concentration of the gas sample in the air, the required concentration of the gas sample for use in the analysis Calculating an estimated value for the flow rate and time, c) adsorbing the gas sample in air to concentrate the adsorbent, and controlling and concentrating the concentrated amount based on the estimated value; and d) the gas adsorbed to the adsorbent. Detaching and analyzing the sample.
본 발명의 일 예에 있어서, 상기 c) 단계의 제어는, 상기 추정값으로 상기 농축부의 공기 유입을 유지하여 기체 시료가 요구 농축량으로 농축되도록 제어하는 것일 수 있다.In one embodiment of the present invention, the control of step c) may be to control the concentration of the gas sample to the required concentration by maintaining the inflow of the air in the enrichment unit with the estimated value.
본 발명의 일 예에 있어서, 상기 d) 단계는, 상기 흡착부에 흡착된 기체 시료를 탈착시킨 후, 이를 가스 크로마토그래피 및 질량분석부를 포함하는 분석부에 유입시켜 분석하는 단계일 수 있다.In one embodiment of the present invention, the step d) may be a step of analyzing a gas sample adsorbed on the adsorption unit by desorption and then introducing the gas sample into an analysis unit including a gas chromatography and a mass spectrometer.
본 발명의 일 예에 있어서, 상기 d) 단계는, 상기 b) 단계에서 산출한 추정값을 바탕으로 분석 결과를 정규화하여 기체 시료를 정량 분석하는 단계를 포함할 수 있으며, 상기 추정값은 시료 농축 시의 결정된 공기의 양일 수 있다.In one embodiment of the present invention, the step d) may include the step of quantitatively analyzing the gas sample by normalizing the analysis results based on the estimated value calculated in the step b), wherein the estimated value is It can be the amount of air determined.
본 발명에 따른 기체 시료 분석 장치 및 기체 시료 분석 방법은 분석을 위한 기체 시료의 적절한 농도, 즉, 기체 시료를 요구 농축량으로 농축할 수 있도록 하는 유량 및 시간을 추정할 수 있음에 따라, 기체 시료의 농축 시간을 포함하여 전체 분석 시간을 현저히 감소시킬 수 있는 효과가 있다.The gas sample analyzing apparatus and the gas sample analyzing method according to the present invention can estimate the appropriate concentration of the gas sample for analysis, that is, the flow rate and time for allowing the gas sample to be concentrated to the required concentration, It is effective to significantly reduce the overall analysis time, including the concentration time of.
또한 본 발명에 따른 기체 시료 분석 장치 및 기체 시료 분석 방법은 분석을 위한 적절한 농도로 기체 시료를 농축할 수 있어, 정량분석에 요구되는 적절한 양의 시료가 농축되고 분석되게 하여 분석의 정밀도를 높이고 분석시간을 단축할 수 있는 효과가 있다.In addition, the gas sample analysis device and gas sample analysis method according to the present invention can concentrate the gas sample to an appropriate concentration for analysis, so that the appropriate amount of sample required for quantitative analysis is concentrated and analyzed to increase the accuracy of analysis and analysis This can shorten the time.
본 발명에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 명세서에서 기재된 효과 및 그 내재적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.Even if the effects are not explicitly mentioned in the present invention, the effects described in the specification and the inherent effects expected by the technical features of the present invention are treated as described in the specification of the present invention.
도 1 내지 도 4는 본 발명에 따른 기체 시료 농축 장치의 공정도를 나타낸 것이며, 이때 점선은 추정값, 유량 등의 정보를 전달하기 위한 전기적 신호의 연결을 의미하며, 화살표는 공기의 흐름 경로를 의미한다.1 to 4 show a process diagram of a gas sample concentrating device according to the present invention, wherein a dotted line means connection of an electrical signal for transmitting information such as an estimated value and a flow rate, and an arrow means an air flow path. .
도 5 및 도 6은 본 발명에 따른 기체 시료 분석 장치의 공정도를 나타낸 것이며, 이때 점선은 추정값, 유량 등의 정보를 전달하기 위한 전기적 신호의 연결을 의미하며, 화살표는 공기의 흐름 경로를 의미한다.5 and 6 show a process diagram of the gas sample analysis device according to the present invention, where the dotted line means the connection of the electrical signal for transmitting information, such as the estimated value, the flow rate, the arrow indicates the flow path of the air .
도 7은 본 발명에 따른 기체 시료 분석 장치의 멀티포트 밸브의 스위칭을 통한 각 경로의 변화를 나타낸 모식도이다.7 is a schematic diagram showing the change of each path through the switching of the multi-port valve of the gas sample analysis device according to the present invention.
이하 첨부한 도면들을 참조하여 본 발명에 따른 기체 시료의 분석 방법, 이의 분석 장치 및 이의 농축 장치를 상세히 설명한다.Hereinafter, an analysis method of a gas sample, an analysis apparatus thereof, and a concentration apparatus thereof according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 기재되어 있는 도면은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 상기 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다.BRIEF DESCRIPTION OF THE DRAWINGS The drawings described in the present invention are provided by way of example so as to fully convey the spirit of the present invention to those skilled in the art. Therefore, the present invention is not limited to the drawings presented and may be embodied in other forms, and the drawings may be exaggerated to clarify the spirit of the present invention.
본 발명에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Unless otherwise defined in the technical and scientific terms used in the present invention, those having ordinary skill in the art to which the present invention pertains generally have the meanings that are commonly understood, and the gist of the present invention in the following description and the accompanying drawings. The description of well-known functions and configurations that may unnecessarily obscure them will be omitted.
본 발명에서 사용되는 용어의 단수 형태는 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 해석될 수 있다.As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
본 발명에서 특별한 언급 없이 사용된 %의 단위는 별 다른 정의가 없는 한 중량%를 의미한다. The unit of% used without special mention in the present invention means weight% unless otherwise defined.
본 발명에서 언급되는 ‘기체 시료’는 공기 중에 기상으로 존재하는 분석 대상인 화합물을 의미하며, 시료의 대상이 되는 분석 가능한 화합물이라면 제한되지 않는다. 구체적인 인 예로, 상기 화합물은 유기 화합물, 즉, 휘발성 유기 화합물(Volatile Organic Compounds, VOCs)을 의미할 수 있다. As used herein, the term “gas sample” refers to a compound that is an analyte, which is present in the air in a gaseous phase, and is not limited as long as it is an analyte that is a sample. As a specific example, the compound may mean an organic compound, that is, volatile organic compounds (VOCs).
본 발명에서 언급되는 ‘전단’ 및 ‘후단’은 기체 시료 및 공기의 흐름 방향을 기준으로 하여 해석된다.The "shear" and "stage" referred to in the present invention are interpreted based on the flow direction of the gas sample and air.
일반적으로, 흡착법을 이용한 기체 시료의 분석에 있어서, 종래에는 요구 농축량으로 기체 시료를 농축할 수 있는 수단이 없음에 따라, 통상 최소 농축량을 크게 초과하는 양의 공기를 통과시켜 기체 시료를 농축하는 비효율적인 방법이 사용되었다.In general, in the analysis of gas samples using the adsorption method, conventionally there is no means for concentrating a gas sample at a required concentration, so that the gas sample is concentrated by passing a large amount of air in excess of the minimum concentration. An inefficient method was used.
따라서 본 발명은 대기 중의 기체 시료의 농도를 먼저 측정하여 이를 바탕으로 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 기체 시료를 포함하는 공기의 유입 유량 및 시간을 제어하여 요구 농축량으로 기체 시료를 농축할 수 있는 기체 시료의 농축 장치, 기체 시료의 분석 장치 및 기체 시료의 분석 방법을 제공함에 그 목적이 있다.Therefore, the present invention first measures the concentration of the gas sample in the atmosphere and calculates an estimated value for the flow rate and time for the required concentration based on this, and controls the inflow flow rate and time of the air containing the gas sample based on the estimated value The purpose of the present invention is to provide a gas sample concentrating device, a gas sample analyzing device, and a gas sample analyzing method capable of concentrating a gas sample at a required concentration.
본 발명에 따른 기체 시료 농축 장치는, 기체 시료가 흡착되는 흡착부를 포함하며, 기체 시료를 포함하는 공기가 유입되어 이 기체 시료가 상기 흡착부에 농축되는 농축부; 상기 농축부의 후단에 구비되어 상기 공기의 유량을 조절하는 유량 조절부; 공기 중 기체 시료가 유입되어 이의 농도를 측정하는 측정부; 및 상기 측정부에서 측정된 공기 중 기체 시료의 농도를 바탕으로, 상기 농축부의 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 상기 유량 조절부를 제어하는 제어부;를 포함한다.The gas sample concentrating device according to the present invention includes an adsorption part including a gas sample adsorbed therein, and a concentrating part in which air containing a gas sample is introduced and the gas sample is concentrated on the adsorption part; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample into the air and measuring its concentration; And a control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value. It includes;
즉, 본 발명에서는 분석부와 별도로 구비된 농축 장치를 제공할 수 있으며, 상기 농축 장치와 분석부를 포함하는 분석 장치를 제공할 수 있다.That is, the present invention may provide a concentration device provided separately from the analysis unit, and may provide an analysis device including the concentration unit and the analysis unit.
본 발명에 따른 기체 시료 분석 장치는, 기체 시료가 흡착되는 흡착부를 포함하며, 기체 시료를 포함하는 공기가 유입되어 이 기체 시료가 상기 흡착부에 농축되는 농축부; 상기 농축부의 후단에 구비되어 상기 공기의 유량을 조절하는 유량 조절부; 공기 중 기체 시료가 유입되어 이의 농도를 측정하는 측정부; 상기 측정부에서 측정된 공기 중 기체 시료의 농도를 바탕으로, 상기 농축부의 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 상기 유량 조절부를 제어하는 제어부; 및 상기 흡착부에 흡착된 기체 시료가 탈착되어 유입되고, 이 기체 시료의 성분을 분석하는 분석부;를 포함한다.A gas sample analyzing apparatus according to the present invention includes an adsorbent including a gas sample adsorbed therein, and a concentrating portion in which air containing a gas sample is introduced to concentrate the gas sample; A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air; A measurement unit for introducing a gas sample into the air and measuring its concentration; A control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value; And an analysis unit for desorbing and introducing the gas sample adsorbed on the adsorption unit and analyzing the components of the gas sample.
상기 농축부는 상기 흡착부가 구비된 공간으로, 기체 시료가 흡착부에 흡착되어 농축되는 공간을 의미하며, 예컨대 흡착관(Adsorbent tube)일 수 있다. 이때 흡착부는 기체 시료를 흡착할 수 있는 흡착제 또는 상기 흡착제가 구비된 공간을 의미한다. 상기 흡착제는 기체 시료의 성분 종류에 따라 그 종류를 적절히 채택할 수 있는 공지 기술에 해당하며, 본 발명에서 다양한 종류의 것이 사용되어도 무방하다. 또한 상기 흡착제는 온도 등의 특정 조건에 따라 기체 시료를 흡착하거나 탈착할 수 있다.The concentrating unit is a space provided with the adsorption unit, and means a space in which a gas sample is adsorbed and concentrated on the adsorption unit, and may be, for example, an adsorption tube. In this case, the adsorption unit means an adsorbent capable of adsorbing a gas sample or a space provided with the adsorbent. The adsorbent corresponds to a known technique that can appropriately adopt the kind according to the kind of the component of the gas sample, and various kinds of those may be used in the present invention. In addition, the adsorbent may adsorb or desorb a gas sample according to specific conditions such as temperature.
상기 유량 조절부는 기체 시료를 포함하는 공기가 상기 농축부로 유입될 수 있도록 공기의 유량을 조절하는 것으로, 예컨대 질량유량제어기(Mass flow controller)일 수 있으며, 공기의 유량을 조절할 수 있는 것이라면 다양한 것들이 사용될 수 있으므로 이에 제한되지 않는다.The flow rate control unit adjusts the flow rate of air so that air including a gas sample can be introduced into the concentrating unit. For example, the flow rate control unit may be a mass flow controller. It can be so limited.
상기 측정부는 도 1 내지 도 4에 도시된 바와 같이, 상기 농축부와 별도의 유입 경로로 공기가 유입될 수도 있고, 도 5 및 도 6에 도시된 바와 같이 공통된 유입 경로로 공기가 유입될 수도 있다. 여기서 측정부와 농축부가 별도의 유입 경로를 가진다는 것은 공기의 유입 경로가 각각 독립적으로 구성된 것을 의미하는 것으로, 상기 유입 경로 이후의 경로에서는 서로 경로를 공유하거나 하지 않을 수도 있음에 따라 상기 유입 경로가 전체 경로로서 해석되어서는 안 된다.As illustrated in FIGS. 1 to 4, air may be introduced into a separate inflow path from the concentrator, and air may be introduced into a common inflow path as illustrated in FIGS. 5 and 6. . Here, the measurement unit and the enrichment unit have separate inflow paths, which means that the inflow paths of air are configured independently, and in the paths after the inflow paths, the inflow paths may or may not be shared with each other. It should not be interpreted as a full path.
상기 측정부는 공기 중의 기체 시료의 농도를 측정할 수 있는 것이라면 무방하며, 예컨대 광이온화 검출기(Photoionization detector, PID), 전자 포착 검출기(Electron capture detector, ECD), 불꽃광도 검출기(Flame photometric detector, FPD), 불꽃 이온화 검출기(Flame ionization detector, FID) 및 열전도도 검출기(Thermal conductivity detector, TCD) 등에서 선택되는 것이 사용될 수 있으며, 비선택적으로 다양한 화합물, 특히 다양한 휘발성 유기 화합물에 대한 농도를 측정할 수 있는 측면에서 광이온화 검출기가 사용되는 것이 바람직할 수 있다.The measuring unit may be any one capable of measuring the concentration of a gas sample in the air. For example, a photoionization detector (PID), an electron capture detector (ECD), and a flame photometric detector (FPD) may be used. , Flame ionization detector (FID) and thermal conductivity detector (TCD) can be used.They can be used to measure the concentration of non-selectively various compounds, especially various volatile organic compounds. It may be desirable for a photoionization detector to be used.
전술한 바와 같이, 본 발명에서는 독립적인 유입 경로 또는 공통의 유입 경로 통해 기체 시료를 포함하는 공기가 농축부 및 측정부로 유입되어, 측정부를 통해 제어부에서 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 농축부에서 기체 시료를 요구 농축량으로 농축할 수 있도록 제어한다.As described above, in the present invention, the air including the gas sample is introduced into the concentrating unit and the measuring unit through an independent inflow path or a common inflow path, and through the measuring unit, the control unit estimates the flow rate and time for the required concentration. Based on the estimated value, the concentration unit controls the gas sample to be concentrated to the required concentration amount.
구체적으로, 상기 제어부는 기체 시료가 요구 농축량으로 농축될 수 있도록 하는 공기의 유입 유량 및 시간에 대한 추정값을 바탕으로, 상기 유량 조절부를 조절하여 상기 농축부에 유입되는 공기의 유량 및 시간을 제어하여 기체 시료가 요구 농축량으로 농축되도록 한다. 상세하게, 분석 대상인 기체 시료를 포함하는 공기가 존재하는 현장에서 이 기체 시료의 대기 중 농도와 이때의 유량을 측정하면 기체 시료가 요구 농축량으로 농축되도록 하는 공기의 유입 유량 및 시간을 추정할 수 있다. 즉, 상기 제어부의 제어는 이러한 추정값을 통해 기체 시료를 포함하는 공기의 유량 및 상기 공기의 유입시간을 제어하여 기체 시료가 요구 농축량으로 농축되도록 할 수 있다. 따라서 농축부에서 농축되는 기체시료의 현재 농축량이 요구 농축량에 이를 때까지 공기의 유입 유량 및 시간을 제어하여, 이후 요구 농축량으로 농축된 기체 시료를 탈착한 후 이를 분석부로 이송함으로써 효율적으로 빠른 시간 안에 정밀한 정성, 정량 분석이 가능하다.Specifically, the control unit controls the flow rate and time of the air flowing into the concentrating unit by adjusting the flow rate adjusting unit based on the estimated value for the flow rate and time of the air to allow the gas sample to be concentrated to the required concentration amount The gas sample is concentrated to the required concentration. Specifically, measuring the atmospheric concentration and the flow rate of the gas sample at the site where the air containing the gas sample to be analyzed exists can estimate the inflow flow rate and time of the air so that the gas sample is concentrated to the required concentration. have. That is, the control of the controller may control the flow rate of the air including the gas sample and the inflow time of the air through the estimated value so that the gas sample is concentrated to the required concentration. Therefore, the flow rate and time of the air is controlled until the current concentration of the gas sample concentrated in the concentration unit reaches the required concentration amount, and then, after desorbing the concentrated gas sample to the required concentration amount, it is efficiently transferred to the analysis unit. Accurate qualitative and quantitative analysis is possible in time.
보다 구체적으로, 상기 제어부는 하기 관계식 1을 바탕으로, 흡착부에 농축되는 기체 시료의 요구 농축량(E S)을 만족하도록 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 제어하는 것일 수 있다. 하기 관계식 1에서, E S는 기체 시료의 요구 농축량이며, C S는 대기 중의 기체 시료의 농도이며, F A는 측정부에서 기체 시료의 농도를 측정할 시의 공기의 유량으로 농축부에 유입되는 공기의 유량이며, T A는 공기가 농축부에 유입되는 시간이다.More specifically, the control unit based on the following relation 1, the flow rate (F A ) and the time (T A ) of the air flowing into the concentration unit to satisfy the required concentration amount (E S ) of the gas sample concentrated in the adsorption unit It may be to control. In Equation 1 below, E S is a required concentration of a gas sample, C S is a concentration of a gas sample in the atmosphere, and F A is a flow rate of air when the concentration of the gas sample is measured at the measuring unit. It is the flow rate of the air which becomes, and T A is the time which air flows into a concentrating part.
[관계식 1][Relationship 1]
E S = C S × F A × T A E S = C S × F A × T A
더욱 구체적으로, 상기 제어부는 C S가 일정한 값 이상일 경우에는 하기 관계식 1을 바탕으로, 흡착부에 농축되는 기체 시료의 요구 농축량(E S)을 만족하도록 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 제어하고, C S가 일정한 값 미만일 경우에는 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 특별히 설정된 값들로 제어하는 것일 수 있다. 상기 일정한 값 및 상기 설정된 값은 통상의 기술자가 원활한 제어를 위해 시료의 종류, 환경 조건 등에 따라 적절히 계산 및 조절할 수 있으므로 제한되지 않는다.More specifically, the control unit is a flow rate of the air flowing into the concentration unit (F S ) to satisfy the required concentration (E S ) of the gas sample concentrated in the adsorption unit based on the following equation 1, when the C S is a predetermined value or more A ) and time (T A ), and when C S is less than a certain value may be to control the flow rate (F A ) and time (T A ) of the air flowing into the concentration unit to a specially set values. The constant value and the set value are not limited because a person skilled in the art can calculate and adjust appropriately according to the type of sample, environmental conditions, etc. for smooth control.
상기 관계식 1에서 C S 및 F A는 측정부에서 먼저 측정되어 설정되는 값으로, 이는 농축부에서 농축되는 기체 시료의 요구 농축량을 산출하기 위한 값이다. 이렇게 C S 및 F A가 정해지면 상기 관계식 1을 바탕으로 요구 농축량(E S)에 따른 농축시간(T A)가 자동적으로 계산된다.In the relation 1, C S and F A are values that are first measured and set in the measuring unit, which are values for calculating the required concentration of the gas sample concentrated in the concentration unit. When C S and F A are determined in this way, the concentration time T A according to the required concentration amount E S is automatically calculated based on the above Equation 1.
상기 관계식 1에 따르면, 정해진 F A에서 공기 중의 기체 시료의 농도(C S)가 감소하면 농축시간(T A)이 무한히 증가할 수 있는데, 실용성을 위하여 공기 중의 기체 시료의 농도(C S)가 일정한 값 미만일 경우에는 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 특별히 설정된 값들로 제어하여 시료 농축이 설정된 시간 내에 종료되게 할 수 있다.According to Equation 1, when the concentration (C S ) of the gas sample in the air decreases at a predetermined F A , the concentration time (T A ) can be infinitely increased. For practical purposes, the concentration (C S ) of the gas sample in the air is increased. When less than a predetermined value, the flow rate (F A ) and the time (T A ) of the air flowing into the concentrating unit may be controlled to specially set values so that the sample concentration may be finished within the set time.
본 발명에서 언급되는 ‘요구 농축량’은 기체 시료의 종류 또는 분석 조건에 따라 적절히 조절될 수 있는 변수이다. 'Required concentration' referred to in the present invention is a variable that can be appropriately adjusted according to the type of gas sample or analysis conditions.
요구 농축량으로 기체 시료를 농축하기 위한 구체적 수단으로, 상기 제어부에서 상기 유량 조절기를 통해 상기 추정값으로 농축부의 공기 유입을 유지하도록 제어하는 것일 수 있다.As a specific means for concentrating the gas sample to the required concentration amount, the control unit may be to control to maintain the inflow of the air in the concentration unit with the estimated value through the flow controller.
구체적인 일 예로, 도 2 및 도 3에 도시된 바와 같이, 상기 유량 조절부는 제1 유량 조절부일 수 있고, 상기 기체 시료 분석 장치 또는 농축 장치는, 상기 측정부의 후단에 구비되어 측정부의 공기의 유량을 조절하는 제2 유량 조절부를 더 포함할 수 있으며, 상기 제어부는 상기 측정부에서 측정된 공기 중 기체 시료의 농도 및 상기 제2 유량 조절부에서 측정된 공기의 유량을 바탕으로 상기 추정값을 산출하여 상기 제1 유량 조절부를 통해 상기 흡착부에 기체 시료가 요구 농축량으로 농축되도록 제어하는 것일 수 있다. 측정부에서 공기 중의 기체 시료의 농도와 상기 공기의 유량을 측정하면, 기체시료가 흡착부에 요구 농축량으로 흡착되도록 하는 공기의 유입 유량 및 시간을 추정할 수 있다. 즉, 분석하려는 기체 시료의 농도를 먼저 측정하여 이를 통해 농축할 공기의 양을 미리 결정하여 요구 농축량을 만족하는 기체 시료를 수득한 후 분석할 수 있다. 따라서 기체 시료의 농축 시 필요한 함량으로 시료를 농축하여 사용할 수 있음에 따라 효율적으로 빠른 시간 안에 정밀한 분석이 가능하다.As a specific example, as shown in Figures 2 and 3, the flow rate control unit may be a first flow rate control unit, the gas sample analysis device or the concentration device is provided at the rear end of the measurement unit to determine the flow rate of the air of the measurement unit The control unit may further include a second flow rate adjusting unit, wherein the control unit calculates the estimated value based on the concentration of the gas sample in the air measured by the measuring unit and the flow rate of the air measured by the second flow rate adjusting unit. The first sample may be controlled to concentrate the gas sample to the required concentration through the adsorption unit through the flow rate adjusting unit. By measuring the concentration of the gaseous sample in the air and the flow rate of the air in the measurement unit, it is possible to estimate the flow rate and time of the air to allow the gas sample to be adsorbed to the adsorption unit in the required concentration. That is, the concentration of the gas sample to be analyzed may be measured first, and the amount of air to be concentrated may be determined in advance to obtain a gas sample that satisfies the required concentration, and then may be analyzed. Therefore, as the sample can be concentrated and used to the concentration necessary for the concentration of the gas sample, it is possible to efficiently and precisely analyze in a short time.
본 발명에 따른 기체 시료 분석 장치 또는 농축 장치를 운용함에 있어서, 크게 기체 시료를 흡착하여 농축하는 단계 및 농축된 기체 시료를 분석하는 단계로 구분할 수 있다. 상기 농축하는 단계에서는 농축부의 공기가 분석부로 유입도지 않도록 하는 것이 바람직하며, 상기 분석하는 단계에서는 농축부의 공기가 유량 조절기로 유입되지 않도록 하고 분석부로 유입되도록 하는 것이 바람직하다. 이때 농축 장치를 운용할 경우, 별도의 분석부를 포함하는 장치를 함께 운용할 수 있다.In operating the gas sample analyzing apparatus or the concentration apparatus according to the present invention, the gas sample may be classified into a step of adsorbing and concentrating the gas sample and a step of analyzing the concentrated gas sample. In the step of concentrating, it is preferable to prevent the air of the concentrating unit from flowing into the analyzing unit. In the analyzing step, it is preferable to prevent the air of the concentrating unit from flowing into the flow controller and enter the analyzing unit. In this case, when the concentration device is operated, a device including a separate analyzer may be operated together.
이를 위해, 본 발명에 따른 기체 시료 분석 장치는, 도 4에 도시된 바와 같이, 상기 농축부의 후단에 위치하여 상기 유량 조절부 또는 상기 분석부로의 공기 유입을 조절하는 3웨이 밸브;를 더 포함할 수 있다. 상기 3웨이 밸브는 농축부, 유량 조절부 및 분석부에 연결된 경로 사이에 위치하여 농축부의 공기가 유량조절부의 경로로만 유입되거나 분석부의 경로로만 유입될 수 있도록 개폐 수단을 가진다. 따라서 기체 시료를 효과적으로 농축 및 분석할 수 있다. 3웨이 밸브는 전단에서 유체가 유입되는 경로를 후단의 제1경로 및 제2경로 분배하고 제1경로로만 또는 제2경로로만 유체가 흐를 수 있도록 개폐 수단이 있는 것이라면 공지된 다양한 것이 사용되어도 무방하다.To this end, the gas sample analysis device according to the present invention, as shown in Figure 4, is located at the rear end of the condensation unit; a three-way valve for controlling the air inlet to the flow rate control unit or the analysis unit; Can be. The three-way valve is positioned between the path connected to the concentrator, the flow controller, and the analyzer, and has opening / closing means so that the air of the concentrator can only flow into the path of the flow controller or only into the path of the analyzer. Thus, gas samples can be effectively concentrated and analyzed. The three-way valve may be variously known as long as it has an opening / closing means for distributing the flow path of the fluid from the front end to the first path and the second path at the rear end and allowing the fluid to flow only in the first path or the second path. .
또한 본 발명에 따른 기체 시료 분석 장치는, 도 5 및 도 6에 도시된 바와 같이, 가스 공급부; 및 상기 농축부와 상기 유량조절부가 연결될 때 상기 분석부와 상기 가스 공급부가 연결되는 제1포트경로 또는 상기 가스 공급부가 상기 농축부와 연결되고 상기 농축부가 상기 분석부로 연결되는 제2포트경로로 스위칭하는 멀티포트 벨브;를 더 포함할 수 있다. 이때 상기 멀티포트 벨브는 도 7에 도시된 바와 같이, 상기 농축부를 통과한 공기가 상기 유량 조절부로 유입되도록 하거나, 상기 농축부의 농축된 기체 시료가 상기 분석부로 탈착되어 유입되도록 스위칭되는 구조를 가질 수 있다. 상기 제1포트경로는 기체 시료의 농축을 위해 사용되는 것으로, 도 5에 도시된 바와 같이, 농축부로부터 유입되는 공기가 유량조절부를 통함으로써, 농축부의 흡착부에 기체 시료가 농축되도록 한다. 상기 제2포트경로는 기체 시료의 분석을 위해 이를 탈착하여 분석부에 이송하는 경로로, 도 6에 도시된 바와 같이, 가스 공급부로부터 유입되는 캐리어 가스가 농축부로 유입되어 농축부의 흡착부에서 탈착된 기체 시료가 분석부로 유입되도록 한다. 이때 제2포트경로의 경우, 최초 공기가 유입되는 유입경로는 유량 조절부(제1 유량 조절부)로 연결될 수 있다.In addition, the gas sample analysis device according to the present invention, as shown in Figure 5 and 6, the gas supply unit; And a first port path connecting the analyzer and the gas supply unit when the concentrator and the flow rate controller are connected, or switching to a second port path where the gas supplier is connected to the concentrator and the concentrator is connected to the analyzer. It may further include a multi-port valve. In this case, as shown in FIG. 7, the multiport valve may have a structure in which air passing through the condenser is introduced into the flow rate controller, or switched so that the concentrated gas sample of the condenser is desorbed and introduced into the analyzer. have. The first port path is used for the concentration of the gas sample, as shown in Figure 5, the air flowing from the concentration unit through the flow rate control unit, so that the gas sample is concentrated in the adsorption unit of the concentration unit. The second port path is a path for desorbing and transporting the gas sample for analysis of the gas sample. As shown in FIG. 6, the carrier gas introduced from the gas supply part flows into the condenser and is desorbed from the adsorption part of the condenser. Allow gas samples to enter the analyzer. In this case, in the case of the second port path, the inlet path into which the first air is introduced may be connected to the flow rate controller (first flow controller).
상기 스위칭되는 구조는 도 7에 도시하였으며, 이는 원형으로 각각 이격하여 위치하는 3 개의 관이 원형의 중심을 기준으로 회전하여 각 부에 연결된 경로에 연결되도록 하는 구조일 수 있다. 이러한 멀티포트 구조는 밸브 기술 분야에서 널리 공지된 사항이므로, 더 이상의 설명은 생략한다. The switched structure is shown in FIG. 7, which may be a structure in which three pipes that are spaced apart from each other in a circle are rotated with respect to the center of the circle and connected to a path connected to each part. Such a multiport structure is well known in the art of valves, and further description thereof is omitted.
전술한 바와 같이 상기 분석부는, 상기 농축부에서 요구 농축량으로 농축된 기체 시료를 흡착부로부터 탈착한 후 이 탈착된 기체 시료를 분석하기 위한 장비를 의미한다. 상기 분석을 위한 장비는 공지된 다양한 것들이 사용될 수 있으며, 구체적인 일 예로, 분석부는, 상기 흡착부에 흡착된 기체 시료가 탈착되어 유입되는 가스 크로마토그래피(Gas chromatography); 및 상기 가스 크로마토그래피로부터 기체 시료가 유입되는 질량분석부(Mass spectrometry);를 포함할 수 있다. 하지만 이 외에도 다양한 분석 장비가 사용될 수 있으므로, 본 발명이 이에 제한되지 않음은 물론이다.As described above, the analysis unit means a device for analyzing the desorbed gas sample after desorbing the gas sample concentrated in the required concentration in the concentration unit from the adsorption unit. Equipment for the analysis may be a variety of known ones can be used, a specific example, the analysis unit, gas chromatography (Gas chromatography) that is desorbed and introduced into the gas sample adsorbed to the adsorption unit; And a mass spectrometer through which a gas sample is introduced from the gas chromatography. However, in addition to the various analysis equipment can be used, of course, the present invention is not limited thereto.
상기 분석부에서는 기체 시료의 정성은 물론 기체 시료의 정량도 분석이 가능하다. 상기 분석을 위한, 농축부의 흡착부에 흡착된 기체 시료의 탈착은 다양한 방법 및 장치가 이용될 수 있으며, 일 예로, 도 2 및 도 3에 도시된 바와 같이, 온도 등의 특정 조건을 변화시키는 방법을 들 수 있다. 이 경우, 본 발명에 따른 기체 시료 분석 장치는, 상기 농축부에 구비되며, 기체시료의 흡착 또는 탈착을 위한 열교환부;를 더 포함할 수 있다. 상기 열 교환부는 흡착부에 흡착된 기체 시료의 온도를 증감할 수 있는 있는 것이라면 다양한 것이 사용되어도 무방하다.In the analysis unit, the quality of the gas sample may be analyzed as well as the quality of the gas sample. For the analysis, various methods and apparatuses may be used for desorption of a gas sample adsorbed on the adsorption unit of the concentration unit. For example, as illustrated in FIGS. 2 and 3, a method of changing specific conditions such as temperature Can be mentioned. In this case, the gas sample analyzing apparatus according to the present invention may be provided in the concentrating part and further comprising a heat exchange part for adsorption or desorption of the gas sample. The heat exchange part may be variously used as long as it can increase or decrease the temperature of the gas sample adsorbed on the adsorption part.
특히, 본 발명에서는, 기체 시료 농축 시의 결정된 공기의 양(상기 관계식 1에서 F A × T A에 해당)은 정량 분석 시 정규화(normalize)를 위해 사용될 수 있어, 본 발명에 따른 기체 시료 분석 장치 또는 농축 장치를 이용하여 정밀한 정량 분석이 가능하다.In particular, in the present invention, the amount of air determined at the time of gas sample concentration (corresponding to F A × T A in Equation 1 above) may be used for normalization during quantitative analysis, and thus, a gas sample analyzing apparatus according to the present invention. Or precise quantitative analysis is possible using the concentration device.
본 발명의 일 예에 따른 기체 시료 분석 장치 또는 농축 장치는, 상기 측정부의 전단에 구비되어 공기를 측정부로 이송하는 유입부;를 더 포함할 수 있다.The gas sample analyzing apparatus or the concentrating device according to an embodiment of the present invention may further include an inlet provided at the front end of the measuring unit to transfer air to the measuring unit.
본 발명의 일 예에 따른 기체 시료 분석 장치 또는 농축 장치는, 도 3에 도시된 바와 같이 경우에 따라, 상기 농축부와 상기 유량 조절기(제1 유량 조절기) 사이에 구비되어 공기 외의 입자상 불순물 또는 기체 시료를 필터하는 여과부;를 더 포함할 수 있다.As shown in FIG. 3, a gas sample analyzing apparatus or a concentrating device according to an embodiment of the present invention may be provided between the concentrating unit and the flow controller (first flow controller), so that particulate impurities or gases other than air may be provided. It may further include a filtration unit for filtering the sample.
본 발명의 일 예에 따른 기체 시료 분석 장치 또는 농축 장치는, 도 3에 도시된 바와 같이, 상기 농축부의 전단에 구비되어 공기 외의 입자상 불순물을 여과하여 이 여과된 공기를 농축부로 이송하는 제1 필터부;를 더 포함할 수 있다. 또한 상기 분석 장치 또는 농축 장치는 상기 유입부의 전단에 구비되어 공기 외의 입자상 불순물을 여과하여 이 여과된 공기를 유입부로 이송하는 제2 필터부;를 더 포함할 수 있다.As shown in FIG. 3, a gas sample analyzer or a concentrator according to an embodiment of the present invention includes a first filter provided at the front end of the concentrating unit to filter particulate impurities other than air to transfer the filtered air to the concentrating unit. It may further include a. The analysis device or the concentration device may further include a second filter unit provided at the front end of the inlet unit to filter particulate impurities other than air to transfer the filtered air to the inlet unit.
본 발명의 일 예에 따른 기체 시료 분석 장치 또는 농축 장치는, 상기 유량 조절기(제1 유량 조절기)의 후단에 구비되어 공기의 유량을 조절할 수 있도록 하는 펌프;를 더 포함할 수 있다. 또한 본 발명의 일 예에 따른 기체 시료 분석 장치 또는 농축 장치는, 상기 제2 유량 조절기의 후단에 구비되어 공기의 유량을 조절할 수 있도록 하는 펌프;를 더 포함할 수 있다. 상기 펌프, 구체적으로, 진공 펌프를 통해 농축부 및 측정부에 공기가 유입되도록 할 수 있다. 상기 펌프는 농축부 및 측정부의 각 후단에 제1 펌프 및 제2 펌프로서 위치할 수도 있고, 농축부 및 측정부의 후단에 하나의 펌프가 연결되어 위치할 수도 있다. 또한 본 발명의 일 예에 따른 기체 시료 분석 장치 또는 농축 장치는, 제1 유량 조절기 또는 제2 유량 조절기 후단에 위치하는 진공 게이지를 더 포함할 수 있다.The gas sample analyzing apparatus or the concentrating device according to an embodiment of the present invention may further include a pump provided at a rear end of the flow controller (first flow controller) to adjust the flow rate of air. In addition, the gas sample analysis device or concentrator according to an embodiment of the present invention, the pump is provided at the rear end of the second flow controller to adjust the flow rate of the air; may further include a. Air may be introduced into the concentrating unit and the measuring unit through the pump, specifically, a vacuum pump. The pump may be positioned as a first pump and a second pump at each rear end of the concentrating unit and the measuring unit, or one pump may be connected to the rear end of the concentrating unit and the measuring unit. In addition, the gas sample analysis device or the concentration device according to an embodiment of the present invention, may further include a vacuum gauge located at the rear end of the first flow controller or the second flow controller.
이하 본 발명에 따른 기체 시료 분석 방법을 설명하며, 이 분석 방법은 전술한 기체 시료 분석 장치의 내용과 동일한 기술적 특징 및 사상을 가지며, 앞서 설명한 분석 장치에 기재된 내용과 연결하여 해석되어도 무방하므로, 중복되는 내용은 생략한다.Hereinafter, a gas sample analysis method according to the present invention will be described, and this analysis method has the same technical features and ideas as those of the above-described gas sample analysis device, and may be interpreted in connection with the contents described in the above-described analysis device. Omitted contents are omitted.
본 발명에 따른 기체 시료 분석 방법은, a) 공기 중 기체 시료의 농도를 측정하는 단계, b) 상기 측정된 공기 중 기체 시료의 농도를 바탕으로, 분석에 사용하기 위한 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하는 단계, c) 공기 중 기체 시료를 흡착부에 흡착시켜 농축시키되, 상기 추정값을 바탕으로 농축량을 제어하여 농축하는 단계 및 d) 상기 흡착부에 흡착된 기체 시료를 탈착시켜 분석하는 단계를 포함한다.Gas sample analysis method according to the invention, a) measuring the concentration of the gas sample in the air, b) based on the measured concentration of the gas sample in the air, the required concentration of the gas sample for use in the analysis Calculating an estimated value for the flow rate and time, c) adsorbing the gas sample in air to concentrate the adsorbent, and controlling and concentrating the concentrated amount based on the estimated value; and d) the gas adsorbed to the adsorbent. Detaching and analyzing the sample.
본 발명의 일 예에 있어서, 상기 c) 단계의 제어는, 상기 추정값으로 상기 농축부의 공기 유입을 유지하여 기체 시료가 요구 농축량으로 농축되도록 제어하는 것일 수 있다.In one embodiment of the present invention, the control of step c) may be to control the concentration of the gas sample to the required concentration by maintaining the inflow of the air in the enrichment unit with the estimated value.
본 발명의 일 예에 있어서, 상기 d) 단계는, 상기 흡착부에 흡착된 기체 시료를 탈착시킨 후, 이를 가스 크로마토그래피 및 질량분석부를 포함하는 분석부에 유입시켜 분석하는 단계일 수 있다.In one embodiment of the present invention, the step d) may be a step of analyzing a gas sample adsorbed on the adsorption unit by desorption and then introducing the gas sample into an analysis unit including a gas chromatography and a mass spectrometer.
전술한 바와 같이, 본 발명에서는, 기체 시료 농축 시의 결정된 공기의 양(상기 관계식 1에서 F A × T A에 해당)은 정량 분석 시 정규화(normalize)를 위해 사용될 수 있음에 따라, 본 발명에 따른 기체 시료의 분석 방법은 정량 분석에 있어 보다 정확한 분석이 가능한 효과가 있다. 즉, 보다 정밀한 정량 분석을 위해, 본 발명에 따른 기체 시료의 분석 방법에서, 상기 d) 단계는 상기 b) 단계에서 산출한 추정값을 바탕으로 기체 시료를 정량 분석하는 단계를 포함할 수 있다. 이때 상기 정량 분석은 분석 결과를 정규화(normalize)하여 사용할 수 있으며, 상기 추정값은 기체 시료 농축 시의 결정된 공기의 양(상기 관계식 1에서 F A × T A에 해당)일 수 있다.As described above, in the present invention, the amount of air determined upon gas sample concentration (corresponding to F A × T A in the above relation 1) can be used for normalization in quantitative analysis, thus, According to the analysis method of the gas sample has an effect capable of more accurate analysis in quantitative analysis. That is, in order to analyze the gas sample according to the present invention for more precise quantitative analysis, step d) may include quantitatively analyzing the gas sample based on the estimated value calculated in step b). In this case, the quantitative analysis may be used by normalizing the analysis result, and the estimated value may be the amount of air determined during gas sample concentration (corresponding to F A × T A in Equation 1).
[부호의 설명][Description of the code]
110 : 농축부(흡착관), 112 : 열교환부,110: concentration part (adsorption tube), 112: heat exchange part,
114 : 제1 필터부, 120 : 3웨이 밸브, 122 : 멀티포트 벨브,114: first filter portion, 120: three-way valve, 122: multi-port valve,
130 : 여과부, 150 : 제1 유량 조절부,130: filtration unit, 150: first flow rate control unit,
210 : 유입부, 214 : 제2 필터부,210: inlet, 214: second filter,
240 : 측정부, 250 : 제2 유량 조절부,240: measuring unit, 250: second flow control unit,
300 : 제어부, 400 : 분석부,300: control unit, 400: analysis unit,
600 : 펌프600: Pump
700 : 가스 공급부700 gas supply unit

Claims (16)

  1. 기체 시료가 흡착되는 흡착부를 포함하며, 기체 시료를 포함하는 공기가 유입되어 이 기체 시료가 상기 흡착부에 농축되는 농축부;A concentrating part including an adsorption part to which a gas sample is adsorbed, wherein the air containing the gas sample is introduced and the gas sample is concentrated on the adsorption part;
    상기 농축부의 후단에 구비되어 상기 공기의 유량을 조절하는 유량 조절부;A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air;
    공기 중 기체 시료가 유입되어 이의 농도를 측정하는 측정부; 및A measurement unit for introducing a gas sample into the air and measuring its concentration; And
    상기 측정부에서 측정된 공기 중 기체 시료의 농도를 바탕으로, 상기 농축부의 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 상기 유량 조절부를 제어하는 제어부;A control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value;
    를 포함하는 기체 시료 농축 장치.Gas sample concentration apparatus comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어부의 제어는 기체 시료를 포함하는 공기의 유량 및 상기 공기의 유입시간을 제어하여 기체 시료가 요구 농축량으로 농축되도록 하는 것인 기체 시료 농축 장치.The control of the control unit is a gas sample concentrating device to control the flow rate of the air including the gas sample and the inflow time of the air so that the gas sample is concentrated to the required concentration.
  3. 제2항에 있어서,The method of claim 2,
    상기 제어부는 하기 관계식 1을 바탕으로, 흡착부에 농축되는 기체 시료의 요구 농축량(E S)을 만족하도록 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 제어하는 것인 기체 시료 농축 장치.The control unit controls the flow rate (F A ) and the time (T A ) of the air flowing into the concentration unit to satisfy the required concentration amount (E S ) of the gas sample concentrated in the adsorption unit based on the following relational formula 1 Phosphorus gas sample concentrator.
    [관계식 1][Relationship 1]
    E S = C S × F A × T A E S = C S × F A × T A
    (상기 관계식 1에서, E S는 기체 시료의 요구 농축량이며, C S는 대기 중의 기체 시료의 농도이며, F A는 측정부에서 기체 시료의 농도를 측정할 시의 공기의 유량으로 농축부에 유입되는 공기의 유량이며, T A는 공기가 농축부에 유입되는 시간이다)(Equation 1, E S is the required concentration of the gas sample, C S is the concentration of the gas sample in the atmosphere, F A is the flow rate of the air at the time of measuring the concentration of the gas sample in the measurement unit The flow rate of the incoming air, T A is the time the air enters the enrichment section)
  4. 제1항에 있어서,The method of claim 1,
    상기 유량 조절부는 제1 유량 조절부이고,The flow rate control unit is a first flow rate control unit,
    상기 기체 시료 농축 장치는,The gas sample concentration device,
    상기 측정부의 후단에 구비되어 측정부의 공기의 유량을 조절하는 제2 유량 조절부를 더 포함하며,A second flow rate adjusting unit provided at a rear end of the measuring unit to adjust a flow rate of air of the measuring unit;
    상기 제어부는 상기 측정부에서 측정된 공기 중 기체 시료의 농도 및 상기 제2 유량 조절부에서 측정된 공기의 유량을 바탕으로 상기 추정값을 산출하여 상기 제1 유량 조절부를 통해 상기 흡착부에 기체 시료가 요구 농축량으로 농축되도록 제어하는 것인 기체 시료 농축 장치.The control unit calculates the estimated value based on the concentration of the gas sample in the air measured by the measuring unit and the flow rate of the air measured by the second flow rate adjusting unit so that the gas sample is supplied to the adsorption unit through the first flow rate adjusting unit. A gas sample concentrating device which controls to be concentrated to a required concentration.
  5. 기체 시료가 흡착되는 흡착부를 포함하며, 기체 시료를 포함하는 공기가 유입되어 이 기체 시료가 상기 흡착부에 농축되는 농축부;A concentrating part including an adsorption part to which a gas sample is adsorbed, wherein the air containing the gas sample is introduced and the gas sample is concentrated on the adsorption part;
    상기 농축부의 후단에 구비되어 상기 공기의 유량을 조절하는 유량 조절부;A flow rate adjusting unit provided at a rear end of the concentrating unit to adjust a flow rate of the air;
    상기 농축부와 별도의 유입 경로로 공기 중 기체 시료가 유입되어 이의 농도를 측정하는 측정부;A measurement unit for introducing a gas sample in the air into an inflow path separate from the concentration unit to measure its concentration;
    상기 측정부에서 측정된 공기 중 기체 시료의 농도를 바탕으로, 상기 농축부의 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하고, 이 추정값을 바탕으로 상기 유량 조절부를 제어하는 제어부; 및A control unit for calculating an estimated value for a flow rate and time for a required concentration of the gas sample of the concentrating unit based on the concentration of the gas sample in the air measured by the measuring unit, and controlling the flow rate adjusting unit based on the estimated value; And
    상기 흡착부에 흡착된 기체 시료가 탈착되어 유입되고, 이 기체 시료의 성분을 분석하는 분석부;An analysis unit for desorbing and introducing a gas sample adsorbed on the adsorption unit and analyzing a component of the gas sample;
    를 포함하는 기체 시료 분석 장치.Gas sample analysis device comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 제어부의 제어는 기체 시료를 포함하는 공기의 유량 및 상기 공기의 유입시간을 제어하여 기체 시료가 요구 농축량으로 농축되도록 하는 것인 기체 시료 분석 장치.The control of the control unit is a gas sample analysis device to control the flow rate of the air containing the gas sample and the inflow time of the air so that the gas sample is concentrated to the required concentration.
  7. 제5항에 있어서,The method of claim 5,
    상기 제어부는 하기 관계식 1을 바탕으로, 흡착부에 농축되는 기체 시료의 요구 농축량(E S)을 만족하도록 농축부에 유입되는 공기의 유량(F A) 및 시간(T A)을 제어하는 것인 기체 시료 분석 장치.The control unit controls the flow rate (F A ) and the time (T A ) of the air flowing into the concentration unit to satisfy the required concentration amount (E S ) of the gas sample concentrated in the adsorption unit based on the following relational formula 1 Phosphorous gas sample analysis device.
    [관계식 1][Relationship 1]
    E S = C S × F A × T A E S = C S × F A × T A
    (상기 관계식 1에서, E S는 기체 시료의 요구 농축량이며, C S는 대기 중의 기체 시료의 농도이며, F A는 측정부에서 공기의 유량으로 농축부에 유입되는 공기의 유량이며,기체 시료의 농도를 측정할 시의 T A는 공기가 농축부에 유입되는 시간이다)(Equation 1 above, E S is the required concentration of the gas sample, C S is the concentration of the gas sample in the atmosphere, F A is the flow rate of the air flowing into the concentration unit at the flow rate of air in the measuring unit, gas sample When measuring the concentration of, T A is the time that air enters the concentration part)
  8. 제5항에 있어서,The method of claim 5,
    상기 유량 조절부는 제1 유량 조절부이고,The flow rate control unit is a first flow rate control unit,
    상기 기체 시료 분석 장치는,The gas sample analysis device,
    상기 측정부의 후단에 구비되어 측정부의 공기의 유량을 조절하는 제2 유량 조절부를 더 포함하며,A second flow rate adjusting unit provided at a rear end of the measuring unit to adjust a flow rate of air of the measuring unit;
    상기 제어부는 상기 측정부에서 측정된 공기 중 기체 시료의 농도 및 상기 제2 유량 조절부에서 측정된 공기의 유량을 바탕으로 상기 추정값을 산출하여 상기 제1 유량 조절부를 통해 상기 흡착부에 기체 시료가 요구 농축량으로 농축되도록 제어하는 것인 기체 시료 분석 장치.The control unit calculates the estimated value based on the concentration of the gas sample in the air measured by the measuring unit and the flow rate of the air measured by the second flow rate adjusting unit so that the gas sample is supplied to the adsorption unit through the first flow rate adjusting unit. A gas sample analysis device for controlling to be concentrated to the required concentration.
  9. 제5항에 있어서,The method of claim 5,
    상기 기체 시료 분석 장치는,The gas sample analysis device,
    가스 공급부; 및Gas supply unit; And
    상기 농축부와 상기 유량조절부가 연결될 때 상기 분석부와 상기 가스 공급부가 연결되도록 하거나, 상기 가스 공급부가 상기 농축부와 연결되고 상기 농축부가 상기 분석부로 연결되도록 하는 멀티포트 밸브;A multiport valve configured to connect the analyzer and the gas supply unit when the concentrator and the flow rate controller are connected, or to allow the gas supply unit to be connected to the concentrator and the concentrator to the analyzer;
    를 더 포함하며,More,
    상기 멀티포트 밸브는 상기 농축부를 통과한 공기가 상기 유량 조절부로 유입되도록 하거나, 상기 농축부의 농축된 기체 시료가 상기 분석부로 탈착되어 유입되도록 스위칭되는 구조를 가지는 기체 시료 분석 장치.The multi-port valve is a gas sample analysis device having a structure in which the air passing through the concentration section is introduced to the flow rate control unit or switched so that the concentrated gas sample of the concentration unit is detached and introduced into the analysis unit.
  10. 제5항에 있어서,The method of claim 5,
    상기 기체 시료 분석 장치는,The gas sample analysis device,
    상기 농축부에 구비되며, 기체시료의 흡착 또는 탈착을 위한 열교환부;A heat exchanger provided in the concentrating part and configured to adsorb or desorb a gas sample;
    를 더 포함하는 기체 시료 분석 장치.Gas sample analysis device further comprising.
  11. 제10항에 있어서,The method of claim 10,
    상기 열교환부는 흡착을 위한 냉각 및 탈착을 위한 가열 기능을 갖는 기체 시료 분석 장치.The heat exchanger is a gas sample analysis device having a heating function for cooling and desorption for adsorption.
  12. 제5항에 있어서,The method of claim 5,
    상기 분석부는,The analysis unit,
    상기 흡착부에 흡착된 기체 시료가 탈착되어 유입되는 가스 크로마토그래피; 및Gas chromatography in which the gas sample adsorbed on the adsorption unit is desorbed and introduced; And
    상기 가스 크로마토그래피로부터 기체 시료가 유입되는 질량분석부;A mass spectrometer configured to introduce a gas sample from the gas chromatography;
    를 포함하는 기체 시료 분석 장치.Gas sample analysis device comprising a.
  13. a) 공기 중 기체 시료의 농도를 측정하는 단계a) measuring the concentration of a gas sample in air
    b) 상기 측정된 공기 중 기체 시료의 농도를 바탕으로, 분석에 사용하기 위한 기체 시료의 요구 농축량을 위한 유량 및 시간에 대한 추정값을 산출하는 단계b) calculating an estimate of flow rate and time for the required concentration of gas sample for use in the analysis, based on the measured concentration of gas sample in air
    c) 공기 중 기체 시료를 흡착부에 흡착시켜 농축시키되, 상기 추정값을 바탕으로 농축량을 제어하여 농축하는 단계 및c) adsorbing a gas sample in air to the adsorption unit and concentrating, controlling and concentrating the concentration based on the estimated value;
    d) 상기 흡착부에 흡착된 기체 시료를 탈착시켜 분석하는 단계d) desorbing and analyzing the gas sample adsorbed on the adsorption unit
    를 포함하는 기체 시료 분석 방법.Gas sample analysis method comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 c) 단계의 제어는,The control of step c) is
    상기 추정값으로 상기 농축부의 공기 유입을 유지하여 기체 시료가 요구 농축량으로 농축되도록 제어하는 것인 기체 시료 분석 방법.The gas sample analysis method of controlling the gas sample to be concentrated to the required concentration by maintaining the inflow of the air in the concentration unit with the estimated value.
  15. 제13항에 있어서,The method of claim 13,
    상기 d) 단계는,Step d),
    상기 흡착부에 흡착된 기체 시료를 탈착시킨 후, 이를 가스 크로마토그래피 및 질량분석부를 포함하는 분석부에 유입시켜 분석하는 단계인 기체 시료 분석 방법.Degassing the gas sample adsorbed on the adsorption unit, the gas sample analysis method comprising the step of introducing it into the analysis unit including a gas chromatography and mass spectrometry.
  16. 제13항에 있어서,The method of claim 13,
    상기 d) 단계는, 상기 b) 단계에서 산출한 추정값을 바탕으로 분석 결과를 정규화하여 기체 시료를 정량 분석하는 단계를 포함하며,Step d) includes the step of quantitatively analyzing the gas sample by normalizing the analysis results based on the estimated value calculated in step b),
    상기 추정값은 시료 농축 시의 결정된 공기의 양인 기체 시료 분석 방법.Wherein said estimated value is the amount of air determined upon sample concentration.
PCT/KR2019/001759 2018-02-14 2019-02-13 Method for analyzing gas sample, analysis apparatus therefor, and concentration apparatus therefor WO2019160326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180018746A KR20190098601A (en) 2018-02-14 2018-02-14 Method of analyzing gas samples and analyzing apparatus thereof
KR10-2018-0018746 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019160326A1 true WO2019160326A1 (en) 2019-08-22

Family

ID=67619501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001759 WO2019160326A1 (en) 2018-02-14 2019-02-13 Method for analyzing gas sample, analysis apparatus therefor, and concentration apparatus therefor

Country Status (2)

Country Link
KR (1) KR20190098601A (en)
WO (1) WO2019160326A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305532B1 (en) * 2020-03-04 2021-09-27 한국원자력안전기술원 Qualitative and quantitative analysis apparatus and method for inert gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301586A (en) * 1994-05-09 1995-11-14 Toa Medical Electronics Co Ltd Sample processor
JP2002267645A (en) * 2001-03-09 2002-09-18 Mitsubishi Heavy Ind Ltd Pcb concentration simple analysis apparatus and method therefor
JP2006292652A (en) * 2005-04-14 2006-10-26 Shimadzu Corp Gas chromatograph device
KR100846190B1 (en) * 2006-12-18 2008-07-14 김조천 Multi-Sample Injection Apparatus for Gas Chromatography using vacuum Thermal Desorption
JP2014149274A (en) * 2013-02-04 2014-08-21 Horiba Ltd Control device and control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301586A (en) * 1994-05-09 1995-11-14 Toa Medical Electronics Co Ltd Sample processor
JP2002267645A (en) * 2001-03-09 2002-09-18 Mitsubishi Heavy Ind Ltd Pcb concentration simple analysis apparatus and method therefor
JP2006292652A (en) * 2005-04-14 2006-10-26 Shimadzu Corp Gas chromatograph device
KR100846190B1 (en) * 2006-12-18 2008-07-14 김조천 Multi-Sample Injection Apparatus for Gas Chromatography using vacuum Thermal Desorption
JP2014149274A (en) * 2013-02-04 2014-08-21 Horiba Ltd Control device and control program

Also Published As

Publication number Publication date
KR20190098601A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6042965B2 (en) Sample introduction device
CN102735859B (en) Automatic online monitoring method and device for VOCs (volatile organic chemicals) in water
WO2011052862A1 (en) Sample preconcentrator
JP7100766B2 (en) Water removal method for gas concentration sampling, sample introduction method and their equipment
CN106093251B (en) Method and apparatus for pre-concentration gaseous sample
JP2009002711A (en) Method and device for enriching sample
WO2019160326A1 (en) Method for analyzing gas sample, analysis apparatus therefor, and concentration apparatus therefor
JP2006337158A (en) Sample concentration device
CN212301457U (en) VOCs and IVOCs are online collection and detection device simultaneously
CN111579315A (en) VOCs and IVOCs simultaneous on-line collecting and detecting method
CN109406691B (en) Gas sampling separation system and gas chromatograph
KR20180138561A (en) Exhausting Gas Analysis Device With A Thermal Desorption Portion And A NDIR Portion And Analysis Method Thereof
US20040151622A1 (en) Ultra-trace automatic mercury species analyzer
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
CN202886385U (en) Automatic online monitoring device of VOCs (volatile organic chemicals) in water
JPH0680423B2 (en) Thermal analyzer equipped with gas chromatograph and mass spectrometer
CN112731992A (en) Full-automatic low temperature series valve who sweeps entrapment appearance keeps apart water trap
CN218726967U (en) Gas preconcentrator
JP2858143B2 (en) Concentration analysis method and apparatus therefor
JP3103985B2 (en) Concentration analysis method and equipment
CN218823448U (en) Device for simultaneously collecting and detecting gas/particle organic compounds in full-volatilization interval on line
JPH05180822A (en) Gas chromatograph analysis system of argon
CN217484270U (en) Detection device for directly measuring non-methane total hydrocarbon content
CN218766802U (en) Detection system for accurately measuring content of trace organic sulfide
CN214845037U (en) Online gas chromatograph with pre-concentration function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753832

Country of ref document: EP

Kind code of ref document: A1