JP2009002711A - Method and device for enriching sample - Google Patents

Method and device for enriching sample Download PDF

Info

Publication number
JP2009002711A
JP2009002711A JP2007161961A JP2007161961A JP2009002711A JP 2009002711 A JP2009002711 A JP 2009002711A JP 2007161961 A JP2007161961 A JP 2007161961A JP 2007161961 A JP2007161961 A JP 2007161961A JP 2009002711 A JP2009002711 A JP 2009002711A
Authority
JP
Japan
Prior art keywords
sample
concentration
trap
moisture
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161961A
Other languages
Japanese (ja)
Other versions
JP5148933B2 (en
Inventor
Tsutoshi Imanaka
努志 今中
Kenji Akatani
健次 赤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2007161961A priority Critical patent/JP5148933B2/en
Publication of JP2009002711A publication Critical patent/JP2009002711A/en
Application granted granted Critical
Publication of JP5148933B2 publication Critical patent/JP5148933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a high-boiling point component from being adsorption-lost by a moisture removing operation essential when trapping a component in the atmosphere to be introduced into an analyzer, to enhance sensitivity for the high-boiling point component, to enhance a moisture removing rate, and to enhance analytical precision for the high-boiling point component. <P>SOLUTION: In this enriching method of the present invention, a sample squeezed by a canister or the like is trapped at first into the first trap, without operating a moisture removing device or passing it therethrough, to be separated into a sample fed to the analyzer as it is, and a sample passed through the moisture removing device to be trapped into the second enriching trap, and the sample discharged from the second enriching trap is moisture-removed by the moisture removing device, to be fed to the analyzer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、気体(大気)サンプル中の所定物質を測定するための試料濃縮方法及び装置に関する。   The present invention relates to a sample concentration method and apparatus for measuring a predetermined substance in a gas (atmosphere) sample.

大気中の有害な揮発性有機化合物(VOCs)の暴露が、人体に様々な健康被害をもたらすことは、既に知られている通りである。そのため、その対象となる揮発性有機化合物成分の大気中濃度を正確に測定することが重要な課題となっている。
対象成分は、大気中に非常に微量でしか存在しないため、測定・分析をするには、吸着剤による捕集(以下、トラップという)とその後の濃縮が要求され、実行されている。
It is already known that exposure to harmful volatile organic compounds (VOCs) in the atmosphere causes various health hazards to the human body. Therefore, it is an important issue to accurately measure the atmospheric concentration of the target volatile organic compound component.
Since the target component is present in a very small amount in the atmosphere, collection and adsorption by an adsorbent (hereinafter referred to as trap) and subsequent concentration are required and performed for measurement and analysis.

従来の対象成分のトラップ技術として、図1に示すようなトラップ管がある。トラップ管に気体サンプルを通し、充填したTENAX・活性炭により試料をトラップし、シリカにおいて水分を吸着させる。上記トラップ管を適切に温度制御をすることにより、トラップされた試料は脱着され、シリカに吸着された水分は水分以外の試料より遅れて、異なるタイミングで脱着される。そこで、水分脱着の前に流路を切換え、水分を除いた試料成分を分析系に導入する。   As a conventional trapping technique for target components, there is a trap tube as shown in FIG. A gas sample is passed through a trap tube, and the sample is trapped by the filled TENAX / active carbon to adsorb moisture on silica. By appropriately controlling the temperature of the trap tube, the trapped sample is desorbed, and the moisture adsorbed on the silica is desorbed at different timings later than the sample other than the moisture. Therefore, the flow path is switched before moisture desorption, and sample components from which moisture has been removed are introduced into the analysis system.

しかし、上記トラップ管は、耐熱温度が低く(例えば220℃程度)、高沸点成分の脱着が出来ない。又、耐熱温度以上に加熱するとシリカが溶けてしまうという問題がある。ここで、高沸点成分とは、揮発性成分(例としてC〜C16)の中での高沸点領域であり、具体的な温度範囲を提案するものではない。高沸点成分の例としては、1,2,4−トリクロロベンゼン(213℃)、ヘキサクロロー1,3−ブタジエン(215℃)等が代表的物質として挙げられる。 However, the trap tube has a low heat-resistant temperature (for example, about 220 ° C.) and cannot desorb high-boiling components. Further, there is a problem that silica is melted when heated to a temperature higher than the heat resistant temperature. Here, the high boiling point component is a high boiling point region in volatile components (for example, C 2 to C 16 ), and does not propose a specific temperature range. Examples of the high boiling point component include 1,2,4-trichlorobenzene (213 ° C.), hexachloro-1,3-butadiene (215 ° C.) and the like as typical substances.

上記問題を解決するため、水分除去機構を別に設けたトラップとして、図2(試料導入時)、図3(試料送出時)に示すようなシステムがある。キャニスター1で採取された試料を通路2から水分除去機構3を通して、(この時点では、水分除去機構3は作用させていない)トラップ管4(T2)にトラップ(濃縮)させる。トラップ管4にトラップ(濃縮)された試料の水分は、水分除去機構(MCS等)3を用いて除去され、水分以外の試料は通路2を通して分析装置5に送出される。
この際のトラップ管4のトラップ温度は一例として、図17の上段のT2の如く(特許文献1参照)、−100℃であり、加熱脱着温度は200℃であった。
In order to solve the above problem, there are systems as shown in FIG. 2 (at the time of sample introduction) and FIG. 3 (at the time of sample delivery) as traps provided with a water removal mechanism. The sample collected by the canister 1 is trapped (concentrated) from the passage 2 through the moisture removal mechanism 3 and into the trap tube 4 (T2) (the moisture removal mechanism 3 is not acting at this time). The moisture of the sample trapped (concentrated) in the trap tube 4 is removed using a moisture removing mechanism (MCS or the like) 3, and the sample other than the moisture is sent to the analyzer 5 through the passage 2.
At this time, as an example, the trap temperature of the trap tube 4 is −100 ° C. and the heat desorption temperature is 200 ° C. as indicated by T 2 in the upper stage of FIG. 17 (see Patent Document 1).

特許第3601921号公報Japanese Patent No. 3601921

このように、試料中の各成分は、一つの濃縮トラップにトラップされ、次いで加熱脱着され、水分除去機構3により、水分を除去されて、分析装置5に送られるため、従来のシステムでは、水分除去機構3の温度を上げると、水分の除去効率が低下する。又、温度を下げると、高沸点成分もこの水分除去機構(MCS等)3に残って(水分除去部で吸着損失して)しまうという欠点があった。   In this way, each component in the sample is trapped in one concentration trap, then heated and desorbed, and the moisture is removed by the moisture removal mechanism 3 and sent to the analyzer 5. When the temperature of the removal mechanism 3 is raised, the water removal efficiency decreases. Further, when the temperature is lowered, the high boiling point component also remains in the moisture removing mechanism (MCS, etc.) 3 (adsorption loss at the moisture removing unit).

米国環境保護庁(EPA)の揮発性有機分析方法TO−14で規定された対象成分の分析におけるクロマトグラムを図4に示すと、MCSを20℃に設定すると、高沸点成分が水分除去機構に吸着損失してしまい(図5)、MCS3を50℃に温度を上げた場合、充分な水分除去機能が作用せず、水分が分析装置に多量に導入され、分析精度が低下、分析が不安定となる様子が水のクロマトグラム図9に示される通り、判然としている。   When the chromatogram in the analysis of the target component prescribed in the volatile organic analysis method TO-14 of the US Environmental Protection Agency (EPA) is shown in FIG. 4, when the MCS is set to 20 ° C., the high boiling point component becomes the moisture removal mechanism. Adsorption loss occurs (Fig. 5). When the temperature of MCS3 is raised to 50 ° C, the sufficient water removal function does not work, and a large amount of water is introduced into the analyzer, resulting in poor analysis accuracy and unstable analysis. The water chromatogram is clear as shown in FIG.

そこで、本発明においては、複数のトラップ機構を設け、キャニスター等で採取された試料を高沸点成分とそれ以外の成分に分け、高沸点成分を水分除去機構の関与から外す方法装置により、高沸点成分の感度を上げ、且つ水分除去率を向上させ、低沸点成分の分析精度向上を図る方法及び装置を提案せんとする。   Therefore, in the present invention, a plurality of trap mechanisms are provided, a sample collected by a canister or the like is divided into a high-boiling component and other components, and the high-boiling component is removed from the participation of the water removal mechanism by a high-boiling component. We propose a method and apparatus that increases the sensitivity of components, improves the moisture removal rate, and improves the analysis accuracy of low-boiling components.

上記課題を解決するための手段としての本発明は、複数の濃縮トラップと水分除去機構を設けた装置において、少なくとも一の濃縮トラップにトラップした試料は、水分除去機構を作用させずに分析装置に送り、他の濃縮トラップにトラップした試料は、水分除去機構により水分を除去して分析装置に送ることを特徴とする試料濃縮方法である。   The present invention as a means for solving the above problems is an apparatus provided with a plurality of concentration traps and a water removal mechanism. The sample trapped in at least one concentration trap is transferred to the analyzer without operating the water removal mechanism. The sample that is sent and trapped in another concentration trap is a sample concentration method that removes moisture by a moisture removal mechanism and sends the sample to an analyzer.

又、上記方法において、試料導入時、試料の一部を、水分除去装置を通過せずに、濃縮トラップにトラップし、且つそのまま分析装置に送出させる一方、残部は他の濃縮トラップにトラップし、水分除去機構により水分を除去して分析装置に送出することを特徴とする試料濃縮方法である。   In addition, in the above method, at the time of sample introduction, a part of the sample is trapped in the concentration trap without passing through the moisture removing device, and is sent to the analyzer as it is, while the remainder is trapped in another concentration trap, It is a sample concentration method characterized by removing moisture by a moisture removal mechanism and sending it to an analyzer.

又、上記方法において、複数の濃縮トラップを水分除去機構の両側に連通した装置において、試料の試料導入時、各濃縮トラップにそれぞれ対応する試料をトラップさせると共に、高沸点成分は水分除去機構を通過させず、分析装置に送出することを特徴とする試料濃縮方法である。   In the above method, in the apparatus in which a plurality of concentration traps communicate with both sides of the moisture removal mechanism, when the sample is introduced, the sample corresponding to each concentration trap is trapped, and the high boiling point component passes through the moisture removal mechanism. In this case, the sample concentration method is characterized in that the sample is sent to the analysis device without being performed.

又、上記方法において、複数の濃縮トラップを水分除去機構の両側に連通した装置において、高沸点成分を第1濃縮トラップにトラップし、残余は水分除去機構を不作動として、そこを連通して第2濃縮トラップにトラップする一方、第2濃縮トラップ側から脱着させ、水分除去機構より水分を除去した試料と、第1濃縮トラップから脱着させた試料とを分析装置に送出することを特徴とする試料濃縮方法である。   Further, in the above method, in an apparatus in which a plurality of concentration traps are communicated with both sides of the moisture removal mechanism, the high boiling point component is trapped in the first concentration trap, and the remainder is communicated therewith by disabling the moisture removal mechanism. 2. A sample which is trapped in the concentration trap, and is desorbed from the second concentration trap side, and the sample from which moisture has been removed by the moisture removal mechanism and the sample desorbed from the first concentration trap are sent to the analyzer. Concentration method.

更に、水分除去機構を介在して両側に濃縮トラップを設け、各装置をそれぞれ温度制御自在に構成すると共に、濃縮トラップの一方を分析装置に連通したことを特徴とする試料濃縮装置である。   Further, the sample concentrating device is characterized in that a concentration trap is provided on both sides via a moisture removing mechanism, each device is configured to be temperature-controllable, and one of the concentration traps communicates with the analyzer.

本発明は、請求項1及び2に記載の発明によれば、試料の一部、例えば高沸点成分を濃縮トラップにトラップして脱着時そのまま分析装置に送られるので、高沸点成分を高感度で且つ安定して分析できる。   According to the first and second aspects of the present invention, a part of the sample, for example, a high boiling point component is trapped in a concentration trap and sent to the analyzer as it is when desorbed. And it can analyze stably.

請求項3に記載の発明によれば、請求項1及び2に記載の発明の効果に加え、高沸点成分を第一の濃縮トラップにてトラップし、水分除去装置を通すこと不要なので、高沸点成分の損失がない。   According to the invention described in claim 3, in addition to the effects of the inventions described in claims 1 and 2, it is not necessary to trap the high boiling point component in the first concentration trap and pass through the water removing device. There is no loss of ingredients.

請求項4に記載の発明によれば、請求項1〜3に記載の発明の効果に加え、水分除去装置を通す残余の試料については、水分が多量に導入される高温、例えば50℃を避けて、低温、例えば20℃の如く温度を下げた状態で操作ができ、分析精度の低下を防ぎ、水分除去機構の不安定要因を取り除くことが出来る。   According to the invention described in claim 4, in addition to the effects of the invention described in claims 1-3, the remaining sample that passes through the moisture removing device should avoid a high temperature at which a large amount of moisture is introduced, for example, 50 ° C. Thus, the operation can be performed at a low temperature, for example, 20 ° C., the analysis accuracy can be prevented from being lowered, and the instability factor of the moisture removal mechanism can be removed.

請求項5に記載の発明によれば、上記請求項1〜4に記載の発明の効果に加えて、操作も簡単、しかも効率よく運営ができ、分析工程を簡略化でき、機構が極めて簡単でコストの低下と作業の効率化を提案し且、分析の信頼を確保することが出来る。
又、液体窒素使用量の低減も可能となる。
According to the invention described in claim 5, in addition to the effects of the invention described in claims 1 to 4, the operation is simple and efficient, the analysis process can be simplified, and the mechanism is extremely simple. We can propose cost reduction and work efficiency, and can secure the reliability of analysis.
In addition, the amount of liquid nitrogen used can be reduced.

本発明を図10に示すフロー図について説明する。多数の試料採取容器11,11,…、例えばステンレス製キャニスター、ガラス瓶、バック等をスタンド等に設置して、切換バルブ12,12,…を介して、トラップシステム本体13に接続してある。試料採取容器11,11,…は、選択的に或いは同時に所望数採取状態に置くことが自在である。   The present invention will be described with reference to the flowchart shown in FIG. A large number of sample collection containers 11, 11,..., For example, stainless canisters, glass bottles, bags, etc., are installed on a stand or the like and connected to the trap system body 13 via switching valves 12, 12,. The sampling containers 11, 11,... Can be placed in a desired number of sampling states selectively or simultaneously.

トラップシステム本体13は、MCS(水分除去機構)14が設置され、切換バルブ12、濃縮トラップ15、クライオフォーカス16と接続されている。第1濃縮トラップとしての濃縮トラップ15は、マスフローコントローラー17と接続し、マスフローコントローラー17は、ダイヤフロムポンプ等のバキュームポンプ18と連結してある。   The trap system body 13 is provided with an MCS (moisture removal mechanism) 14 and is connected to the switching valve 12, the concentration trap 15, and the cryofocus 16. A concentration trap 15 as a first concentration trap is connected to a mass flow controller 17, and the mass flow controller 17 is connected to a vacuum pump 18 such as a diaphragm pump.

又、各機構は、制御ソフトウェア19に制御されるマイクロプロセッサー20により制御されている。GCカラムオーブン21は、分析装置22と連結し、一方ではトラップシステム本体13、その一例としてクライオフォーカス16と連結している。   Each mechanism is controlled by a microprocessor 20 controlled by control software 19. The GC column oven 21 is connected to the analysis device 22, and on the other hand, is connected to the trap system main body 13, an example of which is the cryofocus 16.

又、試料採取容器11と切換バルブ12,12間には、サンプルセレクター23を設け、所望容器11との接続を自在としてある。
本発明において特徴的な機構としては、水分除去機構14を介在させて二つの濃縮トラップ15(第1濃縮トラップ),150(第2濃縮トラップ)を連結させる点である。そして、一方の濃縮トラップ15と試料採取容器11と、又、分析装置22と連結切換が自在である点である。
Further, a sample selector 23 is provided between the sample collection container 11 and the switching valves 12 and 12 so that the connection with the desired container 11 can be made freely.
A characteristic mechanism in the present invention is that the two concentration traps 15 (first concentration trap) and 150 (second concentration trap) are connected via the moisture removal mechanism 14. One of the concentration traps 15 and the sampling container 11 and the analyzer 22 can be connected and switched freely.

又、他の機構としては、濃縮トラップ15,150を連結すると共に、その間に両者の断続機構、例えばコックを設け、各機構更には水分除去機構14を濃縮トラップ150と連結し、分析装置22を連結するような機構も考えられる。   As another mechanism, the concentration traps 15 and 150 are connected, and an intermittent mechanism, for example, a cock is provided between them, and each mechanism and further the water removal mechanism 14 is connected to the concentration trap 150, and the analyzer 22 is connected. A mechanism that connects them is also conceivable.

各装置間の連結は、必要な連結管により実施されており、必要箇所に多方弁、切換弁を設置することは従来公知の通りである。
更に、各装置の作動、制御について一連の作動が制御ソフトウェア19に組み込まれ、マイクロプロセッサー20により、例えば試料の採取のための採取容器の制御等、濃縮トラップの温度制御、MCSの作動制御、クライフォーカスの温度制御、マスフローコンキローラーの各種機器制御、各バルブに切換制御等、容機器の制御や全体の流れが制御されること公知技術により当然行われる。
Connection between each apparatus is carried out by a necessary connecting pipe, and it is conventionally known to install a multi-way valve and a switching valve at a necessary portion.
Further, a series of operations for the operation and control of each device is incorporated in the control software 19, and the microprocessor 20 controls the temperature of the concentration trap, the control of the MCS, the control of the MCS, for example, the control of the collection container for sampling. It is a matter of course that known techniques control the control of the overall equipment and the overall flow, such as focus temperature control, control of various devices of the mass flow control roller, and switching control of each valve.

本発明方法を図11の工程を追って説明する。
上記本発明方法は、第一段階は試料採取容器11から試料を濃縮トラップ15に導入し、高沸点成分をトラップし、残りの試料を水分除去機能を作用させていないMCS14を通って、濃縮トラップ150へ導入させる。
The method of the present invention will be described following the steps shown in FIG.
In the method of the present invention, in the first stage, the sample is introduced from the sampling container 11 into the concentration trap 15, the high boiling point component is trapped, and the remaining sample is passed through the MCS 14 that does not act on the moisture removal function. 150.

その際、濃縮トラップ15では高沸点成分がトラップされ、濃縮トラップ150では高沸点成分以外の試料がトラップされる。
次いで、窒素ガスを用いて、ドライパージが行われる。
At that time, the high-boiling component is trapped in the concentration trap 15, and the sample other than the high-boiling component is trapped in the concentration trap 150.
Next, dry purge is performed using nitrogen gas.

続いて、濃縮トラップ15,150のプレヒートが行われ、試料脱着準備が行われる。次が、脱着である。濃縮トラップ15,150にトラップした試料を加熱により脱着させ、分析装置22に送出する。   Subsequently, the concentration traps 15 and 150 are preheated to prepare for sample desorption. Next is desorption. The sample trapped in the concentration traps 15 and 150 is desorbed by heating and sent to the analyzer 22.

次は、ベイクで各機器の清掃を、加熱により行う。
例えば、濃縮トラップ15,150、水分除去装置14等が加熱され、洗浄される。又、必要に応じ、洗浄ガスによりそれらを洗浄する。この一連の操作により、キャニスター等の試料容器にて捕集した試料の分析を行う。
Next, each device is cleaned by heating in a bake.
For example, the concentration traps 15 and 150, the moisture removing device 14 and the like are heated and cleaned. If necessary, they are cleaned with a cleaning gas. By this series of operations, the sample collected in a sample container such as a canister is analyzed.

次いで、機構及び各動作について説明する。
先ず、試料の導入について図12により説明する。
濃縮トラップ15,150は、従来公知の冷却、加熱装置を設けてあり、必要温度に制御自在に構成してある。
その構成としては、トラップ管とそれを取り巻き、冷媒を流し、トラップ管を冷却させる冷却機構と、必要に応じトラップ管を加熱する、例えば抵抗加熱素子を巻き回せる如き、加熱機構を設けてある。この温度制御により、送られてくる試料ガスから、濃縮トラップ15,150で選択的に必要、所望成分を濃縮保持させるものである。
Next, the mechanism and each operation will be described.
First, sample introduction will be described with reference to FIG.
The concentration traps 15 and 150 are provided with conventionally known cooling and heating devices, and are configured to be controllable to a required temperature.
As a configuration thereof, a trap pipe and a cooling mechanism surrounding the trap pipe, flowing a refrigerant and cooling the trap pipe, and a heating mechanism for heating the trap pipe as necessary, for example, a resistance heating element can be wound. This temperature control selectively concentrates and holds the desired components in the concentration traps 15 and 150 from the sent sample gas.

キャニスター11で採取された試料を、濃縮トラップ15へ導入する。濃縮トラップ15では、重い(沸点の高い)試料が濃縮トラップ(濃縮)される。それ以外(高沸点以外の水分を含んだ試料)は、全て水分除去機構14を経て、トラップ150へ導入される。この時点では、水分除去機構14は作用していない。この捕集時の濃縮トラップの温度としては、図18〜22に示す如き、充填剤の温度実施例により試料に応じた温度が設定される。   The sample collected by the canister 11 is introduced into the concentration trap 15. In the concentration trap 15, a heavy (high boiling point) sample is concentrated (concentrated). All other samples (samples containing moisture other than the high boiling point) are introduced into the trap 150 through the moisture removing mechanism 14. At this time, the moisture removing mechanism 14 is not operating. As the temperature of the concentration trap at the time of collection, as shown in FIGS. 18 to 22, the temperature corresponding to the sample is set according to the temperature example of the filler.

前記図2,3に示す従来装置のトラップの例においては、試料の捕集時図17のT2の−100℃を用いており、図3に示す加熱(脱着)温度は、T2の200℃が使用されている。
又、本発明においては、TO−14分析例では一例として、TRAPは図18に示すT1のTRAP温度35度、加熱・脱着温度は200℃が使用されている。
In the example of the trap of the conventional apparatus shown in FIGS. 2 and 3, -100 ° C. of T2 in FIG. 17 is used at the time of sample collection, and the heating (desorption) temperature shown in FIG. in use.
In the present invention, as an example in the TO-14 analysis example, TRAP uses T1 TRAP temperature of 35 ° C. and heating / desorption temperature of 200 ° C. shown in FIG.

従来技術において、トラップ管全体に対して行っていた冷却を、本発明のようにトラップ管を分けたことによって、必要な箇所だけ冷却させるようにした。その結果、今まで冷却用に使用した液体窒素使用量の低減が可能となった。
従来は一本のトラップ管(例えば20cm)を用いてトラップし、その全体に液体窒素で冷却を行っていたが、本件のように複数(2本等)に分けることによって、各トラップ管は短く(10cm未満等)なり、液体窒素により冷却するトラップ管も必要箇所のみの使用、或いは目的成分により不使用とすることが可能となった。
この温度制御によって、クライオフォーカス16における液体窒素の使用量の低減がある等の効果が見出せた。
In the prior art, the cooling that has been performed on the entire trap tube is made to cool only necessary portions by dividing the trap tube as in the present invention. As a result, it has become possible to reduce the amount of liquid nitrogen used for cooling so far.
Conventionally, trapping was performed using a single trap tube (for example, 20 cm), and the whole was cooled with liquid nitrogen. However, by dividing into multiple (two, etc.) as in this case, each trap tube is shortened. (Less than 10 cm, etc.) The trap tube cooled by liquid nitrogen can be used only at a necessary location or can be disabled depending on the target component.
By this temperature control, effects such as a reduction in the amount of liquid nitrogen used in the cryofocus 16 were found.

この試料導入に次いで、試料脱着、分析装置への試料送入が行われる。先ず、DRY Purgeが行われる。ドライパージは、窒素ガスで濃縮トラップ15、水分除去機構14、濃縮トラップ150を通して、軽いガス(大気中のCO等)を追い出す操作である。
この状態では、水分や他のCOのような分析に必要とされない成分が濃縮トラップ15,150から除去される。必要に応じ、制御装置を介して加熱部により、濃縮トラップ15,150から除去される。これが次のプレヒートに繋がる。
Subsequent to this sample introduction, sample desorption and sample feeding into the analyzer are performed. First, DRY Charge is performed. The dry purge is an operation of expelling light gas (such as CO 2 in the atmosphere) with nitrogen gas through the concentration trap 15, the moisture removal mechanism 14, and the concentration trap 150.
In this state, moisture and other components not required for analysis such as CO 2 are removed from the concentration traps 15 and 150. If necessary, it is removed from the concentration traps 15 and 150 by the heating unit via the control device. This leads to the next preheat.

次いで、PreHeatが行われる。トラップ15或いはトラップ15及び150を予熱する操作である。脱着する前までに、設定温度にする。このことにより、設定温度までの昇温時間の影響をなくすことが出来る。   Next, PreHeat is performed. This is an operation for preheating the trap 15 or the traps 15 and 150. Set to the set temperature before desorption. As a result, the influence of the temperature rising time up to the set temperature can be eliminated.

水分除去機構(MCS)について説明する。MCSは、モイスチャーコントロールシステムの略で、MCSにおいて、水分は濃度が高く、露点温度に容易に達するため、「結露」の原理でMCSに溜まるが、VOCは濃度が低く、露点温度に達しづらいため、そのほとんどがMCSを通過する。この原理を用いて、水分除去を図る。この際、水分除去機構が作用する程度に低ければ、冷却用ファンを動作させてもさせなくても良い。
又、MCS以外では、水分除去のためにナフィオン(デュポン社登録商標)等の吸湿性樹脂を用いることも出来る。
The moisture removal mechanism (MCS) will be described. MCS is an abbreviation for moisture control system. In MCS, moisture is high in concentration and easily reaches the dew point temperature. Therefore, MCS accumulates in MCS according to the principle of “condensation”, but VOC S is low in concentration and difficult to reach dew point temperature. Therefore, most of them pass through MCS. Using this principle, water is removed. At this time, the cooling fan may or may not be operated if the moisture removal mechanism is low enough to act.
In addition to MCS, a hygroscopic resin such as Nafion (registered trademark of DuPont) can also be used to remove moisture.

次いで、脱着について説明する。
この時点では、濃縮トラップ15に高沸点試料、濃縮トラップ150に水分を含んだ高沸点以外の試料がトラップ(濃縮)されている。キャリアガスにより目的成分は脱着され、分析機器22(ガスクロマトグラフや質量分析器)に導入される。濃縮トラップ15からは高沸点成分が、一方、濃縮トラップ150における試料は、水分除去機構14(MCS等。それ以外に水分除去できる機構があればそれを用いても良い。)で、水分が除去された状態で分析に導入される。
従来は、高沸点成分は、水分除去機構14で吸着などの損失をしていたが、このシステムにおいては、水分除去機構14は通らず、確実にトラップ(濃縮)され、分析装置22に導入される。
Next, desorption will be described.
At this time, the high-boiling sample is trapped (concentrated) in the concentration trap 15 and the non-high-boiling sample containing moisture in the concentration trap 150. The target component is desorbed by the carrier gas and introduced into the analytical instrument 22 (gas chromatograph or mass analyzer). The high-boiling component is removed from the concentration trap 15, while the sample in the concentration trap 150 is removed with a moisture removal mechanism 14 (MCS or the like. If there is another mechanism capable of removing moisture, it may be used). Are introduced into the analysis.
Conventionally, the high boiling point component has been lost due to adsorption or the like by the moisture removal mechanism 14, but in this system, the moisture removal mechanism 14 does not pass and is reliably trapped (concentrated) and introduced into the analyzer 22. The

Bakeとは、水分除去機構の水分等の成分を除く工程で、具体的にはキャリアガスを試料送出時と同方向に流しながら、各部を加熱して掃除する。   Bake is a process of removing components such as moisture of the moisture removal mechanism. Specifically, each part is heated and cleaned while flowing the carrier gas in the same direction as when the sample is delivered.

図18乃至22は、TO−14における大気の有害化学物質に関する試験方法(捕集〜分析)である。   18 to 22 are test methods (collection to analysis) for harmful chemical substances in the atmosphere in TO-14.

図14は、本発明方法及び装置13を使用した実施例に基づいたTO−14の分析例クロマトグラムである。該方法においては、MCS温度を20℃に下げ、試料捕集を行い、200℃で加熱脱着を行った。
この結果をクロマトグラム図14について観察すると、高沸点成分がMCS20℃設定のクロマトグラム図4では、目盛349付近で僅かな析出が記録されていたに過ぎないのに対し、クロマトグラム図15に示す如く、顕著に検出記録されている。
又、水のクロマトグラムも、図6、図9と比し、本発明の図16の比較上、減少していることが明らかである。実質上、1/5と認められた。
FIG. 14 is an analysis chromatogram of TO-14 based on an embodiment using the method and apparatus 13 of the present invention. In this method, the MCS temperature was lowered to 20 ° C., a sample was collected, and heat desorption was performed at 200 ° C.
When this result is observed with respect to the chromatogram FIG. 14, in the chromatogram FIG. 4 in which the high boiling point component is set to 20 ° C., only slight precipitation is recorded in the vicinity of the scale 349, whereas FIG. 15 shows the chromatogram. As shown in FIG.
Further, it is clear that the chromatogram of water is also reduced in comparison with FIG. 16 of the present invention as compared with FIGS. It was found to be substantially 1/5.

実施例2において、実際のクロマトグラム図14上に検出、記録された主要成分を取出した各成分感度、図23と図4、図7に示す従来法実施のクロマトグラム上の図24、図25とを比較した高沸点成分感度比較表を見てみると、高沸点成分の1,2,4メートリクロロベンゼン及びヘキサクロロ―1,3―ブタジエンの検出量の差は歴然としている。
又、本発明によれば、高沸点成分では、従来方法の2倍の感度が得られ、水分除去率では、導入量が1/3に減少した。
これにより、本発明方法によると、高沸点成分の低吸着性及びランニングの安定性が裏付けられた。
In Example 2, the sensitivity of each component extracted from the main component detected and recorded on the actual chromatogram in FIG. 14, FIGS. 24 and 25 on the chromatogram of the conventional method shown in FIGS. When the high-boiling component sensitivity comparison table is compared, the difference in the detected amounts of the high-boiling components 1,2,4-matetrichlorobenzene and hexachloro-1,3-butadiene is obvious.
In addition, according to the present invention, with a high boiling point component, a sensitivity twice as high as that of the conventional method can be obtained, and the introduction amount is reduced to 1/3 in the moisture removal rate.
Thus, according to the method of the present invention, the low adsorptivity of the high boiling point component and the running stability were supported.

実施例2における本発明方法による高沸点成分のクロマトグラムによれば、図5、図8、図15のクロマトグラムにより、その検出量の差は歴然としていることが理解される。   According to the chromatogram of the high boiling point component according to the method of the present invention in Example 2, it is understood from the chromatograms of FIGS. 5, 8, and 15 that the difference in the detected amount is obvious.

本発明方法と従来法の水分導入率を、本発明の水のクロマトグラム図16と従来法による図6と図9を一のクロマトグラム図26上に重ね書きして比較した。本発明方法における水分導入量は、従来法の1/5にもなることが理解されよう。   The water introduction rate of the method of the present invention and the conventional method were compared by overwriting the chromatogram of the water of the present invention FIG. 16 and FIGS. 6 and 9 of the conventional method on one chromatogram diagram 26. It will be understood that the amount of water introduced in the method of the present invention is 1/5 that of the conventional method.

従来のトラップ管説明図Conventional trap tube illustration 従来の分析装置概略説明図Overview of conventional analyzer 従来の分析装置概略説明図Overview of conventional analyzer 図2,3に示す従来分析装置の一実施例クロマトグラムOne example chromatogram of the conventional analyzer shown in FIGS. 同上一部拡大図Same as above 同上水のクロマトグラムChromatogram of the above water 図2,3に示す従来分析装置の他実施例クロマトグラムOther Example Chromatogram of Conventional Analyzing Apparatus Shown in FIGS. 同上一部拡大図Same as above 同上水のクロマトグラムChromatogram of the above water 本発明一実施装置例システムフロー図System flow diagram of an example apparatus according to the present invention 本発明一実施例装置例作業フロー図Example of apparatus according to the present invention Example work flow diagram 本発明一実施例要部拡大説明図An enlarged view of the main part of one embodiment of the present invention 本発明一実施例要部拡大説明図An enlarged view of the main part of one embodiment of the present invention 図12,13実施装置の一実施例クロマトグラム12 and 13 Example of chromatogram of the apparatus 同上一部拡大図Same as above 同上水のクロマトグラムChromatogram of the above water トラップ管の充填剤による捕集脱着温度例Example of trapping and desorption temperature with trap tube filler 本発明実施例の充填剤による捕集脱着温度例Example of collection and desorption temperature by the filler of the embodiment of the present invention 本発明実施例の充填剤による捕集脱着温度例Example of collection and desorption temperature by the filler of the embodiment of the present invention 本発明実施例の充填剤による捕集脱着温度例Example of collection and desorption temperature by the filler of the embodiment of the present invention 本発明実施例の充填剤による捕集脱着温度例Example of collection and desorption temperature by the filler of the embodiment of the present invention 本発明実施例の充填剤による捕集脱着温度例Example of collection and desorption temperature by the filler of the embodiment of the present invention 本発明一実施例高沸点成分感度表Example of the present invention high boiling point component sensitivity table 従来分析装置の同一MS実施例による高沸点成分感度表Sensitivity table for high boiling point components by the same MS example of the conventional analyzer 従来分析装置の同一MS実施例による高沸点成分感度表Sensitivity table for high boiling point components by the same MS example of the conventional analyzer 本発明図16に示す水のクロマトグラムと図2,3の従来分析装置の一実施水のクロマトグラムの水分量比較図Comparison of water content between the chromatogram of the water shown in FIG. 16 of the present invention and the chromatogram of one embodiment of the conventional analyzer shown in FIGS.

符号の説明Explanation of symbols

11 試料採取器
12 切換バルブ
13 トラップシステム本体
14 水分除去機構
15 濃縮トラップ
16 クライオフォーカス
17 マスフローコントローラー
18 バキュームポンプ
19 制御ソフトウェア
20 マイクロプロセッサー
21 GCカラム
22 分析装置
150 濃縮トラップ
DESCRIPTION OF SYMBOLS 11 Sampler 12 Switching valve 13 Trap system body 14 Moisture removal mechanism 15 Concentration trap 16 Cryofocus 17 Mass flow controller 18 Vacuum pump 19 Control software 20 Microprocessor 21 GC column 22 Analyzer 150 Concentration trap

Claims (5)

複数の濃縮トラップと水分除去機構を設けた装置において、少なくとも一の濃縮トラップにトラップした試料は、水分除去機構を作用させずに分析装置に送り、他の濃縮トラップにトラップした試料は、水分除去機構により水分を除去して分析装置に送ることを特徴とする試料濃縮方法。   In an apparatus equipped with multiple concentration traps and a moisture removal mechanism, the sample trapped in at least one concentration trap is sent to the analyzer without operating the moisture removal mechanism, and the sample trapped in the other concentration trap is moisture-removed. A sample concentration method characterized by removing water by a mechanism and sending it to an analyzer. 試料導入時、試料の一部を、水分除去機構を通過せずに、濃縮トラップにトラップし、且つそのまま分析装置に送出させる一方、残部は他の濃縮トラップにトラップし、水分除去機構により水分を除去して分析装置に送出することを特徴とする請求項1に記載の試料濃縮方法。   At the time of sample introduction, a part of the sample is trapped in the concentration trap without passing through the moisture removal mechanism and sent to the analyzer as it is, while the rest is trapped in another concentration trap, and moisture is removed by the moisture removal mechanism. The sample concentration method according to claim 1, wherein the sample is removed and sent to the analyzer. 複数の濃縮トラップを水分除去機構の両側に連通した装置において、試料導入時、各濃縮トラップにそれぞれ対応する試料をトラップさせると共に、試料中の高沸点成分は水分除去機構を通過させず、分析装置に送出することを特徴とする請求項1に記載の試料濃縮方法。   In an apparatus in which a plurality of concentration traps communicate with both sides of the moisture removal mechanism, when the sample is introduced, the sample corresponding to each concentration trap is trapped, and the high boiling point component in the sample does not pass through the moisture removal mechanism. The sample concentration method according to claim 1, wherein the sample is concentrated. 複数の濃縮トラップを水分除去機構の両側に連通した装置において、試料中の高沸点成分を第1濃縮トラップにトラップし、残部は不作動状態の水分除去機構を通して第2濃縮トラップにトラップする一方、第2濃縮トラップ側から脱着させ、水分除去機構により水分を除去した試料と、第1濃縮トラップから脱着させた試料とを分析装置に送出することを特徴とする請求項1に記載の試料濃縮方法。   In an apparatus in which a plurality of concentration traps communicate with both sides of the moisture removal mechanism, a high boiling point component in the sample is trapped in the first concentration trap, and the remainder is trapped in the second concentration trap through the inactive moisture removal mechanism, The sample concentration method according to claim 1, wherein the sample desorbed from the second concentration trap side and moisture removed by the moisture removal mechanism and the sample desorbed from the first concentration trap are sent to the analyzer. . 水分除去機構を介在して両側に濃縮トラップを設け、各濃縮トラップをそれぞれ温度制御自在に構成すると共に、濃縮トラップの一方を分析装置に連通したことを特徴とする試料濃縮装置。   A sample concentrating apparatus, wherein concentrating traps are provided on both sides via a moisture removing mechanism, each concentrating trap is configured to be temperature-controllable, and one of the concentrating traps communicates with an analyzer.
JP2007161961A 2007-06-19 2007-06-19 Sample concentration method and apparatus Active JP5148933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161961A JP5148933B2 (en) 2007-06-19 2007-06-19 Sample concentration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161961A JP5148933B2 (en) 2007-06-19 2007-06-19 Sample concentration method and apparatus

Publications (2)

Publication Number Publication Date
JP2009002711A true JP2009002711A (en) 2009-01-08
JP5148933B2 JP5148933B2 (en) 2013-02-20

Family

ID=40319266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161961A Active JP5148933B2 (en) 2007-06-19 2007-06-19 Sample concentration method and apparatus

Country Status (1)

Country Link
JP (1) JP5148933B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095610A (en) * 2012-11-09 2014-05-22 Tokyo Gas Co Ltd Method and system for quantitatively analyzing sulfur compound in gas
CN108369172A (en) * 2015-12-28 2018-08-03 普和希控股公司 Measuring fine particles instrument and cleaning ambient equipment in gas
JP2019514021A (en) * 2016-04-04 2019-05-30 エンテック インスツルメンツ インコーポレイテッド Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
CN111007188A (en) * 2019-12-30 2020-04-14 常州磐宇仪器有限公司 Water removal and concentration gas circuit system and method for volatile organic compounds in atmosphere
CN111279188A (en) * 2017-10-25 2020-06-12 因泰科设备股份有限公司 Sample preconcentration system and method for use with gas chromatography
US11162925B2 (en) 2017-11-03 2021-11-02 Entech Instruments Inc. High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography
US11169124B2 (en) 2017-11-22 2021-11-09 Entech Instruments Inc. System and method for real time monitoring of a chemical sample
JP2022510641A (en) * 2018-12-05 2022-01-27 成都科林分析技術有限公司 Water removal method for gas concentration sampling, sample introduction method and their equipment
CN115326461A (en) * 2022-08-04 2022-11-11 安徽省生态环境科学研究院 Contaminated plot sampling and enriching system
US11549921B2 (en) 2017-11-22 2023-01-10 Entech Instruments Inc. System and method for real time monitoring of a chemical sample
US11946912B2 (en) 2020-06-30 2024-04-02 Entech Instruments Inc. System and method of trace-level analysis of chemical compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292379A (en) * 1996-04-25 1997-11-11 Shimadzu Corp Pretreating apparatus for chromatography
JP2005249691A (en) * 2004-03-05 2005-09-15 Toyota Central Res & Dev Lab Inc Gas chromatograph unit and exhaust gas analytical method
JP2006524796A (en) * 2003-04-14 2006-11-02 パーキンエルマー・エルエーエス・インコーポレーテッド Interface assembly for preconcentration of analytes in chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292379A (en) * 1996-04-25 1997-11-11 Shimadzu Corp Pretreating apparatus for chromatography
JP2006524796A (en) * 2003-04-14 2006-11-02 パーキンエルマー・エルエーエス・インコーポレーテッド Interface assembly for preconcentration of analytes in chromatography
JP2005249691A (en) * 2004-03-05 2005-09-15 Toyota Central Res & Dev Lab Inc Gas chromatograph unit and exhaust gas analytical method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095610A (en) * 2012-11-09 2014-05-22 Tokyo Gas Co Ltd Method and system for quantitatively analyzing sulfur compound in gas
CN108369172A (en) * 2015-12-28 2018-08-03 普和希控股公司 Measuring fine particles instrument and cleaning ambient equipment in gas
US20180306681A1 (en) * 2015-12-28 2018-10-25 Phc Holdings Corporation Air particle measurement apparatus and clean environment equipment
EP3372984A4 (en) * 2015-12-28 2018-12-26 PHC Holdings Corporation Gas-borne fine particle measuring instrument and clean environmental device
JP2019514021A (en) * 2016-04-04 2019-05-30 エンテック インスツルメンツ インコーポレイテッド Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
JP7072134B2 (en) 2017-10-25 2022-05-20 エンテック インスツルメンツ インコーポレイテッド Sample pre-concentration system and method for use in gas chromatography
CN111279188A (en) * 2017-10-25 2020-06-12 因泰科设备股份有限公司 Sample preconcentration system and method for use with gas chromatography
JP2021501313A (en) * 2017-10-25 2021-01-14 エンテック インスツルメンツ インコーポレイテッド Sample pre-concentration system and method for use in gas chromatography
US11247204B2 (en) 2017-10-25 2022-02-15 Entech Instruments Inc. Sample preconcentration system and method for use with gas chromatography
US11162925B2 (en) 2017-11-03 2021-11-02 Entech Instruments Inc. High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography
US11169124B2 (en) 2017-11-22 2021-11-09 Entech Instruments Inc. System and method for real time monitoring of a chemical sample
US11549921B2 (en) 2017-11-22 2023-01-10 Entech Instruments Inc. System and method for real time monitoring of a chemical sample
JP2022510641A (en) * 2018-12-05 2022-01-27 成都科林分析技術有限公司 Water removal method for gas concentration sampling, sample introduction method and their equipment
JP7100766B2 (en) 2018-12-05 2022-07-13 成都科林分析技術有限公司 Water removal method for gas concentration sampling, sample introduction method and their equipment
US11927572B2 (en) 2018-12-05 2024-03-12 Chengdu Colin Analysis Technology Co., Ltd. Water removal method for gas concentration sampling, sampling method and device therefor
CN111007188A (en) * 2019-12-30 2020-04-14 常州磐宇仪器有限公司 Water removal and concentration gas circuit system and method for volatile organic compounds in atmosphere
US11946912B2 (en) 2020-06-30 2024-04-02 Entech Instruments Inc. System and method of trace-level analysis of chemical compounds
CN115326461A (en) * 2022-08-04 2022-11-11 安徽省生态环境科学研究院 Contaminated plot sampling and enriching system

Also Published As

Publication number Publication date
JP5148933B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5148933B2 (en) Sample concentration method and apparatus
EP3423821B1 (en) Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (gc) and gas chromatography-mass spectrometry (gcms)
US11162925B2 (en) High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography
US11169124B2 (en) System and method for real time monitoring of a chemical sample
US8062610B2 (en) Apparatus and methods for use in concentration of gas and particle-laden gas flows
US10849600B2 (en) Breath condensate and saliva analysis using oral rinse
CN111579315B (en) VOCs and IVOCs simultaneous online collection and detection method
US20200033301A1 (en) System and method for real time monitoring of a chemical sample
JP2021501313A (en) Sample pre-concentration system and method for use in gas chromatography
JP6924275B2 (en) Thermal desorption device for sample introduction of gas chromatography with improved compound recovery and enhanced matrix management
WO2018013946A1 (en) Breath condensate and saliva analysis using oral rinse
KR101583542B1 (en) System for analyzing VFA in air and method of analyzing VFA using the same
US20130000485A1 (en) Flow Control System, Device and Method for Thermal Desorption
JP2005274565A (en) Analysis method for organoarsenic chemical agent in air and apparatus for it
SE512229C2 (en) Method and apparatus for enriching volatiles from a gas stream and dosing to an analytical instrument
JP7157869B2 (en) Hybrid capillary/filled trap and method of use
JP6551102B2 (en) Breath analyzer
JP2001124748A (en) Method and apparatus for high-speed analysis of chlorobenzene
KR20190098601A (en) Method of analyzing gas samples and analyzing apparatus thereof
RU2730553C2 (en) Method for increasing concentration of gaseous impurities from air and a device for concentrating impurities
JP2017173248A (en) Continuous measuring device and method of molecular concentration
US20150285830A1 (en) Sample pretreatment apparatus and sample pretreatment method
JP2009250907A (en) Method and apparatus for analyzing organic substance in air
JP2010066095A (en) Method of rapidly evaluating adsorbing behavior of organic compound vapor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5148933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250