JP2010066095A - Method of rapidly evaluating adsorbing behavior of organic compound vapor - Google Patents

Method of rapidly evaluating adsorbing behavior of organic compound vapor Download PDF

Info

Publication number
JP2010066095A
JP2010066095A JP2008231968A JP2008231968A JP2010066095A JP 2010066095 A JP2010066095 A JP 2010066095A JP 2008231968 A JP2008231968 A JP 2008231968A JP 2008231968 A JP2008231968 A JP 2008231968A JP 2010066095 A JP2010066095 A JP 2010066095A
Authority
JP
Japan
Prior art keywords
organic compound
column
adsorption
compound vapor
behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008231968A
Other languages
Japanese (ja)
Inventor
Hidekazu Komatsu
秀和 小松
Takashi Suzuki
崇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2008231968A priority Critical patent/JP2010066095A/en
Publication of JP2010066095A publication Critical patent/JP2010066095A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly evaluate the adsorbing behavior of an organic compound vapor to an adsorbent by applying gas chromatography. <P>SOLUTION: A column 3 filled with the adsorbent 4 to be evaluated is installed in a column tank 2 capable of being set to an optional temperature, the organic compound vapor is injected in the column 3 from this side of the inlet of the column 3 while allowing a carrier gas to flow through the column 3 and a chromatogram, which is obtained by detecting the organic compound vapor by the detector 5 installed behind the outlet of the column 3, is analyzed to rapidly evaluate the adsorbing behavior of the organic compound vapor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機化合物蒸気の吸着挙動を迅速かつ簡便に評価する方法に関する。 The present invention relates to a method for quickly and simply evaluating the adsorption behavior of organic compound vapors.

揮発性有機化合物(VOC)は洗浄剤や溶剤あるいは化成品原料等として産業界で広く使用されているが、近年これらによる大気汚染が強く懸念されている。VOCの除去技術として吸着法や燃焼法等が挙げられるが、燃焼法はVOCをCO2として大気中に排出する方法であり、3R推進、温暖化ガス低減といった環境政策と整合しているとは言い難い。VOCは本来、有機化合物が気化したものすなわち有機化合物蒸気であり、適切に回収すれば再利用が可能な有価物とみなすことができることから、吸着法による除去回収が注目されている。 Volatile organic compounds (VOC) are widely used in the industry as cleaning agents, solvents or chemical raw materials, but in recent years, there is a strong concern about air pollution caused by these. VOC removal techniques include adsorption and combustion methods, but the combustion method is a method of discharging VOCs into the atmosphere as CO2, and is said to be consistent with environmental policies such as 3R promotion and greenhouse gas reduction. hard. VOC is originally a vaporized organic compound, that is, an organic compound vapor, and can be regarded as a valuable material that can be reused if it is properly recovered. Therefore, removal and recovery by an adsorption method has attracted attention.

吸着法の技術開発においては、有機化合物蒸気の吸着挙動の評価が重要な技術要素である。工業的な吸着除去プロセスにおいては通常、吸着剤が充填された吸着塔に連続的に有機化合物蒸気を含む排気ガスを通気することで有機化合物蒸気のみが吸着除去される。このような工業プロセスに適用する吸着剤の開発において、吸着挙動を評価するためには吸着破過曲線の測定と、そこから得られる破過時吸着量の把握が重要であった。吸着破過曲線を測定するためには、対象有機化合物蒸気を安定な濃度でかつ連続的に発生させる必要があるが、有機化合物蒸気を得るために通常用いられるベーパライザーでは、濃度の安定までに1〜2時間程度の時間を要することも少なくなかった。さらに吸着破過曲線の測定は数十分から数時間程度要し、測定後は吸着塔に不活性ガスを通気させながら高温下で脱着操作を数時間行う必要があるなど、すべての操作時間を合計すると4〜10時間程度かかるという、極めて長時間を要する評価方法であった。 In the technical development of the adsorption method, evaluation of the adsorption behavior of organic compound vapor is an important technical element. In an industrial adsorption removal process, usually only organic compound vapor is adsorbed and removed by ventilating exhaust gas containing organic compound vapor continuously in an adsorption tower filled with an adsorbent. In the development of adsorbents applied to such industrial processes, in order to evaluate the adsorption behavior, it was important to measure the adsorption breakthrough curve and grasp the amount of adsorption during breakthrough obtained therefrom. In order to measure the adsorption breakthrough curve, it is necessary to continuously generate the target organic compound vapor at a stable concentration, but with a vaporizer normally used to obtain the organic compound vapor, it is necessary to stabilize the concentration. Often, it takes about 1 to 2 hours. Furthermore, the measurement of the adsorption breakthrough curve takes several tens of minutes to several hours, and after the measurement, it is necessary to perform the desorption operation for several hours at a high temperature while venting inert gas through the adsorption tower. It was an evaluation method requiring an extremely long time, which required about 4 to 10 hours in total.

さて、工場等で取り扱われる有機化合物蒸気として、ペンタン等の炭化水素類、メチルエチルケトン等のカルボニル化合物類、2−プロパノール等のアルコール類、トリクロロエチレンなどのハロゲン化炭化水素類、酢酸エチルなどのエステル類等が挙げられ、その種類は数百種類に及ぶと言われている。このように数多くの有機化合物蒸気の吸着挙動を評価するために吸着破過曲線を測定するのは、効率的とは言い難かった。 Now, as organic compound vapors handled in factories, etc., hydrocarbons such as pentane, carbonyl compounds such as methyl ethyl ketone, alcohols such as 2-propanol, halogenated hydrocarbons such as trichloroethylene, esters such as ethyl acetate, etc. It is said that there are hundreds of types. In order to evaluate the adsorption behavior of such a large number of organic compound vapors, it is difficult to say that it is efficient to measure the adsorption breakthrough curve.

そこで、有機化合物蒸気の吸着挙動を評価する方法として特許文献1には少量の試料物質を使用した簡便な吸着等温線測定方法が示されている。しかしながら該手法では、連続的に試料物質が導入される状況における吸着挙動を評価するには難しい面があった。 Thus, as a method for evaluating the adsorption behavior of organic compound vapor, Patent Document 1 discloses a simple adsorption isotherm measurement method using a small amount of sample material. However, this method has a difficulty in evaluating the adsorption behavior in a situation where the sample substance is continuously introduced.

特開平5−34325号JP-A-5-34325

一方、近年の化学分析機器の発達は目覚しく、中でもガスクロマトグラフィーは室温での気体成分からカラムの最高温度で数Torr程度の蒸気圧を有する比較的揮発性に富んだ成分を対象とする分析機器として大いに発達してきた。検出器の性能向上による高感度化、制御技術の向上による優れた温度制御機能の実現など機能面の発達のみならず、オートサンプリング機能や温度制御のプログラム化などによる利便性向上など、近年その性能向上が目覚しい。 On the other hand, the development of chemical analysis equipment in recent years is remarkable, and gas chromatography is an analysis equipment for gas components at room temperature and relatively volatile components having a vapor pressure of about several Torr at the maximum temperature of the column. Has developed as much. In recent years, the performance has been improved not only in functional aspects such as higher sensitivity due to improved detector performance and better temperature control functions due to improved control technology, but also in convenience such as auto-sampling functions and temperature control programming. The improvement is remarkable.

すなわち本発明の目的は、有機化合物蒸気を吸着する吸着剤の開発に資するため、ガスクロマトグラフィーを応用して有機化合物蒸気の吸着挙動を迅速かつ簡便に評価する技術を提供することを目的とする。また、このような発展著しいガスクロマトグラフィーの要素技術を効果的に活用することによる測定精度及び利便性の向上も期待できる。 That is, an object of the present invention is to provide a technique for quickly and easily evaluating the adsorption behavior of an organic compound vapor by applying gas chromatography in order to contribute to the development of an adsorbent that adsorbs the organic compound vapor. . In addition, improvement in measurement accuracy and convenience can be expected by effectively utilizing such elemental technologies of gas chromatography that are remarkably developed.

本発明者は、有機化合物蒸気の吸着挙動を評価する手法について鋭意研究開発した結果、評価対象の吸着剤を充填したカラムを任意の温度に設定できるカラム槽内に設置し、該カラムにキャリアーガスを流通させながらカラム入り口手前から有機化合物蒸気を注入し、カラム出口の後ろに設置した検出器で有機化合物蒸気を検出することで得られるクロマトグラムを解析して基準物質のクロマトグラムと比較することで有機化合物蒸気の吸着挙動を迅速に評価する手法を見出し、本発明を完成するに至った。(ここで、予め、基準物質の破過時吸着量Qbs及び平衡吸着量Qesを測定しておく。) As a result of earnest research and development on the method for evaluating the adsorption behavior of organic compound vapor, the present inventor installed a column filled with the adsorbent to be evaluated in a column tank that can be set to an arbitrary temperature, and the carrier gas is placed in the column. Analyze the chromatogram obtained by injecting organic compound vapor from the front of the column while circulating it and detecting the organic vapor with a detector installed behind the column outlet, and compare it with the chromatogram of the reference substance. Thus, a method for quickly evaluating the adsorption behavior of the organic compound vapor was found, and the present invention was completed. (Here, the breakthrough adsorption amount Qbs and the equilibrium adsorption amount Qes of the reference substance are measured in advance.)

すなわち本発明の技術解決手段は、(1):カラムに吸着剤を充填し、該カラムにキャリアーガスを流通させながらカラム入り口手前から有機化合物蒸気を注入し、カラム出口の後ろに設置した検出器で有機化合物蒸気を検出することで得られるクロマトグラムを解析することを特徴とする有機化合物蒸気の吸着挙動迅速評価方法であり、(2):有機化合物の沸点が−10℃以上400℃以下であることを特徴とする(1)記載の方法であり、(3):吸着剤が活性炭、シリカゲル、アルミナ又はゼオライトであることを特徴とする(1)又は(2)記載の方法であり、(4):カラムを設置するカラム槽の温度が−10℃以上450℃以下であることを特徴とする(1)、(2)又は(3)記載の方法であり、(5):クロマトグラムから得られる有機化合物蒸気の保持時間を、基準物質の保持時間で除して常用対数を算出することで得られる保持指標から、該有機化合物蒸気を用いたときの破過時吸着量を平衡吸着量で除することで算出される吸着レシオを予測することを特徴とする(1)、(2)、(3)、又は(4)記載の方法である。 That is, the technical solution means of the present invention is: (1): a detector installed behind a column outlet by filling the column with an adsorbent, injecting an organic compound vapor from the front of the column while circulating the carrier gas through the column (2): The boiling point of the organic compound is −10 ° C. or more and 400 ° C. or less, which is characterized by analyzing the chromatogram obtained by detecting the organic compound vapor in (3): The method according to (1) or (2), wherein the adsorbent is activated carbon, silica gel, alumina or zeolite, 4): The method according to (1), (2) or (3), wherein the temperature of the column tank in which the column is installed is -10 ° C or higher and 450 ° C or lower. (5) From the retention index obtained by dividing the retention time of the obtained organic compound vapor by the retention time of the reference substance and calculating the common logarithm, the adsorption amount at breakthrough when using the organic compound vapor is the equilibrium adsorption amount. The method according to (1), (2), (3), or (4), wherein the adsorption ratio calculated by dividing is predicted.

本発明によれば、従来は吸着挙動を評価するために不可欠であった吸着破過曲線を測定することなく、迅速かつ簡便に有機化合物蒸気の吸着挙動を評価することができる。即ち、基準物質の破過時吸着量Qbs及び平衡吸着量Qesを予め測定して、基準物質の吸着レシオ Rs=Qbs/Qesを算出しておき、評価対象有機化合物蒸気の保持指標を本発明による方法で測定することで、評価対象有機化合物の吸着レシオを予測可能とし、便利である。 According to the present invention, the adsorption behavior of an organic compound vapor can be evaluated quickly and easily without measuring an adsorption breakthrough curve that has been indispensable for evaluating the adsorption behavior. That is, the amount of adsorption Qbs during breakthrough and the equilibrium adsorption amount Qes of the reference material are measured in advance, the adsorption ratio Rs = Qbs / Qes of the reference material is calculated, and the retention index of the evaluation target organic compound vapor is determined by the method according to the present invention. By measuring with, it is possible to predict the adsorption ratio of the organic compound to be evaluated, which is convenient.

以下に、本発明の詳細を実施例により詳細に示すが、本発明の技術内容を具体的に説明するためのものであり、本発明の範囲を限定するものではない。 Hereinafter, the details of the present invention will be described in detail by way of examples. However, the present invention is intended to specifically describe the technical contents of the present invention and does not limit the scope of the present invention.

(有機化合物蒸気の種類)
吸着挙動を評価できる有機化合物種は、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類、カルボニル化合物類、アルコール類、エステル類、エーテル類など沸点が好ましくは−10℃以上400℃以下、さらに好ましくは20℃以上260℃以下の化合物である。これら有機化合物分子中に窒素、リン、硫黄、ハロゲン等の異種原子を含んでいることを妨げない。
(Type of organic compound vapor)
The organic compound species that can evaluate the adsorption behavior are aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, carbonyl compounds, alcohols, esters, ethers, etc., and preferably have a boiling point of −10 ° C. or more and 400 It is a compound having a temperature of 20 ° C. or lower, more preferably 20 ° C. or higher and 260 ° C. or lower. It does not preclude that these organic compound molecules contain different atoms such as nitrogen, phosphorus, sulfur and halogen.

(有機化合物蒸気の導入方法)
該有機化合物は、気体状であればそのままカラムに導入することができる。液状であればカラム入り口手前に設置した気化室に注入し、高温の室内で気化させた後にカラムに導入しても良い。また該有機化合物は単独でカラムに導入しても良いし、複数種を混合して導入しても良い。
(Method of introducing organic compound vapor)
The organic compound can be introduced into the column as it is if it is gaseous. If it is liquid, it may be injected into a vaporization chamber installed in front of the column entrance, and then vaporized in a high temperature chamber and then introduced into the column. Further, the organic compound may be introduced alone into the column, or a plurality of types may be mixed and introduced.

(基準物質)
基準物質としては、有機化合物蒸気であればどのような物質でも使用できるが、特に評価対象とする物質と分子量が近接している及び/若しくは同族の化合物がより好ましい。
(Reference substance)
As the reference substance, any substance can be used as long as it is an organic compound vapor. In particular, a substance having a molecular weight close to that of the substance to be evaluated and / or a homologous compound is more preferable.

(吸着剤の種類)
有機化合物蒸気の吸着挙動を評価する吸着剤として、活性炭、シリカゲル、アルミナ、ゼオライトなどが挙げられるが、必ずしもこれらの吸着剤に限定されるものではない。
(Adsorbent type)
Examples of the adsorbent for evaluating the adsorption behavior of the organic compound vapor include activated carbon, silica gel, alumina, zeolite, and the like, but are not necessarily limited to these adsorbents.

(カラム槽)
吸着剤を充填したカラムは、内部を任意の温度に設定可能なカラム槽内に設置される。クロマトグラムはカラムの温度によって大きく異なるため、基準物質と評価対象の有機化合物蒸気を比較するためには、同一のカラム槽温度で測定したクロマトグラムを得る必要がある。クロマトグラムを測定するときのカラム槽の温度範囲として−10℃以上450℃未満が好ましく、20℃以上300℃未満がより好ましい。また、カラム槽が任意の昇温速度で温度を上昇させる機能を備えていることも好ましい。
(Column tank)
The column filled with the adsorbent is installed in a column tank whose inside can be set to an arbitrary temperature. Since the chromatogram varies greatly depending on the column temperature, it is necessary to obtain chromatograms measured at the same column tank temperature in order to compare the reference substance and the organic compound vapor to be evaluated. The temperature range of the column tank when measuring the chromatogram is preferably −10 ° C. or higher and lower than 450 ° C., more preferably 20 ° C. or higher and lower than 300 ° C. It is also preferable that the column tank has a function of increasing the temperature at an arbitrary rate of temperature increase.

(検出器)
カラムの出口の後ろに設置し有機化合物蒸気を検出する検出器としては、有機化合物蒸気の量を計測できる検出器であればいずれの検出器であってもよいが、熱伝導度検出器(TCD)、水素炎イオン化検出器(FID)、電子捕獲型検出器(ECD)、質量分析計(MS)などを好ましく用いることができる。中でも熱伝導度検出器又は水素炎イオン化検出器がより好ましい。
(Detector)
The detector installed behind the column outlet for detecting the organic compound vapor may be any detector that can measure the amount of the organic compound vapor, but may be a thermal conductivity detector (TCD). ), A flame ionization detector (FID), an electron capture detector (ECD), a mass spectrometer (MS) and the like can be preferably used. Of these, a thermal conductivity detector or a flame ionization detector is more preferable.

(キャリアーガス)
キャリアーガスとしてはガスクロマトグラフィーで通常用いられるキャリアーガスを用いることができ、例えばヘリウムガス、アルゴンガス、窒素ガス等を好ましく用いることができる。
(Carrier gas)
As the carrier gas, a carrier gas usually used in gas chromatography can be used, and for example, helium gas, argon gas, nitrogen gas and the like can be preferably used.

(本発明における有機化合物蒸気の吸着挙動評価方法)
図1は、本発明による有機化合物蒸気の吸着挙動評価方法を示している。まず評価対象の吸着剤4を充填したカラム3をカラム槽2内に設置する。有機化合物はカラム3入り口からキャリアーガスとともにカラム3に導入される。有機化合物蒸気はカラム3内で吸着剤4との間の気固分配平衡を繰り返しながら、キャリアーガスに随伴されてカラム3内を移動し、カラム3出口に到達して検出器5で検出される。検出器5からの信号は記録計の演算器で処理されて該有機化合物蒸気のクロマトグラムが得られる。
(Method for evaluating adsorption behavior of organic compound vapor in the present invention)
FIG. 1 shows a method for evaluating the adsorption behavior of an organic compound vapor according to the present invention. First, the column 3 filled with the adsorbent 4 to be evaluated is installed in the column tank 2. The organic compound is introduced into the column 3 together with the carrier gas from the column 3 entrance. The organic compound vapor moves in the column 3 following the carrier gas while repeating the gas-solid distribution equilibrium with the adsorbent 4 in the column 3, reaches the outlet of the column 3, and is detected by the detector 5. . The signal from the detector 5 is processed by the calculator of the recorder to obtain a chromatogram of the organic compound vapor.

得られたクロマトグラムから、有機化合物蒸気を注入した時から検出器で検出されるまでに要した時間からキャリアーガスがカラム内の空隙をぬってカラムの入り口から出口に到るまでに要する時間を差し引いた時間、すなわち保持時間trが計算される。基準物質の保持時間をtrsとすると次式によって保持指標Iが算出される。 From the obtained chromatogram, the time required from the time when the organic compound vapor was injected until it was detected by the detector to the time required for the carrier gas to reach the outlet from the inlet of the column through the void in the column was calculated. The subtracted time, that is, the holding time tr is calculated. If the retention time of the reference substance is trs, the retention index I is calculated by the following equation.

Figure 2010066095
Figure 2010066095

工業プロセスにおける吸着剤の評価指標として重要な破過時吸着量は次のようにして算出することができる。すなわち、所定の濃度に調整された有機化合物蒸気を所定の流量で吸着剤に通気して、有機化合物蒸気を通気開始してから出口における濃度が破過濃度に達するまでの時間から、破過時間を測定し、原料濃度と破過時間と流量の積から破過時吸着量を算出する。破過濃度としては一般的に排出規制濃度等が選ばれるが、これに限定されることなく数ppbから数千ppmの範囲、さらに好ましくは数十ppbから数百ppmの範囲で自由に選ぶことができる。 The amount of adsorption during breakthrough, which is important as an evaluation index for adsorbents in industrial processes, can be calculated as follows. That is, the breakthrough time is calculated from the time from when the organic compound vapor adjusted to a predetermined concentration is passed through the adsorbent at a predetermined flow rate until the concentration at the outlet reaches the breakthrough concentration after the organic compound vapor starts to flow. And the amount of adsorption at breakthrough is calculated from the product of the raw material concentration, breakthrough time and flow rate. As the breakthrough concentration, the emission regulation concentration is generally selected, but is not limited to this, and is freely selected within the range of several ppb to several thousand ppm, and more preferably within the range of several tens of ppb to several hundred ppm. Can do.

流通系における有機化合物蒸気の吸着剤への吸着力を示す指標として吸着レシオRを次式で定義する。ここでQb及びQeはそれぞれ同じ温度・圧力・有機化合物蒸気濃度で測定した破過時吸着量及び平衡吸着量を表す。 The adsorption ratio R is defined by the following equation as an index indicating the adsorption power of the organic compound vapor to the adsorbent in the flow system. Here, Qb and Qe represent the adsorption amount during breakthrough and the equilibrium adsorption amount measured at the same temperature, pressure, and organic compound vapor concentration, respectively.

Figure 2010066095
Figure 2010066095

吸着レシオRは、値が大きいほど破過時吸着量が大きい、すなわち工業プロセスにおいてより好ましく吸着されることを表す。基準物質の破過時吸着量Qbs及び平衡吸着量Qesを予め測定して該基準物質の吸着レシオRsを算出しておき、評価対象有機化合物蒸気の保持指標を本発明による方法で測定することで、該有機化合物の吸着レシオを予測できる。すなわち、保持指標Iが0以上の時、「R大なりイコールRs」となることが予測でき、保持指標Iが負の値の時、「R小なりRs」となることが予測できる。このような評価方法によって、吸着破過曲線を測定することなく、基準物質と比較して吸着レシオが大きくなるか小さくなるかを予測することができる。ただし、保持指標は誤差を含む計測値から算出するため、本予測方法はある程度の予測誤差を含んでいることを妨げない。 The adsorption ratio R indicates that the larger the value, the larger the amount of adsorption at breakthrough, that is, the more preferable adsorption in an industrial process. By preliminarily measuring the breakthrough adsorption amount Qbs and the equilibrium adsorption amount Qes of the reference material to calculate the adsorption ratio Rs of the reference material, and measuring the retention index of the evaluation target organic compound vapor by the method according to the present invention, The adsorption ratio of the organic compound can be predicted. That is, when the retention index I is 0 or more, it can be predicted that “R is greater than equal Rs”, and when the retention index I is a negative value, it is possible to be predicted that “R is less than Rs”. With such an evaluation method, it is possible to predict whether the adsorption ratio will be larger or smaller than that of the reference material without measuring the adsorption breakthrough curve. However, since the retention index is calculated from a measurement value including an error, the present prediction method does not prevent a certain amount of prediction error from being included.

保持指標Iの算出に必要なクロマトグラムは通常数分から長くても数十分で測定でき、さらに異なる有機化合物種を混合して注入することで一度に複数のクロマトグラムを得るという効率化が可能なので、長時間を要する吸着破過曲線の測定より、はるかに迅速であり評価方法も簡便である。 The chromatogram required to calculate the retention index I can be measured with a few tens of minutes, usually several minutes to a long time. Furthermore, by mixing different organic compound species and injecting them, multiple chromatograms can be obtained at the same time. Therefore, it is much quicker and the evaluation method is simpler than the measurement of the adsorption breakthrough curve which takes a long time.

(実験例)
以下に本発明の特徴を具体的な実験例により説明するが、本実験例は本発明の範囲を限定するものではない。
(Experimental example)
The characteristics of the present invention will be described below with specific experimental examples, but the experimental examples do not limit the scope of the present invention.

(実験例1)
ペンタンを基準物質としてメチルエチルケトンの活性炭への吸着挙動を評価した。以下にその方法を記述する。下水汚泥を500℃で炭化して850℃で賦活することで得られた活性炭を、吸着している水分等を除去するため250℃で6時間加熱処理して放冷後、室温(25℃)下約30,000ppmに調製したペンタン/窒素又はメチルエチルケトン/窒素混合ガスに接触させたときの平衡吸着量を測定したところ、0.43及び0.74mmol/gであった。次にクロマトグラムを測定するため、該活性炭0.9gを外径1/8インチ、長さ25cmのステンレスカラムに充填し、カラム槽内に設置した後、カラムにヘリウムを流通させながら250℃で6時間加熱処理した。次に該カラム槽内を200℃に保持し、キャリアーガスとしてヘリウムを20ml/minの流速で導入しながら、ペンタン又はメチリエチルケトンをマイクロシリンジでそれぞれ0.6μL、気化室に注入することでカラムに導入し、カラム出口の後ろに設置した熱伝導度検出器でペンタン又はメチルエチルケトンを検出することでクロマトグラムを得た。なお、クロマトグラムから計算された保持時間は、ペンタン、メチルエチルケトンそれぞれ2.6及び23.2分であった。よってメチルエチルケトンの保持指標は0.95と計算された。一方、流通系吸着評価装置を用いて該活性炭の破過時吸着量を以下の通り測定した。該活性炭16.8gを内径16mmの吸着塔に充填し、吸着塔に窒素を流通させながら250℃で6時間加熱処理して放冷後、室温(25℃)下、濃度約30,000ppmに調製したペンタン/窒素又はメチルエチルケトン/窒素混合ガスを流量400ml/minで該吸着塔に導入し、吸着塔出口の後ろに設置した熱伝導度検出器で有機化合物蒸気濃度を測定することで吸着破過曲線を得た。吸着破過曲線から求めた破過時間はペンタン、メチルエチルケトンそれぞれ8.8及び21.2分であった。なお、破過濃度は100ppmとした。破過時間から破過時吸着量を算出したところペンタン、メチルエチルケトンそれぞれ0.29及び0.70mmol/gであった。従ってペンタン、メチルエチルケトンの吸着レシオはそれぞれ0.68及び0.94であった。これは、保持指標が0以上の時に吸着レシオが基準物質より大きくなる、すなわち吸着力が大きくなることを示す例である。
(Experimental example 1)
The adsorption behavior of methyl ethyl ketone on activated carbon was evaluated using pentane as a reference substance. The method is described below. Activated carbon obtained by carbonizing sewage sludge at 500 ° C. and activating at 850 ° C. is heat treated at 250 ° C. for 6 hours to remove adsorbed moisture, etc., allowed to cool, and then room temperature (25 ° C.) It was 0.43 and 0.74 mmol / g when the equilibrium adsorption amount when it was made to contact the pentane / nitrogen or methyl ethyl ketone / nitrogen mixed gas prepared to about 30,000 ppm below was measured. Next, in order to measure the chromatogram, 0.9 g of the activated carbon was packed in a stainless steel column having an outer diameter of 1/8 inch and a length of 25 cm, and placed in a column tank, and then helium was passed through the column at 250 ° C. Heat treatment was performed for 6 hours. Next, while maintaining the inside of the column tank at 200 ° C. and introducing helium as a carrier gas at a flow rate of 20 ml / min, 0.6 μL each of pentane or methyl ethyl ketone is injected into the vaporization chamber with a microsyringe. The chromatogram was obtained by introducing into the column and detecting pentane or methyl ethyl ketone with a thermal conductivity detector installed behind the column outlet. The retention times calculated from the chromatogram were 2.6 and 23.2 minutes for pentane and methyl ethyl ketone, respectively. Therefore, the retention index of methyl ethyl ketone was calculated to be 0.95. On the other hand, the adsorption amount during breakthrough of the activated carbon was measured as follows using a flow system adsorption evaluation apparatus. 16.8 g of the activated carbon is packed in an adsorption tower having an inner diameter of 16 mm, heated at 250 ° C. for 6 hours while flowing nitrogen through the adsorption tower, allowed to cool, and adjusted to a concentration of about 30,000 ppm at room temperature (25 ° C.). Adsorption breakthrough curve by introducing a mixed gas of pentane / nitrogen or methyl ethyl ketone / nitrogen into the adsorption tower at a flow rate of 400 ml / min and measuring the organic compound vapor concentration with a thermal conductivity detector installed behind the outlet of the adsorption tower Got. The breakthrough time determined from the adsorption breakthrough curve was 8.8 and 21.2 minutes for pentane and methyl ethyl ketone, respectively. The breakthrough concentration was 100 ppm. When the amount of adsorption at breakthrough was calculated from the breakthrough time, it was 0.29 and 0.70 mmol / g for pentane and methyl ethyl ketone, respectively. Therefore, the adsorption ratios of pentane and methyl ethyl ketone were 0.68 and 0.94, respectively. This is an example showing that when the retention index is 0 or more, the adsorption ratio is larger than that of the reference material, that is, the adsorption force is increased.

(実験例2)
実験例1と同様にして吸着剤として同じ活性炭を用いて、ペンタンを基準物質としたときの2−プロパノールの保持指標を算出したところ、−1.0であった。また2−プロパノールの平衡吸着量は0.51mmol/g、破過時吸着量は0.26mmol/gであったことから、吸着レシオは0.51となり、ペンタンの吸着レシオを下回った。これは保持指標が負の値の時に吸着レシオが基準物質より小さくなる、すなわち吸着力が小さくなることを示す例である。
(Experimental example 2)
When the same activated carbon was used as the adsorbent in the same manner as in Experimental Example 1 and the retention index of 2-propanol when pentane was used as the reference substance, it was -1.0. Further, since the equilibrium adsorption amount of 2-propanol was 0.51 mmol / g and the adsorption amount at breakthrough was 0.26 mmol / g, the adsorption ratio was 0.51, which was lower than the adsorption ratio of pentane. This is an example showing that when the retention index is a negative value, the adsorption ratio is smaller than that of the reference material, that is, the adsorption force is small.

(実験例3)
実験例1と同様にして吸着剤として市販活性炭(二村化学製CG48AR)を用いて、ペンタンを基準物質としたときのメチルエチルケトンの保持指標を算出したところ、0.07であった。該活性炭のペンタン、メチルエチルケトンの平衡吸着量は3.6及び4.7mmol/gであった。また、流通系吸着評価装置を用いて吸着破過曲線を測定した結果、ペンタン、メチルエチルケトンの破過時吸着量は2.8及び4.2mmol/gであった。よってペンタン、メチルエチルケトンの吸着レシオは0.78及び0.88と計算された。これは吸着剤が異なる場合でも保持指標が0以上の時に吸着レシオが基準物質より大きくなることを示す例である。
(Experimental example 3)
The retention index of methyl ethyl ketone when using pentane as a reference substance was calculated as 0.07 using commercially available activated carbon (CG48AR manufactured by Nimura Chemical) as the adsorbent in the same manner as in Experimental Example 1. The equilibrium adsorption amounts of pentane and methyl ethyl ketone on the activated carbon were 3.6 and 4.7 mmol / g. Moreover, as a result of measuring the adsorption breakthrough curve using the flow system adsorption | suction evaluation apparatus, the adsorption amount at the time of breakthrough of pentane and methyl ethyl ketone was 2.8 and 4.2 mmol / g. Therefore, the adsorption ratios of pentane and methyl ethyl ketone were calculated as 0.78 and 0.88. This is an example showing that even when the adsorbents are different, the adsorption ratio becomes larger than that of the reference material when the retention index is 0 or more.

本発明による有機化合物蒸気の吸着挙動評価方法の概略図Schematic diagram of organic compound vapor adsorption behavior evaluation method according to the present invention

符号の説明Explanation of symbols

1 気化室
2 カラム槽
3 カラム
4 吸着剤
5 検出器
1 Vaporizing chamber 2 Column tank 3 Column 4 Adsorbent 5 Detector

Claims (5)

カラムに吸着剤を充填し、該カラムにキャリアーガスを流通させながらカラム入り口手前から有機化合物蒸気を注入し、カラム出口の後ろに設置した検出器で有機化合物蒸気を検出することで得られるクロマトグラムを解析することを特徴とする有機化合物蒸気の吸着挙動迅速評価方法 Chromatogram obtained by filling the column with an adsorbent, injecting the organic compound vapor from the front of the column while circulating the carrier gas through the column, and detecting the organic compound vapor with a detector installed behind the column outlet Method for rapid evaluation of adsorption behavior of organic compound vapors 有機化合物の沸点が−10℃以上400℃以下であることを特徴とする請求項1記載の方法 The method according to claim 1, wherein the boiling point of the organic compound is -10 ° C or higher and 400 ° C or lower. 吸着剤が活性炭、シリカゲル、アルミナ又はゼオライトであることを特徴とする請求項1又は2記載の方法 3. The method according to claim 1, wherein the adsorbent is activated carbon, silica gel, alumina or zeolite. カラムを設置するカラム槽の温度が−10℃以上450℃以下であることを特徴とする請求項1又は2又は3記載の方法 The method according to claim 1, 2 or 3, wherein the temperature of the column tank in which the column is installed is -10 ° C or higher and 450 ° C or lower. クロマトグラムから得られる有機化合物蒸気の保持時間を、基準物質の保持時間で除して常用対数を算出することで得られる保持指標から、該有機化合物蒸気を用いたときの破過時吸着量を平衡吸着量で除することで算出される吸着レシオを予測することを特徴とする請求項1又は2又は3又は4記載の方法
















From the retention index obtained by calculating the common logarithm by dividing the retention time of the organic compound vapor obtained from the chromatogram by the retention time of the reference substance, the adsorption amount at breakthrough when using the organic compound vapor is balanced. The method according to claim 1, 2, 3, or 4, wherein an adsorption ratio calculated by dividing by an adsorption amount is predicted.
















JP2008231968A 2008-09-10 2008-09-10 Method of rapidly evaluating adsorbing behavior of organic compound vapor Pending JP2010066095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231968A JP2010066095A (en) 2008-09-10 2008-09-10 Method of rapidly evaluating adsorbing behavior of organic compound vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231968A JP2010066095A (en) 2008-09-10 2008-09-10 Method of rapidly evaluating adsorbing behavior of organic compound vapor

Publications (1)

Publication Number Publication Date
JP2010066095A true JP2010066095A (en) 2010-03-25

Family

ID=42191806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231968A Pending JP2010066095A (en) 2008-09-10 2008-09-10 Method of rapidly evaluating adsorbing behavior of organic compound vapor

Country Status (1)

Country Link
JP (1) JP2010066095A (en)

Similar Documents

Publication Publication Date Title
Ras et al. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples
Harper Sorbent trapping of volatile organic compounds from air
JP7315962B2 (en) A Rapid Subambient Temperature Multicapillary Column Preconcentration System for Volatile Chemical Analysis by Gas Chromatography
JP2019514021A (en) Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
JP5148933B2 (en) Sample concentration method and apparatus
Maceira et al. New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC–MS
Arrhenius et al. Suitability of different containers for the sampling and storage of biogas and biomethane for the determination of the trace-level impurities–a review
Wauters et al. Improved accuracy in the determination of polycyclic aromatic hydrocarbons in air using 24 h sampling on a mixed bed followed by thermal desorption capillary gas chromatography–mass spectrometry
Liu et al. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2–C12 hydrocarbons
Vallecillos et al. Evaluation of active sampling strategies for the determination of 1, 3-butadiene in air
Tanner et al. Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere
CN109799302B (en) Near-online detection method for medium-volatility organic compounds
Ventura et al. Retention characteristics of some volatile compounds on Tenax GR
Na et al. An efficient tool for the continuous monitoring on adsorption of sub-ppm level gaseous benzene using an automated analytical system based on thermal desorption-gas chromatography/mass spectrometry approach
McClenny et al. 24 h diffusive sampling of toxic VOCs in air onto Carbopack X solid adsorbent followed by thermal desorption/GC/MS analysis—laboratory studies
US20130000485A1 (en) Flow Control System, Device and Method for Thermal Desorption
McCaffrey et al. Adsorbent tube evaluation for the preconcentration of volatile organic compounds in air for analysis by gas chromatography–mass spectrometry
Even et al. Selection of gas standards, gas chromatography column and adsorbents for the measurement of very volatile organic compounds (C1–C6) in indoor air
Lee et al. Effect of conventional water pretreatment devices on polar compound analysis
EP2107371A1 (en) Method for separation of organic halogen, method for measurement of concentration of low-volatile organic halogen, and method for measurement of concentration of dioxin
JP2010066095A (en) Method of rapidly evaluating adsorbing behavior of organic compound vapor
Bouchard et al. δ13C and δ37Cl on gas-phase TCE for source identification investigation-innovative solvent-based sampling method
Castellnou et al. Refrigerated multibed adsorption in sampling and analysis of atmospheric light hydrocarbons at ppb (v/v) and sub-ppb (v/v) concentrations
Richards et al. An Automated Test Bed for Rapid Characterization of Sorbent Materials for Siloxane Removal in Contaminated Airstreams
Lecharlier et al. Novel field-portable high-pressure adsorbent tube sampler prototype for the direct in situ preconcentration of trace compounds in gases at their working pressures: application to biomethane